Merge tag 'rdma-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/roland/infiniband
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / nand / nandsim.c
1 /*
2 * NAND flash simulator.
3 *
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5 *
6 * Copyright (C) 2004 Nokia Corporation
7 *
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24 */
25
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <asm/div64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/nand_bch.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/sched.h>
43 #include <linux/fs.h>
44 #include <linux/pagemap.h>
45
46 /* Default simulator parameters values */
47 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
48 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
49 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
50 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
51 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
52 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
53 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
54 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
55 #endif
56
57 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
58 #define CONFIG_NANDSIM_ACCESS_DELAY 25
59 #endif
60 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
61 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
62 #endif
63 #ifndef CONFIG_NANDSIM_ERASE_DELAY
64 #define CONFIG_NANDSIM_ERASE_DELAY 2
65 #endif
66 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
67 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
68 #endif
69 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
70 #define CONFIG_NANDSIM_INPUT_CYCLE 50
71 #endif
72 #ifndef CONFIG_NANDSIM_BUS_WIDTH
73 #define CONFIG_NANDSIM_BUS_WIDTH 8
74 #endif
75 #ifndef CONFIG_NANDSIM_DO_DELAYS
76 #define CONFIG_NANDSIM_DO_DELAYS 0
77 #endif
78 #ifndef CONFIG_NANDSIM_LOG
79 #define CONFIG_NANDSIM_LOG 0
80 #endif
81 #ifndef CONFIG_NANDSIM_DBG
82 #define CONFIG_NANDSIM_DBG 0
83 #endif
84 #ifndef CONFIG_NANDSIM_MAX_PARTS
85 #define CONFIG_NANDSIM_MAX_PARTS 32
86 #endif
87
88 static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
89 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
90 static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
91 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
92 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
93 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
94 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
95 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
96 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
97 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
98 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
99 static uint log = CONFIG_NANDSIM_LOG;
100 static uint dbg = CONFIG_NANDSIM_DBG;
101 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
102 static unsigned int parts_num;
103 static char *badblocks = NULL;
104 static char *weakblocks = NULL;
105 static char *weakpages = NULL;
106 static unsigned int bitflips = 0;
107 static char *gravepages = NULL;
108 static unsigned int rptwear = 0;
109 static unsigned int overridesize = 0;
110 static char *cache_file = NULL;
111 static unsigned int bbt;
112 static unsigned int bch;
113
114 module_param(first_id_byte, uint, 0400);
115 module_param(second_id_byte, uint, 0400);
116 module_param(third_id_byte, uint, 0400);
117 module_param(fourth_id_byte, uint, 0400);
118 module_param(access_delay, uint, 0400);
119 module_param(programm_delay, uint, 0400);
120 module_param(erase_delay, uint, 0400);
121 module_param(output_cycle, uint, 0400);
122 module_param(input_cycle, uint, 0400);
123 module_param(bus_width, uint, 0400);
124 module_param(do_delays, uint, 0400);
125 module_param(log, uint, 0400);
126 module_param(dbg, uint, 0400);
127 module_param_array(parts, ulong, &parts_num, 0400);
128 module_param(badblocks, charp, 0400);
129 module_param(weakblocks, charp, 0400);
130 module_param(weakpages, charp, 0400);
131 module_param(bitflips, uint, 0400);
132 module_param(gravepages, charp, 0400);
133 module_param(rptwear, uint, 0400);
134 module_param(overridesize, uint, 0400);
135 module_param(cache_file, charp, 0400);
136 module_param(bbt, uint, 0400);
137 module_param(bch, uint, 0400);
138
139 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
140 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
141 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
142 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
143 MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)");
144 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
145 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
146 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)");
147 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)");
148 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
149 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
150 MODULE_PARM_DESC(log, "Perform logging if not zero");
151 MODULE_PARM_DESC(dbg, "Output debug information if not zero");
152 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
153 /* Page and erase block positions for the following parameters are independent of any partitions */
154 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
155 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
156 " separated by commas e.g. 113:2 means eb 113"
157 " can be erased only twice before failing");
158 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
159 " separated by commas e.g. 1401:2 means page 1401"
160 " can be written only twice before failing");
161 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
162 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
163 " separated by commas e.g. 1401:2 means page 1401"
164 " can be read only twice before failing");
165 MODULE_PARM_DESC(rptwear, "Number of erases between reporting wear, if not zero");
166 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
167 "The size is specified in erase blocks and as the exponent of a power of two"
168 " e.g. 5 means a size of 32 erase blocks");
169 MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory");
170 MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
171 MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should "
172 "be correctable in 512-byte blocks");
173
174 /* The largest possible page size */
175 #define NS_LARGEST_PAGE_SIZE 4096
176
177 /* The prefix for simulator output */
178 #define NS_OUTPUT_PREFIX "[nandsim]"
179
180 /* Simulator's output macros (logging, debugging, warning, error) */
181 #define NS_LOG(args...) \
182 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
183 #define NS_DBG(args...) \
184 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
185 #define NS_WARN(args...) \
186 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
187 #define NS_ERR(args...) \
188 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
189 #define NS_INFO(args...) \
190 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
191
192 /* Busy-wait delay macros (microseconds, milliseconds) */
193 #define NS_UDELAY(us) \
194 do { if (do_delays) udelay(us); } while(0)
195 #define NS_MDELAY(us) \
196 do { if (do_delays) mdelay(us); } while(0)
197
198 /* Is the nandsim structure initialized ? */
199 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
200
201 /* Good operation completion status */
202 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
203
204 /* Operation failed completion status */
205 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
206
207 /* Calculate the page offset in flash RAM image by (row, column) address */
208 #define NS_RAW_OFFSET(ns) \
209 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
210
211 /* Calculate the OOB offset in flash RAM image by (row, column) address */
212 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
213
214 /* After a command is input, the simulator goes to one of the following states */
215 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
216 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
217 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
218 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
219 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
220 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
221 #define STATE_CMD_STATUS 0x00000007 /* read status */
222 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
223 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
224 #define STATE_CMD_READID 0x0000000A /* read ID */
225 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
226 #define STATE_CMD_RESET 0x0000000C /* reset */
227 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
228 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
229 #define STATE_CMD_MASK 0x0000000F /* command states mask */
230
231 /* After an address is input, the simulator goes to one of these states */
232 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
233 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
234 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
235 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
236 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
237
238 /* During data input/output the simulator is in these states */
239 #define STATE_DATAIN 0x00000100 /* waiting for data input */
240 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
241
242 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
243 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
244 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
245 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
246 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
247
248 /* Previous operation is done, ready to accept new requests */
249 #define STATE_READY 0x00000000
250
251 /* This state is used to mark that the next state isn't known yet */
252 #define STATE_UNKNOWN 0x10000000
253
254 /* Simulator's actions bit masks */
255 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
256 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
257 #define ACTION_SECERASE 0x00300000 /* erase sector */
258 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
259 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
260 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
261 #define ACTION_MASK 0x00700000 /* action mask */
262
263 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
264 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
265
266 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
267 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
268 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
269 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
270 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
271 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
272 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
273 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
274 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
275
276 /* Remove action bits from state */
277 #define NS_STATE(x) ((x) & ~ACTION_MASK)
278
279 /*
280 * Maximum previous states which need to be saved. Currently saving is
281 * only needed for page program operation with preceded read command
282 * (which is only valid for 512-byte pages).
283 */
284 #define NS_MAX_PREVSTATES 1
285
286 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
287 #define NS_MAX_HELD_PAGES 16
288
289 /*
290 * A union to represent flash memory contents and flash buffer.
291 */
292 union ns_mem {
293 u_char *byte; /* for byte access */
294 uint16_t *word; /* for 16-bit word access */
295 };
296
297 /*
298 * The structure which describes all the internal simulator data.
