UBI: Add fastmap bits to build.c
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / mtd / ubi / build.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
21 */
22
23 /*
24 * This file includes UBI initialization and building of UBI devices.
25 *
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
30 */
31
32 #include <linux/err.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/stringify.h>
36 #include <linux/namei.h>
37 #include <linux/stat.h>
38 #include <linux/miscdevice.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/log2.h>
41 #include <linux/kthread.h>
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include "ubi.h"
45
46 /* Maximum length of the 'mtd=' parameter */
47 #define MTD_PARAM_LEN_MAX 64
48
49 /* Maximum number of comma-separated items in the 'mtd=' parameter */
50 #define MTD_PARAM_MAX_COUNT 3
51
52 /* Maximum value for the number of bad PEBs per 1024 PEBs */
53 #define MAX_MTD_UBI_BEB_LIMIT 768
54
55 #ifdef CONFIG_MTD_UBI_MODULE
56 #define ubi_is_module() 1
57 #else
58 #define ubi_is_module() 0
59 #endif
60
61 /**
62 * struct mtd_dev_param - MTD device parameter description data structure.
63 * @name: MTD character device node path, MTD device name, or MTD device number
64 * string
65 * @vid_hdr_offs: VID header offset
66 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
67 */
68 struct mtd_dev_param {
69 char name[MTD_PARAM_LEN_MAX];
70 int vid_hdr_offs;
71 int max_beb_per1024;
72 };
73
74 /* Numbers of elements set in the @mtd_dev_param array */
75 static int __initdata mtd_devs;
76
77 /* MTD devices specification parameters */
78 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
79 #ifdef CONFIG_MTD_UBI_FASTMAP
80 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
81 static bool fm_autoconvert;
82 #endif
83 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
84 struct class *ubi_class;
85
86 /* Slab cache for wear-leveling entries */
87 struct kmem_cache *ubi_wl_entry_slab;
88
89 /* UBI control character device */
90 static struct miscdevice ubi_ctrl_cdev = {
91 .minor = MISC_DYNAMIC_MINOR,
92 .name = "ubi_ctrl",
93 .fops = &ubi_ctrl_cdev_operations,
94 };
95
96 /* All UBI devices in system */
97 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
98
99 /* Serializes UBI devices creations and removals */
100 DEFINE_MUTEX(ubi_devices_mutex);
101
102 /* Protects @ubi_devices and @ubi->ref_count */
103 static DEFINE_SPINLOCK(ubi_devices_lock);
104
105 /* "Show" method for files in '/<sysfs>/class/ubi/' */
106 static ssize_t ubi_version_show(struct class *class,
107 struct class_attribute *attr, char *buf)
108 {
109 return sprintf(buf, "%d\n", UBI_VERSION);
110 }
111
112 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
113 static struct class_attribute ubi_version =
114 __ATTR(version, S_IRUGO, ubi_version_show, NULL);
115
116 static ssize_t dev_attribute_show(struct device *dev,
117 struct device_attribute *attr, char *buf);
118
119 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
120 static struct device_attribute dev_eraseblock_size =
121 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
122 static struct device_attribute dev_avail_eraseblocks =
123 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
124 static struct device_attribute dev_total_eraseblocks =
125 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
126 static struct device_attribute dev_volumes_count =
127 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
128 static struct device_attribute dev_max_ec =
129 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
130 static struct device_attribute dev_reserved_for_bad =
131 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
132 static struct device_attribute dev_bad_peb_count =
133 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
134 static struct device_attribute dev_max_vol_count =
135 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
136 static struct device_attribute dev_min_io_size =
137 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
138 static struct device_attribute dev_bgt_enabled =
139 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
140 static struct device_attribute dev_mtd_num =
141 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
142
143 /**
144 * ubi_volume_notify - send a volume change notification.
145 * @ubi: UBI device description object
146 * @vol: volume description object of the changed volume
147 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
148 *
149 * This is a helper function which notifies all subscribers about a volume
150 * change event (creation, removal, re-sizing, re-naming, updating). Returns
151 * zero in case of success and a negative error code in case of failure.
152 */
153 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
154 {
155 struct ubi_notification nt;
156
157 ubi_do_get_device_info(ubi, &nt.di);
158 ubi_do_get_volume_info(ubi, vol, &nt.vi);
159
160 #ifdef CONFIG_MTD_UBI_FASTMAP
161 switch (ntype) {
162 case UBI_VOLUME_ADDED:
163 case UBI_VOLUME_REMOVED:
164 case UBI_VOLUME_RESIZED:
165 case UBI_VOLUME_RENAMED:
166 if (ubi_update_fastmap(ubi)) {
167 ubi_err("Unable to update fastmap!");
168 ubi_ro_mode(ubi);
169 }
170 }
171 #endif
172 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
173 }
174
175 /**
176 * ubi_notify_all - send a notification to all volumes.
177 * @ubi: UBI device description object
178 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
179 * @nb: the notifier to call
180 *
181 * This function walks all volumes of UBI device @ubi and sends the @ntype
182 * notification for each volume. If @nb is %NULL, then all registered notifiers
183 * are called, otherwise only the @nb notifier is called. Returns the number of
184 * sent notifications.
185 */
186 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
187 {
188 struct ubi_notification nt;
189 int i, count = 0;
190
191 ubi_do_get_device_info(ubi, &nt.di);
192
193 mutex_lock(&ubi->device_mutex);
194 for (i = 0; i < ubi->vtbl_slots; i++) {
195 /*
196 * Since the @ubi->device is locked, and we are not going to
197 * change @ubi->volumes, we do not have to lock
198 * @ubi->volumes_lock.
