Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / nand / pxa3xx_nand.c
1 /*
2 * drivers/mtd/nand/pxa3xx_nand.c
3 *
4 * Copyright © 2005 Intel Corporation
5 * Copyright © 2006 Marvell International Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/platform_device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/delay.h>
18 #include <linux/clk.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/io.h>
23 #include <linux/irq.h>
24 #include <linux/slab.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27
28 #include <mach/dma.h>
29 #include <linux/platform_data/mtd-nand-pxa3xx.h>
30
31 #define CHIP_DELAY_TIMEOUT (2 * HZ/10)
32 #define NAND_STOP_DELAY (2 * HZ/50)
33 #define PAGE_CHUNK_SIZE (2048)
34
35 /* registers and bit definitions */
36 #define NDCR (0x00) /* Control register */
37 #define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */
38 #define NDTR1CS0 (0x0C) /* Timing Parameter 1 for CS0 */
39 #define NDSR (0x14) /* Status Register */
40 #define NDPCR (0x18) /* Page Count Register */
41 #define NDBDR0 (0x1C) /* Bad Block Register 0 */
42 #define NDBDR1 (0x20) /* Bad Block Register 1 */
43 #define NDDB (0x40) /* Data Buffer */
44 #define NDCB0 (0x48) /* Command Buffer0 */
45 #define NDCB1 (0x4C) /* Command Buffer1 */
46 #define NDCB2 (0x50) /* Command Buffer2 */
47
48 #define NDCR_SPARE_EN (0x1 << 31)
49 #define NDCR_ECC_EN (0x1 << 30)
50 #define NDCR_DMA_EN (0x1 << 29)
51 #define NDCR_ND_RUN (0x1 << 28)
52 #define NDCR_DWIDTH_C (0x1 << 27)
53 #define NDCR_DWIDTH_M (0x1 << 26)
54 #define NDCR_PAGE_SZ (0x1 << 24)
55 #define NDCR_NCSX (0x1 << 23)
56 #define NDCR_ND_MODE (0x3 << 21)
57 #define NDCR_NAND_MODE (0x0)
58 #define NDCR_CLR_PG_CNT (0x1 << 20)
59 #define NDCR_STOP_ON_UNCOR (0x1 << 19)
60 #define NDCR_RD_ID_CNT_MASK (0x7 << 16)
61 #define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK)
62
63 #define NDCR_RA_START (0x1 << 15)
64 #define NDCR_PG_PER_BLK (0x1 << 14)
65 #define NDCR_ND_ARB_EN (0x1 << 12)
66 #define NDCR_INT_MASK (0xFFF)
67
68 #define NDSR_MASK (0xfff)
69 #define NDSR_RDY (0x1 << 12)
70 #define NDSR_FLASH_RDY (0x1 << 11)
71 #define NDSR_CS0_PAGED (0x1 << 10)
72 #define NDSR_CS1_PAGED (0x1 << 9)
73 #define NDSR_CS0_CMDD (0x1 << 8)
74 #define NDSR_CS1_CMDD (0x1 << 7)
75 #define NDSR_CS0_BBD (0x1 << 6)
76 #define NDSR_CS1_BBD (0x1 << 5)
77 #define NDSR_DBERR (0x1 << 4)
78 #define NDSR_SBERR (0x1 << 3)
79 #define NDSR_WRDREQ (0x1 << 2)
80 #define NDSR_RDDREQ (0x1 << 1)
81 #define NDSR_WRCMDREQ (0x1)
82
83 #define NDCB0_ST_ROW_EN (0x1 << 26)
84 #define NDCB0_AUTO_RS (0x1 << 25)
85 #define NDCB0_CSEL (0x1 << 24)
86 #define NDCB0_CMD_TYPE_MASK (0x7 << 21)
87 #define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK)
88 #define NDCB0_NC (0x1 << 20)
89 #define NDCB0_DBC (0x1 << 19)
90 #define NDCB0_ADDR_CYC_MASK (0x7 << 16)
91 #define NDCB0_ADDR_CYC(x) (((x) << 16) & NDCB0_ADDR_CYC_MASK)
92 #define NDCB0_CMD2_MASK (0xff << 8)
93 #define NDCB0_CMD1_MASK (0xff)
94 #define NDCB0_ADDR_CYC_SHIFT (16)
95
96 /* macros for registers read/write */
97 #define nand_writel(info, off, val) \
98 __raw_writel((val), (info)->mmio_base + (off))
99
100 #define nand_readl(info, off) \
101 __raw_readl((info)->mmio_base + (off))
102
103 /* error code and state */
104 enum {
105 ERR_NONE = 0,
106 ERR_DMABUSERR = -1,
107 ERR_SENDCMD = -2,
108 ERR_DBERR = -3,
109 ERR_BBERR = -4,
110 ERR_SBERR = -5,
111 };
112
113 enum {
114 STATE_IDLE = 0,
115 STATE_PREPARED,
116 STATE_CMD_HANDLE,
117 STATE_DMA_READING,
118 STATE_DMA_WRITING,
119 STATE_DMA_DONE,
120 STATE_PIO_READING,
121 STATE_PIO_WRITING,
122 STATE_CMD_DONE,
123 STATE_READY,
124 };
125
126 struct pxa3xx_nand_host {
127 struct nand_chip chip;
128 struct pxa3xx_nand_cmdset *cmdset;
129 struct mtd_info *mtd;
130 void *info_data;
131
132 /* page size of attached chip */
133 unsigned int page_size;
134 int use_ecc;
135 int cs;
136
137 /* calculated from pxa3xx_nand_flash data */
138 unsigned int col_addr_cycles;
139 unsigned int row_addr_cycles;
140 size_t read_id_bytes;
141
142 /* cached register value */
143 uint32_t reg_ndcr;
144 uint32_t ndtr0cs0;
145 uint32_t ndtr1cs0;
146 };
147
148 struct pxa3xx_nand_info {
149 struct nand_hw_control controller;
150 struct platform_device *pdev;
151
152 struct clk *clk;
153 void __iomem *mmio_base;
154 unsigned long mmio_phys;
155 struct completion cmd_complete;
156
157 unsigned int buf_start;
158 unsigned int buf_count;
159
160 /* DMA information */
161 int drcmr_dat;
162 int drcmr_cmd;
163
164 unsigned char *data_buff;
165 unsigned char *oob_buff;
