Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / nand / s3c2410.c
1 /* linux/drivers/mtd/nand/s3c2410.c
2 *
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
6 *
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24 #define pr_fmt(fmt) "nand-s3c2410: " fmt
25
26 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
27 #define DEBUG
28 #endif
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/kernel.h>
34 #include <linux/string.h>
35 #include <linux/io.h>
36 #include <linux/ioport.h>
37 #include <linux/platform_device.h>
38 #include <linux/delay.h>
39 #include <linux/err.h>
40 #include <linux/slab.h>
41 #include <linux/clk.h>
42 #include <linux/cpufreq.h>
43
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/nand.h>
46 #include <linux/mtd/nand_ecc.h>
47 #include <linux/mtd/partitions.h>
48
49 #include <plat/regs-nand.h>
50 #include <linux/platform_data/mtd-nand-s3c2410.h>
51
52 /* new oob placement block for use with hardware ecc generation
53 */
54
55 static struct nand_ecclayout nand_hw_eccoob = {
56 .eccbytes = 3,
57 .eccpos = {0, 1, 2},
58 .oobfree = {{8, 8}}
59 };
60
61 /* controller and mtd information */
62
63 struct s3c2410_nand_info;
64
65 /**
66 * struct s3c2410_nand_mtd - driver MTD structure
67 * @mtd: The MTD instance to pass to the MTD layer.
68 * @chip: The NAND chip information.
69 * @set: The platform information supplied for this set of NAND chips.
70 * @info: Link back to the hardware information.
71 * @scan_res: The result from calling nand_scan_ident().
72 */
73 struct s3c2410_nand_mtd {
74 struct mtd_info mtd;
75 struct nand_chip chip;
76 struct s3c2410_nand_set *set;
77 struct s3c2410_nand_info *info;
78 int scan_res;
79 };
80
81 enum s3c_cpu_type {
82 TYPE_S3C2410,
83 TYPE_S3C2412,
84 TYPE_S3C2440,
85 };
86
87 enum s3c_nand_clk_state {
88 CLOCK_DISABLE = 0,
89 CLOCK_ENABLE,
90 CLOCK_SUSPEND,
91 };
92
93 /* overview of the s3c2410 nand state */
94
95 /**
96 * struct s3c2410_nand_info - NAND controller state.
97 * @mtds: An array of MTD instances on this controoler.
98 * @platform: The platform data for this board.
99 * @device: The platform device we bound to.
100 * @clk: The clock resource for this controller.
101 * @regs: The area mapped for the hardware registers.
102 * @sel_reg: Pointer to the register controlling the NAND selection.
103 * @sel_bit: The bit in @sel_reg to select the NAND chip.
104 * @mtd_count: The number of MTDs created from this controller.
105 * @save_sel: The contents of @sel_reg to be saved over suspend.
106 * @clk_rate: The clock rate from @clk.
107 * @clk_state: The current clock state.
108 * @cpu_type: The exact type of this controller.
109 */
110 struct s3c2410_nand_info {
111 /* mtd info */
112 struct nand_hw_control controller;
113 struct s3c2410_nand_mtd *mtds;
114 struct s3c2410_platform_nand *platform;
115
116 /* device info */
117 struct device *device;
118 struct clk *clk;
119 void __iomem *regs;
120 void __iomem *sel_reg;
121 int sel_bit;
122 int mtd_count;
123 unsigned long save_sel;
124 unsigned long clk_rate;
125 enum s3c_nand_clk_state clk_state;
126
127 enum s3c_cpu_type cpu_type;
128
129 #ifdef CONFIG_CPU_FREQ
130 struct notifier_block freq_transition;
131 #endif
132 };
133
134 /* conversion functions */
135
136 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
137 {
138 return container_of(mtd, struct s3c2410_nand_mtd, mtd);
139 }
140
141 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
142 {
143 return s3c2410_nand_mtd_toours(mtd)->info;
144 }
145
146 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
147 {
148 return platform_get_drvdata(dev);
149 }
150
151 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
152 {
153 return dev->dev.platform_data;
154 }
155
156 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
157 {
158 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
159 return 1;
160 #else
161 return 0;
162 #endif
163 }
164
165 /**
166 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
167 * @info: The controller instance.
