include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / devices / m25p80.c
1 /*
2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 *
4 * Author: Mike Lavender, mike@steroidmicros.com
5 *
6 * Copyright (c) 2005, Intec Automation Inc.
7 *
8 * Some parts are based on lart.c by Abraham Van Der Merwe
9 *
10 * Cleaned up and generalized based on mtd_dataflash.c
11 *
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/mutex.h>
23 #include <linux/math64.h>
24 #include <linux/slab.h>
25 #include <linux/sched.h>
26 #include <linux/mod_devicetable.h>
27
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/partitions.h>
30
31 #include <linux/spi/spi.h>
32 #include <linux/spi/flash.h>
33
34 /* Flash opcodes. */
35 #define OPCODE_WREN 0x06 /* Write enable */
36 #define OPCODE_RDSR 0x05 /* Read status register */
37 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
38 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
39 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
40 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
41 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
42 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
43 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
44 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
45 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
46
47 /* Used for SST flashes only. */
48 #define OPCODE_BP 0x02 /* Byte program */
49 #define OPCODE_WRDI 0x04 /* Write disable */
50 #define OPCODE_AAI_WP 0xad /* Auto address increment word program */
51
52 /* Status Register bits. */
53 #define SR_WIP 1 /* Write in progress */
54 #define SR_WEL 2 /* Write enable latch */
55 /* meaning of other SR_* bits may differ between vendors */
56 #define SR_BP0 4 /* Block protect 0 */
57 #define SR_BP1 8 /* Block protect 1 */
58 #define SR_BP2 0x10 /* Block protect 2 */
59 #define SR_SRWD 0x80 /* SR write protect */
60
61 /* Define max times to check status register before we give up. */
62 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
63 #define MAX_CMD_SIZE 4
64
65 #ifdef CONFIG_M25PXX_USE_FAST_READ
66 #define OPCODE_READ OPCODE_FAST_READ
67 #define FAST_READ_DUMMY_BYTE 1
68 #else
69 #define OPCODE_READ OPCODE_NORM_READ
70 #define FAST_READ_DUMMY_BYTE 0
71 #endif
72
73 /****************************************************************************/
74
75 struct m25p {
76 struct spi_device *spi;
77 struct mutex lock;
78 struct mtd_info mtd;
79 unsigned partitioned:1;
80 u16 page_size;
81 u16 addr_width;
82 u8 erase_opcode;
83 u8 *command;
84 };
85
86 static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
87 {
88 return container_of(mtd, struct m25p, mtd);
89 }
90
91 /****************************************************************************/
92
93 /*
94 * Internal helper functions
95 */
96
97 /*
98 * Read the status register, returning its value in the location
99 * Return the status register value.
100 * Returns negative if error occurred.
101 */
102 static int read_sr(struct m25p *flash)
103 {
104 ssize_t retval;
105 u8 code = OPCODE_RDSR;
106 u8 val;
107
108 retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
109
110 if (retval < 0) {
111 dev_err(&flash->spi->dev, "error %d reading SR\n",
112 (int) retval);
113 return retval;
114 }
115
116 return val;
117 }
118
119 /*
120 * Write status register 1 byte
121 * Returns negative if error occurred.
122 */
123 static int write_sr(struct m25p *flash, u8 val)
124 {
125 flash->command[0] = OPCODE_WRSR;
126 flash->command[1] = val;
127
128 return spi_write(flash->spi, flash->command, 2);
129 }
130
131 /*
132 * Set write enable latch with Write Enable command.
133 * Returns negative if error occurred.
134 */
135 static inline int write_enable(struct m25p *flash)
136 {
137 u8 code = OPCODE_WREN;
138
139 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
140 }
141
142 /*
143 * Send write disble instruction to the chip.
144 */
145 static inline int write_disable(struct m25p *flash)
146 {
147 u8 code = OPCODE_WRDI;
148
149 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
150 }
151
152 /*
153 * Service routine to read status register until ready, or timeout occurs.
154 * Returns non-zero if error.
155 */
156 static int wait_till_ready(struct m25p *flash)
157 {
158 unsigned long deadline;
159 int sr;
160
161 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
162
163 do {
164 if ((sr = read_sr(flash)) < 0)
165 break;
166 else if (!(sr & SR_WIP))
167 return 0;
168
169 cond_resched();
170
171 } while (!time_after_eq(jiffies, deadline));
172
173 return 1;
174 }
175
176 /*
177 * Erase the whole flash memory
178 *
179 * Returns 0 if successful, non-zero otherwise.