166 dma_addr_t data_buff_phys;
167 int data_dma_ch;
168 struct pxa_dma_desc *data_desc;
169 dma_addr_t data_desc_addr;
170
171 struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
172 unsigned int state;
173
174 int cs;
175 int use_ecc; /* use HW ECC ? */
176 int use_dma; /* use DMA ? */
177 int is_ready;
178
179 unsigned int page_size; /* page size of attached chip */
180 unsigned int data_size; /* data size in FIFO */
181 unsigned int oob_size;
182 int retcode;
183
184 /* generated NDCBx register values */
185 uint32_t ndcb0;
186 uint32_t ndcb1;
187 uint32_t ndcb2;
188 };
189
190 static bool use_dma = 1;
191 module_param(use_dma, bool, 0444);
192 MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW");
193
194 /*
195 * Default NAND flash controller configuration setup by the
196 * bootloader. This configuration is used only when pdata->keep_config is set
197 */
198 static struct pxa3xx_nand_cmdset default_cmdset = {
199 .read1 = 0x3000,
200 .read2 = 0x0050,
201 .program = 0x1080,
202 .read_status = 0x0070,
203 .read_id = 0x0090,
204 .erase = 0xD060,
205 .reset = 0x00FF,
206 .lock = 0x002A,
207 .unlock = 0x2423,
208 .lock_status = 0x007A,
209 };
210
211 static struct pxa3xx_nand_timing timing[] = {
212 { 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
213 { 10, 0, 20, 40, 30, 40, 11123, 110, 10, },
214 { 10, 25, 15, 25, 15, 30, 25000, 60, 10, },
215 { 10, 35, 15, 25, 15, 25, 25000, 60, 10, },
216 };
217
218 static struct pxa3xx_nand_flash builtin_flash_types[] = {
219 { "DEFAULT FLASH", 0, 0, 2048, 8, 8, 0, &timing[0] },
220 { "64MiB 16-bit", 0x46ec, 32, 512, 16, 16, 4096, &timing[1] },
221 { "256MiB 8-bit", 0xdaec, 64, 2048, 8, 8, 2048, &timing[1] },
222 { "4GiB 8-bit", 0xd7ec, 128, 4096, 8, 8, 8192, &timing[1] },
223 { "128MiB 8-bit", 0xa12c, 64, 2048, 8, 8, 1024, &timing[2] },
224 { "128MiB 16-bit", 0xb12c, 64, 2048, 16, 16, 1024, &timing[2] },
225 { "512MiB 8-bit", 0xdc2c, 64, 2048, 8, 8, 4096, &timing[2] },
226 { "512MiB 16-bit", 0xcc2c, 64, 2048, 16, 16, 4096, &timing[2] },
227 { "256MiB 16-bit", 0xba20, 64, 2048, 16, 16, 2048, &timing[3] },
228 };
229
230 /* Define a default flash type setting serve as flash detecting only */
231 #define DEFAULT_FLASH_TYPE (&builtin_flash_types[0])
232
233 const char *mtd_names[] = {"pxa3xx_nand-0", "pxa3xx_nand-1", NULL};
234
235 #define NDTR0_tCH(c) (min((c), 7) << 19)
236 #define NDTR0_tCS(c) (min((c), 7) << 16)
237 #define NDTR0_tWH(c) (min((c), 7) << 11)
238 #define NDTR0_tWP(c) (min((c), 7) << 8)
239 #define NDTR0_tRH(c) (min((c), 7) << 3)
240 #define NDTR0_tRP(c) (min((c), 7) << 0)
241
242 #define NDTR1_tR(c) (min((c), 65535) << 16)
243 #define NDTR1_tWHR(c) (min((c), 15) << 4)
244 #define NDTR1_tAR(c) (min((c), 15) << 0)
245
246 /* convert nano-seconds to nand flash controller clock cycles */
247 #define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000)
248
249 static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
250 const struct pxa3xx_nand_timing *t)
251 {
252 struct pxa3xx_nand_info *info = host->info_data;
253 unsigned long nand_clk = clk_get_rate(info->clk);
254 uint32_t ndtr0, ndtr1;
255
256 ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
257 NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
258 NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
259 NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
260 NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
261 NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
262
263 ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
264 NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
265 NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
266
267 host->ndtr0cs0 = ndtr0;
268 host->ndtr1cs0 = ndtr1;
269 nand_writel(info, NDTR0CS0, ndtr0);
270 nand_writel(info, NDTR1CS0, ndtr1);
271 }
272
273 static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info)
274 {
275 struct pxa3xx_nand_host *host = info->host[info->cs];
276 int oob_enable = host->reg_ndcr & NDCR_SPARE_EN;
277
278 info->data_size = host->page_size;
279 if (!oob_enable) {
280 info->oob_size = 0;
281 return;
282 }
283
284 switch (host->page_size) {
285 case 2048:
286 info->oob_size = (info->use_ecc) ? 40 : 64;
287 break;
288 case 512:
289 info->oob_size = (info->use_ecc) ? 8 : 16;
290 break;
291 }
292 }
293
294 /**
295 * NOTE: it is a must to set ND_RUN firstly, then write
296 * command buffer, otherwise, it does not work.
297 * We enable all the interrupt at the same time, and
298 * let pxa3xx_nand_irq to handle all logic.
