Merge linux-2.6 with linux-acpi-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * 02-08-2004 tglx: support for strange chips, which cannot auto increment
16 * pages on read / read_oob
17 *
18 * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
19 * pointed this out, as he marked an auto increment capable chip
20 * as NOAUTOINCR in the board driver.
21 * Make reads over block boundaries work too
22 *
23 * 04-14-2004 tglx: first working version for 2k page size chips
24 *
25 * 05-19-2004 tglx: Basic support for Renesas AG-AND chips
26 *
27 * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
28 * among multiple independend devices. Suggestions and initial patch
29 * from Ben Dooks <ben-mtd@fluff.org>
30 *
31 * 12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb" issue.
32 * Basically, any block not rewritten may lose data when surrounding blocks
33 * are rewritten many times. JFFS2 ensures this doesn't happen for blocks
34 * it uses, but the Bad Block Table(s) may not be rewritten. To ensure they
35 * do not lose data, force them to be rewritten when some of the surrounding
36 * blocks are erased. Rather than tracking a specific nearby block (which
37 * could itself go bad), use a page address 'mask' to select several blocks
38 * in the same area, and rewrite the BBT when any of them are erased.
39 *
40 * 01-03-2005 dmarlin: added support for the device recovery command sequence for Renesas
41 * AG-AND chips. If there was a sudden loss of power during an erase operation,
42 * a "device recovery" operation must be performed when power is restored
43 * to ensure correct operation.
44 *
45 * 01-20-2005 dmarlin: added support for optional hardware specific callback routine to
46 * perform extra error status checks on erase and write failures. This required
47 * adding a wrapper function for nand_read_ecc.
48 *
49 * Credits:
50 * David Woodhouse for adding multichip support
51 *
52 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
53 * rework for 2K page size chips
54 *
55 * TODO:
56 * Enable cached programming for 2k page size chips
57 * Check, if mtd->ecctype should be set to MTD_ECC_HW
58 * if we have HW ecc support.
59 * The AG-AND chips have nice features for speed improvement,
60 * which are not supported yet. Read / program 4 pages in one go.
61 *
62 * $Id: nand_base.c,v 1.147 2005/07/15 07:18:06 gleixner Exp $
63 *
64 * This program is free software; you can redistribute it and/or modify
65 * it under the terms of the GNU General Public License version 2 as
66 * published by the Free Software Foundation.
67 *
68 */
69
70 #include <linux/delay.h>
71 #include <linux/errno.h>
72 #include <linux/sched.h>
73 #include <linux/slab.h>
74 #include <linux/types.h>
75 #include <linux/mtd/mtd.h>
76 #include <linux/mtd/nand.h>
77 #include <linux/mtd/nand_ecc.h>
78 #include <linux/mtd/compatmac.h>
79 #include <linux/interrupt.h>
80 #include <linux/bitops.h>
81 #include <asm/io.h>
82
83 #ifdef CONFIG_MTD_PARTITIONS
84 #include <linux/mtd/partitions.h>
85 #endif
86
87 /* Define default oob placement schemes for large and small page devices */
88 static struct nand_oobinfo nand_oob_8 = {
89 .useecc = MTD_NANDECC_AUTOPLACE,
90 .eccbytes = 3,
91 .eccpos = {0, 1, 2},
92 .oobfree = { {3, 2}, {6, 2} }
93 };
94
95 static struct nand_oobinfo nand_oob_16 = {
96 .useecc = MTD_NANDECC_AUTOPLACE,
97 .eccbytes = 6,
98 .eccpos = {0, 1, 2, 3, 6, 7},
99 .oobfree = { {8, 8} }
100 };
101
102 static struct nand_oobinfo nand_oob_64 = {
103 .useecc = MTD_NANDECC_AUTOPLACE,
104 .eccbytes = 24,
105 .eccpos = {
106 40, 41, 42, 43, 44, 45, 46, 47,
107 48, 49, 50, 51, 52, 53, 54, 55,
108 56, 57, 58, 59, 60, 61, 62, 63},
109 .oobfree = { {2, 38} }
110 };
111
112 /* This is used for padding purposes in nand_write_oob */
113 static u_char ffchars[] = {
114 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
115 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
116 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
117 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
118 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
119 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
120 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
121 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
122 };
123
124 /*
125 * NAND low-level MTD interface functions
126 */
127 static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
128 static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
129 static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
130
131 static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
132 static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
133 size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
134 static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
135 static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
136 static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
137 size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
138 static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
139 static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
140 unsigned long count, loff_t to, size_t * retlen);
141 static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
142 unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
143 static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
144 static void nand_sync (struct mtd_info *mtd);
145
146 /* Some internal functions */
147 static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
148 struct nand_oobinfo *oobsel, int mode);
149 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
150 static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
151 u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
152 #else
153 #define nand_verify_pages(...) (0)
154 #endif
155
156 static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state);
157
158 /**
159 * nand_release_device - [GENERIC] release chip
160 * @mtd: MTD device structure
161 *
162 * Deselect, release chip lock and wake up anyone waiting on the device
163 */
164 static void nand_release_device (struct mtd_info *mtd)
165 {
166 struct nand_chip *this = mtd->priv;
167
168 /* De-select the NAND device */
169 this->select_chip(mtd, -1);
170
171 if (this->controller) {
172 /* Release the controller and the chip */
173 spin_lock(&this->controller->lock);
174 this->controller->active = NULL;
175 this->state = FL_READY;
176 wake_up(&this->controller->wq);
177 spin_unlock(&this->controller->lock);
178 } else {
179 /* Release the chip */
180 spin_lock(&this->chip_lock);
181 this->state = FL_READY;
182 wake_up(&this->wq);
183 spin_unlock(&this->chip_lock);
184 }
185 }
186
187 /**
188 * nand_read_byte - [DEFAULT] read one byte from the chip
189 * @mtd: MTD device structure
190 *
191 * Default read function for 8bit buswith
192 */
193 static u_char nand_read_byte(struct mtd_info *mtd)
194 {
195 struct nand_chip *this = mtd->priv;
196 return readb(this->IO_ADDR_R);
197 }
198
199 /**
200 * nand_write_byte - [DEFAULT] write one byte to the chip
201 * @mtd: MTD device structure
202 * @byte: pointer to data byte to write
203 *
204 * Default write function for 8it buswith
205 */
206 static void nand_write_byte(struct mtd_info *mtd, u_char byte)
207 {
208 struct nand_chip *this = mtd->priv;
209 writeb(byte, this->IO_ADDR_W);
210 }
211
212 /**
213 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
214 * @mtd: MTD device structure
215 *
216 * Default read function for 16bit buswith with
217 * endianess conversion
218 */
219 static u_char nand_read_byte16(struct mtd_info *mtd)
220 {
221 struct nand_chip *this = mtd->priv;
222 return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
223 }
224
225 /**
226 * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
227 * @mtd: MTD device structure
228 * @byte: pointer to data byte to write
229 *
230 * Default write function for 16bit buswith with
231 * endianess conversion
232 */
233 static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
234 {
235 struct nand_chip *this = mtd->priv;
236 writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
237 }
238
239 /**
240 * nand_read_word - [DEFAULT] read one word from the chip
241 * @mtd: MTD device structure
242 *
243 * Default read function for 16bit buswith without
244 * endianess conversion
245 */
246 static u16 nand_read_word(struct mtd_info *mtd)
247 {
248 struct nand_chip *this = mtd->priv;
249 return readw(this->IO_ADDR_R);
250 }
251
252 /**
253 * nand_write_word - [DEFAULT] write one word to the chip
254 * @mtd: MTD device structure
255 * @word: data word to write
256 *
257 * Default write function for 16bit buswith without
258 * endianess conversion
259 */
260 static void nand_write_word(struct mtd_info *mtd, u16 word)
261 {
262 struct nand_chip *this = mtd->priv;
263 writew(word, this->IO_ADDR_W);
264 }
265
266 /**
267 * nand_select_chip - [DEFAULT] control CE line
268 * @mtd: MTD device structure
269 * @chip: chipnumber to select, -1 for deselect
270 *
271 * Default select function for 1 chip devices.
272 */
273 static void nand_select_chip(struct mtd_info *mtd, int chip)
274 {
275 struct nand_chip *this = mtd->priv;
276 switch(chip) {
277 case -1:
278 this->hwcontrol(mtd, NAND_CTL_CLRNCE);
279 break;
280 case 0:
281 this->hwcontrol(mtd, NAND_CTL_SETNCE);
282 break;
283
284 default:
285 BUG();
286 }
287 }
288
289 /**
290 * nand_write_buf - [DEFAULT] write buffer to chip
291 * @mtd: MTD device structure
292 * @buf: data buffer
293 * @len: number of bytes to write
294 *
295 * Default write function for 8bit buswith
296 */
297 static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
298 {
299 int i;
300 struct nand_chip *this = mtd->priv;
301
302 for (i=0; i<len; i++)
303 writeb(buf[i], this->IO_ADDR_W);
304 }
305
306 /**
307 * nand_read_buf - [DEFAULT] read chip data into buffer
308 * @mtd: MTD device structure
309 * @buf: buffer to store date
310 * @len: number of bytes to read
311 *
312 * Default read function for 8bit buswith
313 */
314 static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
315 {
316 int i;
317 struct nand_chip *this = mtd->priv;
318
319 for (i=0; i<len; i++)
320 buf[i] = readb(this->IO_ADDR_R);
321 }
322
323 /**
324 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
325 * @mtd: MTD device structure
326 * @buf: buffer containing the data to compare
327 * @len: number of bytes to compare
328 *
329 * Default verify function for 8bit buswith
330 */
331 static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
332 {
333 int i;
334 struct nand_chip *this = mtd->priv;
335
336 for (i=0; i<len; i++)
337 if (buf[i] != readb(this->IO_ADDR_R))
338 return -EFAULT;
339
340 return 0;
341 }
342
343 /**
344 * nand_write_buf16 - [DEFAULT] write buffer to chip
345 * @mtd: MTD device structure
346 * @buf: data buffer
347 * @len: number of bytes to write
348 *
349 * Default write function for 16bit buswith
350 */
351 static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
352 {
353 int i;
354 struct nand_chip *this = mtd->priv;
355 u16 *p = (u16 *) buf;
356 len >>= 1;
357
358 for (i=0; i<len; i++)
359 writew(p[i], this->IO_ADDR_W);
360
361 }
362
363 /**
364 * nand_read_buf16 - [DEFAULT] read chip data into buffer
365 * @mtd: MTD device structure
366 * @buf: buffer to store date
367 * @len: number of bytes to read
368 *
369 * Default read function for 16bit buswith
370 */
371 static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
372 {
373 int i;
374 struct nand_chip *this = mtd->priv;
375 u16 *p = (u16 *) buf;
376 len >>= 1;
377
378 for (i=0; i<len; i++)
379 p[i] = readw(this->IO_ADDR_R);
380 }
381
382 /**
383 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
384 * @mtd: MTD device structure
385 * @buf: buffer containing the data to compare
386 * @len: number of bytes to compare
387 *
388 * Default verify function for 16bit buswith
389 */
390 static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
391 {
392 int i;
393 struct nand_chip *this = mtd->priv;
394 u16 *p = (u16 *) buf;
395 len >>= 1;
396
397 for (i=0; i<len; i++)
398 if (p[i] != readw(this->IO_ADDR_R))
399 return -EFAULT;
400
401 return 0;
402 }
403
404 /**
405 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
406 * @mtd: MTD device structure
407 * @ofs: offset from device start
408 * @getchip: 0, if the chip is already selected
409 *
410 * Check, if the block is bad.