199 */
200 if (!ubi->volumes[i])
201 continue;
202
203 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
204 if (nb)
205 nb->notifier_call(nb, ntype, &nt);
206 else
207 blocking_notifier_call_chain(&ubi_notifiers, ntype,
208 &nt);
209 count += 1;
210 }
211 mutex_unlock(&ubi->device_mutex);
212
213 return count;
214 }
215
216 /**
217 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
218 * @nb: the notifier to call
219 *
220 * This function walks all UBI devices and volumes and sends the
221 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
222 * registered notifiers are called, otherwise only the @nb notifier is called.
223 * Returns the number of sent notifications.
224 */
225 int ubi_enumerate_volumes(struct notifier_block *nb)
226 {
227 int i, count = 0;
228
229 /*
230 * Since the @ubi_devices_mutex is locked, and we are not going to
231 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
232 */
233 for (i = 0; i < UBI_MAX_DEVICES; i++) {
234 struct ubi_device *ubi = ubi_devices[i];
235
236 if (!ubi)
237 continue;
238 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
239 }
240
241 return count;
242 }
243
244 /**
245 * ubi_get_device - get UBI device.
246 * @ubi_num: UBI device number
247 *
248 * This function returns UBI device description object for UBI device number
249 * @ubi_num, or %NULL if the device does not exist. This function increases the
250 * device reference count to prevent removal of the device. In other words, the
251 * device cannot be removed if its reference count is not zero.
252 */
253 struct ubi_device *ubi_get_device(int ubi_num)
254 {
255 struct ubi_device *ubi;
256
257 spin_lock(&ubi_devices_lock);
258 ubi = ubi_devices[ubi_num];
259 if (ubi) {
260 ubi_assert(ubi->ref_count >= 0);
261 ubi->ref_count += 1;
262 get_device(&ubi->dev);
263 }
264 spin_unlock(&ubi_devices_lock);
265
266 return ubi;
267 }
268
269 /**
270 * ubi_put_device - drop an UBI device reference.
271 * @ubi: UBI device description object
272 */
273 void ubi_put_device(struct ubi_device *ubi)
274 {
275 spin_lock(&ubi_devices_lock);
276 ubi->ref_count -= 1;
277 put_device(&ubi->dev);
278 spin_unlock(&ubi_devices_lock);
279 }
280
281 /**
282 * ubi_get_by_major - get UBI device by character device major number.
283 * @major: major number
284 *
285 * This function is similar to 'ubi_get_device()', but it searches the device
286 * by its major number.
287 */
288 struct ubi_device *ubi_get_by_major(int major)
289 {
290 int i;
291 struct ubi_device *ubi;
292
293 spin_lock(&ubi_devices_lock);
294 for (i = 0; i < UBI_MAX_DEVICES; i++) {
295 ubi = ubi_devices[i];
296 if (ubi && MAJOR(ubi->cdev.dev) == major) {
297 ubi_assert(ubi->ref_count >= 0);
298 ubi->ref_count += 1;
299 get_device(&ubi->dev);
300 spin_unlock(&ubi_devices_lock);
301 return ubi;
302 }
303 }
304 spin_unlock(&ubi_devices_lock);
305
306 return NULL;
307 }
308
309 /**
310 * ubi_major2num - get UBI device number by character device major number.
311 * @major: major number
312 *
313 * This function searches UBI device number object by its major number. If UBI
314 * device was not found, this function returns -ENODEV, otherwise the UBI device
315 * number is returned.
316 */
317 int ubi_major2num(int major)
318 {
319 int i, ubi_num = -ENODEV;
320
321 spin_lock(&ubi_devices_lock);
322 for (i = 0; i < UBI_MAX_DEVICES; i++) {
323 struct ubi_device *ubi = ubi_devices[i];
324
325 if (ubi && MAJOR(ubi->cdev.dev) == major) {
326 ubi_num = ubi->ubi_num;
327 break;
328 }
329 }
330 spin_unlock(&ubi_devices_lock);
331
332 return ubi_num;
333 }
334
335 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
336 static ssize_t dev_attribute_show(struct device *dev,
337 struct device_attribute *attr, char *buf)
338 {
339 ssize_t ret;
340 struct ubi_device *ubi;
341
342 /*
343 * The below code looks weird, but it actually makes sense. We get the
344 * UBI device reference from the contained 'struct ubi_device'. But it
345 * is unclear if the device was removed or not yet. Indeed, if the
346 * device was removed before we increased its reference count,
347 * 'ubi_get_device()' will return -ENODEV and we fail.
348 *
349 * Remember, 'struct ubi_device' is freed in the release function, so
350 * we still can use 'ubi->ubi_num'.
351 */
352 ubi = container_of(dev, struct ubi_device, dev);
353 ubi = ubi_get_device(ubi->ubi_num);
354 if (!ubi)
355 return -ENODEV;
356
357 if (attr == &dev_eraseblock_size)
358 ret = sprintf(buf, "%d\n", ubi->leb_size);
359 else if (attr == &dev_avail_eraseblocks)
360 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
361 else if (attr == &dev_total_eraseblocks)
362 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
363 else if (attr == &dev_volumes_count)
364 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
365 else if (attr == &dev_max_ec)
366 ret = sprintf(buf, "%d\n", ubi->max_ec);
367 else if (attr == &dev_reserved_for_bad)
368 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
369 else if (attr == &dev_bad_peb_count)
370 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
371 else if (attr == &dev_max_vol_count)
372 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
373 else if (attr == &dev_min_io_size)
374 ret = sprintf(buf, "%d\n", ubi->min_io_size);
375 else if (attr == &dev_bgt_enabled)
376 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
377 else if (attr == &dev_mtd_num)
378 ret = sprintf(buf, "%d\n", ubi->mtd->index);
379 else
380 ret = -EINVAL;
381
382 ubi_put_device(ubi);
383 return ret;
384 }
385
386 static void dev_release(struct device *dev)
387 {
388 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
389
390 kfree(ubi);
391 }
392
393 /**
394 * ubi_sysfs_init - initialize sysfs for an UBI device.
