[MTD] NAND Add read/write function pointers to struct nand_ecc_ctrl
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / nand / diskonchip.c
1 /*
2 * drivers/mtd/nand/diskonchip.c
3 *
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
7 *
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
11 *
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
16 *
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
18 *
19 * $Id: diskonchip.c,v 1.55 2005/11/07 11:14:30 gleixner Exp $
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/rslib.h>
27 #include <linux/moduleparam.h>
28 #include <asm/io.h>
29
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/doc2000.h>
33 #include <linux/mtd/compatmac.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/mtd/inftl.h>
36
37 /* Where to look for the devices? */
38 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
39 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
40 #endif
41
42 static unsigned long __initdata doc_locations[] = {
43 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
44 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
45 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
46 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
47 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
48 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
49 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
50 #else /* CONFIG_MTD_DOCPROBE_HIGH */
51 0xc8000, 0xca000, 0xcc000, 0xce000,
52 0xd0000, 0xd2000, 0xd4000, 0xd6000,
53 0xd8000, 0xda000, 0xdc000, 0xde000,
54 0xe0000, 0xe2000, 0xe4000, 0xe6000,
55 0xe8000, 0xea000, 0xec000, 0xee000,
56 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
57 #elif defined(__PPC__)
58 0xe4000000,
59 #elif defined(CONFIG_MOMENCO_OCELOT)
60 0x2f000000,
61 0xff000000,
62 #elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
63 0xff000000,
64 #else
65 #warning Unknown architecture for DiskOnChip. No default probe locations defined
66 #endif
67 0xffffffff };
68
69 static struct mtd_info *doclist = NULL;
70
71 struct doc_priv {
72 void __iomem *virtadr;
73 unsigned long physadr;
74 u_char ChipID;
75 u_char CDSNControl;
76 int chips_per_floor; /* The number of chips detected on each floor */
77 int curfloor;
78 int curchip;
79 int mh0_page;
80 int mh1_page;
81 struct mtd_info *nextdoc;
82 };
83
84 /* This is the syndrome computed by the HW ecc generator upon reading an empty
85 page, one with all 0xff for data and stored ecc code. */
86 static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
87
88 /* This is the ecc value computed by the HW ecc generator upon writing an empty
89 page, one with all 0xff for data. */
90 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
91
92 #define INFTL_BBT_RESERVED_BLOCKS 4
93
94 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
95 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
96 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
97
98 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
99 unsigned int bitmask);
100 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
101
102 static int debug = 0;
103 module_param(debug, int, 0);
104
105 static int try_dword = 1;
106 module_param(try_dword, int, 0);
107
108 static int no_ecc_failures = 0;
109 module_param(no_ecc_failures, int, 0);
110
111 static int no_autopart = 0;
112 module_param(no_autopart, int, 0);
113
114 static int show_firmware_partition = 0;
115 module_param(show_firmware_partition, int, 0);
116
117 #ifdef MTD_NAND_DISKONCHIP_BBTWRITE
118 static int inftl_bbt_write = 1;
119 #else
120 static int inftl_bbt_write = 0;
121 #endif
122 module_param(inftl_bbt_write, int, 0);
123
124 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
125 module_param(doc_config_location, ulong, 0);
126 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
127
128 /* Sector size for HW ECC */
129 #define SECTOR_SIZE 512
130 /* The sector bytes are packed into NB_DATA 10 bit words */
131 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
132 /* Number of roots */
133 #define NROOTS 4
134 /* First consective root */
135 #define FCR 510
136 /* Number of symbols */
137 #define NN 1023
138
139 /* the Reed Solomon control structure */
140 static struct rs_control *rs_decoder;
141
142 /*
143 * The HW decoder in the DoC ASIC's provides us a error syndrome,
144 * which we must convert to a standard syndrom usable by the generic
145 * Reed-Solomon library code.
146 *
147 * Fabrice Bellard figured this out in the old docecc code. I added
148 * some comments, improved a minor bit and converted it to make use
149 * of the generic Reed-Solomon libary. tglx
150 */
151 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
152 {
153 int i, j, nerr, errpos[8];
154 uint8_t parity;
155 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
156
157 /* Convert the ecc bytes into words */
158 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
159 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
160 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
161 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
162 parity = ecc[1];
163
164 /* Initialize the syndrom buffer */
165 for (i = 0; i < NROOTS; i++)
166 s[i] = ds[0];
167 /*
168 * Evaluate
169 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
170 * where x = alpha^(FCR + i)
171 */
172 for (j = 1; j < NROOTS; j++) {
173 if (ds[j] == 0)
174 continue;
175 tmp = rs->index_of[ds[j]];
176 for (i = 0; i < NROOTS; i++)
177 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
178 }
179
180 /* Calc s[i] = s[i] / alpha^(v + i) */
181 for (i = 0; i < NROOTS; i++) {
182 if (syn[i])
183 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
184 }
185 /* Call the decoder library */
186 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
187
188 /* Incorrectable errors ? */
189 if (nerr < 0)
190 return nerr;
191
192 /*
193 * Correct the errors. The bitpositions are a bit of magic,
194 * but they are given by the design of the de/encoder circuit
195 * in the DoC ASIC's.