411 */
412 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
413 {
414 int page, chipnr, res = 0;
415 struct nand_chip *this = mtd->priv;
416 u16 bad;
417
418 if (getchip) {
419 page = (int)(ofs >> this->page_shift);
420 chipnr = (int)(ofs >> this->chip_shift);
421
422 /* Grab the lock and see if the device is available */
423 nand_get_device (this, mtd, FL_READING);
424
425 /* Select the NAND device */
426 this->select_chip(mtd, chipnr);
427 } else
428 page = (int) ofs;
429
430 if (this->options & NAND_BUSWIDTH_16) {
431 this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
432 bad = cpu_to_le16(this->read_word(mtd));
433 if (this->badblockpos & 0x1)
434 bad >>= 1;
435 if ((bad & 0xFF) != 0xff)
436 res = 1;
437 } else {
438 this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
439 if (this->read_byte(mtd) != 0xff)
440 res = 1;
441 }
442
443 if (getchip) {
444 /* Deselect and wake up anyone waiting on the device */
445 nand_release_device(mtd);
446 }
447
448 return res;
449 }
450
451 /**
452 * nand_default_block_markbad - [DEFAULT] mark a block bad
453 * @mtd: MTD device structure
454 * @ofs: offset from device start
455 *
456 * This is the default implementation, which can be overridden by
457 * a hardware specific driver.
458 */
459 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
460 {
461 struct nand_chip *this = mtd->priv;
462 u_char buf[2] = {0, 0};
463 size_t retlen;
464 int block;
465
466 /* Get block number */
467 block = ((int) ofs) >> this->bbt_erase_shift;
468 if (this->bbt)
469 this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
470
471 /* Do we have a flash based bad block table ? */
472 if (this->options & NAND_USE_FLASH_BBT)
473 return nand_update_bbt (mtd, ofs);
474
475 /* We write two bytes, so we dont have to mess with 16 bit access */
476 ofs += mtd->oobsize + (this->badblockpos & ~0x01);
477 return nand_write_oob (mtd, ofs , 2, &retlen, buf);
478 }
479
480 /**
481 * nand_check_wp - [GENERIC] check if the chip is write protected
482 * @mtd: MTD device structure
483 * Check, if the device is write protected
484 *
485 * The function expects, that the device is already selected
486 */
487 static int nand_check_wp (struct mtd_info *mtd)
488 {
489 struct nand_chip *this = mtd->priv;
490 /* Check the WP bit */
491 this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
492 return (this->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
493 }
494
495 /**
496 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
497 * @mtd: MTD device structure
498 * @ofs: offset from device start
499 * @getchip: 0, if the chip is already selected
500 * @allowbbt: 1, if its allowed to access the bbt area
501 *
502 * Check, if the block is bad. Either by reading the bad block table or
503 * calling of the scan function.
504 */
505 static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
506 {
507 struct nand_chip *this = mtd->priv;
508
509 if (!this->bbt)
510 return this->block_bad(mtd, ofs, getchip);
511
512 /* Return info from the table */
513 return nand_isbad_bbt (mtd, ofs, allowbbt);
514 }
515
516 /*
517 * Wait for the ready pin, after a command
518 * The timeout is catched later.
519 */
520 static void nand_wait_ready(struct mtd_info *mtd)
521 {
522 struct nand_chip *this = mtd->priv;
523 unsigned long timeo = jiffies + 2;
524
525 /* wait until command is processed or timeout occures */
526 do {
527 if (this->dev_ready(mtd))
528 return;
529 touch_softlockup_watchdog();
530 } while (time_before(jiffies, timeo));
531 }
532
533 /**
534 * nand_command - [DEFAULT] Send command to NAND device
535 * @mtd: MTD device structure
536 * @command: the command to be sent
537 * @column: the column address for this command, -1 if none
538 * @page_addr: the page address for this command, -1 if none
539 *
540 * Send command to NAND device. This function is used for small page
541 * devices (256/512 Bytes per page)
542 */
543 static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
544 {
545 register struct nand_chip *this = mtd->priv;
546
547 /* Begin command latch cycle */
548 this->hwcontrol(mtd, NAND_CTL_SETCLE);
549 /*
550 * Write out the command to the device.
551 */
552 if (command == NAND_CMD_SEQIN) {
553 int readcmd;
554
555 if (column >= mtd->oobblock) {
556 /* OOB area */
557 column -= mtd->oobblock;
558 readcmd = NAND_CMD_READOOB;
559 } else if (column < 256) {
560 /* First 256 bytes --> READ0 */
561 readcmd = NAND_CMD_READ0;
562 } else {
563 column -= 256;
564 readcmd = NAND_CMD_READ1;
565 }
566 this->write_byte(mtd, readcmd);
567 }
568 this->write_byte(mtd, command);
569
570 /* Set ALE and clear CLE to start address cycle */
571 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
572
573 if (column != -1 || page_addr != -1) {
574 this->hwcontrol(mtd, NAND_CTL_SETALE);
575
576 /* Serially input address */
577 if (column != -1) {
578 /* Adjust columns for 16 bit buswidth */
579 if (this->options & NAND_BUSWIDTH_16)
580 column >>= 1;
581 this->write_byte(mtd, column);
582 }
583 if (page_addr != -1) {
584 this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
585 this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
586 /* One more address cycle for devices > 32MiB */
587 if (this->chipsize > (32 << 20))
588 this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
589 }
590 /* Latch in address */
591 this->hwcontrol(mtd, NAND_CTL_CLRALE);
592 }
593
594 /*
595 * program and erase have their own busy handlers
596 * status and sequential in needs no delay
597 */
598 switch (command) {
599
600 case NAND_CMD_PAGEPROG:
601 case NAND_CMD_ERASE1:
602 case NAND_CMD_ERASE2:
603 case NAND_CMD_SEQIN:
604 case NAND_CMD_STATUS:
605 return;
606
607 case NAND_CMD_RESET:
608 if (this->dev_ready)
609 break;
610 udelay(this->chip_delay);
611 this->hwcontrol(mtd, NAND_CTL_SETCLE);
612 this->write_byte(mtd, NAND_CMD_STATUS);
613 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
614 while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
615 return;
616
617 /* This applies to read commands */
618 default:
619 /*
620 * If we don't have access to the busy pin, we apply the given
621 * command delay
622 */
623 if (!this->dev_ready) {
624 udelay (this->chip_delay);
625 return;
626 }
627 }
628 /* Apply this short delay always to ensure that we do wait tWB in
629 * any case on any machine. */
630 ndelay (100);
631
632 nand_wait_ready(mtd);
633 }
634
635 /**
636 * nand_command_lp - [DEFAULT] Send command to NAND large page device
637 * @mtd: MTD device structure
638 * @command: the command to be sent
639 * @column: the column address for this command, -1 if none
640 * @page_addr: the page address for this command, -1 if none
641 *
642 * Send command to NAND device. This is the version for the new large page devices
643 * We dont have the seperate regions as we have in the small page devices.
644 * We must emulate NAND_CMD_READOOB to keep the code compatible.