395 * @ubi: UBI device description object
396 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
397 * taken
398 *
399 * This function returns zero in case of success and a negative error code in
400 * case of failure.
401 */
402 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
403 {
404 int err;
405
406 ubi->dev.release = dev_release;
407 ubi->dev.devt = ubi->cdev.dev;
408 ubi->dev.class = ubi_class;
409 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
410 err = device_register(&ubi->dev);
411 if (err)
412 return err;
413
414 *ref = 1;
415 err = device_create_file(&ubi->dev, &dev_eraseblock_size);
416 if (err)
417 return err;
418 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
419 if (err)
420 return err;
421 err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
422 if (err)
423 return err;
424 err = device_create_file(&ubi->dev, &dev_volumes_count);
425 if (err)
426 return err;
427 err = device_create_file(&ubi->dev, &dev_max_ec);
428 if (err)
429 return err;
430 err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
431 if (err)
432 return err;
433 err = device_create_file(&ubi->dev, &dev_bad_peb_count);
434 if (err)
435 return err;
436 err = device_create_file(&ubi->dev, &dev_max_vol_count);
437 if (err)
438 return err;
439 err = device_create_file(&ubi->dev, &dev_min_io_size);
440 if (err)
441 return err;
442 err = device_create_file(&ubi->dev, &dev_bgt_enabled);
443 if (err)
444 return err;
445 err = device_create_file(&ubi->dev, &dev_mtd_num);
446 return err;
447 }
448
449 /**
450 * ubi_sysfs_close - close sysfs for an UBI device.
451 * @ubi: UBI device description object
452 */
453 static void ubi_sysfs_close(struct ubi_device *ubi)
454 {
455 device_remove_file(&ubi->dev, &dev_mtd_num);
456 device_remove_file(&ubi->dev, &dev_bgt_enabled);
457 device_remove_file(&ubi->dev, &dev_min_io_size);
458 device_remove_file(&ubi->dev, &dev_max_vol_count);
459 device_remove_file(&ubi->dev, &dev_bad_peb_count);
460 device_remove_file(&ubi->dev, &dev_reserved_for_bad);
461 device_remove_file(&ubi->dev, &dev_max_ec);
462 device_remove_file(&ubi->dev, &dev_volumes_count);
463 device_remove_file(&ubi->dev, &dev_total_eraseblocks);
464 device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
465 device_remove_file(&ubi->dev, &dev_eraseblock_size);
466 device_unregister(&ubi->dev);
467 }
468
469 /**
470 * kill_volumes - destroy all user volumes.
471 * @ubi: UBI device description object
472 */
473 static void kill_volumes(struct ubi_device *ubi)
474 {
475 int i;
476
477 for (i = 0; i < ubi->vtbl_slots; i++)
478 if (ubi->volumes[i])
479 ubi_free_volume(ubi, ubi->volumes[i]);
480 }
481
482 /**
483 * uif_init - initialize user interfaces for an UBI device.
484 * @ubi: UBI device description object
485 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
486 * taken, otherwise set to %0
487 *
488 * This function initializes various user interfaces for an UBI device. If the
489 * initialization fails at an early stage, this function frees all the
490 * resources it allocated, returns an error, and @ref is set to %0. However,
491 * if the initialization fails after the UBI device was registered in the
492 * driver core subsystem, this function takes a reference to @ubi->dev, because
493 * otherwise the release function ('dev_release()') would free whole @ubi
494 * object. The @ref argument is set to %1 in this case. The caller has to put
495 * this reference.
496 *
497 * This function returns zero in case of success and a negative error code in
498 * case of failure.
499 */
500 static int uif_init(struct ubi_device *ubi, int *ref)
501 {
502 int i, err;
503 dev_t dev;
504
505 *ref = 0;
506 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
507
508 /*
509 * Major numbers for the UBI character devices are allocated
510 * dynamically. Major numbers of volume character devices are
511 * equivalent to ones of the corresponding UBI character device. Minor
512 * numbers of UBI character devices are 0, while minor numbers of
513 * volume character devices start from 1. Thus, we allocate one major
514 * number and ubi->vtbl_slots + 1 minor numbers.
515 */
516 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
517 if (err) {
518 ubi_err("cannot register UBI character devices");
519 return err;
520 }
521
522 ubi_assert(MINOR(dev) == 0);
523 cdev_init(&ubi->cdev, &ubi_cdev_operations);
524 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
525 ubi->cdev.owner = THIS_MODULE;
526
527 err = cdev_add(&ubi->cdev, dev, 1);
528 if (err) {
529 ubi_err("cannot add character device");
530 goto out_unreg;
531 }
532
533 err = ubi_sysfs_init(ubi, ref);
534 if (err)
535 goto out_sysfs;
536
537 for (i = 0; i < ubi->vtbl_slots; i++)
538 if (ubi->volumes[i]) {
539 err = ubi_add_volume(ubi, ubi->volumes[i]);
540 if (err) {
541 ubi_err("cannot add volume %d", i);
542 goto out_volumes;
543 }
544 }
545
546 return 0;
547
548 out_volumes:
549 kill_volumes(ubi);
550 out_sysfs:
551 if (*ref)
552 get_device(&ubi->dev);
553 ubi_sysfs_close(ubi);
554 cdev_del(&ubi->cdev);
555 out_unreg:
556 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
557 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
558 return err;
559 }
560
561 /**
562 * uif_close - close user interfaces for an UBI device.
