Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / nand / omap2.c
1 /*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25
26 #ifdef CONFIG_MTD_NAND_OMAP_BCH
27 #include <linux/bch.h>
28 #endif
29
30 #include <plat/dma.h>
31 #include <plat/gpmc.h>
32 #include <linux/platform_data/mtd-nand-omap2.h>
33
34 #define DRIVER_NAME "omap2-nand"
35 #define OMAP_NAND_TIMEOUT_MS 5000
36
37 #define NAND_Ecc_P1e (1 << 0)
38 #define NAND_Ecc_P2e (1 << 1)
39 #define NAND_Ecc_P4e (1 << 2)
40 #define NAND_Ecc_P8e (1 << 3)
41 #define NAND_Ecc_P16e (1 << 4)
42 #define NAND_Ecc_P32e (1 << 5)
43 #define NAND_Ecc_P64e (1 << 6)
44 #define NAND_Ecc_P128e (1 << 7)
45 #define NAND_Ecc_P256e (1 << 8)
46 #define NAND_Ecc_P512e (1 << 9)
47 #define NAND_Ecc_P1024e (1 << 10)
48 #define NAND_Ecc_P2048e (1 << 11)
49
50 #define NAND_Ecc_P1o (1 << 16)
51 #define NAND_Ecc_P2o (1 << 17)
52 #define NAND_Ecc_P4o (1 << 18)
53 #define NAND_Ecc_P8o (1 << 19)
54 #define NAND_Ecc_P16o (1 << 20)
55 #define NAND_Ecc_P32o (1 << 21)
56 #define NAND_Ecc_P64o (1 << 22)
57 #define NAND_Ecc_P128o (1 << 23)
58 #define NAND_Ecc_P256o (1 << 24)
59 #define NAND_Ecc_P512o (1 << 25)
60 #define NAND_Ecc_P1024o (1 << 26)
61 #define NAND_Ecc_P2048o (1 << 27)
62
63 #define TF(value) (value ? 1 : 0)
64
65 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
66 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
67 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
68 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
69 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
70 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
71 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
72 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
73
74 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
75 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
76 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
77 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
78 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
79 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
80 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
81 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
82
83 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
84 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
85 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
86 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
87 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
88 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
89 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
90 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
91
92 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
93 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
94 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
95 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
96 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
97 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
98 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
99 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
100
101 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
102 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
103
104 #define PREFETCH_CONFIG1_CS_SHIFT 24
105 #define ECC_CONFIG_CS_SHIFT 1
106 #define CS_MASK 0x7
107 #define ENABLE_PREFETCH (0x1 << 7)
108 #define DMA_MPU_MODE_SHIFT 2
109 #define ECCSIZE1_SHIFT 22
110 #define ECC1RESULTSIZE 0x1
111 #define ECCCLEAR 0x100
112 #define ECC1 0x1
113
114 /* oob info generated runtime depending on ecc algorithm and layout selected */
115 static struct nand_ecclayout omap_oobinfo;
116 /* Define some generic bad / good block scan pattern which are used
117 * while scanning a device for factory marked good / bad blocks
118 */
119 static uint8_t scan_ff_pattern[] = { 0xff };
120 static struct nand_bbt_descr bb_descrip_flashbased = {
121 .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
122 .offs = 0,
123 .len = 1,
124 .pattern = scan_ff_pattern,
125 };
126
127
128 struct omap_nand_info {
129 struct nand_hw_control controller;
130 struct omap_nand_platform_data *pdata;
131 struct mtd_info mtd;
132 struct nand_chip nand;
133 struct platform_device *pdev;
134
135 int gpmc_cs;
136 unsigned long phys_base;
137 unsigned long mem_size;
138 struct completion comp;
139 struct dma_chan *dma;
140 int gpmc_irq_fifo;
141 int gpmc_irq_count;
142 enum {
143 OMAP_NAND_IO_READ = 0, /* read */
144 OMAP_NAND_IO_WRITE, /* write */
145 } iomode;
146 u_char *buf;
147 int buf_len;
148 struct gpmc_nand_regs reg;
149
150 #ifdef CONFIG_MTD_NAND_OMAP_BCH
151 struct bch_control *bch;
152 struct nand_ecclayout ecclayout;
153 #endif
154 };
155
156 /**
157 * omap_prefetch_enable - configures and starts prefetch transfer
158 * @cs: cs (chip select) number
159 * @fifo_th: fifo threshold to be used for read/ write
160 * @dma_mode: dma mode enable (1) or disable (0)
161 * @u32_count: number of bytes to be transferred
162 * @is_write: prefetch read(0) or write post(1) mode
163 */
164 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
165 unsigned int u32_count, int is_write, struct omap_nand_info *info)
166 {
167 u32 val;
168
169 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
170 return -1;
171
172 if (readl(info->reg.gpmc_prefetch_control))
173 return -EBUSY;
174
175 /* Set the amount of bytes to be prefetched */
176 writel(u32_count, info->reg.gpmc_prefetch_config2);
177
178 /* Set dma/mpu mode, the prefetch read / post write and
179 * enable the engine. Set which cs is has requested for.
180 */
181 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
182 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
183 (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
184 writel(val, info->reg.gpmc_prefetch_config1);
185
186 /* Start the prefetch engine */
187 writel(0x1, info->reg.gpmc_prefetch_control);
188
189 return 0;
190 }
191
192 /**
193 * omap_prefetch_reset - disables and stops the prefetch engine
194 */
195 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
196 {
197 u32 config1;
198
199 /* check if the same module/cs is trying to reset */
200 config1 = readl(info->reg.gpmc_prefetch_config1);
201 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
202 return -EINVAL;
203
204 /* Stop the PFPW engine */
205 writel(0x0, info->reg.gpmc_prefetch_control);
206
207 /* Reset/disable the PFPW engine */
208 writel(0x0, info->reg.gpmc_prefetch_config1);
209
210 return 0;
211 }
212
213 /**
214 * omap_hwcontrol - hardware specific access to control-lines
215 * @mtd: MTD device structure
216 * @cmd: command to device
217 * @ctrl:
218 * NAND_NCE: bit 0 -> don't care
219 * NAND_CLE: bit 1 -> Command Latch
220 * NAND_ALE: bit 2 -> Address Latch
221 *
222 * NOTE: boards may use different bits for these!!