180 */
181 static int erase_chip(struct m25p *flash)
182 {
183 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
184 dev_name(&flash->spi->dev), __func__,
185 (long long)(flash->mtd.size >> 10));
186
187 /* Wait until finished previous write command. */
188 if (wait_till_ready(flash))
189 return 1;
190
191 /* Send write enable, then erase commands. */
192 write_enable(flash);
193
194 /* Set up command buffer. */
195 flash->command[0] = OPCODE_CHIP_ERASE;
196
197 spi_write(flash->spi, flash->command, 1);
198
199 return 0;
200 }
201
202 static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
203 {
204 /* opcode is in cmd[0] */
205 cmd[1] = addr >> (flash->addr_width * 8 - 8);
206 cmd[2] = addr >> (flash->addr_width * 8 - 16);
207 cmd[3] = addr >> (flash->addr_width * 8 - 24);
208 }
209
210 static int m25p_cmdsz(struct m25p *flash)
211 {
212 return 1 + flash->addr_width;
213 }
214
215 /*
216 * Erase one sector of flash memory at offset ``offset'' which is any
217 * address within the sector which should be erased.
218 *
219 * Returns 0 if successful, non-zero otherwise.
220 */
221 static int erase_sector(struct m25p *flash, u32 offset)
222 {
223 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
224 dev_name(&flash->spi->dev), __func__,
225 flash->mtd.erasesize / 1024, offset);
226
227 /* Wait until finished previous write command. */
228 if (wait_till_ready(flash))
229 return 1;
230
231 /* Send write enable, then erase commands. */
232 write_enable(flash);
233
234 /* Set up command buffer. */
235 flash->command[0] = flash->erase_opcode;
236 m25p_addr2cmd(flash, offset, flash->command);
237
238 spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
239
240 return 0;
241 }
242
243 /****************************************************************************/
244
245 /*
246 * MTD implementation
247 */
248
249 /*
250 * Erase an address range on the flash chip. The address range may extend
251 * one or more erase sectors. Return an error is there is a problem erasing.
252 */
253 static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
254 {
255 struct m25p *flash = mtd_to_m25p(mtd);
256 u32 addr,len;
257 uint32_t rem;
258
259 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
260 dev_name(&flash->spi->dev), __func__, "at",
261 (long long)instr->addr, (long long)instr->len);
262
263 /* sanity checks */
264 if (instr->addr + instr->len > flash->mtd.size)
265 return -EINVAL;
266 div_u64_rem(instr->len, mtd->erasesize, &rem);
267 if (rem)
268 return -EINVAL;
269
270 addr = instr->addr;
271 len = instr->len;
272
273 mutex_lock(&flash->lock);
274
275 /* whole-chip erase? */
276 if (len == flash->mtd.size) {
277 if (erase_chip(flash)) {
278 instr->state = MTD_ERASE_FAILED;
279 mutex_unlock(&flash->lock);
280 return -EIO;
281 }
282
283 /* REVISIT in some cases we could speed up erasing large regions
284 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
285 * to use "small sector erase", but that's not always optimal.
286 */
287
288 /* "sector"-at-a-time erase */
289 } else {
290 while (len) {
291 if (erase_sector(flash, addr)) {
292 instr->state = MTD_ERASE_FAILED;
293 mutex_unlock(&flash->lock);
294 return -EIO;
295 }
296
297 addr += mtd->erasesize;
298 len -= mtd->erasesize;
299 }
300 }
301
302 mutex_unlock(&flash->lock);
303
304 instr->state = MTD_ERASE_DONE;
305 mtd_erase_callback(instr);
306
307 return 0;
308 }
309
310 /*
311 * Read an address range from the flash chip. The address range
312 * may be any size provided it is within the physical boundaries.
313 */
314 static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
315 size_t *retlen, u_char *buf)
316 {
317 struct m25p *flash = mtd_to_m25p(mtd);
318 struct spi_transfer t[2];
319 struct spi_message m;
320
321 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
322 dev_name(&flash->spi->dev), __func__, "from",
323 (u32)from, len);
324
325 /* sanity checks */
326 if (!len)
327 return 0;
328
329 if (from + len > flash->mtd.size)
330 return -EINVAL;
331
332 spi_message_init(&m);
333 memset(t, 0, (sizeof t));
334
335 /* NOTE:
336 * OPCODE_FAST_READ (if available) is faster.