645 *
646 */
647 static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
648 {
649 register struct nand_chip *this = mtd->priv;
650
651 /* Emulate NAND_CMD_READOOB */
652 if (command == NAND_CMD_READOOB) {
653 column += mtd->oobblock;
654 command = NAND_CMD_READ0;
655 }
656
657
658 /* Begin command latch cycle */
659 this->hwcontrol(mtd, NAND_CTL_SETCLE);
660 /* Write out the command to the device. */
661 this->write_byte(mtd, (command & 0xff));
662 /* End command latch cycle */
663 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
664
665 if (column != -1 || page_addr != -1) {
666 this->hwcontrol(mtd, NAND_CTL_SETALE);
667
668 /* Serially input address */
669 if (column != -1) {
670 /* Adjust columns for 16 bit buswidth */
671 if (this->options & NAND_BUSWIDTH_16)
672 column >>= 1;
673 this->write_byte(mtd, column & 0xff);
674 this->write_byte(mtd, column >> 8);
675 }
676 if (page_addr != -1) {
677 this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
678 this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
679 /* One more address cycle for devices > 128MiB */
680 if (this->chipsize > (128 << 20))
681 this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
682 }
683 /* Latch in address */
684 this->hwcontrol(mtd, NAND_CTL_CLRALE);
685 }
686
687 /*
688 * program and erase have their own busy handlers
689 * status, sequential in, and deplete1 need no delay
690 */
691 switch (command) {
692
693 case NAND_CMD_CACHEDPROG:
694 case NAND_CMD_PAGEPROG:
695 case NAND_CMD_ERASE1:
696 case NAND_CMD_ERASE2:
697 case NAND_CMD_SEQIN:
698 case NAND_CMD_STATUS:
699 case NAND_CMD_DEPLETE1:
700 return;
701
702 /*
703 * read error status commands require only a short delay
704 */
705 case NAND_CMD_STATUS_ERROR:
706 case NAND_CMD_STATUS_ERROR0:
707 case NAND_CMD_STATUS_ERROR1:
708 case NAND_CMD_STATUS_ERROR2:
709 case NAND_CMD_STATUS_ERROR3:
710 udelay(this->chip_delay);
711 return;
712
713 case NAND_CMD_RESET:
714 if (this->dev_ready)
715 break;
716 udelay(this->chip_delay);
717 this->hwcontrol(mtd, NAND_CTL_SETCLE);
718 this->write_byte(mtd, NAND_CMD_STATUS);
719 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
720 while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
721 return;
722
723 case NAND_CMD_READ0:
724 /* Begin command latch cycle */
725 this->hwcontrol(mtd, NAND_CTL_SETCLE);
726 /* Write out the start read command */
727 this->write_byte(mtd, NAND_CMD_READSTART);
728 /* End command latch cycle */
729 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
730 /* Fall through into ready check */
731
732 /* This applies to read commands */
733 default:
734 /*
735 * If we don't have access to the busy pin, we apply the given
736 * command delay
737 */
738 if (!this->dev_ready) {
739 udelay (this->chip_delay);
740 return;
741 }
742 }
743
744 /* Apply this short delay always to ensure that we do wait tWB in
745 * any case on any machine. */
746 ndelay (100);
747
748 nand_wait_ready(mtd);
749 }
750
751 /**
752 * nand_get_device - [GENERIC] Get chip for selected access
753 * @this: the nand chip descriptor
754 * @mtd: MTD device structure
755 * @new_state: the state which is requested
756 *
757 * Get the device and lock it for exclusive access
758 */
759 static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
760 {
761 struct nand_chip *active;
762 spinlock_t *lock;
763 wait_queue_head_t *wq;
764 DECLARE_WAITQUEUE (wait, current);
765
766 lock = (this->controller) ? &this->controller->lock : &this->chip_lock;
767 wq = (this->controller) ? &this->controller->wq : &this->wq;
768 retry:
769 active = this;
770 spin_lock(lock);
771
772 /* Hardware controller shared among independend devices */
773 if (this->controller) {
774 if (this->controller->active)
775 active = this->controller->active;
776 else
777 this->controller->active = this;
778 }
779 if (active == this && this->state == FL_READY) {
780 this->state = new_state;
781 spin_unlock(lock);
782 return;
783 }
784 set_current_state(TASK_UNINTERRUPTIBLE);
785 add_wait_queue(wq, &wait);
786 spin_unlock(lock);
787 schedule();
788 remove_wait_queue(wq, &wait);
789 goto retry;
790 }
791
792 /**
793 * nand_wait - [DEFAULT] wait until the command is done
794 * @mtd: MTD device structure
795 * @this: NAND chip structure
796 * @state: state to select the max. timeout value
797 *
798 * Wait for command done. This applies to erase and program only
799 * Erase can take up to 400ms and program up to 20ms according to
800 * general NAND and SmartMedia specs
801 *
802 */
803 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
804 {
805
806 unsigned long timeo = jiffies;
807 int status;
808
809 if (state == FL_ERASING)
810 timeo += (HZ * 400) / 1000;
811 else
812 timeo += (HZ * 20) / 1000;
813
814 /* Apply this short delay always to ensure that we do wait tWB in
815 * any case on any machine. */
816 ndelay (100);
817
818 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
819 this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
820 else
821 this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
822
823 while (time_before(jiffies, timeo)) {
824 /* Check, if we were interrupted */
825 if (this->state != state)
826 return 0;
827
828 if (this->dev_ready) {
829 if (this->dev_ready(mtd))
830 break;
831 } else {
832 if (this->read_byte(mtd) & NAND_STATUS_READY)
833 break;
834 }
835 cond_resched();
836 }
837 status = (int) this->read_byte(mtd);
838 return status;
839 }
840
841 /**
842 * nand_write_page - [GENERIC] write one page
843 * @mtd: MTD device structure
844 * @this: NAND chip structure
845 * @page: startpage inside the chip, must be called with (page & this->pagemask)
846 * @oob_buf: out of band data buffer
847 * @oobsel: out of band selecttion structre
848 * @cached: 1 = enable cached programming if supported by chip
849 *
850 * Nand_page_program function is used for write and writev !
851 * This function will always program a full page of data
852 * If you call it with a non page aligned buffer, you're lost :)
853 *
854 * Cached programming is not supported yet.
855 */
856 static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page,
857 u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
858 {
859 int i, status;
860 u_char ecc_code[32];
861 int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
862 int *oob_config = oobsel->eccpos;
863 int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
864 int eccbytes = 0;
865
866 /* FIXME: Enable cached programming */
867 cached = 0;
868
869 /* Send command to begin auto page programming */
870 this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
871
872 /* Write out complete page of data, take care of eccmode */
873 switch (eccmode) {
874 /* No ecc, write all */
875 case NAND_ECC_NONE:
876 printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
877 this->write_buf(mtd, this->data_poi, mtd->oobblock);
878 break;
879
880 /* Software ecc 3/256, write all */
881 case NAND_ECC_SOFT:
882 for (; eccsteps; eccsteps--) {
883 this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
884 for (i = 0; i < 3; i++, eccidx++)
885 oob_buf[oob_config[eccidx]] = ecc_code[i];
886 datidx += this->eccsize;
887 }
888 this->write_buf(mtd, this->data_poi, mtd->oobblock);
889 break;
890 default:
891 eccbytes = this->eccbytes;
892 for (; eccsteps; eccsteps--) {
893 /* enable hardware ecc logic for write */
894 this->enable_hwecc(mtd, NAND_ECC_WRITE);
895 this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
896 this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
897 for (i = 0; i < eccbytes; i++, eccidx++)
898 oob_buf[oob_config[eccidx]] = ecc_code[i];
899 /* If the hardware ecc provides syndromes then
900 * the ecc code must be written immidiately after
901 * the data bytes (words) */
902 if (this->options & NAND_HWECC_SYNDROME)
903 this->write_buf(mtd, ecc_code, eccbytes);
904 datidx += this->eccsize;
905 }
906 break;
907 }
908
909 /* Write out OOB data */
910 if (this->options & NAND_HWECC_SYNDROME)
911 this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
912 else
913 this->write_buf(mtd, oob_buf, mtd->oobsize);
914
915 /* Send command to actually program the data */
916 this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
917
918 if (!cached) {
919 /* call wait ready function */
920 status = this->waitfunc (mtd, this, FL_WRITING);
921
922 /* See if operation failed and additional status checks are available */
923 if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
924 status = this->errstat(mtd, this, FL_WRITING, status, page);
925 }
926
927 /* See if device thinks it succeeded */
928 if (status & NAND_STATUS_FAIL) {
929 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
930 return -EIO;
931 }
932 } else {
933 /* FIXME: Implement cached programming ! */
934 /* wait until cache is ready*/
935 // status = this->waitfunc (mtd, this, FL_CACHEDRPG);
936 }
937 return 0;
938 }
939
940 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
941 /**
942 * nand_verify_pages - [GENERIC] verify the chip contents after a write
943 * @mtd: MTD device structure
944 * @this: NAND chip structure
945 * @page: startpage inside the chip, must be called with (page & this->pagemask)
946 * @numpages: number of pages to verify
947 * @oob_buf: out of band data buffer
948 * @oobsel: out of band selecttion structre
949 * @chipnr: number of the current chip
950 * @oobmode: 1 = full buffer verify, 0 = ecc only
951 *
952 * The NAND device assumes that it is always writing to a cleanly erased page.
953 * Hence, it performs its internal write verification only on bits that
954 * transitioned from 1 to 0. The device does NOT verify the whole page on a
955 * byte by byte basis. It is possible that the page was not completely erased
956 * or the page is becoming unusable due to wear. The read with ECC would catch
957 * the error later when the ECC page check fails, but we would rather catch
958 * it early in the page write stage. Better to write no data than invalid data.
959 */
960 static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
961 u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
962 {
963 int i, j, datidx = 0, oobofs = 0, res = -EIO;
964 int eccsteps = this->eccsteps;
965 int hweccbytes;
966 u_char oobdata[64];
967
968 hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
969
970 /* Send command to read back the first page */
971 this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
972
973 for(;;) {
974 for (j = 0; j < eccsteps; j++) {
975 /* Loop through and verify the data */
976 if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
977 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
978 goto out;
979 }
980 datidx += mtd->eccsize;
981 /* Have we a hw generator layout ? */
982 if (!hweccbytes)
983 continue;
984 if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
985 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
986 goto out;
987 }
988 oobofs += hweccbytes;
989 }
990
991 /* check, if we must compare all data or if we just have to
992 * compare the ecc bytes
993 */
994 if (oobmode) {
995 if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
996 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
997 goto out;
998 }
999 } else {
1000 /* Read always, else autoincrement fails */
1001 this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
1002
1003 if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
1004 int ecccnt = oobsel->eccbytes;
1005
1006 for (i = 0; i < ecccnt; i++) {
1007 int idx = oobsel->eccpos[i];
1008 if (oobdata[idx] != oob_buf[oobofs + idx] ) {
1009 DEBUG (MTD_DEBUG_LEVEL0,
1010 "%s: Failed ECC write "
1011 "verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
1012 goto out;
1013 }
1014 }
1015 }
1016 }
1017 oobofs += mtd->oobsize - hweccbytes * eccsteps;
1018 page++;
1019 numpages--;
1020
1021 /* Apply delay or wait for ready/busy pin
1022 * Do this before the AUTOINCR check, so no problems
1023 * arise if a chip which does auto increment
1024 * is marked as NOAUTOINCR by the board driver.
1025 * Do this also before returning, so the chip is
1026 * ready for the next command.
1027 */
1028 if (!this->dev_ready)
1029 udelay (this->chip_delay);
1030 else
1031 nand_wait_ready(mtd);
1032
1033 /* All done, return happy */
1034 if (!numpages)
1035 return 0;
1036
1037
1038 /* Check, if the chip supports auto page increment */
1039 if (!NAND_CANAUTOINCR(this))
1040 this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
1041 }
1042 /*
1043 * Terminate the read command. We come here in case of an error
1044 * So we must issue a reset command.