223 */
224 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
225 {
226 struct omap_nand_info *info = container_of(mtd,
227 struct omap_nand_info, mtd);
228
229 if (cmd != NAND_CMD_NONE) {
230 if (ctrl & NAND_CLE)
231 writeb(cmd, info->reg.gpmc_nand_command);
232
233 else if (ctrl & NAND_ALE)
234 writeb(cmd, info->reg.gpmc_nand_address);
235
236 else /* NAND_NCE */
237 writeb(cmd, info->reg.gpmc_nand_data);
238 }
239 }
240
241 /**
242 * omap_read_buf8 - read data from NAND controller into buffer
243 * @mtd: MTD device structure
244 * @buf: buffer to store date
245 * @len: number of bytes to read
246 */
247 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
248 {
249 struct nand_chip *nand = mtd->priv;
250
251 ioread8_rep(nand->IO_ADDR_R, buf, len);
252 }
253
254 /**
255 * omap_write_buf8 - write buffer to NAND controller
256 * @mtd: MTD device structure
257 * @buf: data buffer
258 * @len: number of bytes to write
259 */
260 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
261 {
262 struct omap_nand_info *info = container_of(mtd,
263 struct omap_nand_info, mtd);
264 u_char *p = (u_char *)buf;
265 u32 status = 0;
266
267 while (len--) {
268 iowrite8(*p++, info->nand.IO_ADDR_W);
269 /* wait until buffer is available for write */
270 do {
271 status = readl(info->reg.gpmc_status) &
272 GPMC_STATUS_BUFF_EMPTY;
273 } while (!status);
274 }
275 }
276
277 /**
278 * omap_read_buf16 - read data from NAND controller into buffer
279 * @mtd: MTD device structure
280 * @buf: buffer to store date
281 * @len: number of bytes to read
282 */
283 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
284 {
285 struct nand_chip *nand = mtd->priv;
286
287 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
288 }
289
290 /**
291 * omap_write_buf16 - write buffer to NAND controller
292 * @mtd: MTD device structure
293 * @buf: data buffer
294 * @len: number of bytes to write
295 */
296 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
297 {
298 struct omap_nand_info *info = container_of(mtd,
299 struct omap_nand_info, mtd);
300 u16 *p = (u16 *) buf;
301 u32 status = 0;
302 /* FIXME try bursts of writesw() or DMA ... */
303 len >>= 1;
304
305 while (len--) {
306 iowrite16(*p++, info->nand.IO_ADDR_W);
307 /* wait until buffer is available for write */
308 do {
309 status = readl(info->reg.gpmc_status) &
310 GPMC_STATUS_BUFF_EMPTY;
311 } while (!status);
312 }
313 }
314
315 /**
316 * omap_read_buf_pref - read data from NAND controller into buffer
317 * @mtd: MTD device structure
318 * @buf: buffer to store date
319 * @len: number of bytes to read
320 */
321 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
322 {
323 struct omap_nand_info *info = container_of(mtd,
324 struct omap_nand_info, mtd);
325 uint32_t r_count = 0;
326 int ret = 0;
327 u32 *p = (u32 *)buf;
328
329 /* take care of subpage reads */
330 if (len % 4) {
331 if (info->nand.options & NAND_BUSWIDTH_16)
332 omap_read_buf16(mtd, buf, len % 4);
333 else
334 omap_read_buf8(mtd, buf, len % 4);
335 p = (u32 *) (buf + len % 4);
336 len -= len % 4;
337 }
338
339 /* configure and start prefetch transfer */
340 ret = omap_prefetch_enable(info->gpmc_cs,
341 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
342 if (ret) {
343 /* PFPW engine is busy, use cpu copy method */
344 if (info->nand.options & NAND_BUSWIDTH_16)
345 omap_read_buf16(mtd, (u_char *)p, len);
346 else
347 omap_read_buf8(mtd, (u_char *)p, len);
348 } else {
349 do {
350 r_count = readl(info->reg.gpmc_prefetch_status);
351 r_count = GPMC_PREFETCH_STATUS_FIFO_CNT(r_count);
352 r_count = r_count >> 2;
353 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
354 p += r_count;
355 len -= r_count << 2;
356 } while (len);
357 /* disable and stop the PFPW engine */
358 omap_prefetch_reset(info->gpmc_cs, info);
359 }
360 }
361
362 /**
363 * omap_write_buf_pref - write buffer to NAND controller
364 * @mtd: MTD device structure
365 * @buf: data buffer
366 * @len: number of bytes to write
367 */
368 static void omap_write_buf_pref(struct mtd_info *mtd,
369 const u_char *buf, int len)
370 {
371 struct omap_nand_info *info = container_of(mtd,
372 struct omap_nand_info, mtd);
373 uint32_t w_count = 0;
374 int i = 0, ret = 0;
375 u16 *p = (u16 *)buf;
376 unsigned long tim, limit;
377 u32 val;
378
379 /* take care of subpage writes */
380 if (len % 2 != 0) {
381 writeb(*buf, info->nand.IO_ADDR_W);
382 p = (u16 *)(buf + 1);
383 len--;
384 }
385
386 /* configure and start prefetch transfer */
387 ret = omap_prefetch_enable(info->gpmc_cs,
388 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
389 if (ret) {
390 /* PFPW engine is busy, use cpu copy method */
391 if (info->nand.options & NAND_BUSWIDTH_16)
392 omap_write_buf16(mtd, (u_char *)p, len);
393 else
394 omap_write_buf8(mtd, (u_char *)p, len);
395 } else {
396 while (len) {
397 w_count = readl(info->reg.gpmc_prefetch_status);