563 * @ubi: UBI device description object
564 *
565 * Note, since this function un-registers UBI volume device objects (@vol->dev),
566 * the memory allocated voe the volumes is freed as well (in the release
567 * function).
568 */
569 static void uif_close(struct ubi_device *ubi)
570 {
571 kill_volumes(ubi);
572 ubi_sysfs_close(ubi);
573 cdev_del(&ubi->cdev);
574 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
575 }
576
577 /**
578 * ubi_free_internal_volumes - free internal volumes.
579 * @ubi: UBI device description object
580 */
581 void ubi_free_internal_volumes(struct ubi_device *ubi)
582 {
583 int i;
584
585 for (i = ubi->vtbl_slots;
586 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
587 kfree(ubi->volumes[i]->eba_tbl);
588 kfree(ubi->volumes[i]);
589 }
590 }
591
592 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
593 {
594 int limit, device_pebs;
595 uint64_t device_size;
596
597 if (!max_beb_per1024)
598 return 0;
599
600 /*
601 * Here we are using size of the entire flash chip and
602 * not just the MTD partition size because the maximum
603 * number of bad eraseblocks is a percentage of the
604 * whole device and bad eraseblocks are not fairly
605 * distributed over the flash chip. So the worst case
606 * is that all the bad eraseblocks of the chip are in
607 * the MTD partition we are attaching (ubi->mtd).
608 */
609 device_size = mtd_get_device_size(ubi->mtd);
610 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
611 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
612
613 /* Round it up */
614 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
615 limit += 1;
616
617 return limit;
618 }
619
620 /**
621 * io_init - initialize I/O sub-system for a given UBI device.
622 * @ubi: UBI device description object
623 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
624 *
625 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
626 * assumed:
627 * o EC header is always at offset zero - this cannot be changed;
628 * o VID header starts just after the EC header at the closest address
629 * aligned to @io->hdrs_min_io_size;
630 * o data starts just after the VID header at the closest address aligned to
631 * @io->min_io_size
632 *
633 * This function returns zero in case of success and a negative error code in
634 * case of failure.
635 */
636 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
637 {
638 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
639 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
640
641 if (ubi->mtd->numeraseregions != 0) {
642 /*
643 * Some flashes have several erase regions. Different regions
644 * may have different eraseblock size and other
645 * characteristics. It looks like mostly multi-region flashes
646 * have one "main" region and one or more small regions to
647 * store boot loader code or boot parameters or whatever. I
648 * guess we should just pick the largest region. But this is
649 * not implemented.
650 */
651 ubi_err("multiple regions, not implemented");
652 return -EINVAL;
653 }
654
655 if (ubi->vid_hdr_offset < 0)
656 return -EINVAL;
657
658 /*
659 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
660 * physical eraseblocks maximum.
661 */
662
663 ubi->peb_size = ubi->mtd->erasesize;
664 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
665 ubi->flash_size = ubi->mtd->size;
666
667 if (mtd_can_have_bb(ubi->mtd)) {
668 ubi->bad_allowed = 1;
669 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
670 }
671
672 if (ubi->mtd->type == MTD_NORFLASH) {
673 ubi_assert(ubi->mtd->writesize == 1);
674 ubi->nor_flash = 1;
675 }
676
677 ubi->min_io_size = ubi->mtd->writesize;
678 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
679
680 /*
681 * Make sure minimal I/O unit is power of 2. Note, there is no
682 * fundamental reason for this assumption. It is just an optimization
683 * which allows us to avoid costly division operations.
684 */
685 if (!is_power_of_2(ubi->min_io_size)) {
686 ubi_err("min. I/O unit (%d) is not power of 2",
687 ubi->min_io_size);
688 return -EINVAL;
689 }
690
691 ubi_assert(ubi->hdrs_min_io_size > 0);
692 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
693 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
694
695 ubi->max_write_size = ubi->mtd->writebufsize;
696 /*
697 * Maximum write size has to be greater or equivalent to min. I/O
698 * size, and be multiple of min. I/O size.
699 */
700 if (ubi->max_write_size < ubi->min_io_size ||
701 ubi->max_write_size % ubi->min_io_size ||
702 !is_power_of_2(ubi->max_write_size)) {
703 ubi_err("bad write buffer size %d for %d min. I/O unit",
704 ubi->max_write_size, ubi->min_io_size);
705 return -EINVAL;
706 }
707
708 /* Calculate default aligned sizes of EC and VID headers */
709 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
710 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
711
712 dbg_gen("min_io_size %d", ubi->min_io_size);
713 dbg_gen("max_write_size %d", ubi->max_write_size);
714 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
715 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
716 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
717
718 if (ubi->vid_hdr_offset == 0)
719 /* Default offset */
720 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
721 ubi->ec_hdr_alsize;
722 else {
723 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
724 ~(ubi->hdrs_min_io_size - 1);
725 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
726 ubi->vid_hdr_aloffset;
727 }
728
729 /* Similar for the data offset */
730 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
731 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
732
733 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
734 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
735 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
736 dbg_gen("leb_start %d", ubi->leb_start);
737
738 /* The shift must be aligned to 32-bit boundary */
739 if (ubi->vid_hdr_shift % 4) {
740 ubi_err("unaligned VID header shift %d",
741 ubi->vid_hdr_shift);
742 return -EINVAL;
743 }
744
745 /* Check sanity */
746 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
747 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
748 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
749 ubi->leb_start & (ubi->min_io_size - 1)) {
750 ubi_err("bad VID header (%d) or data offsets (%d)",
751 ubi->vid_hdr_offset, ubi->leb_start);
752 return -EINVAL;
753 }
754
755 /*
756 * Set maximum amount of physical erroneous eraseblocks to be 10%.
757 * Erroneous PEB are those which have read errors.