299 */
300 static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
301 {
302 struct pxa3xx_nand_host *host = info->host[info->cs];
303 uint32_t ndcr;
304
305 ndcr = host->reg_ndcr;
306 ndcr |= info->use_ecc ? NDCR_ECC_EN : 0;
307 ndcr |= info->use_dma ? NDCR_DMA_EN : 0;
308 ndcr |= NDCR_ND_RUN;
309
310 /* clear status bits and run */
311 nand_writel(info, NDCR, 0);
312 nand_writel(info, NDSR, NDSR_MASK);
313 nand_writel(info, NDCR, ndcr);
314 }
315
316 static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info)
317 {
318 uint32_t ndcr;
319 int timeout = NAND_STOP_DELAY;
320
321 /* wait RUN bit in NDCR become 0 */
322 ndcr = nand_readl(info, NDCR);
323 while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) {
324 ndcr = nand_readl(info, NDCR);
325 udelay(1);
326 }
327
328 if (timeout <= 0) {
329 ndcr &= ~NDCR_ND_RUN;
330 nand_writel(info, NDCR, ndcr);
331 }
332 /* clear status bits */
333 nand_writel(info, NDSR, NDSR_MASK);
334 }
335
336 static void enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
337 {
338 uint32_t ndcr;
339
340 ndcr = nand_readl(info, NDCR);
341 nand_writel(info, NDCR, ndcr & ~int_mask);
342 }
343
344 static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
345 {
346 uint32_t ndcr;
347
348 ndcr = nand_readl(info, NDCR);
349 nand_writel(info, NDCR, ndcr | int_mask);
350 }
351
352 static void handle_data_pio(struct pxa3xx_nand_info *info)
353 {
354 switch (info->state) {
355 case STATE_PIO_WRITING:
356 __raw_writesl(info->mmio_base + NDDB, info->data_buff,
357 DIV_ROUND_UP(info->data_size, 4));
358 if (info->oob_size > 0)
359 __raw_writesl(info->mmio_base + NDDB, info->oob_buff,
360 DIV_ROUND_UP(info->oob_size, 4));
361 break;
362 case STATE_PIO_READING:
363 __raw_readsl(info->mmio_base + NDDB, info->data_buff,
364 DIV_ROUND_UP(info->data_size, 4));
365 if (info->oob_size > 0)
366 __raw_readsl(info->mmio_base + NDDB, info->oob_buff,
367 DIV_ROUND_UP(info->oob_size, 4));
368 break;
369 default:
370 dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
371 info->state);
372 BUG();
373 }
374 }
375
376 static void start_data_dma(struct pxa3xx_nand_info *info)
377 {
378 struct pxa_dma_desc *desc = info->data_desc;
379 int dma_len = ALIGN(info->data_size + info->oob_size, 32);
380
381 desc->ddadr = DDADR_STOP;
382 desc->dcmd = DCMD_ENDIRQEN | DCMD_WIDTH4 | DCMD_BURST32 | dma_len;
383
384 switch (info->state) {
385 case STATE_DMA_WRITING:
386 desc->dsadr = info->data_buff_phys;
387 desc->dtadr = info->mmio_phys + NDDB;
388 desc->dcmd |= DCMD_INCSRCADDR | DCMD_FLOWTRG;
389 break;
390 case STATE_DMA_READING:
391 desc->dtadr = info->data_buff_phys;
392 desc->dsadr = info->mmio_phys + NDDB;
393 desc->dcmd |= DCMD_INCTRGADDR | DCMD_FLOWSRC;
394 break;
395 default:
396 dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
397 info->state);
398 BUG();
399 }
400
401 DRCMR(info->drcmr_dat) = DRCMR_MAPVLD | info->data_dma_ch;
402 DDADR(info->data_dma_ch) = info->data_desc_addr;
403 DCSR(info->data_dma_ch) |= DCSR_RUN;
404 }
405
406 static void pxa3xx_nand_data_dma_irq(int channel, void *data)
407 {
408 struct pxa3xx_nand_info *info = data;
409 uint32_t dcsr;
410
411 dcsr = DCSR(channel);
412 DCSR(channel) = dcsr;
413
414 if (dcsr & DCSR_BUSERR) {
415 info->retcode = ERR_DMABUSERR;
416 }
417
418 info->state = STATE_DMA_DONE;
419 enable_int(info, NDCR_INT_MASK);
420 nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
421 }
422
423 static irqreturn_t pxa3xx_nand_irq(int irq, void *devid)
424 {
425 struct pxa3xx_nand_info *info = devid;
426 unsigned int status, is_completed = 0;
427 unsigned int ready, cmd_done;
428
429 if (info->cs == 0) {
430 ready = NDSR_FLASH_RDY;
431 cmd_done = NDSR_CS0_CMDD;
432 } else {
433 ready = NDSR_RDY;
434 cmd_done = NDSR_CS1_CMDD;
435 }
436
437 status = nand_readl(info, NDSR);
438
439 if (status & NDSR_DBERR)
440 info->retcode = ERR_DBERR;
441 if (status & NDSR_SBERR)
442 info->retcode = ERR_SBERR;
443 if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
444 /* whether use dma to transfer data */
445 if (info->use_dma) {
446 disable_int(info, NDCR_INT_MASK);
447 info->state = (status & NDSR_RDDREQ) ?
448 STATE_DMA_READING : STATE_DMA_WRITING;
449 start_data_dma(info);
450 goto NORMAL_IRQ_EXIT;
451 } else {
452 info->state = (status & NDSR_RDDREQ) ?