196 */
197 for (i = 0; i < nerr; i++) {
198 int index, bitpos, pos = 1015 - errpos[i];
199 uint8_t val;
200 if (pos >= NB_DATA && pos < 1019)
201 continue;
202 if (pos < NB_DATA) {
203 /* extract bit position (MSB first) */
204 pos = 10 * (NB_DATA - 1 - pos) - 6;
205 /* now correct the following 10 bits. At most two bytes
206 can be modified since pos is even */
207 index = (pos >> 3) ^ 1;
208 bitpos = pos & 7;
209 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
210 val = (uint8_t) (errval[i] >> (2 + bitpos));
211 parity ^= val;
212 if (index < SECTOR_SIZE)
213 data[index] ^= val;
214 }
215 index = ((pos >> 3) + 1) ^ 1;
216 bitpos = (bitpos + 10) & 7;
217 if (bitpos == 0)
218 bitpos = 8;
219 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
220 val = (uint8_t) (errval[i] << (8 - bitpos));
221 parity ^= val;
222 if (index < SECTOR_SIZE)
223 data[index] ^= val;
224 }
225 }
226 }
227 /* If the parity is wrong, no rescue possible */
228 return parity ? -1 : nerr;
229 }
230
231 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
232 {
233 volatile char dummy;
234 int i;
235
236 for (i = 0; i < cycles; i++) {
237 if (DoC_is_Millennium(doc))
238 dummy = ReadDOC(doc->virtadr, NOP);
239 else if (DoC_is_MillenniumPlus(doc))
240 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
241 else
242 dummy = ReadDOC(doc->virtadr, DOCStatus);
243 }
244
245 }
246
247 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
248
249 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
250 static int _DoC_WaitReady(struct doc_priv *doc)
251 {
252 void __iomem *docptr = doc->virtadr;
253 unsigned long timeo = jiffies + (HZ * 10);
254
255 if (debug)
256 printk("_DoC_WaitReady...\n");
257 /* Out-of-line routine to wait for chip response */
258 if (DoC_is_MillenniumPlus(doc)) {
259 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
260 if (time_after(jiffies, timeo)) {
261 printk("_DoC_WaitReady timed out.\n");
262 return -EIO;
263 }
264 udelay(1);
265 cond_resched();
266 }
267 } else {
268 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
269 if (time_after(jiffies, timeo)) {
270 printk("_DoC_WaitReady timed out.\n");
271 return -EIO;
272 }
273 udelay(1);
274 cond_resched();
275 }
276 }
277
278 return 0;
279 }
280
281 static inline int DoC_WaitReady(struct doc_priv *doc)
282 {
283 void __iomem *docptr = doc->virtadr;
284 int ret = 0;
285
286 if (DoC_is_MillenniumPlus(doc)) {
287 DoC_Delay(doc, 4);
288
289 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
290 /* Call the out-of-line routine to wait */
291 ret = _DoC_WaitReady(doc);
292 } else {
293 DoC_Delay(doc, 4);
294
295 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
296 /* Call the out-of-line routine to wait */
297 ret = _DoC_WaitReady(doc);
298 DoC_Delay(doc, 2);
299 }
300
301 if (debug)
302 printk("DoC_WaitReady OK\n");
303 return ret;
304 }
305
306 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
307 {
308 struct nand_chip *this = mtd->priv;
309 struct doc_priv *doc = this->priv;
310 void __iomem *docptr = doc->virtadr;
311
312 if (debug)
313 printk("write_byte %02x\n", datum);
314 WriteDOC(datum, docptr, CDSNSlowIO);
315 WriteDOC(datum, docptr, 2k_CDSN_IO);
316 }
317
318 static u_char doc2000_read_byte(struct mtd_info *mtd)
319 {
320 struct nand_chip *this = mtd->priv;
321 struct doc_priv *doc = this->priv;
322 void __iomem *docptr = doc->virtadr;
323 u_char ret;
324
325 ReadDOC(docptr, CDSNSlowIO);
326 DoC_Delay(doc, 2);
327 ret = ReadDOC(docptr, 2k_CDSN_IO);
328 if (debug)
329 printk("read_byte returns %02x\n", ret);
330 return ret;
331 }
332
333 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
334 {
335 struct nand_chip *this = mtd->priv;
336 struct doc_priv *doc = this->priv;
337 void __iomem *docptr = doc->virtadr;
338 int i;
339 if (debug)
340 printk("writebuf of %d bytes: ", len);
341 for (i = 0; i < len; i++) {
342 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
343 if (debug && i < 16)
344 printk("%02x ", buf[i]);
345 }
346 if (debug)
347 printk("\n");
348 }
349
350 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
351 {
352 struct nand_chip *this = mtd->priv;
353 struct doc_priv *doc = this->priv;
354 void __iomem *docptr = doc->virtadr;
355 int i;
356
357 if (debug)
358 printk("readbuf of %d bytes: ", len);
359
360 for (i = 0; i < len; i++) {
361 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
362 }
363 }
364
365 static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
366 {
367 struct nand_chip *this = mtd->priv;
368 struct doc_priv *doc = this->priv;
369 void __iomem *docptr = doc->virtadr;
370 int i;
371
372 if (debug)
373 printk("readbuf_dword of %d bytes: ", len);
374
375 if (unlikely((((unsigned long)buf) | len) & 3)) {
376 for (i = 0; i < len; i++) {
377 *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
378 }
379 } else {
380 for (i = 0; i < len; i += 4) {
381 *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
382 }
383 }
384 }
385
386 static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
387 {
388 struct nand_chip *this = mtd->priv;
389 struct doc_priv *doc = this->priv;
390 void __iomem *docptr = doc->virtadr;
391 int i;
392
393 for (i = 0; i < len; i++)
394 if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
395 return -EFAULT;
396 return 0;
397 }
398
399 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
400 {
401 struct nand_chip *this = mtd->priv;
402 struct doc_priv *doc = this->priv;
403 uint16_t ret;
404
405 doc200x_select_chip(mtd, nr);
406 doc200x_hwcontrol(mtd, NAND_CMD_READID,
407 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
408 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
409 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
410
411 /* We cant' use dev_ready here, but at least we wait for the
412 * command to complete
413 */
414 udelay(50);
415
416 ret = this->read_byte(mtd) << 8;
417 ret |= this->read_byte(mtd);
418
419 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
420 /* First chip probe. See if we get same results by 32-bit access */
421 union {
422 uint32_t dword;
423 uint8_t byte[4];
424 } ident;
425 void __iomem *docptr = doc->virtadr;
426
427 doc200x_hwcontrol(mtd, NAND_CMD_READID,
428 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
429 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
430 doc200x_hwcontrol(mtd, NAND_CMD_NONE,
431 NAND_NCE | NAND_CTRL_CHANGE);
432
433 udelay(50);
434
435 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
436 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
437 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
438 this->read_buf = &doc2000_readbuf_dword;
439 }
440 }
441
442 return ret;
443 }
444
445 static void __init doc2000_count_chips(struct mtd_info *mtd)
446 {
447 struct nand_chip *this = mtd->priv;
448 struct doc_priv *doc = this->priv;
449 uint16_t mfrid;
450 int i;
451
452 /* Max 4 chips per floor on DiskOnChip 2000 */
453 doc->chips_per_floor = 4;
454
455 /* Find out what the first chip is */
456 mfrid = doc200x_ident_chip(mtd, 0);
457
458 /* Find how many chips in each floor. */
459 for (i = 1; i < 4; i++) {
460 if (doc200x_ident_chip(mtd, i) != mfrid)
461 break;
462 }
463 doc->chips_per_floor = i;
464 printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
465 }
466
467 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
468 {
469 struct doc_priv *doc = this->priv;
470
471 int status;
472
473 DoC_WaitReady(doc);