337 * Should add 1 byte DUMMY_BYTE.
338 */
339 t[0].tx_buf = flash->command;
340 t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
341 spi_message_add_tail(&t[0], &m);
342
343 t[1].rx_buf = buf;
344 t[1].len = len;
345 spi_message_add_tail(&t[1], &m);
346
347 /* Byte count starts at zero. */
348 if (retlen)
349 *retlen = 0;
350
351 mutex_lock(&flash->lock);
352
353 /* Wait till previous write/erase is done. */
354 if (wait_till_ready(flash)) {
355 /* REVISIT status return?? */
356 mutex_unlock(&flash->lock);
357 return 1;
358 }
359
360 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
361 * clocks; and at this writing, every chip this driver handles
362 * supports that opcode.
363 */
364
365 /* Set up the write data buffer. */
366 flash->command[0] = OPCODE_READ;
367 m25p_addr2cmd(flash, from, flash->command);
368
369 spi_sync(flash->spi, &m);
370
371 *retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
372
373 mutex_unlock(&flash->lock);
374
375 return 0;
376 }
377
378 /*
379 * Write an address range to the flash chip. Data must be written in
380 * FLASH_PAGESIZE chunks. The address range may be any size provided
381 * it is within the physical boundaries.
382 */
383 static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
384 size_t *retlen, const u_char *buf)
385 {
386 struct m25p *flash = mtd_to_m25p(mtd);
387 u32 page_offset, page_size;
388 struct spi_transfer t[2];
389 struct spi_message m;
390
391 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
392 dev_name(&flash->spi->dev), __func__, "to",
393 (u32)to, len);
394
395 if (retlen)
396 *retlen = 0;
397
398 /* sanity checks */
399 if (!len)
400 return(0);
401
402 if (to + len > flash->mtd.size)
403 return -EINVAL;
404
405 spi_message_init(&m);
406 memset(t, 0, (sizeof t));
407
408 t[0].tx_buf = flash->command;
409 t[0].len = m25p_cmdsz(flash);
410 spi_message_add_tail(&t[0], &m);
411
412 t[1].tx_buf = buf;
413 spi_message_add_tail(&t[1], &m);
414
415 mutex_lock(&flash->lock);
416
417 /* Wait until finished previous write command. */
418 if (wait_till_ready(flash)) {
419 mutex_unlock(&flash->lock);
420 return 1;
421 }
422
423 write_enable(flash);
424
425 /* Set up the opcode in the write buffer. */
426 flash->command[0] = OPCODE_PP;
427 m25p_addr2cmd(flash, to, flash->command);
428
429 page_offset = to & (flash->page_size - 1);
430
431 /* do all the bytes fit onto one page? */
432 if (page_offset + len <= flash->page_size) {
433 t[1].len = len;
434
435 spi_sync(flash->spi, &m);
436
437 *retlen = m.actual_length - m25p_cmdsz(flash);
438 } else {
439 u32 i;
440
441 /* the size of data remaining on the first page */
442 page_size = flash->page_size - page_offset;
443
444 t[1].len = page_size;
445 spi_sync(flash->spi, &m);
446
447 *retlen = m.actual_length - m25p_cmdsz(flash);
448
449 /* write everything in flash->page_size chunks */
450 for (i = page_size; i < len; i += page_size) {
451 page_size = len - i;
452 if (page_size > flash->page_size)
453 page_size = flash->page_size;
454
455 /* write the next page to flash */
456 m25p_addr2cmd(flash, to + i, flash->command);
457
458 t[1].tx_buf = buf + i;
459 t[1].len = page_size;
460
461 wait_till_ready(flash);
462
463 write_enable(flash);
464
465 spi_sync(flash->spi, &m);
466
467 if (retlen)
468 *retlen += m.actual_length - m25p_cmdsz(flash);
469 }
470 }
471
472 mutex_unlock(&flash->lock);
473
474 return 0;
475 }
476
477 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
478 size_t *retlen, const u_char *buf)
479 {
480 struct m25p *flash = mtd_to_m25p(mtd);
481 struct spi_transfer t[2];
482 struct spi_message m;
483 size_t actual;
484 int cmd_sz, ret;
485
486 if (retlen)
487 *retlen = 0;
488
489 /* sanity checks */
490 if (!len)
491 return 0;
492
493 if (to + len > flash->mtd.size)
494 return -EINVAL;
495
496 spi_message_init(&m);
497 memset(t, 0, (sizeof t));
498
499 t[0].tx_buf = flash->command;
500 t[0].len = m25p_cmdsz(flash);
501 spi_message_add_tail(&t[0], &m);
502
503 t[1].tx_buf = buf;
504 spi_message_add_tail(&t[1], &m);
505
506 mutex_lock(&flash->lock);
507
508 /* Wait until finished previous write command. */
509 ret = wait_till_ready(flash);
