mtd: flash drivers set ecc strength
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / nand / mxc_nand.c
1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
18 */
19
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35
36 #include <asm/mach/flash.h>
37 #include <mach/mxc_nand.h>
38 #include <mach/hardware.h>
39
40 #define DRIVER_NAME "mxc_nand"
41
42 #define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35())
43 #define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
44 #define nfc_is_v3_2() (cpu_is_mx51() || cpu_is_mx53())
45 #define nfc_is_v3() nfc_is_v3_2()
46
47 /* Addresses for NFC registers */
48 #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
49 #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
50 #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
51 #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
52 #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
53 #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
54 #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
55 #define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
56 #define NFC_V1_V2_WRPROT (host->regs + 0x12)
57 #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
58 #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
59 #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
60 #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
61 #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
62 #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
63 #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
64 #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
65 #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
66 #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
67 #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
68 #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
69 #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
70
71 #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
72 #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
73 #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
74 #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
75 #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
76 #define NFC_V1_V2_CONFIG1_RST (1 << 6)
77 #define NFC_V1_V2_CONFIG1_CE (1 << 7)
78 #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
79 #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
80 #define NFC_V2_CONFIG1_FP_INT (1 << 11)
81
82 #define NFC_V1_V2_CONFIG2_INT (1 << 15)
83
84 /*
85 * Operation modes for the NFC. Valid for v1, v2 and v3
86 * type controllers.
87 */
88 #define NFC_CMD (1 << 0)
89 #define NFC_ADDR (1 << 1)
90 #define NFC_INPUT (1 << 2)
91 #define NFC_OUTPUT (1 << 3)
92 #define NFC_ID (1 << 4)
93 #define NFC_STATUS (1 << 5)
94
95 #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
96 #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
97
98 #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
99 #define NFC_V3_CONFIG1_SP_EN (1 << 0)
100 #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
101
102 #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
103
104 #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
105
106 #define NFC_V3_WRPROT (host->regs_ip + 0x0)
107 #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
108 #define NFC_V3_WRPROT_LOCK (1 << 1)
109 #define NFC_V3_WRPROT_UNLOCK (1 << 2)
110 #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
111
112 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
113
114 #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
115 #define NFC_V3_CONFIG2_PS_512 (0 << 0)
116 #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
117 #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
118 #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
119 #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
120 #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
121 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
122 #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
123 #define NFC_V3_CONFIG2_PPB(x) (((x) & 0x3) << 7)
124 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
125 #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
126 #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
127 #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
128
129 #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
130 #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
131 #define NFC_V3_CONFIG3_FW8 (1 << 3)
132 #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
133 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
134 #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
135 #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
136
137 #define NFC_V3_IPC (host->regs_ip + 0x2C)
138 #define NFC_V3_IPC_CREQ (1 << 0)
139 #define NFC_V3_IPC_INT (1 << 31)
140
141 #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
142
143 struct mxc_nand_host {
144 struct mtd_info mtd;
145 struct nand_chip nand;