1045 */
1046 out:
1047 this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
1048 return res;
1049 }
1050 #endif
1051
1052 /**
1053 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1054 * @mtd: MTD device structure
1055 * @from: offset to read from
1056 * @len: number of bytes to read
1057 * @retlen: pointer to variable to store the number of read bytes
1058 * @buf: the databuffer to put data
1059 *
1060 * This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL
1061 * and flags = 0xff
1062 */
1063 static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
1064 {
1065 return nand_do_read_ecc (mtd, from, len, retlen, buf, NULL, &mtd->oobinfo, 0xff);
1066 }
1067
1068
1069 /**
1070 * nand_read_ecc - [MTD Interface] MTD compability function for nand_do_read_ecc
1071 * @mtd: MTD device structure
1072 * @from: offset to read from
1073 * @len: number of bytes to read
1074 * @retlen: pointer to variable to store the number of read bytes
1075 * @buf: the databuffer to put data
1076 * @oob_buf: filesystem supplied oob data buffer
1077 * @oobsel: oob selection structure
1078 *
1079 * This function simply calls nand_do_read_ecc with flags = 0xff
1080 */
1081 static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
1082 size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
1083 {
1084 /* use userspace supplied oobinfo, if zero */
1085 if (oobsel == NULL)
1086 oobsel = &mtd->oobinfo;
1087 return nand_do_read_ecc(mtd, from, len, retlen, buf, oob_buf, oobsel, 0xff);
1088 }
1089
1090
1091 /**
1092 * nand_do_read_ecc - [MTD Interface] Read data with ECC
1093 * @mtd: MTD device structure
1094 * @from: offset to read from
1095 * @len: number of bytes to read
1096 * @retlen: pointer to variable to store the number of read bytes
1097 * @buf: the databuffer to put data
1098 * @oob_buf: filesystem supplied oob data buffer (can be NULL)
1099 * @oobsel: oob selection structure
1100 * @flags: flag to indicate if nand_get_device/nand_release_device should be preformed
1101 * and how many corrected error bits are acceptable:
1102 * bits 0..7 - number of tolerable errors
1103 * bit 8 - 0 == do not get/release chip, 1 == get/release chip
1104 *
1105 * NAND read with ECC
1106 */
1107 int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
1108 size_t * retlen, u_char * buf, u_char * oob_buf,
1109 struct nand_oobinfo *oobsel, int flags)
1110 {
1111
1112 int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
1113 int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
1114 struct nand_chip *this = mtd->priv;
1115 u_char *data_poi, *oob_data = oob_buf;
1116 u_char ecc_calc[32];
1117 u_char ecc_code[32];
1118 int eccmode, eccsteps;
1119 int *oob_config, datidx;
1120 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1121 int eccbytes;
1122 int compareecc = 1;
1123 int oobreadlen;
1124
1125
1126 DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1127
1128 /* Do not allow reads past end of device */
1129 if ((from + len) > mtd->size) {
1130 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
1131 *retlen = 0;
1132 return -EINVAL;
1133 }
1134
1135 /* Grab the lock and see if the device is available */
1136 if (flags & NAND_GET_DEVICE)
1137 nand_get_device (this, mtd, FL_READING);
1138
1139 /* Autoplace of oob data ? Use the default placement scheme */
1140 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
1141 oobsel = this->autooob;
1142
1143 eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
1144 oob_config = oobsel->eccpos;
1145
1146 /* Select the NAND device */
1147 chipnr = (int)(from >> this->chip_shift);
1148 this->select_chip(mtd, chipnr);
1149
1150 /* First we calculate the starting page */
1151 realpage = (int) (from >> this->page_shift);
1152 page = realpage & this->pagemask;
1153
1154 /* Get raw starting column */
1155 col = from & (mtd->oobblock - 1);
1156
1157 end = mtd->oobblock;
1158 ecc = this->eccsize;
1159 eccbytes = this->eccbytes;
1160
1161 if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
1162 compareecc = 0;
1163
1164 oobreadlen = mtd->oobsize;
1165 if (this->options & NAND_HWECC_SYNDROME)
1166 oobreadlen -= oobsel->eccbytes;
1167
1168 /* Loop until all data read */
1169 while (read < len) {
1170
1171 int aligned = (!col && (len - read) >= end);
1172 /*
1173 * If the read is not page aligned, we have to read into data buffer
1174 * due to ecc, else we read into return buffer direct
1175 */
1176 if (aligned)
1177 data_poi = &buf[read];
1178 else
1179 data_poi = this->data_buf;
1180
1181 /* Check, if we have this page in the buffer
1182 *
1183 * FIXME: Make it work when we must provide oob data too,
1184 * check the usage of data_buf oob field
1185 */
1186 if (realpage == this->pagebuf && !oob_buf) {
1187 /* aligned read ? */
1188 if (aligned)
1189 memcpy (data_poi, this->data_buf, end);
1190 goto readdata;
1191 }
1192
1193 /* Check, if we must send the read command */
1194 if (sndcmd) {
1195 this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
1196 sndcmd = 0;
1197 }
1198
1199 /* get oob area, if we have no oob buffer from fs-driver */
1200 if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
1201 oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1202 oob_data = &this->data_buf[end];
1203
1204 eccsteps = this->eccsteps;
1205
1206 switch (eccmode) {
1207 case NAND_ECC_NONE: { /* No ECC, Read in a page */
1208 static unsigned long lastwhinge = 0;
1209 if ((lastwhinge / HZ) != (jiffies / HZ)) {
1210 printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
1211 lastwhinge = jiffies;
1212 }
1213 this->read_buf(mtd, data_poi, end);
1214 break;
1215 }
1216
1217 case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
1218 this->read_buf(mtd, data_poi, end);
1219 for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc)
1220 this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
1221 break;
1222
1223 default:
1224 for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
1225 this->enable_hwecc(mtd, NAND_ECC_READ);
1226 this->read_buf(mtd, &data_poi[datidx], ecc);
1227
1228 /* HW ecc with syndrome calculation must read the
1229 * syndrome from flash immidiately after the data */
1230 if (!compareecc) {
1231 /* Some hw ecc generators need to know when the
1232 * syndrome is read from flash */
1233 this->enable_hwecc(mtd, NAND_ECC_READSYN);
1234 this->read_buf(mtd, &oob_data[i], eccbytes);
1235 /* We calc error correction directly, it checks the hw
1236 * generator for an error, reads back the syndrome and
1237 * does the error correction on the fly */
1238 ecc_status = this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]);
1239 if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
1240 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "
1241 "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
1242 ecc_failed++;
1243 }
1244 } else {
1245 this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
1246 }
1247 }
1248 break;
1249 }
1250
1251 /* read oobdata */
1252 this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
1253
1254 /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
1255 if (!compareecc)
1256 goto readoob;
1257
1258 /* Pick the ECC bytes out of the oob data */
1259 for (j = 0; j < oobsel->eccbytes; j++)
1260 ecc_code[j] = oob_data[oob_config[j]];
1261
1262 /* correct data, if neccecary */
1263 for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
1264 ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
1265
1266 /* Get next chunk of ecc bytes */
1267 j += eccbytes;
1268
1269 /* Check, if we have a fs supplied oob-buffer,
1270 * This is the legacy mode. Used by YAFFS1
1271 * Should go away some day
1272 */
1273 if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
1274 int *p = (int *)(&oob_data[mtd->oobsize]);
1275 p[i] = ecc_status;
1276 }
1277
1278 if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
1279 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
1280 ecc_failed++;
1281 }
1282 }
1283
1284 readoob:
1285 /* check, if we have a fs supplied oob-buffer */
1286 if (oob_buf) {
1287 /* without autoplace. Legacy mode used by YAFFS1 */
1288 switch(oobsel->useecc) {
1289 case MTD_NANDECC_AUTOPLACE:
1290 case MTD_NANDECC_AUTOPL_USR:
1291 /* Walk through the autoplace chunks */
1292 for (i = 0; oobsel->oobfree[i][1]; i++) {
1293 int from = oobsel->oobfree[i][0];
1294 int num = oobsel->oobfree[i][1];
1295 memcpy(&oob_buf[oob], &oob_data[from], num);
1296 oob += num;
1297 }
1298 break;
1299 case MTD_NANDECC_PLACE:
1300 /* YAFFS1 legacy mode */
1301 oob_data += this->eccsteps * sizeof (int);
1302 default:
1303 oob_data += mtd->oobsize;
1304 }
1305 }
1306 readdata:
1307 /* Partial page read, transfer data into fs buffer */
1308 if (!aligned) {
1309 for (j = col; j < end && read < len; j++)
1310 buf[read++] = data_poi[j];
1311 this->pagebuf = realpage;
1312 } else
1313 read += mtd->oobblock;
1314
1315 /* Apply delay or wait for ready/busy pin
1316 * Do this before the AUTOINCR check, so no problems
1317 * arise if a chip which does auto increment
1318 * is marked as NOAUTOINCR by the board driver.
1319 */
1320 if (!this->dev_ready)
1321 udelay (this->chip_delay);
1322 else
1323 nand_wait_ready(mtd);
1324
1325 if (read == len)
1326 break;
1327
1328 /* For subsequent reads align to page boundary. */
1329 col = 0;
1330 /* Increment page address */
1331 realpage++;
1332
1333 page = realpage & this->pagemask;
1334 /* Check, if we cross a chip boundary */
1335 if (!page) {
1336 chipnr++;
1337 this->select_chip(mtd, -1);
1338 this->select_chip(mtd, chipnr);
1339 }
1340 /* Check, if the chip supports auto page increment
1341 * or if we have hit a block boundary.
1342 */
1343 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
1344 sndcmd = 1;
1345 }
1346
1347 /* Deselect and wake up anyone waiting on the device */
1348 if (flags & NAND_GET_DEVICE)
1349 nand_release_device(mtd);
1350
1351 /*
1352 * Return success, if no ECC failures, else -EBADMSG
1353 * fs driver will take care of that, because
1354 * retlen == desired len and result == -EBADMSG
1355 */
1356 *retlen = read;
1357 return ecc_failed ? -EBADMSG : 0;
1358 }
1359
1360 /**
1361 * nand_read_oob - [MTD Interface] NAND read out-of-band
1362 * @mtd: MTD device structure
1363 * @from: offset to read from
1364 * @len: number of bytes to read
1365 * @retlen: pointer to variable to store the number of read bytes
1366 * @buf: the databuffer to put data
1367 *
1368 * NAND read out-of-band data from the spare area
1369 */
1370 static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
1371 {
1372 int i, col, page, chipnr;
1373 struct nand_chip *this = mtd->priv;
1374 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1375
1376 DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1377
1378 /* Shift to get page */
1379 page = (int)(from >> this->page_shift);
1380 chipnr = (int)(from >> this->chip_shift);
1381
1382 /* Mask to get column */
1383 col = from & (mtd->oobsize - 1);
1384
1385 /* Initialize return length value */
1386 *retlen = 0;
1387
1388 /* Do not allow reads past end of device */
1389 if ((from + len) > mtd->size) {
1390 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
1391 *retlen = 0;
1392 return -EINVAL;
1393 }
1394
1395 /* Grab the lock and see if the device is available */
1396 nand_get_device (this, mtd , FL_READING);
1397
1398 /* Select the NAND device */
1399 this->select_chip(mtd, chipnr);
1400
1401 /* Send the read command */
1402 this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
1403 /*
1404 * Read the data, if we read more than one page
1405 * oob data, let the device transfer the data !