453 STATE_PIO_READING : STATE_PIO_WRITING;
454 handle_data_pio(info);
455 }
456 }
457 if (status & cmd_done) {
458 info->state = STATE_CMD_DONE;
459 is_completed = 1;
460 }
461 if (status & ready) {
462 info->is_ready = 1;
463 info->state = STATE_READY;
464 }
465
466 if (status & NDSR_WRCMDREQ) {
467 nand_writel(info, NDSR, NDSR_WRCMDREQ);
468 status &= ~NDSR_WRCMDREQ;
469 info->state = STATE_CMD_HANDLE;
470 nand_writel(info, NDCB0, info->ndcb0);
471 nand_writel(info, NDCB0, info->ndcb1);
472 nand_writel(info, NDCB0, info->ndcb2);
473 }
474
475 /* clear NDSR to let the controller exit the IRQ */
476 nand_writel(info, NDSR, status);
477 if (is_completed)
478 complete(&info->cmd_complete);
479 NORMAL_IRQ_EXIT:
480 return IRQ_HANDLED;
481 }
482
483 static inline int is_buf_blank(uint8_t *buf, size_t len)
484 {
485 for (; len > 0; len--)
486 if (*buf++ != 0xff)
487 return 0;
488 return 1;
489 }
490
491 static int prepare_command_pool(struct pxa3xx_nand_info *info, int command,
492 uint16_t column, int page_addr)
493 {
494 uint16_t cmd;
495 int addr_cycle, exec_cmd;
496 struct pxa3xx_nand_host *host;
497 struct mtd_info *mtd;
498
499 host = info->host[info->cs];
500 mtd = host->mtd;
501 addr_cycle = 0;
502 exec_cmd = 1;
503
504 /* reset data and oob column point to handle data */
505 info->buf_start = 0;
506 info->buf_count = 0;
507 info->oob_size = 0;
508 info->use_ecc = 0;
509 info->is_ready = 0;
510 info->retcode = ERR_NONE;
511 if (info->cs != 0)
512 info->ndcb0 = NDCB0_CSEL;
513 else
514 info->ndcb0 = 0;
515
516 switch (command) {
517 case NAND_CMD_READ0:
518 case NAND_CMD_PAGEPROG:
519 info->use_ecc = 1;
520 case NAND_CMD_READOOB:
521 pxa3xx_set_datasize(info);
522 break;
523 case NAND_CMD_SEQIN:
524 exec_cmd = 0;
525 break;
526 default:
527 info->ndcb1 = 0;
528 info->ndcb2 = 0;
529 break;
530 }
531
532 addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
533 + host->col_addr_cycles);
534
535 switch (command) {
536 case NAND_CMD_READOOB:
537 case NAND_CMD_READ0:
538 cmd = host->cmdset->read1;
539 if (command == NAND_CMD_READOOB)
540 info->buf_start = mtd->writesize + column;
541 else
542 info->buf_start = column;
543
544 if (unlikely(host->page_size < PAGE_CHUNK_SIZE))
545 info->ndcb0 |= NDCB0_CMD_TYPE(0)
546 | addr_cycle
547 | (cmd & NDCB0_CMD1_MASK);
548 else
549 info->ndcb0 |= NDCB0_CMD_TYPE(0)
550 | NDCB0_DBC
551 | addr_cycle
552 | cmd;
553
554 case NAND_CMD_SEQIN:
555 /* small page addr setting */
556 if (unlikely(host->page_size < PAGE_CHUNK_SIZE)) {
557 info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
558 | (column & 0xFF);
559
560 info->ndcb2 = 0;
561 } else {
562 info->ndcb1 = ((page_addr & 0xFFFF) << 16)
563 | (column & 0xFFFF);
564
565 if (page_addr & 0xFF0000)
566 info->ndcb2 = (page_addr & 0xFF0000) >> 16;
567 else
568 info->ndcb2 = 0;
569 }
570
571 info->buf_count = mtd->writesize + mtd->oobsize;
572 memset(info->data_buff, 0xFF, info->buf_count);
573
574 break;
575
576 case NAND_CMD_PAGEPROG:
577 if (is_buf_blank(info->data_buff,
578 (mtd->writesize + mtd->oobsize))) {
579 exec_cmd = 0;
580 break;
581 }
582
583 cmd = host->cmdset->program;
584 info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
585 | NDCB0_AUTO_RS
586 | NDCB0_ST_ROW_EN
587 | NDCB0_DBC
588 | cmd
589 | addr_cycle;
590 break;
591
592 case NAND_CMD_READID:
593 cmd = host->cmdset->read_id;
594 info->buf_count = host->read_id_bytes;
595 info->ndcb0 |= NDCB0_CMD_TYPE(3)
596 | NDCB0_ADDR_CYC(1)
597 | cmd;
598
599 info->data_size = 8;
600 break;
601 case NAND_CMD_STATUS:
602 cmd = host->cmdset->read_status;
603 info->buf_count = 1;
604 info->ndcb0 |= NDCB0_CMD_TYPE(4)
605 | NDCB0_ADDR_CYC(1)
606 | cmd;
607
608 info->data_size = 8;
609 break;
610
611 case NAND_CMD_ERASE1:
612 cmd = host->cmdset->erase;
613 info->ndcb0 |= NDCB0_CMD_TYPE(2)
614 | NDCB0_AUTO_RS
615 | NDCB0_ADDR_CYC(3)
616 | NDCB0_DBC
617 | cmd;
618 info->ndcb1 = page_addr;
619 info->ndcb2 = 0;
620
621 break;
622 case NAND_CMD_RESET:
623 cmd = host->cmdset->reset;
624 info->ndcb0 |= NDCB0_CMD_TYPE(5)
625 | cmd;
626
627 break;
628
629 case NAND_CMD_ERASE2:
630 exec_cmd = 0;
631 break;
632
633 default:
634 exec_cmd = 0;
635 dev_err(&info->pdev->dev, "non-supported command %x\n",
636 command);
637 break;
638 }
639
640 return exec_cmd;
641 }
642
643 static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
644 int column, int page_addr)
645 {
646 struct pxa3xx_nand_host *host = mtd->priv;
647 struct pxa3xx_nand_info *info = host->info_data;
648 int ret, exec_cmd;
649
650 /*
651 * if this is a x16 device ,then convert the input
652 * "byte" address into a "word" address appropriate
653 * for indexing a word-oriented device
654 */
655 if (host->reg_ndcr & NDCR_DWIDTH_M)
656 column /= 2;
657
658 /*
659 * There may be different NAND chip hooked to
660 * different chip select, so check whether
661 * chip select has been changed, if yes, reset the timing
662 */
663 if (info->cs != host->cs) {
664 info->cs = host->cs;
665 nand_writel(info, NDTR0CS0, host->ndtr0cs0);
666 nand_writel(info, NDTR1CS0, host->ndtr1cs0);
667 }
668