168 * @new_state: State to which clock should be set.
169 */
170 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
171 enum s3c_nand_clk_state new_state)
172 {
173 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
174 return;
175
176 if (info->clk_state == CLOCK_ENABLE) {
177 if (new_state != CLOCK_ENABLE)
178 clk_disable(info->clk);
179 } else {
180 if (new_state == CLOCK_ENABLE)
181 clk_enable(info->clk);
182 }
183
184 info->clk_state = new_state;
185 }
186
187 /* timing calculations */
188
189 #define NS_IN_KHZ 1000000
190
191 /**
192 * s3c_nand_calc_rate - calculate timing data.
193 * @wanted: The cycle time in nanoseconds.
194 * @clk: The clock rate in kHz.
195 * @max: The maximum divider value.
196 *
197 * Calculate the timing value from the given parameters.
198 */
199 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
200 {
201 int result;
202
203 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
204
205 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
206
207 if (result > max) {
208 pr_err("%d ns is too big for current clock rate %ld\n",
209 wanted, clk);
210 return -1;
211 }
212
213 if (result < 1)
214 result = 1;
215
216 return result;
217 }
218
219 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
220
221 /* controller setup */
222
223 /**
224 * s3c2410_nand_setrate - setup controller timing information.
225 * @info: The controller instance.
226 *
227 * Given the information supplied by the platform, calculate and set
228 * the necessary timing registers in the hardware to generate the
229 * necessary timing cycles to the hardware.
230 */
231 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
232 {
233 struct s3c2410_platform_nand *plat = info->platform;
234 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
235 int tacls, twrph0, twrph1;
236 unsigned long clkrate = clk_get_rate(info->clk);
237 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
238 unsigned long flags;
239
240 /* calculate the timing information for the controller */
241
242 info->clk_rate = clkrate;
243 clkrate /= 1000; /* turn clock into kHz for ease of use */
244
245 if (plat != NULL) {
246 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
247 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
248 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
249 } else {
250 /* default timings */
251 tacls = tacls_max;
252 twrph0 = 8;
253 twrph1 = 8;
254 }
255
256 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
257 dev_err(info->device, "cannot get suitable timings\n");
258 return -EINVAL;
259 }
260
261 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
262 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
263 twrph1, to_ns(twrph1, clkrate));
264
265 switch (info->cpu_type) {
266 case TYPE_S3C2410:
267 mask = (S3C2410_NFCONF_TACLS(3) |
268 S3C2410_NFCONF_TWRPH0(7) |
269 S3C2410_NFCONF_TWRPH1(7));
270 set = S3C2410_NFCONF_EN;
271 set |= S3C2410_NFCONF_TACLS(tacls - 1);
272 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
273 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
274 break;
275
276 case TYPE_S3C2440:
277 case TYPE_S3C2412:
278 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
279 S3C2440_NFCONF_TWRPH0(7) |
280 S3C2440_NFCONF_TWRPH1(7));
281
282 set = S3C2440_NFCONF_TACLS(tacls - 1);
283 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
284 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
285 break;
286
287 default:
288 BUG();
289 }
290
291 local_irq_save(flags);
292
293 cfg = readl(info->regs + S3C2410_NFCONF);
294 cfg &= ~mask;
295 cfg |= set;
296 writel(cfg, info->regs + S3C2410_NFCONF);
297
298 local_irq_restore(flags);
299
300 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
301
302 return 0;
303 }
304
305 /**
306 * s3c2410_nand_inithw - basic hardware initialisation
307 * @info: The hardware state.
308 *
309 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
310 * to setup the hardware access speeds and set the controller to be enabled.
311 */
312 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
313 {
314 int ret;
315
316 ret = s3c2410_nand_setrate(info);
317 if (ret < 0)
318 return ret;
319
320 switch (info->cpu_type) {
321 case TYPE_S3C2410:
322 default:
323 break;
324
325 case TYPE_S3C2440:
326 case TYPE_S3C2412:
327 /* enable the controller and de-assert nFCE */
328
329 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
330 }
331
332 return 0;
333 }
334
335 /**
336 * s3c2410_nand_select_chip - select the given nand chip
337 * @mtd: The MTD instance for this chip.