474 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
475 DoC_WaitReady(doc);
476 status = (int)this->read_byte(mtd);
477
478 return status;
479 }
480
481 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
482 {
483 struct nand_chip *this = mtd->priv;
484 struct doc_priv *doc = this->priv;
485 void __iomem *docptr = doc->virtadr;
486
487 WriteDOC(datum, docptr, CDSNSlowIO);
488 WriteDOC(datum, docptr, Mil_CDSN_IO);
489 WriteDOC(datum, docptr, WritePipeTerm);
490 }
491
492 static u_char doc2001_read_byte(struct mtd_info *mtd)
493 {
494 struct nand_chip *this = mtd->priv;
495 struct doc_priv *doc = this->priv;
496 void __iomem *docptr = doc->virtadr;
497
498 //ReadDOC(docptr, CDSNSlowIO);
499 /* 11.4.5 -- delay twice to allow extended length cycle */
500 DoC_Delay(doc, 2);
501 ReadDOC(docptr, ReadPipeInit);
502 //return ReadDOC(docptr, Mil_CDSN_IO);
503 return ReadDOC(docptr, LastDataRead);
504 }
505
506 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
507 {
508 struct nand_chip *this = mtd->priv;
509 struct doc_priv *doc = this->priv;
510 void __iomem *docptr = doc->virtadr;
511 int i;
512
513 for (i = 0; i < len; i++)
514 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
515 /* Terminate write pipeline */
516 WriteDOC(0x00, docptr, WritePipeTerm);
517 }
518
519 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
520 {
521 struct nand_chip *this = mtd->priv;
522 struct doc_priv *doc = this->priv;
523 void __iomem *docptr = doc->virtadr;
524 int i;
525
526 /* Start read pipeline */
527 ReadDOC(docptr, ReadPipeInit);
528
529 for (i = 0; i < len - 1; i++)
530 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
531
532 /* Terminate read pipeline */
533 buf[i] = ReadDOC(docptr, LastDataRead);
534 }
535
536 static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
537 {
538 struct nand_chip *this = mtd->priv;
539 struct doc_priv *doc = this->priv;
540 void __iomem *docptr = doc->virtadr;
541 int i;
542
543 /* Start read pipeline */
544 ReadDOC(docptr, ReadPipeInit);
545
546 for (i = 0; i < len - 1; i++)
547 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
548 ReadDOC(docptr, LastDataRead);
549 return i;
550 }
551 if (buf[i] != ReadDOC(docptr, LastDataRead))
552 return i;
553 return 0;
554 }
555
556 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
557 {
558 struct nand_chip *this = mtd->priv;
559 struct doc_priv *doc = this->priv;
560 void __iomem *docptr = doc->virtadr;
561 u_char ret;
562
563 ReadDOC(docptr, Mplus_ReadPipeInit);
564 ReadDOC(docptr, Mplus_ReadPipeInit);
565 ret = ReadDOC(docptr, Mplus_LastDataRead);
566 if (debug)
567 printk("read_byte returns %02x\n", ret);
568 return ret;
569 }
570
571 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
572 {
573 struct nand_chip *this = mtd->priv;
574 struct doc_priv *doc = this->priv;
575 void __iomem *docptr = doc->virtadr;
576 int i;
577
578 if (debug)
579 printk("writebuf of %d bytes: ", len);
580 for (i = 0; i < len; i++) {
581 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
582 if (debug && i < 16)
583 printk("%02x ", buf[i]);
584 }
585 if (debug)
586 printk("\n");
587 }
588
589 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
590 {
591 struct nand_chip *this = mtd->priv;
592 struct doc_priv *doc = this->priv;
593 void __iomem *docptr = doc->virtadr;
594 int i;
595
596 if (debug)
597 printk("readbuf of %d bytes: ", len);
598
599 /* Start read pipeline */
600 ReadDOC(docptr, Mplus_ReadPipeInit);
601 ReadDOC(docptr, Mplus_ReadPipeInit);
602
603 for (i = 0; i < len - 2; i++) {
604 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
605 if (debug && i < 16)
606 printk("%02x ", buf[i]);
607 }
608
609 /* Terminate read pipeline */
610 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
611 if (debug && i < 16)
612 printk("%02x ", buf[len - 2]);
613 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
614 if (debug && i < 16)
615 printk("%02x ", buf[len - 1]);
616 if (debug)
617 printk("\n");
618 }
619
620 static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
621 {
622 struct nand_chip *this = mtd->priv;
623 struct doc_priv *doc = this->priv;
624 void __iomem *docptr = doc->virtadr;
625 int i;
626
627 if (debug)
628 printk("verifybuf of %d bytes: ", len);
629
630 /* Start read pipeline */
631 ReadDOC(docptr, Mplus_ReadPipeInit);
632 ReadDOC(docptr, Mplus_ReadPipeInit);
633
634 for (i = 0; i < len - 2; i++)
635 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
636 ReadDOC(docptr, Mplus_LastDataRead);
637 ReadDOC(docptr, Mplus_LastDataRead);
638 return i;
639 }
640 if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
641 return len - 2;
642 if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
643 return len - 1;
644 return 0;
645 }
646
647 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
648 {
649 struct nand_chip *this = mtd->priv;
650 struct doc_priv *doc = this->priv;
651 void __iomem *docptr = doc->virtadr;
652 int floor = 0;
653
654 if (debug)
655 printk("select chip (%d)\n", chip);
656
657 if (chip == -1) {
658 /* Disable flash internally */
659 WriteDOC(0, docptr, Mplus_FlashSelect);
660 return;
661 }
662
663 floor = chip / doc->chips_per_floor;
664 chip -= (floor * doc->chips_per_floor);
665
666 /* Assert ChipEnable and deassert WriteProtect */
667 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
668 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
669
670 doc->curchip = chip;
671 doc->curfloor = floor;
672 }
673
674 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
675 {
676 struct nand_chip *this = mtd->priv;
677 struct doc_priv *doc = this->priv;
678 void __iomem *docptr = doc->virtadr;
679 int floor = 0;
680
681 if (debug)
682 printk("select chip (%d)\n", chip);
683
684 if (chip == -1)
685 return;
686
687 floor = chip / doc->chips_per_floor;
688 chip -= (floor * doc->chips_per_floor);
689
690 /* 11.4.4 -- deassert CE before changing chip */
691 doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
692
693 WriteDOC(floor, docptr, FloorSelect);
694 WriteDOC(chip, docptr, CDSNDeviceSelect);
695
696 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
697
698 doc->curchip = chip;
699 doc->curfloor = floor;
700 }
701
702 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
703
704 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
705 unsigned int ctrl)
706 {
707 struct nand_chip *this = mtd->priv;
708 struct doc_priv *doc = this->priv;
709 void __iomem *docptr = doc->virtadr;
710
711 if (ctrl & NAND_CTRL_CHANGE) {
712 doc->CDSNControl &= ~CDSN_CTRL_MSK;
713 doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
714 if (debug)
715 printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
716 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
717 /* 11.4.3 -- 4 NOPs after CSDNControl write */
718 DoC_Delay(doc, 4);
719 }
720 if (cmd != NAND_CMD_NONE) {
721 if (DoC_is_2000(doc))
722 doc2000_write_byte(mtd, cmd);
723 else
724 doc2001_write_byte(mtd, cmd);
725 }
726 }
727
728 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
729 {
730 struct nand_chip *this = mtd->priv;
731 struct doc_priv *doc = this->priv;
732 void __iomem *docptr = doc->virtadr;
733
734 /*
735 * Must terminate write pipeline before sending any commands
736 * to the device.
737 */
738 if (command == NAND_CMD_PAGEPROG) {
739 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
740 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
741 }
742
743 /*
744 * Write out the command to the device.
