include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / lpddr / lpddr_cmds.c
1 /*
2 * LPDDR flash memory device operations. This module provides read, write,
3 * erase, lock/unlock support for LPDDR flash memories
4 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
6 * Many thanks to Roman Borisov for intial enabling
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 * TODO:
23 * Implement VPP management
24 * Implement XIP support
25 * Implement OTP support
26 */
27 #include <linux/mtd/pfow.h>
28 #include <linux/mtd/qinfo.h>
29 #include <linux/slab.h>
30
31 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
32 size_t *retlen, u_char *buf);
33 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
34 size_t len, size_t *retlen, const u_char *buf);
35 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
36 unsigned long count, loff_t to, size_t *retlen);
37 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
38 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
39 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
40 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
41 size_t *retlen, void **mtdbuf, resource_size_t *phys);
42 static void lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
43 static int get_chip(struct map_info *map, struct flchip *chip, int mode);
44 static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
45 static void put_chip(struct map_info *map, struct flchip *chip);
46
47 struct mtd_info *lpddr_cmdset(struct map_info *map)
48 {
49 struct lpddr_private *lpddr = map->fldrv_priv;
50 struct flchip_shared *shared;
51 struct flchip *chip;
52 struct mtd_info *mtd;
53 int numchips;
54 int i, j;
55
56 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
57 if (!mtd) {
58 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
59 return NULL;
60 }
61 mtd->priv = map;
62 mtd->type = MTD_NORFLASH;
63
64 /* Fill in the default mtd operations */
65 mtd->read = lpddr_read;
66 mtd->type = MTD_NORFLASH;
67 mtd->flags = MTD_CAP_NORFLASH;
68 mtd->flags &= ~MTD_BIT_WRITEABLE;
69 mtd->erase = lpddr_erase;
70 mtd->write = lpddr_write_buffers;
71 mtd->writev = lpddr_writev;
72 mtd->read_oob = NULL;
73 mtd->write_oob = NULL;
74 mtd->sync = NULL;
75 mtd->lock = lpddr_lock;
76 mtd->unlock = lpddr_unlock;
77 mtd->suspend = NULL;
78 mtd->resume = NULL;
79 if (map_is_linear(map)) {
80 mtd->point = lpddr_point;
81 mtd->unpoint = lpddr_unpoint;
82 }
83 mtd->block_isbad = NULL;
84 mtd->block_markbad = NULL;
85 mtd->size = 1 << lpddr->qinfo->DevSizeShift;
86 mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
87 mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
88
89 shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
90 GFP_KERNEL);
91 if (!shared) {
92 kfree(lpddr);
93 kfree(mtd);
94 return NULL;
95 }
96
97 chip = &lpddr->chips[0];
98 numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
99 for (i = 0; i < numchips; i++) {
100 shared[i].writing = shared[i].erasing = NULL;
101 spin_lock_init(&shared[i].lock);
102 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
103 *chip = lpddr->chips[i];
104 chip->start += j << lpddr->chipshift;
105 chip->oldstate = chip->state = FL_READY;
106 chip->priv = &shared[i];
107 /* those should be reset too since
108 they create memory references. */
109 init_waitqueue_head(&chip->wq);
110 spin_lock_init(&chip->_spinlock);
111 chip->mutex = &chip->_spinlock;
112 chip++;
113 }
114 }
115
116 return mtd;
117 }
118 EXPORT_SYMBOL(lpddr_cmdset);
119
120 static int wait_for_ready(struct map_info *map, struct flchip *chip,
121 unsigned int chip_op_time)
122 {
123 unsigned int timeo, reset_timeo, sleep_time;
124 unsigned int dsr;
125 flstate_t chip_state = chip->state;
126 int ret = 0;
127
128 /* set our timeout to 8 times the expected delay */
129 timeo = chip_op_time * 8;
130 if (!timeo)
131 timeo = 500000;
132 reset_timeo = timeo;
133 sleep_time = chip_op_time / 2;
134
135 for (;;) {
136 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
137 if (dsr & DSR_READY_STATUS)
138 break;
139 if (!timeo) {
140 printk(KERN_ERR "%s: Flash timeout error state %d \n",
141 map->name, chip_state);
142 ret = -ETIME;
143 break;
144 }
145
146 /* OK Still waiting. Drop the lock, wait a while and retry. */
147 spin_unlock(chip->mutex);
148 if (sleep_time >= 1000000/HZ) {
149 /*
150 * Half of the normal delay still remaining
151 * can be performed with a sleeping delay instead
152 * of busy waiting.