299 */
300 struct nandsim {
301 struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
302 unsigned int nbparts;
303
304 uint busw; /* flash chip bus width (8 or 16) */
305 u_char ids[4]; /* chip's ID bytes */
306 uint32_t options; /* chip's characteristic bits */
307 uint32_t state; /* current chip state */
308 uint32_t nxstate; /* next expected state */
309
310 uint32_t *op; /* current operation, NULL operations isn't known yet */
311 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
312 uint16_t npstates; /* number of previous states saved */
313 uint16_t stateidx; /* current state index */
314
315 /* The simulated NAND flash pages array */
316 union ns_mem *pages;
317
318 /* Slab allocator for nand pages */
319 struct kmem_cache *nand_pages_slab;
320
321 /* Internal buffer of page + OOB size bytes */
322 union ns_mem buf;
323
324 /* NAND flash "geometry" */
325 struct {
326 uint64_t totsz; /* total flash size, bytes */
327 uint32_t secsz; /* flash sector (erase block) size, bytes */
328 uint pgsz; /* NAND flash page size, bytes */
329 uint oobsz; /* page OOB area size, bytes */
330 uint64_t totszoob; /* total flash size including OOB, bytes */
331 uint pgszoob; /* page size including OOB , bytes*/
332 uint secszoob; /* sector size including OOB, bytes */
333 uint pgnum; /* total number of pages */
334 uint pgsec; /* number of pages per sector */
335 uint secshift; /* bits number in sector size */
336 uint pgshift; /* bits number in page size */
337 uint oobshift; /* bits number in OOB size */
338 uint pgaddrbytes; /* bytes per page address */
339 uint secaddrbytes; /* bytes per sector address */
340 uint idbytes; /* the number ID bytes that this chip outputs */
341 } geom;
342
343 /* NAND flash internal registers */
344 struct {
345 unsigned command; /* the command register */
346 u_char status; /* the status register */
347 uint row; /* the page number */
348 uint column; /* the offset within page */
349 uint count; /* internal counter */
350 uint num; /* number of bytes which must be processed */
351 uint off; /* fixed page offset */
352 } regs;
353
354 /* NAND flash lines state */
355 struct {
356 int ce; /* chip Enable */
357 int cle; /* command Latch Enable */
358 int ale; /* address Latch Enable */
359 int wp; /* write Protect */
360 } lines;
361
362 /* Fields needed when using a cache file */
363 struct file *cfile; /* Open file */
364 unsigned char *pages_written; /* Which pages have been written */
365 void *file_buf;
366 struct page *held_pages[NS_MAX_HELD_PAGES];
367 int held_cnt;
368 };
369
370 /*
371 * Operations array. To perform any operation the simulator must pass
372 * through the correspondent states chain.
373 */
374 static struct nandsim_operations {
375 uint32_t reqopts; /* options which are required to perform the operation */
376 uint32_t states[NS_OPER_STATES]; /* operation's states */
377 } ops[NS_OPER_NUM] = {
378 /* Read page + OOB from the beginning */
379 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
380 STATE_DATAOUT, STATE_READY}},
381 /* Read page + OOB from the second half */
382 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
383 STATE_DATAOUT, STATE_READY}},
384 /* Read OOB */
385 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
386 STATE_DATAOUT, STATE_READY}},
387 /* Program page starting from the beginning */
388 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
389 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
390 /* Program page starting from the beginning */
391 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
392 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
393 /* Program page starting from the second half */
394 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
395 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
396 /* Program OOB */
397 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
398 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
399 /* Erase sector */
400 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
401 /* Read status */
402 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
403 /* Read multi-plane status */
404 {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
405 /* Read ID */
406 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
407 /* Large page devices read page */
408 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
409 STATE_DATAOUT, STATE_READY}},
410 /* Large page devices random page read */
411 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
412 STATE_DATAOUT, STATE_READY}},
413 };
414
415 struct weak_block {
416 struct list_head list;
417 unsigned int erase_block_no;
418 unsigned int max_erases;
419 unsigned int erases_done;
420 };
421
422 static LIST_HEAD(weak_blocks);
423
424 struct weak_page {
425 struct list_head list;
426 unsigned int page_no;
427 unsigned int max_writes;
428 unsigned int writes_done;
429 };
430
431 static LIST_HEAD(weak_pages);
432
433 struct grave_page {
434 struct list_head list;
435 unsigned int page_no;
436 unsigned int max_reads;
437 unsigned int reads_done;
438 };
439
440 static LIST_HEAD(grave_pages);
441
442 static unsigned long *erase_block_wear = NULL;
443 static unsigned int wear_eb_count = 0;
444 static unsigned long total_wear = 0;
445 static unsigned int rptwear_cnt = 0;
446
447 /* MTD structure for NAND controller */
448 static struct mtd_info *nsmtd;
449
450 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
451
452 /*
453 * Allocate array of page pointers, create slab allocation for an array
454 * and initialize the array by NULL pointers.
455 *
456 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
457 */
458 static int alloc_device(struct nandsim *ns)
459 {
460 struct file *cfile;
461 int i, err;
462
463 if (cache_file) {
464 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
465 if (IS_ERR(cfile))
466 return PTR_ERR(cfile);
467 if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
468 NS_ERR("alloc_device: cache file not readable\n");
469 err = -EINVAL;
470 goto err_close;
471 }
472 if (!cfile->f_op->write && !cfile->f_op->aio_write) {
473 NS_ERR("alloc_device: cache file not writeable\n");
474 err = -EINVAL;
475 goto err_close;
476 }
477 ns->pages_written = vzalloc(ns->geom.pgnum);
478 if (!ns->pages_written) {
479 NS_ERR("alloc_device: unable to allocate pages written array\n");
480 err = -ENOMEM;
481 goto err_close;
482 }
483 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
484 if (!ns->file_buf) {
485 NS_ERR("alloc_device: unable to allocate file buf\n");
486 err = -ENOMEM;
487 goto err_free;
488 }
489 ns->cfile = cfile;
490 return 0;
491 }
492
493 ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
494 if (!ns->pages) {
495 NS_ERR("alloc_device: unable to allocate page array\n");
496 return -ENOMEM;
497 }
498 for (i = 0; i < ns->geom.pgnum; i++) {
499 ns->pages[i].byte = NULL;
500 }
501 ns->nand_pages_slab = kmem_cache_create("nandsim",
502 ns->geom.pgszoob, 0, 0, NULL);
503 if (!ns->nand_pages_slab) {
504 NS_ERR("cache_create: unable to create kmem_cache\n");
505 return -ENOMEM;
506 }
507
508 return 0;
509
510 err_free:
511 vfree(ns->pages_written);
512 err_close:
513 filp_close(cfile, NULL);
514 return err;
515 }
516
517 /*
518 * Free any allocated pages, and free the array of page pointers.
519 */
520 static void free_device(struct nandsim *ns)
521 {
522 int i;
523
524 if (ns->cfile) {
525 kfree(ns->file_buf);
526 vfree(ns->pages_written);
527 filp_close(ns->cfile, NULL);
528 return;
529 }
530
531 if (ns->pages) {
532 for (i = 0; i < ns->geom.pgnum; i++) {
533 if (ns->pages[i].byte)
534 kmem_cache_free(ns->nand_pages_slab,
535 ns->pages[i].byte);
536 }
537 kmem_cache_destroy(ns->nand_pages_slab);
538 vfree(ns->pages);
539 }
540 }
541
542 static char *get_partition_name(int i)
543 {
544 char buf[64];
545 sprintf(buf, "NAND simulator partition %d", i);
546 return kstrdup(buf, GFP_KERNEL);
547 }
548
549 static uint64_t divide(uint64_t n, uint32_t d)
550 {
551 do_div(n, d);
552 return n;
553 }
554
555 /*
556 * Initialize the nandsim structure.
557 *
558 * RETURNS: 0 if success, -ERRNO if failure.