146 struct device *dev;
147
148 void *spare0;
149 void *main_area0;
150
151 void __iomem *base;
152 void __iomem *regs;
153 void __iomem *regs_axi;
154 void __iomem *regs_ip;
155 int status_request;
156 struct clk *clk;
157 int clk_act;
158 int irq;
159 int eccsize;
160 int active_cs;
161
162 struct completion op_completion;
163
164 uint8_t *data_buf;
165 unsigned int buf_start;
166 int spare_len;
167
168 void (*preset)(struct mtd_info *);
169 void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
170 void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
171 void (*send_page)(struct mtd_info *, unsigned int);
172 void (*send_read_id)(struct mxc_nand_host *);
173 uint16_t (*get_dev_status)(struct mxc_nand_host *);
174 int (*check_int)(struct mxc_nand_host *);
175 void (*irq_control)(struct mxc_nand_host *, int);
176 };
177
178 /* OOB placement block for use with hardware ecc generation */
179 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
180 .eccbytes = 5,
181 .eccpos = {6, 7, 8, 9, 10},
182 .oobfree = {{0, 5}, {12, 4}, }
183 };
184
185 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
186 .eccbytes = 20,
187 .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
188 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
189 .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
190 };
191
192 /* OOB description for 512 byte pages with 16 byte OOB */
193 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
194 .eccbytes = 1 * 9,
195 .eccpos = {
196 7, 8, 9, 10, 11, 12, 13, 14, 15
197 },
198 .oobfree = {
199 {.offset = 0, .length = 5}
200 }
201 };
202
203 /* OOB description for 2048 byte pages with 64 byte OOB */
204 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
205 .eccbytes = 4 * 9,
206 .eccpos = {
207 7, 8, 9, 10, 11, 12, 13, 14, 15,
208 23, 24, 25, 26, 27, 28, 29, 30, 31,
209 39, 40, 41, 42, 43, 44, 45, 46, 47,
210 55, 56, 57, 58, 59, 60, 61, 62, 63
211 },
212 .oobfree = {
213 {.offset = 2, .length = 4},
214 {.offset = 16, .length = 7},
215 {.offset = 32, .length = 7},
216 {.offset = 48, .length = 7}
217 }
218 };
219
220 /* OOB description for 4096 byte pages with 128 byte OOB */
221 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
222 .eccbytes = 8 * 9,
223 .eccpos = {
224 7, 8, 9, 10, 11, 12, 13, 14, 15,
225 23, 24, 25, 26, 27, 28, 29, 30, 31,
226 39, 40, 41, 42, 43, 44, 45, 46, 47,
227 55, 56, 57, 58, 59, 60, 61, 62, 63,
228 71, 72, 73, 74, 75, 76, 77, 78, 79,
229 87, 88, 89, 90, 91, 92, 93, 94, 95,
230 103, 104, 105, 106, 107, 108, 109, 110, 111,
231 119, 120, 121, 122, 123, 124, 125, 126, 127,
232 },
233 .oobfree = {
234 {.offset = 2, .length = 4},
235 {.offset = 16, .length = 7},
236 {.offset = 32, .length = 7},
237 {.offset = 48, .length = 7},
238 {.offset = 64, .length = 7},
239 {.offset = 80, .length = 7},
240 {.offset = 96, .length = 7},
241 {.offset = 112, .length = 7},
242 }
243 };
244
245 static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
246
247 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
248 {
249 struct mxc_nand_host *host = dev_id;
250
251 if (!host->check_int(host))
252 return IRQ_NONE;
253
254 host->irq_control(host, 0);
255
256 complete(&host->op_completion);
257
258 return IRQ_HANDLED;
259 }
260
261 static int check_int_v3(struct mxc_nand_host *host)
262 {
263 uint32_t tmp;
264
265 tmp = readl(NFC_V3_IPC);
266 if (!(tmp & NFC_V3_IPC_INT))
267 return 0;
268
269 tmp &= ~NFC_V3_IPC_INT;
270 writel(tmp, NFC_V3_IPC);
271
272 return 1;
273 }
274
275 static int check_int_v1_v2(struct mxc_nand_host *host)
276 {
277 uint32_t tmp;
278
279 tmp = readw(NFC_V1_V2_CONFIG2);
280 if (!(tmp & NFC_V1_V2_CONFIG2_INT))
281 return 0;
282
283 if (!cpu_is_mx21())
284 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
285
286 return 1;
287 }
288
289 /*
290 * It has been observed that the i.MX21 cannot read the CONFIG2:INT bit
291 * if interrupts are masked (CONFIG1:INT_MSK is set). To handle this, the
292 * driver can enable/disable the irq line rather than simply masking the
293 * interrupts.
294 */
295 static void irq_control_mx21(struct mxc_nand_host *host, int activate)
296 {
297 if (activate)
298 enable_irq(host->irq);
299 else
300 disable_irq_nosync(host->irq);
301 }
302
303 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
304 {
305 uint16_t tmp;
306
307 tmp = readw(NFC_V1_V2_CONFIG1);
308
309 if (activate)
310 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
311 else
312 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
313
314 writew(tmp, NFC_V1_V2_CONFIG1);
315 }
316
317 static void irq_control_v3(struct mxc_nand_host *host, int activate)
318 {
319 uint32_t tmp;
320
321 tmp = readl(NFC_V3_CONFIG2);
322
323 if (activate)
324 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
325 else
326 tmp |= NFC_V3_CONFIG2_INT_MSK;
327
328 writel(tmp, NFC_V3_CONFIG2);
329 }
330
331 /* This function polls the NANDFC to wait for the basic operation to
332 * complete by checking the INT bit of config2 register.