398 w_count = GPMC_PREFETCH_STATUS_FIFO_CNT(w_count);
399 w_count = w_count >> 1;
400 for (i = 0; (i < w_count) && len; i++, len -= 2)
401 iowrite16(*p++, info->nand.IO_ADDR_W);
402 }
403 /* wait for data to flushed-out before reset the prefetch */
404 tim = 0;
405 limit = (loops_per_jiffy *
406 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
407 do {
408 cpu_relax();
409 val = readl(info->reg.gpmc_prefetch_status);
410 val = GPMC_PREFETCH_STATUS_COUNT(val);
411 } while (val && (tim++ < limit));
412
413 /* disable and stop the PFPW engine */
414 omap_prefetch_reset(info->gpmc_cs, info);
415 }
416 }
417
418 /*
419 * omap_nand_dma_callback: callback on the completion of dma transfer
420 * @data: pointer to completion data structure
421 */
422 static void omap_nand_dma_callback(void *data)
423 {
424 complete((struct completion *) data);
425 }
426
427 /*
428 * omap_nand_dma_transfer: configure and start dma transfer
429 * @mtd: MTD device structure
430 * @addr: virtual address in RAM of source/destination
431 * @len: number of data bytes to be transferred
432 * @is_write: flag for read/write operation
433 */
434 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
435 unsigned int len, int is_write)
436 {
437 struct omap_nand_info *info = container_of(mtd,
438 struct omap_nand_info, mtd);
439 struct dma_async_tx_descriptor *tx;
440 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
441 DMA_FROM_DEVICE;
442 struct scatterlist sg;
443 unsigned long tim, limit;
444 unsigned n;
445 int ret;
446 u32 val;
447
448 if (addr >= high_memory) {
449 struct page *p1;
450
451 if (((size_t)addr & PAGE_MASK) !=
452 ((size_t)(addr + len - 1) & PAGE_MASK))
453 goto out_copy;
454 p1 = vmalloc_to_page(addr);
455 if (!p1)
456 goto out_copy;
457 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
458 }
459
460 sg_init_one(&sg, addr, len);
461 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
462 if (n == 0) {
463 dev_err(&info->pdev->dev,
464 "Couldn't DMA map a %d byte buffer\n", len);
465 goto out_copy;
466 }
467
468 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
469 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
470 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
471 if (!tx)
472 goto out_copy_unmap;
473
474 tx->callback = omap_nand_dma_callback;
475 tx->callback_param = &info->comp;
476 dmaengine_submit(tx);
477
478 /* configure and start prefetch transfer */
479 ret = omap_prefetch_enable(info->gpmc_cs,
480 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
481 if (ret)
482 /* PFPW engine is busy, use cpu copy method */
483 goto out_copy_unmap;
484
485 init_completion(&info->comp);
486 dma_async_issue_pending(info->dma);
487
488 /* setup and start DMA using dma_addr */
489 wait_for_completion(&info->comp);
490 tim = 0;
491 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
492
493 do {
494 cpu_relax();
495 val = readl(info->reg.gpmc_prefetch_status);
496 val = GPMC_PREFETCH_STATUS_COUNT(val);
497 } while (val && (tim++ < limit));
498
499 /* disable and stop the PFPW engine */
500 omap_prefetch_reset(info->gpmc_cs, info);
501
502 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
503 return 0;
504
505 out_copy_unmap:
506 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
507 out_copy:
508 if (info->nand.options & NAND_BUSWIDTH_16)
509 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
510 : omap_write_buf16(mtd, (u_char *) addr, len);
511 else
512 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
513 : omap_write_buf8(mtd, (u_char *) addr, len);
514 return 0;
515 }
516
517 /**
518 * omap_read_buf_dma_pref - read data from NAND controller into buffer
519 * @mtd: MTD device structure
520 * @buf: buffer to store date
521 * @len: number of bytes to read
522 */
523 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
524 {
525 if (len <= mtd->oobsize)
526 omap_read_buf_pref(mtd, buf, len);
527 else
528 /* start transfer in DMA mode */
529 omap_nand_dma_transfer(mtd, buf, len, 0x0);
530 }
531
532 /**
533 * omap_write_buf_dma_pref - write buffer to NAND controller
534 * @mtd: MTD device structure
535 * @buf: data buffer
536 * @len: number of bytes to write
537 */
538 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
539 const u_char *buf, int len)
540 {
541 if (len <= mtd->oobsize)
542 omap_write_buf_pref(mtd, buf, len);
543 else
544 /* start transfer in DMA mode */
545 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
546 }
547
548 /*
549 * omap_nand_irq - GPMC irq handler
550 * @this_irq: gpmc irq number
551 * @dev: omap_nand_info structure pointer is passed here
552 */
553 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
554 {
555 struct omap_nand_info *info = (struct omap_nand_info *) dev;
556 u32 bytes;
557
558 bytes = readl(info->reg.gpmc_prefetch_status);
559 bytes = GPMC_PREFETCH_STATUS_FIFO_CNT(bytes);
560 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