745 */
746 if (command == NAND_CMD_SEQIN) {
747 int readcmd;
748
749 if (column >= mtd->writesize) {
750 /* OOB area */
751 column -= mtd->writesize;
752 readcmd = NAND_CMD_READOOB;
753 } else if (column < 256) {
754 /* First 256 bytes --> READ0 */
755 readcmd = NAND_CMD_READ0;
756 } else {
757 column -= 256;
758 readcmd = NAND_CMD_READ1;
759 }
760 WriteDOC(readcmd, docptr, Mplus_FlashCmd);
761 }
762 WriteDOC(command, docptr, Mplus_FlashCmd);
763 WriteDOC(0, docptr, Mplus_WritePipeTerm);
764 WriteDOC(0, docptr, Mplus_WritePipeTerm);
765
766 if (column != -1 || page_addr != -1) {
767 /* Serially input address */
768 if (column != -1) {
769 /* Adjust columns for 16 bit buswidth */
770 if (this->options & NAND_BUSWIDTH_16)
771 column >>= 1;
772 WriteDOC(column, docptr, Mplus_FlashAddress);
773 }
774 if (page_addr != -1) {
775 WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
776 WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
777 /* One more address cycle for higher density devices */
778 if (this->chipsize & 0x0c000000) {
779 WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
780 printk("high density\n");
781 }
782 }
783 WriteDOC(0, docptr, Mplus_WritePipeTerm);
784 WriteDOC(0, docptr, Mplus_WritePipeTerm);
785 /* deassert ALE */
786 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
787 command == NAND_CMD_READOOB || command == NAND_CMD_READID)
788 WriteDOC(0, docptr, Mplus_FlashControl);
789 }
790
791 /*
792 * program and erase have their own busy handlers
793 * status and sequential in needs no delay
794 */
795 switch (command) {
796
797 case NAND_CMD_PAGEPROG:
798 case NAND_CMD_ERASE1:
799 case NAND_CMD_ERASE2:
800 case NAND_CMD_SEQIN:
801 case NAND_CMD_STATUS:
802 return;
803
804 case NAND_CMD_RESET:
805 if (this->dev_ready)
806 break;
807 udelay(this->chip_delay);
808 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
809 WriteDOC(0, docptr, Mplus_WritePipeTerm);
810 WriteDOC(0, docptr, Mplus_WritePipeTerm);
811 while (!(this->read_byte(mtd) & 0x40)) ;
812 return;
813
814 /* This applies to read commands */
815 default:
816 /*
817 * If we don't have access to the busy pin, we apply the given
818 * command delay
819 */
820 if (!this->dev_ready) {
821 udelay(this->chip_delay);
822 return;
823 }
824 }
825
826 /* Apply this short delay always to ensure that we do wait tWB in
827 * any case on any machine. */
828 ndelay(100);
829 /* wait until command is processed */
830 while (!this->dev_ready(mtd)) ;
831 }
832
833 static int doc200x_dev_ready(struct mtd_info *mtd)
834 {
835 struct nand_chip *this = mtd->priv;
836 struct doc_priv *doc = this->priv;
837 void __iomem *docptr = doc->virtadr;
838
839 if (DoC_is_MillenniumPlus(doc)) {
840 /* 11.4.2 -- must NOP four times before checking FR/B# */
841 DoC_Delay(doc, 4);
842 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
843 if (debug)
844 printk("not ready\n");
845 return 0;
846 }
847 if (debug)
848 printk("was ready\n");
849 return 1;
850 } else {
851 /* 11.4.2 -- must NOP four times before checking FR/B# */
852 DoC_Delay(doc, 4);
853 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
854 if (debug)
855 printk("not ready\n");
856 return 0;
857 }
858 /* 11.4.2 -- Must NOP twice if it's ready */
859 DoC_Delay(doc, 2);
860 if (debug)
861 printk("was ready\n");
862 return 1;
863 }
864 }
865
866 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
867 {
868 /* This is our last resort if we couldn't find or create a BBT. Just
869 pretend all blocks are good. */
870 return 0;
871 }
872
873 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
874 {
875 struct nand_chip *this = mtd->priv;
876 struct doc_priv *doc = this->priv;
877 void __iomem *docptr = doc->virtadr;
878
879 /* Prime the ECC engine */
880 switch (mode) {
881 case NAND_ECC_READ:
882 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
883 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
884 break;
885 case NAND_ECC_WRITE:
886 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
887 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
888 break;
889 }
890 }
891
892 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
893 {
894 struct nand_chip *this = mtd->priv;
895 struct doc_priv *doc = this->priv;
896 void __iomem *docptr = doc->virtadr;
897
898 /* Prime the ECC engine */
899 switch (mode) {
900 case NAND_ECC_READ:
901 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
902 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
903 break;
904 case NAND_ECC_WRITE:
905 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
906 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
907 break;
908 }
909 }
910
911 /* This code is only called on write */
912 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
913 {
914 struct nand_chip *this = mtd->priv;
915 struct doc_priv *doc = this->priv;
916 void __iomem *docptr = doc->virtadr;
917 int i;
918 int emptymatch = 1;
919
920 /* flush the pipeline */
921 if (DoC_is_2000(doc)) {
922 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
923 WriteDOC(0, docptr, 2k_CDSN_IO);
924 WriteDOC(0, docptr, 2k_CDSN_IO);
925 WriteDOC(0, docptr, 2k_CDSN_IO);
926 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
927 } else if (DoC_is_MillenniumPlus(doc)) {
928 WriteDOC(0, docptr, Mplus_NOP);
929 WriteDOC(0, docptr, Mplus_NOP);
930 WriteDOC(0, docptr, Mplus_NOP);
931 } else {
932 WriteDOC(0, docptr, NOP);
933 WriteDOC(0, docptr, NOP);
934 WriteDOC(0, docptr, NOP);
935 }
936
937 for (i = 0; i < 6; i++) {
938 if (DoC_is_MillenniumPlus(doc))
939 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
940 else
941 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
942 if (ecc_code[i] != empty_write_ecc[i])
943 emptymatch = 0;
944 }
945 if (DoC_is_MillenniumPlus(doc))
946 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
947 else
948 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
949 #if 0
950 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
951 if (emptymatch) {
952 /* Note: this somewhat expensive test should not be triggered
953 often. It could be optimized away by examining the data in
954 the writebuf routine, and remembering the result. */
955 for (i = 0; i < 512; i++) {
956 if (dat[i] == 0xff)
957 continue;
958 emptymatch = 0;
959 break;
960 }
961 }
962 /* If emptymatch still =1, we do have an all-0xff data buffer.