333 */
334 static void wait_op_done(struct mxc_nand_host *host, int useirq)
335 {
336 int max_retries = 8000;
337
338 if (useirq) {
339 if (!host->check_int(host)) {
340 INIT_COMPLETION(host->op_completion);
341 host->irq_control(host, 1);
342 wait_for_completion(&host->op_completion);
343 }
344 } else {
345 while (max_retries-- > 0) {
346 if (host->check_int(host))
347 break;
348
349 udelay(1);
350 }
351 if (max_retries < 0)
352 pr_debug("%s: INT not set\n", __func__);
353 }
354 }
355
356 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
357 {
358 /* fill command */
359 writel(cmd, NFC_V3_FLASH_CMD);
360
361 /* send out command */
362 writel(NFC_CMD, NFC_V3_LAUNCH);
363
364 /* Wait for operation to complete */
365 wait_op_done(host, useirq);
366 }
367
368 /* This function issues the specified command to the NAND device and
369 * waits for completion. */
370 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
371 {
372 pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
373
374 writew(cmd, NFC_V1_V2_FLASH_CMD);
375 writew(NFC_CMD, NFC_V1_V2_CONFIG2);
376
377 if (cpu_is_mx21() && (cmd == NAND_CMD_RESET)) {
378 int max_retries = 100;
379 /* Reset completion is indicated by NFC_CONFIG2 */
380 /* being set to 0 */
381 while (max_retries-- > 0) {
382 if (readw(NFC_V1_V2_CONFIG2) == 0) {
383 break;
384 }
385 udelay(1);
386 }
387 if (max_retries < 0)
388 pr_debug("%s: RESET failed\n", __func__);
389 } else {
390 /* Wait for operation to complete */
391 wait_op_done(host, useirq);
392 }
393 }
394
395 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
396 {
397 /* fill address */
398 writel(addr, NFC_V3_FLASH_ADDR0);
399
400 /* send out address */
401 writel(NFC_ADDR, NFC_V3_LAUNCH);
402
403 wait_op_done(host, 0);
404 }
405
406 /* This function sends an address (or partial address) to the
407 * NAND device. The address is used to select the source/destination for
408 * a NAND command. */
409 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
410 {
411 pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
412
413 writew(addr, NFC_V1_V2_FLASH_ADDR);
414 writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
415
416 /* Wait for operation to complete */
417 wait_op_done(host, islast);
418 }
419
420 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
421 {
422 struct nand_chip *nand_chip = mtd->priv;
423 struct mxc_nand_host *host = nand_chip->priv;
424 uint32_t tmp;
425
426 tmp = readl(NFC_V3_CONFIG1);
427 tmp &= ~(7 << 4);
428 writel(tmp, NFC_V3_CONFIG1);
429
430 /* transfer data from NFC ram to nand */
431 writel(ops, NFC_V3_LAUNCH);
432
433 wait_op_done(host, false);
434 }
435
436 static void send_page_v1_v2(struct mtd_info *mtd, unsigned int ops)
437 {
438 struct nand_chip *nand_chip = mtd->priv;
439 struct mxc_nand_host *host = nand_chip->priv;
440 int bufs, i;
441
442 if (nfc_is_v1() && mtd->writesize > 512)
443 bufs = 4;
444 else
445 bufs = 1;
446
447 for (i = 0; i < bufs; i++) {
448
449 /* NANDFC buffer 0 is used for page read/write */
450 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
451
452 writew(ops, NFC_V1_V2_CONFIG2);
453
454 /* Wait for operation to complete */
455 wait_op_done(host, true);
456 }
457 }
458
459 static void send_read_id_v3(struct mxc_nand_host *host)
460 {
461 /* Read ID into main buffer */
462 writel(NFC_ID, NFC_V3_LAUNCH);
463
464 wait_op_done(host, true);
465
466 memcpy(host->data_buf, host->main_area0, 16);
467 }
468
469 /* Request the NANDFC to perform a read of the NAND device ID. */
470 static void send_read_id_v1_v2(struct mxc_nand_host *host)
471 {
472 struct nand_chip *this = &host->nand;
473
474 /* NANDFC buffer 0 is used for device ID output */
475 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
476
477 writew(NFC_ID, NFC_V1_V2_CONFIG2);
478
479 /* Wait for operation to complete */
480 wait_op_done(host, true);
481
482 memcpy(host->data_buf, host->main_area0, 16);
483
484 if (this->options & NAND_BUSWIDTH_16) {
485 /* compress the ID info */
486 host->data_buf[1] = host->data_buf[2];
487 host->data_buf[2] = host->data_buf[4];
488 host->data_buf[3] = host->data_buf[6];
489 host->data_buf[4] = host->data_buf[8];
490 host->data_buf[5] = host->data_buf[10];
491 }
492 }
493
494 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
495 {
496 writew(NFC_STATUS, NFC_V3_LAUNCH);
497 wait_op_done(host, true);
498
499 return readl(NFC_V3_CONFIG1) >> 16;
500 }
501
502 /* This function requests the NANDFC to perform a read of the
503 * NAND device status and returns the current status. */
504 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
505 {
506 void __iomem *main_buf = host->main_area0;
507 uint32_t store;
508 uint16_t ret;
509
510 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
511
512 /*
513 * The device status is stored in main_area0. To
514 * prevent corruption of the buffer save the value
515 * and restore it afterwards.
516 */
517 store = readl(main_buf);
518
519 writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
520 wait_op_done(host, true);
521
522 ret = readw(main_buf);
523
524 writel(store, main_buf);
525
526 return ret;
527 }
528
529 /* This functions is used by upper layer to checks if device is ready */
530 static int mxc_nand_dev_ready(struct mtd_info *mtd)
531 {
532 /*
533 * NFC handles R/B internally. Therefore, this function
534 * always returns status as ready.
535 */
536 return 1;
537 }
538
539 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
540 {
541 /*
542 * If HW ECC is enabled, we turn it on during init. There is
543 * no need to enable again here.