758 */
759 ubi->max_erroneous = ubi->peb_count / 10;
760 if (ubi->max_erroneous < 16)
761 ubi->max_erroneous = 16;
762 dbg_gen("max_erroneous %d", ubi->max_erroneous);
763
764 /*
765 * It may happen that EC and VID headers are situated in one minimal
766 * I/O unit. In this case we can only accept this UBI image in
767 * read-only mode.
768 */
769 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
770 ubi_warn("EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
771 ubi->ro_mode = 1;
772 }
773
774 ubi->leb_size = ubi->peb_size - ubi->leb_start;
775
776 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
777 ubi_msg("MTD device %d is write-protected, attach in read-only mode",
778 ubi->mtd->index);
779 ubi->ro_mode = 1;
780 }
781
782 /*
783 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
784 * unfortunately, MTD does not provide this information. We should loop
785 * over all physical eraseblocks and invoke mtd->block_is_bad() for
786 * each physical eraseblock. So, we leave @ubi->bad_peb_count
787 * uninitialized so far.
788 */
789
790 return 0;
791 }
792
793 /**
794 * autoresize - re-size the volume which has the "auto-resize" flag set.
795 * @ubi: UBI device description object
796 * @vol_id: ID of the volume to re-size
797 *
798 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
799 * the volume table to the largest possible size. See comments in ubi-header.h
800 * for more description of the flag. Returns zero in case of success and a
801 * negative error code in case of failure.
802 */
803 static int autoresize(struct ubi_device *ubi, int vol_id)
804 {
805 struct ubi_volume_desc desc;
806 struct ubi_volume *vol = ubi->volumes[vol_id];
807 int err, old_reserved_pebs = vol->reserved_pebs;
808
809 if (ubi->ro_mode) {
810 ubi_warn("skip auto-resize because of R/O mode");
811 return 0;
812 }
813
814 /*
815 * Clear the auto-resize flag in the volume in-memory copy of the
816 * volume table, and 'ubi_resize_volume()' will propagate this change
817 * to the flash.
818 */
819 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
820
821 if (ubi->avail_pebs == 0) {
822 struct ubi_vtbl_record vtbl_rec;
823
824 /*
825 * No available PEBs to re-size the volume, clear the flag on
826 * flash and exit.
827 */
828 memcpy(&vtbl_rec, &ubi->vtbl[vol_id],
829 sizeof(struct ubi_vtbl_record));
830 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
831 if (err)
832 ubi_err("cannot clean auto-resize flag for volume %d",
833 vol_id);
834 } else {
835 desc.vol = vol;
836 err = ubi_resize_volume(&desc,
837 old_reserved_pebs + ubi->avail_pebs);
838 if (err)
839 ubi_err("cannot auto-resize volume %d", vol_id);
840 }
841
842 if (err)
843 return err;
844
845 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
846 vol->name, old_reserved_pebs, vol->reserved_pebs);
847 return 0;
848 }
849
850 /**
851 * ubi_attach_mtd_dev - attach an MTD device.
852 * @mtd: MTD device description object
853 * @ubi_num: number to assign to the new UBI device
854 * @vid_hdr_offset: VID header offset
855 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
856 *
857 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
858 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
859 * which case this function finds a vacant device number and assigns it
860 * automatically. Returns the new UBI device number in case of success and a
861 * negative error code in case of failure.
862 *
863 * Note, the invocations of this function has to be serialized by the
864 * @ubi_devices_mutex.
865 */
866 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
867 int vid_hdr_offset, int max_beb_per1024)
868 {
869 struct ubi_device *ubi;
870 int i, err, ref = 0;
871
872 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
873 return -EINVAL;
874
875 if (!max_beb_per1024)
876 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
877
878 /*
879 * Check if we already have the same MTD device attached.
880 *
881 * Note, this function assumes that UBI devices creations and deletions
882 * are serialized, so it does not take the &ubi_devices_lock.
883 */
884 for (i = 0; i < UBI_MAX_DEVICES; i++) {
885 ubi = ubi_devices[i];
886 if (ubi && mtd->index == ubi->mtd->index) {
887 ubi_err("mtd%d is already attached to ubi%d",
888 mtd->index, i);
889 return -EEXIST;
890 }
891 }
892
893 /*
894 * Make sure this MTD device is not emulated on top of an UBI volume
895 * already. Well, generally this recursion works fine, but there are
896 * different problems like the UBI module takes a reference to itself
897 * by attaching (and thus, opening) the emulated MTD device. This
898 * results in inability to unload the module. And in general it makes
899 * no sense to attach emulated MTD devices, so we prohibit this.