669 info->state = STATE_PREPARED;
670 exec_cmd = prepare_command_pool(info, command, column, page_addr);
671 if (exec_cmd) {
672 init_completion(&info->cmd_complete);
673 pxa3xx_nand_start(info);
674
675 ret = wait_for_completion_timeout(&info->cmd_complete,
676 CHIP_DELAY_TIMEOUT);
677 if (!ret) {
678 dev_err(&info->pdev->dev, "Wait time out!!!\n");
679 /* Stop State Machine for next command cycle */
680 pxa3xx_nand_stop(info);
681 }
682 }
683 info->state = STATE_IDLE;
684 }
685
686 static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
687 struct nand_chip *chip, const uint8_t *buf, int oob_required)
688 {
689 chip->write_buf(mtd, buf, mtd->writesize);
690 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
691
692 return 0;
693 }
694
695 static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
696 struct nand_chip *chip, uint8_t *buf, int oob_required,
697 int page)
698 {
699 struct pxa3xx_nand_host *host = mtd->priv;
700 struct pxa3xx_nand_info *info = host->info_data;
701
702 chip->read_buf(mtd, buf, mtd->writesize);
703 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
704
705 if (info->retcode == ERR_SBERR) {
706 switch (info->use_ecc) {
707 case 1:
708 mtd->ecc_stats.corrected++;
709 break;
710 case 0:
711 default:
712 break;
713 }
714 } else if (info->retcode == ERR_DBERR) {
715 /*
716 * for blank page (all 0xff), HW will calculate its ECC as
717 * 0, which is different from the ECC information within
718 * OOB, ignore such double bit errors
719 */
720 if (is_buf_blank(buf, mtd->writesize))
721 info->retcode = ERR_NONE;
722 else
723 mtd->ecc_stats.failed++;
724 }
725
726 return 0;
727 }
728
729 static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
730 {
731 struct pxa3xx_nand_host *host = mtd->priv;
732 struct pxa3xx_nand_info *info = host->info_data;
733 char retval = 0xFF;
734
735 if (info->buf_start < info->buf_count)
736 /* Has just send a new command? */
737 retval = info->data_buff[info->buf_start++];
738
739 return retval;
740 }
741
742 static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
743 {
744 struct pxa3xx_nand_host *host = mtd->priv;
745 struct pxa3xx_nand_info *info = host->info_data;
746 u16 retval = 0xFFFF;
747
748 if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
749 retval = *((u16 *)(info->data_buff+info->buf_start));
750 info->buf_start += 2;
751 }
752 return retval;
753 }
754
755 static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
756 {
757 struct pxa3xx_nand_host *host = mtd->priv;
758 struct pxa3xx_nand_info *info = host->info_data;
759 int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
760
761 memcpy(buf, info->data_buff + info->buf_start, real_len);
762 info->buf_start += real_len;
763 }
764
765 static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
766 const uint8_t *buf, int len)
767 {
768 struct pxa3xx_nand_host *host = mtd->priv;
769 struct pxa3xx_nand_info *info = host->info_data;
770 int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
771
772 memcpy(info->data_buff + info->buf_start, buf, real_len);
773 info->buf_start += real_len;
774 }
775
776 static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
777 {
778 return;
779 }
780
781 static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
782 {
783 struct pxa3xx_nand_host *host = mtd->priv;
784 struct pxa3xx_nand_info *info = host->info_data;
785
786 /* pxa3xx_nand_send_command has waited for command complete */
787 if (this->state == FL_WRITING || this->state == FL_ERASING) {
788 if (info->retcode == ERR_NONE)
789 return 0;
790 else {
791 /*
792 * any error make it return 0x01 which will tell
793 * the caller the erase and write fail
794 */
795 return 0x01;
796 }
797 }
798
799 return 0;
800 }
801
802 static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info,
803 const struct pxa3xx_nand_flash *f)
804 {
805 struct platform_device *pdev = info->pdev;
806 struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data;
807 struct pxa3xx_nand_host *host = info->host[info->cs];
808 uint32_t ndcr = 0x0; /* enable all interrupts */
809
810 if (f->page_size != 2048 && f->page_size != 512) {
811 dev_err(&pdev->dev, "Current only support 2048 and 512 size\n");
812 return -EINVAL;
813 }
814
815 if (f->flash_width != 16 && f->flash_width != 8) {
816 dev_err(&pdev->dev, "Only support 8bit and 16 bit!\n");
817 return -EINVAL;
818 }
819
820 /* calculate flash information */
821 host->cmdset = &default_cmdset;
822 host->page_size = f->page_size;
823 host->read_id_bytes = (f->page_size == 2048) ? 4 : 2;
824
825 /* calculate addressing information */
826 host->col_addr_cycles = (f->page_size == 2048) ? 2 : 1;
827
828 if (f->num_blocks * f->page_per_block > 65536)
829 host->row_addr_cycles = 3;
830 else
831 host->row_addr_cycles = 2;
832
833 ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
834 ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
835 ndcr |= (f->page_per_block == 64) ? NDCR_PG_PER_BLK : 0;
836 ndcr |= (f->page_size == 2048) ? NDCR_PAGE_SZ : 0;
837 ndcr |= (f->flash_width == 16) ? NDCR_DWIDTH_M : 0;