1406 */
1407 i = 0;
1408 while (i < len) {
1409 int thislen = mtd->oobsize - col;
1410 thislen = min_t(int, thislen, len);
1411 this->read_buf(mtd, &buf[i], thislen);
1412 i += thislen;
1413
1414 /* Read more ? */
1415 if (i < len) {
1416 page++;
1417 col = 0;
1418
1419 /* Check, if we cross a chip boundary */
1420 if (!(page & this->pagemask)) {
1421 chipnr++;
1422 this->select_chip(mtd, -1);
1423 this->select_chip(mtd, chipnr);
1424 }
1425
1426 /* Apply delay or wait for ready/busy pin
1427 * Do this before the AUTOINCR check, so no problems
1428 * arise if a chip which does auto increment
1429 * is marked as NOAUTOINCR by the board driver.
1430 */
1431 if (!this->dev_ready)
1432 udelay (this->chip_delay);
1433 else
1434 nand_wait_ready(mtd);
1435
1436 /* Check, if the chip supports auto page increment
1437 * or if we have hit a block boundary.
1438 */
1439 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
1440 /* For subsequent page reads set offset to 0 */
1441 this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
1442 }
1443 }
1444 }
1445
1446 /* Deselect and wake up anyone waiting on the device */
1447 nand_release_device(mtd);
1448
1449 /* Return happy */
1450 *retlen = len;
1451 return 0;
1452 }
1453
1454 /**
1455 * nand_read_raw - [GENERIC] Read raw data including oob into buffer
1456 * @mtd: MTD device structure
1457 * @buf: temporary buffer
1458 * @from: offset to read from
1459 * @len: number of bytes to read
1460 * @ooblen: number of oob data bytes to read
1461 *
1462 * Read raw data including oob into buffer
1463 */
1464 int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
1465 {
1466 struct nand_chip *this = mtd->priv;
1467 int page = (int) (from >> this->page_shift);
1468 int chip = (int) (from >> this->chip_shift);
1469 int sndcmd = 1;
1470 int cnt = 0;
1471 int pagesize = mtd->oobblock + mtd->oobsize;
1472 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1473
1474 /* Do not allow reads past end of device */
1475 if ((from + len) > mtd->size) {
1476 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
1477 return -EINVAL;
1478 }
1479
1480 /* Grab the lock and see if the device is available */
1481 nand_get_device (this, mtd , FL_READING);
1482
1483 this->select_chip (mtd, chip);
1484
1485 /* Add requested oob length */
1486 len += ooblen;
1487
1488 while (len) {
1489 if (sndcmd)
1490 this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
1491 sndcmd = 0;
1492
1493 this->read_buf (mtd, &buf[cnt], pagesize);
1494
1495 len -= pagesize;
1496 cnt += pagesize;
1497 page++;
1498
1499 if (!this->dev_ready)
1500 udelay (this->chip_delay);
1501 else
1502 nand_wait_ready(mtd);
1503
1504 /* Check, if the chip supports auto page increment */
1505 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
1506 sndcmd = 1;
1507 }
1508
1509 /* Deselect and wake up anyone waiting on the device */
1510 nand_release_device(mtd);
1511 return 0;
1512 }
1513
1514
1515 /**
1516 * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
1517 * @mtd: MTD device structure
1518 * @fsbuf: buffer given by fs driver
1519 * @oobsel: out of band selection structre
1520 * @autoplace: 1 = place given buffer into the oob bytes
1521 * @numpages: number of pages to prepare
1522 *
1523 * Return:
1524 * 1. Filesystem buffer available and autoplacement is off,
1525 * return filesystem buffer
1526 * 2. No filesystem buffer or autoplace is off, return internal
1527 * buffer
1528 * 3. Filesystem buffer is given and autoplace selected
1529 * put data from fs buffer into internal buffer and
1530 * retrun internal buffer
1531 *
1532 * Note: The internal buffer is filled with 0xff. This must
1533 * be done only once, when no autoplacement happens
1534 * Autoplacement sets the buffer dirty flag, which
1535 * forces the 0xff fill before using the buffer again.
1536 *
1537 */
1538 static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
1539 int autoplace, int numpages)
1540 {
1541 struct nand_chip *this = mtd->priv;
1542 int i, len, ofs;
1543
1544 /* Zero copy fs supplied buffer */
1545 if (fsbuf && !autoplace)
1546 return fsbuf;
1547
1548 /* Check, if the buffer must be filled with ff again */
1549 if (this->oobdirty) {
1550 memset (this->oob_buf, 0xff,
1551 mtd->oobsize << (this->phys_erase_shift - this->page_shift));
1552 this->oobdirty = 0;
1553 }
1554
1555 /* If we have no autoplacement or no fs buffer use the internal one */
1556 if (!autoplace || !fsbuf)
1557 return this->oob_buf;
1558
1559 /* Walk through the pages and place the data */
1560 this->oobdirty = 1;
1561 ofs = 0;
1562 while (numpages--) {
1563 for (i = 0, len = 0; len < mtd->oobavail; i++) {
1564 int to = ofs + oobsel->oobfree[i][0];
1565 int num = oobsel->oobfree[i][1];
1566 memcpy (&this->oob_buf[to], fsbuf, num);
1567 len += num;
1568 fsbuf += num;
1569 }
1570 ofs += mtd->oobavail;
1571 }
1572 return this->oob_buf;
1573 }
1574
1575 #define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
1576
1577 /**
1578 * nand_write - [MTD Interface] compability function for nand_write_ecc
1579 * @mtd: MTD device structure
1580 * @to: offset to write to
1581 * @len: number of bytes to write
1582 * @retlen: pointer to variable to store the number of written bytes
1583 * @buf: the data to write
1584 *
1585 * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
1586 *
1587 */
1588 static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
1589 {
1590 return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
1591 }
1592
1593 /**
1594 * nand_write_ecc - [MTD Interface] NAND write with ECC
1595 * @mtd: MTD device structure
1596 * @to: offset to write to
1597 * @len: number of bytes to write
1598 * @retlen: pointer to variable to store the number of written bytes
1599 * @buf: the data to write
1600 * @eccbuf: filesystem supplied oob data buffer
1601 * @oobsel: oob selection structure
1602 *
1603 * NAND write with ECC
1604 */
1605 static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
1606 size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
1607 {
1608 int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
1609 int autoplace = 0, numpages, totalpages;
1610 struct nand_chip *this = mtd->priv;
1611 u_char *oobbuf, *bufstart;
1612 int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
1613
1614 DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1615
1616 /* Initialize retlen, in case of early exit */
1617 *retlen = 0;
1618
1619 /* Do not allow write past end of device */
1620 if ((to + len) > mtd->size) {
1621 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
1622 return -EINVAL;
1623 }
1624
1625 /* reject writes, which are not page aligned */
1626 if (NOTALIGNED (to) || NOTALIGNED(len)) {
1627 printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
1628 return -EINVAL;
1629 }
1630
1631 /* Grab the lock and see if the device is available */
1632 nand_get_device (this, mtd, FL_WRITING);
1633
1634 /* Calculate chipnr */
1635 chipnr = (int)(to >> this->chip_shift);
1636 /* Select the NAND device */
1637 this->select_chip(mtd, chipnr);
1638
1639 /* Check, if it is write protected */
1640 if (nand_check_wp(mtd))
1641 goto out;
1642
1643 /* if oobsel is NULL, use chip defaults */
1644 if (oobsel == NULL)
1645 oobsel = &mtd->oobinfo;
1646
1647 /* Autoplace of oob data ? Use the default placement scheme */
1648 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
1649 oobsel = this->autooob;
1650 autoplace = 1;
1651 }
1652 if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1653 autoplace = 1;
1654
1655 /* Setup variables and oob buffer */
1656 totalpages = len >> this->page_shift;
1657 page = (int) (to >> this->page_shift);
1658 /* Invalidate the page cache, if we write to the cached page */
1659 if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
1660 this->pagebuf = -1;
1661
1662 /* Set it relative to chip */
1663 page &= this->pagemask;
1664 startpage = page;
1665 /* Calc number of pages we can write in one go */
1666 numpages = min (ppblock - (startpage & (ppblock - 1)), totalpages);
1667 oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
1668 bufstart = (u_char *)buf;
1669
1670 /* Loop until all data is written */
1671 while (written < len) {
1672
1673 this->data_poi = (u_char*) &buf[written];
1674 /* Write one page. If this is the last page to write
1675 * or the last page in this block, then use the
1676 * real pageprogram command, else select cached programming
1677 * if supported by the chip.
1678 */
1679 ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
1680 if (ret) {
1681 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
1682 goto out;
1683 }
1684 /* Next oob page */
1685 oob += mtd->oobsize;
1686 /* Update written bytes count */
1687 written += mtd->oobblock;
1688 if (written == len)
1689 goto cmp;
1690
1691 /* Increment page address */
1692 page++;
1693
1694 /* Have we hit a block boundary ? Then we have to verify and
1695 * if verify is ok, we have to setup the oob buffer for
1696 * the next pages.