338 * @chip: The chip number.
339 *
340 * This is called by the MTD layer to either select a given chip for the
341 * @mtd instance, or to indicate that the access has finished and the
342 * chip can be de-selected.
343 *
344 * The routine ensures that the nFCE line is correctly setup, and any
345 * platform specific selection code is called to route nFCE to the specific
346 * chip.
347 */
348 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
349 {
350 struct s3c2410_nand_info *info;
351 struct s3c2410_nand_mtd *nmtd;
352 struct nand_chip *this = mtd->priv;
353 unsigned long cur;
354
355 nmtd = this->priv;
356 info = nmtd->info;
357
358 if (chip != -1)
359 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
360
361 cur = readl(info->sel_reg);
362
363 if (chip == -1) {
364 cur |= info->sel_bit;
365 } else {
366 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
367 dev_err(info->device, "invalid chip %d\n", chip);
368 return;
369 }
370
371 if (info->platform != NULL) {
372 if (info->platform->select_chip != NULL)
373 (info->platform->select_chip) (nmtd->set, chip);
374 }
375
376 cur &= ~info->sel_bit;
377 }
378
379 writel(cur, info->sel_reg);
380
381 if (chip == -1)
382 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
383 }
384
385 /* s3c2410_nand_hwcontrol
386 *
387 * Issue command and address cycles to the chip
388 */
389
390 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
391 unsigned int ctrl)
392 {
393 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
394
395 if (cmd == NAND_CMD_NONE)
396 return;
397
398 if (ctrl & NAND_CLE)
399 writeb(cmd, info->regs + S3C2410_NFCMD);
400 else
401 writeb(cmd, info->regs + S3C2410_NFADDR);
402 }
403
404 /* command and control functions */
405
406 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
407 unsigned int ctrl)
408 {
409 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
410
411 if (cmd == NAND_CMD_NONE)
412 return;
413
414 if (ctrl & NAND_CLE)
415 writeb(cmd, info->regs + S3C2440_NFCMD);
416 else
417 writeb(cmd, info->regs + S3C2440_NFADDR);
418 }
419
420 /* s3c2410_nand_devready()
421 *
422 * returns 0 if the nand is busy, 1 if it is ready
423 */
424
425 static int s3c2410_nand_devready(struct mtd_info *mtd)
426 {
427 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
428 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
429 }
430
431 static int s3c2440_nand_devready(struct mtd_info *mtd)
432 {
433 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
434 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
435 }
436
437 static int s3c2412_nand_devready(struct mtd_info *mtd)
438 {
439 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
440 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
441 }
442
443 /* ECC handling functions */
444
445 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
446 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
447 u_char *read_ecc, u_char *calc_ecc)
448 {
449 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
450 unsigned int diff0, diff1, diff2;
451 unsigned int bit, byte;
452
453 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
454
455 diff0 = read_ecc[0] ^ calc_ecc[0];
456 diff1 = read_ecc[1] ^ calc_ecc[1];
457 diff2 = read_ecc[2] ^ calc_ecc[2];
458
459 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
460 __func__, 3, read_ecc, 3, calc_ecc,
461 diff0, diff1, diff2);
462
463 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
464 return 0; /* ECC is ok */
465
466 /* sometimes people do not think about using the ECC, so check
467 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
468 * the error, on the assumption that this is an un-eccd page.
469 */
470 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
471 && info->platform->ignore_unset_ecc)
472 return 0;
473
474 /* Can we correct this ECC (ie, one row and column change).