559 */
560 static int init_nandsim(struct mtd_info *mtd)
561 {
562 struct nand_chip *chip = mtd->priv;
563 struct nandsim *ns = chip->priv;
564 int i, ret = 0;
565 uint64_t remains;
566 uint64_t next_offset;
567
568 if (NS_IS_INITIALIZED(ns)) {
569 NS_ERR("init_nandsim: nandsim is already initialized\n");
570 return -EIO;
571 }
572
573 /* Force mtd to not do delays */
574 chip->chip_delay = 0;
575
576 /* Initialize the NAND flash parameters */
577 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
578 ns->geom.totsz = mtd->size;
579 ns->geom.pgsz = mtd->writesize;
580 ns->geom.oobsz = mtd->oobsize;
581 ns->geom.secsz = mtd->erasesize;
582 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
583 ns->geom.pgnum = divide(ns->geom.totsz, ns->geom.pgsz);
584 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
585 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
586 ns->geom.pgshift = chip->page_shift;
587 ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
588 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
589 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
590 ns->options = 0;
591
592 if (ns->geom.pgsz == 256) {
593 ns->options |= OPT_PAGE256;
594 }
595 else if (ns->geom.pgsz == 512) {
596 ns->options |= OPT_PAGE512;
597 if (ns->busw == 8)
598 ns->options |= OPT_PAGE512_8BIT;
599 } else if (ns->geom.pgsz == 2048) {
600 ns->options |= OPT_PAGE2048;
601 } else if (ns->geom.pgsz == 4096) {
602 ns->options |= OPT_PAGE4096;
603 } else {
604 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
605 return -EIO;
606 }
607
608 if (ns->options & OPT_SMALLPAGE) {
609 if (ns->geom.totsz <= (32 << 20)) {
610 ns->geom.pgaddrbytes = 3;
611 ns->geom.secaddrbytes = 2;
612 } else {
613 ns->geom.pgaddrbytes = 4;
614 ns->geom.secaddrbytes = 3;
615 }
616 } else {
617 if (ns->geom.totsz <= (128 << 20)) {
618 ns->geom.pgaddrbytes = 4;
619 ns->geom.secaddrbytes = 2;
620 } else {
621 ns->geom.pgaddrbytes = 5;
622 ns->geom.secaddrbytes = 3;
623 }
624 }
625
626 /* Fill the partition_info structure */
627 if (parts_num > ARRAY_SIZE(ns->partitions)) {
628 NS_ERR("too many partitions.\n");
629 ret = -EINVAL;
630 goto error;
631 }
632 remains = ns->geom.totsz;
633 next_offset = 0;
634 for (i = 0; i < parts_num; ++i) {
635 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
636
637 if (!part_sz || part_sz > remains) {
638 NS_ERR("bad partition size.\n");
639 ret = -EINVAL;
640 goto error;
641 }
642 ns->partitions[i].name = get_partition_name(i);
643 ns->partitions[i].offset = next_offset;
644 ns->partitions[i].size = part_sz;
645 next_offset += ns->partitions[i].size;
646 remains -= ns->partitions[i].size;
647 }
648 ns->nbparts = parts_num;
649 if (remains) {
650 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
651 NS_ERR("too many partitions.\n");
652 ret = -EINVAL;
653 goto error;
654 }
655 ns->partitions[i].name = get_partition_name(i);
656 ns->partitions[i].offset = next_offset;
657 ns->partitions[i].size = remains;
658 ns->nbparts += 1;
659 }
660
661 /* Detect how many ID bytes the NAND chip outputs */
662 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
663 if (second_id_byte != nand_flash_ids[i].id)
664 continue;
665 }
666
667 if (ns->busw == 16)
668 NS_WARN("16-bit flashes support wasn't tested\n");
669
670 printk("flash size: %llu MiB\n",
671 (unsigned long long)ns->geom.totsz >> 20);
672 printk("page size: %u bytes\n", ns->geom.pgsz);
673 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
674 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
675 printk("pages number: %u\n", ns->geom.pgnum);
676 printk("pages per sector: %u\n", ns->geom.pgsec);
677 printk("bus width: %u\n", ns->busw);
678 printk("bits in sector size: %u\n", ns->geom.secshift);
679 printk("bits in page size: %u\n", ns->geom.pgshift);
680 printk("bits in OOB size: %u\n", ns->geom.oobshift);
681 printk("flash size with OOB: %llu KiB\n",
682 (unsigned long long)ns->geom.totszoob >> 10);
683 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
684 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
685 printk("options: %#x\n", ns->options);
686
687 if ((ret = alloc_device(ns)) != 0)
688 goto error;
689
690 /* Allocate / initialize the internal buffer */
691 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
692 if (!ns->buf.byte) {
693 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
694 ns->geom.pgszoob);
695 ret = -ENOMEM;
696 goto error;
697 }
698 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
699
700 return 0;
701
702 error:
703 free_device(ns);
704
705 return ret;
706 }
707
708 /*
709 * Free the nandsim structure.
710 */
711 static void free_nandsim(struct nandsim *ns)
712 {
713 kfree(ns->buf.byte);
714 free_device(ns);
715
716 return;
717 }
718
719 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
720 {
721 char *w;
722 int zero_ok;
723 unsigned int erase_block_no;
724 loff_t offset;
725
726 if (!badblocks)
727 return 0;
728 w = badblocks;
729 do {
730 zero_ok = (*w == '0' ? 1 : 0);
731 erase_block_no = simple_strtoul(w, &w, 0);
732 if (!zero_ok && !erase_block_no) {
733 NS_ERR("invalid badblocks.\n");
734 return -EINVAL;
735 }
736 offset = erase_block_no * ns->geom.secsz;
737 if (mtd_block_markbad(mtd, offset)) {
738 NS_ERR("invalid badblocks.\n");
739 return -EINVAL;
740 }
741 if (*w == ',')
742 w += 1;
743 } while (*w);
744 return 0;
745 }
746
747 static int parse_weakblocks(void)
748 {
749 char *w;
750 int zero_ok;
751 unsigned int erase_block_no;
752 unsigned int max_erases;
753 struct weak_block *wb;
754
755 if (!weakblocks)
756 return 0;
757 w = weakblocks;
758 do {
759 zero_ok = (*w == '0' ? 1 : 0);
760 erase_block_no = simple_strtoul(w, &w, 0);
761 if (!zero_ok && !erase_block_no) {
762 NS_ERR("invalid weakblocks.\n");
763 return -EINVAL;
764 }
765 max_erases = 3;
766 if (*w == ':') {
767 w += 1;
768 max_erases = simple_strtoul(w, &w, 0);
769 }
770 if (*w == ',')
771 w += 1;
772 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
773 if (!wb) {
774 NS_ERR("unable to allocate memory.\n");
775 return -ENOMEM;
776 }
777 wb->erase_block_no = erase_block_no;
778 wb->max_erases = max_erases;
779 list_add(&wb->list, &weak_blocks);
780 } while (*w);
781 return 0;
782 }
783
784 static int erase_error(unsigned int erase_block_no)
785 {
786 struct weak_block *wb;
787
788 list_for_each_entry(wb, &weak_blocks, list)
789 if (wb->erase_block_no == erase_block_no) {
790 if (wb->erases_done >= wb->max_erases)
791 return 1;
792 wb->erases_done += 1;
793 return 0;
794 }
795 return 0;
796 }
797
798 static int parse_weakpages(void)
799 {
800 char *w;
801 int zero_ok;
802 unsigned int page_no;
803 unsigned int max_writes;
804 struct weak_page *wp;
805
806 if (!weakpages)
807 return 0;
808 w = weakpages;
809 do {
810 zero_ok = (*w == '0' ? 1 : 0);
811 page_no = simple_strtoul(w, &w, 0);
812 if (!zero_ok && !page_no) {
813 NS_ERR("invalid weakpagess.\n");
814 return -EINVAL;
815 }
816 max_writes = 3;
817 if (*w == ':') {
818 w += 1;
819 max_writes = simple_strtoul(w, &w, 0);
820 }
821 if (*w == ',')
822 w += 1;
823 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
824 if (!wp) {
825 NS_ERR("unable to allocate memory.\n");
826 return -ENOMEM;
827 }
828 wp->page_no = page_no;
829 wp->max_writes = max_writes;
830 list_add(&wp->list, &weak_pages);
831 } while (*w);
832 return 0;
833 }
834
835 static int write_error(unsigned int page_no)
836 {
837 struct weak_page *wp;
838
839 list_for_each_entry(wp, &weak_pages, list)
840 if (wp->page_no == page_no) {
841 if (wp->writes_done >= wp->max_writes)
842 return 1;
843 wp->writes_done += 1;
844 return 0;
845 }
846 return 0;
847 }
848
849 static int parse_gravepages(void)
850 {
851 char *g;
852 int zero_ok;
853 unsigned int page_no;
854 unsigned int max_reads;