153 */
154 msleep(sleep_time/1000);
155 timeo -= sleep_time;
156 sleep_time = 1000000/HZ;
157 } else {
158 udelay(1);
159 cond_resched();
160 timeo--;
161 }
162 spin_lock(chip->mutex);
163
164 while (chip->state != chip_state) {
165 /* Someone's suspended the operation: sleep */
166 DECLARE_WAITQUEUE(wait, current);
167 set_current_state(TASK_UNINTERRUPTIBLE);
168 add_wait_queue(&chip->wq, &wait);
169 spin_unlock(chip->mutex);
170 schedule();
171 remove_wait_queue(&chip->wq, &wait);
172 spin_lock(chip->mutex);
173 }
174 if (chip->erase_suspended || chip->write_suspended) {
175 /* Suspend has occured while sleep: reset timeout */
176 timeo = reset_timeo;
177 chip->erase_suspended = chip->write_suspended = 0;
178 }
179 }
180 /* check status for errors */
181 if (dsr & DSR_ERR) {
182 /* Clear DSR*/
183 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
184 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
185 map->name, dsr);
186 print_drs_error(dsr);
187 ret = -EIO;
188 }
189 chip->state = FL_READY;
190 return ret;
191 }
192
193 static int get_chip(struct map_info *map, struct flchip *chip, int mode)
194 {
195 int ret;
196 DECLARE_WAITQUEUE(wait, current);
197
198 retry:
199 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
200 && chip->state != FL_SYNCING) {
201 /*
202 * OK. We have possibility for contension on the write/erase
203 * operations which are global to the real chip and not per
204 * partition. So let's fight it over in the partition which
205 * currently has authority on the operation.
206 *
207 * The rules are as follows:
208 *
209 * - any write operation must own shared->writing.
210 *
211 * - any erase operation must own _both_ shared->writing and
212 * shared->erasing.
213 *
214 * - contension arbitration is handled in the owner's context.
215 *
216 * The 'shared' struct can be read and/or written only when
217 * its lock is taken.
218 */
219 struct flchip_shared *shared = chip->priv;
220 struct flchip *contender;
221 spin_lock(&shared->lock);
222 contender = shared->writing;
223 if (contender && contender != chip) {
224 /*
225 * The engine to perform desired operation on this
226 * partition is already in use by someone else.
227 * Let's fight over it in the context of the chip
228 * currently using it. If it is possible to suspend,
229 * that other partition will do just that, otherwise
230 * it'll happily send us to sleep. In any case, when
231 * get_chip returns success we're clear to go ahead.
232 */
233 ret = spin_trylock(contender->mutex);
234 spin_unlock(&shared->lock);
235 if (!ret)
236 goto retry;
237 spin_unlock(chip->mutex);
238 ret = chip_ready(map, contender, mode);
239 spin_lock(chip->mutex);
240
241 if (ret == -EAGAIN) {
242 spin_unlock(contender->mutex);
243 goto retry;
244 }
245 if (ret) {
246 spin_unlock(contender->mutex);
247 return ret;
248 }
249 spin_lock(&shared->lock);
250
251 /* We should not own chip if it is already in FL_SYNCING
252 * state. Put contender and retry. */
253 if (chip->state == FL_SYNCING) {
254 put_chip(map, contender);
255 spin_unlock(contender->mutex);
256 goto retry;
257 }
258 spin_unlock(contender->mutex);
259 }
260
261 /* Check if we have suspended erase on this chip.
