Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetooth...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / nand / fsl_elbc_nand.c
1 /* Freescale Enhanced Local Bus Controller NAND driver
2 *
3 * Copyright © 2006-2007, 2010 Freescale Semiconductor
4 *
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
7 * Jack Lan <jack.lan@freescale.com>
8 * Roy Zang <tie-fei.zang@freescale.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
40
41 #include <asm/io.h>
42 #include <asm/fsl_lbc.h>
43
44 #define MAX_BANKS 8
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
47
48 /* mtd information per set */
49
50 struct fsl_elbc_mtd {
51 struct mtd_info mtd;
52 struct nand_chip chip;
53 struct fsl_lbc_ctrl *ctrl;
54
55 struct device *dev;
56 int bank; /* Chip select bank number */
57 u8 __iomem *vbase; /* Chip select base virtual address */
58 int page_size; /* NAND page size (0=512, 1=2048) */
59 unsigned int fmr; /* FCM Flash Mode Register value */
60 };
61
62 /* Freescale eLBC FCM controller information */
63
64 struct fsl_elbc_fcm_ctrl {
65 struct nand_hw_control controller;
66 struct fsl_elbc_mtd *chips[MAX_BANKS];
67
68 u8 __iomem *addr; /* Address of assigned FCM buffer */
69 unsigned int page; /* Last page written to / read from */
70 unsigned int read_bytes; /* Number of bytes read during command */
71 unsigned int column; /* Saved column from SEQIN */
72 unsigned int index; /* Pointer to next byte to 'read' */
73 unsigned int status; /* status read from LTESR after last op */
74 unsigned int mdr; /* UPM/FCM Data Register value */
75 unsigned int use_mdr; /* Non zero if the MDR is to be set */
76 unsigned int oob; /* Non zero if operating on OOB data */
77 unsigned int counter; /* counter for the initializations */
78 unsigned int max_bitflips; /* Saved during READ0 cmd */
79 };
80
81 /* These map to the positions used by the FCM hardware ECC generator */
82
83 /* Small Page FLASH with FMR[ECCM] = 0 */
84 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
85 .eccbytes = 3,
86 .eccpos = {6, 7, 8},
87 .oobfree = { {0, 5}, {9, 7} },
88 };
89
90 /* Small Page FLASH with FMR[ECCM] = 1 */
91 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
92 .eccbytes = 3,
93 .eccpos = {8, 9, 10},
94 .oobfree = { {0, 5}, {6, 2}, {11, 5} },
95 };
96
97 /* Large Page FLASH with FMR[ECCM] = 0 */
98 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
99 .eccbytes = 12,
100 .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
101 .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
102 };
103
104 /* Large Page FLASH with FMR[ECCM] = 1 */
105 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
106 .eccbytes = 12,
107 .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
108 .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
109 };
110
111 /*
112 * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
113 * 1, so we have to adjust bad block pattern. This pattern should be used for
114 * x8 chips only. So far hardware does not support x16 chips anyway.
115 */
116 static u8 scan_ff_pattern[] = { 0xff, };
117
118 static struct nand_bbt_descr largepage_memorybased = {
119 .options = 0,
120 .offs = 0,
121 .len = 1,
122 .pattern = scan_ff_pattern,
123 };
124
125 /*
126 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
127 * interfere with ECC positions, that's why we implement our own descriptors.
128 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
129 */
130 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
131 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
132
133 static struct nand_bbt_descr bbt_main_descr = {
134 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
135 NAND_BBT_2BIT | NAND_BBT_VERSION,
136 .offs = 11,
137 .len = 4,
138 .veroffs = 15,
139 .maxblocks = 4,
140 .pattern = bbt_pattern,
141 };
142
143 static struct nand_bbt_descr bbt_mirror_descr = {
144 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
145 NAND_BBT_2BIT | NAND_BBT_VERSION,
146 .offs = 11,
147 .len = 4,
148 .veroffs = 15,
149 .maxblocks = 4,
150 .pattern = mirror_pattern,
151 };
152
153 /*=================================*/
154
155 /*
156 * Set up the FCM hardware block and page address fields, and the fcm
157 * structure addr field to point to the correct FCM buffer in memory
158 */
159 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
160 {
161 struct nand_chip *chip = mtd->priv;
162 struct fsl_elbc_mtd *priv = chip->priv;
163 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
164 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
165 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
166 int buf_num;
167
168 elbc_fcm_ctrl->page = page_addr;
169
170 if (priv->page_size) {
171 /*
172 * large page size chip : FPAR[PI] save the lowest 6 bits,
173 * FBAR[BLK] save the other bits.