510 if (ret)
511 goto time_out;
512
513 write_enable(flash);
514
515 actual = to % 2;
516 /* Start write from odd address. */
517 if (actual) {
518 flash->command[0] = OPCODE_BP;
519 m25p_addr2cmd(flash, to, flash->command);
520
521 /* write one byte. */
522 t[1].len = 1;
523 spi_sync(flash->spi, &m);
524 ret = wait_till_ready(flash);
525 if (ret)
526 goto time_out;
527 *retlen += m.actual_length - m25p_cmdsz(flash);
528 }
529 to += actual;
530
531 flash->command[0] = OPCODE_AAI_WP;
532 m25p_addr2cmd(flash, to, flash->command);
533
534 /* Write out most of the data here. */
535 cmd_sz = m25p_cmdsz(flash);
536 for (; actual < len - 1; actual += 2) {
537 t[0].len = cmd_sz;
538 /* write two bytes. */
539 t[1].len = 2;
540 t[1].tx_buf = buf + actual;
541
542 spi_sync(flash->spi, &m);
543 ret = wait_till_ready(flash);
544 if (ret)
545 goto time_out;
546 *retlen += m.actual_length - cmd_sz;
547 cmd_sz = 1;
548 to += 2;
549 }
550 write_disable(flash);
551 ret = wait_till_ready(flash);
552 if (ret)
553 goto time_out;
554
555 /* Write out trailing byte if it exists. */
556 if (actual != len) {
557 write_enable(flash);
558 flash->command[0] = OPCODE_BP;
559 m25p_addr2cmd(flash, to, flash->command);
560 t[0].len = m25p_cmdsz(flash);
561 t[1].len = 1;
562 t[1].tx_buf = buf + actual;
563
564 spi_sync(flash->spi, &m);
565 ret = wait_till_ready(flash);
566 if (ret)
567 goto time_out;
568 *retlen += m.actual_length - m25p_cmdsz(flash);
569 write_disable(flash);
570 }
571
572 time_out:
573 mutex_unlock(&flash->lock);
574 return ret;
575 }
576
577 /****************************************************************************/
578
579 /*
580 * SPI device driver setup and teardown
581 */
582
583 struct flash_info {
584 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
585 * a high byte of zero plus three data bytes: the manufacturer id,
586 * then a two byte device id.
587 */
588 u32 jedec_id;
589 u16 ext_id;
590
591 /* The size listed here is what works with OPCODE_SE, which isn't
592 * necessarily called a "sector" by the vendor.
593 */
594 unsigned sector_size;
595 u16 n_sectors;
596
597 u16 page_size;
598 u16 addr_width;
599
600 u16 flags;
601 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
602 #define M25P_NO_ERASE 0x02 /* No erase command needed */
603 };
604
605 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
606 ((kernel_ulong_t)&(struct flash_info) { \
607 .jedec_id = (_jedec_id), \
608 .ext_id = (_ext_id), \
609 .sector_size = (_sector_size), \
610 .n_sectors = (_n_sectors), \
611 .page_size = 256, \
612 .addr_width = 3, \
613 .flags = (_flags), \
614 })
615
616 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
617 ((kernel_ulong_t)&(struct flash_info) { \
618 .sector_size = (_sector_size), \
619 .n_sectors = (_n_sectors), \
620 .page_size = (_page_size), \
621 .addr_width = (_addr_width), \
622 .flags = M25P_NO_ERASE, \
623 })
624
625 /* NOTE: double check command sets and memory organization when you add
626 * more flash chips. This current list focusses on newer chips, which
627 * have been converging on command sets which including JEDEC ID.
628 */
629 static const struct spi_device_id m25p_ids[] = {
630 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
631 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
632 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
633
634 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
635 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
636
637 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
638 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
639 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
640 { "at26df321", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
641
642 /* Macronix */
643 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
644 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
645 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
646 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
647 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
648
649 /* Spansion -- single (large) sector size only, at least
650 * for the chips listed here (without boot sectors).