475 * Note, this is similar to the 256 error code on smartmedia */
476
477 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
478 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
479 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
480 /* calculate the bit position of the error */
481
482 bit = ((diff2 >> 3) & 1) |
483 ((diff2 >> 4) & 2) |
484 ((diff2 >> 5) & 4);
485
486 /* calculate the byte position of the error */
487
488 byte = ((diff2 << 7) & 0x100) |
489 ((diff1 << 0) & 0x80) |
490 ((diff1 << 1) & 0x40) |
491 ((diff1 << 2) & 0x20) |
492 ((diff1 << 3) & 0x10) |
493 ((diff0 >> 4) & 0x08) |
494 ((diff0 >> 3) & 0x04) |
495 ((diff0 >> 2) & 0x02) |
496 ((diff0 >> 1) & 0x01);
497
498 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
499 bit, byte);
500
501 dat[byte] ^= (1 << bit);
502 return 1;
503 }
504
505 /* if there is only one bit difference in the ECC, then
506 * one of only a row or column parity has changed, which
507 * means the error is most probably in the ECC itself */
508
509 diff0 |= (diff1 << 8);
510 diff0 |= (diff2 << 16);
511
512 if ((diff0 & ~(1<<fls(diff0))) == 0)
513 return 1;
514
515 return -1;
516 }
517
518 /* ECC functions
519 *
520 * These allow the s3c2410 and s3c2440 to use the controller's ECC
521 * generator block to ECC the data as it passes through]
522 */
523
524 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
525 {
526 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
527 unsigned long ctrl;
528
529 ctrl = readl(info->regs + S3C2410_NFCONF);
530 ctrl |= S3C2410_NFCONF_INITECC;
531 writel(ctrl, info->regs + S3C2410_NFCONF);
532 }
533
534 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
535 {
536 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
537 unsigned long ctrl;
538
539 ctrl = readl(info->regs + S3C2440_NFCONT);
540 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
541 info->regs + S3C2440_NFCONT);
542 }
543
544 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
545 {
546 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
547 unsigned long ctrl;
548
549 ctrl = readl(info->regs + S3C2440_NFCONT);
550 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
551 }
552
553 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
554 u_char *ecc_code)
555 {
556 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
557
558 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
559 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
560 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
561
562 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
563
564 return 0;
565 }
566
567 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
568 u_char *ecc_code)
569 {
570 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
571 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
572
573 ecc_code[0] = ecc;
574 ecc_code[1] = ecc >> 8;
575 ecc_code[2] = ecc >> 16;
576
577 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
578
579 return 0;
580 }
581
582 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
583 u_char *ecc_code)
584 {
585 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
586 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
587
588 ecc_code[0] = ecc;
589 ecc_code[1] = ecc >> 8;
590 ecc_code[2] = ecc >> 16;
591
592 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
593
594 return 0;
595 }
596 #endif
597
598 /* over-ride the standard functions for a little more speed. We can
599 * use read/write block to move the data buffers to/from the controller
600 */
601
602 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
603 {
604 struct nand_chip *this = mtd->priv;
605 readsb(this->IO_ADDR_R, buf, len);
606 }
607
608 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
609 {
610 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
611
612 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
613
614 /* cleanup if we've got less than a word to do */
615 if (len & 3) {
616 buf += len & ~3;
617
618 for (; len & 3; len--)
619 *buf++ = readb(info->regs + S3C2440_NFDATA);
620 }
621 }
622
623 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
624 int len)
625 {
626 struct nand_chip *this = mtd->priv;
627 writesb(this->IO_ADDR_W, buf, len);
628 }
629
630 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
631 int len)
632 {
633 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
634
635 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
636
637 /* cleanup any fractional write */
638 if (len & 3) {
639 buf += len & ~3;
640
641 for (; len & 3; len--, buf++)
642 writeb(*buf, info->regs + S3C2440_NFDATA);
643 }
644 }
645
646 /* cpufreq driver support */
647
648 #ifdef CONFIG_CPU_FREQ
649
650 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
651 unsigned long val, void *data)
652 {
653 struct s3c2410_nand_info *info;
654 unsigned long newclk;
655
656 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
657 newclk = clk_get_rate(info->clk);
658
659 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
660 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
661 s3c2410_nand_setrate(info);
662 }
663
664 return 0;
665 }
666
667 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
668 {
669 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
670
671 return cpufreq_register_notifier(&info->freq_transition,
672 CPUFREQ_TRANSITION_NOTIFIER);
673 }
674
675 static inline void
676 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
677 {
678 cpufreq_unregister_notifier(&info->freq_transition,
679 CPUFREQ_TRANSITION_NOTIFIER);
680 }
681
682 #else
683 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
684 {
685 return 0;
686 }
687
688 static inline void
689 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
690 {
691 }
692 #endif
693
694 /* device management functions */
695
696 static int s3c24xx_nand_remove(struct platform_device *pdev)
697 {
698 struct s3c2410_nand_info *info = to_nand_info(pdev);
699
700 platform_set_drvdata(pdev, NULL);
701
702 if (info == NULL)
703 return 0;
704
705 s3c2410_nand_cpufreq_deregister(info);
706
707 /* Release all our mtds and their partitions, then go through
708 * freeing the resources used
709 */
710
711 if (info->mtds != NULL) {
712 struct s3c2410_nand_mtd *ptr = info->mtds;
713 int mtdno;
714
715 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
716 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
717 nand_release(&ptr->mtd);
718 }
719 }
720
721 /* free the common resources */
722
723 if (!IS_ERR(info->clk))
724 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
725
726 return 0;
727 }
728
729 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
730 struct s3c2410_nand_mtd *mtd,
731 struct s3c2410_nand_set *set)
732 {
733 if (set) {
734 mtd->mtd.name = set->name;
735
736 return mtd_device_parse_register(&mtd->mtd, NULL, NULL,
737 set->partitions, set->nr_partitions);
738 }
739
740 return -ENODEV;
741 }
742
743 /**
744 * s3c2410_nand_init_chip - initialise a single instance of an chip
745 * @info: The base NAND controller the chip is on.