262 Must sleep in such a case. */
263 if (mode == FL_ERASING && shared->erasing
264 && shared->erasing->oldstate == FL_ERASING) {
265 spin_unlock(&shared->lock);
266 set_current_state(TASK_UNINTERRUPTIBLE);
267 add_wait_queue(&chip->wq, &wait);
268 spin_unlock(chip->mutex);
269 schedule();
270 remove_wait_queue(&chip->wq, &wait);
271 spin_lock(chip->mutex);
272 goto retry;
273 }
274
275 /* We now own it */
276 shared->writing = chip;
277 if (mode == FL_ERASING)
278 shared->erasing = chip;
279 spin_unlock(&shared->lock);
280 }
281
282 ret = chip_ready(map, chip, mode);
283 if (ret == -EAGAIN)
284 goto retry;
285
286 return ret;
287 }
288
289 static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
290 {
291 struct lpddr_private *lpddr = map->fldrv_priv;
292 int ret = 0;
293 DECLARE_WAITQUEUE(wait, current);
294
295 /* Prevent setting state FL_SYNCING for chip in suspended state. */
296 if (FL_SYNCING == mode && FL_READY != chip->oldstate)
297 goto sleep;
298
299 switch (chip->state) {
300 case FL_READY:
301 case FL_JEDEC_QUERY:
302 return 0;
303
304 case FL_ERASING:
305 if (!lpddr->qinfo->SuspEraseSupp ||
306 !(mode == FL_READY || mode == FL_POINT))
307 goto sleep;
308
309 map_write(map, CMD(LPDDR_SUSPEND),
310 map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
311 chip->oldstate = FL_ERASING;
312 chip->state = FL_ERASE_SUSPENDING;
313 ret = wait_for_ready(map, chip, 0);
314 if (ret) {
315 /* Oops. something got wrong. */
316 /* Resume and pretend we weren't here. */
317 map_write(map, CMD(LPDDR_RESUME),
318 map->pfow_base + PFOW_COMMAND_CODE);
319 map_write(map, CMD(LPDDR_START_EXECUTION),
320 map->pfow_base + PFOW_COMMAND_EXECUTE);
321 chip->state = FL_ERASING;
322 chip->oldstate = FL_READY;
323 printk(KERN_ERR "%s: suspend operation failed."
324 "State may be wrong \n", map->name);
325 return -EIO;
326 }
327 chip->erase_suspended = 1;
328 chip->state = FL_READY;
329 return 0;
330 /* Erase suspend */
331 case FL_POINT:
332 /* Only if there's no operation suspended... */
333 if (mode == FL_READY && chip->oldstate == FL_READY)
334 return 0;
335
336 default:
337 sleep:
338 set_current_state(TASK_UNINTERRUPTIBLE);
339 add_wait_queue(&chip->wq, &wait);
340 spin_unlock(chip->mutex);
341 schedule();
342 remove_wait_queue(&chip->wq, &wait);
343 spin_lock(chip->mutex);
344 return -EAGAIN;
345 }
346 }
347
348 static void put_chip(struct map_info *map, struct flchip *chip)
349 {
350 if (chip->priv) {
351 struct flchip_shared *shared = chip->priv;
352 spin_lock(&shared->lock);
353 if (shared->writing == chip && chip->oldstate == FL_READY) {
354 /* We own the ability to write, but we're done */
355 shared->writing = shared->erasing;
356 if (shared->writing && shared->writing != chip) {
357 /* give back the ownership */
358 struct flchip *loaner = shared->writing;
359 spin_lock(loaner->mutex);
360 spin_unlock(&shared->lock);
361 spin_unlock(chip->mutex);
362 put_chip(map, loaner);
363 spin_lock(chip->mutex);
364 spin_unlock(loaner->mutex);
365 wake_up(&chip->wq);
366 return;
367 }
368 shared->erasing = NULL;
369 shared->writing = NULL;
370 } else if (shared->erasing == chip && shared->writing != chip) {
371 /*
372 * We own the ability to erase without the ability
373 * to write, which means the erase was suspended
374 * and some other partition is currently writing.