855 struct grave_page *gp;
856
857 if (!gravepages)
858 return 0;
859 g = gravepages;
860 do {
861 zero_ok = (*g == '0' ? 1 : 0);
862 page_no = simple_strtoul(g, &g, 0);
863 if (!zero_ok && !page_no) {
864 NS_ERR("invalid gravepagess.\n");
865 return -EINVAL;
866 }
867 max_reads = 3;
868 if (*g == ':') {
869 g += 1;
870 max_reads = simple_strtoul(g, &g, 0);
871 }
872 if (*g == ',')
873 g += 1;
874 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
875 if (!gp) {
876 NS_ERR("unable to allocate memory.\n");
877 return -ENOMEM;
878 }
879 gp->page_no = page_no;
880 gp->max_reads = max_reads;
881 list_add(&gp->list, &grave_pages);
882 } while (*g);
883 return 0;
884 }
885
886 static int read_error(unsigned int page_no)
887 {
888 struct grave_page *gp;
889
890 list_for_each_entry(gp, &grave_pages, list)
891 if (gp->page_no == page_no) {
892 if (gp->reads_done >= gp->max_reads)
893 return 1;
894 gp->reads_done += 1;
895 return 0;
896 }
897 return 0;
898 }
899
900 static void free_lists(void)
901 {
902 struct list_head *pos, *n;
903 list_for_each_safe(pos, n, &weak_blocks) {
904 list_del(pos);
905 kfree(list_entry(pos, struct weak_block, list));
906 }
907 list_for_each_safe(pos, n, &weak_pages) {
908 list_del(pos);
909 kfree(list_entry(pos, struct weak_page, list));
910 }
911 list_for_each_safe(pos, n, &grave_pages) {
912 list_del(pos);
913 kfree(list_entry(pos, struct grave_page, list));
914 }
915 kfree(erase_block_wear);
916 }
917
918 static int setup_wear_reporting(struct mtd_info *mtd)
919 {
920 size_t mem;
921
922 if (!rptwear)
923 return 0;
924 wear_eb_count = divide(mtd->size, mtd->erasesize);
925 mem = wear_eb_count * sizeof(unsigned long);
926 if (mem / sizeof(unsigned long) != wear_eb_count) {
927 NS_ERR("Too many erase blocks for wear reporting\n");
928 return -ENOMEM;
929 }
930 erase_block_wear = kzalloc(mem, GFP_KERNEL);
931 if (!erase_block_wear) {
932 NS_ERR("Too many erase blocks for wear reporting\n");
933 return -ENOMEM;
934 }
935 return 0;
936 }
937
938 static void update_wear(unsigned int erase_block_no)
939 {
940 unsigned long wmin = -1, wmax = 0, avg;
941 unsigned long deciles[10], decile_max[10], tot = 0;
942 unsigned int i;
943
944 if (!erase_block_wear)
945 return;
946 total_wear += 1;
947 if (total_wear == 0)
948 NS_ERR("Erase counter total overflow\n");
949 erase_block_wear[erase_block_no] += 1;
950 if (erase_block_wear[erase_block_no] == 0)
951 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
952 rptwear_cnt += 1;
953 if (rptwear_cnt < rptwear)
954 return;
955 rptwear_cnt = 0;
956 /* Calc wear stats */
957 for (i = 0; i < wear_eb_count; ++i) {
958 unsigned long wear = erase_block_wear[i];
959 if (wear < wmin)
960 wmin = wear;
961 if (wear > wmax)
962 wmax = wear;
963 tot += wear;
964 }
965 for (i = 0; i < 9; ++i) {
966 deciles[i] = 0;
967 decile_max[i] = (wmax * (i + 1) + 5) / 10;
968 }
969 deciles[9] = 0;
970 decile_max[9] = wmax;
971 for (i = 0; i < wear_eb_count; ++i) {
972 int d;
973 unsigned long wear = erase_block_wear[i];
974 for (d = 0; d < 10; ++d)
975 if (wear <= decile_max[d]) {
976 deciles[d] += 1;
977 break;
978 }
979 }
980 avg = tot / wear_eb_count;
981 /* Output wear report */
982 NS_INFO("*** Wear Report ***\n");
983 NS_INFO("Total numbers of erases: %lu\n", tot);
984 NS_INFO("Number of erase blocks: %u\n", wear_eb_count);
985 NS_INFO("Average number of erases: %lu\n", avg);
986 NS_INFO("Maximum number of erases: %lu\n", wmax);
987 NS_INFO("Minimum number of erases: %lu\n", wmin);
988 for (i = 0; i < 10; ++i) {
989 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
990 if (from > decile_max[i])
991 continue;
992 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
993 from,
994 decile_max[i],
995 deciles[i]);
996 }
997 NS_INFO("*** End of Wear Report ***\n");
998 }
999
1000 /*
1001 * Returns the string representation of 'state' state.
1002 */
1003 static char *get_state_name(uint32_t state)
1004 {
1005 switch (NS_STATE(state)) {
1006 case STATE_CMD_READ0:
1007 return "STATE_CMD_READ0";
1008 case STATE_CMD_READ1:
1009 return "STATE_CMD_READ1";
1010 case STATE_CMD_PAGEPROG:
1011 return "STATE_CMD_PAGEPROG";
1012 case STATE_CMD_READOOB:
1013 return "STATE_CMD_READOOB";
1014 case STATE_CMD_READSTART:
1015 return "STATE_CMD_READSTART";
1016 case STATE_CMD_ERASE1:
1017 return "STATE_CMD_ERASE1";
1018 case STATE_CMD_STATUS:
1019 return "STATE_CMD_STATUS";
1020 case STATE_CMD_STATUS_M:
1021 return "STATE_CMD_STATUS_M";
1022 case STATE_CMD_SEQIN:
1023 return "STATE_CMD_SEQIN";
1024 case STATE_CMD_READID:
1025 return "STATE_CMD_READID";
1026 case STATE_CMD_ERASE2:
1027 return "STATE_CMD_ERASE2";
1028 case STATE_CMD_RESET:
1029 return "STATE_CMD_RESET";
1030 case STATE_CMD_RNDOUT:
1031 return "STATE_CMD_RNDOUT";
1032 case STATE_CMD_RNDOUTSTART:
1033 return "STATE_CMD_RNDOUTSTART";
1034 case STATE_ADDR_PAGE:
1035 return "STATE_ADDR_PAGE";
1036 case STATE_ADDR_SEC:
1037 return "STATE_ADDR_SEC";
1038 case STATE_ADDR_ZERO:
1039 return "STATE_ADDR_ZERO";
1040 case STATE_ADDR_COLUMN:
1041 return "STATE_ADDR_COLUMN";
1042 case STATE_DATAIN:
1043 return "STATE_DATAIN";
1044 case STATE_DATAOUT:
1045 return "STATE_DATAOUT";
1046 case STATE_DATAOUT_ID:
1047 return "STATE_DATAOUT_ID";
1048 case STATE_DATAOUT_STATUS:
1049 return "STATE_DATAOUT_STATUS";
1050 case STATE_DATAOUT_STATUS_M:
1051 return "STATE_DATAOUT_STATUS_M";
1052 case STATE_READY:
1053 return "STATE_READY";
1054 case STATE_UNKNOWN:
1055 return "STATE_UNKNOWN";
1056 }
1057
1058 NS_ERR("get_state_name: unknown state, BUG\n");
1059 return NULL;
1060 }
1061
1062 /*
1063 * Check if command is valid.
1064 *
1065 * RETURNS: 1 if wrong command, 0 if right.
1066 */
1067 static int check_command(int cmd)
1068 {
1069 switch (cmd) {
1070
1071 case NAND_CMD_READ0:
1072 case NAND_CMD_READ1:
1073 case NAND_CMD_READSTART:
1074 case NAND_CMD_PAGEPROG:
1075 case NAND_CMD_READOOB:
1076 case NAND_CMD_ERASE1:
1077 case NAND_CMD_STATUS:
1078 case NAND_CMD_SEQIN:
1079 case NAND_CMD_READID:
1080 case NAND_CMD_ERASE2:
1081 case NAND_CMD_RESET:
1082 case NAND_CMD_RNDOUT:
1083 case NAND_CMD_RNDOUTSTART:
1084 return 0;
1085
1086 case NAND_CMD_STATUS_MULTI:
1087 default:
1088 return 1;
1089 }
1090 }
1091
1092 /*
1093 * Returns state after command is accepted by command number.
1094 */
1095 static uint32_t get_state_by_command(unsigned command)
1096 {
1097 switch (command) {
1098 case NAND_CMD_READ0:
1099 return STATE_CMD_READ0;
1100 case NAND_CMD_READ1:
1101 return STATE_CMD_READ1;
1102 case NAND_CMD_PAGEPROG:
1103 return STATE_CMD_PAGEPROG;
1104 case NAND_CMD_READSTART:
1105 return STATE_CMD_READSTART;
1106 case NAND_CMD_READOOB:
1107 return STATE_CMD_READOOB;
1108 case NAND_CMD_ERASE1:
1109 return STATE_CMD_ERASE1;
1110 case NAND_CMD_STATUS:
1111 return STATE_CMD_STATUS;
1112 case NAND_CMD_STATUS_MULTI:
1113 return STATE_CMD_STATUS_M;
1114 case NAND_CMD_SEQIN:
1115 return STATE_CMD_SEQIN;
1116 case NAND_CMD_READID:
1117 return STATE_CMD_READID;
1118 case NAND_CMD_ERASE2:
1119 return STATE_CMD_ERASE2;
1120 case NAND_CMD_RESET:
1121 return STATE_CMD_RESET;
1122 case NAND_CMD_RNDOUT:
1123 return STATE_CMD_RNDOUT;
1124 case NAND_CMD_RNDOUTSTART:
1125 return STATE_CMD_RNDOUTSTART;
1126 }
1127
1128 NS_ERR("get_state_by_command: unknown command, BUG\n");
1129 return 0;
1130 }
1131
1132 /*
1133 * Move an address byte to the correspondent internal register.
1134 */
1135 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1136 {
1137 uint byte = (uint)bt;
1138
1139 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1140 ns->regs.column |= (byte << 8 * ns->regs.count);
1141 else {
1142 ns->regs.row |= (byte << 8 * (ns->regs.count -
1143 ns->geom.pgaddrbytes +
1144 ns->geom.secaddrbytes));
1145 }
1146
1147 return;
1148 }
1149
1150 /*
1151 * Switch to STATE_READY state.