900 */
901 if (mtd->type == MTD_UBIVOLUME) {
902 ubi_err("refuse attaching mtd%d - it is already emulated on top of UBI",
903 mtd->index);
904 return -EINVAL;
905 }
906
907 if (ubi_num == UBI_DEV_NUM_AUTO) {
908 /* Search for an empty slot in the @ubi_devices array */
909 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
910 if (!ubi_devices[ubi_num])
911 break;
912 if (ubi_num == UBI_MAX_DEVICES) {
913 ubi_err("only %d UBI devices may be created",
914 UBI_MAX_DEVICES);
915 return -ENFILE;
916 }
917 } else {
918 if (ubi_num >= UBI_MAX_DEVICES)
919 return -EINVAL;
920
921 /* Make sure ubi_num is not busy */
922 if (ubi_devices[ubi_num]) {
923 ubi_err("ubi%d already exists", ubi_num);
924 return -EEXIST;
925 }
926 }
927
928 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
929 if (!ubi)
930 return -ENOMEM;
931
932 ubi->mtd = mtd;
933 ubi->ubi_num = ubi_num;
934 ubi->vid_hdr_offset = vid_hdr_offset;
935 ubi->autoresize_vol_id = -1;
936
937 #ifdef CONFIG_MTD_UBI_FASTMAP
938 ubi->fm_pool.used = ubi->fm_pool.size = 0;
939 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
940
941 /*
942 * fm_pool.max_size is 5% of the total number of PEBs but it's also
943 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
944 */
945 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
946 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
947 if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE)
948 ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE;
949
950 ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE;
951 ubi->fm_disabled = !fm_autoconvert;
952
953 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
954 <= UBI_FM_MAX_START) {
955 ubi_err("More than %i PEBs are needed for fastmap, sorry.",
956 UBI_FM_MAX_START);
957 ubi->fm_disabled = 1;
958 }
959
960 ubi_msg("default fastmap pool size: %d", ubi->fm_pool.max_size);
961 ubi_msg("default fastmap WL pool size: %d", ubi->fm_wl_pool.max_size);
962 #else
963 ubi->fm_disabled = 1;
964 #endif
965 mutex_init(&ubi->buf_mutex);
966 mutex_init(&ubi->ckvol_mutex);
967 mutex_init(&ubi->device_mutex);
968 spin_lock_init(&ubi->volumes_lock);
969 mutex_init(&ubi->fm_mutex);
970 init_rwsem(&ubi->fm_sem);
971
972 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
973
974 err = io_init(ubi, max_beb_per1024);
975 if (err)
976 goto out_free;
977
978 err = -ENOMEM;
979 ubi->peb_buf = vmalloc(ubi->peb_size);
980 if (!ubi->peb_buf)
981 goto out_free;
982
983 #ifdef CONFIG_MTD_UBI_FASTMAP
984 ubi->fm_size = ubi_calc_fm_size(ubi);
985 ubi->fm_buf = vzalloc(ubi->fm_size);
986 if (!ubi->fm_buf)
987 goto out_free;
988 #endif
989 err = ubi_debugging_init_dev(ubi);
990 if (err)
991 goto out_free;
992
993 err = ubi_attach(ubi);
994 if (err) {
995 ubi_err("failed to attach mtd%d, error %d", mtd->index, err);
996 goto out_debugging;
997 }
998
999 if (ubi->autoresize_vol_id != -1) {
1000 err = autoresize(ubi, ubi->autoresize_vol_id);
1001 if (err)
1002 goto out_detach;
1003 }
1004
1005 err = uif_init(ubi, &ref);
1006 if (err)
1007 goto out_detach;
1008
1009 err = ubi_debugfs_init_dev(ubi);
1010 if (err)
1011 goto out_uif;
1012
1013 ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
1014 if (IS_ERR(ubi->bgt_thread)) {
1015 err = PTR_ERR(ubi->bgt_thread);
1016 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
1017 err);
1018 goto out_debugfs;
1019 }
1020
1021 ubi_msg("attached mtd%d (name \"%s\", size %llu MiB) to ubi%d",
1022 mtd->index, mtd->name, ubi->flash_size >> 20, ubi_num);
1023 ubi_msg("PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1024 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1025 ubi_msg("min./max. I/O unit sizes: %d/%d, sub-page size %d",
1026 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1027 ubi_msg("VID header offset: %d (aligned %d), data offset: %d",
1028 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1029 ubi_msg("good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1030 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1031 ubi_msg("user volume: %d, internal volumes: %d, max. volumes count: %d",
1032 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1033 ubi->vtbl_slots);
1034 ubi_msg("max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1035 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1036 ubi->image_seq);
1037 ubi_msg("available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1038 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1039
1040 /*
1041 * The below lock makes sure we do not race with 'ubi_thread()' which
1042 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1043 */
1044 spin_lock(&ubi->wl_lock);
1045 ubi->thread_enabled = 1;
1046 wake_up_process(ubi->bgt_thread);
1047 spin_unlock(&ubi->wl_lock);
1048
1049 ubi_devices[ubi_num] = ubi;
1050 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1051 return ubi_num;
1052
1053 out_debugfs:
1054 ubi_debugfs_exit_dev(ubi);
1055 out_uif:
1056 get_device(&ubi->dev);
1057 ubi_assert(ref);
1058 uif_close(ubi);
1059 out_detach:
1060 ubi_wl_close(ubi);
1061 ubi_free_internal_volumes(ubi);
1062 vfree(ubi->vtbl);
1063 out_debugging:
1064 ubi_debugging_exit_dev(ubi);
1065 out_free:
1066 vfree(ubi->peb_buf);
1067 vfree(ubi->fm_buf);
1068 if (ref)
1069 put_device(&ubi->dev);
1070 else
1071 kfree(ubi);
1072 return err;
1073 }
1074
1075 /**
1076 * ubi_detach_mtd_dev - detach an MTD device.
1077 * @ubi_num: UBI device number to detach from
1078 * @anyway: detach MTD even if device reference count is not zero
1079 *
1080 * This function destroys an UBI device number @ubi_num and detaches the
1081 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1082 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1083 * exist.
1084 *
1085 * Note, the invocations of this function has to be serialized by the
1086 * @ubi_devices_mutex.
1087 */
1088 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1089 {
1090 struct ubi_device *ubi;
1091
1092 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1093 return -EINVAL;
1094
1095 ubi = ubi_get_device(ubi_num);
1096 if (!ubi)
1097 return -EINVAL;
1098
1099 spin_lock(&ubi_devices_lock);
1100 put_device(&ubi->dev);
1101 ubi->ref_count -= 1;
1102 if (ubi->ref_count) {
1103 if (!anyway) {
1104 spin_unlock(&ubi_devices_lock);
1105 return -EBUSY;
1106 }
1107 /* This may only happen if there is a bug */
1108 ubi_err("%s reference count %d, destroy anyway",
1109 ubi->ubi_name, ubi->ref_count);
1110 }
1111 ubi_devices[ubi_num] = NULL;
1112 spin_unlock(&ubi_devices_lock);
1113
1114 ubi_assert(ubi_num == ubi->ubi_num);
1115 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1116 ubi_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
1117 #ifdef CONFIG_MTD_UBI_FASTMAP
1118 /* If we don't write a new fastmap at detach time we lose all
1119 * EC updates that have been made since the last written fastmap. */
1120 ubi_update_fastmap(ubi);
1121 #endif
1122 /*
1123 * Before freeing anything, we have to stop the background thread to
1124 * prevent it from doing anything on this device while we are freeing.