746 * @nmtd: The new controller MTD instance to fill in.
747 * @set: The information passed from the board specific platform data.
748 *
749 * Initialise the given @nmtd from the information in @info and @set. This
750 * readies the structure for use with the MTD layer functions by ensuring
751 * all pointers are setup and the necessary control routines selected.
752 */
753 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
754 struct s3c2410_nand_mtd *nmtd,
755 struct s3c2410_nand_set *set)
756 {
757 struct nand_chip *chip = &nmtd->chip;
758 void __iomem *regs = info->regs;
759
760 chip->write_buf = s3c2410_nand_write_buf;
761 chip->read_buf = s3c2410_nand_read_buf;
762 chip->select_chip = s3c2410_nand_select_chip;
763 chip->chip_delay = 50;
764 chip->priv = nmtd;
765 chip->options = set->options;
766 chip->controller = &info->controller;
767
768 switch (info->cpu_type) {
769 case TYPE_S3C2410:
770 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
771 info->sel_reg = regs + S3C2410_NFCONF;
772 info->sel_bit = S3C2410_NFCONF_nFCE;
773 chip->cmd_ctrl = s3c2410_nand_hwcontrol;
774 chip->dev_ready = s3c2410_nand_devready;
775 break;
776
777 case TYPE_S3C2440:
778 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
779 info->sel_reg = regs + S3C2440_NFCONT;
780 info->sel_bit = S3C2440_NFCONT_nFCE;
781 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
782 chip->dev_ready = s3c2440_nand_devready;
783 chip->read_buf = s3c2440_nand_read_buf;
784 chip->write_buf = s3c2440_nand_write_buf;
785 break;
786
787 case TYPE_S3C2412:
788 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
789 info->sel_reg = regs + S3C2440_NFCONT;
790 info->sel_bit = S3C2412_NFCONT_nFCE0;
791 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
792 chip->dev_ready = s3c2412_nand_devready;
793
794 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
795 dev_info(info->device, "System booted from NAND\n");
796
797 break;
798 }
799
800 chip->IO_ADDR_R = chip->IO_ADDR_W;
801
802 nmtd->info = info;
803 nmtd->mtd.priv = chip;
804 nmtd->mtd.owner = THIS_MODULE;
805 nmtd->set = set;
806
807 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
808 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
809 chip->ecc.correct = s3c2410_nand_correct_data;
810 chip->ecc.mode = NAND_ECC_HW;
811 chip->ecc.strength = 1;
812
813 switch (info->cpu_type) {
814 case TYPE_S3C2410:
815 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
816 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
817 break;
818
819 case TYPE_S3C2412:
820 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
821 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
822 break;
823
824 case TYPE_S3C2440:
825 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
826 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
827 break;
828 }
829 #else
830 chip->ecc.mode = NAND_ECC_SOFT;
831 #endif
832
833 if (set->ecc_layout != NULL)
834 chip->ecc.layout = set->ecc_layout;
835
836 if (set->disable_ecc)
837 chip->ecc.mode = NAND_ECC_NONE;
838
839 switch (chip->ecc.mode) {
840 case NAND_ECC_NONE:
841 dev_info(info->device, "NAND ECC disabled\n");
842 break;
843 case NAND_ECC_SOFT:
844 dev_info(info->device, "NAND soft ECC\n");
845 break;
846 case NAND_ECC_HW:
847 dev_info(info->device, "NAND hardware ECC\n");
848 break;
849 default:
850 dev_info(info->device, "NAND ECC UNKNOWN\n");
851 break;
852 }
853
854 /* If you use u-boot BBT creation code, specifying this flag will
855 * let the kernel fish out the BBT from the NAND, and also skip the
856 * full NAND scan that can take 1/2s or so. Little things... */
857 if (set->flash_bbt) {
858 chip->bbt_options |= NAND_BBT_USE_FLASH;
859 chip->options |= NAND_SKIP_BBTSCAN;
860 }
861 }
862
863 /**
864 * s3c2410_nand_update_chip - post probe update
865 * @info: The controller instance.