1152 */
1153 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1154 {
1155 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1156
1157 ns->state = STATE_READY;
1158 ns->nxstate = STATE_UNKNOWN;
1159 ns->op = NULL;
1160 ns->npstates = 0;
1161 ns->stateidx = 0;
1162 ns->regs.num = 0;
1163 ns->regs.count = 0;
1164 ns->regs.off = 0;
1165 ns->regs.row = 0;
1166 ns->regs.column = 0;
1167 ns->regs.status = status;
1168 }
1169
1170 /*
1171 * If the operation isn't known yet, try to find it in the global array
1172 * of supported operations.
1173 *
1174 * Operation can be unknown because of the following.
1175 * 1. New command was accepted and this is the first call to find the
1176 * correspondent states chain. In this case ns->npstates = 0;
1177 * 2. There are several operations which begin with the same command(s)
1178 * (for example program from the second half and read from the
1179 * second half operations both begin with the READ1 command). In this
1180 * case the ns->pstates[] array contains previous states.
1181 *
1182 * Thus, the function tries to find operation containing the following
1183 * states (if the 'flag' parameter is 0):
1184 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1185 *
1186 * If (one and only one) matching operation is found, it is accepted (
1187 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1188 * zeroed).
1189 *
1190 * If there are several matches, the current state is pushed to the
1191 * ns->pstates.
1192 *
1193 * The operation can be unknown only while commands are input to the chip.
1194 * As soon as address command is accepted, the operation must be known.
1195 * In such situation the function is called with 'flag' != 0, and the
1196 * operation is searched using the following pattern:
1197 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1198 *
1199 * It is supposed that this pattern must either match one operation or
1200 * none. There can't be ambiguity in that case.
1201 *
1202 * If no matches found, the function does the following:
1203 * 1. if there are saved states present, try to ignore them and search
1204 * again only using the last command. If nothing was found, switch
1205 * to the STATE_READY state.
1206 * 2. if there are no saved states, switch to the STATE_READY state.
1207 *
1208 * RETURNS: -2 - no matched operations found.
1209 * -1 - several matches.
1210 * 0 - operation is found.
1211 */
1212 static int find_operation(struct nandsim *ns, uint32_t flag)
1213 {
1214 int opsfound = 0;
1215 int i, j, idx = 0;
1216
1217 for (i = 0; i < NS_OPER_NUM; i++) {
1218
1219 int found = 1;
1220
1221 if (!(ns->options & ops[i].reqopts))
1222 /* Ignore operations we can't perform */
1223 continue;
1224
1225 if (flag) {
1226 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1227 continue;
1228 } else {
1229 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1230 continue;
1231 }
1232
1233 for (j = 0; j < ns->npstates; j++)
1234 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1235 && (ns->options & ops[idx].reqopts)) {
1236 found = 0;
1237 break;
1238 }
1239
1240 if (found) {
1241 idx = i;
1242 opsfound += 1;
1243 }
1244 }
1245
1246 if (opsfound == 1) {
1247 /* Exact match */
1248 ns->op = &ops[idx].states[0];
1249 if (flag) {
1250 /*
1251 * In this case the find_operation function was
1252 * called when address has just began input. But it isn't
1253 * yet fully input and the current state must
1254 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1255 * state must be the next state (ns->nxstate).
1256 */
1257 ns->stateidx = ns->npstates - 1;
1258 } else {
1259 ns->stateidx = ns->npstates;
1260 }
1261 ns->npstates = 0;
1262 ns->state = ns->op[ns->stateidx];
1263 ns->nxstate = ns->op[ns->stateidx + 1];
1264 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1265 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1266 return 0;
1267 }
1268
1269 if (opsfound == 0) {
1270 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1271 if (ns->npstates != 0) {
1272 NS_DBG("find_operation: no operation found, try again with state %s\n",
1273 get_state_name(ns->state));
1274 ns->npstates = 0;
1275 return find_operation(ns, 0);
1276
1277 }
1278 NS_DBG("find_operation: no operations found\n");
1279 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1280 return -2;
1281 }
1282
1283 if (flag) {
1284 /* This shouldn't happen */
1285 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1286 return -2;
1287 }
1288
1289 NS_DBG("find_operation: there is still ambiguity\n");
1290
1291 ns->pstates[ns->npstates++] = ns->state;
1292
1293 return -1;
1294 }
1295
1296 static void put_pages(struct nandsim *ns)
1297 {
1298 int i;
1299
1300 for (i = 0; i < ns->held_cnt; i++)
1301 page_cache_release(ns->held_pages[i]);
1302 }
1303
1304 /* Get page cache pages in advance to provide NOFS memory allocation */
1305 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1306 {
1307 pgoff_t index, start_index, end_index;
1308 struct page *page;
1309 struct address_space *mapping = file->f_mapping;
1310
1311 start_index = pos >> PAGE_CACHE_SHIFT;
1312 end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1313 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1314 return -EINVAL;
1315 ns->held_cnt = 0;
1316 for (index = start_index; index <= end_index; index++) {
1317 page = find_get_page(mapping, index);
1318 if (page == NULL) {
1319 page = find_or_create_page(mapping, index, GFP_NOFS);
1320 if (page == NULL) {
1321 write_inode_now(mapping->host, 1);
1322 page = find_or_create_page(mapping, index, GFP_NOFS);
1323 }
1324 if (page == NULL) {
1325 put_pages(ns);
1326 return -ENOMEM;
1327 }
1328 unlock_page(page);
1329 }
1330 ns->held_pages[ns->held_cnt++] = page;
1331 }
1332 return 0;
1333 }
1334
1335 static int set_memalloc(void)
1336 {
1337 if (current->flags & PF_MEMALLOC)
1338 return 0;
1339 current->flags |= PF_MEMALLOC;
1340 return 1;
1341 }
1342
1343 static void clear_memalloc(int memalloc)
1344 {
1345 if (memalloc)
1346 current->flags &= ~PF_MEMALLOC;
1347 }
1348
1349 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1350 {
1351 mm_segment_t old_fs;
1352 ssize_t tx;
1353 int err, memalloc;
1354
1355 err = get_pages(ns, file, count, *pos);
1356 if (err)
1357 return err;
1358 old_fs = get_fs();
1359 set_fs(get_ds());
1360 memalloc = set_memalloc();
1361 tx = vfs_read(file, (char __user *)buf, count, pos);
1362 clear_memalloc(memalloc);
1363 set_fs(old_fs);
1364 put_pages(ns);
1365 return tx;
1366 }
1367
1368 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1369 {
1370 mm_segment_t old_fs;
1371 ssize_t tx;
1372 int err, memalloc;
1373
1374 err = get_pages(ns, file, count, *pos);
1375 if (err)
1376 return err;
1377 old_fs = get_fs();
1378 set_fs(get_ds());
1379 memalloc = set_memalloc();
1380 tx = vfs_write(file, (char __user *)buf, count, pos);
1381 clear_memalloc(memalloc);
1382 set_fs(old_fs);
1383 put_pages(ns);
1384 return tx;
1385 }
1386
1387 /*
1388 * Returns a pointer to the current page.
1389 */
1390 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1391 {
1392 return &(ns->pages[ns->regs.row]);
1393 }
1394
1395 /*
1396 * Retuns a pointer to the current byte, within the current page.
1397 */
1398 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1399 {
1400 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1401 }
1402
1403 int do_read_error(struct nandsim *ns, int num)
1404 {
1405 unsigned int page_no = ns->regs.row;
1406
1407 if (read_error(page_no)) {
1408 int i;
1409 memset(ns->buf.byte, 0xFF, num);
1410 for (i = 0; i < num; ++i)
1411 ns->buf.byte[i] = random32();
1412 NS_WARN("simulating read error in page %u\n", page_no);
1413 return 1;
1414 }
1415 return 0;
1416 }
1417
1418 void do_bit_flips(struct nandsim *ns, int num)
1419 {
1420 if (bitflips && random32() < (1 << 22)) {
1421 int flips = 1;
1422 if (bitflips > 1)
1423 flips = (random32() % (int) bitflips) + 1;
1424 while (flips--) {
1425 int pos = random32() % (num * 8);
1426 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1427 NS_WARN("read_page: flipping bit %d in page %d "
1428 "reading from %d ecc: corrected=%u failed=%u\n",
1429 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1430 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1431 }
1432 }
1433 }
1434
1435 /*
1436 * Fill the NAND buffer with data read from the specified page.
