include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2 * linux/drivers/mtd/onenand/onenand_base.c
3 *
4 * Copyright © 2005-2009 Samsung Electronics
5 * Copyright © 2007 Nokia Corporation
6 *
7 * Kyungmin Park <kyungmin.park@samsung.com>
8 *
9 * Credits:
10 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
11 * auto-placement support, read-while load support, various fixes
12 *
13 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14 * Flex-OneNAND support
15 * Amul Kumar Saha <amul.saha at samsung.com>
16 * OTP support
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2 as
20 * published by the Free Software Foundation.
21 */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/init.h>
28 #include <linux/sched.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/jiffies.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/onenand.h>
34 #include <linux/mtd/partitions.h>
35
36 #include <asm/io.h>
37
38 /*
39 * Multiblock erase if number of blocks to erase is 2 or more.
40 * Maximum number of blocks for simultaneous erase is 64.
41 */
42 #define MB_ERASE_MIN_BLK_COUNT 2
43 #define MB_ERASE_MAX_BLK_COUNT 64
44
45 /* Default Flex-OneNAND boundary and lock respectively */
46 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
47
48 module_param_array(flex_bdry, int, NULL, 0400);
49 MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND"
50 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
51 "DIE_BDRY: SLC boundary of the die"
52 "LOCK: Locking information for SLC boundary"
53 " : 0->Set boundary in unlocked status"
54 " : 1->Set boundary in locked status");
55
56 /* Default OneNAND/Flex-OneNAND OTP options*/
57 static int otp;
58
59 module_param(otp, int, 0400);
60 MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP"
61 "Syntax : otp=LOCK_TYPE"
62 "LOCK_TYPE : Keys issued, for specific OTP Lock type"
63 " : 0 -> Default (No Blocks Locked)"
64 " : 1 -> OTP Block lock"
65 " : 2 -> 1st Block lock"
66 " : 3 -> BOTH OTP Block and 1st Block lock");
67
68 /**
69 * onenand_oob_128 - oob info for Flex-Onenand with 4KB page
70 * For now, we expose only 64 out of 80 ecc bytes
71 */
72 static struct nand_ecclayout onenand_oob_128 = {
73 .eccbytes = 64,
74 .eccpos = {
75 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
76 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
77 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
78 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
79 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
81 102, 103, 104, 105
82 },
83 .oobfree = {
84 {2, 4}, {18, 4}, {34, 4}, {50, 4},
85 {66, 4}, {82, 4}, {98, 4}, {114, 4}
86 }
87 };
88
89 /**
90 * onenand_oob_64 - oob info for large (2KB) page
91 */
92 static struct nand_ecclayout onenand_oob_64 = {
93 .eccbytes = 20,
94 .eccpos = {
95 8, 9, 10, 11, 12,
96 24, 25, 26, 27, 28,
97 40, 41, 42, 43, 44,
98 56, 57, 58, 59, 60,
99 },
100 .oobfree = {
101 {2, 3}, {14, 2}, {18, 3}, {30, 2},
102 {34, 3}, {46, 2}, {50, 3}, {62, 2}
103 }
104 };
105
106 /**
107 * onenand_oob_32 - oob info for middle (1KB) page
108 */
109 static struct nand_ecclayout onenand_oob_32 = {
110 .eccbytes = 10,
111 .eccpos = {
112 8, 9, 10, 11, 12,
113 24, 25, 26, 27, 28,
114 },
115 .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
116 };
117
118 static const unsigned char ffchars[] = {
119 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
120 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
121 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
122 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
123 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
124 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
125 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
126 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
127 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
128 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
129 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
130 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
131 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
132 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
133 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
134 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
135 };
136
137 /**
138 * onenand_readw - [OneNAND Interface] Read OneNAND register
139 * @param addr address to read
140 *
141 * Read OneNAND register
142 */
143 static unsigned short onenand_readw(void __iomem *addr)
144 {
145 return readw(addr);
146 }
147
148 /**
149 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
150 * @param value value to write
151 * @param addr address to write
152 *
153 * Write OneNAND register with value
154 */
155 static void onenand_writew(unsigned short value, void __iomem *addr)
156 {
157 writew(value, addr);
158 }
159
160 /**
161 * onenand_block_address - [DEFAULT] Get block address
162 * @param this onenand chip data structure
163 * @param block the block
164 * @return translated block address if DDP, otherwise same
165 *
166 * Setup Start Address 1 Register (F100h)
167 */
168 static int onenand_block_address(struct onenand_chip *this, int block)
169 {
170 /* Device Flash Core select, NAND Flash Block Address */
171 if (block & this->density_mask)
172 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
173
174 return block;
175 }
176
177 /**
178 * onenand_bufferram_address - [DEFAULT] Get bufferram address
179 * @param this onenand chip data structure
180 * @param block the block
181 * @return set DBS value if DDP, otherwise 0
182 *
183 * Setup Start Address 2 Register (F101h) for DDP
184 */
185 static int onenand_bufferram_address(struct onenand_chip *this, int block)
186 {
187 /* Device BufferRAM Select */
188 if (block & this->density_mask)
189 return ONENAND_DDP_CHIP1;
190
191 return ONENAND_DDP_CHIP0;
192 }
193
194 /**
195 * onenand_page_address - [DEFAULT] Get page address
196 * @param page the page address
197 * @param sector the sector address
198 * @return combined page and sector address
199 *
200 * Setup Start Address 8 Register (F107h)
201 */
202 static int onenand_page_address(int page, int sector)
203 {
204 /* Flash Page Address, Flash Sector Address */
205 int fpa, fsa;
206
207 fpa = page & ONENAND_FPA_MASK;
208 fsa = sector & ONENAND_FSA_MASK;
209
210 return ((fpa << ONENAND_FPA_SHIFT) | fsa);
211 }
212
213 /**
214 * onenand_buffer_address - [DEFAULT] Get buffer address
215 * @param dataram1 DataRAM index
216 * @param sectors the sector address
217 * @param count the number of sectors
218 * @return the start buffer value
219 *
220 * Setup Start Buffer Register (F200h)
221 */
222 static int onenand_buffer_address(int dataram1, int sectors, int count)
223 {
224 int bsa, bsc;
225
226 /* BufferRAM Sector Address */
227 bsa = sectors & ONENAND_BSA_MASK;
228
229 if (dataram1)
230 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
231 else
232 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
233
234 /* BufferRAM Sector Count */
235 bsc = count & ONENAND_BSC_MASK;
236
237 return ((bsa << ONENAND_BSA_SHIFT) | bsc);
238 }
239
240 /**
241 * flexonenand_block- For given address return block number
242 * @param this - OneNAND device structure
243 * @param addr - Address for which block number is needed
244 */
245 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
246 {
247 unsigned boundary, blk, die = 0;
248
249 if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
250 die = 1;
251 addr -= this->diesize[0];
252 }
253
254 boundary = this->boundary[die];
255
256 blk = addr >> (this->erase_shift - 1);
257 if (blk > boundary)
258 blk = (blk + boundary + 1) >> 1;
259
260 blk += die ? this->density_mask : 0;
261 return blk;
262 }
263
264 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
265 {
266 if (!FLEXONENAND(this))
267 return addr >> this->erase_shift;
268 return flexonenand_block(this, addr);
269 }
270
271 /**
272 * flexonenand_addr - Return address of the block
273 * @this: OneNAND device structure
274 * @block: Block number on Flex-OneNAND
275 *
276 * Return address of the block
277 */
278 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
279 {
280 loff_t ofs = 0;
281 int die = 0, boundary;
282
283 if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
284 block -= this->density_mask;
285 die = 1;
286 ofs = this->diesize[0];
287 }
288
289 boundary = this->boundary[die];
290 ofs += (loff_t)block << (this->erase_shift - 1);
291 if (block > (boundary + 1))
292 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
293 return ofs;
294 }
295
296 loff_t onenand_addr(struct onenand_chip *this, int block)
297 {
298 if (!FLEXONENAND(this))
299 return (loff_t)block << this->erase_shift;
300 return flexonenand_addr(this, block);
301 }
302 EXPORT_SYMBOL(onenand_addr);
303
304 /**
305 * onenand_get_density - [DEFAULT] Get OneNAND density
306 * @param dev_id OneNAND device ID
307 *
308 * Get OneNAND density from device ID
309 */
310 static inline int onenand_get_density(int dev_id)
311 {
312 int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
313 return (density & ONENAND_DEVICE_DENSITY_MASK);
314 }
315
316 /**
317 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
318 * @param mtd MTD device structure
319 * @param addr address whose erase region needs to be identified
320 */
321 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
322 {
323 int i;
324
325 for (i = 0; i < mtd->numeraseregions; i++)
326 if (addr < mtd->eraseregions[i].offset)
327 break;
328 return i - 1;
329 }
330 EXPORT_SYMBOL(flexonenand_region);
331
332 /**
333 * onenand_command - [DEFAULT] Send command to OneNAND device
334 * @param mtd MTD device structure
335 * @param cmd the command to be sent
336 * @param addr offset to read from or write to
337 * @param len number of bytes to read or write
338 *
339 * Send command to OneNAND device. This function is used for middle/large page
340 * devices (1KB/2KB Bytes per page)
341 */
342 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
343 {
344 struct onenand_chip *this = mtd->priv;
345 int value, block, page;
346
347 /* Address translation */
348 switch (cmd) {
349 case ONENAND_CMD_UNLOCK:
350 case ONENAND_CMD_LOCK:
351 case ONENAND_CMD_LOCK_TIGHT:
352 case ONENAND_CMD_UNLOCK_ALL:
353 block = -1;
354 page = -1;
355 break;
356
357 case FLEXONENAND_CMD_PI_ACCESS:
358 /* addr contains die index */
359 block = addr * this->density_mask;
360 page = -1;
361 break;
362
363 case ONENAND_CMD_ERASE:
364 case ONENAND_CMD_MULTIBLOCK_ERASE:
365 case ONENAND_CMD_ERASE_VERIFY:
366 case ONENAND_CMD_BUFFERRAM:
367 case ONENAND_CMD_OTP_ACCESS:
368 block = onenand_block(this, addr);
369 page = -1;
370 break;
371
372 case FLEXONENAND_CMD_READ_PI:
373 cmd = ONENAND_CMD_READ;
374 block = addr * this->density_mask;
375 page = 0;
376 break;
377
378 default:
379 block = onenand_block(this, addr);
380 page = (int) (addr - onenand_addr(this, block)) >> this->page_shift;
381
382 if (ONENAND_IS_2PLANE(this)) {
383 /* Make the even block number */
384 block &= ~1;
385 /* Is it the odd plane? */
386 if (addr & this->writesize)
387 block++;
388 page >>= 1;
389 }
390 page &= this->page_mask;
391 break;
392 }
393
394 /* NOTE: The setting order of the registers is very important! */
395 if (cmd == ONENAND_CMD_BUFFERRAM) {
396 /* Select DataRAM for DDP */
397 value = onenand_bufferram_address(this, block);
398 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
399
400 if (ONENAND_IS_MLC(this) || ONENAND_IS_2PLANE(this))
401 /* It is always BufferRAM0 */
402 ONENAND_SET_BUFFERRAM0(this);
403 else
404 /* Switch to the next data buffer */
405 ONENAND_SET_NEXT_BUFFERRAM(this);
406
407 return 0;
408 }
409
410 if (block != -1) {
411 /* Write 'DFS, FBA' of Flash */
412 value = onenand_block_address(this, block);
413 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
414
415 /* Select DataRAM for DDP */
416 value = onenand_bufferram_address(this, block);
417 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
418 }
419
420 if (page != -1) {
421 /* Now we use page size operation */
422 int sectors = 0, count = 0;
423 int dataram;
424
425 switch (cmd) {
426 case FLEXONENAND_CMD_RECOVER_LSB:
427 case ONENAND_CMD_READ:
428 case ONENAND_CMD_READOOB:
429 if (ONENAND_IS_MLC(this))
430 /* It is always BufferRAM0 */
431 dataram = ONENAND_SET_BUFFERRAM0(this);
432 else
433 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
434 break;
435
436 default:
437 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
438 cmd = ONENAND_CMD_2X_PROG;
439 dataram = ONENAND_CURRENT_BUFFERRAM(this);
440 break;
441 }
442
443 /* Write 'FPA, FSA' of Flash */
444 value = onenand_page_address(page, sectors);
445 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
446
447 /* Write 'BSA, BSC' of DataRAM */
448 value = onenand_buffer_address(dataram, sectors, count);
449 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
450 }
451
452 /* Interrupt clear */
453 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
454
455 /* Write command */
456 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
457
458 return 0;
459 }
460
461 /**
462 * onenand_read_ecc - return ecc status
463 * @param this onenand chip structure
464 */
465 static inline int onenand_read_ecc(struct onenand_chip *this)
466 {
467 int ecc, i, result = 0;
468
469 if (!FLEXONENAND(this))
470 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
471
472 for (i = 0; i < 4; i++) {
473 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i);
474 if (likely(!ecc))
475 continue;
476 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
477 return ONENAND_ECC_2BIT_ALL;
478 else
479 result = ONENAND_ECC_1BIT_ALL;
480 }
481
482 return result;
483 }
484
485 /**
486 * onenand_wait - [DEFAULT] wait until the command is done
487 * @param mtd MTD device structure
488 * @param state state to select the max. timeout value
489 *
490 * Wait for command done. This applies to all OneNAND command
491 * Read can take up to 30us, erase up to 2ms and program up to 350us
492 * according to general OneNAND specs
493 */
494 static int onenand_wait(struct mtd_info *mtd, int state)
495 {
496 struct onenand_chip * this = mtd->priv;
497 unsigned long timeout;
498 unsigned int flags = ONENAND_INT_MASTER;
499 unsigned int interrupt = 0;
500 unsigned int ctrl;
501
502 /* The 20 msec is enough */
503 timeout = jiffies + msecs_to_jiffies(20);
504 while (time_before(jiffies, timeout)) {
505 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
506
507 if (interrupt & flags)
508 break;
509
510 if (state != FL_READING && state != FL_PREPARING_ERASE)
511 cond_resched();
512 }
513 /* To get correct interrupt status in timeout case */
514 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
515
516 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
517
518 /*
519 * In the Spec. it checks the controller status first
520 * However if you get the correct information in case of
521 * power off recovery (POR) test, it should read ECC status first
522 */
523 if (interrupt & ONENAND_INT_READ) {
524 int ecc = onenand_read_ecc(this);
525 if (ecc) {
526 if (ecc & ONENAND_ECC_2BIT_ALL) {
527 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
528 __func__, ecc);
529 mtd->ecc_stats.failed++;
530 return -EBADMSG;
531 } else if (ecc & ONENAND_ECC_1BIT_ALL) {
532 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
533 __func__, ecc);
534 mtd->ecc_stats.corrected++;
535 }
536 }
537 } else if (state == FL_READING) {
538 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
539 __func__, ctrl, interrupt);
540 return -EIO;
541 }
542
543 if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
544 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
545 __func__, ctrl, interrupt);
546 return -EIO;
547 }
548
549 if (!(interrupt & ONENAND_INT_MASTER)) {
550 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
551 __func__, ctrl, interrupt);
552 return -EIO;
553 }
554
555 /* If there's controller error, it's a real error */
556 if (ctrl & ONENAND_CTRL_ERROR) {
557 printk(KERN_ERR "%s: controller error = 0x%04x\n",
558 __func__, ctrl);
559 if (ctrl & ONENAND_CTRL_LOCK)
560 printk(KERN_ERR "%s: it's locked error.\n", __func__);
561 return -EIO;
562 }
563
564 return 0;
565 }
566
567 /*
568 * onenand_interrupt - [DEFAULT] onenand interrupt handler
569 * @param irq onenand interrupt number
570 * @param dev_id interrupt data
571 *
572 * complete the work
573 */
574 static irqreturn_t onenand_interrupt(int irq, void *data)
575 {
576 struct onenand_chip *this = data;
577
578 /* To handle shared interrupt */
579 if (!this->complete.done)
580 complete(&this->complete);
581
582 return IRQ_HANDLED;
583 }
584
585 /*
586 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
587 * @param mtd MTD device structure
588 * @param state state to select the max. timeout value
589 *
590 * Wait for command done.