544 */
545 }
546
547 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
548 u_char *read_ecc, u_char *calc_ecc)
549 {
550 struct nand_chip *nand_chip = mtd->priv;
551 struct mxc_nand_host *host = nand_chip->priv;
552
553 /*
554 * 1-Bit errors are automatically corrected in HW. No need for
555 * additional correction. 2-Bit errors cannot be corrected by
556 * HW ECC, so we need to return failure
557 */
558 uint16_t ecc_status = readw(NFC_V1_V2_ECC_STATUS_RESULT);
559
560 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
561 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
562 return -1;
563 }
564
565 return 0;
566 }
567
568 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
569 u_char *read_ecc, u_char *calc_ecc)
570 {
571 struct nand_chip *nand_chip = mtd->priv;
572 struct mxc_nand_host *host = nand_chip->priv;
573 u32 ecc_stat, err;
574 int no_subpages = 1;
575 int ret = 0;
576 u8 ecc_bit_mask, err_limit;
577
578 ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
579 err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
580
581 no_subpages = mtd->writesize >> 9;
582
583 if (nfc_is_v21())
584 ecc_stat = readl(NFC_V1_V2_ECC_STATUS_RESULT);
585 else
586 ecc_stat = readl(NFC_V3_ECC_STATUS_RESULT);
587
588 do {
589 err = ecc_stat & ecc_bit_mask;
590 if (err > err_limit) {
591 printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
592 return -1;
593 } else {
594 ret += err;
595 }
596 ecc_stat >>= 4;
597 } while (--no_subpages);
598
599 mtd->ecc_stats.corrected += ret;
600 pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
601
602 return ret;
603 }
604
605 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
606 u_char *ecc_code)
607 {
608 return 0;
609 }
610
611 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
612 {
613 struct nand_chip *nand_chip = mtd->priv;
614 struct mxc_nand_host *host = nand_chip->priv;
615 uint8_t ret;
616
617 /* Check for status request */
618 if (host->status_request)
619 return host->get_dev_status(host) & 0xFF;
620
621 ret = *(uint8_t *)(host->data_buf + host->buf_start);
622 host->buf_start++;
623
624 return ret;
625 }
626
627 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
628 {
629 struct nand_chip *nand_chip = mtd->priv;
630 struct mxc_nand_host *host = nand_chip->priv;
631 uint16_t ret;
632
633 ret = *(uint16_t *)(host->data_buf + host->buf_start);
634 host->buf_start += 2;
635
636 return ret;
637 }
638
639 /* Write data of length len to buffer buf. The data to be
640 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
641 * Operation by the NFC, the data is written to NAND Flash */
642 static void mxc_nand_write_buf(struct mtd_info *mtd,
643 const u_char *buf, int len)
644 {
645 struct nand_chip *nand_chip = mtd->priv;
646 struct mxc_nand_host *host = nand_chip->priv;
647 u16 col = host->buf_start;
648 int n = mtd->oobsize + mtd->writesize - col;
649
650 n = min(n, len);
651
652 memcpy(host->data_buf + col, buf, n);
653
654 host->buf_start += n;
655 }
656
657 /* Read the data buffer from the NAND Flash. To read the data from NAND
658 * Flash first the data output cycle is initiated by the NFC, which copies
659 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
660 */
661 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
662 {
663 struct nand_chip *nand_chip = mtd->priv;
664 struct mxc_nand_host *host = nand_chip->priv;
665 u16 col = host->buf_start;
666 int n = mtd->oobsize + mtd->writesize - col;
667
668 n = min(n, len);
669
670 memcpy(buf, host->data_buf + col, n);
671
672 host->buf_start += n;
673 }
674
675 /* Used by the upper layer to verify the data in NAND Flash
676 * with the data in the buf. */
677 static int mxc_nand_verify_buf(struct mtd_info *mtd,
678 const u_char *buf, int len)
679 {
680 return -EFAULT;
681 }
682
683 /* This function is used by upper layer for select and
684 * deselect of the NAND chip */
685 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
686 {
687 struct nand_chip *nand_chip = mtd->priv;
688 struct mxc_nand_host *host = nand_chip->priv;
689
690 if (chip == -1) {
691 /* Disable the NFC clock */
692 if (host->clk_act) {
693 clk_disable(host->clk);
694 host->clk_act = 0;
695 }
696 return;
697 }
698
699 if (!host->clk_act) {
700 /* Enable the NFC clock */
701 clk_enable(host->clk);
702 host->clk_act = 1;
703 }
704
705 if (nfc_is_v21()) {
706 host->active_cs = chip;
707 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
708 }
709 }
710
711 /*
712 * Function to transfer data to/from spare area.