1437 */
1438 static void read_page(struct nandsim *ns, int num)
1439 {
1440 union ns_mem *mypage;
1441
1442 if (ns->cfile) {
1443 if (!ns->pages_written[ns->regs.row]) {
1444 NS_DBG("read_page: page %d not written\n", ns->regs.row);
1445 memset(ns->buf.byte, 0xFF, num);
1446 } else {
1447 loff_t pos;
1448 ssize_t tx;
1449
1450 NS_DBG("read_page: page %d written, reading from %d\n",
1451 ns->regs.row, ns->regs.column + ns->regs.off);
1452 if (do_read_error(ns, num))
1453 return;
1454 pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1455 tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1456 if (tx != num) {
1457 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1458 return;
1459 }
1460 do_bit_flips(ns, num);
1461 }
1462 return;
1463 }
1464
1465 mypage = NS_GET_PAGE(ns);
1466 if (mypage->byte == NULL) {
1467 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1468 memset(ns->buf.byte, 0xFF, num);
1469 } else {
1470 NS_DBG("read_page: page %d allocated, reading from %d\n",
1471 ns->regs.row, ns->regs.column + ns->regs.off);
1472 if (do_read_error(ns, num))
1473 return;
1474 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1475 do_bit_flips(ns, num);
1476 }
1477 }
1478
1479 /*
1480 * Erase all pages in the specified sector.
1481 */
1482 static void erase_sector(struct nandsim *ns)
1483 {
1484 union ns_mem *mypage;
1485 int i;
1486
1487 if (ns->cfile) {
1488 for (i = 0; i < ns->geom.pgsec; i++)
1489 if (ns->pages_written[ns->regs.row + i]) {
1490 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1491 ns->pages_written[ns->regs.row + i] = 0;
1492 }
1493 return;
1494 }
1495
1496 mypage = NS_GET_PAGE(ns);
1497 for (i = 0; i < ns->geom.pgsec; i++) {
1498 if (mypage->byte != NULL) {
1499 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1500 kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1501 mypage->byte = NULL;
1502 }
1503 mypage++;
1504 }
1505 }
1506
1507 /*
1508 * Program the specified page with the contents from the NAND buffer.
1509 */
1510 static int prog_page(struct nandsim *ns, int num)
1511 {
1512 int i;
1513 union ns_mem *mypage;
1514 u_char *pg_off;
1515
1516 if (ns->cfile) {
1517 loff_t off, pos;
1518 ssize_t tx;
1519 int all;
1520
1521 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1522 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1523 off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1524 if (!ns->pages_written[ns->regs.row]) {
1525 all = 1;
1526 memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1527 } else {
1528 all = 0;
1529 pos = off;
1530 tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1531 if (tx != num) {
1532 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1533 return -1;
1534 }
1535 }
1536 for (i = 0; i < num; i++)
1537 pg_off[i] &= ns->buf.byte[i];
1538 if (all) {
1539 pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1540 tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1541 if (tx != ns->geom.pgszoob) {
1542 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1543 return -1;
1544 }
1545 ns->pages_written[ns->regs.row] = 1;
1546 } else {
1547 pos = off;
1548 tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1549 if (tx != num) {
1550 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1551 return -1;
1552 }
1553 }
1554 return 0;
1555 }
1556
1557 mypage = NS_GET_PAGE(ns);
1558 if (mypage->byte == NULL) {
1559 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1560 /*
1561 * We allocate memory with GFP_NOFS because a flash FS may
1562 * utilize this. If it is holding an FS lock, then gets here,
1563 * then kernel memory alloc runs writeback which goes to the FS
1564 * again and deadlocks. This was seen in practice.
1565 */
1566 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1567 if (mypage->byte == NULL) {
1568 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1569 return -1;
1570 }
1571 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1572 }
1573
1574 pg_off = NS_PAGE_BYTE_OFF(ns);
1575 for (i = 0; i < num; i++)
1576 pg_off[i] &= ns->buf.byte[i];
1577
1578 return 0;
1579 }
1580
1581 /*
1582 * If state has any action bit, perform this action.
1583 *
1584 * RETURNS: 0 if success, -1 if error.
1585 */
1586 static int do_state_action(struct nandsim *ns, uint32_t action)
1587 {
1588 int num;
1589 int busdiv = ns->busw == 8 ? 1 : 2;
1590 unsigned int erase_block_no, page_no;
1591
1592 action &= ACTION_MASK;
1593
1594 /* Check that page address input is correct */
1595 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1596 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1597 return -1;
1598 }
1599
1600 switch (action) {
1601
1602 case ACTION_CPY:
1603 /*
1604 * Copy page data to the internal buffer.
1605 */
1606
1607 /* Column shouldn't be very large */
1608 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1609 NS_ERR("do_state_action: column number is too large\n");
1610 break;
1611 }
1612 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1613 read_page(ns, num);
1614
1615 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1616 num, NS_RAW_OFFSET(ns) + ns->regs.off);
1617
1618 if (ns->regs.off == 0)
1619 NS_LOG("read page %d\n", ns->regs.row);
1620 else if (ns->regs.off < ns->geom.pgsz)
1621 NS_LOG("read page %d (second half)\n", ns->regs.row);
1622 else
1623 NS_LOG("read OOB of page %d\n", ns->regs.row);
1624
1625 NS_UDELAY(access_delay);
1626 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1627
1628 break;
1629
1630 case ACTION_SECERASE:
1631 /*
1632 * Erase sector.
1633 */
1634
1635 if (ns->lines.wp) {
1636 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1637 return -1;
1638 }
1639
1640 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1641 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1642 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1643 return -1;
1644 }
1645
1646 ns->regs.row = (ns->regs.row <<
1647 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1648 ns->regs.column = 0;
1649
1650 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1651
1652 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1653 ns->regs.row, NS_RAW_OFFSET(ns));
1654 NS_LOG("erase sector %u\n", erase_block_no);
1655
1656 erase_sector(ns);
1657
1658 NS_MDELAY(erase_delay);
1659
1660 if (erase_block_wear)
1661 update_wear(erase_block_no);
1662
1663 if (erase_error(erase_block_no)) {
1664 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1665 return -1;
1666 }
1667
1668 break;
1669
1670 case ACTION_PRGPAGE:
1671 /*
1672 * Program page - move internal buffer data to the page.
1673 */
1674
1675 if (ns->lines.wp) {
1676 NS_WARN("do_state_action: device is write-protected, programm\n");
1677 return -1;
1678 }
1679
1680 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1681 if (num != ns->regs.count) {
1682 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1683 ns->regs.count, num);
1684 return -1;
1685 }
1686
1687 if (prog_page(ns, num) == -1)
1688 return -1;
1689
1690 page_no = ns->regs.row;
1691
1692 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1693 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1694 NS_LOG("programm page %d\n", ns->regs.row);
1695
1696 NS_UDELAY(programm_delay);
1697 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1698
1699 if (write_error(page_no)) {
1700 NS_WARN("simulating write failure in page %u\n", page_no);
1701 return -1;
1702 }
1703
1704 break;
1705
1706 case ACTION_ZEROOFF:
1707 NS_DBG("do_state_action: set internal offset to 0\n");
1708 ns->regs.off = 0;
1709 break;
1710
1711 case ACTION_HALFOFF:
1712 if (!(ns->options & OPT_PAGE512_8BIT)) {
1713 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1714 "byte page size 8x chips\n");
1715 return -1;
1716 }
1717 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1718 ns->regs.off = ns->geom.pgsz/2;
1719 break;
1720
1721 case ACTION_OOBOFF:
1722 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1723 ns->regs.off = ns->geom.pgsz;
1724 break;
1725
1726 default:
1727 NS_DBG("do_state_action: BUG! unknown action\n");
1728 }
1729
1730 return 0;
1731 }
1732
1733 /*
1734 * Switch simulator's state.
1735 */
1736 static void switch_state(struct nandsim *ns)
1737 {
1738 if (ns->op) {
1739 /*
1740 * The current operation have already been identified.
1741 * Just follow the states chain.
1742 */
1743
1744 ns->stateidx += 1;
1745 ns->state = ns->nxstate;
1746 ns->nxstate = ns->op[ns->stateidx + 1];
1747
1748 NS_DBG("switch_state: operation is known, switch to the next state, "
1749 "state: %s, nxstate: %s\n",
1750 get_state_name(ns->state), get_state_name(ns->nxstate));
1751
1752 /* See, whether we need to do some action */
1753 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1754 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1755 return;
1756 }
1757
1758 } else {
1759 /*
1760 * We don't yet know which operation we perform.
1761 * Try to identify it.
1762 */
1763
1764 /*
1765 * The only event causing the switch_state function to
1766 * be called with yet unknown operation is new command.