174 */
175 out_be32(&lbc->fbar, page_addr >> 6);
176 out_be32(&lbc->fpar,
177 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
178 (oob ? FPAR_LP_MS : 0) | column);
179 buf_num = (page_addr & 1) << 2;
180 } else {
181 /*
182 * small page size chip : FPAR[PI] save the lowest 5 bits,
183 * FBAR[BLK] save the other bits.
184 */
185 out_be32(&lbc->fbar, page_addr >> 5);
186 out_be32(&lbc->fpar,
187 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
188 (oob ? FPAR_SP_MS : 0) | column);
189 buf_num = page_addr & 7;
190 }
191
192 elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
193 elbc_fcm_ctrl->index = column;
194
195 /* for OOB data point to the second half of the buffer */
196 if (oob)
197 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
198
199 dev_vdbg(priv->dev, "set_addr: bank=%d, "
200 "elbc_fcm_ctrl->addr=0x%p (0x%p), "
201 "index %x, pes %d ps %d\n",
202 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
203 elbc_fcm_ctrl->index,
204 chip->phys_erase_shift, chip->page_shift);
205 }
206
207 /*
208 * execute FCM command and wait for it to complete
209 */
210 static int fsl_elbc_run_command(struct mtd_info *mtd)
211 {
212 struct nand_chip *chip = mtd->priv;
213 struct fsl_elbc_mtd *priv = chip->priv;
214 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
215 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
216 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
217
218 /* Setup the FMR[OP] to execute without write protection */
219 out_be32(&lbc->fmr, priv->fmr | 3);
220 if (elbc_fcm_ctrl->use_mdr)
221 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
222
223 dev_vdbg(priv->dev,
224 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
225 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
226 dev_vdbg(priv->dev,
227 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
228 "fbcr=%08x bank=%d\n",
229 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
230 in_be32(&lbc->fbcr), priv->bank);
231
232 ctrl->irq_status = 0;
233 /* execute special operation */
234 out_be32(&lbc->lsor, priv->bank);
235
236 /* wait for FCM complete flag or timeout */
237 wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
238 FCM_TIMEOUT_MSECS * HZ/1000);
239 elbc_fcm_ctrl->status = ctrl->irq_status;
240 /* store mdr value in case it was needed */
241 if (elbc_fcm_ctrl->use_mdr)
242 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
243
244 elbc_fcm_ctrl->use_mdr = 0;
245
246 if (elbc_fcm_ctrl->status != LTESR_CC) {
247 dev_info(priv->dev,
248 "command failed: fir %x fcr %x status %x mdr %x\n",
249 in_be32(&lbc->fir), in_be32(&lbc->fcr),
250 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
251 return -EIO;
252 }
253
254 if (chip->ecc.mode != NAND_ECC_HW)
255 return 0;
256
257 elbc_fcm_ctrl->max_bitflips = 0;
258
259 if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
260 uint32_t lteccr = in_be32(&lbc->lteccr);
261 /*
262 * if command was a full page read and the ELBC
263 * has the LTECCR register, then bits 12-15 (ppc order) of
264 * LTECCR indicates which 512 byte sub-pages had fixed errors.
265 * bits 28-31 are uncorrectable errors, marked elsewhere.
266 * for small page nand only 1 bit is used.
267 * if the ELBC doesn't have the lteccr register it reads 0
268 * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
269 * count the number of sub-pages with bitflips and update
270 * ecc_stats.corrected accordingly.