838 ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0;
839
840 ndcr |= NDCR_RD_ID_CNT(host->read_id_bytes);
841 ndcr |= NDCR_SPARE_EN; /* enable spare by default */
842
843 host->reg_ndcr = ndcr;
844
845 pxa3xx_nand_set_timing(host, f->timing);
846 return 0;
847 }
848
849 static int pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
850 {
851 /*
852 * We set 0 by hard coding here, for we don't support keep_config
853 * when there is more than one chip attached to the controller
854 */
855 struct pxa3xx_nand_host *host = info->host[0];
856 uint32_t ndcr = nand_readl(info, NDCR);
857
858 if (ndcr & NDCR_PAGE_SZ) {
859 host->page_size = 2048;
860 host->read_id_bytes = 4;
861 } else {
862 host->page_size = 512;
863 host->read_id_bytes = 2;
864 }
865
866 host->reg_ndcr = ndcr & ~NDCR_INT_MASK;
867 host->cmdset = &default_cmdset;
868
869 host->ndtr0cs0 = nand_readl(info, NDTR0CS0);
870 host->ndtr1cs0 = nand_readl(info, NDTR1CS0);
871
872 return 0;
873 }
874
875 /* the maximum possible buffer size for large page with OOB data
876 * is: 2048 + 64 = 2112 bytes, allocate a page here for both the
877 * data buffer and the DMA descriptor
878 */
879 #define MAX_BUFF_SIZE PAGE_SIZE
880
881 static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
882 {
883 struct platform_device *pdev = info->pdev;
884 int data_desc_offset = MAX_BUFF_SIZE - sizeof(struct pxa_dma_desc);
885
886 if (use_dma == 0) {
887 info->data_buff = kmalloc(MAX_BUFF_SIZE, GFP_KERNEL);
888 if (info->data_buff == NULL)
889 return -ENOMEM;
890 return 0;
891 }
892
893 info->data_buff = dma_alloc_coherent(&pdev->dev, MAX_BUFF_SIZE,
894 &info->data_buff_phys, GFP_KERNEL);
895 if (info->data_buff == NULL) {
896 dev_err(&pdev->dev, "failed to allocate dma buffer\n");
897 return -ENOMEM;
898 }
899
900 info->data_desc = (void *)info->data_buff + data_desc_offset;
901 info->data_desc_addr = info->data_buff_phys + data_desc_offset;
902
903 info->data_dma_ch = pxa_request_dma("nand-data", DMA_PRIO_LOW,
904 pxa3xx_nand_data_dma_irq, info);
905 if (info->data_dma_ch < 0) {
906 dev_err(&pdev->dev, "failed to request data dma\n");
907 dma_free_coherent(&pdev->dev, MAX_BUFF_SIZE,
908 info->data_buff, info->data_buff_phys);
909 return info->data_dma_ch;
910 }
911
912 return 0;
913 }
914
915 static int pxa3xx_nand_sensing(struct pxa3xx_nand_info *info)
916 {
917 struct mtd_info *mtd;
918 int ret;
919 mtd = info->host[info->cs]->mtd;
920 /* use the common timing to make a try */
921 ret = pxa3xx_nand_config_flash(info, &builtin_flash_types[0]);
922 if (ret)
923 return ret;
924
925 pxa3xx_nand_cmdfunc(mtd, NAND_CMD_RESET, 0, 0);
926 if (info->is_ready)
927 return 0;
928
929 return -ENODEV;
930 }
931
932 static int pxa3xx_nand_scan(struct mtd_info *mtd)
933 {
934 struct pxa3xx_nand_host *host = mtd->priv;
935 struct pxa3xx_nand_info *info = host->info_data;
936 struct platform_device *pdev = info->pdev;
937 struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data;
938 struct nand_flash_dev pxa3xx_flash_ids[2], *def = NULL;
939 const struct pxa3xx_nand_flash *f = NULL;
940 struct nand_chip *chip = mtd->priv;
941 uint32_t id = -1;
942 uint64_t chipsize;
943 int i, ret, num;
944
945 if (pdata->keep_config && !pxa3xx_nand_detect_config(info))
946 goto KEEP_CONFIG;
947
948 ret = pxa3xx_nand_sensing(info);
949 if (ret) {
950 dev_info(&info->pdev->dev, "There is no chip on cs %d!\n",
951 info->cs);
952
953 return ret;
954 }
955
956 chip->cmdfunc(mtd, NAND_CMD_READID, 0, 0);
957 id = *((uint16_t *)(info->data_buff));
958 if (id != 0)
959 dev_info(&info->pdev->dev, "Detect a flash id %x\n", id);
960 else {
961 dev_warn(&info->pdev->dev,
962 "Read out ID 0, potential timing set wrong!!\n");
963
964 return -EINVAL;
965 }
966
967 num = ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1;
968 for (i = 0; i < num; i++) {
969 if (i < pdata->num_flash)
970 f = pdata->flash + i;
971 else
972 f = &builtin_flash_types[i - pdata->num_flash + 1];
973
974 /* find the chip in default list */
975 if (f->chip_id == id)
976 break;
977 }
978
979 if (i >= (ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1)) {
980 dev_err(&info->pdev->dev, "ERROR!! flash not defined!!!\n");
981
982 return -EINVAL;
983 }
984
985 ret = pxa3xx_nand_config_flash(info, f);
986 if (ret) {
987 dev_err(&info->pdev->dev, "ERROR! Configure failed\n");
988 return ret;
989 }
990
991 pxa3xx_flash_ids[0].name = f->name;
992 pxa3xx_flash_ids[0].dev_id = (f->chip_id >> 8) & 0xffff;
993 pxa3xx_flash_ids[0].pagesize = f->page_size;
994 chipsize = (uint64_t)f->num_blocks * f->page_per_block * f->page_size;
995 pxa3xx_flash_ids[0].chipsize = chipsize >> 20;
996 pxa3xx_flash_ids[0].erasesize = f->page_size * f->page_per_block;
997 if (f->flash_width == 16)
998 pxa3xx_flash_ids[0].options = NAND_BUSWIDTH_16;
999 pxa3xx_flash_ids[1].name = NULL;
1000 def = pxa3xx_flash_ids;
1001 KEEP_CONFIG:
1002 chip->ecc.mode = NAND_ECC_HW;
1003 chip->ecc.size = host->page_size;
1004 chip->ecc.strength = 1;
1005
1006 if (host->reg_ndcr & NDCR_DWIDTH_M)
1007 chip->options |= NAND_BUSWIDTH_16;
1008