561 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
562 if (this_irq == info->gpmc_irq_count)
563 goto done;
564
565 if (info->buf_len && (info->buf_len < bytes))
566 bytes = info->buf_len;
567 else if (!info->buf_len)
568 bytes = 0;
569 iowrite32_rep(info->nand.IO_ADDR_W,
570 (u32 *)info->buf, bytes >> 2);
571 info->buf = info->buf + bytes;
572 info->buf_len -= bytes;
573
574 } else {
575 ioread32_rep(info->nand.IO_ADDR_R,
576 (u32 *)info->buf, bytes >> 2);
577 info->buf = info->buf + bytes;
578
579 if (this_irq == info->gpmc_irq_count)
580 goto done;
581 }
582
583 return IRQ_HANDLED;
584
585 done:
586 complete(&info->comp);
587
588 disable_irq_nosync(info->gpmc_irq_fifo);
589 disable_irq_nosync(info->gpmc_irq_count);
590
591 return IRQ_HANDLED;
592 }
593
594 /*
595 * omap_read_buf_irq_pref - read data from NAND controller into buffer
596 * @mtd: MTD device structure
597 * @buf: buffer to store date
598 * @len: number of bytes to read
599 */
600 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
601 {
602 struct omap_nand_info *info = container_of(mtd,
603 struct omap_nand_info, mtd);
604 int ret = 0;
605
606 if (len <= mtd->oobsize) {
607 omap_read_buf_pref(mtd, buf, len);
608 return;
609 }
610
611 info->iomode = OMAP_NAND_IO_READ;
612 info->buf = buf;
613 init_completion(&info->comp);
614
615 /* configure and start prefetch transfer */
616 ret = omap_prefetch_enable(info->gpmc_cs,
617 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
618 if (ret)
619 /* PFPW engine is busy, use cpu copy method */
620 goto out_copy;
621
622 info->buf_len = len;
623
624 enable_irq(info->gpmc_irq_count);
625 enable_irq(info->gpmc_irq_fifo);
626
627 /* waiting for read to complete */
628 wait_for_completion(&info->comp);
629
630 /* disable and stop the PFPW engine */
631 omap_prefetch_reset(info->gpmc_cs, info);
632 return;
633
634 out_copy:
635 if (info->nand.options & NAND_BUSWIDTH_16)
636 omap_read_buf16(mtd, buf, len);
637 else
638 omap_read_buf8(mtd, buf, len);
639 }
640
641 /*
642 * omap_write_buf_irq_pref - write buffer to NAND controller
643 * @mtd: MTD device structure
644 * @buf: data buffer
645 * @len: number of bytes to write
646 */
647 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
648 const u_char *buf, int len)
649 {
650 struct omap_nand_info *info = container_of(mtd,
651 struct omap_nand_info, mtd);
652 int ret = 0;
653 unsigned long tim, limit;
654 u32 val;
655
656 if (len <= mtd->oobsize) {
657 omap_write_buf_pref(mtd, buf, len);
658 return;
659 }
660
661 info->iomode = OMAP_NAND_IO_WRITE;
662 info->buf = (u_char *) buf;
663 init_completion(&info->comp);
664
665 /* configure and start prefetch transfer : size=24 */
666 ret = omap_prefetch_enable(info->gpmc_cs,
667 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
668 if (ret)
669 /* PFPW engine is busy, use cpu copy method */
670 goto out_copy;
671
672 info->buf_len = len;
673
674 enable_irq(info->gpmc_irq_count);
675 enable_irq(info->gpmc_irq_fifo);
676
677 /* waiting for write to complete */
678 wait_for_completion(&info->comp);
679
680 /* wait for data to flushed-out before reset the prefetch */
681 tim = 0;
682 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
683 do {
684 val = readl(info->reg.gpmc_prefetch_status);
685 val = GPMC_PREFETCH_STATUS_COUNT(val);
686 cpu_relax();
687 } while (val && (tim++ < limit));
688
689 /* disable and stop the PFPW engine */
690 omap_prefetch_reset(info->gpmc_cs, info);
691 return;
692
693 out_copy:
694 if (info->nand.options & NAND_BUSWIDTH_16)
695 omap_write_buf16(mtd, buf, len);
696 else
697 omap_write_buf8(mtd, buf, len);
698 }
699
700 /**
701 * gen_true_ecc - This function will generate true ECC value
702 * @ecc_buf: buffer to store ecc code
703 *
704 * This generated true ECC value can be used when correcting
705 * data read from NAND flash memory core
706 */
707 static void gen_true_ecc(u8 *ecc_buf)
708 {
709 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
710 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
711
712 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
713 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
714 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
715 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
716 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
717 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
718 }
719
720 /**
721 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
722 * @ecc_data1: ecc code from nand spare area
723 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
724 * @page_data: page data
725 *
726 * This function compares two ECC's and indicates if there is an error.
727 * If the error can be corrected it will be corrected to the buffer.
728 * If there is no error, %0 is returned. If there is an error but it
729 * was corrected, %1 is returned. Otherwise, %-1 is returned.