271 */
272 if (lteccr & 0x000F000F)
273 out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
274 if (lteccr & 0x000F0000) {
275 mtd->ecc_stats.corrected++;
276 elbc_fcm_ctrl->max_bitflips = 1;
277 }
278 }
279
280 return 0;
281 }
282
283 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
284 {
285 struct fsl_elbc_mtd *priv = chip->priv;
286 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
287 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
288
289 if (priv->page_size) {
290 out_be32(&lbc->fir,
291 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
292 (FIR_OP_CA << FIR_OP1_SHIFT) |
293 (FIR_OP_PA << FIR_OP2_SHIFT) |
294 (FIR_OP_CM1 << FIR_OP3_SHIFT) |
295 (FIR_OP_RBW << FIR_OP4_SHIFT));
296
297 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
298 (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
299 } else {
300 out_be32(&lbc->fir,
301 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
302 (FIR_OP_CA << FIR_OP1_SHIFT) |
303 (FIR_OP_PA << FIR_OP2_SHIFT) |
304 (FIR_OP_RBW << FIR_OP3_SHIFT));
305
306 if (oob)
307 out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
308 else
309 out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
310 }
311 }
312
313 /* cmdfunc send commands to the FCM */
314 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
315 int column, int page_addr)
316 {
317 struct nand_chip *chip = mtd->priv;
318 struct fsl_elbc_mtd *priv = chip->priv;
319 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
320 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
321 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
322
323 elbc_fcm_ctrl->use_mdr = 0;
324
325 /* clear the read buffer */
326 elbc_fcm_ctrl->read_bytes = 0;
327 if (command != NAND_CMD_PAGEPROG)
328 elbc_fcm_ctrl->index = 0;
329
330 switch (command) {
331 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
332 case NAND_CMD_READ1:
333 column += 256;
334
335 /* fall-through */
336 case NAND_CMD_READ0:
337 dev_dbg(priv->dev,
338 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
339 " 0x%x, column: 0x%x.\n", page_addr, column);
340
341
342 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
343 set_addr(mtd, 0, page_addr, 0);
344
345 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
346 elbc_fcm_ctrl->index += column;
347
348 fsl_elbc_do_read(chip, 0);
349 fsl_elbc_run_command(mtd);
350 return;
351
352 /* READOOB reads only the OOB because no ECC is performed. */
353 case NAND_CMD_READOOB:
354 dev_vdbg(priv->dev,
355 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
356 " 0x%x, column: 0x%x.\n", page_addr, column);
357
358 out_be32(&lbc->fbcr, mtd->oobsize - column);
359 set_addr(mtd, column, page_addr, 1);
360
361 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
362
363 fsl_elbc_do_read(chip, 1);
364 fsl_elbc_run_command(mtd);
365 return;
366
367 case NAND_CMD_READID:
368 case NAND_CMD_PARAM:
369 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
370
371 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
372 (FIR_OP_UA << FIR_OP1_SHIFT) |
373 (FIR_OP_RBW << FIR_OP2_SHIFT));
374 out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
375 /*
376 * although currently it's 8 bytes for READID, we always read
377 * the maximum 256 bytes(for PARAM)
378 */
379 out_be32(&lbc->fbcr, 256);
380 elbc_fcm_ctrl->read_bytes = 256;
381 elbc_fcm_ctrl->use_mdr = 1;
382 elbc_fcm_ctrl->mdr = column;
383 set_addr(mtd, 0, 0, 0);
384 fsl_elbc_run_command(mtd);
385 return;
386
387 /* ERASE1 stores the block and page address */
388 case NAND_CMD_ERASE1:
389 dev_vdbg(priv->dev,
390 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
391 "page_addr: 0x%x.\n", page_addr);
392 set_addr(mtd, 0, page_addr, 0);
393 return;
394
395 /* ERASE2 uses the block and page address from ERASE1 */
396 case NAND_CMD_ERASE2:
397 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
398
399 out_be32(&lbc->fir,
400 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
401 (FIR_OP_PA << FIR_OP1_SHIFT) |
402 (FIR_OP_CM2 << FIR_OP2_SHIFT) |