1125 */
1126 if (ubi->bgt_thread)
1127 kthread_stop(ubi->bgt_thread);
1128
1129 /*
1130 * Get a reference to the device in order to prevent 'dev_release()'
1131 * from freeing the @ubi object.
1132 */
1133 get_device(&ubi->dev);
1134
1135 ubi_debugfs_exit_dev(ubi);
1136 uif_close(ubi);
1137
1138 ubi_wl_close(ubi);
1139 ubi_free_internal_volumes(ubi);
1140 vfree(ubi->vtbl);
1141 put_mtd_device(ubi->mtd);
1142 ubi_debugging_exit_dev(ubi);
1143 vfree(ubi->peb_buf);
1144 vfree(ubi->fm_buf);
1145 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
1146 put_device(&ubi->dev);
1147 return 0;
1148 }
1149
1150 /**
1151 * open_mtd_by_chdev - open an MTD device by its character device node path.
1152 * @mtd_dev: MTD character device node path
1153 *
1154 * This helper function opens an MTD device by its character node device path.
1155 * Returns MTD device description object in case of success and a negative
1156 * error code in case of failure.
1157 */
1158 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1159 {
1160 int err, major, minor, mode;
1161 struct path path;
1162
1163 /* Probably this is an MTD character device node path */
1164 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1165 if (err)
1166 return ERR_PTR(err);
1167
1168 /* MTD device number is defined by the major / minor numbers */
1169 major = imajor(path.dentry->d_inode);
1170 minor = iminor(path.dentry->d_inode);
1171 mode = path.dentry->d_inode->i_mode;
1172 path_put(&path);
1173 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1174 return ERR_PTR(-EINVAL);
1175
1176 if (minor & 1)
1177 /*
1178 * Just do not think the "/dev/mtdrX" devices support is need,
1179 * so do not support them to avoid doing extra work.
1180 */
1181 return ERR_PTR(-EINVAL);
1182
1183 return get_mtd_device(NULL, minor / 2);
1184 }
1185
1186 /**
1187 * open_mtd_device - open MTD device by name, character device path, or number.
1188 * @mtd_dev: name, character device node path, or MTD device device number
1189 *
1190 * This function tries to open and MTD device described by @mtd_dev string,
1191 * which is first treated as ASCII MTD device number, and if it is not true, it
1192 * is treated as MTD device name, and if that is also not true, it is treated
1193 * as MTD character device node path. Returns MTD device description object in
1194 * case of success and a negative error code in case of failure.
1195 */
1196 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1197 {
1198 struct mtd_info *mtd;
1199 int mtd_num;
1200 char *endp;
1201
1202 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1203 if (*endp != '\0' || mtd_dev == endp) {
1204 /*
1205 * This does not look like an ASCII integer, probably this is
1206 * MTD device name.
1207 */
1208 mtd = get_mtd_device_nm(mtd_dev);
1209 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1210 /* Probably this is an MTD character device node path */
1211 mtd = open_mtd_by_chdev(mtd_dev);
1212 } else
1213 mtd = get_mtd_device(NULL, mtd_num);
1214
1215 return mtd;
1216 }
1217
1218 static int __init ubi_init(void)
1219 {
1220 int err, i, k;
1221
1222 /* Ensure that EC and VID headers have correct size */
1223 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1224 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1225
1226 if (mtd_devs > UBI_MAX_DEVICES) {
1227 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
1228 return -EINVAL;
1229 }
1230
1231 /* Create base sysfs directory and sysfs files */
1232 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1233 if (IS_ERR(ubi_class)) {
1234 err = PTR_ERR(ubi_class);
1235 ubi_err("cannot create UBI class");
1236 goto out;
1237 }
1238
1239 err = class_create_file(ubi_class, &ubi_version);
1240 if (err) {
1241 ubi_err("cannot create sysfs file");
1242 goto out_class;
1243 }
1244
1245 err = misc_register(&ubi_ctrl_cdev);
1246 if (err) {
1247 ubi_err("cannot register device");
1248 goto out_version;
1249 }
1250
1251 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1252 sizeof(struct ubi_wl_entry),
1253 0, 0, NULL);
1254 if (!ubi_wl_entry_slab)
1255 goto out_dev_unreg;
1256
1257 err = ubi_debugfs_init();
1258 if (err)
1259 goto out_slab;
1260
1261
1262 /* Attach MTD devices */
1263 for (i = 0; i < mtd_devs; i++) {
1264 struct mtd_dev_param *p = &mtd_dev_param[i];
1265 struct mtd_info *mtd;
1266
1267 cond_resched();
1268
1269 mtd = open_mtd_device(p->name);
1270 if (IS_ERR(mtd)) {
1271 err = PTR_ERR(mtd);
1272 goto out_detach;
1273 }
1274
1275 mutex_lock(&ubi_devices_mutex);
1276 err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1277 p->vid_hdr_offs, p->max_beb_per1024);
1278 mutex_unlock(&ubi_devices_mutex);
1279 if (err < 0) {
1280 ubi_err("cannot attach mtd%d", mtd->index);
1281 put_mtd_device(mtd);
1282
1283 /*
1284 * Originally UBI stopped initializing on any error.