713 */
714 static void copy_spare(struct mtd_info *mtd, bool bfrom)
715 {
716 struct nand_chip *this = mtd->priv;
717 struct mxc_nand_host *host = this->priv;
718 u16 i, j;
719 u16 n = mtd->writesize >> 9;
720 u8 *d = host->data_buf + mtd->writesize;
721 u8 *s = host->spare0;
722 u16 t = host->spare_len;
723
724 j = (mtd->oobsize / n >> 1) << 1;
725
726 if (bfrom) {
727 for (i = 0; i < n - 1; i++)
728 memcpy(d + i * j, s + i * t, j);
729
730 /* the last section */
731 memcpy(d + i * j, s + i * t, mtd->oobsize - i * j);
732 } else {
733 for (i = 0; i < n - 1; i++)
734 memcpy(&s[i * t], &d[i * j], j);
735
736 /* the last section */
737 memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j);
738 }
739 }
740
741 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
742 {
743 struct nand_chip *nand_chip = mtd->priv;
744 struct mxc_nand_host *host = nand_chip->priv;
745
746 /* Write out column address, if necessary */
747 if (column != -1) {
748 /*
749 * MXC NANDFC can only perform full page+spare or
750 * spare-only read/write. When the upper layers
751 * perform a read/write buf operation, the saved column
752 * address is used to index into the full page.
753 */
754 host->send_addr(host, 0, page_addr == -1);
755 if (mtd->writesize > 512)
756 /* another col addr cycle for 2k page */
757 host->send_addr(host, 0, false);
758 }
759
760 /* Write out page address, if necessary */
761 if (page_addr != -1) {
762 /* paddr_0 - p_addr_7 */
763 host->send_addr(host, (page_addr & 0xff), false);
764
765 if (mtd->writesize > 512) {
766 if (mtd->size >= 0x10000000) {
767 /* paddr_8 - paddr_15 */
768 host->send_addr(host, (page_addr >> 8) & 0xff, false);
769 host->send_addr(host, (page_addr >> 16) & 0xff, true);
770 } else
771 /* paddr_8 - paddr_15 */
772 host->send_addr(host, (page_addr >> 8) & 0xff, true);
773 } else {
774 /* One more address cycle for higher density devices */
775 if (mtd->size >= 0x4000000) {
776 /* paddr_8 - paddr_15 */
777 host->send_addr(host, (page_addr >> 8) & 0xff, false);
778 host->send_addr(host, (page_addr >> 16) & 0xff, true);
779 } else
780 /* paddr_8 - paddr_15 */
781 host->send_addr(host, (page_addr >> 8) & 0xff, true);
782 }
783 }
784 }
785
786 /*
787 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
788 * on how much oob the nand chip has. For 8bit ecc we need at least
789 * 26 bytes of oob data per 512 byte block.
790 */
791 static int get_eccsize(struct mtd_info *mtd)
792 {
793 int oobbytes_per_512 = 0;
794
795 oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
796
797 if (oobbytes_per_512 < 26)
798 return 4;
799 else
800 return 8;
801 }
802
803 static void preset_v1_v2(struct mtd_info *mtd)
804 {
805 struct nand_chip *nand_chip = mtd->priv;
806 struct mxc_nand_host *host = nand_chip->priv;
807 uint16_t config1 = 0;
808
809 if (nand_chip->ecc.mode == NAND_ECC_HW)
810 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
811
812 if (nfc_is_v21())
813 config1 |= NFC_V2_CONFIG1_FP_INT;
814
815 if (!cpu_is_mx21())
816 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
817
818 if (nfc_is_v21() && mtd->writesize) {
819 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
820
821 host->eccsize = get_eccsize(mtd);
822 if (host->eccsize == 4)
823 config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
824
825 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
826 } else {
827 host->eccsize = 1;
828 }
829
830 writew(config1, NFC_V1_V2_CONFIG1);
831 /* preset operation */
832
833 /* Unlock the internal RAM Buffer */
834 writew(0x2, NFC_V1_V2_CONFIG);
835
836 /* Blocks to be unlocked */
837 if (nfc_is_v21()) {
838 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
839 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
840 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
841 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
842 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
843 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
844 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
845 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
846 } else if (nfc_is_v1()) {
847 writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
848 writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
849 } else
850 BUG();
851
852 /* Unlock Block Command for given address range */
853 writew(0x4, NFC_V1_V2_WRPROT);
854 }
855
856 static void preset_v3(struct mtd_info *mtd)
857 {
858 struct nand_chip *chip = mtd->priv;