1697 */
1698 if (!(page & (ppblock - 1))){
1699 int ofs;
1700 this->data_poi = bufstart;
1701 ret = nand_verify_pages (mtd, this, startpage,
1702 page - startpage,
1703 oobbuf, oobsel, chipnr, (eccbuf != NULL));
1704 if (ret) {
1705 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
1706 goto out;
1707 }
1708 *retlen = written;
1709
1710 ofs = autoplace ? mtd->oobavail : mtd->oobsize;
1711 if (eccbuf)
1712 eccbuf += (page - startpage) * ofs;
1713 totalpages -= page - startpage;
1714 numpages = min (totalpages, ppblock);
1715 page &= this->pagemask;
1716 startpage = page;
1717 oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel,
1718 autoplace, numpages);
1719 /* Check, if we cross a chip boundary */
1720 if (!page) {
1721 chipnr++;
1722 this->select_chip(mtd, -1);
1723 this->select_chip(mtd, chipnr);
1724 }
1725 }
1726 }
1727 /* Verify the remaining pages */
1728 cmp:
1729 this->data_poi = bufstart;
1730 ret = nand_verify_pages (mtd, this, startpage, totalpages,
1731 oobbuf, oobsel, chipnr, (eccbuf != NULL));
1732 if (!ret)
1733 *retlen = written;
1734 else
1735 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
1736
1737 out:
1738 /* Deselect and wake up anyone waiting on the device */
1739 nand_release_device(mtd);
1740
1741 return ret;
1742 }
1743
1744
1745 /**
1746 * nand_write_oob - [MTD Interface] NAND write out-of-band
1747 * @mtd: MTD device structure
1748 * @to: offset to write to
1749 * @len: number of bytes to write
1750 * @retlen: pointer to variable to store the number of written bytes
1751 * @buf: the data to write
1752 *
1753 * NAND write out-of-band
1754 */
1755 static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
1756 {
1757 int column, page, status, ret = -EIO, chipnr;
1758 struct nand_chip *this = mtd->priv;
1759
1760 DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1761
1762 /* Shift to get page */
1763 page = (int) (to >> this->page_shift);
1764 chipnr = (int) (to >> this->chip_shift);
1765
1766 /* Mask to get column */
1767 column = to & (mtd->oobsize - 1);
1768
1769 /* Initialize return length value */
1770 *retlen = 0;
1771
1772 /* Do not allow write past end of page */
1773 if ((column + len) > mtd->oobsize) {
1774 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
1775 return -EINVAL;
1776 }
1777
1778 /* Grab the lock and see if the device is available */
1779 nand_get_device (this, mtd, FL_WRITING);
1780
1781 /* Select the NAND device */
1782 this->select_chip(mtd, chipnr);
1783
1784 /* Reset the chip. Some chips (like the Toshiba TC5832DC found
1785 in one of my DiskOnChip 2000 test units) will clear the whole
1786 data page too if we don't do this. I have no clue why, but
1787 I seem to have 'fixed' it in the doc2000 driver in
1788 August 1999. dwmw2. */
1789 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1790
1791 /* Check, if it is write protected */
1792 if (nand_check_wp(mtd))
1793 goto out;
1794
1795 /* Invalidate the page cache, if we write to the cached page */
1796 if (page == this->pagebuf)
1797 this->pagebuf = -1;
1798
1799 if (NAND_MUST_PAD(this)) {
1800 /* Write out desired data */
1801 this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
1802 /* prepad 0xff for partial programming */
1803 this->write_buf(mtd, ffchars, column);
1804 /* write data */
1805 this->write_buf(mtd, buf, len);
1806 /* postpad 0xff for partial programming */
1807 this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
1808 } else {
1809 /* Write out desired data */
1810 this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
1811 /* write data */
1812 this->write_buf(mtd, buf, len);
1813 }
1814 /* Send command to program the OOB data */
1815 this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
1816
1817 status = this->waitfunc (mtd, this, FL_WRITING);
1818
1819 /* See if device thinks it succeeded */
1820 if (status & NAND_STATUS_FAIL) {
1821 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
1822 ret = -EIO;
1823 goto out;
1824 }
1825 /* Return happy */
1826 *retlen = len;
1827
1828 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1829 /* Send command to read back the data */
1830 this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);
1831
1832 if (this->verify_buf(mtd, buf, len)) {
1833 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
1834 ret = -EIO;
1835 goto out;
1836 }
1837 #endif
1838 ret = 0;
1839 out:
1840 /* Deselect and wake up anyone waiting on the device */
1841 nand_release_device(mtd);
1842
1843 return ret;
1844 }
1845
1846
1847 /**
1848 * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
1849 * @mtd: MTD device structure
1850 * @vecs: the iovectors to write
1851 * @count: number of vectors
1852 * @to: offset to write to
1853 * @retlen: pointer to variable to store the number of written bytes
1854 *
1855 * NAND write with kvec. This just calls the ecc function
1856 */
1857 static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
1858 loff_t to, size_t * retlen)
1859 {
1860 return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));
1861 }
1862
1863 /**
1864 * nand_writev_ecc - [MTD Interface] write with iovec with ecc
1865 * @mtd: MTD device structure
1866 * @vecs: the iovectors to write
1867 * @count: number of vectors
1868 * @to: offset to write to
1869 * @retlen: pointer to variable to store the number of written bytes
1870 * @eccbuf: filesystem supplied oob data buffer
1871 * @oobsel: oob selection structure
1872 *
1873 * NAND write with iovec with ecc
1874 */
1875 static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
1876 loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
1877 {
1878 int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
1879 int oob, numpages, autoplace = 0, startpage;
1880 struct nand_chip *this = mtd->priv;
1881 int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
1882 u_char *oobbuf, *bufstart;
1883
1884 /* Preset written len for early exit */
1885 *retlen = 0;
1886
1887 /* Calculate total length of data */
1888 total_len = 0;
1889 for (i = 0; i < count; i++)
1890 total_len += (int) vecs[i].iov_len;
1891
1892 DEBUG (MTD_DEBUG_LEVEL3,
1893 "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
1894
1895 /* Do not allow write past end of page */
1896 if ((to + total_len) > mtd->size) {
1897 DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
1898 return -EINVAL;
1899 }
1900
1901 /* reject writes, which are not page aligned */
1902 if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
1903 printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
1904 return -EINVAL;
1905 }
1906
1907 /* Grab the lock and see if the device is available */
1908 nand_get_device (this, mtd, FL_WRITING);
1909
1910 /* Get the current chip-nr */
1911 chipnr = (int) (to >> this->chip_shift);
1912 /* Select the NAND device */
1913 this->select_chip(mtd, chipnr);
1914
1915 /* Check, if it is write protected */
1916 if (nand_check_wp(mtd))
1917 goto out;
1918
1919 /* if oobsel is NULL, use chip defaults */
1920 if (oobsel == NULL)
1921 oobsel = &mtd->oobinfo;
1922
1923 /* Autoplace of oob data ? Use the default placement scheme */
1924 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
1925 oobsel = this->autooob;
1926 autoplace = 1;
1927 }
1928 if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1929 autoplace = 1;
1930
1931 /* Setup start page */
1932 page = (int) (to >> this->page_shift);
1933 /* Invalidate the page cache, if we write to the cached page */
1934 if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))
1935 this->pagebuf = -1;
1936
1937 startpage = page & this->pagemask;
1938
1939 /* Loop until all kvec' data has been written */
1940 len = 0;
1941 while (count) {
1942 /* If the given tuple is >= pagesize then
1943 * write it out from the iov
1944 */
1945 if ((vecs->iov_len - len) >= mtd->oobblock) {
1946 /* Calc number of pages we can write
1947 * out of this iov in one go */
1948 numpages = (vecs->iov_len - len) >> this->page_shift;
1949 /* Do not cross block boundaries */
1950 numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
1951 oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
1952 bufstart = (u_char *)vecs->iov_base;
1953 bufstart += len;
1954 this->data_poi = bufstart;
1955 oob = 0;
1956 for (i = 1; i <= numpages; i++) {
1957 /* Write one page. If this is the last page to write
1958 * then use the real pageprogram command, else select
1959 * cached programming if supported by the chip.
1960 */
1961 ret = nand_write_page (mtd, this, page & this->pagemask,
1962 &oobbuf[oob], oobsel, i != numpages);
1963 if (ret)
1964 goto out;
1965 this->data_poi += mtd->oobblock;
1966 len += mtd->oobblock;
1967 oob += mtd->oobsize;
1968 page++;
1969 }
1970 /* Check, if we have to switch to the next tuple */
1971 if (len >= (int) vecs->iov_len) {
1972 vecs++;
1973 len = 0;
1974 count--;
1975 }
1976 } else {
1977 /* We must use the internal buffer, read data out of each
1978 * tuple until we have a full page to write
1979 */
1980 int cnt = 0;
1981 while (cnt < mtd->oobblock) {
1982 if (vecs->iov_base != NULL && vecs->iov_len)
1983 this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
1984 /* Check, if we have to switch to the next tuple */
1985 if (len >= (int) vecs->iov_len) {
1986 vecs++;
1987 len = 0;
1988 count--;
1989 }
1990 }
1991 this->pagebuf = page;
1992 this->data_poi = this->data_buf;
1993 bufstart = this->data_poi;
1994 numpages = 1;
1995 oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
1996 ret = nand_write_page (mtd, this, page & this->pagemask,
1997 oobbuf, oobsel, 0);
1998 if (ret)
1999 goto out;
2000 page++;
2001 }
2002
2003 this->data_poi = bufstart;
2004 ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
2005 if (ret)
2006 goto out;
2007
2008 written += mtd->oobblock * numpages;
2009 /* All done ? */
2010 if (!count)
2011 break;
2012
2013 startpage = page & this->pagemask;
2014 /* Check, if we cross a chip boundary */
2015 if (!startpage) {
2016 chipnr++;
2017 this->select_chip(mtd, -1);
2018 this->select_chip(mtd, chipnr);
2019 }
2020 }
2021 ret = 0;
2022 out:
2023 /* Deselect and wake up anyone waiting on the device */
2024 nand_release_device(mtd);
2025
2026 *retlen = written;
2027 return ret;
2028 }
2029
2030 /**
2031 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2032 * @mtd: MTD device structure
2033 * @page: the page address of the block which will be erased
2034 *
2035 * Standard erase command for NAND chips
2036 */
2037 static void single_erase_cmd (struct mtd_info *mtd, int page)
2038 {
2039 struct nand_chip *this = mtd->priv;
2040 /* Send commands to erase a block */
2041 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
2042 this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
2043 }
2044
2045 /**
2046 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2047 * @mtd: MTD device structure
2048 * @page: the page address of the block which will be erased
2049 *
2050 * AND multi block erase command function
2051 * Erase 4 consecutive blocks
2052 */
2053 static void multi_erase_cmd (struct mtd_info *mtd, int page)
2054 {
2055 struct nand_chip *this = mtd->priv;
2056 /* Send commands to erase a block */
2057 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2058 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2059 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2060 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
2061 this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
2062 }
2063
2064 /**
2065 * nand_erase - [MTD Interface] erase block(s)
2066 * @mtd: MTD device structure
2067 * @instr: erase instruction
2068 *
2069 * Erase one ore more blocks