866 * @nmtd: The driver version of the MTD instance.
867 *
868 * This routine is called after the chip probe has successfully completed
869 * and the relevant per-chip information updated. This call ensure that
870 * we update the internal state accordingly.
871 *
872 * The internal state is currently limited to the ECC state information.
873 */
874 static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
875 struct s3c2410_nand_mtd *nmtd)
876 {
877 struct nand_chip *chip = &nmtd->chip;
878
879 dev_dbg(info->device, "chip %p => page shift %d\n",
880 chip, chip->page_shift);
881
882 if (chip->ecc.mode != NAND_ECC_HW)
883 return;
884
885 /* change the behaviour depending on whether we are using
886 * the large or small page nand device */
887
888 if (chip->page_shift > 10) {
889 chip->ecc.size = 256;
890 chip->ecc.bytes = 3;
891 } else {
892 chip->ecc.size = 512;
893 chip->ecc.bytes = 3;
894 chip->ecc.layout = &nand_hw_eccoob;
895 }
896 }
897
898 /* s3c24xx_nand_probe
899 *
900 * called by device layer when it finds a device matching
901 * one our driver can handled. This code checks to see if
902 * it can allocate all necessary resources then calls the
903 * nand layer to look for devices
904 */
905 static int s3c24xx_nand_probe(struct platform_device *pdev)
906 {
907 struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
908 enum s3c_cpu_type cpu_type;
909 struct s3c2410_nand_info *info;
910 struct s3c2410_nand_mtd *nmtd;
911 struct s3c2410_nand_set *sets;
912 struct resource *res;
913 int err = 0;
914 int size;
915 int nr_sets;
916 int setno;
917
918 cpu_type = platform_get_device_id(pdev)->driver_data;
919
920 pr_debug("s3c2410_nand_probe(%p)\n", pdev);
921
922 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
923 if (info == NULL) {
924 dev_err(&pdev->dev, "no memory for flash info\n");
925 err = -ENOMEM;
926 goto exit_error;
927 }
928
929 platform_set_drvdata(pdev, info);
930
931 spin_lock_init(&info->controller.lock);
932 init_waitqueue_head(&info->controller.wq);
933
934 /* get the clock source and enable it */
935
936 info->clk = devm_clk_get(&pdev->dev, "nand");
937 if (IS_ERR(info->clk)) {
938 dev_err(&pdev->dev, "failed to get clock\n");
939 err = -ENOENT;
940 goto exit_error;
941 }
942
943 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
944
945 /* allocate and map the resource */
946
947 /* currently we assume we have the one resource */
948 res = pdev->resource;
949 size = resource_size(res);
950
951 info->device = &pdev->dev;
952 info->platform = plat;
953 info->cpu_type = cpu_type;
954
955 info->regs = devm_ioremap_resource(&pdev->dev, res);
956 if (IS_ERR(info->regs)) {
957 err = PTR_ERR(info->regs);
958 goto exit_error;
959 }
960
961 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
962
963 /* initialise the hardware */
964
965 err = s3c2410_nand_inithw(info);
966 if (err != 0)
967 goto exit_error;
968
969 sets = (plat != NULL) ? plat->sets : NULL;
970 nr_sets = (plat != NULL) ? plat->nr_sets : 1;
971
972 info->mtd_count = nr_sets;
973
974 /* allocate our information */
975
976 size = nr_sets * sizeof(*info->mtds);
977 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
978 if (info->mtds == NULL) {
979 dev_err(&pdev->dev, "failed to allocate mtd storage\n");
980 err = -ENOMEM;
981 goto exit_error;
982 }
983
984 /* initialise all possible chips */
985
986 nmtd = info->mtds;