730 */
731 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
732 u8 *ecc_data2, /* read from register */
733 u8 *page_data)
734 {
735 uint i;
736 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
737 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
738 u8 ecc_bit[24];
739 u8 ecc_sum = 0;
740 u8 find_bit = 0;
741 uint find_byte = 0;
742 int isEccFF;
743
744 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
745
746 gen_true_ecc(ecc_data1);
747 gen_true_ecc(ecc_data2);
748
749 for (i = 0; i <= 2; i++) {
750 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
751 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
752 }
753
754 for (i = 0; i < 8; i++) {
755 tmp0_bit[i] = *ecc_data1 % 2;
756 *ecc_data1 = *ecc_data1 / 2;
757 }
758
759 for (i = 0; i < 8; i++) {
760 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
761 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
762 }
763
764 for (i = 0; i < 8; i++) {
765 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
766 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
767 }
768
769 for (i = 0; i < 8; i++) {
770 comp0_bit[i] = *ecc_data2 % 2;
771 *ecc_data2 = *ecc_data2 / 2;
772 }
773
774 for (i = 0; i < 8; i++) {
775 comp1_bit[i] = *(ecc_data2 + 1) % 2;
776 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
777 }
778
779 for (i = 0; i < 8; i++) {
780 comp2_bit[i] = *(ecc_data2 + 2) % 2;
781 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
782 }
783
784 for (i = 0; i < 6; i++)
785 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
786
787 for (i = 0; i < 8; i++)
788 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
789
790 for (i = 0; i < 8; i++)
791 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
792
793 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
794 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
795
796 for (i = 0; i < 24; i++)
797 ecc_sum += ecc_bit[i];
798
799 switch (ecc_sum) {
800 case 0:
801 /* Not reached because this function is not called if
802 * ECC values are equal
803 */
804 return 0;
805
806 case 1:
807 /* Uncorrectable error */
808 pr_debug("ECC UNCORRECTED_ERROR 1\n");
809 return -1;
810
811 case 11:
812 /* UN-Correctable error */
813 pr_debug("ECC UNCORRECTED_ERROR B\n");
814 return -1;
815
816 case 12:
817 /* Correctable error */
818 find_byte = (ecc_bit[23] << 8) +
819 (ecc_bit[21] << 7) +
820 (ecc_bit[19] << 6) +
821 (ecc_bit[17] << 5) +
822 (ecc_bit[15] << 4) +
823 (ecc_bit[13] << 3) +
824 (ecc_bit[11] << 2) +
825 (ecc_bit[9] << 1) +
826 ecc_bit[7];
827
828 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
829
830 pr_debug("Correcting single bit ECC error at offset: "
831 "%d, bit: %d\n", find_byte, find_bit);
832
833 page_data[find_byte] ^= (1 << find_bit);
834
835 return 1;
836 default:
837 if (isEccFF) {
838 if (ecc_data2[0] == 0 &&
839 ecc_data2[1] == 0 &&
840 ecc_data2[2] == 0)
841 return 0;
842 }
843 pr_debug("UNCORRECTED_ERROR default\n");
844 return -1;
845 }
846 }
847
848 /**
849 * omap_correct_data - Compares the ECC read with HW generated ECC
850 * @mtd: MTD device structure
851 * @dat: page data
852 * @read_ecc: ecc read from nand flash
853 * @calc_ecc: ecc read from HW ECC registers
854 *
855 * Compares the ecc read from nand spare area with ECC registers values
856 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
857 * detection and correction. If there are no errors, %0 is returned. If
858 * there were errors and all of the errors were corrected, the number of
859 * corrected errors is returned. If uncorrectable errors exist, %-1 is
860 * returned.
861 */
862 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
863 u_char *read_ecc, u_char *calc_ecc)
864 {
865 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
866 mtd);
867 int blockCnt = 0, i = 0, ret = 0;
868 int stat = 0;
869
870 /* Ex NAND_ECC_HW12_2048 */
871 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
872 (info->nand.ecc.size == 2048))
873 blockCnt = 4;
874 else
875 blockCnt = 1;
876
877 for (i = 0; i < blockCnt; i++) {
878 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
879 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
880 if (ret < 0)
881 return ret;
882 /* keep track of the number of corrected errors */
883 stat += ret;
884 }
885 read_ecc += 3;
886 calc_ecc += 3;
887 dat += 512;
888 }
889 return stat;
890 }
891
892 /**
893 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
894 * @mtd: MTD device structure
895 * @dat: The pointer to data on which ecc is computed
896 * @ecc_code: The ecc_code buffer
897 *
898 * Using noninverted ECC can be considered ugly since writing a blank
899 * page ie. padding will clear the ECC bytes. This is no problem as long
900 * nobody is trying to write data on the seemingly unused page. Reading
901 * an erased page will produce an ECC mismatch between generated and read
902 * ECC bytes that has to be dealt with separately.
903 */
904 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
905 u_char *ecc_code)
906 {
907 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
908 mtd);
909 u32 val;
910
911 val = readl(info->reg.gpmc_ecc_config);
912 if (((val >> ECC_CONFIG_CS_SHIFT) & ~CS_MASK) != info->gpmc_cs)
913 return -EINVAL;
914
915 /* read ecc result */
916 val = readl(info->reg.gpmc_ecc1_result);
917 *ecc_code++ = val; /* P128e, ..., P1e */
918 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
919 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
920 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
921
922 return 0;
923 }
924
925 /**
926 * omap_enable_hwecc - This function enables the hardware ecc functionality
927 * @mtd: MTD device structure
928 * @mode: Read/Write mode
929 */
930 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
931 {
932 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
933 mtd);
934 struct nand_chip *chip = mtd->priv;
935 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
936 u32 val;
937
938 /* clear ecc and enable bits */
939 val = ECCCLEAR | ECC1;
940 writel(val, info->reg.gpmc_ecc_control);
941
942 /* program ecc and result sizes */
943 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
944 ECC1RESULTSIZE);
945 writel(val, info->reg.gpmc_ecc_size_config);
946
947 switch (mode) {
948 case NAND_ECC_READ:
949 case NAND_ECC_WRITE:
950 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
951 break;
952 case NAND_ECC_READSYN:
953 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
954 break;
955 default:
956 dev_info(&info->pdev->dev,
957 "error: unrecognized Mode[%d]!\n", mode);
958 break;
959 }
960
961 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
962 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
963 writel(val, info->reg.gpmc_ecc_config);
964 }
965
966 /**
967 * omap_wait - wait until the command is done
968 * @mtd: MTD device structure
969 * @chip: NAND Chip structure
970 *
971 * Wait function is called during Program and erase operations and
972 * the way it is called from MTD layer, we should wait till the NAND
973 * chip is ready after the programming/erase operation has completed.