375 * Don't let the switch below mess things up since
376 * we don't have ownership to resume anything.
377 */
378 spin_unlock(&shared->lock);
379 wake_up(&chip->wq);
380 return;
381 }
382 spin_unlock(&shared->lock);
383 }
384
385 switch (chip->oldstate) {
386 case FL_ERASING:
387 chip->state = chip->oldstate;
388 map_write(map, CMD(LPDDR_RESUME),
389 map->pfow_base + PFOW_COMMAND_CODE);
390 map_write(map, CMD(LPDDR_START_EXECUTION),
391 map->pfow_base + PFOW_COMMAND_EXECUTE);
392 chip->oldstate = FL_READY;
393 chip->state = FL_ERASING;
394 break;
395 case FL_READY:
396 break;
397 default:
398 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
399 map->name, chip->oldstate);
400 }
401 wake_up(&chip->wq);
402 }
403
404 int do_write_buffer(struct map_info *map, struct flchip *chip,
405 unsigned long adr, const struct kvec **pvec,
406 unsigned long *pvec_seek, int len)
407 {
408 struct lpddr_private *lpddr = map->fldrv_priv;
409 map_word datum;
410 int ret, wbufsize, word_gap, words;
411 const struct kvec *vec;
412 unsigned long vec_seek;
413 unsigned long prog_buf_ofs;
414
415 wbufsize = 1 << lpddr->qinfo->BufSizeShift;
416
417 spin_lock(chip->mutex);
418 ret = get_chip(map, chip, FL_WRITING);
419 if (ret) {
420 spin_unlock(chip->mutex);
421 return ret;
422 }
423 /* Figure out the number of words to write */
424 word_gap = (-adr & (map_bankwidth(map)-1));
425 words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
426 if (!word_gap) {
427 words--;
428 } else {
429 word_gap = map_bankwidth(map) - word_gap;
430 adr -= word_gap;
431 datum = map_word_ff(map);
432 }
433 /* Write data */
434 /* Get the program buffer offset from PFOW register data first*/
435 prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
436 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
437 vec = *pvec;
438 vec_seek = *pvec_seek;
439 do {
440 int n = map_bankwidth(map) - word_gap;
441
442 if (n > vec->iov_len - vec_seek)
443 n = vec->iov_len - vec_seek;
444 if (n > len)
445 n = len;
446
447 if (!word_gap && (len < map_bankwidth(map)))
448 datum = map_word_ff(map);
449
450 datum = map_word_load_partial(map, datum,
451 vec->iov_base + vec_seek, word_gap, n);
452
453 len -= n;
454 word_gap += n;
455 if (!len || word_gap == map_bankwidth(map)) {
456 map_write(map, datum, prog_buf_ofs);
457 prog_buf_ofs += map_bankwidth(map);
458 word_gap = 0;
459 }
460
461 vec_seek += n;
462 if (vec_seek == vec->iov_len) {
463 vec++;
464 vec_seek = 0;
465 }
466 } while (len);
467 *pvec = vec;
468 *pvec_seek = vec_seek;
469
470 /* GO GO GO */
471 send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
472 chip->state = FL_WRITING;
473 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
474 if (ret) {
475 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
476 map->name, ret, adr);
477 goto out;
478 }
479
480 out: put_chip(map, chip);
481 spin_unlock(chip->mutex);
482 return ret;
483 }
484
485 int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
486 {
487 struct map_info *map = mtd->priv;
488 struct lpddr_private *lpddr = map->fldrv_priv;
489 int chipnum = adr >> lpddr->chipshift;
490 struct flchip *chip = &lpddr->chips[chipnum];
491 int ret;
492
493 spin_lock(chip->mutex);
494 ret = get_chip(map, chip, FL_ERASING);
495 if (ret) {
496 spin_unlock(chip->mutex);
497 return ret;
498 }
499 send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
500 chip->state = FL_ERASING;
501 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
502 if (ret) {
503 printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
504 map->name, ret, adr);
505 goto out;