1767 */
1768 ns->state = get_state_by_command(ns->regs.command);
1769
1770 NS_DBG("switch_state: operation is unknown, try to find it\n");
1771
1772 if (find_operation(ns, 0) != 0)
1773 return;
1774
1775 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1776 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1777 return;
1778 }
1779 }
1780
1781 /* For 16x devices column means the page offset in words */
1782 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1783 NS_DBG("switch_state: double the column number for 16x device\n");
1784 ns->regs.column <<= 1;
1785 }
1786
1787 if (NS_STATE(ns->nxstate) == STATE_READY) {
1788 /*
1789 * The current state is the last. Return to STATE_READY
1790 */
1791
1792 u_char status = NS_STATUS_OK(ns);
1793
1794 /* In case of data states, see if all bytes were input/output */
1795 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1796 && ns->regs.count != ns->regs.num) {
1797 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1798 ns->regs.num - ns->regs.count);
1799 status = NS_STATUS_FAILED(ns);
1800 }
1801
1802 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1803
1804 switch_to_ready_state(ns, status);
1805
1806 return;
1807 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1808 /*
1809 * If the next state is data input/output, switch to it now
1810 */
1811
1812 ns->state = ns->nxstate;
1813 ns->nxstate = ns->op[++ns->stateidx + 1];
1814 ns->regs.num = ns->regs.count = 0;
1815
1816 NS_DBG("switch_state: the next state is data I/O, switch, "
1817 "state: %s, nxstate: %s\n",
1818 get_state_name(ns->state), get_state_name(ns->nxstate));
1819
1820 /*
1821 * Set the internal register to the count of bytes which
1822 * are expected to be input or output
1823 */
1824 switch (NS_STATE(ns->state)) {
1825 case STATE_DATAIN:
1826 case STATE_DATAOUT:
1827 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1828 break;
1829
1830 case STATE_DATAOUT_ID:
1831 ns->regs.num = ns->geom.idbytes;
1832 break;
1833
1834 case STATE_DATAOUT_STATUS:
1835 case STATE_DATAOUT_STATUS_M:
1836 ns->regs.count = ns->regs.num = 0;
1837 break;
1838
1839 default:
1840 NS_ERR("switch_state: BUG! unknown data state\n");
1841 }
1842
1843 } else if (ns->nxstate & STATE_ADDR_MASK) {
1844 /*
1845 * If the next state is address input, set the internal
1846 * register to the number of expected address bytes
1847 */
1848
1849 ns->regs.count = 0;
1850
1851 switch (NS_STATE(ns->nxstate)) {
1852 case STATE_ADDR_PAGE:
1853 ns->regs.num = ns->geom.pgaddrbytes;
1854
1855 break;
1856 case STATE_ADDR_SEC:
1857 ns->regs.num = ns->geom.secaddrbytes;
1858 break;
1859
1860 case STATE_ADDR_ZERO:
1861 ns->regs.num = 1;
1862 break;
1863
1864 case STATE_ADDR_COLUMN:
1865 /* Column address is always 2 bytes */
1866 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1867 break;
1868
1869 default:
1870 NS_ERR("switch_state: BUG! unknown address state\n");
1871 }
1872 } else {
1873 /*
1874 * Just reset internal counters.
1875 */
1876
1877 ns->regs.num = 0;
1878 ns->regs.count = 0;
1879 }
1880 }
1881
1882 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1883 {
1884 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1885 u_char outb = 0x00;
1886
1887 /* Sanity and correctness checks */
1888 if (!ns->lines.ce) {
1889 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1890 return outb;
1891 }
1892 if (ns->lines.ale || ns->lines.cle) {
1893 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1894 return outb;
1895 }
1896 if (!(ns->state & STATE_DATAOUT_MASK)) {
1897 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1898 "return %#x\n", get_state_name(ns->state), (uint)outb);
1899 return outb;
1900 }
1901
1902 /* Status register may be read as many times as it is wanted */
1903 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1904 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1905 return ns->regs.status;
1906 }
1907
1908 /* Check if there is any data in the internal buffer which may be read */
1909 if (ns->regs.count == ns->regs.num) {
1910 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1911 return outb;
1912 }
1913
1914 switch (NS_STATE(ns->state)) {
1915 case STATE_DATAOUT:
1916 if (ns->busw == 8) {
1917 outb = ns->buf.byte[ns->regs.count];
1918 ns->regs.count += 1;
1919 } else {
1920 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1921 ns->regs.count += 2;
1922 }
1923 break;
1924 case STATE_DATAOUT_ID:
1925 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1926 outb = ns->ids[ns->regs.count];
1927 ns->regs.count += 1;
1928 break;
1929 default:
1930 BUG();
1931 }
1932
1933 if (ns->regs.count == ns->regs.num) {
1934 NS_DBG("read_byte: all bytes were read\n");
1935
1936 if (NS_STATE(ns->nxstate) == STATE_READY)
1937 switch_state(ns);
1938 }
1939
1940 return outb;
1941 }
1942
1943 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1944 {
1945 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1946
1947 /* Sanity and correctness checks */
1948 if (!ns->lines.ce) {
1949 NS_ERR("write_byte: chip is disabled, ignore write\n");
1950 return;
1951 }
1952 if (ns->lines.ale && ns->lines.cle) {
1953 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1954 return;
1955 }
1956
1957 if (ns->lines.cle == 1) {
1958 /*
1959 * The byte written is a command.
1960 */
1961
1962 if (byte == NAND_CMD_RESET) {
1963 NS_LOG("reset chip\n");
1964 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1965 return;
1966 }
1967
1968 /* Check that the command byte is correct */
1969 if (check_command(byte)) {
1970 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1971 return;
1972 }
1973
1974 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1975 || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1976 || NS_STATE(ns->state) == STATE_DATAOUT) {
1977 int row = ns->regs.row;
1978
1979 switch_state(ns);
1980 if (byte == NAND_CMD_RNDOUT)
1981 ns->regs.row = row;
1982 }
1983
1984 /* Check if chip is expecting command */
1985 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1986 /* Do not warn if only 2 id bytes are read */
1987 if (!(ns->regs.command == NAND_CMD_READID &&
1988 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1989 /*
1990 * We are in situation when something else (not command)
1991 * was expected but command was input. In this case ignore
1992 * previous command(s)/state(s) and accept the last one.
1993 */
1994 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1995 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1996 }
1997 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1998 }
1999
2000 NS_DBG("command byte corresponding to %s state accepted\n",
2001 get_state_name(get_state_by_command(byte)));
2002 ns->regs.command = byte;
2003 switch_state(ns);
2004
2005 } else if (ns->lines.ale == 1) {
2006 /*
2007 * The byte written is an address.
2008 */
2009
2010 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2011
2012 NS_DBG("write_byte: operation isn't known yet, identify it\n");
2013
2014 if (find_operation(ns, 1) < 0)
2015 return;
2016
2017 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2018 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2019 return;
2020 }
2021
2022 ns->regs.count = 0;
2023 switch (NS_STATE(ns->nxstate)) {
2024 case STATE_ADDR_PAGE:
2025 ns->regs.num = ns->geom.pgaddrbytes;
2026 break;
2027 case STATE_ADDR_SEC:
2028 ns->regs.num = ns->geom.secaddrbytes;
2029 break;
2030 case STATE_ADDR_ZERO:
2031 ns->regs.num = 1;
2032 break;
2033 default:
2034 BUG();
2035 }
2036 }
2037
2038 /* Check that chip is expecting address */
2039 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2040 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2041 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2042 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2043 return;
2044 }
2045
2046 /* Check if this is expected byte */
2047 if (ns->regs.count == ns->regs.num) {
2048 NS_ERR("write_byte: no more address bytes expected\n");
2049 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2050 return;
2051 }
2052
2053 accept_addr_byte(ns, byte);
2054
2055 ns->regs.count += 1;
2056
2057 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2058 (uint)byte, ns->regs.count, ns->regs.num);
2059
2060 if (ns->regs.count == ns->regs.num) {
2061 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2062 switch_state(ns);
2063 }
2064
2065 } else {
2066 /*
2067 * The byte written is an input data.