591 */
592 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
593 {
594 struct onenand_chip *this = mtd->priv;
595
596 wait_for_completion(&this->complete);
597
598 return onenand_wait(mtd, state);
599 }
600
601 /*
602 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
603 * @param mtd MTD device structure
604 * @param state state to select the max. timeout value
605 *
606 * Try interrupt based wait (It is used one-time)
607 */
608 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
609 {
610 struct onenand_chip *this = mtd->priv;
611 unsigned long remain, timeout;
612
613 /* We use interrupt wait first */
614 this->wait = onenand_interrupt_wait;
615
616 timeout = msecs_to_jiffies(100);
617 remain = wait_for_completion_timeout(&this->complete, timeout);
618 if (!remain) {
619 printk(KERN_INFO "OneNAND: There's no interrupt. "
620 "We use the normal wait\n");
621
622 /* Release the irq */
623 free_irq(this->irq, this);
624
625 this->wait = onenand_wait;
626 }
627
628 return onenand_wait(mtd, state);
629 }
630
631 /*
632 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
633 * @param mtd MTD device structure
634 *
635 * There's two method to wait onenand work
636 * 1. polling - read interrupt status register
637 * 2. interrupt - use the kernel interrupt method
638 */
639 static void onenand_setup_wait(struct mtd_info *mtd)
640 {
641 struct onenand_chip *this = mtd->priv;
642 int syscfg;
643
644 init_completion(&this->complete);
645
646 if (this->irq <= 0) {
647 this->wait = onenand_wait;
648 return;
649 }
650
651 if (request_irq(this->irq, &onenand_interrupt,
652 IRQF_SHARED, "onenand", this)) {
653 /* If we can't get irq, use the normal wait */
654 this->wait = onenand_wait;
655 return;
656 }
657
658 /* Enable interrupt */
659 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
660 syscfg |= ONENAND_SYS_CFG1_IOBE;
661 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
662
663 this->wait = onenand_try_interrupt_wait;
664 }
665
666 /**
667 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
668 * @param mtd MTD data structure
669 * @param area BufferRAM area
670 * @return offset given area
671 *
672 * Return BufferRAM offset given area
673 */
674 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
675 {
676 struct onenand_chip *this = mtd->priv;
677
678 if (ONENAND_CURRENT_BUFFERRAM(this)) {
679 /* Note: the 'this->writesize' is a real page size */
680 if (area == ONENAND_DATARAM)
681 return this->writesize;
682 if (area == ONENAND_SPARERAM)
683 return mtd->oobsize;
684 }
685
686 return 0;
687 }
688
689 /**
690 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
691 * @param mtd MTD data structure
692 * @param area BufferRAM area
693 * @param buffer the databuffer to put/get data
694 * @param offset offset to read from or write to
695 * @param count number of bytes to read/write
696 *
697 * Read the BufferRAM area
698 */
699 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
700 unsigned char *buffer, int offset, size_t count)
701 {
702 struct onenand_chip *this = mtd->priv;
703 void __iomem *bufferram;
704
705 bufferram = this->base + area;
706
707 bufferram += onenand_bufferram_offset(mtd, area);
708
709 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
710 unsigned short word;
711
712 /* Align with word(16-bit) size */
713 count--;
714
715 /* Read word and save byte */
716 word = this->read_word(bufferram + offset + count);
717 buffer[count] = (word & 0xff);
718 }
719
720 memcpy(buffer, bufferram + offset, count);
721
722 return 0;
723 }
724
725 /**
726 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
727 * @param mtd MTD data structure
728 * @param area BufferRAM area
729 * @param buffer the databuffer to put/get data
730 * @param offset offset to read from or write to
731 * @param count number of bytes to read/write
732 *
733 * Read the BufferRAM area with Sync. Burst Mode
734 */
735 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
736 unsigned char *buffer, int offset, size_t count)
737 {
738 struct onenand_chip *this = mtd->priv;
739 void __iomem *bufferram;
740
741 bufferram = this->base + area;
742
743 bufferram += onenand_bufferram_offset(mtd, area);
744
745 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
746
747 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
748 unsigned short word;
749
750 /* Align with word(16-bit) size */
751 count--;
752
753 /* Read word and save byte */
754 word = this->read_word(bufferram + offset + count);
755 buffer[count] = (word & 0xff);
756 }
757
758 memcpy(buffer, bufferram + offset, count);
759
760 this->mmcontrol(mtd, 0);
761
762 return 0;
763 }
764
765 /**
766 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
767 * @param mtd MTD data structure
768 * @param area BufferRAM area
769 * @param buffer the databuffer to put/get data
770 * @param offset offset to read from or write to
771 * @param count number of bytes to read/write
772 *
773 * Write the BufferRAM area
774 */
775 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
776 const unsigned char *buffer, int offset, size_t count)
777 {
778 struct onenand_chip *this = mtd->priv;
779 void __iomem *bufferram;
780
781 bufferram = this->base + area;
782
783 bufferram += onenand_bufferram_offset(mtd, area);
784
785 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
786 unsigned short word;
787 int byte_offset;
788
789 /* Align with word(16-bit) size */
790 count--;
791
792 /* Calculate byte access offset */
793 byte_offset = offset + count;
794
795 /* Read word and save byte */
796 word = this->read_word(bufferram + byte_offset);
797 word = (word & ~0xff) | buffer[count];
798 this->write_word(word, bufferram + byte_offset);
799 }
800
801 memcpy(bufferram + offset, buffer, count);
802
803 return 0;
804 }
805
806 /**
807 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
808 * @param mtd MTD data structure
809 * @param addr address to check
810 * @return blockpage address
811 *
812 * Get blockpage address at 2x program mode
813 */
814 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
815 {
816 struct onenand_chip *this = mtd->priv;
817 int blockpage, block, page;
818
819 /* Calculate the even block number */
820 block = (int) (addr >> this->erase_shift) & ~1;
821 /* Is it the odd plane? */
822 if (addr & this->writesize)
823 block++;
824 page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
825 blockpage = (block << 7) | page;
826
827 return blockpage;
828 }
829
830 /**
831 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
832 * @param mtd MTD data structure
833 * @param addr address to check
834 * @return 1 if there are valid data, otherwise 0
835 *
836 * Check bufferram if there is data we required
837 */
838 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
839 {
840 struct onenand_chip *this = mtd->priv;
841 int blockpage, found = 0;
842 unsigned int i;
843
844 if (ONENAND_IS_2PLANE(this))
845 blockpage = onenand_get_2x_blockpage(mtd, addr);
846 else
847 blockpage = (int) (addr >> this->page_shift);
848
849 /* Is there valid data? */
850 i = ONENAND_CURRENT_BUFFERRAM(this);
851 if (this->bufferram[i].blockpage == blockpage)
852 found = 1;
853 else {
854 /* Check another BufferRAM */
855 i = ONENAND_NEXT_BUFFERRAM(this);
856 if (this->bufferram[i].blockpage == blockpage) {
857 ONENAND_SET_NEXT_BUFFERRAM(this);
858 found = 1;
859 }
860 }
861
862 if (found && ONENAND_IS_DDP(this)) {
863 /* Select DataRAM for DDP */
864 int block = onenand_block(this, addr);
865 int value = onenand_bufferram_address(this, block);
866 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
867 }
868
869 return found;
870 }
871
872 /**
873 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
874 * @param mtd MTD data structure
875 * @param addr address to update
876 * @param valid valid flag
877 *
878 * Update BufferRAM information
879 */
880 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
881 int valid)
882 {
883 struct onenand_chip *this = mtd->priv;
884 int blockpage;
885 unsigned int i;
886
887 if (ONENAND_IS_2PLANE(this))
888 blockpage = onenand_get_2x_blockpage(mtd, addr);
889 else
890 blockpage = (int) (addr >> this->page_shift);
891
892 /* Invalidate another BufferRAM */
893 i = ONENAND_NEXT_BUFFERRAM(this);
894 if (this->bufferram[i].blockpage == blockpage)
895 this->bufferram[i].blockpage = -1;
896
897 /* Update BufferRAM */
898 i = ONENAND_CURRENT_BUFFERRAM(this);
899 if (valid)
900 this->bufferram[i].blockpage = blockpage;
901 else
902 this->bufferram[i].blockpage = -1;
903 }
904
905 /**
906 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
907 * @param mtd MTD data structure
908 * @param addr start address to invalidate
909 * @param len length to invalidate
910 *
911 * Invalidate BufferRAM information
912 */
913 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
914 unsigned int len)
915 {
916 struct onenand_chip *this = mtd->priv;
917 int i;
918 loff_t end_addr = addr + len;
919
920 /* Invalidate BufferRAM */
921 for (i = 0; i < MAX_BUFFERRAM; i++) {
922 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
923 if (buf_addr >= addr && buf_addr < end_addr)
924 this->bufferram[i].blockpage = -1;
925 }
926 }
927
928 /**
929 * onenand_get_device - [GENERIC] Get chip for selected access
930 * @param mtd MTD device structure
931 * @param new_state the state which is requested
932 *
933 * Get the device and lock it for exclusive access
934 */
935 static int onenand_get_device(struct mtd_info *mtd, int new_state)
936 {
937 struct onenand_chip *this = mtd->priv;
938 DECLARE_WAITQUEUE(wait, current);
939
940 /*
941 * Grab the lock and see if the device is available
942 */
943 while (1) {
944 spin_lock(&this->chip_lock);
945 if (this->state == FL_READY) {
946 this->state = new_state;
947 spin_unlock(&this->chip_lock);
948 break;
949 }
950 if (new_state == FL_PM_SUSPENDED) {
951 spin_unlock(&this->chip_lock);
952 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
953 }
954 set_current_state(TASK_UNINTERRUPTIBLE);
955 add_wait_queue(&this->wq, &wait);
956 spin_unlock(&this->chip_lock);
957 schedule();
958 remove_wait_queue(&this->wq, &wait);
959 }
960
961 return 0;
962 }
963
964 /**
965 * onenand_release_device - [GENERIC] release chip
966 * @param mtd MTD device structure
967 *
968 * Deselect, release chip lock and wake up anyone waiting on the device
969 */
970 static void onenand_release_device(struct mtd_info *mtd)
971 {
972 struct onenand_chip *this = mtd->priv;
973
974 /* Release the chip */
975 spin_lock(&this->chip_lock);
976 this->state = FL_READY;
977 wake_up(&this->wq);
978 spin_unlock(&this->chip_lock);
979 }
980
981 /**
982 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
983 * @param mtd MTD device structure
984 * @param buf destination address
985 * @param column oob offset to read from
986 * @param thislen oob length to read
987 */
988 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
989 int thislen)
990 {
991 struct onenand_chip *this = mtd->priv;
992 struct nand_oobfree *free;
993 int readcol = column;
994 int readend = column + thislen;
995 int lastgap = 0;
996 unsigned int i;
997 uint8_t *oob_buf = this->oob_buf;
998
999 free = this->ecclayout->oobfree;
1000 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1001 if (readcol >= lastgap)
1002 readcol += free->offset - lastgap;
1003 if (readend >= lastgap)
1004 readend += free->offset - lastgap;
1005 lastgap = free->offset + free->length;
1006 }
1007 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1008 free = this->ecclayout->oobfree;
1009 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1010 int free_end = free->offset + free->length;
1011 if (free->offset < readend && free_end > readcol) {
1012 int st = max_t(int,free->offset,readcol);
1013 int ed = min_t(int,free_end,readend);
1014 int n = ed - st;
1015 memcpy(buf, oob_buf + st, n);
1016 buf += n;
1017 } else if (column == 0)
1018 break;
1019 }
1020 return 0;
1021 }
1022
1023 /**
1024 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1025 * @param mtd MTD device structure
1026 * @param addr address to recover
1027 * @param status return value from onenand_wait / onenand_bbt_wait
1028 *
1029 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1030 * lower page address and MSB page has higher page address in paired pages.
1031 * If power off occurs during MSB page program, the paired LSB page data can
1032 * become corrupt. LSB page recovery read is a way to read LSB page though page
1033 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1034 * read after power up, issue LSB page recovery read.
1035 */
1036 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1037 {
1038 struct onenand_chip *this = mtd->priv;
1039 int i;
1040
1041 /* Recovery is only for Flex-OneNAND */
1042 if (!FLEXONENAND(this))
1043 return status;
1044
1045 /* check if we failed due to uncorrectable error */
1046 if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
1047 return status;
1048
1049 /* check if address lies in MLC region */
1050 i = flexonenand_region(mtd, addr);
1051 if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1052 return status;
1053
1054 /* We are attempting to reread, so decrement stats.failed
1055 * which was incremented by onenand_wait due to read failure
1056 */
1057 printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1058 __func__);
1059 mtd->ecc_stats.failed--;
1060
1061 /* Issue the LSB page recovery command */
1062 this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1063 return this->wait(mtd, FL_READING);
1064 }
1065
1066 /**
1067 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1068 * @param mtd MTD device structure
1069 * @param from offset to read from
1070 * @param ops: oob operation description structure
1071 *
1072 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1073 * So, read-while-load is not present.