2070 */
2071 static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
2072 {
2073 return nand_erase_nand (mtd, instr, 0);
2074 }
2075
2076 #define BBT_PAGE_MASK 0xffffff3f
2077 /**
2078 * nand_erase_intern - [NAND Interface] erase block(s)
2079 * @mtd: MTD device structure
2080 * @instr: erase instruction
2081 * @allowbbt: allow erasing the bbt area
2082 *
2083 * Erase one ore more blocks
2084 */
2085 int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
2086 {
2087 int page, len, status, pages_per_block, ret, chipnr;
2088 struct nand_chip *this = mtd->priv;
2089 int rewrite_bbt[NAND_MAX_CHIPS]={0}; /* flags to indicate the page, if bbt needs to be rewritten. */
2090 unsigned int bbt_masked_page; /* bbt mask to compare to page being erased. */
2091 /* It is used to see if the current page is in the same */
2092 /* 256 block group and the same bank as the bbt. */
2093
2094 DEBUG (MTD_DEBUG_LEVEL3,
2095 "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
2096
2097 /* Start address must align on block boundary */
2098 if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
2099 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
2100 return -EINVAL;
2101 }
2102
2103 /* Length must align on block boundary */
2104 if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
2105 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
2106 return -EINVAL;
2107 }
2108
2109 /* Do not allow erase past end of device */
2110 if ((instr->len + instr->addr) > mtd->size) {
2111 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
2112 return -EINVAL;
2113 }
2114
2115 instr->fail_addr = 0xffffffff;
2116
2117 /* Grab the lock and see if the device is available */
2118 nand_get_device (this, mtd, FL_ERASING);
2119
2120 /* Shift to get first page */
2121 page = (int) (instr->addr >> this->page_shift);
2122 chipnr = (int) (instr->addr >> this->chip_shift);
2123
2124 /* Calculate pages in each block */
2125 pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
2126
2127 /* Select the NAND device */
2128 this->select_chip(mtd, chipnr);
2129
2130 /* Check the WP bit */
2131 /* Check, if it is write protected */
2132 if (nand_check_wp(mtd)) {
2133 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
2134 instr->state = MTD_ERASE_FAILED;
2135 goto erase_exit;
2136 }
2137
2138 /* if BBT requires refresh, set the BBT page mask to see if the BBT should be rewritten */
2139 if (this->options & BBT_AUTO_REFRESH) {
2140 bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2141 } else {
2142 bbt_masked_page = 0xffffffff; /* should not match anything */
2143 }
2144
2145 /* Loop through the pages */
2146 len = instr->len;
2147
2148 instr->state = MTD_ERASING;
2149
2150 while (len) {
2151 /* Check if we have a bad block, we do not erase bad blocks ! */
2152 if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
2153 printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
2154 instr->state = MTD_ERASE_FAILED;
2155 goto erase_exit;
2156 }
2157
2158 /* Invalidate the page cache, if we erase the block which contains
2159 the current cached page */
2160 if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
2161 this->pagebuf = -1;
2162
2163 this->erase_cmd (mtd, page & this->pagemask);
2164
2165 status = this->waitfunc (mtd, this, FL_ERASING);
2166
2167 /* See if operation failed and additional status checks are available */
2168 if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
2169 status = this->errstat(mtd, this, FL_ERASING, status, page);
2170 }
2171
2172 /* See if block erase succeeded */
2173 if (status & NAND_STATUS_FAIL) {
2174 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
2175 instr->state = MTD_ERASE_FAILED;
2176 instr->fail_addr = (page << this->page_shift);
2177 goto erase_exit;
2178 }
2179
2180 /* if BBT requires refresh, set the BBT rewrite flag to the page being erased */
2181 if (this->options & BBT_AUTO_REFRESH) {
2182 if (((page & BBT_PAGE_MASK) == bbt_masked_page) &&
2183 (page != this->bbt_td->pages[chipnr])) {
2184 rewrite_bbt[chipnr] = (page << this->page_shift);
2185 }
2186 }
2187
2188 /* Increment page address and decrement length */
2189 len -= (1 << this->phys_erase_shift);
2190 page += pages_per_block;
2191
2192 /* Check, if we cross a chip boundary */
2193 if (len && !(page & this->pagemask)) {
2194 chipnr++;
2195 this->select_chip(mtd, -1);
2196 this->select_chip(mtd, chipnr);
2197
2198 /* if BBT requires refresh and BBT-PERCHIP,
2199 * set the BBT page mask to see if this BBT should be rewritten */
2200 if ((this->options & BBT_AUTO_REFRESH) && (this->bbt_td->options & NAND_BBT_PERCHIP)) {
2201 bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2202 }
2203
2204 }
2205 }
2206 instr->state = MTD_ERASE_DONE;
2207
2208 erase_exit:
2209
2210 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2211 /* Do call back function */
2212 if (!ret)
2213 mtd_erase_callback(instr);
2214
2215 /* Deselect and wake up anyone waiting on the device */
2216 nand_release_device(mtd);
2217
2218 /* if BBT requires refresh and erase was successful, rewrite any selected bad block tables */
2219 if ((this->options & BBT_AUTO_REFRESH) && (!ret)) {
2220 for (chipnr = 0; chipnr < this->numchips; chipnr++) {
2221 if (rewrite_bbt[chipnr]) {
2222 /* update the BBT for chip */
2223 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt (%d:0x%0x 0x%0x)\n",
2224 chipnr, rewrite_bbt[chipnr], this->bbt_td->pages[chipnr]);
2225 nand_update_bbt (mtd, rewrite_bbt[chipnr]);
2226 }
2227 }
2228 }
2229
2230 /* Return more or less happy */
2231 return ret;
2232 }
2233
2234 /**
2235 * nand_sync - [MTD Interface] sync
2236 * @mtd: MTD device structure
2237 *
2238 * Sync is actually a wait for chip ready function
2239 */
2240 static void nand_sync (struct mtd_info *mtd)
2241 {
2242 struct nand_chip *this = mtd->priv;
2243
2244 DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2245
2246 /* Grab the lock and see if the device is available */
2247 nand_get_device (this, mtd, FL_SYNCING);
2248 /* Release it and go back */
2249 nand_release_device (mtd);
2250 }
2251
2252
2253 /**
2254 * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2255 * @mtd: MTD device structure
2256 * @ofs: offset relative to mtd start
2257 */
2258 static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
2259 {
2260 /* Check for invalid offset */
2261 if (ofs > mtd->size)
2262 return -EINVAL;
2263
2264 return nand_block_checkbad (mtd, ofs, 1, 0);
2265 }
2266
2267 /**
2268 * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2269 * @mtd: MTD device structure
2270 * @ofs: offset relative to mtd start
2271 */
2272 static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
2273 {
2274 struct nand_chip *this = mtd->priv;
2275 int ret;
2276
2277 if ((ret = nand_block_isbad(mtd, ofs))) {
2278 /* If it was bad already, return success and do nothing. */
2279 if (ret > 0)
2280 return 0;
2281 return ret;
2282 }
2283
2284 return this->block_markbad(mtd, ofs);
2285 }
2286
2287 /**
2288 * nand_scan - [NAND Interface] Scan for the NAND device
2289 * @mtd: MTD device structure
2290 * @maxchips: Number of chips to scan for
2291 *
2292 * This fills out all the not initialized function pointers
2293 * with the defaults.
2294 * The flash ID is read and the mtd/chip structures are
2295 * filled with the appropriate values. Buffers are allocated if
2296 * they are not provided by the board driver
2297 *
2298 */
2299 int nand_scan (struct mtd_info *mtd, int maxchips)
2300 {
2301 int i, nand_maf_id, nand_dev_id, busw, maf_id;
2302 struct nand_chip *this = mtd->priv;
2303
2304 /* Get buswidth to select the correct functions*/
2305 busw = this->options & NAND_BUSWIDTH_16;
2306
2307 /* check for proper chip_delay setup, set 20us if not */
2308 if (!this->chip_delay)
2309 this->chip_delay = 20;
2310
2311 /* check, if a user supplied command function given */
2312 if (this->cmdfunc == NULL)
2313 this->cmdfunc = nand_command;
2314
2315 /* check, if a user supplied wait function given */
2316 if (this->waitfunc == NULL)
2317 this->waitfunc = nand_wait;
2318
2319 if (!this->select_chip)
2320 this->select_chip = nand_select_chip;
2321 if (!this->write_byte)
2322 this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2323 if (!this->read_byte)
2324 this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2325 if (!this->write_word)
2326 this->write_word = nand_write_word;
2327 if (!this->read_word)
2328 this->read_word = nand_read_word;
2329 if (!this->block_bad)
2330 this->block_bad = nand_block_bad;
2331 if (!this->block_markbad)
2332 this->block_markbad = nand_default_block_markbad;
2333 if (!this->write_buf)
2334 this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2335 if (!this->read_buf)
2336 this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2337 if (!this->verify_buf)
2338 this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2339 if (!this->scan_bbt)
2340 this->scan_bbt = nand_default_bbt;
2341
2342 /* Select the device */
2343 this->select_chip(mtd, 0);
2344
2345 /* Send the command for reading device ID */
2346 this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
2347
2348 /* Read manufacturer and device IDs */
2349 nand_maf_id = this->read_byte(mtd);
2350 nand_dev_id = this->read_byte(mtd);
2351
2352 /* Print and store flash device information */
2353 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2354
2355 if (nand_dev_id != nand_flash_ids[i].id)
2356 continue;
2357
2358 if (!mtd->name) mtd->name = nand_flash_ids[i].name;
2359 this->chipsize = nand_flash_ids[i].chipsize << 20;
2360
2361 /* New devices have all the information in additional id bytes */
2362 if (!nand_flash_ids[i].pagesize) {
2363 int extid;
2364 /* The 3rd id byte contains non relevant data ATM */
2365 extid = this->read_byte(mtd);
2366 /* The 4th id byte is the important one */
2367 extid = this->read_byte(mtd);
2368 /* Calc pagesize */
2369 mtd->oobblock = 1024 << (extid & 0x3);
2370 extid >>= 2;
2371 /* Calc oobsize */
2372 mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512);
2373 extid >>= 2;
2374 /* Calc blocksize. Blocksize is multiples of 64KiB */
2375 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2376 extid >>= 2;
2377 /* Get buswidth information */
2378 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2379
2380 } else {
2381 /* Old devices have this data hardcoded in the
2382 * device id table */
2383 mtd->erasesize = nand_flash_ids[i].erasesize;
2384 mtd->oobblock = nand_flash_ids[i].pagesize;
2385 mtd->oobsize = mtd->oobblock / 32;
2386 busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
2387 }
2388
2389 /* Try to identify manufacturer */
2390 for (maf_id = 0; nand_manuf_ids[maf_id].id != 0x0; maf_id++) {
2391 if (nand_manuf_ids[maf_id].id == nand_maf_id)
2392 break;
2393 }
2394
2395 /* Check, if buswidth is correct. Hardware drivers should set
2396 * this correct ! */
2397 if (busw != (this->options & NAND_BUSWIDTH_16)) {
2398 printk (KERN_INFO "NAND device: Manufacturer ID:"
2399 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
2400 nand_manuf_ids[maf_id].name , mtd->name);
2401 printk (KERN_WARNING
2402 "NAND bus width %d instead %d bit\n",
2403 (this->options & NAND_BUSWIDTH_16) ? 16 : 8,
2404 busw ? 16 : 8);
2405 this->select_chip(mtd, -1);
2406 return 1;
2407 }
2408
2409 /* Calculate the address shift from the page size */
2410 this->page_shift = ffs(mtd->oobblock) - 1;
2411 this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
2412 this->chip_shift = ffs(this->chipsize) - 1;
2413
2414 /* Set the bad block position */
2415 this->badblockpos = mtd->oobblock > 512 ?