403 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
404 (FIR_OP_RS << FIR_OP4_SHIFT));
405
406 out_be32(&lbc->fcr,
407 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
408 (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
409 (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
410
411 out_be32(&lbc->fbcr, 0);
412 elbc_fcm_ctrl->read_bytes = 0;
413 elbc_fcm_ctrl->use_mdr = 1;
414
415 fsl_elbc_run_command(mtd);
416 return;
417
418 /* SEQIN sets up the addr buffer and all registers except the length */
419 case NAND_CMD_SEQIN: {
420 __be32 fcr;
421 dev_vdbg(priv->dev,
422 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
423 "page_addr: 0x%x, column: 0x%x.\n",
424 page_addr, column);
425
426 elbc_fcm_ctrl->column = column;
427 elbc_fcm_ctrl->use_mdr = 1;
428
429 if (column >= mtd->writesize) {
430 /* OOB area */
431 column -= mtd->writesize;
432 elbc_fcm_ctrl->oob = 1;
433 } else {
434 WARN_ON(column != 0);
435 elbc_fcm_ctrl->oob = 0;
436 }
437
438 fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
439 (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) |
440 (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
441
442 if (priv->page_size) {
443 out_be32(&lbc->fir,
444 (FIR_OP_CM2 << FIR_OP0_SHIFT) |
445 (FIR_OP_CA << FIR_OP1_SHIFT) |
446 (FIR_OP_PA << FIR_OP2_SHIFT) |
447 (FIR_OP_WB << FIR_OP3_SHIFT) |
448 (FIR_OP_CM3 << FIR_OP4_SHIFT) |
449 (FIR_OP_CW1 << FIR_OP5_SHIFT) |
450 (FIR_OP_RS << FIR_OP6_SHIFT));
451 } else {
452 out_be32(&lbc->fir,
453 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
454 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
455 (FIR_OP_CA << FIR_OP2_SHIFT) |
456 (FIR_OP_PA << FIR_OP3_SHIFT) |
457 (FIR_OP_WB << FIR_OP4_SHIFT) |
458 (FIR_OP_CM3 << FIR_OP5_SHIFT) |
459 (FIR_OP_CW1 << FIR_OP6_SHIFT) |
460 (FIR_OP_RS << FIR_OP7_SHIFT));
461
462 if (elbc_fcm_ctrl->oob)
463 /* OOB area --> READOOB */
464 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
465 else
466 /* First 256 bytes --> READ0 */
467 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
468 }
469
470 out_be32(&lbc->fcr, fcr);
471 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
472 return;
473 }
474
475 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
476 case NAND_CMD_PAGEPROG: {
477 dev_vdbg(priv->dev,
478 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
479 "writing %d bytes.\n", elbc_fcm_ctrl->index);
480
481 /* if the write did not start at 0 or is not a full page
482 * then set the exact length, otherwise use a full page
483 * write so the HW generates the ECC.
484 */
485 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
486 elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
487 out_be32(&lbc->fbcr,
488 elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
489 else
490 out_be32(&lbc->fbcr, 0);
491
492 fsl_elbc_run_command(mtd);
493 return;
494 }
495
496 /* CMD_STATUS must read the status byte while CEB is active */
497 /* Note - it does not wait for the ready line */
498 case NAND_CMD_STATUS:
499 out_be32(&lbc->fir,
500 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
501 (FIR_OP_RBW << FIR_OP1_SHIFT));
502 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
503 out_be32(&lbc->fbcr, 1);
504 set_addr(mtd, 0, 0, 0);
505 elbc_fcm_ctrl->read_bytes = 1;
506
507 fsl_elbc_run_command(mtd);
508
509 /* The chip always seems to report that it is
510 * write-protected, even when it is not.
511 */
512 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
513 return;
514
515 /* RESET without waiting for the ready line */
516 case NAND_CMD_RESET:
517 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
518 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
519 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
520 fsl_elbc_run_command(mtd);
521 return;
522
523 default:
524 dev_err(priv->dev,
525 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
526 command);
527 }
528 }
529
530 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
531 {
532 /* The hardware does not seem to support multiple
533 * chips per bank.