1074 */
1075 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1076 struct mtd_oob_ops *ops)
1077 {
1078 struct onenand_chip *this = mtd->priv;
1079 struct mtd_ecc_stats stats;
1080 size_t len = ops->len;
1081 size_t ooblen = ops->ooblen;
1082 u_char *buf = ops->datbuf;
1083 u_char *oobbuf = ops->oobbuf;
1084 int read = 0, column, thislen;
1085 int oobread = 0, oobcolumn, thisooblen, oobsize;
1086 int ret = 0;
1087 int writesize = this->writesize;
1088
1089 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1090 __func__, (unsigned int) from, (int) len);
1091
1092 if (ops->mode == MTD_OOB_AUTO)
1093 oobsize = this->ecclayout->oobavail;
1094 else
1095 oobsize = mtd->oobsize;
1096
1097 oobcolumn = from & (mtd->oobsize - 1);
1098
1099 /* Do not allow reads past end of device */
1100 if (from + len > mtd->size) {
1101 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1102 __func__);
1103 ops->retlen = 0;
1104 ops->oobretlen = 0;
1105 return -EINVAL;
1106 }
1107
1108 stats = mtd->ecc_stats;
1109
1110 while (read < len) {
1111 cond_resched();
1112
1113 thislen = min_t(int, writesize, len - read);
1114
1115 column = from & (writesize - 1);
1116 if (column + thislen > writesize)
1117 thislen = writesize - column;
1118
1119 if (!onenand_check_bufferram(mtd, from)) {
1120 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1121
1122 ret = this->wait(mtd, FL_READING);
1123 if (unlikely(ret))
1124 ret = onenand_recover_lsb(mtd, from, ret);
1125 onenand_update_bufferram(mtd, from, !ret);
1126 if (ret == -EBADMSG)
1127 ret = 0;
1128 }
1129
1130 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1131 if (oobbuf) {
1132 thisooblen = oobsize - oobcolumn;
1133 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1134
1135 if (ops->mode == MTD_OOB_AUTO)
1136 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1137 else
1138 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1139 oobread += thisooblen;
1140 oobbuf += thisooblen;
1141 oobcolumn = 0;
1142 }
1143
1144 read += thislen;
1145 if (read == len)
1146 break;
1147
1148 from += thislen;
1149 buf += thislen;
1150 }
1151
1152 /*
1153 * Return success, if no ECC failures, else -EBADMSG
1154 * fs driver will take care of that, because
1155 * retlen == desired len and result == -EBADMSG
1156 */
1157 ops->retlen = read;
1158 ops->oobretlen = oobread;
1159
1160 if (ret)
1161 return ret;
1162
1163 if (mtd->ecc_stats.failed - stats.failed)
1164 return -EBADMSG;
1165
1166 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1167 }
1168
1169 /**
1170 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1171 * @param mtd MTD device structure
1172 * @param from offset to read from
1173 * @param ops: oob operation description structure
1174 *
1175 * OneNAND read main and/or out-of-band data
1176 */
1177 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1178 struct mtd_oob_ops *ops)
1179 {
1180 struct onenand_chip *this = mtd->priv;
1181 struct mtd_ecc_stats stats;
1182 size_t len = ops->len;
1183 size_t ooblen = ops->ooblen;
1184 u_char *buf = ops->datbuf;
1185 u_char *oobbuf = ops->oobbuf;
1186 int read = 0, column, thislen;
1187 int oobread = 0, oobcolumn, thisooblen, oobsize;
1188 int ret = 0, boundary = 0;
1189 int writesize = this->writesize;
1190
1191 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1192 __func__, (unsigned int) from, (int) len);
1193
1194 if (ops->mode == MTD_OOB_AUTO)
1195 oobsize = this->ecclayout->oobavail;
1196 else
1197 oobsize = mtd->oobsize;
1198
1199 oobcolumn = from & (mtd->oobsize - 1);
1200
1201 /* Do not allow reads past end of device */
1202 if ((from + len) > mtd->size) {
1203 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1204 __func__);
1205 ops->retlen = 0;
1206 ops->oobretlen = 0;
1207 return -EINVAL;
1208 }
1209
1210 stats = mtd->ecc_stats;
1211
1212 /* Read-while-load method */
1213
1214 /* Do first load to bufferRAM */
1215 if (read < len) {
1216 if (!onenand_check_bufferram(mtd, from)) {
1217 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1218 ret = this->wait(mtd, FL_READING);
1219 onenand_update_bufferram(mtd, from, !ret);
1220 if (ret == -EBADMSG)
1221 ret = 0;
1222 }
1223 }
1224
1225 thislen = min_t(int, writesize, len - read);
1226 column = from & (writesize - 1);
1227 if (column + thislen > writesize)
1228 thislen = writesize - column;
1229
1230 while (!ret) {
1231 /* If there is more to load then start next load */
1232 from += thislen;
1233 if (read + thislen < len) {
1234 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1235 /*
1236 * Chip boundary handling in DDP
1237 * Now we issued chip 1 read and pointed chip 1
1238 * bufferram so we have to point chip 0 bufferram.
1239 */
1240 if (ONENAND_IS_DDP(this) &&
1241 unlikely(from == (this->chipsize >> 1))) {
1242 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1243 boundary = 1;
1244 } else
1245 boundary = 0;
1246 ONENAND_SET_PREV_BUFFERRAM(this);
1247 }
1248 /* While load is going, read from last bufferRAM */
1249 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1250
1251 /* Read oob area if needed */
1252 if (oobbuf) {
1253 thisooblen = oobsize - oobcolumn;
1254 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1255
1256 if (ops->mode == MTD_OOB_AUTO)
1257 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1258 else
1259 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1260 oobread += thisooblen;
1261 oobbuf += thisooblen;
1262 oobcolumn = 0;
1263 }
1264
1265 /* See if we are done */
1266 read += thislen;
1267 if (read == len)
1268 break;
1269 /* Set up for next read from bufferRAM */
1270 if (unlikely(boundary))
1271 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1272 ONENAND_SET_NEXT_BUFFERRAM(this);
1273 buf += thislen;
1274 thislen = min_t(int, writesize, len - read);
1275 column = 0;
1276 cond_resched();
1277 /* Now wait for load */
1278 ret = this->wait(mtd, FL_READING);
1279 onenand_update_bufferram(mtd, from, !ret);
1280 if (ret == -EBADMSG)
1281 ret = 0;
1282 }
1283
1284 /*
1285 * Return success, if no ECC failures, else -EBADMSG
1286 * fs driver will take care of that, because
1287 * retlen == desired len and result == -EBADMSG
1288 */
1289 ops->retlen = read;
1290 ops->oobretlen = oobread;
1291
1292 if (ret)
1293 return ret;
1294
1295 if (mtd->ecc_stats.failed - stats.failed)
1296 return -EBADMSG;
1297
1298 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1299 }
1300
1301 /**
1302 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1303 * @param mtd MTD device structure
1304 * @param from offset to read from
1305 * @param ops: oob operation description structure
1306 *
1307 * OneNAND read out-of-band data from the spare area
1308 */
1309 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1310 struct mtd_oob_ops *ops)
1311 {
1312 struct onenand_chip *this = mtd->priv;
1313 struct mtd_ecc_stats stats;
1314 int read = 0, thislen, column, oobsize;
1315 size_t len = ops->ooblen;
1316 mtd_oob_mode_t mode = ops->mode;
1317 u_char *buf = ops->oobbuf;
1318 int ret = 0, readcmd;
1319
1320 from += ops->ooboffs;
1321
1322 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1323 __func__, (unsigned int) from, (int) len);
1324
1325 /* Initialize return length value */
1326 ops->oobretlen = 0;
1327
1328 if (mode == MTD_OOB_AUTO)
1329 oobsize = this->ecclayout->oobavail;
1330 else
1331 oobsize = mtd->oobsize;
1332
1333 column = from & (mtd->oobsize - 1);
1334
1335 if (unlikely(column >= oobsize)) {
1336 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1337 __func__);
1338 return -EINVAL;
1339 }
1340
1341 /* Do not allow reads past end of device */
1342 if (unlikely(from >= mtd->size ||
1343 column + len > ((mtd->size >> this->page_shift) -
1344 (from >> this->page_shift)) * oobsize)) {
1345 printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
1346 __func__);
1347 return -EINVAL;
1348 }
1349
1350 stats = mtd->ecc_stats;
1351
1352 readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1353
1354 while (read < len) {
1355 cond_resched();
1356
1357 thislen = oobsize - column;
1358 thislen = min_t(int, thislen, len);
1359
1360 this->command(mtd, readcmd, from, mtd->oobsize);
1361
1362 onenand_update_bufferram(mtd, from, 0);
1363
1364 ret = this->wait(mtd, FL_READING);
1365 if (unlikely(ret))
1366 ret = onenand_recover_lsb(mtd, from, ret);
1367
1368 if (ret && ret != -EBADMSG) {
1369 printk(KERN_ERR "%s: read failed = 0x%x\n",
1370 __func__, ret);
1371 break;
1372 }
1373
1374 if (mode == MTD_OOB_AUTO)
1375 onenand_transfer_auto_oob(mtd, buf, column, thislen);
1376 else
1377 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1378
1379 read += thislen;
1380
1381 if (read == len)
1382 break;
1383
1384 buf += thislen;
1385
1386 /* Read more? */
1387 if (read < len) {
1388 /* Page size */
1389 from += mtd->writesize;
1390 column = 0;
1391 }
1392 }
1393
1394 ops->oobretlen = read;
1395
1396 if (ret)
1397 return ret;
1398
1399 if (mtd->ecc_stats.failed - stats.failed)
1400 return -EBADMSG;
1401
1402 return 0;
1403 }
1404
1405 /**
1406 * onenand_read - [MTD Interface] Read data from flash
1407 * @param mtd MTD device structure
1408 * @param from offset to read from
1409 * @param len number of bytes to read
1410 * @param retlen pointer to variable to store the number of read bytes
1411 * @param buf the databuffer to put data
1412 *
1413 * Read with ecc
1414 */
1415 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1416 size_t *retlen, u_char *buf)
1417 {
1418 struct onenand_chip *this = mtd->priv;
1419 struct mtd_oob_ops ops = {
1420 .len = len,
1421 .ooblen = 0,
1422 .datbuf = buf,
1423 .oobbuf = NULL,
1424 };
1425 int ret;
1426
1427 onenand_get_device(mtd, FL_READING);
1428 ret = ONENAND_IS_MLC(this) ?
1429 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1430 onenand_read_ops_nolock(mtd, from, &ops);
1431 onenand_release_device(mtd);
1432
1433 *retlen = ops.retlen;
1434 return ret;
1435 }
1436
1437 /**
1438 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1439 * @param mtd: MTD device structure
1440 * @param from: offset to read from
1441 * @param ops: oob operation description structure
1442
1443 * Read main and/or out-of-band
1444 */
1445 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1446 struct mtd_oob_ops *ops)
1447 {
1448 struct onenand_chip *this = mtd->priv;
1449 int ret;
1450
1451 switch (ops->mode) {
1452 case MTD_OOB_PLACE:
1453 case MTD_OOB_AUTO:
1454 break;
1455 case MTD_OOB_RAW:
1456 /* Not implemented yet */
1457 default:
1458 return -EINVAL;
1459 }
1460
1461 onenand_get_device(mtd, FL_READING);
1462 if (ops->datbuf)
1463 ret = ONENAND_IS_MLC(this) ?
1464 onenand_mlc_read_ops_nolock(mtd, from, ops) :
1465 onenand_read_ops_nolock(mtd, from, ops);
1466 else
1467 ret = onenand_read_oob_nolock(mtd, from, ops);
1468 onenand_release_device(mtd);
1469
1470 return ret;
1471 }
1472
1473 /**
1474 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1475 * @param mtd MTD device structure
1476 * @param state state to select the max. timeout value
1477 *
1478 * Wait for command done.