859 struct mxc_nand_host *host = chip->priv;
860 uint32_t config2, config3;
861 int i, addr_phases;
862
863 writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
864 writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
865
866 /* Unlock the internal RAM Buffer */
867 writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
868 NFC_V3_WRPROT);
869
870 /* Blocks to be unlocked */
871 for (i = 0; i < NAND_MAX_CHIPS; i++)
872 writel(0x0 | (0xffff << 16),
873 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
874
875 writel(0, NFC_V3_IPC);
876
877 config2 = NFC_V3_CONFIG2_ONE_CYCLE |
878 NFC_V3_CONFIG2_2CMD_PHASES |
879 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
880 NFC_V3_CONFIG2_ST_CMD(0x70) |
881 NFC_V3_CONFIG2_INT_MSK |
882 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
883
884 if (chip->ecc.mode == NAND_ECC_HW)
885 config2 |= NFC_V3_CONFIG2_ECC_EN;
886
887 addr_phases = fls(chip->pagemask) >> 3;
888
889 if (mtd->writesize == 2048) {
890 config2 |= NFC_V3_CONFIG2_PS_2048;
891 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
892 } else if (mtd->writesize == 4096) {
893 config2 |= NFC_V3_CONFIG2_PS_4096;
894 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
895 } else {
896 config2 |= NFC_V3_CONFIG2_PS_512;
897 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
898 }
899
900 if (mtd->writesize) {
901 config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6);
902 host->eccsize = get_eccsize(mtd);
903 if (host->eccsize == 8)
904 config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
905 }
906
907 writel(config2, NFC_V3_CONFIG2);
908
909 config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
910 NFC_V3_CONFIG3_NO_SDMA |
911 NFC_V3_CONFIG3_RBB_MODE |
912 NFC_V3_CONFIG3_SBB(6) | /* Reset default */
913 NFC_V3_CONFIG3_ADD_OP(0);
914
915 if (!(chip->options & NAND_BUSWIDTH_16))
916 config3 |= NFC_V3_CONFIG3_FW8;
917
918 writel(config3, NFC_V3_CONFIG3);
919
920 writel(0, NFC_V3_DELAY_LINE);
921 }
922
923 /* Used by the upper layer to write command to NAND Flash for
924 * different operations to be carried out on NAND Flash */
925 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
926 int column, int page_addr)
927 {
928 struct nand_chip *nand_chip = mtd->priv;
929 struct mxc_nand_host *host = nand_chip->priv;
930
931 pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
932 command, column, page_addr);
933
934 /* Reset command state information */
935 host->status_request = false;
936
937 /* Command pre-processing step */
938 switch (command) {
939 case NAND_CMD_RESET:
940 host->preset(mtd);
941 host->send_cmd(host, command, false);
942 break;
943
944 case NAND_CMD_STATUS:
945 host->buf_start = 0;
946 host->status_request = true;
947
948 host->send_cmd(host, command, true);
949 mxc_do_addr_cycle(mtd, column, page_addr);
950 break;
951
952 case NAND_CMD_READ0:
953 case NAND_CMD_READOOB:
954 if (command == NAND_CMD_READ0)
955 host->buf_start = column;
956 else
957 host->buf_start = column + mtd->writesize;
958
959 command = NAND_CMD_READ0; /* only READ0 is valid */
960
961 host->send_cmd(host, command, false);
962 mxc_do_addr_cycle(mtd, column, page_addr);
963
964 if (mtd->writesize > 512)
965 host->send_cmd(host, NAND_CMD_READSTART, true);
966
967 host->send_page(mtd, NFC_OUTPUT);
968
969 memcpy(host->data_buf, host->main_area0, mtd->writesize);
970 copy_spare(mtd, true);
971 break;
972
973 case NAND_CMD_SEQIN:
974 if (column >= mtd->writesize)
975 /* call ourself to read a page */
976 mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
977
978 host->buf_start = column;
979
980 host->send_cmd(host, command, false);
981 mxc_do_addr_cycle(mtd, column, page_addr);
982 break;
983
984 case NAND_CMD_PAGEPROG:
985 memcpy(host->main_area0, host->data_buf, mtd->writesize);
986 copy_spare(mtd, false);
987 host->send_page(mtd, NFC_INPUT);
988 host->send_cmd(host, command, true);
989 mxc_do_addr_cycle(mtd, column, page_addr);
990 break;
991
992 case NAND_CMD_READID:
993 host->send_cmd(host, command, true);
994 mxc_do_addr_cycle(mtd, column, page_addr);
995 host->send_read_id(host);
996 host->buf_start = column;
997 break;
998
999 case NAND_CMD_ERASE1:
1000 case NAND_CMD_ERASE2:
1001 host->send_cmd(host, command, false);
1002 mxc_do_addr_cycle(mtd, column, page_addr);
1003
1004 break;
1005 }
1006 }
1007
1008 /*
1009 * The generic flash bbt decriptors overlap with our ecc
1010 * hardware, so define some i.MX specific ones.