963 Return all-0xff ecc value instead of the computed one, so
964 it'll look just like a freshly-erased page. */
965 if (emptymatch)
966 memset(ecc_code, 0xff, 6);
967 #endif
968 return 0;
969 }
970
971 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
972 {
973 int i, ret = 0;
974 struct nand_chip *this = mtd->priv;
975 struct doc_priv *doc = this->priv;
976 void __iomem *docptr = doc->virtadr;
977 volatile u_char dummy;
978 int emptymatch = 1;
979
980 /* flush the pipeline */
981 if (DoC_is_2000(doc)) {
982 dummy = ReadDOC(docptr, 2k_ECCStatus);
983 dummy = ReadDOC(docptr, 2k_ECCStatus);
984 dummy = ReadDOC(docptr, 2k_ECCStatus);
985 } else if (DoC_is_MillenniumPlus(doc)) {
986 dummy = ReadDOC(docptr, Mplus_ECCConf);
987 dummy = ReadDOC(docptr, Mplus_ECCConf);
988 dummy = ReadDOC(docptr, Mplus_ECCConf);
989 } else {
990 dummy = ReadDOC(docptr, ECCConf);
991 dummy = ReadDOC(docptr, ECCConf);
992 dummy = ReadDOC(docptr, ECCConf);
993 }
994
995 /* Error occured ? */
996 if (dummy & 0x80) {
997 for (i = 0; i < 6; i++) {
998 if (DoC_is_MillenniumPlus(doc))
999 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
1000 else
1001 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
1002 if (calc_ecc[i] != empty_read_syndrome[i])
1003 emptymatch = 0;
1004 }
1005 /* If emptymatch=1, the read syndrome is consistent with an
1006 all-0xff data and stored ecc block. Check the stored ecc. */
1007 if (emptymatch) {
1008 for (i = 0; i < 6; i++) {
1009 if (read_ecc[i] == 0xff)
1010 continue;
1011 emptymatch = 0;
1012 break;
1013 }
1014 }
1015 /* If emptymatch still =1, check the data block. */
1016 if (emptymatch) {
1017 /* Note: this somewhat expensive test should not be triggered
1018 often. It could be optimized away by examining the data in
1019 the readbuf routine, and remembering the result. */
1020 for (i = 0; i < 512; i++) {
1021 if (dat[i] == 0xff)
1022 continue;
1023 emptymatch = 0;
1024 break;
1025 }
1026 }
1027 /* If emptymatch still =1, this is almost certainly a freshly-
1028 erased block, in which case the ECC will not come out right.
1029 We'll suppress the error and tell the caller everything's
1030 OK. Because it is. */
1031 if (!emptymatch)
1032 ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
1033 if (ret > 0)
1034 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1035 }
1036 if (DoC_is_MillenniumPlus(doc))
1037 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1038 else
1039 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1040 if (no_ecc_failures && (ret == -1)) {
1041 printk(KERN_ERR "suppressing ECC failure\n");
1042 ret = 0;
1043 }
1044 return ret;
1045 }
1046
1047 //u_char mydatabuf[528];
1048
1049 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1050 * attempt to retain compatibility. It used to read:
1051 * .oobfree = { {8, 8} }
1052 * Since that leaves two bytes unusable, it was changed. But the following
1053 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1054 * .oobfree = { {6, 10} }
1055 * jffs2 seems to handle the above gracefully, but the current scheme seems
1056 * safer. The only problem with it is that any code that parses oobfree must
1057 * be able to handle out-of-order segments.
1058 */
1059 static struct nand_oobinfo doc200x_oobinfo = {
1060 .useecc = MTD_NANDECC_AUTOPLACE,
1061 .eccbytes = 6,
1062 .eccpos = {0, 1, 2, 3, 4, 5},
1063 .oobfree = {{8, 8}, {6, 2}}
1064 };
1065
1066 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1067 On sucessful return, buf will contain a copy of the media header for
1068 further processing. id is the string to scan for, and will presumably be
1069 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1070 header. The page #s of the found media headers are placed in mh0_page and
1071 mh1_page in the DOC private structure. */
1072 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1073 {
1074 struct nand_chip *this = mtd->priv;
1075 struct doc_priv *doc = this->priv;
1076 unsigned offs;
1077 int ret;
1078 size_t retlen;
1079
1080 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1081 ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1082 if (retlen != mtd->writesize)
1083 continue;
1084 if (ret) {
1085 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1086 }
1087 if (memcmp(buf, id, 6))
1088 continue;
1089 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1090 if (doc->mh0_page == -1) {
1091 doc->mh0_page = offs >> this->page_shift;
1092 if (!findmirror)
1093 return 1;
1094 continue;
1095 }
1096 doc->mh1_page = offs >> this->page_shift;
1097 return 2;
1098 }
1099 if (doc->mh0_page == -1) {
1100 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1101 return 0;
1102 }
1103 /* Only one mediaheader was found. We want buf to contain a
1104 mediaheader on return, so we'll have to re-read the one we found. */
1105 offs = doc->mh0_page << this->page_shift;
1106 ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1107 if (retlen != mtd->writesize) {
1108 /* Insanity. Give up. */
1109 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1110 return 0;
1111 }
1112 return 1;
1113 }
1114
1115 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1116 {
1117 struct nand_chip *this = mtd->priv;
1118 struct doc_priv *doc = this->priv;
1119 int ret = 0;
1120 u_char *buf;
1121 struct NFTLMediaHeader *mh;
1122 const unsigned psize = 1 << this->page_shift;
1123 int numparts = 0;
1124 unsigned blocks, maxblocks;
1125 int offs, numheaders;
1126
1127 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1128 if (!buf) {
1129 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1130 return 0;
1131 }
1132 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1133 goto out;
1134 mh = (struct NFTLMediaHeader *)buf;
1135
1136 mh->NumEraseUnits = le16_to_cpu(mh->NumEraseUnits);
1137 mh->FirstPhysicalEUN = le16_to_cpu(mh->FirstPhysicalEUN);
1138 mh->FormattedSize = le32_to_cpu(mh->FormattedSize);
1139
1140 printk(KERN_INFO " DataOrgID = %s\n"
1141 " NumEraseUnits = %d\n"
1142 " FirstPhysicalEUN = %d\n"
1143 " FormattedSize = %d\n"
1144 " UnitSizeFactor = %d\n",
1145 mh->DataOrgID, mh->NumEraseUnits,
1146 mh->FirstPhysicalEUN, mh->FormattedSize,
1147 mh->UnitSizeFactor);
1148
1149 blocks = mtd->size >> this->phys_erase_shift;
1150 maxblocks = min(32768U, mtd->erasesize - psize);
1151
1152 if (mh->UnitSizeFactor == 0x00) {
1153 /* Auto-determine UnitSizeFactor. The constraints are:
1154 - There can be at most 32768 virtual blocks.
1155 - There can be at most (virtual block size - page size)
1156 virtual blocks (because MediaHeader+BBT must fit in 1).
1157 */
1158 mh->UnitSizeFactor = 0xff;
1159 while (blocks > maxblocks) {
1160 blocks >>= 1;
1161 maxblocks = min(32768U, (maxblocks << 1) + psize);
1162 mh->UnitSizeFactor--;
1163 }
1164 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1165 }
1166
1167 /* NOTE: The lines below modify internal variables of the NAND and MTD
1168 layers; variables with have already been configured by nand_scan.