2068 */
2069
2070 /* Check that chip is expecting data input */
2071 if (!(ns->state & STATE_DATAIN_MASK)) {
2072 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2073 "switch to %s\n", (uint)byte,
2074 get_state_name(ns->state), get_state_name(STATE_READY));
2075 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2076 return;
2077 }
2078
2079 /* Check if this is expected byte */
2080 if (ns->regs.count == ns->regs.num) {
2081 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2082 ns->regs.num);
2083 return;
2084 }
2085
2086 if (ns->busw == 8) {
2087 ns->buf.byte[ns->regs.count] = byte;
2088 ns->regs.count += 1;
2089 } else {
2090 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2091 ns->regs.count += 2;
2092 }
2093 }
2094
2095 return;
2096 }
2097
2098 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2099 {
2100 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2101
2102 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2103 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2104 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2105
2106 if (cmd != NAND_CMD_NONE)
2107 ns_nand_write_byte(mtd, cmd);
2108 }
2109
2110 static int ns_device_ready(struct mtd_info *mtd)
2111 {
2112 NS_DBG("device_ready\n");
2113 return 1;
2114 }
2115
2116 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2117 {
2118 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2119
2120 NS_DBG("read_word\n");
2121
2122 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2123 }
2124
2125 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2126 {
2127 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2128
2129 /* Check that chip is expecting data input */
2130 if (!(ns->state & STATE_DATAIN_MASK)) {
2131 NS_ERR("write_buf: data input isn't expected, state is %s, "
2132 "switch to STATE_READY\n", get_state_name(ns->state));
2133 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2134 return;
2135 }
2136
2137 /* Check if these are expected bytes */
2138 if (ns->regs.count + len > ns->regs.num) {
2139 NS_ERR("write_buf: too many input bytes\n");
2140 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2141 return;
2142 }
2143
2144 memcpy(ns->buf.byte + ns->regs.count, buf, len);
2145 ns->regs.count += len;
2146
2147 if (ns->regs.count == ns->regs.num) {
2148 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2149 }
2150 }
2151
2152 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2153 {
2154 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2155
2156 /* Sanity and correctness checks */
2157 if (!ns->lines.ce) {
2158 NS_ERR("read_buf: chip is disabled\n");
2159 return;
2160 }
2161 if (ns->lines.ale || ns->lines.cle) {
2162 NS_ERR("read_buf: ALE or CLE pin is high\n");
2163 return;
2164 }
2165 if (!(ns->state & STATE_DATAOUT_MASK)) {
2166 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2167 get_state_name(ns->state));
2168 return;
2169 }
2170
2171 if (NS_STATE(ns->state) != STATE_DATAOUT) {
2172 int i;
2173
2174 for (i = 0; i < len; i++)
2175 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2176
2177 return;
2178 }
2179
2180 /* Check if these are expected bytes */
2181 if (ns->regs.count + len > ns->regs.num) {
2182 NS_ERR("read_buf: too many bytes to read\n");
2183 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2184 return;
2185 }
2186
2187 memcpy(buf, ns->buf.byte + ns->regs.count, len);
2188 ns->regs.count += len;
2189
2190 if (ns->regs.count == ns->regs.num) {
2191 if (NS_STATE(ns->nxstate) == STATE_READY)
2192 switch_state(ns);
2193 }
2194
2195 return;
2196 }
2197
2198 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
2199 {
2200 ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
2201
2202 if (!memcmp(buf, &ns_verify_buf[0], len)) {
2203 NS_DBG("verify_buf: the buffer is OK\n");
2204 return 0;
2205 } else {
2206 NS_DBG("verify_buf: the buffer is wrong\n");
2207 return -EFAULT;
2208 }
2209 }
2210
2211 /*
2212 * Module initialization function
2213 */
2214 static int __init ns_init_module(void)
2215 {
2216 struct nand_chip *chip;
2217 struct nandsim *nand;
2218 int retval = -ENOMEM, i;
2219
2220 if (bus_width != 8 && bus_width != 16) {
2221 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2222 return -EINVAL;
2223 }
2224
2225 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2226 nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2227 + sizeof(struct nandsim), GFP_KERNEL);
2228 if (!nsmtd) {
2229 NS_ERR("unable to allocate core structures.\n");
2230 return -ENOMEM;
2231 }
2232 chip = (struct nand_chip *)(nsmtd + 1);
2233 nsmtd->priv = (void *)chip;
2234 nand = (struct nandsim *)(chip + 1);
2235 chip->priv = (void *)nand;
2236
2237 /*
2238 * Register simulator's callbacks.
2239 */
2240 chip->cmd_ctrl = ns_hwcontrol;
2241 chip->read_byte = ns_nand_read_byte;
2242 chip->dev_ready = ns_device_ready;
2243 chip->write_buf = ns_nand_write_buf;
2244 chip->read_buf = ns_nand_read_buf;
2245 chip->verify_buf = ns_nand_verify_buf;
2246 chip->read_word = ns_nand_read_word;
2247 chip->ecc.mode = NAND_ECC_SOFT;
2248 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2249 /* and 'badblocks' parameters to work */
2250 chip->options |= NAND_SKIP_BBTSCAN;
2251
2252 switch (bbt) {
2253 case 2:
2254 chip->bbt_options |= NAND_BBT_NO_OOB;
2255 case 1:
2256 chip->bbt_options |= NAND_BBT_USE_FLASH;
2257 case 0:
2258 break;
2259 default:
2260 NS_ERR("bbt has to be 0..2\n");
2261 retval = -EINVAL;
2262 goto error;
2263 }
2264 /*
2265 * Perform minimum nandsim structure initialization to handle
2266 * the initial ID read command correctly
2267 */
2268 if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2269 nand->geom.idbytes = 4;
2270 else
2271 nand->geom.idbytes = 2;
2272 nand->regs.status = NS_STATUS_OK(nand);
2273 nand->nxstate = STATE_UNKNOWN;
2274 nand->options |= OPT_PAGE256; /* temporary value */
2275 nand->ids[0] = first_id_byte;
2276 nand->ids[1] = second_id_byte;
2277 nand->ids[2] = third_id_byte;
2278 nand->ids[3] = fourth_id_byte;
2279 if (bus_width == 16) {
2280 nand->busw = 16;
2281 chip->options |= NAND_BUSWIDTH_16;
2282 }
2283
2284 nsmtd->owner = THIS_MODULE;
2285
2286 if ((retval = parse_weakblocks()) != 0)
2287 goto error;
2288
2289 if ((retval = parse_weakpages()) != 0)
2290 goto error;
2291
2292 if ((retval = parse_gravepages()) != 0)
2293 goto error;
2294
2295 retval = nand_scan_ident(nsmtd, 1, NULL);
2296 if (retval) {
2297 NS_ERR("cannot scan NAND Simulator device\n");
2298 if (retval > 0)
2299 retval = -ENXIO;
2300 goto error;
2301 }
2302
2303 if (bch) {
2304 unsigned int eccsteps, eccbytes;
2305 if (!mtd_nand_has_bch()) {
2306 NS_ERR("BCH ECC support is disabled\n");
2307 retval = -EINVAL;
2308 goto error;
2309 }
2310 /* use 512-byte ecc blocks */
2311 eccsteps = nsmtd->writesize/512;
2312 eccbytes = (bch*13+7)/8;
2313 /* do not bother supporting small page devices */
2314 if ((nsmtd->oobsize < 64) || !eccsteps) {
2315 NS_ERR("bch not available on small page devices\n");
2316 retval = -EINVAL;
2317 goto error;
2318 }
2319 if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2320 NS_ERR("invalid bch value %u\n", bch);
2321 retval = -EINVAL;
2322 goto error;
2323 }
2324 chip->ecc.mode = NAND_ECC_SOFT_BCH;
2325 chip->ecc.size = 512;
2326 chip->ecc.bytes = eccbytes;
2327 NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2328 }
2329
2330 retval = nand_scan_tail(nsmtd);
2331 if (retval) {
2332 NS_ERR("can't register NAND Simulator\n");
2333 if (retval > 0)
2334 retval = -ENXIO;
2335 goto error;
2336 }
2337
2338 if (overridesize) {
2339 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2340 if (new_size >> overridesize != nsmtd->erasesize) {
2341 NS_ERR("overridesize is too big\n");
2342 goto err_exit;
2343 }
2344 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2345 nsmtd->size = new_size;
2346 chip->chipsize = new_size;
2347 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2348 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2349 }
2350
2351 if ((retval = setup_wear_reporting(nsmtd)) != 0)
2352 goto err_exit;
2353
2354 if ((retval = init_nandsim(nsmtd)) != 0)
2355 goto err_exit;
2356
2357 if ((retval = nand_default_bbt(nsmtd)) != 0)
2358 goto err_exit;
2359
2360 if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2361 goto err_exit;
2362
2363 /* Register NAND partitions */
2364 retval = mtd_device_register(nsmtd, &nand->partitions[0],
2365 nand->nbparts);
2366 if (retval != 0)
2367 goto err_exit;
2368
2369 return 0;
2370
2371 err_exit:
2372 free_nandsim(nand);
2373 nand_release(nsmtd);
2374 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2375 kfree(nand->partitions[i].name);
2376 error:
2377 kfree(nsmtd);
2378 free_lists();
2379
2380 return retval;
2381 }
2382
2383 module_init(ns_init_module);
2384
2385 /*
2386 * Module clean-up function
2387 */
2388 static void __exit ns_cleanup_module(void)
2389 {
2390 struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2391 int i;
2392
2393 free_nandsim(ns); /* Free nandsim private resources */
2394 nand_release(nsmtd); /* Unregister driver */
2395 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2396 kfree(ns->partitions[i].name);
2397 kfree(nsmtd); /* Free other structures */
2398 free_lists();
2399 }
2400
2401 module_exit(ns_cleanup_module);
2402
2403 MODULE_LICENSE ("GPL");
2404 MODULE_AUTHOR ("Artem B. Bityuckiy");
2405 MODULE_DESCRIPTION ("The NAND flash simulator");