974 *
975 * Erase can take up to 400ms and program up to 20ms according to
976 * general NAND and SmartMedia specs
977 */
978 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
979 {
980 struct nand_chip *this = mtd->priv;
981 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
982 mtd);
983 unsigned long timeo = jiffies;
984 int status, state = this->state;
985
986 if (state == FL_ERASING)
987 timeo += (HZ * 400) / 1000;
988 else
989 timeo += (HZ * 20) / 1000;
990
991 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
992 while (time_before(jiffies, timeo)) {
993 status = readb(info->reg.gpmc_nand_data);
994 if (status & NAND_STATUS_READY)
995 break;
996 cond_resched();
997 }
998
999 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
1000 return status;
1001 }
1002
1003 /**
1004 * omap_dev_ready - calls the platform specific dev_ready function
1005 * @mtd: MTD device structure
1006 */
1007 static int omap_dev_ready(struct mtd_info *mtd)
1008 {
1009 unsigned int val = 0;
1010 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1011 mtd);
1012
1013 val = readl(info->reg.gpmc_status);
1014
1015 if ((val & 0x100) == 0x100) {
1016 return 1;
1017 } else {
1018 return 0;
1019 }
1020 }
1021
1022 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1023
1024 /**
1025 * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
1026 * @mtd: MTD device structure
1027 * @mode: Read/Write mode
1028 */
1029 static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1030 {
1031 int nerrors;
1032 unsigned int dev_width;
1033 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1034 mtd);
1035 struct nand_chip *chip = mtd->priv;
1036
1037 nerrors = (info->nand.ecc.bytes == 13) ? 8 : 4;
1038 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1039 /*
1040 * Program GPMC to perform correction on one 512-byte sector at a time.
1041 * Using 4 sectors at a time (i.e. ecc.size = 2048) is also possible and
1042 * gives a slight (5%) performance gain (but requires additional code).
1043 */
1044 (void)gpmc_enable_hwecc_bch(info->gpmc_cs, mode, dev_width, 1, nerrors);
1045 }
1046
1047 /**
1048 * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
1049 * @mtd: MTD device structure
1050 * @dat: The pointer to data on which ecc is computed
1051 * @ecc_code: The ecc_code buffer
1052 */
1053 static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
1054 u_char *ecc_code)
1055 {
1056 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1057 mtd);
1058 return gpmc_calculate_ecc_bch4(info->gpmc_cs, dat, ecc_code);
1059 }
1060
1061 /**
1062 * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
1063 * @mtd: MTD device structure
1064 * @dat: The pointer to data on which ecc is computed
1065 * @ecc_code: The ecc_code buffer
1066 */
1067 static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
1068 u_char *ecc_code)
1069 {
1070 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1071 mtd);
1072 return gpmc_calculate_ecc_bch8(info->gpmc_cs, dat, ecc_code);
1073 }
1074
1075 /**
1076 * omap3_correct_data_bch - Decode received data and correct errors
1077 * @mtd: MTD device structure
1078 * @data: page data
1079 * @read_ecc: ecc read from nand flash
1080 * @calc_ecc: ecc read from HW ECC registers
1081 */
1082 static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
1083 u_char *read_ecc, u_char *calc_ecc)
1084 {
1085 int i, count;
1086 /* cannot correct more than 8 errors */
1087 unsigned int errloc[8];
1088 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1089 mtd);
1090
1091 count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL,
1092 errloc);
1093 if (count > 0) {
1094 /* correct errors */
1095 for (i = 0; i < count; i++) {
1096 /* correct data only, not ecc bytes */
1097 if (errloc[i] < 8*512)
1098 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
1099 pr_debug("corrected bitflip %u\n", errloc[i]);
1100 }
1101 } else if (count < 0) {
1102 pr_err("ecc unrecoverable error\n");
1103 }
1104 return count;
1105 }
1106
1107 /**
1108 * omap3_free_bch - Release BCH ecc resources
1109 * @mtd: MTD device structure
1110 */
1111 static void omap3_free_bch(struct mtd_info *mtd)
1112 {
1113 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1114 mtd);
1115 if (info->bch) {
1116 free_bch(info->bch);
1117 info->bch = NULL;
1118 }
1119 }
1120
1121 /**
1122 * omap3_init_bch - Initialize BCH ECC
1123 * @mtd: MTD device structure
1124 * @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW)
1125 */
1126 static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1127 {
1128 int ret, max_errors;
1129 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1130 mtd);
1131 #ifdef CONFIG_MTD_NAND_OMAP_BCH8
1132 const int hw_errors = 8;
1133 #else
1134 const int hw_errors = 4;
1135 #endif
1136 info->bch = NULL;
1137
1138 max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? 8 : 4;
1139 if (max_errors != hw_errors) {
1140 pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported",
1141 max_errors, hw_errors);
1142 goto fail;
1143 }
1144
1145 /* initialize GPMC BCH engine */
1146 ret = gpmc_init_hwecc_bch(info->gpmc_cs, 1, max_errors);
1147 if (ret)
1148 goto fail;
1149
1150 /* software bch library is only used to detect and locate errors */
1151 info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */);
1152 if (!info->bch)
1153 goto fail;
1154
1155 info->nand.ecc.size = 512;
1156 info->nand.ecc.hwctl = omap3_enable_hwecc_bch;
1157 info->nand.ecc.correct = omap3_correct_data_bch;
1158 info->nand.ecc.mode = NAND_ECC_HW;
1159
1160 /*
1161 * The number of corrected errors in an ecc block that will trigger
1162 * block scrubbing defaults to the ecc strength (4 or 8).
1163 * Set mtd->bitflip_threshold here to define a custom threshold.
1164 */
1165
1166 if (max_errors == 8) {
1167 info->nand.ecc.strength = 8;
1168 info->nand.ecc.bytes = 13;
1169 info->nand.ecc.calculate = omap3_calculate_ecc_bch8;
1170 } else {
1171 info->nand.ecc.strength = 4;
1172 info->nand.ecc.bytes = 7;
1173 info->nand.ecc.calculate = omap3_calculate_ecc_bch4;
1174 }
1175
1176 pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors);
1177 return 0;
1178 fail:
1179 omap3_free_bch(mtd);
1180 return -1;
1181 }
1182
1183 /**
1184 * omap3_init_bch_tail - Build an oob layout for BCH ECC correction.