1169 Unfortunately, we didn't know before this point what these values
1170 should be. Thus, this code is somewhat dependant on the exact
1171 implementation of the NAND layer. */
1172 if (mh->UnitSizeFactor != 0xff) {
1173 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1174 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1175 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1176 blocks = mtd->size >> this->bbt_erase_shift;
1177 maxblocks = min(32768U, mtd->erasesize - psize);
1178 }
1179
1180 if (blocks > maxblocks) {
1181 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1182 goto out;
1183 }
1184
1185 /* Skip past the media headers. */
1186 offs = max(doc->mh0_page, doc->mh1_page);
1187 offs <<= this->page_shift;
1188 offs += mtd->erasesize;
1189
1190 if (show_firmware_partition == 1) {
1191 parts[0].name = " DiskOnChip Firmware / Media Header partition";
1192 parts[0].offset = 0;
1193 parts[0].size = offs;
1194 numparts = 1;
1195 }
1196
1197 parts[numparts].name = " DiskOnChip BDTL partition";
1198 parts[numparts].offset = offs;
1199 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1200
1201 offs += parts[numparts].size;
1202 numparts++;
1203
1204 if (offs < mtd->size) {
1205 parts[numparts].name = " DiskOnChip Remainder partition";
1206 parts[numparts].offset = offs;
1207 parts[numparts].size = mtd->size - offs;
1208 numparts++;
1209 }
1210
1211 ret = numparts;
1212 out:
1213 kfree(buf);
1214 return ret;
1215 }
1216
1217 /* This is a stripped-down copy of the code in inftlmount.c */
1218 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1219 {
1220 struct nand_chip *this = mtd->priv;
1221 struct doc_priv *doc = this->priv;
1222 int ret = 0;
1223 u_char *buf;
1224 struct INFTLMediaHeader *mh;
1225 struct INFTLPartition *ip;
1226 int numparts = 0;
1227 int blocks;
1228 int vshift, lastvunit = 0;
1229 int i;
1230 int end = mtd->size;
1231
1232 if (inftl_bbt_write)
1233 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1234
1235 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1236 if (!buf) {
1237 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1238 return 0;
1239 }
1240
1241 if (!find_media_headers(mtd, buf, "BNAND", 0))
1242 goto out;
1243 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1244 mh = (struct INFTLMediaHeader *)buf;
1245
1246 mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
1247 mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
1248 mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
1249 mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
1250 mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
1251 mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
1252
1253 printk(KERN_INFO " bootRecordID = %s\n"
1254 " NoOfBootImageBlocks = %d\n"
1255 " NoOfBinaryPartitions = %d\n"
1256 " NoOfBDTLPartitions = %d\n"
1257 " BlockMultiplerBits = %d\n"
1258 " FormatFlgs = %d\n"
1259 " OsakVersion = %d.%d.%d.%d\n"
1260 " PercentUsed = %d\n",
1261 mh->bootRecordID, mh->NoOfBootImageBlocks,
1262 mh->NoOfBinaryPartitions,
1263 mh->NoOfBDTLPartitions,
1264 mh->BlockMultiplierBits, mh->FormatFlags,
1265 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1266 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1267 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1268 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1269 mh->PercentUsed);
1270
1271 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1272
1273 blocks = mtd->size >> vshift;
1274 if (blocks > 32768) {
1275 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1276 goto out;
1277 }
1278
1279 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1280 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1281 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1282 goto out;
1283 }
1284
1285 /* Scan the partitions */
1286 for (i = 0; (i < 4); i++) {
1287 ip = &(mh->Partitions[i]);
1288 ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
1289 ip->firstUnit = le32_to_cpu(ip->firstUnit);
1290 ip->lastUnit = le32_to_cpu(ip->lastUnit);
1291 ip->flags = le32_to_cpu(ip->flags);
1292 ip->spareUnits = le32_to_cpu(ip->spareUnits);
1293 ip->Reserved0 = le32_to_cpu(ip->Reserved0);
1294
1295 printk(KERN_INFO " PARTITION[%d] ->\n"
1296 " virtualUnits = %d\n"
1297 " firstUnit = %d\n"
1298 " lastUnit = %d\n"
1299 " flags = 0x%x\n"
1300 " spareUnits = %d\n",
1301 i, ip->virtualUnits, ip->firstUnit,
1302 ip->lastUnit, ip->flags,
1303 ip->spareUnits);
1304
1305 if ((show_firmware_partition == 1) &&
1306 (i == 0) && (ip->firstUnit > 0)) {
1307 parts[0].name = " DiskOnChip IPL / Media Header partition";
1308 parts[0].offset = 0;
1309 parts[0].size = mtd->erasesize * ip->firstUnit;
1310 numparts = 1;
1311 }
1312
1313 if (ip->flags & INFTL_BINARY)
1314 parts[numparts].name = " DiskOnChip BDK partition";
1315 else
1316 parts[numparts].name = " DiskOnChip BDTL partition";
1317 parts[numparts].offset = ip->firstUnit << vshift;
1318 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1319 numparts++;
1320 if (ip->lastUnit > lastvunit)
1321 lastvunit = ip->lastUnit;
1322 if (ip->flags & INFTL_LAST)
1323 break;
1324 }
1325 lastvunit++;
1326 if ((lastvunit << vshift) < end) {
1327 parts[numparts].name = " DiskOnChip Remainder partition";
1328 parts[numparts].offset = lastvunit << vshift;
1329 parts[numparts].size = end - parts[numparts].offset;
1330 numparts++;
1331 }
1332 ret = numparts;
1333 out:
1334 kfree(buf);
1335 return ret;
1336 }
1337
1338 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1339 {
1340 int ret, numparts;
1341 struct nand_chip *this = mtd->priv;
1342 struct doc_priv *doc = this->priv;
1343 struct mtd_partition parts[2];
1344
1345 memset((char *)parts, 0, sizeof(parts));
1346 /* On NFTL, we have to find the media headers before we can read the
1347 BBTs, since they're stored in the media header eraseblocks. */
1348 numparts = nftl_partscan(mtd, parts);
1349 if (!numparts)
1350 return -EIO;