1009 if (nand_scan_ident(mtd, 1, def))
1010 return -ENODEV;
1011 /* calculate addressing information */
1012 if (mtd->writesize >= 2048)
1013 host->col_addr_cycles = 2;
1014 else
1015 host->col_addr_cycles = 1;
1016
1017 info->oob_buff = info->data_buff + mtd->writesize;
1018 if ((mtd->size >> chip->page_shift) > 65536)
1019 host->row_addr_cycles = 3;
1020 else
1021 host->row_addr_cycles = 2;
1022
1023 mtd->name = mtd_names[0];
1024 return nand_scan_tail(mtd);
1025 }
1026
1027 static int alloc_nand_resource(struct platform_device *pdev)
1028 {
1029 struct pxa3xx_nand_platform_data *pdata;
1030 struct pxa3xx_nand_info *info;
1031 struct pxa3xx_nand_host *host;
1032 struct nand_chip *chip = NULL;
1033 struct mtd_info *mtd;
1034 struct resource *r;
1035 int ret, irq, cs;
1036
1037 pdata = pdev->dev.platform_data;
1038 info = kzalloc(sizeof(*info) + (sizeof(*mtd) +
1039 sizeof(*host)) * pdata->num_cs, GFP_KERNEL);
1040 if (!info) {
1041 dev_err(&pdev->dev, "failed to allocate memory\n");
1042 return -ENOMEM;
1043 }
1044
1045 info->pdev = pdev;
1046 for (cs = 0; cs < pdata->num_cs; cs++) {
1047 mtd = (struct mtd_info *)((unsigned int)&info[1] +
1048 (sizeof(*mtd) + sizeof(*host)) * cs);
1049 chip = (struct nand_chip *)(&mtd[1]);
1050 host = (struct pxa3xx_nand_host *)chip;
1051 info->host[cs] = host;
1052 host->mtd = mtd;
1053 host->cs = cs;
1054 host->info_data = info;
1055 mtd->priv = host;
1056 mtd->owner = THIS_MODULE;
1057
1058 chip->ecc.read_page = pxa3xx_nand_read_page_hwecc;
1059 chip->ecc.write_page = pxa3xx_nand_write_page_hwecc;
1060 chip->controller = &info->controller;
1061 chip->waitfunc = pxa3xx_nand_waitfunc;
1062 chip->select_chip = pxa3xx_nand_select_chip;
1063 chip->cmdfunc = pxa3xx_nand_cmdfunc;
1064 chip->read_word = pxa3xx_nand_read_word;
1065 chip->read_byte = pxa3xx_nand_read_byte;
1066 chip->read_buf = pxa3xx_nand_read_buf;
1067 chip->write_buf = pxa3xx_nand_write_buf;
1068 }
1069
1070 spin_lock_init(&chip->controller->lock);
1071 init_waitqueue_head(&chip->controller->wq);
1072 info->clk = clk_get(&pdev->dev, NULL);
1073 if (IS_ERR(info->clk)) {
1074 dev_err(&pdev->dev, "failed to get nand clock\n");
1075 ret = PTR_ERR(info->clk);
1076 goto fail_free_mtd;
1077 }
1078 clk_enable(info->clk);
1079
1080 /*
1081 * This is a dirty hack to make this driver work from devicetree
1082 * bindings. It can be removed once we have a prober DMA controller
1083 * framework for DT.
1084 */
1085 if (pdev->dev.of_node && cpu_is_pxa3xx()) {
1086 info->drcmr_dat = 97;
1087 info->drcmr_cmd = 99;
1088 } else {
1089 r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
1090 if (r == NULL) {
1091 dev_err(&pdev->dev, "no resource defined for data DMA\n");
1092 ret = -ENXIO;
1093 goto fail_put_clk;
1094 }
1095 info->drcmr_dat = r->start;
1096
1097 r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
1098 if (r == NULL) {
1099 dev_err(&pdev->dev, "no resource defined for command DMA\n");
1100 ret = -ENXIO;
1101 goto fail_put_clk;
1102 }
1103 info->drcmr_cmd = r->start;
1104 }
1105
1106 irq = platform_get_irq(pdev, 0);
1107 if (irq < 0) {
1108 dev_err(&pdev->dev, "no IRQ resource defined\n");
1109 ret = -ENXIO;
1110 goto fail_put_clk;
1111 }
1112
1113 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1114 if (r == NULL) {
1115 dev_err(&pdev->dev, "no IO memory resource defined\n");
1116 ret = -ENODEV;
1117 goto fail_put_clk;
1118 }
1119
1120 r = request_mem_region(r->start, resource_size(r), pdev->name);
1121 if (r == NULL) {
1122 dev_err(&pdev->dev, "failed to request memory resource\n");
1123 ret = -EBUSY;
1124 goto fail_put_clk;
1125 }
1126
1127 info->mmio_base = ioremap(r->start, resource_size(r));
1128 if (info->mmio_base == NULL) {
1129 dev_err(&pdev->dev, "ioremap() failed\n");
1130 ret = -ENODEV;
1131 goto fail_free_res;
1132 }
1133 info->mmio_phys = r->start;
1134
1135 ret = pxa3xx_nand_init_buff(info);
1136 if (ret)
1137 goto fail_free_io;
1138
1139 /* initialize all interrupts to be disabled */
1140 disable_int(info, NDSR_MASK);
1141
1142 ret = request_irq(irq, pxa3xx_nand_irq, IRQF_DISABLED,
1143 pdev->name, info);
1144 if (ret < 0) {
1145 dev_err(&pdev->dev, "failed to request IRQ\n");
1146 goto fail_free_buf;
1147 }
1148
1149 platform_set_drvdata(pdev, info);
1150
1151 return 0;
1152
1153 fail_free_buf:
1154 free_irq(irq, info);
1155 if (use_dma) {
1156 pxa_free_dma(info->data_dma_ch);
1157 dma_free_coherent(&pdev->dev, MAX_BUFF_SIZE,
1158 info->data_buff, info->data_buff_phys);
1159 } else
1160 kfree(info->data_buff);
1161 fail_free_io:
1162 iounmap(info->mmio_base);
1163 fail_free_res:
1164 release_mem_region(r->start, resource_size(r));
1165 fail_put_clk:
1166 clk_disable(info->clk);
1167 clk_put(info->clk);
1168 fail_free_mtd:
1169 kfree(info);
1170 return ret;
1171 }
1172
1173 static int pxa3xx_nand_remove(struct platform_device *pdev)
1174 {
1175 struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1176 struct pxa3xx_nand_platform_data *pdata;
1177 struct resource *r;
1178 int irq, cs;
1179
1180 if (!info)
1181 return 0;
1182
1183 pdata = pdev->dev.platform_data;