1479 */
1480 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1481 {
1482 struct onenand_chip *this = mtd->priv;
1483 unsigned long timeout;
1484 unsigned int interrupt;
1485 unsigned int ctrl;
1486
1487 /* The 20 msec is enough */
1488 timeout = jiffies + msecs_to_jiffies(20);
1489 while (time_before(jiffies, timeout)) {
1490 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1491 if (interrupt & ONENAND_INT_MASTER)
1492 break;
1493 }
1494 /* To get correct interrupt status in timeout case */
1495 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1496 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1497
1498 if (interrupt & ONENAND_INT_READ) {
1499 int ecc = onenand_read_ecc(this);
1500 if (ecc & ONENAND_ECC_2BIT_ALL) {
1501 printk(KERN_WARNING "%s: ecc error = 0x%04x, "
1502 "controller error 0x%04x\n",
1503 __func__, ecc, ctrl);
1504 return ONENAND_BBT_READ_ECC_ERROR;
1505 }
1506 } else {
1507 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
1508 __func__, ctrl, interrupt);
1509 return ONENAND_BBT_READ_FATAL_ERROR;
1510 }
1511
1512 /* Initial bad block case: 0x2400 or 0x0400 */
1513 if (ctrl & ONENAND_CTRL_ERROR) {
1514 printk(KERN_DEBUG "%s: controller error = 0x%04x\n",
1515 __func__, ctrl);
1516 return ONENAND_BBT_READ_ERROR;
1517 }
1518
1519 return 0;
1520 }
1521
1522 /**
1523 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1524 * @param mtd MTD device structure
1525 * @param from offset to read from
1526 * @param ops oob operation description structure
1527 *
1528 * OneNAND read out-of-band data from the spare area for bbt scan
1529 */
1530 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1531 struct mtd_oob_ops *ops)
1532 {
1533 struct onenand_chip *this = mtd->priv;
1534 int read = 0, thislen, column;
1535 int ret = 0, readcmd;
1536 size_t len = ops->ooblen;
1537 u_char *buf = ops->oobbuf;
1538
1539 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %zi\n",
1540 __func__, (unsigned int) from, len);
1541
1542 /* Initialize return value */
1543 ops->oobretlen = 0;
1544
1545 /* Do not allow reads past end of device */
1546 if (unlikely((from + len) > mtd->size)) {
1547 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1548 __func__);
1549 return ONENAND_BBT_READ_FATAL_ERROR;
1550 }
1551
1552 /* Grab the lock and see if the device is available */
1553 onenand_get_device(mtd, FL_READING);
1554
1555 column = from & (mtd->oobsize - 1);
1556
1557 readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1558
1559 while (read < len) {
1560 cond_resched();
1561
1562 thislen = mtd->oobsize - column;
1563 thislen = min_t(int, thislen, len);
1564
1565 this->command(mtd, readcmd, from, mtd->oobsize);
1566
1567 onenand_update_bufferram(mtd, from, 0);
1568
1569 ret = this->bbt_wait(mtd, FL_READING);
1570 if (unlikely(ret))
1571 ret = onenand_recover_lsb(mtd, from, ret);
1572
1573 if (ret)
1574 break;
1575
1576 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1577 read += thislen;
1578 if (read == len)
1579 break;
1580
1581 buf += thislen;
1582
1583 /* Read more? */
1584 if (read < len) {
1585 /* Update Page size */
1586 from += this->writesize;
1587 column = 0;
1588 }
1589 }
1590
1591 /* Deselect and wake up anyone waiting on the device */
1592 onenand_release_device(mtd);
1593
1594 ops->oobretlen = read;
1595 return ret;
1596 }
1597
1598 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1599 /**
1600 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1601 * @param mtd MTD device structure
1602 * @param buf the databuffer to verify
1603 * @param to offset to read from
1604 */
1605 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1606 {
1607 struct onenand_chip *this = mtd->priv;
1608 u_char *oob_buf = this->oob_buf;
1609 int status, i, readcmd;
1610
1611 readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1612
1613 this->command(mtd, readcmd, to, mtd->oobsize);
1614 onenand_update_bufferram(mtd, to, 0);
1615 status = this->wait(mtd, FL_READING);
1616 if (status)
1617 return status;
1618
1619 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1620 for (i = 0; i < mtd->oobsize; i++)
1621 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1622 return -EBADMSG;
1623
1624 return 0;
1625 }
1626
1627 /**
1628 * onenand_verify - [GENERIC] verify the chip contents after a write
1629 * @param mtd MTD device structure
1630 * @param buf the databuffer to verify
1631 * @param addr offset to read from
1632 * @param len number of bytes to read and compare
1633 */
1634 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1635 {
1636 struct onenand_chip *this = mtd->priv;
1637 void __iomem *dataram;
1638 int ret = 0;
1639 int thislen, column;
1640
1641 while (len != 0) {
1642 thislen = min_t(int, this->writesize, len);
1643 column = addr & (this->writesize - 1);
1644 if (column + thislen > this->writesize)
1645 thislen = this->writesize - column;
1646
1647 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1648
1649 onenand_update_bufferram(mtd, addr, 0);
1650
1651 ret = this->wait(mtd, FL_READING);
1652 if (ret)
1653 return ret;
1654
1655 onenand_update_bufferram(mtd, addr, 1);
1656
1657 dataram = this->base + ONENAND_DATARAM;
1658 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1659
1660 if (memcmp(buf, dataram + column, thislen))
1661 return -EBADMSG;
1662
1663 len -= thislen;
1664 buf += thislen;
1665 addr += thislen;
1666 }
1667
1668 return 0;
1669 }
1670 #else
1671 #define onenand_verify(...) (0)
1672 #define onenand_verify_oob(...) (0)
1673 #endif
1674
1675 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
1676
1677 static void onenand_panic_wait(struct mtd_info *mtd)
1678 {
1679 struct onenand_chip *this = mtd->priv;
1680 unsigned int interrupt;
1681 int i;
1682
1683 for (i = 0; i < 2000; i++) {
1684 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1685 if (interrupt & ONENAND_INT_MASTER)
1686 break;
1687 udelay(10);
1688 }
1689 }
1690
1691 /**
1692 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1693 * @param mtd MTD device structure
1694 * @param to offset to write to
1695 * @param len number of bytes to write
1696 * @param retlen pointer to variable to store the number of written bytes
1697 * @param buf the data to write
1698 *
1699 * Write with ECC
1700 */
1701 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1702 size_t *retlen, const u_char *buf)
1703 {
1704 struct onenand_chip *this = mtd->priv;
1705 int column, subpage;
1706 int written = 0;
1707 int ret = 0;
1708
1709 if (this->state == FL_PM_SUSPENDED)
1710 return -EBUSY;
1711
1712 /* Wait for any existing operation to clear */
1713 onenand_panic_wait(mtd);
1714
1715 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1716 __func__, (unsigned int) to, (int) len);
1717
1718 /* Initialize retlen, in case of early exit */
1719 *retlen = 0;
1720
1721 /* Do not allow writes past end of device */
1722 if (unlikely((to + len) > mtd->size)) {
1723 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1724 __func__);
1725 return -EINVAL;
1726 }
1727
1728 /* Reject writes, which are not page aligned */
1729 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1730 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1731 __func__);
1732 return -EINVAL;
1733 }
1734
1735 column = to & (mtd->writesize - 1);
1736
1737 /* Loop until all data write */
1738 while (written < len) {
1739 int thislen = min_t(int, mtd->writesize - column, len - written);
1740 u_char *wbuf = (u_char *) buf;
1741
1742 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1743
1744 /* Partial page write */
1745 subpage = thislen < mtd->writesize;
1746 if (subpage) {
1747 memset(this->page_buf, 0xff, mtd->writesize);
1748 memcpy(this->page_buf + column, buf, thislen);
1749 wbuf = this->page_buf;
1750 }
1751
1752 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1753 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1754
1755 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1756
1757 onenand_panic_wait(mtd);
1758
1759 /* In partial page write we don't update bufferram */
1760 onenand_update_bufferram(mtd, to, !ret && !subpage);
1761 if (ONENAND_IS_2PLANE(this)) {
1762 ONENAND_SET_BUFFERRAM1(this);
1763 onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1764 }
1765
1766 if (ret) {
1767 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
1768 break;
1769 }
1770
1771 written += thislen;
1772
1773 if (written == len)
1774 break;
1775
1776 column = 0;
1777 to += thislen;
1778 buf += thislen;
1779 }
1780
1781 *retlen = written;
1782 return ret;
1783 }
1784
1785 /**
1786 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1787 * @param mtd MTD device structure
1788 * @param oob_buf oob buffer
1789 * @param buf source address
1790 * @param column oob offset to write to
1791 * @param thislen oob length to write
1792 */
1793 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1794 const u_char *buf, int column, int thislen)
1795 {
1796 struct onenand_chip *this = mtd->priv;
1797 struct nand_oobfree *free;
1798 int writecol = column;
1799 int writeend = column + thislen;
1800 int lastgap = 0;
1801 unsigned int i;
1802
1803 free = this->ecclayout->oobfree;
1804 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1805 if (writecol >= lastgap)
1806 writecol += free->offset - lastgap;
1807 if (writeend >= lastgap)
1808 writeend += free->offset - lastgap;
1809 lastgap = free->offset + free->length;
1810 }
1811 free = this->ecclayout->oobfree;
1812 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1813 int free_end = free->offset + free->length;
1814 if (free->offset < writeend && free_end > writecol) {
1815 int st = max_t(int,free->offset,writecol);
1816 int ed = min_t(int,free_end,writeend);
1817 int n = ed - st;
1818 memcpy(oob_buf + st, buf, n);
1819 buf += n;
1820 } else if (column == 0)
1821 break;
1822 }
1823 return 0;
1824 }
1825
1826 /**
1827 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1828 * @param mtd MTD device structure
1829 * @param to offset to write to
1830 * @param ops oob operation description structure
1831 *
1832 * Write main and/or oob with ECC
1833 */
1834 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1835 struct mtd_oob_ops *ops)
1836 {
1837 struct onenand_chip *this = mtd->priv;
1838 int written = 0, column, thislen = 0, subpage = 0;
1839 int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1840 int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1841 size_t len = ops->len;
1842 size_t ooblen = ops->ooblen;
1843 const u_char *buf = ops->datbuf;
1844 const u_char *oob = ops->oobbuf;
1845 u_char *oobbuf;
1846 int ret = 0;
1847
1848 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1849 __func__, (unsigned int) to, (int) len);
1850
1851 /* Initialize retlen, in case of early exit */
1852 ops->retlen = 0;
1853 ops->oobretlen = 0;
1854
1855 /* Do not allow writes past end of device */
1856 if (unlikely((to + len) > mtd->size)) {
1857 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1858 __func__);
1859 return -EINVAL;
1860 }
1861
1862 /* Reject writes, which are not page aligned */
1863 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1864 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1865 __func__);
1866 return -EINVAL;
1867 }
1868
1869 /* Check zero length */
1870 if (!len)
1871 return 0;
1872
1873 if (ops->mode == MTD_OOB_AUTO)
1874 oobsize = this->ecclayout->oobavail;
1875 else
1876 oobsize = mtd->oobsize;
1877
1878 oobcolumn = to & (mtd->oobsize - 1);
1879
1880 column = to & (mtd->writesize - 1);
1881
1882 /* Loop until all data write */
1883 while (1) {
1884 if (written < len) {
1885 u_char *wbuf = (u_char *) buf;
1886
1887 thislen = min_t(int, mtd->writesize - column, len - written);
1888 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1889
1890 cond_resched();
1891
1892 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1893
1894 /* Partial page write */
1895 subpage = thislen < mtd->writesize;
1896 if (subpage) {
1897 memset(this->page_buf, 0xff, mtd->writesize);
1898 memcpy(this->page_buf + column, buf, thislen);
1899 wbuf = this->page_buf;
1900 }
1901
1902 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1903
1904 if (oob) {
1905 oobbuf = this->oob_buf;
1906
1907 /* We send data to spare ram with oobsize
1908 * to prevent byte access */
1909 memset(oobbuf, 0xff, mtd->oobsize);
1910 if (ops->mode == MTD_OOB_AUTO)
1911 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1912 else
1913 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1914
1915 oobwritten += thisooblen;
1916 oob += thisooblen;
1917 oobcolumn = 0;
1918 } else
1919 oobbuf = (u_char *) ffchars;
1920
1921 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1922 } else
1923 ONENAND_SET_NEXT_BUFFERRAM(this);
1924
1925 /*
1926 * 2 PLANE, MLC, and Flex-OneNAND do not support
1927 * write-while-program feature.
1928 */
1929 if (!ONENAND_IS_2PLANE(this) && !first) {
1930 ONENAND_SET_PREV_BUFFERRAM(this);
1931
1932 ret = this->wait(mtd, FL_WRITING);
1933
1934 /* In partial page write we don't update bufferram */
1935 onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1936 if (ret) {
1937 written -= prevlen;
1938 printk(KERN_ERR "%s: write failed %d\n",
1939 __func__, ret);
1940 break;
1941 }
1942
1943 if (written == len) {
1944 /* Only check verify write turn on */
1945 ret = onenand_verify(mtd, buf - len, to - len, len);
1946 if (ret)
1947 printk(KERN_ERR "%s: verify failed %d\n",
1948 __func__, ret);
1949 break;
1950 }
1951
1952 ONENAND_SET_NEXT_BUFFERRAM(this);
1953 }
1954
1955 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1956
1957 /*
1958 * 2 PLANE, MLC, and Flex-OneNAND wait here
1959 */
1960 if (ONENAND_IS_2PLANE(this)) {
1961 ret = this->wait(mtd, FL_WRITING);
1962
1963 /* In partial page write we don't update bufferram */
1964 onenand_update_bufferram(mtd, to, !ret && !subpage);
1965 if (ret) {
1966 printk(KERN_ERR "%s: write failed %d\n",
1967 __func__, ret);
1968 break;
1969 }
1970
1971 /* Only check verify write turn on */
1972 ret = onenand_verify(mtd, buf, to, thislen);
1973 if (ret) {
1974 printk(KERN_ERR "%s: verify failed %d\n",
1975 __func__, ret);
1976 break;
1977 }
1978
1979 written += thislen;
1980
1981 if (written == len)
1982 break;
1983
1984 } else
1985 written += thislen;
1986
1987 column = 0;
1988 prev_subpage = subpage;
1989 prev = to;
1990 prevlen = thislen;
1991 to += thislen;
1992 buf += thislen;
1993 first = 0;
1994 }
1995
1996 /* In error case, clear all bufferrams */
1997 if (written != len)
1998 onenand_invalidate_bufferram(mtd, 0, -1);
1999
2000 ops->retlen = written;
2001 ops->oobretlen = oobwritten;
2002
2003 return ret;
2004 }
2005
2006
2007 /**
2008 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
2009 * @param mtd MTD device structure
2010 * @param to offset to write to
2011 * @param len number of bytes to write
2012 * @param retlen pointer to variable to store the number of written bytes
2013 * @param buf the data to write
2014 * @param mode operation mode
2015 *
2016 * OneNAND write out-of-band
2017 */
2018 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2019 struct mtd_oob_ops *ops)
2020 {
2021 struct onenand_chip *this = mtd->priv;
2022 int column, ret = 0, oobsize;
2023 int written = 0, oobcmd;
2024 u_char *oobbuf;
2025 size_t len = ops->ooblen;
2026 const u_char *buf = ops->oobbuf;
2027 mtd_oob_mode_t mode = ops->mode;
2028
2029 to += ops->ooboffs;
2030
2031 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2032 __func__, (unsigned int) to, (int) len);
2033
2034 /* Initialize retlen, in case of early exit */
2035 ops->oobretlen = 0;
2036
2037 if (mode == MTD_OOB_AUTO)
2038 oobsize = this->ecclayout->oobavail;
2039 else
2040 oobsize = mtd->oobsize;
2041
2042 column = to & (mtd->oobsize - 1);
2043
2044 if (unlikely(column >= oobsize)) {
2045 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2046 __func__);
2047 return -EINVAL;
2048 }
2049
2050 /* For compatibility with NAND: Do not allow write past end of page */
2051 if (unlikely(column + len > oobsize)) {
2052 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2053 __func__);
2054 return -EINVAL;
2055 }
2056
2057 /* Do not allow reads past end of device */
2058 if (unlikely(to >= mtd->size ||
2059 column + len > ((mtd->size >> this->page_shift) -
2060 (to >> this->page_shift)) * oobsize)) {
2061 printk(KERN_ERR "%s: Attempted to write past end of device\n",
2062 __func__);
2063 return -EINVAL;
2064 }
2065
2066 oobbuf = this->oob_buf;
2067
2068 oobcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2069
2070 /* Loop until all data write */
2071 while (written < len) {
2072 int thislen = min_t(int, oobsize, len - written);
2073
2074 cond_resched();
2075
2076 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2077
2078 /* We send data to spare ram with oobsize
2079 * to prevent byte access */
2080 memset(oobbuf, 0xff, mtd->oobsize);
2081 if (mode == MTD_OOB_AUTO)
2082 onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2083 else
2084 memcpy(oobbuf + column, buf, thislen);
2085 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2086
2087 if (ONENAND_IS_MLC(this)) {
2088 /* Set main area of DataRAM to 0xff*/
2089 memset(this->page_buf, 0xff, mtd->writesize);
2090 this->write_bufferram(mtd, ONENAND_DATARAM,
2091 this->page_buf, 0, mtd->writesize);
2092 }
2093
2094 this->command(mtd, oobcmd, to, mtd->oobsize);
2095
2096 onenand_update_bufferram(mtd, to, 0);
2097 if (ONENAND_IS_2PLANE(this)) {
2098 ONENAND_SET_BUFFERRAM1(this);
2099 onenand_update_bufferram(mtd, to + this->writesize, 0);
2100 }
2101
2102 ret = this->wait(mtd, FL_WRITING);
2103 if (ret) {
2104 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2105 break;
2106 }
2107
2108 ret = onenand_verify_oob(mtd, oobbuf, to);
2109 if (ret) {
2110 printk(KERN_ERR "%s: verify failed %d\n",
2111 __func__, ret);
2112 break;
2113 }
2114
2115 written += thislen;
2116 if (written == len)
2117 break;
2118
2119 to += mtd->writesize;
2120 buf += thislen;
2121 column = 0;
2122 }
2123
2124 ops->oobretlen = written;
2125
2126 return ret;
2127 }
2128
2129 /**
2130 * onenand_write - [MTD Interface] write buffer to FLASH
2131 * @param mtd MTD device structure
2132 * @param to offset to write to
2133 * @param len number of bytes to write
2134 * @param retlen pointer to variable to store the number of written bytes
2135 * @param buf the data to write
2136 *
2137 * Write with ECC
2138 */
2139 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2140 size_t *retlen, const u_char *buf)
2141 {
2142 struct mtd_oob_ops ops = {
2143 .len = len,
2144 .ooblen = 0,
2145 .datbuf = (u_char *) buf,
2146 .oobbuf = NULL,
2147 };
2148 int ret;
2149
2150 onenand_get_device(mtd, FL_WRITING);
2151 ret = onenand_write_ops_nolock(mtd, to, &ops);
2152 onenand_release_device(mtd);
2153
2154 *retlen = ops.retlen;
2155 return ret;
2156 }
2157
2158 /**
2159 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2160 * @param mtd: MTD device structure
2161 * @param to: offset to write
2162 * @param ops: oob operation description structure
2163 */
2164 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2165 struct mtd_oob_ops *ops)
2166 {
2167 int ret;
2168
2169 switch (ops->mode) {
2170 case MTD_OOB_PLACE:
2171 case MTD_OOB_AUTO:
2172 break;
2173 case MTD_OOB_RAW:
2174 /* Not implemented yet */
2175 default:
2176 return -EINVAL;
2177 }
2178
2179 onenand_get_device(mtd, FL_WRITING);
2180 if (ops->datbuf)
2181 ret = onenand_write_ops_nolock(mtd, to, ops);
2182 else
2183 ret = onenand_write_oob_nolock(mtd, to, ops);
2184 onenand_release_device(mtd);
2185
2186 return ret;
2187 }
2188
2189 /**
2190 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2191 * @param mtd MTD device structure
2192 * @param ofs offset from device start
2193 * @param allowbbt 1, if its allowed to access the bbt area
2194 *
2195 * Check, if the block is bad. Either by reading the bad block table or
2196 * calling of the scan function.