1185 * @mtd: MTD device structure
1186 */
1187 static int omap3_init_bch_tail(struct mtd_info *mtd)
1188 {
1189 int i, steps;
1190 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1191 mtd);
1192 struct nand_ecclayout *layout = &info->ecclayout;
1193
1194 /* build oob layout */
1195 steps = mtd->writesize/info->nand.ecc.size;
1196 layout->eccbytes = steps*info->nand.ecc.bytes;
1197
1198 /* do not bother creating special oob layouts for small page devices */
1199 if (mtd->oobsize < 64) {
1200 pr_err("BCH ecc is not supported on small page devices\n");
1201 goto fail;
1202 }
1203
1204 /* reserve 2 bytes for bad block marker */
1205 if (layout->eccbytes+2 > mtd->oobsize) {
1206 pr_err("no oob layout available for oobsize %d eccbytes %u\n",
1207 mtd->oobsize, layout->eccbytes);
1208 goto fail;
1209 }
1210
1211 /* put ecc bytes at oob tail */
1212 for (i = 0; i < layout->eccbytes; i++)
1213 layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i;
1214
1215 layout->oobfree[0].offset = 2;
1216 layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
1217 info->nand.ecc.layout = layout;
1218
1219 if (!(info->nand.options & NAND_BUSWIDTH_16))
1220 info->nand.badblock_pattern = &bb_descrip_flashbased;
1221 return 0;
1222 fail:
1223 omap3_free_bch(mtd);
1224 return -1;
1225 }
1226
1227 #else
1228 static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1229 {
1230 pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n");
1231 return -1;
1232 }
1233 static int omap3_init_bch_tail(struct mtd_info *mtd)
1234 {
1235 return -1;
1236 }
1237 static void omap3_free_bch(struct mtd_info *mtd)
1238 {
1239 }
1240 #endif /* CONFIG_MTD_NAND_OMAP_BCH */
1241
1242 static int __devinit omap_nand_probe(struct platform_device *pdev)
1243 {
1244 struct omap_nand_info *info;
1245 struct omap_nand_platform_data *pdata;
1246 int err;
1247 int i, offset;
1248 dma_cap_mask_t mask;
1249 unsigned sig;
1250 struct resource *res;
1251
1252 pdata = pdev->dev.platform_data;
1253 if (pdata == NULL) {
1254 dev_err(&pdev->dev, "platform data missing\n");
1255 return -ENODEV;
1256 }
1257
1258 info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
1259 if (!info)
1260 return -ENOMEM;
1261
1262 platform_set_drvdata(pdev, info);
1263
1264 spin_lock_init(&info->controller.lock);
1265 init_waitqueue_head(&info->controller.wq);
1266
1267 info->pdev = pdev;
1268
1269 info->gpmc_cs = pdata->cs;
1270 info->reg = pdata->reg;
1271
1272 info->mtd.priv = &info->nand;
1273 info->mtd.name = dev_name(&pdev->dev);
1274 info->mtd.owner = THIS_MODULE;
1275
1276 info->nand.options = pdata->devsize;
1277 info->nand.options |= NAND_SKIP_BBTSCAN;
1278
1279 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1280 if (res == NULL) {
1281 err = -EINVAL;
1282 dev_err(&pdev->dev, "error getting memory resource\n");
1283 goto out_free_info;
1284 }
1285
1286 info->phys_base = res->start;
1287 info->mem_size = resource_size(res);
1288
1289 if (!request_mem_region(info->phys_base, info->mem_size,
1290 pdev->dev.driver->name)) {
1291 err = -EBUSY;
1292 goto out_free_info;
1293 }
1294
1295 info->nand.IO_ADDR_R = ioremap(info->phys_base, info->mem_size);
1296 if (!info->nand.IO_ADDR_R) {
1297 err = -ENOMEM;
1298 goto out_release_mem_region;
1299 }
1300
1301 info->nand.controller = &info->controller;
1302
1303 info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
1304 info->nand.cmd_ctrl = omap_hwcontrol;
1305
1306 /*
1307 * If RDY/BSY line is connected to OMAP then use the omap ready
1308 * function and the generic nand_wait function which reads the status
1309 * register after monitoring the RDY/BSY line. Otherwise use a standard
1310 * chip delay which is slightly more than tR (AC Timing) of the NAND
1311 * device and read status register until you get a failure or success
1312 */
1313 if (pdata->dev_ready) {
1314 info->nand.dev_ready = omap_dev_ready;
1315 info->nand.chip_delay = 0;
1316 } else {
1317 info->nand.waitfunc = omap_wait;
1318 info->nand.chip_delay = 50;
1319 }
1320
1321 switch (pdata->xfer_type) {
1322 case NAND_OMAP_PREFETCH_POLLED:
1323 info->nand.read_buf = omap_read_buf_pref;
1324 info->nand.write_buf = omap_write_buf_pref;
1325 break;
1326
1327 case NAND_OMAP_POLLED:
1328 if (info->nand.options & NAND_BUSWIDTH_16) {
1329 info->nand.read_buf = omap_read_buf16;
1330 info->nand.write_buf = omap_write_buf16;
1331 } else {
1332 info->nand.read_buf = omap_read_buf8;
1333 info->nand.write_buf = omap_write_buf8;
1334 }
1335 break;
1336
1337 case NAND_OMAP_PREFETCH_DMA:
1338 dma_cap_zero(mask);
1339 dma_cap_set(DMA_SLAVE, mask);
1340 sig = OMAP24XX_DMA_GPMC;
1341 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1342 if (!info->dma) {
1343 dev_err(&pdev->dev, "DMA engine request failed\n");
1344 err = -ENXIO;
1345 goto out_release_mem_region;
1346 } else {
1347 struct dma_slave_config cfg;
1348
1349 memset(&cfg, 0, sizeof(cfg));
1350 cfg.src_addr = info->phys_base;
1351 cfg.dst_addr = info->phys_base;
1352 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1353 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1354 cfg.src_maxburst = 16;
1355 cfg.dst_maxburst = 16;
1356 err = dmaengine_slave_config(info->dma, &cfg);
1357 if (err) {
1358 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1359 err);
1360 goto out_release_mem_region;
1361 }