1285 * However, later on it was found out that this
1286 * behavior is not very good when UBI is compiled into
1287 * the kernel and the MTD devices to attach are passed
1288 * through the command line. Indeed, UBI failure
1289 * stopped whole boot sequence.
1290 *
1291 * To fix this, we changed the behavior for the
1292 * non-module case, but preserved the old behavior for
1293 * the module case, just for compatibility. This is a
1294 * little inconsistent, though.
1295 */
1296 if (ubi_is_module())
1297 goto out_detach;
1298 }
1299 }
1300
1301 return 0;
1302
1303 out_detach:
1304 for (k = 0; k < i; k++)
1305 if (ubi_devices[k]) {
1306 mutex_lock(&ubi_devices_mutex);
1307 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1308 mutex_unlock(&ubi_devices_mutex);
1309 }
1310 ubi_debugfs_exit();
1311 out_slab:
1312 kmem_cache_destroy(ubi_wl_entry_slab);
1313 out_dev_unreg:
1314 misc_deregister(&ubi_ctrl_cdev);
1315 out_version:
1316 class_remove_file(ubi_class, &ubi_version);
1317 out_class:
1318 class_destroy(ubi_class);
1319 out:
1320 ubi_err("UBI error: cannot initialize UBI, error %d", err);
1321 return err;
1322 }
1323 late_initcall(ubi_init);
1324
1325 static void __exit ubi_exit(void)
1326 {
1327 int i;
1328
1329 for (i = 0; i < UBI_MAX_DEVICES; i++)
1330 if (ubi_devices[i]) {
1331 mutex_lock(&ubi_devices_mutex);
1332 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1333 mutex_unlock(&ubi_devices_mutex);
1334 }
1335 ubi_debugfs_exit();
1336 kmem_cache_destroy(ubi_wl_entry_slab);
1337 misc_deregister(&ubi_ctrl_cdev);
1338 class_remove_file(ubi_class, &ubi_version);
1339 class_destroy(ubi_class);
1340 }
1341 module_exit(ubi_exit);
1342
1343 /**
1344 * bytes_str_to_int - convert a number of bytes string into an integer.
1345 * @str: the string to convert
1346 *
1347 * This function returns positive resulting integer in case of success and a
1348 * negative error code in case of failure.
1349 */
1350 static int __init bytes_str_to_int(const char *str)
1351 {
1352 char *endp;
1353 unsigned long result;
1354
1355 result = simple_strtoul(str, &endp, 0);
1356 if (str == endp || result >= INT_MAX) {
1357 ubi_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1358 return -EINVAL;
1359 }
1360
1361 switch (*endp) {
1362 case 'G':
1363 result *= 1024;
1364 case 'M':
1365 result *= 1024;
1366 case 'K':
1367 result *= 1024;
1368 if (endp[1] == 'i' && endp[2] == 'B')
1369 endp += 2;
1370 case '\0':
1371 break;
1372 default:
1373 ubi_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1374 return -EINVAL;
1375 }
1376
1377 return result;
1378 }
1379
1380 /**
1381 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1382 * @val: the parameter value to parse
1383 * @kp: not used
1384 *
1385 * This function returns zero in case of success and a negative error code in
1386 * case of error.
1387 */
1388 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1389 {
1390 int i, len;
1391 struct mtd_dev_param *p;
1392 char buf[MTD_PARAM_LEN_MAX];
1393 char *pbuf = &buf[0];
1394 char *tokens[MTD_PARAM_MAX_COUNT];
1395
1396 if (!val)
1397 return -EINVAL;
1398
1399 if (mtd_devs == UBI_MAX_DEVICES) {
1400 ubi_err("UBI error: too many parameters, max. is %d\n",
1401 UBI_MAX_DEVICES);
1402 return -EINVAL;
1403 }
1404
1405 len = strnlen(val, MTD_PARAM_LEN_MAX);
1406 if (len == MTD_PARAM_LEN_MAX) {
1407 ubi_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1408 val, MTD_PARAM_LEN_MAX);
1409 return -EINVAL;
1410 }
1411
1412 if (len == 0) {
1413 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1414 return 0;
1415 }
1416
1417 strcpy(buf, val);
1418
1419 /* Get rid of the final newline */
1420 if (buf[len - 1] == '\n')
1421 buf[len - 1] = '\0';
1422
1423 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1424 tokens[i] = strsep(&pbuf, ",");
1425
1426 if (pbuf) {
1427 ubi_err("UBI error: too many arguments at \"%s\"\n", val);
1428 return -EINVAL;
1429 }
1430
1431 p = &mtd_dev_param[mtd_devs];
1432 strcpy(&p->name[0], tokens[0]);
1433
1434 if (tokens[1])
1435 p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1436
1437 if (p->vid_hdr_offs < 0)
1438 return p->vid_hdr_offs;
1439
1440 if (tokens[2]) {
1441 int err = kstrtoint(tokens[2], 10, &p->max_beb_per1024);
1442
1443 if (err) {
1444 ubi_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1445 tokens[2]);
1446 return -EINVAL;
1447 }
1448 }
1449
1450 mtd_devs += 1;
1451 return 0;
1452 }
1453
1454 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1455 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024]].\n"
1456 "Multiple \"mtd\" parameters may be specified.\n"
1457 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1458 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1459 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1460 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1461 "\n"
1462 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1463 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1464 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1465 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1466 #ifdef CONFIG_MTD_UBI_FASTMAP
1467 module_param(fm_autoconvert, bool, 0644);
1468 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1469 #endif
1470 MODULE_VERSION(__stringify(UBI_VERSION));
1471 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1472 MODULE_AUTHOR("Artem Bityutskiy");
1473 MODULE_LICENSE("GPL");