1351 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1352 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1353 NAND_BBT_VERSION;
1354 this->bbt_td->veroffs = 7;
1355 this->bbt_td->pages[0] = doc->mh0_page + 1;
1356 if (doc->mh1_page != -1) {
1357 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1358 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1359 NAND_BBT_VERSION;
1360 this->bbt_md->veroffs = 7;
1361 this->bbt_md->pages[0] = doc->mh1_page + 1;
1362 } else {
1363 this->bbt_md = NULL;
1364 }
1365
1366 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1367 At least as nand_bbt.c is currently written. */
1368 if ((ret = nand_scan_bbt(mtd, NULL)))
1369 return ret;
1370 add_mtd_device(mtd);
1371 #ifdef CONFIG_MTD_PARTITIONS
1372 if (!no_autopart)
1373 add_mtd_partitions(mtd, parts, numparts);
1374 #endif
1375 return 0;
1376 }
1377
1378 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1379 {
1380 int ret, numparts;
1381 struct nand_chip *this = mtd->priv;
1382 struct doc_priv *doc = this->priv;
1383 struct mtd_partition parts[5];
1384
1385 if (this->numchips > doc->chips_per_floor) {
1386 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1387 return -EIO;
1388 }
1389
1390 if (DoC_is_MillenniumPlus(doc)) {
1391 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1392 if (inftl_bbt_write)
1393 this->bbt_td->options |= NAND_BBT_WRITE;
1394 this->bbt_td->pages[0] = 2;
1395 this->bbt_md = NULL;
1396 } else {
1397 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1398 if (inftl_bbt_write)
1399 this->bbt_td->options |= NAND_BBT_WRITE;
1400 this->bbt_td->offs = 8;
1401 this->bbt_td->len = 8;
1402 this->bbt_td->veroffs = 7;
1403 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1404 this->bbt_td->reserved_block_code = 0x01;
1405 this->bbt_td->pattern = "MSYS_BBT";
1406
1407 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1408 if (inftl_bbt_write)
1409 this->bbt_md->options |= NAND_BBT_WRITE;
1410 this->bbt_md->offs = 8;
1411 this->bbt_md->len = 8;
1412 this->bbt_md->veroffs = 7;
1413 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1414 this->bbt_md->reserved_block_code = 0x01;
1415 this->bbt_md->pattern = "TBB_SYSM";
1416 }
1417
1418 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1419 At least as nand_bbt.c is currently written. */
1420 if ((ret = nand_scan_bbt(mtd, NULL)))
1421 return ret;
1422 memset((char *)parts, 0, sizeof(parts));
1423 numparts = inftl_partscan(mtd, parts);
1424 /* At least for now, require the INFTL Media Header. We could probably
1425 do without it for non-INFTL use, since all it gives us is
1426 autopartitioning, but I want to give it more thought. */
1427 if (!numparts)
1428 return -EIO;
1429 add_mtd_device(mtd);
1430 #ifdef CONFIG_MTD_PARTITIONS
1431 if (!no_autopart)
1432 add_mtd_partitions(mtd, parts, numparts);
1433 #endif
1434 return 0;
1435 }
1436
1437 static inline int __init doc2000_init(struct mtd_info *mtd)
1438 {
1439 struct nand_chip *this = mtd->priv;
1440 struct doc_priv *doc = this->priv;
1441
1442 this->read_byte = doc2000_read_byte;
1443 this->write_buf = doc2000_writebuf;
1444 this->read_buf = doc2000_readbuf;
1445 this->verify_buf = doc2000_verifybuf;
1446 this->scan_bbt = nftl_scan_bbt;
1447
1448 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1449 doc2000_count_chips(mtd);
1450 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1451 return (4 * doc->chips_per_floor);
1452 }
1453
1454 static inline int __init doc2001_init(struct mtd_info *mtd)
1455 {
1456 struct nand_chip *this = mtd->priv;
1457 struct doc_priv *doc = this->priv;
1458
1459 this->read_byte = doc2001_read_byte;
1460 this->write_buf = doc2001_writebuf;
1461 this->read_buf = doc2001_readbuf;
1462 this->verify_buf = doc2001_verifybuf;
1463
1464 ReadDOC(doc->virtadr, ChipID);
1465 ReadDOC(doc->virtadr, ChipID);
1466 ReadDOC(doc->virtadr, ChipID);
1467 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1468 /* It's not a Millennium; it's one of the newer
1469 DiskOnChip 2000 units with a similar ASIC.
1470 Treat it like a Millennium, except that it
1471 can have multiple chips. */
1472 doc2000_count_chips(mtd);
1473 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1474 this->scan_bbt = inftl_scan_bbt;
1475 return (4 * doc->chips_per_floor);
1476 } else {
1477 /* Bog-standard Millennium */
1478 doc->chips_per_floor = 1;
1479 mtd->name = "DiskOnChip Millennium";
1480 this->scan_bbt = nftl_scan_bbt;
1481 return 1;
1482 }
1483 }
1484
1485 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1486 {
1487 struct nand_chip *this = mtd->priv;
1488 struct doc_priv *doc = this->priv;
1489
1490 this->read_byte = doc2001plus_read_byte;
1491 this->write_buf = doc2001plus_writebuf;
1492 this->read_buf = doc2001plus_readbuf;
1493 this->verify_buf = doc2001plus_verifybuf;
1494 this->scan_bbt = inftl_scan_bbt;
1495 this->cmd_ctrl = NULL;
1496 this->select_chip = doc2001plus_select_chip;
1497 this->cmdfunc = doc2001plus_command;
1498 this->ecc.hwctl = doc2001plus_enable_hwecc;
1499
1500 doc->chips_per_floor = 1;
1501 mtd->name = "DiskOnChip Millennium Plus";
1502
1503 return 1;
1504 }
1505
1506 static int __init doc_probe(unsigned long physadr)
1507 {
1508 unsigned char ChipID;
1509 struct mtd_info *mtd;
1510 struct nand_chip *nand;
1511 struct doc_priv *doc;
1512 void __iomem *virtadr;
1513 unsigned char save_control;
1514 unsigned char tmp, tmpb, tmpc;
1515 int reg, len, numchips;
1516 int ret = 0;
1517
1518 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1519 if (!virtadr) {
1520 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1521 return -EIO;
1522 }
1523
1524 /* It's not possible to cleanly detect the DiskOnChip - the
1525 * bootup procedure will put the device into reset mode, and
1526 * it's not possible to talk to it without actually writing
1527 * to the DOCControl register. So we store the current contents
1528 * of the DOCControl register's location, in case we later decide
1529 * that it's not a DiskOnChip, and want to put it back how we
1530 * found it.