534 */
535 }
536
537 /*
538 * Write buf to the FCM Controller Data Buffer
539 */
540 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
541 {
542 struct nand_chip *chip = mtd->priv;
543 struct fsl_elbc_mtd *priv = chip->priv;
544 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
545 unsigned int bufsize = mtd->writesize + mtd->oobsize;
546
547 if (len <= 0) {
548 dev_err(priv->dev, "write_buf of %d bytes", len);
549 elbc_fcm_ctrl->status = 0;
550 return;
551 }
552
553 if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
554 dev_err(priv->dev,
555 "write_buf beyond end of buffer "
556 "(%d requested, %u available)\n",
557 len, bufsize - elbc_fcm_ctrl->index);
558 len = bufsize - elbc_fcm_ctrl->index;
559 }
560
561 memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
562 /*
563 * This is workaround for the weird elbc hangs during nand write,
564 * Scott Wood says: "...perhaps difference in how long it takes a
565 * write to make it through the localbus compared to a write to IMMR
566 * is causing problems, and sync isn't helping for some reason."
567 * Reading back the last byte helps though.
568 */
569 in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
570
571 elbc_fcm_ctrl->index += len;
572 }
573
574 /*
575 * read a byte from either the FCM hardware buffer if it has any data left
576 * otherwise issue a command to read a single byte.
577 */
578 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
579 {
580 struct nand_chip *chip = mtd->priv;
581 struct fsl_elbc_mtd *priv = chip->priv;
582 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
583
584 /* If there are still bytes in the FCM, then use the next byte. */
585 if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
586 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
587
588 dev_err(priv->dev, "read_byte beyond end of buffer\n");
589 return ERR_BYTE;
590 }
591
592 /*
593 * Read from the FCM Controller Data Buffer
594 */
595 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
596 {
597 struct nand_chip *chip = mtd->priv;
598 struct fsl_elbc_mtd *priv = chip->priv;
599 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
600 int avail;
601
602 if (len < 0)
603 return;
604
605 avail = min((unsigned int)len,
606 elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
607 memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
608 elbc_fcm_ctrl->index += avail;
609
610 if (len > avail)
611 dev_err(priv->dev,
612 "read_buf beyond end of buffer "
613 "(%d requested, %d available)\n",
614 len, avail);
615 }
616
617 /* This function is called after Program and Erase Operations to
618 * check for success or failure.
619 */
620 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
621 {
622 struct fsl_elbc_mtd *priv = chip->priv;
623 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
624
625 if (elbc_fcm_ctrl->status != LTESR_CC)
626 return NAND_STATUS_FAIL;
627
628 /* The chip always seems to report that it is
629 * write-protected, even when it is not.
630 */
631 return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
632 }
633
634 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
635 {
636 struct nand_chip *chip = mtd->priv;
637 struct fsl_elbc_mtd *priv = chip->priv;
638 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
639 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
640 unsigned int al;
641
642 /* calculate FMR Address Length field */
643 al = 0;
644 if (chip->pagemask & 0xffff0000)
645 al++;
646 if (chip->pagemask & 0xff000000)
647 al++;
648
649 priv->fmr |= al << FMR_AL_SHIFT;
650
651 dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
652 chip->numchips);
653 dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
654 chip->chipsize);
655 dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
656 chip->pagemask);
657 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
658 chip->chip_delay);
659 dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
660 chip->badblockpos);
661 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
662 chip->chip_shift);
663 dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
664 chip->page_shift);
665 dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
666 chip->phys_erase_shift);
667 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
668 chip->ecclayout);
669 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
670 chip->ecc.mode);
671 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
672 chip->ecc.steps);
673 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
674 chip->ecc.bytes);
675 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
676 chip->ecc.total);
677 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
678 chip->ecc.layout);
679 dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
680 dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
681 dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
682 mtd->erasesize);
683 dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
684 mtd->writesize);
685 dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
686 mtd->oobsize);
687
688 /* adjust Option Register and ECC to match Flash page size */
689 if (mtd->writesize == 512) {
690 priv->page_size = 0;
691 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
692 } else if (mtd->writesize == 2048) {
693 priv->page_size = 1;
694 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
695 /* adjust ecc setup if needed */
696 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
697 BR_DECC_CHK_GEN) {
698 chip->ecc.size = 512;
699 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
700 &fsl_elbc_oob_lp_eccm1 :
701 &fsl_elbc_oob_lp_eccm0;
702 chip->badblock_pattern = &largepage_memorybased;
703 }
704 } else {
705 dev_err(priv->dev,
706 "fsl_elbc_init: page size %d is not supported\n",
707 mtd->writesize);
708 return -1;
709 }
710
711 return 0;
712 }
713
714 static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
715 uint8_t *buf, int oob_required, int page)
716 {
717 struct fsl_elbc_mtd *priv = chip->priv;
718 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
719 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
720
721 fsl_elbc_read_buf(mtd, buf, mtd->writesize);
722 if (oob_required)
723 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
724
725 if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
726 mtd->ecc_stats.failed++;
727
728 return elbc_fcm_ctrl->max_bitflips;
729 }
730
731 /* ECC will be calculated automatically, and errors will be detected in
732 * waitfunc.