1362 info->nand.read_buf = omap_read_buf_dma_pref;
1363 info->nand.write_buf = omap_write_buf_dma_pref;
1364 }
1365 break;
1366
1367 case NAND_OMAP_PREFETCH_IRQ:
1368 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1369 if (info->gpmc_irq_fifo <= 0) {
1370 dev_err(&pdev->dev, "error getting fifo irq\n");
1371 err = -ENODEV;
1372 goto out_release_mem_region;
1373 }
1374 err = request_irq(info->gpmc_irq_fifo, omap_nand_irq,
1375 IRQF_SHARED, "gpmc-nand-fifo", info);
1376 if (err) {
1377 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1378 info->gpmc_irq_fifo, err);
1379 info->gpmc_irq_fifo = 0;
1380 goto out_release_mem_region;
1381 }
1382
1383 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1384 if (info->gpmc_irq_count <= 0) {
1385 dev_err(&pdev->dev, "error getting count irq\n");
1386 err = -ENODEV;
1387 goto out_release_mem_region;
1388 }
1389 err = request_irq(info->gpmc_irq_count, omap_nand_irq,
1390 IRQF_SHARED, "gpmc-nand-count", info);
1391 if (err) {
1392 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1393 info->gpmc_irq_count, err);
1394 info->gpmc_irq_count = 0;
1395 goto out_release_mem_region;
1396 }
1397
1398 info->nand.read_buf = omap_read_buf_irq_pref;
1399 info->nand.write_buf = omap_write_buf_irq_pref;
1400
1401 break;
1402
1403 default:
1404 dev_err(&pdev->dev,
1405 "xfer_type(%d) not supported!\n", pdata->xfer_type);
1406 err = -EINVAL;
1407 goto out_release_mem_region;
1408 }
1409
1410 /* select the ecc type */
1411 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1412 info->nand.ecc.mode = NAND_ECC_SOFT;
1413 else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1414 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1415 info->nand.ecc.bytes = 3;
1416 info->nand.ecc.size = 512;
1417 info->nand.ecc.strength = 1;
1418 info->nand.ecc.calculate = omap_calculate_ecc;
1419 info->nand.ecc.hwctl = omap_enable_hwecc;
1420 info->nand.ecc.correct = omap_correct_data;
1421 info->nand.ecc.mode = NAND_ECC_HW;
1422 } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1423 (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1424 err = omap3_init_bch(&info->mtd, pdata->ecc_opt);
1425 if (err) {
1426 err = -EINVAL;
1427 goto out_release_mem_region;
1428 }
1429 }
1430
1431 /* DIP switches on some boards change between 8 and 16 bit
1432 * bus widths for flash. Try the other width if the first try fails.
1433 */
1434 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1435 info->nand.options ^= NAND_BUSWIDTH_16;
1436 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1437 err = -ENXIO;
1438 goto out_release_mem_region;
1439 }
1440 }
1441
1442 /* rom code layout */
1443 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1444
1445 if (info->nand.options & NAND_BUSWIDTH_16)
1446 offset = 2;
1447 else {
1448 offset = 1;
1449 info->nand.badblock_pattern = &bb_descrip_flashbased;
1450 }
1451 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1452 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1453 omap_oobinfo.eccpos[i] = i+offset;
1454
1455 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1456 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1457 (offset + omap_oobinfo.eccbytes);
1458
1459 info->nand.ecc.layout = &omap_oobinfo;
1460 } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1461 (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1462 /* build OOB layout for BCH ECC correction */
1463 err = omap3_init_bch_tail(&info->mtd);
1464 if (err) {
1465 err = -EINVAL;
1466 goto out_release_mem_region;
1467 }
1468 }
1469
1470 /* second phase scan */
1471 if (nand_scan_tail(&info->mtd)) {
1472 err = -ENXIO;
1473 goto out_release_mem_region;
1474 }
1475
1476 mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
1477 pdata->nr_parts);
1478
1479 platform_set_drvdata(pdev, &info->mtd);
1480
1481 return 0;
1482
1483 out_release_mem_region:
1484 if (info->dma)
1485 dma_release_channel(info->dma);
1486 if (info->gpmc_irq_count > 0)
1487 free_irq(info->gpmc_irq_count, info);
1488 if (info->gpmc_irq_fifo > 0)
1489 free_irq(info->gpmc_irq_fifo, info);
1490 release_mem_region(info->phys_base, info->mem_size);
1491 out_free_info:
1492 kfree(info);
1493
1494 return err;
1495 }
1496
1497 static int omap_nand_remove(struct platform_device *pdev)
1498 {
1499 struct mtd_info *mtd = platform_get_drvdata(pdev);
1500 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1501 mtd);
1502 omap3_free_bch(&info->mtd);
1503
1504 platform_set_drvdata(pdev, NULL);
1505 if (info->dma)
1506 dma_release_channel(info->dma);
1507
1508 if (info->gpmc_irq_count > 0)
1509 free_irq(info->gpmc_irq_count, info);
1510 if (info->gpmc_irq_fifo > 0)
1511 free_irq(info->gpmc_irq_fifo, info);
1512
1513 /* Release NAND device, its internal structures and partitions */
1514 nand_release(&info->mtd);
1515 iounmap(info->nand.IO_ADDR_R);
1516 release_mem_region(info->phys_base, NAND_IO_SIZE);
1517 kfree(info);
1518 return 0;
1519 }
1520
1521 static struct platform_driver omap_nand_driver = {
1522 .probe = omap_nand_probe,
1523 .remove = omap_nand_remove,
1524 .driver = {
1525 .name = DRIVER_NAME,
1526 .owner = THIS_MODULE,
1527 },
1528 };
1529
1530 module_platform_driver(omap_nand_driver);
1531
1532 MODULE_ALIAS("platform:" DRIVER_NAME);
1533 MODULE_LICENSE("GPL");
1534 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");