1531 */
1532 save_control = ReadDOC(virtadr, DOCControl);
1533
1534 /* Reset the DiskOnChip ASIC */
1535 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1536 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1537
1538 /* Enable the DiskOnChip ASIC */
1539 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1540 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1541
1542 ChipID = ReadDOC(virtadr, ChipID);
1543
1544 switch (ChipID) {
1545 case DOC_ChipID_Doc2k:
1546 reg = DoC_2k_ECCStatus;
1547 break;
1548 case DOC_ChipID_DocMil:
1549 reg = DoC_ECCConf;
1550 break;
1551 case DOC_ChipID_DocMilPlus16:
1552 case DOC_ChipID_DocMilPlus32:
1553 case 0:
1554 /* Possible Millennium Plus, need to do more checks */
1555 /* Possibly release from power down mode */
1556 for (tmp = 0; (tmp < 4); tmp++)
1557 ReadDOC(virtadr, Mplus_Power);
1558
1559 /* Reset the Millennium Plus ASIC */
1560 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1561 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1562 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1563
1564 mdelay(1);
1565 /* Enable the Millennium Plus ASIC */
1566 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1567 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1568 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1569 mdelay(1);
1570
1571 ChipID = ReadDOC(virtadr, ChipID);
1572
1573 switch (ChipID) {
1574 case DOC_ChipID_DocMilPlus16:
1575 reg = DoC_Mplus_Toggle;
1576 break;
1577 case DOC_ChipID_DocMilPlus32:
1578 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1579 default:
1580 ret = -ENODEV;
1581 goto notfound;
1582 }
1583 break;
1584
1585 default:
1586 ret = -ENODEV;
1587 goto notfound;
1588 }
1589 /* Check the TOGGLE bit in the ECC register */
1590 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1591 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1592 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1593 if ((tmp == tmpb) || (tmp != tmpc)) {
1594 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1595 ret = -ENODEV;
1596 goto notfound;
1597 }
1598
1599 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1600 unsigned char oldval;
1601 unsigned char newval;
1602 nand = mtd->priv;
1603 doc = nand->priv;
1604 /* Use the alias resolution register to determine if this is
1605 in fact the same DOC aliased to a new address. If writes
1606 to one chip's alias resolution register change the value on
1607 the other chip, they're the same chip. */
1608 if (ChipID == DOC_ChipID_DocMilPlus16) {
1609 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1610 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1611 } else {
1612 oldval = ReadDOC(doc->virtadr, AliasResolution);
1613 newval = ReadDOC(virtadr, AliasResolution);
1614 }
1615 if (oldval != newval)
1616 continue;
1617 if (ChipID == DOC_ChipID_DocMilPlus16) {
1618 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1619 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1620 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
1621 } else {
1622 WriteDOC(~newval, virtadr, AliasResolution);
1623 oldval = ReadDOC(doc->virtadr, AliasResolution);
1624 WriteDOC(newval, virtadr, AliasResolution); // restore it
1625 }
1626 newval = ~newval;
1627 if (oldval == newval) {
1628 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1629 goto notfound;
1630 }
1631 }
1632
1633 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1634
1635 len = sizeof(struct mtd_info) +
1636 sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1637 mtd = kmalloc(len, GFP_KERNEL);
1638 if (!mtd) {
1639 printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1640 ret = -ENOMEM;
1641 goto fail;
1642 }
1643 memset(mtd, 0, len);
1644
1645 nand = (struct nand_chip *) (mtd + 1);
1646 doc = (struct doc_priv *) (nand + 1);
1647 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1648 nand->bbt_md = nand->bbt_td + 1;
1649
1650 mtd->priv = nand;
1651 mtd->owner = THIS_MODULE;
1652
1653 nand->priv = doc;
1654 nand->select_chip = doc200x_select_chip;
1655 nand->cmd_ctrl = doc200x_hwcontrol;
1656 nand->dev_ready = doc200x_dev_ready;
1657 nand->waitfunc = doc200x_wait;
1658 nand->block_bad = doc200x_block_bad;
1659 nand->ecc.hwctl = doc200x_enable_hwecc;
1660 nand->ecc.calculate = doc200x_calculate_ecc;
1661 nand->ecc.correct = doc200x_correct_data;
1662
1663 nand->autooob = &doc200x_oobinfo;
1664 nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1665 nand->ecc.size = 512;
1666 nand->ecc.bytes = 6;
1667 nand->options = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
1668
1669 doc->physadr = physadr;
1670 doc->virtadr = virtadr;
1671 doc->ChipID = ChipID;
1672 doc->curfloor = -1;
1673 doc->curchip = -1;
1674 doc->mh0_page = -1;
1675 doc->mh1_page = -1;
1676 doc->nextdoc = doclist;
1677
1678 if (ChipID == DOC_ChipID_Doc2k)
1679 numchips = doc2000_init(mtd);
1680 else if (ChipID == DOC_ChipID_DocMilPlus16)
1681 numchips = doc2001plus_init(mtd);
1682 else
1683 numchips = doc2001_init(mtd);
1684
1685 if ((ret = nand_scan(mtd, numchips))) {
1686 /* DBB note: i believe nand_release is necessary here, as
1687 buffers may have been allocated in nand_base. Check with
1688 Thomas. FIX ME! */
1689 /* nand_release will call del_mtd_device, but we haven't yet
1690 added it. This is handled without incident by
1691 del_mtd_device, as far as I can tell. */
1692 nand_release(mtd);
1693 kfree(mtd);
1694 goto fail;
1695 }
1696
1697 /* Success! */
1698 doclist = mtd;
1699 return 0;
1700
1701 notfound:
1702 /* Put back the contents of the DOCControl register, in case it's not
1703 actually a DiskOnChip. */
1704 WriteDOC(save_control, virtadr, DOCControl);
1705 fail:
1706 iounmap(virtadr);
1707 return ret;
1708 }
1709
1710 static void release_nanddoc(void)
1711 {
1712 struct mtd_info *mtd, *nextmtd;
1713 struct nand_chip *nand;
1714 struct doc_priv *doc;
1715
1716 for (mtd = doclist; mtd; mtd = nextmtd) {
1717 nand = mtd->priv;
1718 doc = nand->priv;
1719
1720 nextmtd = doc->nextdoc;
1721 nand_release(mtd);
1722 iounmap(doc->virtadr);
1723 kfree(mtd);
1724 }
1725 }
1726
1727 static int __init init_nanddoc(void)
1728 {
1729 int i, ret = 0;
1730
1731 /* We could create the decoder on demand, if memory is a concern.
1732 * This way we have it handy, if an error happens
1733 *
1734 * Symbolsize is 10 (bits)
1735 * Primitve polynomial is x^10+x^3+1
1736 * first consecutive root is 510
1737 * primitve element to generate roots = 1
1738 * generator polinomial degree = 4
1739 */
1740 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1741 if (!rs_decoder) {
1742 printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1743 return -ENOMEM;
1744 }
1745
1746 if (doc_config_location) {
1747 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1748 ret = doc_probe(doc_config_location);
1749 if (ret < 0)
1750 goto outerr;
1751 } else {
1752 for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1753 doc_probe(doc_locations[i]);
1754 }
1755 }
1756 /* No banner message any more. Print a message if no DiskOnChip
1757 found, so the user knows we at least tried. */
1758 if (!doclist) {
1759 printk(KERN_INFO "No valid DiskOnChip devices found\n");
1760 ret = -ENODEV;
1761 goto outerr;
1762 }
1763 return 0;
1764 outerr:
1765 free_rs(rs_decoder);
1766 return ret;
1767 }
1768
1769 static void __exit cleanup_nanddoc(void)
1770 {
1771 /* Cleanup the nand/DoC resources */
1772 release_nanddoc();
1773
1774 /* Free the reed solomon resources */
1775 if (rs_decoder) {
1776 free_rs(rs_decoder);
1777 }
1778 }
1779
1780 module_init(init_nanddoc);
1781 module_exit(cleanup_nanddoc);
1782
1783 MODULE_LICENSE("GPL");
1784 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1785 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");