733 */
734 static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
735 const uint8_t *buf, int oob_required)
736 {
737 fsl_elbc_write_buf(mtd, buf, mtd->writesize);
738 fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
739
740 return 0;
741 }
742
743 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
744 {
745 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
746 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
747 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
748 struct nand_chip *chip = &priv->chip;
749
750 dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
751
752 /* Fill in fsl_elbc_mtd structure */
753 priv->mtd.priv = chip;
754 priv->mtd.owner = THIS_MODULE;
755
756 /* set timeout to maximum */
757 priv->fmr = 15 << FMR_CWTO_SHIFT;
758 if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
759 priv->fmr |= FMR_ECCM;
760
761 /* fill in nand_chip structure */
762 /* set up function call table */
763 chip->read_byte = fsl_elbc_read_byte;
764 chip->write_buf = fsl_elbc_write_buf;
765 chip->read_buf = fsl_elbc_read_buf;
766 chip->select_chip = fsl_elbc_select_chip;
767 chip->cmdfunc = fsl_elbc_cmdfunc;
768 chip->waitfunc = fsl_elbc_wait;
769
770 chip->bbt_td = &bbt_main_descr;
771 chip->bbt_md = &bbt_mirror_descr;
772
773 /* set up nand options */
774 chip->bbt_options = NAND_BBT_USE_FLASH;
775
776 chip->controller = &elbc_fcm_ctrl->controller;
777 chip->priv = priv;
778
779 chip->ecc.read_page = fsl_elbc_read_page;
780 chip->ecc.write_page = fsl_elbc_write_page;
781
782 /* If CS Base Register selects full hardware ECC then use it */
783 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
784 BR_DECC_CHK_GEN) {
785 chip->ecc.mode = NAND_ECC_HW;
786 /* put in small page settings and adjust later if needed */
787 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
788 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
789 chip->ecc.size = 512;
790 chip->ecc.bytes = 3;
791 chip->ecc.strength = 1;
792 } else {
793 /* otherwise fall back to default software ECC */
794 chip->ecc.mode = NAND_ECC_SOFT;
795 }
796
797 return 0;
798 }
799
800 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
801 {
802 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
803 nand_release(&priv->mtd);
804
805 kfree(priv->mtd.name);
806
807 if (priv->vbase)
808 iounmap(priv->vbase);
809
810 elbc_fcm_ctrl->chips[priv->bank] = NULL;
811 kfree(priv);
812 return 0;
813 }
814
815 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
816
817 static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
818 {
819 struct fsl_lbc_regs __iomem *lbc;
820 struct fsl_elbc_mtd *priv;
821 struct resource res;
822 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
823 static const char *part_probe_types[]
824 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
825 int ret;
826 int bank;
827 struct device *dev;
828 struct device_node *node = pdev->dev.of_node;
829 struct mtd_part_parser_data ppdata;
830
831 ppdata.of_node = pdev->dev.of_node;
832 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
833 return -ENODEV;
834 lbc = fsl_lbc_ctrl_dev->regs;
835 dev = fsl_lbc_ctrl_dev->dev;
836
837 /* get, allocate and map the memory resource */
838 ret = of_address_to_resource(node, 0, &res);
839 if (ret) {
840 dev_err(dev, "failed to get resource\n");
841 return ret;
842 }
843