506 }
507 out: put_chip(map, chip);
508 spin_unlock(chip->mutex);
509 return ret;
510 }
511
512 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
513 size_t *retlen, u_char *buf)
514 {
515 struct map_info *map = mtd->priv;
516 struct lpddr_private *lpddr = map->fldrv_priv;
517 int chipnum = adr >> lpddr->chipshift;
518 struct flchip *chip = &lpddr->chips[chipnum];
519 int ret = 0;
520
521 spin_lock(chip->mutex);
522 ret = get_chip(map, chip, FL_READY);
523 if (ret) {
524 spin_unlock(chip->mutex);
525 return ret;
526 }
527
528 map_copy_from(map, buf, adr, len);
529 *retlen = len;
530
531 put_chip(map, chip);
532 spin_unlock(chip->mutex);
533 return ret;
534 }
535
536 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
537 size_t *retlen, void **mtdbuf, resource_size_t *phys)
538 {
539 struct map_info *map = mtd->priv;
540 struct lpddr_private *lpddr = map->fldrv_priv;
541 int chipnum = adr >> lpddr->chipshift;
542 unsigned long ofs, last_end = 0;
543 struct flchip *chip = &lpddr->chips[chipnum];
544 int ret = 0;
545
546 if (!map->virt || (adr + len > mtd->size))
547 return -EINVAL;
548
549 /* ofs: offset within the first chip that the first read should start */
550 ofs = adr - (chipnum << lpddr->chipshift);
551
552 *mtdbuf = (void *)map->virt + chip->start + ofs;
553 *retlen = 0;
554
555 while (len) {
556 unsigned long thislen;
557
558 if (chipnum >= lpddr->numchips)
559 break;
560
561 /* We cannot point across chips that are virtually disjoint */
562 if (!last_end)
563 last_end = chip->start;
564 else if (chip->start != last_end)
565 break;
566
567 if ((len + ofs - 1) >> lpddr->chipshift)
568 thislen = (1<<lpddr->chipshift) - ofs;
569 else
570 thislen = len;
571 /* get the chip */
572 spin_lock(chip->mutex);
573 ret = get_chip(map, chip, FL_POINT);
574 spin_unlock(chip->mutex);
575 if (ret)
576 break;
577
578 chip->state = FL_POINT;
579 chip->ref_point_counter++;
580 *retlen += thislen;
581 len -= thislen;
582
583 ofs = 0;
584 last_end += 1 << lpddr->chipshift;
585 chipnum++;
586 chip = &lpddr->chips[chipnum];
587 }
588 return 0;
589 }
590
591 static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
592 {
593 struct map_info *map = mtd->priv;
594 struct lpddr_private *lpddr = map->fldrv_priv;
595 int chipnum = adr >> lpddr->chipshift;
596 unsigned long ofs;
597
598 /* ofs: offset within the first chip that the first read should start */
599 ofs = adr - (chipnum << lpddr->chipshift);
600
601 while (len) {
602 unsigned long thislen;
603 struct flchip *chip;
604
605 chip = &lpddr->chips[chipnum];
606 if (chipnum >= lpddr->numchips)
607 break;
608
609 if ((len + ofs - 1) >> lpddr->chipshift)
610 thislen = (1<<lpddr->chipshift) - ofs;
611 else
612 thislen = len;
613
614 spin_lock(chip->mutex);
615 if (chip->state == FL_POINT) {
616 chip->ref_point_counter--;
617 if (chip->ref_point_counter == 0)
618 chip->state = FL_READY;
619 } else
620 printk(KERN_WARNING "%s: Warning: unpoint called on non"
621 "pointed region\n", map->name);
622
623 put_chip(map, chip);
624 spin_unlock(chip->mutex);
625
626 len -= thislen;
627 ofs = 0;
628 chipnum++;
629 }
630 }
631
632 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
633 size_t *retlen, const u_char *buf)
634 {
635 struct kvec vec;
636
637 vec.iov_base = (void *) buf;
638 vec.iov_len = len;
639
640 return lpddr_writev(mtd, &vec, 1, to, retlen);
641 }
642
643
644 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
645 unsigned long count, loff_t to, size_t *retlen)
646 {
647 struct map_info *map = mtd->priv;
648 struct lpddr_private *lpddr = map->fldrv_priv;
649 int ret = 0;