2197 */
2198 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2199 {
2200 struct onenand_chip *this = mtd->priv;
2201 struct bbm_info *bbm = this->bbm;
2202
2203 /* Return info from the table */
2204 return bbm->isbad_bbt(mtd, ofs, allowbbt);
2205 }
2206
2207
2208 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2209 struct erase_info *instr)
2210 {
2211 struct onenand_chip *this = mtd->priv;
2212 loff_t addr = instr->addr;
2213 int len = instr->len;
2214 unsigned int block_size = (1 << this->erase_shift);
2215 int ret = 0;
2216
2217 while (len) {
2218 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2219 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2220 if (ret) {
2221 printk(KERN_ERR "%s: Failed verify, block %d\n",
2222 __func__, onenand_block(this, addr));
2223 instr->state = MTD_ERASE_FAILED;
2224 instr->fail_addr = addr;
2225 return -1;
2226 }
2227 len -= block_size;
2228 addr += block_size;
2229 }
2230 return 0;
2231 }
2232
2233 /**
2234 * onenand_multiblock_erase - [Internal] erase block(s) using multiblock erase
2235 * @param mtd MTD device structure
2236 * @param instr erase instruction
2237 * @param region erase region
2238 *
2239 * Erase one or more blocks up to 64 block at a time
2240 */
2241 static int onenand_multiblock_erase(struct mtd_info *mtd,
2242 struct erase_info *instr,
2243 unsigned int block_size)
2244 {
2245 struct onenand_chip *this = mtd->priv;
2246 loff_t addr = instr->addr;
2247 int len = instr->len;
2248 int eb_count = 0;
2249 int ret = 0;
2250 int bdry_block = 0;
2251
2252 instr->state = MTD_ERASING;
2253
2254 if (ONENAND_IS_DDP(this)) {
2255 loff_t bdry_addr = this->chipsize >> 1;
2256 if (addr < bdry_addr && (addr + len) > bdry_addr)
2257 bdry_block = bdry_addr >> this->erase_shift;
2258 }
2259
2260 /* Pre-check bbs */
2261 while (len) {
2262 /* Check if we have a bad block, we do not erase bad blocks */
2263 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2264 printk(KERN_WARNING "%s: attempt to erase a bad block "
2265 "at addr 0x%012llx\n",
2266 __func__, (unsigned long long) addr);
2267 instr->state = MTD_ERASE_FAILED;
2268 return -EIO;
2269 }
2270 len -= block_size;
2271 addr += block_size;
2272 }
2273
2274 len = instr->len;
2275 addr = instr->addr;
2276
2277 /* loop over 64 eb batches */
2278 while (len) {
2279 struct erase_info verify_instr = *instr;
2280 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2281
2282 verify_instr.addr = addr;
2283 verify_instr.len = 0;
2284
2285 /* do not cross chip boundary */
2286 if (bdry_block) {
2287 int this_block = (addr >> this->erase_shift);
2288
2289 if (this_block < bdry_block) {
2290 max_eb_count = min(max_eb_count,
2291 (bdry_block - this_block));
2292 }
2293 }
2294
2295 eb_count = 0;
2296
2297 while (len > block_size && eb_count < (max_eb_count - 1)) {
2298 this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2299 addr, block_size);
2300 onenand_invalidate_bufferram(mtd, addr, block_size);
2301
2302 ret = this->wait(mtd, FL_PREPARING_ERASE);
2303 if (ret) {
2304 printk(KERN_ERR "%s: Failed multiblock erase, "
2305 "block %d\n", __func__,
2306 onenand_block(this, addr));
2307 instr->state = MTD_ERASE_FAILED;
2308 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2309 return -EIO;
2310 }
2311
2312 len -= block_size;
2313 addr += block_size;
2314 eb_count++;
2315 }
2316
2317 /* last block of 64-eb series */
2318 cond_resched();
2319 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2320 onenand_invalidate_bufferram(mtd, addr, block_size);
2321
2322 ret = this->wait(mtd, FL_ERASING);
2323 /* Check if it is write protected */
2324 if (ret) {
2325 printk(KERN_ERR "%s: Failed erase, block %d\n",
2326 __func__, onenand_block(this, addr));
2327 instr->state = MTD_ERASE_FAILED;
2328 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2329 return -EIO;
2330 }
2331
2332 len -= block_size;
2333 addr += block_size;
2334 eb_count++;
2335
2336 /* verify */
2337 verify_instr.len = eb_count * block_size;
2338 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2339 instr->state = verify_instr.state;
2340 instr->fail_addr = verify_instr.fail_addr;
2341 return -EIO;
2342 }
2343
2344 }
2345 return 0;
2346 }
2347
2348
2349 /**
2350 * onenand_block_by_block_erase - [Internal] erase block(s) using regular erase
2351 * @param mtd MTD device structure
2352 * @param instr erase instruction
2353 * @param region erase region
2354 * @param block_size erase block size
2355 *
2356 * Erase one or more blocks one block at a time
2357 */
2358 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2359 struct erase_info *instr,
2360 struct mtd_erase_region_info *region,
2361 unsigned int block_size)
2362 {
2363 struct onenand_chip *this = mtd->priv;
2364 loff_t addr = instr->addr;
2365 int len = instr->len;
2366 loff_t region_end = 0;
2367 int ret = 0;
2368
2369 if (region) {
2370 /* region is set for Flex-OneNAND */
2371 region_end = region->offset + region->erasesize * region->numblocks;
2372 }
2373
2374 instr->state = MTD_ERASING;
2375
2376 /* Loop through the blocks */
2377 while (len) {
2378 cond_resched();
2379
2380 /* Check if we have a bad block, we do not erase bad blocks */
2381 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2382 printk(KERN_WARNING "%s: attempt to erase a bad block "
2383 "at addr 0x%012llx\n",
2384 __func__, (unsigned long long) addr);
2385 instr->state = MTD_ERASE_FAILED;
2386 return -EIO;
2387 }
2388
2389 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2390
2391 onenand_invalidate_bufferram(mtd, addr, block_size);
2392
2393 ret = this->wait(mtd, FL_ERASING);
2394 /* Check, if it is write protected */
2395 if (ret) {
2396 printk(KERN_ERR "%s: Failed erase, block %d\n",
2397 __func__, onenand_block(this, addr));
2398 instr->state = MTD_ERASE_FAILED;
2399 instr->fail_addr = addr;
2400 return -EIO;
2401 }
2402
2403 len -= block_size;
2404 addr += block_size;
2405
2406 if (addr == region_end) {
2407 if (!len)
2408 break;
2409 region++;
2410
2411 block_size = region->erasesize;
2412 region_end = region->offset + region->erasesize * region->numblocks;
2413
2414 if (len & (block_size - 1)) {
2415 /* FIXME: This should be handled at MTD partitioning level. */
2416 printk(KERN_ERR "%s: Unaligned address\n",
2417 __func__);
2418 return -EIO;
2419 }
2420 }
2421 }
2422 return 0;
2423 }
2424
2425 /**
2426 * onenand_erase - [MTD Interface] erase block(s)
2427 * @param mtd MTD device structure
2428 * @param instr erase instruction
2429 *
2430 * Erase one or more blocks
2431 */
2432 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2433 {
2434 struct onenand_chip *this = mtd->priv;
2435 unsigned int block_size;
2436 loff_t addr = instr->addr;
2437 loff_t len = instr->len;
2438 int ret = 0;
2439 struct mtd_erase_region_info *region = NULL;
2440 loff_t region_offset = 0;
2441
2442 DEBUG(MTD_DEBUG_LEVEL3, "%s: start=0x%012llx, len=%llu\n", __func__,
2443 (unsigned long long) instr->addr, (unsigned long long) instr->len);
2444
2445 /* Do not allow erase past end of device */
2446 if (unlikely((len + addr) > mtd->size)) {
2447 printk(KERN_ERR "%s: Erase past end of device\n", __func__);
2448 return -EINVAL;
2449 }
2450
2451 if (FLEXONENAND(this)) {
2452 /* Find the eraseregion of this address */
2453 int i = flexonenand_region(mtd, addr);
2454
2455 region = &mtd->eraseregions[i];
2456 block_size = region->erasesize;
2457
2458 /* Start address within region must align on block boundary.
2459 * Erase region's start offset is always block start address.
2460 */
2461 region_offset = region->offset;
2462 } else
2463 block_size = 1 << this->erase_shift;
2464
2465 /* Start address must align on block boundary */
2466 if (unlikely((addr - region_offset) & (block_size - 1))) {
2467 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2468 return -EINVAL;
2469 }
2470
2471 /* Length must align on block boundary */
2472 if (unlikely(len & (block_size - 1))) {
2473 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2474 return -EINVAL;
2475 }
2476
2477 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2478
2479 /* Grab the lock and see if the device is available */
2480 onenand_get_device(mtd, FL_ERASING);
2481
2482 if (region || instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2483 /* region is set for Flex-OneNAND (no mb erase) */
2484 ret = onenand_block_by_block_erase(mtd, instr,
2485 region, block_size);
2486 } else {
2487 ret = onenand_multiblock_erase(mtd, instr, block_size);
2488 }
2489
2490 /* Deselect and wake up anyone waiting on the device */
2491 onenand_release_device(mtd);
2492
2493 /* Do call back function */
2494 if (!ret) {
2495 instr->state = MTD_ERASE_DONE;
2496 mtd_erase_callback(instr);
2497 }
2498
2499 return ret;
2500 }
2501
2502 /**
2503 * onenand_sync - [MTD Interface] sync
2504 * @param mtd MTD device structure
2505 *
2506 * Sync is actually a wait for chip ready function
2507 */
2508 static void onenand_sync(struct mtd_info *mtd)
2509 {
2510 DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2511
2512 /* Grab the lock and see if the device is available */
2513 onenand_get_device(mtd, FL_SYNCING);
2514
2515 /* Release it and go back */
2516 onenand_release_device(mtd);
2517 }
2518
2519 /**
2520 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2521 * @param mtd MTD device structure
2522 * @param ofs offset relative to mtd start
2523 *
2524 * Check whether the block is bad
2525 */
2526 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2527 {
2528 int ret;
2529
2530 /* Check for invalid offset */
2531 if (ofs > mtd->size)
2532 return -EINVAL;
2533
2534 onenand_get_device(mtd, FL_READING);
2535 ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2536 onenand_release_device(mtd);
2537 return ret;
2538 }
2539
2540 /**
2541 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2542 * @param mtd MTD device structure
2543 * @param ofs offset from device start
2544 *
2545 * This is the default implementation, which can be overridden by
2546 * a hardware specific driver.
2547 */
2548 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2549 {
2550 struct onenand_chip *this = mtd->priv;
2551 struct bbm_info *bbm = this->bbm;
2552 u_char buf[2] = {0, 0};
2553 struct mtd_oob_ops ops = {
2554 .mode = MTD_OOB_PLACE,
2555 .ooblen = 2,
2556 .oobbuf = buf,
2557 .ooboffs = 0,
2558 };
2559 int block;
2560
2561 /* Get block number */
2562 block = onenand_block(this, ofs);
2563 if (bbm->bbt)
2564 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2565
2566 /* We write two bytes, so we don't have to mess with 16-bit access */
2567 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2568 /* FIXME : What to do when marking SLC block in partition
2569 * with MLC erasesize? For now, it is not advisable to
2570 * create partitions containing both SLC and MLC regions.