987
988 for (setno = 0; setno < nr_sets; setno++, nmtd++) {
989 pr_debug("initialising set %d (%p, info %p)\n",
990 setno, nmtd, info);
991
992 s3c2410_nand_init_chip(info, nmtd, sets);
993
994 nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
995 (sets) ? sets->nr_chips : 1,
996 NULL);
997
998 if (nmtd->scan_res == 0) {
999 s3c2410_nand_update_chip(info, nmtd);
1000 nand_scan_tail(&nmtd->mtd);
1001 s3c2410_nand_add_partition(info, nmtd, sets);
1002 }
1003
1004 if (sets != NULL)
1005 sets++;
1006 }
1007
1008 err = s3c2410_nand_cpufreq_register(info);
1009 if (err < 0) {
1010 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1011 goto exit_error;
1012 }
1013
1014 if (allow_clk_suspend(info)) {
1015 dev_info(&pdev->dev, "clock idle support enabled\n");
1016 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1017 }
1018
1019 pr_debug("initialised ok\n");
1020 return 0;
1021
1022 exit_error:
1023 s3c24xx_nand_remove(pdev);
1024
1025 if (err == 0)
1026 err = -EINVAL;
1027 return err;
1028 }
1029
1030 /* PM Support */
1031 #ifdef CONFIG_PM
1032
1033 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1034 {
1035 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1036
1037 if (info) {
1038 info->save_sel = readl(info->sel_reg);
1039
1040 /* For the moment, we must ensure nFCE is high during
1041 * the time we are suspended. This really should be
1042 * handled by suspending the MTDs we are using, but
1043 * that is currently not the case. */
1044
1045 writel(info->save_sel | info->sel_bit, info->sel_reg);
1046
1047 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1048 }
1049
1050 return 0;
1051 }
1052
1053 static int s3c24xx_nand_resume(struct platform_device *dev)
1054 {
1055 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1056 unsigned long sel;
1057
1058 if (info) {
1059 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1060 s3c2410_nand_inithw(info);
1061
1062 /* Restore the state of the nFCE line. */
1063
1064 sel = readl(info->sel_reg);
1065 sel &= ~info->sel_bit;
1066 sel |= info->save_sel & info->sel_bit;
1067 writel(sel, info->sel_reg);
1068
1069 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1070 }
1071
1072 return 0;
1073 }
1074
1075 #else
1076 #define s3c24xx_nand_suspend NULL
1077 #define s3c24xx_nand_resume NULL
1078 #endif
1079
1080 /* driver device registration */
1081
1082 static struct platform_device_id s3c24xx_driver_ids[] = {
1083 {
1084 .name = "s3c2410-nand",
1085 .driver_data = TYPE_S3C2410,
1086 }, {
1087 .name = "s3c2440-nand",
1088 .driver_data = TYPE_S3C2440,
1089 }, {
1090 .name = "s3c2412-nand",
1091 .driver_data = TYPE_S3C2412,
1092 }, {
1093 .name = "s3c6400-nand",
1094 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
1095 },
1096 { }
1097 };
1098
1099 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1100
1101 static struct platform_driver s3c24xx_nand_driver = {
1102 .probe = s3c24xx_nand_probe,
1103 .remove = s3c24xx_nand_remove,
1104 .suspend = s3c24xx_nand_suspend,
1105 .resume = s3c24xx_nand_resume,
1106 .id_table = s3c24xx_driver_ids,
1107 .driver = {
1108 .name = "s3c24xx-nand",
1109 .owner = THIS_MODULE,
1110 },
1111 };
1112
1113 module_platform_driver(s3c24xx_nand_driver);
1114
1115 MODULE_LICENSE("GPL");
1116 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1117 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");