1011 */
1012 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1013 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1014
1015 static struct nand_bbt_descr bbt_main_descr = {
1016 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1017 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1018 .offs = 0,
1019 .len = 4,
1020 .veroffs = 4,
1021 .maxblocks = 4,
1022 .pattern = bbt_pattern,
1023 };
1024
1025 static struct nand_bbt_descr bbt_mirror_descr = {
1026 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1027 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1028 .offs = 0,
1029 .len = 4,
1030 .veroffs = 4,
1031 .maxblocks = 4,
1032 .pattern = mirror_pattern,
1033 };
1034
1035 static int __init mxcnd_probe(struct platform_device *pdev)
1036 {
1037 struct nand_chip *this;
1038 struct mtd_info *mtd;
1039 struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
1040 struct mxc_nand_host *host;
1041 struct resource *res;
1042 int err = 0;
1043 struct nand_ecclayout *oob_smallpage, *oob_largepage;
1044
1045 /* Allocate memory for MTD device structure and private data */
1046 host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
1047 NAND_MAX_OOBSIZE, GFP_KERNEL);
1048 if (!host)
1049 return -ENOMEM;
1050
1051 host->data_buf = (uint8_t *)(host + 1);
1052
1053 host->dev = &pdev->dev;
1054 /* structures must be linked */
1055 this = &host->nand;
1056 mtd = &host->mtd;
1057 mtd->priv = this;
1058 mtd->owner = THIS_MODULE;
1059 mtd->dev.parent = &pdev->dev;
1060 mtd->name = DRIVER_NAME;
1061
1062 /* 50 us command delay time */
1063 this->chip_delay = 5;
1064
1065 this->priv = host;
1066 this->dev_ready = mxc_nand_dev_ready;
1067 this->cmdfunc = mxc_nand_command;
1068 this->select_chip = mxc_nand_select_chip;
1069 this->read_byte = mxc_nand_read_byte;
1070 this->read_word = mxc_nand_read_word;
1071 this->write_buf = mxc_nand_write_buf;
1072 this->read_buf = mxc_nand_read_buf;
1073 this->verify_buf = mxc_nand_verify_buf;
1074
1075 host->clk = clk_get(&pdev->dev, "nfc");
1076 if (IS_ERR(host->clk)) {
1077 err = PTR_ERR(host->clk);
1078 goto eclk;
1079 }
1080
1081 clk_enable(host->clk);
1082 host->clk_act = 1;
1083
1084 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1085 if (!res) {
1086 err = -ENODEV;
1087 goto eres;
1088 }
1089
1090 host->base = ioremap(res->start, resource_size(res));
1091 if (!host->base) {
1092 err = -ENOMEM;
1093 goto eres;
1094 }
1095
1096 host->main_area0 = host->base;
1097
1098 if (nfc_is_v1() || nfc_is_v21()) {
1099 host->preset = preset_v1_v2;
1100 host->send_cmd = send_cmd_v1_v2;
1101 host->send_addr = send_addr_v1_v2;
1102 host->send_page = send_page_v1_v2;
1103 host->send_read_id = send_read_id_v1_v2;
1104 host->get_dev_status = get_dev_status_v1_v2;
1105 host->check_int = check_int_v1_v2;
1106 if (cpu_is_mx21())
1107 host->irq_control = irq_control_mx21;
1108 else
1109 host->irq_control = irq_control_v1_v2;
1110 }
1111
1112 if (nfc_is_v21()) {
1113 host->regs = host->base + 0x1e00;
1114 host->spare0 = host->base + 0x1000;
1115 host->spare_len = 64;
1116 oob_smallpage = &nandv2_hw_eccoob_smallpage;
1117 oob_largepage = &nandv2_hw_eccoob_largepage;
1118 this->ecc.bytes = 9;
1119 } else if (nfc_is_v1()) {
1120 host->regs = host->base + 0xe00;
1121 host->spare0 = host->base + 0x800;
1122 host->spare_len = 16;
1123 oob_smallpage = &nandv1_hw_eccoob_smallpage;
1124 oob_largepage = &nandv1_hw_eccoob_largepage;
1125 this->ecc.bytes = 3;
1126 host->eccsize = 1;
1127 } else if (nfc_is_v3_2()) {
1128 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1129 if (!res) {
1130 err = -ENODEV;
1131 goto eirq;
1132 }
1133 host->regs_ip = ioremap(res->start, resource_size(res));
1134 if (!host->regs_ip) {
1135 err = -ENOMEM;
1136 goto eirq;
1137 }
1138 host->regs_axi = host->base + 0x1e00;
1139 host->spare0 = host->base + 0x1000;
1140 host->spare_len = 64;
1141 host->preset = preset_v3;
1142 host->send_cmd = send_cmd_v3;
1143 host->send_addr = send_addr_v3;
1144 host->send_page = send_page_v3;
1145 host->send_read_id = send_read_id_v3;