2571 */
2572 return onenand_write_oob_nolock(mtd, ofs, &ops);
2573 }
2574
2575 /**
2576 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2577 * @param mtd MTD device structure
2578 * @param ofs offset relative to mtd start
2579 *
2580 * Mark the block as bad
2581 */
2582 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2583 {
2584 struct onenand_chip *this = mtd->priv;
2585 int ret;
2586
2587 ret = onenand_block_isbad(mtd, ofs);
2588 if (ret) {
2589 /* If it was bad already, return success and do nothing */
2590 if (ret > 0)
2591 return 0;
2592 return ret;
2593 }
2594
2595 onenand_get_device(mtd, FL_WRITING);
2596 ret = this->block_markbad(mtd, ofs);
2597 onenand_release_device(mtd);
2598 return ret;
2599 }
2600
2601 /**
2602 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2603 * @param mtd MTD device structure
2604 * @param ofs offset relative to mtd start
2605 * @param len number of bytes to lock or unlock
2606 * @param cmd lock or unlock command
2607 *
2608 * Lock or unlock one or more blocks
2609 */
2610 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2611 {
2612 struct onenand_chip *this = mtd->priv;
2613 int start, end, block, value, status;
2614 int wp_status_mask;
2615
2616 start = onenand_block(this, ofs);
2617 end = onenand_block(this, ofs + len) - 1;
2618
2619 if (cmd == ONENAND_CMD_LOCK)
2620 wp_status_mask = ONENAND_WP_LS;
2621 else
2622 wp_status_mask = ONENAND_WP_US;
2623
2624 /* Continuous lock scheme */
2625 if (this->options & ONENAND_HAS_CONT_LOCK) {
2626 /* Set start block address */
2627 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2628 /* Set end block address */
2629 this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
2630 /* Write lock command */
2631 this->command(mtd, cmd, 0, 0);
2632
2633 /* There's no return value */
2634 this->wait(mtd, FL_LOCKING);
2635
2636 /* Sanity check */
2637 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2638 & ONENAND_CTRL_ONGO)
2639 continue;
2640
2641 /* Check lock status */
2642 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2643 if (!(status & wp_status_mask))
2644 printk(KERN_ERR "%s: wp status = 0x%x\n",
2645 __func__, status);
2646
2647 return 0;
2648 }
2649
2650 /* Block lock scheme */
2651 for (block = start; block < end + 1; block++) {
2652 /* Set block address */
2653 value = onenand_block_address(this, block);
2654 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2655 /* Select DataRAM for DDP */
2656 value = onenand_bufferram_address(this, block);
2657 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2658 /* Set start block address */
2659 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2660 /* Write lock command */
2661 this->command(mtd, cmd, 0, 0);
2662
2663 /* There's no return value */
2664 this->wait(mtd, FL_LOCKING);
2665
2666 /* Sanity check */
2667 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2668 & ONENAND_CTRL_ONGO)
2669 continue;
2670
2671 /* Check lock status */
2672 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2673 if (!(status & wp_status_mask))
2674 printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2675 __func__, block, status);
2676 }
2677
2678 return 0;
2679 }
2680
2681 /**
2682 * onenand_lock - [MTD Interface] Lock block(s)
2683 * @param mtd MTD device structure
2684 * @param ofs offset relative to mtd start
2685 * @param len number of bytes to unlock
2686 *
2687 * Lock one or more blocks
2688 */
2689 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2690 {
2691 int ret;
2692
2693 onenand_get_device(mtd, FL_LOCKING);
2694 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2695 onenand_release_device(mtd);
2696 return ret;
2697 }
2698
2699 /**
2700 * onenand_unlock - [MTD Interface] Unlock block(s)
2701 * @param mtd MTD device structure
2702 * @param ofs offset relative to mtd start
2703 * @param len number of bytes to unlock
2704 *
2705 * Unlock one or more blocks
2706 */
2707 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2708 {
2709 int ret;
2710
2711 onenand_get_device(mtd, FL_LOCKING);
2712 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2713 onenand_release_device(mtd);
2714 return ret;
2715 }
2716
2717 /**
2718 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2719 * @param this onenand chip data structure
2720 *
2721 * Check lock status
2722 */
2723 static int onenand_check_lock_status(struct onenand_chip *this)
2724 {
2725 unsigned int value, block, status;
2726 unsigned int end;
2727
2728 end = this->chipsize >> this->erase_shift;
2729 for (block = 0; block < end; block++) {
2730 /* Set block address */
2731 value = onenand_block_address(this, block);
2732 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2733 /* Select DataRAM for DDP */
2734 value = onenand_bufferram_address(this, block);
2735 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2736 /* Set start block address */
2737 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2738
2739 /* Check lock status */
2740 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2741 if (!(status & ONENAND_WP_US)) {
2742 printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2743 __func__, block, status);
2744 return 0;
2745 }
2746 }
2747
2748 return 1;
2749 }
2750
2751 /**
2752 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2753 * @param mtd MTD device structure
2754 *
2755 * Unlock all blocks
2756 */
2757 static void onenand_unlock_all(struct mtd_info *mtd)
2758 {
2759 struct onenand_chip *this = mtd->priv;
2760 loff_t ofs = 0;
2761 loff_t len = mtd->size;
2762
2763 if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2764 /* Set start block address */
2765 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2766 /* Write unlock command */
2767 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2768
2769 /* There's no return value */
2770 this->wait(mtd, FL_LOCKING);
2771
2772 /* Sanity check */
2773 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2774 & ONENAND_CTRL_ONGO)
2775 continue;
2776
2777 /* Don't check lock status */
2778 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2779 return;
2780
2781 /* Check lock status */
2782 if (onenand_check_lock_status(this))
2783 return;
2784
2785 /* Workaround for all block unlock in DDP */
2786 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2787 /* All blocks on another chip */
2788 ofs = this->chipsize >> 1;
2789 len = this->chipsize >> 1;
2790 }
2791 }
2792
2793 onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2794 }
2795
2796 #ifdef CONFIG_MTD_ONENAND_OTP
2797
2798 /**
2799 * onenand_otp_command - Send OTP specific command to OneNAND device
2800 * @param mtd MTD device structure
2801 * @param cmd the command to be sent
2802 * @param addr offset to read from or write to
2803 * @param len number of bytes to read or write
2804 */
2805 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2806 size_t len)
2807 {
2808 struct onenand_chip *this = mtd->priv;
2809 int value, block, page;
2810
2811 /* Address translation */
2812 switch (cmd) {
2813 case ONENAND_CMD_OTP_ACCESS:
2814 block = (int) (addr >> this->erase_shift);
2815 page = -1;
2816 break;
2817
2818 default:
2819 block = (int) (addr >> this->erase_shift);
2820 page = (int) (addr >> this->page_shift);
2821
2822 if (ONENAND_IS_2PLANE(this)) {
2823 /* Make the even block number */
2824 block &= ~1;
2825 /* Is it the odd plane? */
2826 if (addr & this->writesize)
2827 block++;
2828 page >>= 1;
2829 }
2830 page &= this->page_mask;
2831 break;
2832 }
2833
2834 if (block != -1) {
2835 /* Write 'DFS, FBA' of Flash */
2836 value = onenand_block_address(this, block);
2837 this->write_word(value, this->base +
2838 ONENAND_REG_START_ADDRESS1);
2839 }
2840
2841 if (page != -1) {
2842 /* Now we use page size operation */
2843 int sectors = 4, count = 4;
2844 int dataram;
2845
2846 switch (cmd) {
2847 default:
2848 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2849 cmd = ONENAND_CMD_2X_PROG;
2850 dataram = ONENAND_CURRENT_BUFFERRAM(this);
2851 break;
2852 }
2853
2854 /* Write 'FPA, FSA' of Flash */
2855 value = onenand_page_address(page, sectors);
2856 this->write_word(value, this->base +
2857 ONENAND_REG_START_ADDRESS8);
2858
2859 /* Write 'BSA, BSC' of DataRAM */
2860 value = onenand_buffer_address(dataram, sectors, count);
2861 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2862 }
2863
2864 /* Interrupt clear */
2865 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2866
2867 /* Write command */
2868 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2869
2870 return 0;
2871 }
2872
2873 /**
2874 * onenand_otp_write_oob_nolock - [Internal] OneNAND write out-of-band, specific to OTP
2875 * @param mtd MTD device structure
2876 * @param to offset to write to
2877 * @param len number of bytes to write
2878 * @param retlen pointer to variable to store the number of written bytes
2879 * @param buf the data to write
2880 *
2881 * OneNAND write out-of-band only for OTP
2882 */
2883 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2884 struct mtd_oob_ops *ops)
2885 {
2886 struct onenand_chip *this = mtd->priv;
2887 int column, ret = 0, oobsize;
2888 int written = 0;
2889 u_char *oobbuf;
2890 size_t len = ops->ooblen;
2891 const u_char *buf = ops->oobbuf;
2892 int block, value, status;
2893
2894 to += ops->ooboffs;
2895
2896 /* Initialize retlen, in case of early exit */
2897 ops->oobretlen = 0;
2898
2899 oobsize = mtd->oobsize;
2900
2901 column = to & (mtd->oobsize - 1);
2902
2903 oobbuf = this->oob_buf;
2904
2905 /* Loop until all data write */
2906 while (written < len) {
2907 int thislen = min_t(int, oobsize, len - written);
2908
2909 cond_resched();
2910
2911 block = (int) (to >> this->erase_shift);
2912 /*
2913 * Write 'DFS, FBA' of Flash
2914 * Add: F100h DQ=DFS, FBA
2915 */
2916
2917 value = onenand_block_address(this, block);
2918 this->write_word(value, this->base +
2919 ONENAND_REG_START_ADDRESS1);
2920
2921 /*
2922 * Select DataRAM for DDP
2923 * Add: F101h DQ=DBS
2924 */
2925
2926 value = onenand_bufferram_address(this, block);
2927 this->write_word(value, this->base +
2928 ONENAND_REG_START_ADDRESS2);
2929 ONENAND_SET_NEXT_BUFFERRAM(this);
2930
2931 /*
2932 * Enter OTP access mode
2933 */
2934 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2935 this->wait(mtd, FL_OTPING);
2936
2937 /* We send data to spare ram with oobsize
2938 * to prevent byte access */
2939 memcpy(oobbuf + column, buf, thislen);
2940
2941 /*
2942 * Write Data into DataRAM
2943 * Add: 8th Word
2944 * in sector0/spare/page0
2945 * DQ=XXFCh
2946 */
2947 this->write_bufferram(mtd, ONENAND_SPARERAM,
2948 oobbuf, 0, mtd->oobsize);
2949
2950 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2951 onenand_update_bufferram(mtd, to, 0);
2952 if (ONENAND_IS_2PLANE(this)) {
2953 ONENAND_SET_BUFFERRAM1(this);
2954 onenand_update_bufferram(mtd, to + this->writesize, 0);
2955 }
2956
2957 ret = this->wait(mtd, FL_WRITING);
2958 if (ret) {
2959 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2960 break;
2961 }
2962
2963 /* Exit OTP access mode */
2964 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2965 this->wait(mtd, FL_RESETING);
2966
2967 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2968 status &= 0x60;
2969
2970 if (status == 0x60) {
2971 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2972 printk(KERN_DEBUG "1st Block\tLOCKED\n");
2973 printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2974 } else if (status == 0x20) {
2975 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2976 printk(KERN_DEBUG "1st Block\tLOCKED\n");
2977 printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2978 } else if (status == 0x40) {
2979 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2980 printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2981 printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2982 } else {
2983 printk(KERN_DEBUG "Reboot to check\n");
2984 }
2985
2986 written += thislen;
2987 if (written == len)
2988 break;
2989
2990 to += mtd->writesize;
2991 buf += thislen;
2992 column = 0;
2993 }
2994
2995 ops->oobretlen = written;
2996
2997 return ret;
2998 }
2999
3000 /* Internal OTP operation */
3001 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
3002 size_t *retlen, u_char *buf);
3003
3004 /**
3005 * do_otp_read - [DEFAULT] Read OTP block area
3006 * @param mtd MTD device structure
3007 * @param from The offset to read
3008 * @param len number of bytes to read
3009 * @param retlen pointer to variable to store the number of readbytes
3010 * @param buf the databuffer to put/get data
3011 *
3012 * Read OTP block area.
3013 */
3014 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
3015 size_t *retlen, u_char *buf)
3016 {
3017 struct onenand_chip *this = mtd->priv;
3018 struct mtd_oob_ops ops = {
3019 .len = len,
3020 .ooblen = 0,
3021 .datbuf = buf,
3022 .oobbuf = NULL,
3023 };
3024 int ret;
3025
3026 /* Enter OTP access mode */
3027 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3028 this->wait(mtd, FL_OTPING);
3029
3030 ret = ONENAND_IS_MLC(this) ?
3031 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
3032 onenand_read_ops_nolock(mtd, from, &ops);
3033
3034 /* Exit OTP access mode */
3035 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3036 this->wait(mtd, FL_RESETING);
3037
3038 return ret;
3039 }
3040
3041 /**
3042 * do_otp_write - [DEFAULT] Write OTP block area
3043 * @param mtd MTD device structure
3044 * @param to The offset to write
3045 * @param len number of bytes to write
3046 * @param retlen pointer to variable to store the number of write bytes
3047 * @param buf the databuffer to put/get data
3048 *
3049 * Write OTP block area.
3050 */
3051 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
3052 size_t *retlen, u_char *buf)
3053 {
3054 struct onenand_chip *this = mtd->priv;
3055 unsigned char *pbuf = buf;
3056 int ret;
3057 struct mtd_oob_ops ops;
3058
3059 /* Force buffer page aligned */
3060 if (len < mtd->writesize) {
3061 memcpy(this->page_buf, buf, len);
3062 memset(this->page_buf + len, 0xff, mtd->writesize - len);
3063 pbuf = this->page_buf;
3064 len = mtd->writesize;
3065 }
3066
3067 /* Enter OTP access mode */
3068 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3069 this->wait(mtd, FL_OTPING);
3070
3071 ops.len = len;
3072 ops.ooblen = 0;
3073 ops.datbuf = pbuf;
3074 ops.oobbuf = NULL;
3075 ret = onenand_write_ops_nolock(mtd, to, &ops);
3076 *retlen = ops.retlen;
3077
3078 /* Exit OTP access mode */
3079 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3080 this->wait(mtd, FL_RESETING);
3081
3082 return ret;
3083 }
3084
3085 /**
3086 * do_otp_lock - [DEFAULT] Lock OTP block area
3087 * @param mtd MTD device structure
3088 * @param from The offset to lock
3089 * @param len number of bytes to lock
3090 * @param retlen pointer to variable to store the number of lock bytes
3091 * @param buf the databuffer to put/get data
3092 *
3093 * Lock OTP block area.
3094 */
3095 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
3096 size_t *retlen, u_char *buf)
3097 {
3098 struct onenand_chip *this = mtd->priv;
3099 struct mtd_oob_ops ops;
3100 int ret;
3101
3102 if (FLEXONENAND(this)) {
3103
3104 /* Enter OTP access mode */
3105 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3106 this->wait(mtd, FL_OTPING);
3107 /*
3108 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3109 * main area of page 49.