844 /* find which chip select it is connected to */
845 for (bank = 0; bank < MAX_BANKS; bank++)
846 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
847 (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
848 (in_be32(&lbc->bank[bank].br) &
849 in_be32(&lbc->bank[bank].or) & BR_BA)
850 == fsl_lbc_addr(res.start))
851 break;
852
853 if (bank >= MAX_BANKS) {
854 dev_err(dev, "address did not match any chip selects\n");
855 return -ENODEV;
856 }
857
858 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
859 if (!priv)
860 return -ENOMEM;
861
862 mutex_lock(&fsl_elbc_nand_mutex);
863 if (!fsl_lbc_ctrl_dev->nand) {
864 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
865 if (!elbc_fcm_ctrl) {
866 dev_err(dev, "failed to allocate memory\n");
867 mutex_unlock(&fsl_elbc_nand_mutex);
868 ret = -ENOMEM;
869 goto err;
870 }
871 elbc_fcm_ctrl->counter++;
872
873 spin_lock_init(&elbc_fcm_ctrl->controller.lock);
874 init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
875 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
876 } else {
877 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
878 }
879 mutex_unlock(&fsl_elbc_nand_mutex);
880
881 elbc_fcm_ctrl->chips[bank] = priv;
882 priv->bank = bank;
883 priv->ctrl = fsl_lbc_ctrl_dev;
884 priv->dev = &pdev->dev;
885 dev_set_drvdata(priv->dev, priv);
886
887 priv->vbase = ioremap(res.start, resource_size(&res));
888 if (!priv->vbase) {
889 dev_err(dev, "failed to map chip region\n");
890 ret = -ENOMEM;
891 goto err;
892 }
893
894 priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
895 if (!priv->mtd.name) {
896 ret = -ENOMEM;
897 goto err;
898 }
899
900 ret = fsl_elbc_chip_init(priv);
901 if (ret)
902 goto err;
903
904 ret = nand_scan_ident(&priv->mtd, 1, NULL);
905 if (ret)
906 goto err;
907
908 ret = fsl_elbc_chip_init_tail(&priv->mtd);
909 if (ret)
910 goto err;
911
912 ret = nand_scan_tail(&priv->mtd);
913 if (ret)
914 goto err;
915
916 /* First look for RedBoot table or partitions on the command
917 * line, these take precedence over device tree information */
918 mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
919 NULL, 0);
920
921 printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
922 (unsigned long long)res.start, priv->bank);
923 return 0;
924
925 err:
926 fsl_elbc_chip_remove(priv);
927 return ret;
928 }
929
930 static int fsl_elbc_nand_remove(struct platform_device *pdev)
931 {
932 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
933 struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
934
935 fsl_elbc_chip_remove(priv);
936
937 mutex_lock(&fsl_elbc_nand_mutex);
938 elbc_fcm_ctrl->counter--;
939 if (!elbc_fcm_ctrl->counter) {
940 fsl_lbc_ctrl_dev->nand = NULL;
941 kfree(elbc_fcm_ctrl);
942 }
943 mutex_unlock(&fsl_elbc_nand_mutex);
944
945 return 0;
946
947 }
948
949 static const struct of_device_id fsl_elbc_nand_match[] = {
950 { .compatible = "fsl,elbc-fcm-nand", },
951 {}
952 };
953
954 static struct platform_driver fsl_elbc_nand_driver = {
955 .driver = {
956 .name = "fsl,elbc-fcm-nand",
957 .owner = THIS_MODULE,
958 .of_match_table = fsl_elbc_nand_match,
959 },
960 .probe = fsl_elbc_nand_probe,
961 .remove = fsl_elbc_nand_remove,
962 };
963
964 module_platform_driver(fsl_elbc_nand_driver);
965
966 MODULE_LICENSE("GPL");
967 MODULE_AUTHOR("Freescale");
968 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");