1146 host->check_int = check_int_v3;
1147 host->get_dev_status = get_dev_status_v3;
1148 host->irq_control = irq_control_v3;
1149 oob_smallpage = &nandv2_hw_eccoob_smallpage;
1150 oob_largepage = &nandv2_hw_eccoob_largepage;
1151 } else
1152 BUG();
1153
1154 this->ecc.size = 512;
1155 this->ecc.layout = oob_smallpage;
1156
1157 if (pdata->hw_ecc) {
1158 this->ecc.calculate = mxc_nand_calculate_ecc;
1159 this->ecc.hwctl = mxc_nand_enable_hwecc;
1160 if (nfc_is_v1())
1161 this->ecc.correct = mxc_nand_correct_data_v1;
1162 else
1163 this->ecc.correct = mxc_nand_correct_data_v2_v3;
1164 this->ecc.mode = NAND_ECC_HW;
1165 } else {
1166 this->ecc.mode = NAND_ECC_SOFT;
1167 }
1168
1169 /* NAND bus width determines access funtions used by upper layer */
1170 if (pdata->width == 2)
1171 this->options |= NAND_BUSWIDTH_16;
1172
1173 if (pdata->flash_bbt) {
1174 this->bbt_td = &bbt_main_descr;
1175 this->bbt_md = &bbt_mirror_descr;
1176 /* update flash based bbt */
1177 this->bbt_options |= NAND_BBT_USE_FLASH;
1178 }
1179
1180 init_completion(&host->op_completion);
1181
1182 host->irq = platform_get_irq(pdev, 0);
1183
1184 /*
1185 * mask the interrupt. For i.MX21 explicitely call
1186 * irq_control_v1_v2 to use the mask bit. We can't call
1187 * disable_irq_nosync() for an interrupt we do not own yet.
1188 */
1189 if (cpu_is_mx21())
1190 irq_control_v1_v2(host, 0);
1191 else
1192 host->irq_control(host, 0);
1193
1194 err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host);
1195 if (err)
1196 goto eirq;
1197
1198 host->irq_control(host, 0);
1199
1200 /*
1201 * Now that the interrupt is disabled make sure the interrupt
1202 * mask bit is cleared on i.MX21. Otherwise we can't read
1203 * the interrupt status bit on this machine.
1204 */
1205 if (cpu_is_mx21())
1206 irq_control_v1_v2(host, 1);
1207
1208 /* first scan to find the device and get the page size */
1209 if (nand_scan_ident(mtd, nfc_is_v21() ? 4 : 1, NULL)) {
1210 err = -ENXIO;
1211 goto escan;
1212 }
1213
1214 /* Call preset again, with correct writesize this time */
1215 host->preset(mtd);
1216
1217 if (mtd->writesize == 2048)
1218 this->ecc.layout = oob_largepage;
1219 if (nfc_is_v21() && mtd->writesize == 4096)
1220 this->ecc.layout = &nandv2_hw_eccoob_4k;
1221
1222 /* second phase scan */
1223 if (nand_scan_tail(mtd)) {
1224 err = -ENXIO;
1225 goto escan;
1226 }
1227
1228 if (this->ecc.mode == NAND_ECC_HW) {
1229 if (nfc_is_v1())
1230 this->ecc.strength = 1;
1231 else
1232 this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1233 }
1234
1235 /* Register the partitions */
1236 mtd_device_parse_register(mtd, part_probes, NULL, pdata->parts,
1237 pdata->nr_parts);
1238
1239 platform_set_drvdata(pdev, host);
1240
1241 return 0;
1242
1243 escan:
1244 free_irq(host->irq, host);
1245 eirq:
1246 if (host->regs_ip)
1247 iounmap(host->regs_ip);
1248 iounmap(host->base);
1249 eres:
1250 clk_put(host->clk);
1251 eclk:
1252 kfree(host);
1253
1254 return err;
1255 }
1256
1257 static int __devexit mxcnd_remove(struct platform_device *pdev)
1258 {
1259 struct mxc_nand_host *host = platform_get_drvdata(pdev);
1260
1261 clk_put(host->clk);
1262
1263 platform_set_drvdata(pdev, NULL);
1264
1265 nand_release(&host->mtd);
1266 free_irq(host->irq, host);
1267 if (host->regs_ip)
1268 iounmap(host->regs_ip);
1269 iounmap(host->base);
1270 kfree(host);
1271
1272 return 0;
1273 }
1274
1275 static struct platform_driver mxcnd_driver = {
1276 .driver = {
1277 .name = DRIVER_NAME,
1278 },
1279 .remove = __devexit_p(mxcnd_remove),
1280 };
1281
1282 static int __init mxc_nd_init(void)
1283 {
1284 return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
1285 }
1286
1287 static void __exit mxc_nd_cleanup(void)
1288 {
1289 /* Unregister the device structure */
1290 platform_driver_unregister(&mxcnd_driver);
1291 }
1292
1293 module_init(mxc_nd_init);
1294 module_exit(mxc_nd_cleanup);
1295
1296 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1297 MODULE_DESCRIPTION("MXC NAND MTD driver");
1298 MODULE_LICENSE("GPL");