3110 */
3111 ops.len = mtd->writesize;
3112 ops.ooblen = 0;
3113 ops.datbuf = buf;
3114 ops.oobbuf = NULL;
3115 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3116 *retlen = ops.retlen;
3117
3118 /* Exit OTP access mode */
3119 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3120 this->wait(mtd, FL_RESETING);
3121 } else {
3122 ops.mode = MTD_OOB_PLACE;
3123 ops.ooblen = len;
3124 ops.oobbuf = buf;
3125 ops.ooboffs = 0;
3126 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3127 *retlen = ops.oobretlen;
3128 }
3129
3130 return ret;
3131 }
3132
3133 /**
3134 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3135 * @param mtd MTD device structure
3136 * @param from The offset to read/write
3137 * @param len number of bytes to read/write
3138 * @param retlen pointer to variable to store the number of read bytes
3139 * @param buf the databuffer to put/get data
3140 * @param action do given action
3141 * @param mode specify user and factory
3142 *
3143 * Handle OTP operation.
3144 */
3145 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3146 size_t *retlen, u_char *buf,
3147 otp_op_t action, int mode)
3148 {
3149 struct onenand_chip *this = mtd->priv;
3150 int otp_pages;
3151 int density;
3152 int ret = 0;
3153
3154 *retlen = 0;
3155
3156 density = onenand_get_density(this->device_id);
3157 if (density < ONENAND_DEVICE_DENSITY_512Mb)
3158 otp_pages = 20;
3159 else
3160 otp_pages = 50;
3161
3162 if (mode == MTD_OTP_FACTORY) {
3163 from += mtd->writesize * otp_pages;
3164 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3165 }
3166
3167 /* Check User/Factory boundary */
3168 if (mode == MTD_OTP_USER) {
3169 if (mtd->writesize * otp_pages < from + len)
3170 return 0;
3171 } else {
3172 if (mtd->writesize * otp_pages < len)
3173 return 0;
3174 }
3175
3176 onenand_get_device(mtd, FL_OTPING);
3177 while (len > 0 && otp_pages > 0) {
3178 if (!action) { /* OTP Info functions */
3179 struct otp_info *otpinfo;
3180
3181 len -= sizeof(struct otp_info);
3182 if (len <= 0) {
3183 ret = -ENOSPC;
3184 break;
3185 }
3186
3187 otpinfo = (struct otp_info *) buf;
3188 otpinfo->start = from;
3189 otpinfo->length = mtd->writesize;
3190 otpinfo->locked = 0;
3191
3192 from += mtd->writesize;
3193 buf += sizeof(struct otp_info);
3194 *retlen += sizeof(struct otp_info);
3195 } else {
3196 size_t tmp_retlen;
3197
3198 ret = action(mtd, from, len, &tmp_retlen, buf);
3199
3200 buf += tmp_retlen;
3201 len -= tmp_retlen;
3202 *retlen += tmp_retlen;
3203
3204 if (ret)
3205 break;
3206 }
3207 otp_pages--;
3208 }
3209 onenand_release_device(mtd);
3210
3211 return ret;
3212 }
3213
3214 /**
3215 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3216 * @param mtd MTD device structure
3217 * @param buf the databuffer to put/get data
3218 * @param len number of bytes to read
3219 *
3220 * Read factory OTP info.
3221 */
3222 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
3223 struct otp_info *buf, size_t len)
3224 {
3225 size_t retlen;
3226 int ret;
3227
3228 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
3229
3230 return ret ? : retlen;
3231 }
3232
3233 /**
3234 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3235 * @param mtd MTD device structure
3236 * @param from The offset to read
3237 * @param len number of bytes to read
3238 * @param retlen pointer to variable to store the number of read bytes
3239 * @param buf the databuffer to put/get data
3240 *
3241 * Read factory OTP area.
3242 */
3243 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3244 size_t len, size_t *retlen, u_char *buf)
3245 {
3246 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3247 }
3248
3249 /**
3250 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3251 * @param mtd MTD device structure
3252 * @param buf the databuffer to put/get data
3253 * @param len number of bytes to read
3254 *
3255 * Read user OTP info.
3256 */
3257 static int onenand_get_user_prot_info(struct mtd_info *mtd,
3258 struct otp_info *buf, size_t len)
3259 {
3260 size_t retlen;
3261 int ret;
3262
3263 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
3264
3265 return ret ? : retlen;
3266 }
3267
3268 /**
3269 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3270 * @param mtd MTD device structure
3271 * @param from The offset to read
3272 * @param len number of bytes to read
3273 * @param retlen pointer to variable to store the number of read bytes
3274 * @param buf the databuffer to put/get data
3275 *
3276 * Read user OTP area.
3277 */
3278 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3279 size_t len, size_t *retlen, u_char *buf)
3280 {
3281 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3282 }
3283
3284 /**
3285 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3286 * @param mtd MTD device structure
3287 * @param from The offset to write
3288 * @param len number of bytes to write
3289 * @param retlen pointer to variable to store the number of write bytes
3290 * @param buf the databuffer to put/get data
3291 *
3292 * Write user OTP area.
3293 */
3294 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3295 size_t len, size_t *retlen, u_char *buf)
3296 {
3297 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3298 }
3299
3300 /**
3301 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3302 * @param mtd MTD device structure
3303 * @param from The offset to lock
3304 * @param len number of bytes to unlock
3305 *
3306 * Write lock mark on spare area in page 0 in OTP block
3307 */
3308 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3309 size_t len)
3310 {
3311 struct onenand_chip *this = mtd->priv;
3312 u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3313 size_t retlen;
3314 int ret;
3315 unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3316
3317 memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3318 : mtd->oobsize);
3319 /*
3320 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3321 * We write 16 bytes spare area instead of 2 bytes.
3322 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3323 * main area of page 49.
3324 */
3325
3326 from = 0;
3327 len = FLEXONENAND(this) ? mtd->writesize : 16;
3328
3329 /*
3330 * Note: OTP lock operation
3331 * OTP block : 0xXXFC XX 1111 1100
3332 * 1st block : 0xXXF3 (If chip support) XX 1111 0011
3333 * Both : 0xXXF0 (If chip support) XX 1111 0000
3334 */
3335 if (FLEXONENAND(this))
3336 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3337
3338 /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3339 if (otp == 1)
3340 buf[otp_lock_offset] = 0xFC;
3341 else if (otp == 2)
3342 buf[otp_lock_offset] = 0xF3;
3343 else if (otp == 3)
3344 buf[otp_lock_offset] = 0xF0;
3345 else if (otp != 0)
3346 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3347
3348 ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3349
3350 return ret ? : retlen;
3351 }
3352
3353 #endif /* CONFIG_MTD_ONENAND_OTP */
3354
3355 /**
3356 * onenand_check_features - Check and set OneNAND features
3357 * @param mtd MTD data structure
3358 *
3359 * Check and set OneNAND features
3360 * - lock scheme
3361 * - two plane
3362 */
3363 static void onenand_check_features(struct mtd_info *mtd)
3364 {
3365 struct onenand_chip *this = mtd->priv;
3366 unsigned int density, process;
3367
3368 /* Lock scheme depends on density and process */
3369 density = onenand_get_density(this->device_id);
3370 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3371
3372 /* Lock scheme */
3373 switch (density) {
3374 case ONENAND_DEVICE_DENSITY_4Gb:
3375 this->options |= ONENAND_HAS_2PLANE;
3376
3377 case ONENAND_DEVICE_DENSITY_2Gb:
3378 /* 2Gb DDP does not have 2 plane */
3379 if (!ONENAND_IS_DDP(this))
3380 this->options |= ONENAND_HAS_2PLANE;
3381 this->options |= ONENAND_HAS_UNLOCK_ALL;
3382
3383 case ONENAND_DEVICE_DENSITY_1Gb:
3384 /* A-Die has all block unlock */
3385 if (process)
3386 this->options |= ONENAND_HAS_UNLOCK_ALL;
3387 break;
3388
3389 default:
3390 /* Some OneNAND has continuous lock scheme */
3391 if (!process)
3392 this->options |= ONENAND_HAS_CONT_LOCK;
3393 break;
3394 }
3395
3396 if (ONENAND_IS_MLC(this))
3397 this->options &= ~ONENAND_HAS_2PLANE;
3398
3399 if (FLEXONENAND(this)) {
3400 this->options &= ~ONENAND_HAS_CONT_LOCK;
3401 this->options |= ONENAND_HAS_UNLOCK_ALL;
3402 }
3403
3404 if (this->options & ONENAND_HAS_CONT_LOCK)
3405 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3406 if (this->options & ONENAND_HAS_UNLOCK_ALL)
3407 printk(KERN_DEBUG "Chip support all block unlock\n");
3408 if (this->options & ONENAND_HAS_2PLANE)
3409 printk(KERN_DEBUG "Chip has 2 plane\n");
3410 }
3411
3412 /**
3413 * onenand_print_device_info - Print device & version ID
3414 * @param device device ID
3415 * @param version version ID
3416 *
3417 * Print device & version ID
3418 */
3419 static void onenand_print_device_info(int device, int version)
3420 {
3421 int vcc, demuxed, ddp, density, flexonenand;
3422
3423 vcc = device & ONENAND_DEVICE_VCC_MASK;
3424 demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3425 ddp = device & ONENAND_DEVICE_IS_DDP;
3426 density = onenand_get_density(device);
3427 flexonenand = device & DEVICE_IS_FLEXONENAND;
3428 printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3429 demuxed ? "" : "Muxed ",
3430 flexonenand ? "Flex-" : "",
3431 ddp ? "(DDP)" : "",
3432 (16 << density),
3433 vcc ? "2.65/3.3" : "1.8",
3434 device);
3435 printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3436 }
3437
3438 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3439 {ONENAND_MFR_SAMSUNG, "Samsung"},
3440 {ONENAND_MFR_NUMONYX, "Numonyx"},
3441 };
3442
3443 /**
3444 * onenand_check_maf - Check manufacturer ID
3445 * @param manuf manufacturer ID
3446 *
3447 * Check manufacturer ID
3448 */
3449 static int onenand_check_maf(int manuf)
3450 {
3451 int size = ARRAY_SIZE(onenand_manuf_ids);
3452 char *name;
3453 int i;
3454
3455 for (i = 0; i < size; i++)
3456 if (manuf == onenand_manuf_ids[i].id)
3457 break;
3458
3459 if (i < size)
3460 name = onenand_manuf_ids[i].name;
3461 else
3462 name = "Unknown";
3463
3464 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3465
3466 return (i == size);
3467 }
3468
3469 /**
3470 * flexonenand_get_boundary - Reads the SLC boundary
3471 * @param onenand_info - onenand info structure
3472 **/
3473 static int flexonenand_get_boundary(struct mtd_info *mtd)
3474 {
3475 struct onenand_chip *this = mtd->priv;
3476 unsigned die, bdry;
3477 int ret, syscfg, locked;
3478
3479 /* Disable ECC */
3480 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3481 this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3482
3483 for (die = 0; die < this->dies; die++) {
3484 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3485 this->wait(mtd, FL_SYNCING);
3486
3487 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3488 ret = this->wait(mtd, FL_READING);
3489
3490 bdry = this->read_word(this->base + ONENAND_DATARAM);
3491 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3492 locked = 0;
3493 else
3494 locked = 1;
3495 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3496
3497 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3498 ret = this->wait(mtd, FL_RESETING);
3499
3500 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3501 this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3502 }
3503
3504 /* Enable ECC */
3505 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3506 return 0;
3507 }
3508
3509 /**
3510 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3511 * boundary[], diesize[], mtd->size, mtd->erasesize
3512 * @param mtd - MTD device structure
3513 */
3514 static void flexonenand_get_size(struct mtd_info *mtd)
3515 {
3516 struct onenand_chip *this = mtd->priv;
3517 int die, i, eraseshift, density;
3518 int blksperdie, maxbdry;
3519 loff_t ofs;
3520
3521 density = onenand_get_density(this->device_id);
3522 blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3523 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3524 maxbdry = blksperdie - 1;
3525 eraseshift = this->erase_shift - 1;
3526
3527 mtd->numeraseregions = this->dies << 1;
3528
3529 /* This fills up the device boundary */
3530 flexonenand_get_boundary(mtd);
3531 die = ofs = 0;
3532 i = -1;
3533 for (; die < this->dies; die++) {
3534 if (!die || this->boundary[die-1] != maxbdry) {
3535 i++;
3536 mtd->eraseregions[i].offset = ofs;
3537 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3538 mtd->eraseregions[i].numblocks =
3539 this->boundary[die] + 1;
3540 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3541 eraseshift++;
3542 } else {
3543 mtd->numeraseregions -= 1;
3544 mtd->eraseregions[i].numblocks +=
3545 this->boundary[die] + 1;
3546 ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3547 }
3548 if (this->boundary[die] != maxbdry) {
3549 i++;
3550 mtd->eraseregions[i].offset = ofs;
3551 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3552 mtd->eraseregions[i].numblocks = maxbdry ^
3553 this->boundary[die];
3554 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3555 eraseshift--;
3556 } else
3557 mtd->numeraseregions -= 1;
3558 }
3559
3560 /* Expose MLC erase size except when all blocks are SLC */
3561 mtd->erasesize = 1 << this->erase_shift;
3562 if (mtd->numeraseregions == 1)
3563 mtd->erasesize >>= 1;
3564
3565 printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3566 for (i = 0; i < mtd->numeraseregions; i++)
3567 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3568 " numblocks: %04u]\n",
3569 (unsigned int) mtd->eraseregions[i].offset,
3570 mtd->eraseregions[i].erasesize,
3571 mtd->eraseregions[i].numblocks);
3572
3573 for (die = 0, mtd->size = 0; die < this->dies; die++) {
3574 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3575 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3576 << (this->erase_shift - 1);
3577 mtd->size += this->diesize[die];
3578 }
3579 }
3580
3581 /**
3582 * flexonenand_check_blocks_erased - Check if blocks are erased
3583 * @param mtd_info - mtd info structure
3584 * @param start - first erase block to check
3585 * @param end - last erase block to check
3586 *
3587 * Converting an unerased block from MLC to SLC
3588 * causes byte values to change. Since both data and its ECC
3589 * have changed, reads on the block give uncorrectable error.
3590 * This might lead to the block being detected as bad.
3591 *
3592 * Avoid this by ensuring that the block to be converted is
3593 * erased.
3594 */
3595 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3596 {
3597 struct onenand_chip *this = mtd->priv;
3598 int i, ret;
3599 int block;
3600 struct mtd_oob_ops ops = {
3601 .mode = MTD_OOB_PLACE,
3602 .ooboffs = 0,
3603 .ooblen = mtd->oobsize,
3604 .datbuf = NULL,
3605 .oobbuf = this->oob_buf,
3606 };
3607 loff_t addr;
3608
3609 printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3610
3611 for (block = start; block <= end; block++) {
3612 addr = flexonenand_addr(this, block);
3613 if (onenand_block_isbad_nolock(mtd, addr, 0))
3614 continue;
3615
3616 /*
3617 * Since main area write results in ECC write to spare,
3618 * it is sufficient to check only ECC bytes for change.