650 int chipnum;
651 unsigned long ofs, vec_seek, i;
652 int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
653
654 size_t len = 0;
655
656 for (i = 0; i < count; i++)
657 len += vecs[i].iov_len;
658
659 *retlen = 0;
660 if (!len)
661 return 0;
662
663 chipnum = to >> lpddr->chipshift;
664
665 ofs = to;
666 vec_seek = 0;
667
668 do {
669 /* We must not cross write block boundaries */
670 int size = wbufsize - (ofs & (wbufsize-1));
671
672 if (size > len)
673 size = len;
674
675 ret = do_write_buffer(map, &lpddr->chips[chipnum],
676 ofs, &vecs, &vec_seek, size);
677 if (ret)
678 return ret;
679
680 ofs += size;
681 (*retlen) += size;
682 len -= size;
683
684 /* Be nice and reschedule with the chip in a usable
685 * state for other processes */
686 cond_resched();
687
688 } while (len);
689
690 return 0;
691 }
692
693 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
694 {
695 unsigned long ofs, len;
696 int ret;
697 struct map_info *map = mtd->priv;
698 struct lpddr_private *lpddr = map->fldrv_priv;
699 int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
700
701 ofs = instr->addr;
702 len = instr->len;
703
704 if (ofs > mtd->size || (len + ofs) > mtd->size)
705 return -EINVAL;
706
707 while (len > 0) {
708 ret = do_erase_oneblock(mtd, ofs);
709 if (ret)
710 return ret;
711 ofs += size;
712 len -= size;
713 }
714 instr->state = MTD_ERASE_DONE;
715 mtd_erase_callback(instr);
716
717 return 0;
718 }
719
720 #define DO_XXLOCK_LOCK 1
721 #define DO_XXLOCK_UNLOCK 2
722 int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
723 {
724 int ret = 0;
725 struct map_info *map = mtd->priv;
726 struct lpddr_private *lpddr = map->fldrv_priv;
727 int chipnum = adr >> lpddr->chipshift;
728 struct flchip *chip = &lpddr->chips[chipnum];
729
730 spin_lock(chip->mutex);
731 ret = get_chip(map, chip, FL_LOCKING);
732 if (ret) {
733 spin_unlock(chip->mutex);
734 return ret;
735 }
736
737 if (thunk == DO_XXLOCK_LOCK) {
738 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
739 chip->state = FL_LOCKING;
740 } else if (thunk == DO_XXLOCK_UNLOCK) {
741 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
742 chip->state = FL_UNLOCKING;
743 } else
744 BUG();
745
746 ret = wait_for_ready(map, chip, 1);
747 if (ret) {
748 printk(KERN_ERR "%s: block unlock error status %d \n",
749 map->name, ret);
750 goto out;
751 }
752 out: put_chip(map, chip);
753 spin_unlock(chip->mutex);
754 return ret;
755 }
756
757 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
758 {
759 return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
760 }
761
762 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
763 {
764 return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
765 }
766
767 int word_program(struct map_info *map, loff_t adr, uint32_t curval)
768 {
769 int ret;
770 struct lpddr_private *lpddr = map->fldrv_priv;
771 int chipnum = adr >> lpddr->chipshift;
772 struct flchip *chip = &lpddr->chips[chipnum];
773
774 spin_lock(chip->mutex);
775 ret = get_chip(map, chip, FL_WRITING);
776 if (ret) {
777 spin_unlock(chip->mutex);
778 return ret;
779 }
780
781 send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
782
783 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
784 if (ret) {
785 printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
786 map->name, adr, curval);
787 goto out;
788 }
789
790 out: put_chip(map, chip);
791 spin_unlock(chip->mutex);
792 return ret;
793 }
794
795 MODULE_LICENSE("GPL");
796 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
797 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");