1184 platform_set_drvdata(pdev, NULL);
1185
1186 irq = platform_get_irq(pdev, 0);
1187 if (irq >= 0)
1188 free_irq(irq, info);
1189 if (use_dma) {
1190 pxa_free_dma(info->data_dma_ch);
1191 dma_free_writecombine(&pdev->dev, MAX_BUFF_SIZE,
1192 info->data_buff, info->data_buff_phys);
1193 } else
1194 kfree(info->data_buff);
1195
1196 iounmap(info->mmio_base);
1197 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1198 release_mem_region(r->start, resource_size(r));
1199
1200 clk_disable(info->clk);
1201 clk_put(info->clk);
1202
1203 for (cs = 0; cs < pdata->num_cs; cs++)
1204 nand_release(info->host[cs]->mtd);
1205 kfree(info);
1206 return 0;
1207 }
1208
1209 #ifdef CONFIG_OF
1210 static struct of_device_id pxa3xx_nand_dt_ids[] = {
1211 { .compatible = "marvell,pxa3xx-nand" },
1212 {}
1213 };
1214 MODULE_DEVICE_TABLE(of, i2c_pxa_dt_ids);
1215
1216 static int pxa3xx_nand_probe_dt(struct platform_device *pdev)
1217 {
1218 struct pxa3xx_nand_platform_data *pdata;
1219 struct device_node *np = pdev->dev.of_node;
1220 const struct of_device_id *of_id =
1221 of_match_device(pxa3xx_nand_dt_ids, &pdev->dev);
1222
1223 if (!of_id)
1224 return 0;
1225
1226 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1227 if (!pdata)
1228 return -ENOMEM;
1229
1230 if (of_get_property(np, "marvell,nand-enable-arbiter", NULL))
1231 pdata->enable_arbiter = 1;
1232 if (of_get_property(np, "marvell,nand-keep-config", NULL))
1233 pdata->keep_config = 1;
1234 of_property_read_u32(np, "num-cs", &pdata->num_cs);
1235
1236 pdev->dev.platform_data = pdata;
1237
1238 return 0;
1239 }
1240 #else
1241 static inline int pxa3xx_nand_probe_dt(struct platform_device *pdev)
1242 {
1243 return 0;
1244 }
1245 #endif
1246
1247 static int pxa3xx_nand_probe(struct platform_device *pdev)
1248 {
1249 struct pxa3xx_nand_platform_data *pdata;
1250 struct mtd_part_parser_data ppdata = {};
1251 struct pxa3xx_nand_info *info;
1252 int ret, cs, probe_success;
1253
1254 ret = pxa3xx_nand_probe_dt(pdev);
1255 if (ret)
1256 return ret;
1257
1258 pdata = pdev->dev.platform_data;
1259 if (!pdata) {
1260 dev_err(&pdev->dev, "no platform data defined\n");
1261 return -ENODEV;
1262 }
1263
1264 ret = alloc_nand_resource(pdev);
1265 if (ret) {
1266 dev_err(&pdev->dev, "alloc nand resource failed\n");
1267 return ret;
1268 }
1269
1270 info = platform_get_drvdata(pdev);
1271 probe_success = 0;
1272 for (cs = 0; cs < pdata->num_cs; cs++) {
1273 info->cs = cs;
1274 ret = pxa3xx_nand_scan(info->host[cs]->mtd);
1275 if (ret) {
1276 dev_warn(&pdev->dev, "failed to scan nand at cs %d\n",
1277 cs);
1278 continue;
1279 }
1280
1281 ppdata.of_node = pdev->dev.of_node;
1282 ret = mtd_device_parse_register(info->host[cs]->mtd, NULL,
1283 &ppdata, pdata->parts[cs],
1284 pdata->nr_parts[cs]);
1285 if (!ret)
1286 probe_success = 1;
1287 }
1288
1289 if (!probe_success) {
1290 pxa3xx_nand_remove(pdev);
1291 return -ENODEV;
1292 }
1293
1294 return 0;
1295 }
1296
1297 #ifdef CONFIG_PM
1298 static int pxa3xx_nand_suspend(struct platform_device *pdev, pm_message_t state)
1299 {
1300 struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1301 struct pxa3xx_nand_platform_data *pdata;
1302 struct mtd_info *mtd;
1303 int cs;
1304
1305 pdata = pdev->dev.platform_data;
1306 if (info->state) {
1307 dev_err(&pdev->dev, "driver busy, state = %d\n", info->state);
1308 return -EAGAIN;
1309 }
1310
1311 for (cs = 0; cs < pdata->num_cs; cs++) {
1312 mtd = info->host[cs]->mtd;
1313 mtd_suspend(mtd);
1314 }
1315
1316 return 0;
1317 }
1318
1319 static int pxa3xx_nand_resume(struct platform_device *pdev)
1320 {
1321 struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1322 struct pxa3xx_nand_platform_data *pdata;
1323 struct mtd_info *mtd;
1324 int cs;
1325
1326 pdata = pdev->dev.platform_data;
1327 /* We don't want to handle interrupt without calling mtd routine */
1328 disable_int(info, NDCR_INT_MASK);
1329
1330 /*
1331 * Directly set the chip select to a invalid value,
1332 * then the driver would reset the timing according
1333 * to current chip select at the beginning of cmdfunc
1334 */
1335 info->cs = 0xff;
1336
1337 /*
1338 * As the spec says, the NDSR would be updated to 0x1800 when
1339 * doing the nand_clk disable/enable.
1340 * To prevent it damaging state machine of the driver, clear
1341 * all status before resume
1342 */
1343 nand_writel(info, NDSR, NDSR_MASK);
1344 for (cs = 0; cs < pdata->num_cs; cs++) {
1345 mtd = info->host[cs]->mtd;
1346 mtd_resume(mtd);
1347 }
1348
1349 return 0;
1350 }
1351 #else
1352 #define pxa3xx_nand_suspend NULL
1353 #define pxa3xx_nand_resume NULL
1354 #endif
1355
1356 static struct platform_driver pxa3xx_nand_driver = {
1357 .driver = {
1358 .name = "pxa3xx-nand",
1359 .of_match_table = of_match_ptr(pxa3xx_nand_dt_ids),
1360 },
1361 .probe = pxa3xx_nand_probe,
1362 .remove = pxa3xx_nand_remove,
1363 .suspend = pxa3xx_nand_suspend,
1364 .resume = pxa3xx_nand_resume,
1365 };
1366
1367 module_platform_driver(pxa3xx_nand_driver);
1368
1369 MODULE_LICENSE("GPL");
1370 MODULE_DESCRIPTION("PXA3xx NAND controller driver");