3619 */
3620 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3621 if (ret)
3622 return ret;
3623
3624 for (i = 0; i < mtd->oobsize; i++)
3625 if (this->oob_buf[i] != 0xff)
3626 break;
3627
3628 if (i != mtd->oobsize) {
3629 printk(KERN_WARNING "%s: Block %d not erased.\n",
3630 __func__, block);
3631 return 1;
3632 }
3633 }
3634
3635 return 0;
3636 }
3637
3638 /**
3639 * flexonenand_set_boundary - Writes the SLC boundary
3640 * @param mtd - mtd info structure
3641 */
3642 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3643 int boundary, int lock)
3644 {
3645 struct onenand_chip *this = mtd->priv;
3646 int ret, density, blksperdie, old, new, thisboundary;
3647 loff_t addr;
3648
3649 /* Change only once for SDP Flex-OneNAND */
3650 if (die && (!ONENAND_IS_DDP(this)))
3651 return 0;
3652
3653 /* boundary value of -1 indicates no required change */
3654 if (boundary < 0 || boundary == this->boundary[die])
3655 return 0;
3656
3657 density = onenand_get_density(this->device_id);
3658 blksperdie = ((16 << density) << 20) >> this->erase_shift;
3659 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3660
3661 if (boundary >= blksperdie) {
3662 printk(KERN_ERR "%s: Invalid boundary value. "
3663 "Boundary not changed.\n", __func__);
3664 return -EINVAL;
3665 }
3666
3667 /* Check if converting blocks are erased */
3668 old = this->boundary[die] + (die * this->density_mask);
3669 new = boundary + (die * this->density_mask);
3670 ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3671 if (ret) {
3672 printk(KERN_ERR "%s: Please erase blocks "
3673 "before boundary change\n", __func__);
3674 return ret;
3675 }
3676
3677 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3678 this->wait(mtd, FL_SYNCING);
3679
3680 /* Check is boundary is locked */
3681 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3682 ret = this->wait(mtd, FL_READING);
3683
3684 thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3685 if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3686 printk(KERN_ERR "%s: boundary locked\n", __func__);
3687 ret = 1;
3688 goto out;
3689 }
3690
3691 printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3692 die, boundary, lock ? "(Locked)" : "(Unlocked)");
3693
3694 addr = die ? this->diesize[0] : 0;
3695
3696 boundary &= FLEXONENAND_PI_MASK;
3697 boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3698
3699 this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3700 ret = this->wait(mtd, FL_ERASING);
3701 if (ret) {
3702 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3703 __func__, die);
3704 goto out;
3705 }
3706
3707 this->write_word(boundary, this->base + ONENAND_DATARAM);
3708 this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3709 ret = this->wait(mtd, FL_WRITING);
3710 if (ret) {
3711 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3712 __func__, die);
3713 goto out;
3714 }
3715
3716 this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3717 ret = this->wait(mtd, FL_WRITING);
3718 out:
3719 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3720 this->wait(mtd, FL_RESETING);
3721 if (!ret)
3722 /* Recalculate device size on boundary change*/
3723 flexonenand_get_size(mtd);
3724
3725 return ret;
3726 }
3727
3728 /**
3729 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3730 * @param mtd MTD device structure
3731 *
3732 * OneNAND detection method:
3733 * Compare the values from command with ones from register
3734 */
3735 static int onenand_probe(struct mtd_info *mtd)
3736 {
3737 struct onenand_chip *this = mtd->priv;
3738 int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
3739 int density;
3740 int syscfg;
3741
3742 /* Save system configuration 1 */
3743 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3744 /* Clear Sync. Burst Read mode to read BootRAM */
3745 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3746
3747 /* Send the command for reading device ID from BootRAM */
3748 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3749
3750 /* Read manufacturer and device IDs from BootRAM */
3751 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3752 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3753
3754 /* Reset OneNAND to read default register values */
3755 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3756 /* Wait reset */
3757 this->wait(mtd, FL_RESETING);
3758
3759 /* Restore system configuration 1 */
3760 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3761
3762 /* Check manufacturer ID */
3763 if (onenand_check_maf(bram_maf_id))
3764 return -ENXIO;
3765
3766 /* Read manufacturer and device IDs from Register */
3767 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3768 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3769 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3770 this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3771
3772 /* Check OneNAND device */
3773 if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3774 return -ENXIO;
3775
3776 /* Flash device information */
3777 onenand_print_device_info(dev_id, ver_id);
3778 this->device_id = dev_id;
3779 this->version_id = ver_id;
3780
3781 density = onenand_get_density(dev_id);
3782 if (FLEXONENAND(this)) {
3783 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3784 /* Maximum possible erase regions */
3785 mtd->numeraseregions = this->dies << 1;
3786 mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3787 * (this->dies << 1), GFP_KERNEL);
3788 if (!mtd->eraseregions)
3789 return -ENOMEM;
3790 }
3791
3792 /*
3793 * For Flex-OneNAND, chipsize represents maximum possible device size.
3794 * mtd->size represents the actual device size.
3795 */
3796 this->chipsize = (16 << density) << 20;
3797
3798 /* OneNAND page size & block size */
3799 /* The data buffer size is equal to page size */
3800 mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3801 /* We use the full BufferRAM */
3802 if (ONENAND_IS_MLC(this))
3803 mtd->writesize <<= 1;
3804
3805 mtd->oobsize = mtd->writesize >> 5;
3806 /* Pages per a block are always 64 in OneNAND */
3807 mtd->erasesize = mtd->writesize << 6;
3808 /*
3809 * Flex-OneNAND SLC area has 64 pages per block.
3810 * Flex-OneNAND MLC area has 128 pages per block.
3811 * Expose MLC erase size to find erase_shift and page_mask.
3812 */
3813 if (FLEXONENAND(this))
3814 mtd->erasesize <<= 1;
3815
3816 this->erase_shift = ffs(mtd->erasesize) - 1;
3817 this->page_shift = ffs(mtd->writesize) - 1;
3818 this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3819 /* Set density mask. it is used for DDP */
3820 if (ONENAND_IS_DDP(this))
3821 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3822 /* It's real page size */
3823 this->writesize = mtd->writesize;
3824
3825 /* REVISIT: Multichip handling */
3826
3827 if (FLEXONENAND(this))
3828 flexonenand_get_size(mtd);
3829 else
3830 mtd->size = this->chipsize;
3831
3832 /* Check OneNAND features */
3833 onenand_check_features(mtd);
3834
3835 /*
3836 * We emulate the 4KiB page and 256KiB erase block size
3837 * But oobsize is still 64 bytes.
3838 * It is only valid if you turn on 2X program support,
3839 * Otherwise it will be ignored by compiler.
3840 */
3841 if (ONENAND_IS_2PLANE(this)) {
3842 mtd->writesize <<= 1;
3843 mtd->erasesize <<= 1;
3844 }
3845
3846 return 0;
3847 }
3848
3849 /**
3850 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3851 * @param mtd MTD device structure
3852 */
3853 static int onenand_suspend(struct mtd_info *mtd)
3854 {
3855 return onenand_get_device(mtd, FL_PM_SUSPENDED);
3856 }
3857
3858 /**
3859 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3860 * @param mtd MTD device structure
3861 */
3862 static void onenand_resume(struct mtd_info *mtd)
3863 {
3864 struct onenand_chip *this = mtd->priv;
3865
3866 if (this->state == FL_PM_SUSPENDED)
3867 onenand_release_device(mtd);
3868 else
3869 printk(KERN_ERR "%s: resume() called for the chip which is not "
3870 "in suspended state\n", __func__);
3871 }
3872
3873 /**
3874 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3875 * @param mtd MTD device structure
3876 * @param maxchips Number of chips to scan for
3877 *
3878 * This fills out all the not initialized function pointers
3879 * with the defaults.
3880 * The flash ID is read and the mtd/chip structures are
3881 * filled with the appropriate values.
3882 */
3883 int onenand_scan(struct mtd_info *mtd, int maxchips)
3884 {
3885 int i, ret;
3886 struct onenand_chip *this = mtd->priv;
3887
3888 if (!this->read_word)
3889 this->read_word = onenand_readw;
3890 if (!this->write_word)
3891 this->write_word = onenand_writew;
3892
3893 if (!this->command)
3894 this->command = onenand_command;
3895 if (!this->wait)
3896 onenand_setup_wait(mtd);
3897 if (!this->bbt_wait)
3898 this->bbt_wait = onenand_bbt_wait;
3899 if (!this->unlock_all)
3900 this->unlock_all = onenand_unlock_all;
3901
3902 if (!this->read_bufferram)
3903 this->read_bufferram = onenand_read_bufferram;
3904 if (!this->write_bufferram)
3905 this->write_bufferram = onenand_write_bufferram;
3906
3907 if (!this->block_markbad)
3908 this->block_markbad = onenand_default_block_markbad;
3909 if (!this->scan_bbt)
3910 this->scan_bbt = onenand_default_bbt;
3911
3912 if (onenand_probe(mtd))
3913 return -ENXIO;
3914
3915 /* Set Sync. Burst Read after probing */
3916 if (this->mmcontrol) {
3917 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3918 this->read_bufferram = onenand_sync_read_bufferram;
3919 }
3920
3921 /* Allocate buffers, if necessary */
3922 if (!this->page_buf) {
3923 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3924 if (!this->page_buf) {
3925 printk(KERN_ERR "%s: Can't allocate page_buf\n",
3926 __func__);
3927 return -ENOMEM;
3928 }
3929 this->options |= ONENAND_PAGEBUF_ALLOC;
3930 }
3931 if (!this->oob_buf) {
3932 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3933 if (!this->oob_buf) {
3934 printk(KERN_ERR "%s: Can't allocate oob_buf\n",
3935 __func__);
3936 if (this->options & ONENAND_PAGEBUF_ALLOC) {
3937 this->options &= ~ONENAND_PAGEBUF_ALLOC;
3938 kfree(this->page_buf);
3939 }
3940 return -ENOMEM;
3941 }
3942 this->options |= ONENAND_OOBBUF_ALLOC;
3943 }
3944
3945 this->state = FL_READY;
3946 init_waitqueue_head(&this->wq);
3947 spin_lock_init(&this->chip_lock);
3948
3949 /*
3950 * Allow subpage writes up to oobsize.
3951 */
3952 switch (mtd->oobsize) {
3953 case 128:
3954 this->ecclayout = &onenand_oob_128;
3955 mtd->subpage_sft = 0;
3956 break;
3957 case 64:
3958 this->ecclayout = &onenand_oob_64;
3959 mtd->subpage_sft = 2;
3960 break;
3961
3962 case 32:
3963 this->ecclayout = &onenand_oob_32;
3964 mtd->subpage_sft = 1;
3965 break;
3966
3967 default:
3968 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
3969 __func__, mtd->oobsize);
3970 mtd->subpage_sft = 0;
3971 /* To prevent kernel oops */
3972 this->ecclayout = &onenand_oob_32;
3973 break;
3974 }
3975
3976 this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3977
3978 /*
3979 * The number of bytes available for a client to place data into
3980 * the out of band area
3981 */
3982 this->ecclayout->oobavail = 0;
3983 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
3984 this->ecclayout->oobfree[i].length; i++)
3985 this->ecclayout->oobavail +=
3986 this->ecclayout->oobfree[i].length;
3987 mtd->oobavail = this->ecclayout->oobavail;
3988
3989 mtd->ecclayout = this->ecclayout;
3990
3991 /* Fill in remaining MTD driver data */
3992 mtd->type = MTD_NANDFLASH;
3993 mtd->flags = MTD_CAP_NANDFLASH;
3994 mtd->erase = onenand_erase;
3995 mtd->point = NULL;
3996 mtd->unpoint = NULL;
3997 mtd->read = onenand_read;
3998 mtd->write = onenand_write;
3999 mtd->read_oob = onenand_read_oob;
4000 mtd->write_oob = onenand_write_oob;
4001 mtd->panic_write = onenand_panic_write;
4002 #ifdef CONFIG_MTD_ONENAND_OTP
4003 mtd->get_fact_prot_info = onenand_get_fact_prot_info;
4004 mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
4005 mtd->get_user_prot_info = onenand_get_user_prot_info;
4006 mtd->read_user_prot_reg = onenand_read_user_prot_reg;
4007 mtd->write_user_prot_reg = onenand_write_user_prot_reg;
4008 mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
4009 #endif
4010 mtd->sync = onenand_sync;
4011 mtd->lock = onenand_lock;
4012 mtd->unlock = onenand_unlock;
4013 mtd->suspend = onenand_suspend;
4014 mtd->resume = onenand_resume;
4015 mtd->block_isbad = onenand_block_isbad;
4016 mtd->block_markbad = onenand_block_markbad;
4017 mtd->owner = THIS_MODULE;
4018
4019 /* Unlock whole block */
4020 this->unlock_all(mtd);
4021
4022 ret = this->scan_bbt(mtd);
4023 if ((!FLEXONENAND(this)) || ret)
4024 return ret;
4025
4026 /* Change Flex-OneNAND boundaries if required */
4027 for (i = 0; i < MAX_DIES; i++)
4028 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
4029 flex_bdry[(2 * i) + 1]);
4030
4031 return 0;
4032 }
4033
4034 /**
4035 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4036 * @param mtd MTD device structure
4037 */
4038 void onenand_release(struct mtd_info *mtd)
4039 {
4040 struct onenand_chip *this = mtd->priv;
4041
4042 #ifdef CONFIG_MTD_PARTITIONS
4043 /* Deregister partitions */
4044 del_mtd_partitions (mtd);
4045 #endif
4046 /* Deregister the device */
4047 del_mtd_device (mtd);
4048
4049 /* Free bad block table memory, if allocated */
4050 if (this->bbm) {
4051 struct bbm_info *bbm = this->bbm;
4052 kfree(bbm->bbt);
4053 kfree(this->bbm);
4054 }
4055 /* Buffers allocated by onenand_scan */
4056 if (this->options & ONENAND_PAGEBUF_ALLOC)
4057 kfree(this->page_buf);
4058 if (this->options & ONENAND_OOBBUF_ALLOC)
4059 kfree(this->oob_buf);
4060 kfree(mtd->eraseregions);
4061 }
4062
4063 EXPORT_SYMBOL_GPL(onenand_scan);
4064 EXPORT_SYMBOL_GPL(onenand_release);
4065
4066 MODULE_LICENSE("GPL");
4067 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4068 MODULE_DESCRIPTION("Generic OneNAND flash driver code");