2416 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2417
2418 /* Get chip options, preserve non chip based options */
2419 this->options &= ~NAND_CHIPOPTIONS_MSK;
2420 this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
2421 /* Set this as a default. Board drivers can override it, if neccecary */
2422 this->options |= NAND_NO_AUTOINCR;
2423 /* Check if this is a not a samsung device. Do not clear the options
2424 * for chips which are not having an extended id.
2425 */
2426 if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
2427 this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2428
2429 /* Check for AND chips with 4 page planes */
2430 if (this->options & NAND_4PAGE_ARRAY)
2431 this->erase_cmd = multi_erase_cmd;
2432 else
2433 this->erase_cmd = single_erase_cmd;
2434
2435 /* Do not replace user supplied command function ! */
2436 if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
2437 this->cmdfunc = nand_command_lp;
2438
2439 printk (KERN_INFO "NAND device: Manufacturer ID:"
2440 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
2441 nand_manuf_ids[maf_id].name , nand_flash_ids[i].name);
2442 break;
2443 }
2444
2445 if (!nand_flash_ids[i].name) {
2446 printk (KERN_WARNING "No NAND device found!!!\n");
2447 this->select_chip(mtd, -1);
2448 return 1;
2449 }
2450
2451 for (i=1; i < maxchips; i++) {
2452 this->select_chip(mtd, i);
2453
2454 /* Send the command for reading device ID */
2455 this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
2456
2457 /* Read manufacturer and device IDs */
2458 if (nand_maf_id != this->read_byte(mtd) ||
2459 nand_dev_id != this->read_byte(mtd))
2460 break;
2461 }
2462 if (i > 1)
2463 printk(KERN_INFO "%d NAND chips detected\n", i);
2464
2465 /* Allocate buffers, if neccecary */
2466 if (!this->oob_buf) {
2467 size_t len;
2468 len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
2469 this->oob_buf = kmalloc (len, GFP_KERNEL);
2470 if (!this->oob_buf) {
2471 printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
2472 return -ENOMEM;
2473 }
2474 this->options |= NAND_OOBBUF_ALLOC;
2475 }
2476
2477 if (!this->data_buf) {
2478 size_t len;
2479 len = mtd->oobblock + mtd->oobsize;
2480 this->data_buf = kmalloc (len, GFP_KERNEL);
2481 if (!this->data_buf) {
2482 if (this->options & NAND_OOBBUF_ALLOC)
2483 kfree (this->oob_buf);
2484 printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
2485 return -ENOMEM;
2486 }
2487 this->options |= NAND_DATABUF_ALLOC;
2488 }
2489
2490 /* Store the number of chips and calc total size for mtd */
2491 this->numchips = i;
2492 mtd->size = i * this->chipsize;
2493 /* Convert chipsize to number of pages per chip -1. */
2494 this->pagemask = (this->chipsize >> this->page_shift) - 1;
2495 /* Preset the internal oob buffer */
2496 memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
2497
2498 /* If no default placement scheme is given, select an
2499 * appropriate one */
2500 if (!this->autooob) {
2501 /* Select the appropriate default oob placement scheme for
2502 * placement agnostic filesystems */
2503 switch (mtd->oobsize) {
2504 case 8:
2505 this->autooob = &nand_oob_8;
2506 break;
2507 case 16:
2508 this->autooob = &nand_oob_16;
2509 break;
2510 case 64:
2511 this->autooob = &nand_oob_64;
2512 break;
2513 default:
2514 printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
2515 mtd->oobsize);
2516 BUG();
2517 }
2518 }
2519
2520 /* The number of bytes available for the filesystem to place fs dependend
2521 * oob data */
2522 mtd->oobavail = 0;
2523 for (i = 0; this->autooob->oobfree[i][1]; i++)
2524 mtd->oobavail += this->autooob->oobfree[i][1];
2525
2526 /*
2527 * check ECC mode, default to software
2528 * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
2529 * fallback to software ECC
2530 */
2531 this->eccsize = 256; /* set default eccsize */
2532 this->eccbytes = 3;
2533
2534 switch (this->eccmode) {
2535 case NAND_ECC_HW12_2048:
2536 if (mtd->oobblock < 2048) {
2537 printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
2538 mtd->oobblock);
2539 this->eccmode = NAND_ECC_SOFT;
2540 this->calculate_ecc = nand_calculate_ecc;
2541 this->correct_data = nand_correct_data;
2542 } else
2543 this->eccsize = 2048;
2544 break;
2545
2546 case NAND_ECC_HW3_512:
2547 case NAND_ECC_HW6_512:
2548 case NAND_ECC_HW8_512:
2549 if (mtd->oobblock == 256) {
2550 printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
2551 this->eccmode = NAND_ECC_SOFT;
2552 this->calculate_ecc = nand_calculate_ecc;
2553 this->correct_data = nand_correct_data;
2554 } else
2555 this->eccsize = 512; /* set eccsize to 512 */
2556 break;
2557
2558 case NAND_ECC_HW3_256:
2559 break;
2560
2561 case NAND_ECC_NONE:
2562 printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
2563 this->eccmode = NAND_ECC_NONE;
2564 break;
2565
2566 case NAND_ECC_SOFT:
2567 this->calculate_ecc = nand_calculate_ecc;
2568 this->correct_data = nand_correct_data;
2569 break;
2570
2571 default:
2572 printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
2573 BUG();
2574 }
2575
2576 /* Check hardware ecc function availability and adjust number of ecc bytes per
2577 * calculation step
2578 */
2579 switch (this->eccmode) {
2580 case NAND_ECC_HW12_2048:
2581 this->eccbytes += 4;
2582 case NAND_ECC_HW8_512:
2583 this->eccbytes += 2;
2584 case NAND_ECC_HW6_512:
2585 this->eccbytes += 3;
2586 case NAND_ECC_HW3_512:
2587 case NAND_ECC_HW3_256:
2588 if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
2589 break;
2590 printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
2591 BUG();
2592 }
2593
2594 mtd->eccsize = this->eccsize;
2595
2596 /* Set the number of read / write steps for one page to ensure ECC generation */
2597 switch (this->eccmode) {
2598 case NAND_ECC_HW12_2048:
2599 this->eccsteps = mtd->oobblock / 2048;
2600 break;
2601 case NAND_ECC_HW3_512:
2602 case NAND_ECC_HW6_512:
2603 case NAND_ECC_HW8_512:
2604 this->eccsteps = mtd->oobblock / 512;
2605 break;
2606 case NAND_ECC_HW3_256:
2607 case NAND_ECC_SOFT:
2608 this->eccsteps = mtd->oobblock / 256;
2609 break;
2610
2611 case NAND_ECC_NONE:
2612 this->eccsteps = 1;
2613 break;
2614 }
2615
2616 /* Initialize state, waitqueue and spinlock */
2617 this->state = FL_READY;
2618 init_waitqueue_head (&this->wq);
2619 spin_lock_init (&this->chip_lock);
2620
2621 /* De-select the device */
2622 this->select_chip(mtd, -1);
2623
2624 /* Invalidate the pagebuffer reference */
2625 this->pagebuf = -1;
2626
2627 /* Fill in remaining MTD driver data */
2628 mtd->type = MTD_NANDFLASH;
2629 mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
2630 mtd->ecctype = MTD_ECC_SW;
2631 mtd->erase = nand_erase;
2632 mtd->point = NULL;
2633 mtd->unpoint = NULL;
2634 mtd->read = nand_read;
2635 mtd->write = nand_write;
2636 mtd->read_ecc = nand_read_ecc;
2637 mtd->write_ecc = nand_write_ecc;
2638 mtd->read_oob = nand_read_oob;
2639 mtd->write_oob = nand_write_oob;
2640 mtd->readv = NULL;
2641 mtd->writev = nand_writev;
2642 mtd->writev_ecc = nand_writev_ecc;
2643 mtd->sync = nand_sync;
2644 mtd->lock = NULL;
2645 mtd->unlock = NULL;
2646 mtd->suspend = NULL;
2647 mtd->resume = NULL;
2648 mtd->block_isbad = nand_block_isbad;
2649 mtd->block_markbad = nand_block_markbad;
2650
2651 /* and make the autooob the default one */
2652 memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
2653
2654 mtd->owner = THIS_MODULE;
2655
2656 /* Check, if we should skip the bad block table scan */
2657 if (this->options & NAND_SKIP_BBTSCAN)
2658 return 0;
2659
2660 /* Build bad block table */
2661 return this->scan_bbt (mtd);
2662 }
2663
2664 /**
2665 * nand_release - [NAND Interface] Free resources held by the NAND device
2666 * @mtd: MTD device structure
2667 */
2668 void nand_release (struct mtd_info *mtd)
2669 {
2670 struct nand_chip *this = mtd->priv;
2671
2672 #ifdef CONFIG_MTD_PARTITIONS
2673 /* Deregister partitions */
2674 del_mtd_partitions (mtd);
2675 #endif
2676 /* Deregister the device */
2677 del_mtd_device (mtd);
2678
2679 /* Free bad block table memory, if allocated */
2680 if (this->bbt)
2681 kfree (this->bbt);
2682 /* Buffer allocated by nand_scan ? */
2683 if (this->options & NAND_OOBBUF_ALLOC)
2684 kfree (this->oob_buf);
2685 /* Buffer allocated by nand_scan ? */
2686 if (this->options & NAND_DATABUF_ALLOC)
2687 kfree (this->data_buf);
2688 }
2689
2690 EXPORT_SYMBOL_GPL (nand_scan);
2691 EXPORT_SYMBOL_GPL (nand_release);
2692
2693 MODULE_LICENSE ("GPL");
2694 MODULE_AUTHOR ("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2695 MODULE_DESCRIPTION ("Generic NAND flash driver code");