651 */
652 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
653 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
654 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
655 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
656 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
657 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
658 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
659 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
660 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
661
662 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
663 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) },
664 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
665 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
666 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
667 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) },
668 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) },
669 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) },
670 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) },
671
672 /* ST Microelectronics -- newer production may have feature updates */
673 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
674 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
675 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
676 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
677 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
678 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
679 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
680 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
681 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
682
683 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
684 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
685 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
686
687 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
688 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
689
690 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
691 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
692 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
693 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
694 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
695 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
696 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
697 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
698
699 /* Catalyst / On Semiconductor -- non-JEDEC */
700 { "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
701 { "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
702 { "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
703 { "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
704 { "cat25128", CAT25_INFO(2048, 8, 64, 2) },
705 { },
706 };
707 MODULE_DEVICE_TABLE(spi, m25p_ids);
708
709 static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
710 {
711 int tmp;
712 u8 code = OPCODE_RDID;
713 u8 id[5];
714 u32 jedec;
715 u16 ext_jedec;
716 struct flash_info *info;
717
718 /* JEDEC also defines an optional "extended device information"
719 * string for after vendor-specific data, after the three bytes
720 * we use here. Supporting some chips might require using it.
721 */
722 tmp = spi_write_then_read(spi, &code, 1, id, 5);
723 if (tmp < 0) {
724 DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
725 dev_name(&spi->dev), tmp);
726 return NULL;
727 }
728 jedec = id[0];
729 jedec = jedec << 8;
730 jedec |= id[1];
731 jedec = jedec << 8;
732 jedec |= id[2];
733
734 /*
735 * Some chips (like Numonyx M25P80) have JEDEC and non-JEDEC variants,
736 * which depend on technology process. Officially RDID command doesn't
737 * exist for non-JEDEC chips, but for compatibility they return ID 0.
738 */
739 if (jedec == 0)
740 return NULL;
741
742 ext_jedec = id[3] << 8 | id[4];
743
744 for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
745 info = (void *)m25p_ids[tmp].driver_data;
746 if (info->jedec_id == jedec) {
747 if (info->ext_id != 0 && info->ext_id != ext_jedec)
748 continue;
749 return &m25p_ids[tmp];
750 }
751 }
752 return NULL;
753 }
754
755
756 /*
757 * board specific setup should have ensured the SPI clock used here
758 * matches what the READ command supports, at least until this driver
759 * understands FAST_READ (for clocks over 25 MHz).
760 */
761 static int __devinit m25p_probe(struct spi_device *spi)
762 {
763 const struct spi_device_id *id = spi_get_device_id(spi);
764 struct flash_platform_data *data;
765 struct m25p *flash;
766 struct flash_info *info;
767 unsigned i;
768
769 /* Platform data helps sort out which chip type we have, as
770 * well as how this board partitions it. If we don't have
771 * a chip ID, try the JEDEC id commands; they'll work for most
772 * newer chips, even if we don't recognize the particular chip.
773 */
774 data = spi->dev.platform_data;
775 if (data && data->type) {
776 const struct spi_device_id *plat_id;
777
778 for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
779 plat_id = &m25p_ids[i];
780 if (strcmp(data->type, plat_id->name))
781 continue;
782 break;
783 }
784
785 if (plat_id)
786 id = plat_id;
787 else
788 dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
789 }
790
791 info = (void *)id->driver_data;
792
793 if (info->jedec_id) {
794 const struct spi_device_id *jid;
795
796 jid = jedec_probe(spi);
797 if (!jid) {
798 dev_info(&spi->dev, "non-JEDEC variant of %s\n",
799 id->name);
800 } else if (jid != id) {
801 /*
802 * JEDEC knows better, so overwrite platform ID. We
803 * can't trust partitions any longer, but we'll let
804 * mtd apply them anyway, since some partitions may be
805 * marked read-only, and we don't want to lose that
806 * information, even if it's not 100% accurate.
807 */
808 dev_warn(&spi->dev, "found %s, expected %s\n",
809 jid->name, id->name);
810 id = jid;
811 info = (void *)jid->driver_data;
812 }
813 }
814
815 flash = kzalloc(sizeof *flash, GFP_KERNEL);
816 if (!flash)
817 return -ENOMEM;
818 flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
819 if (!flash->command) {
820 kfree(flash);
821 return -ENOMEM;
822 }
823
824 flash->spi = spi;
825 mutex_init(&flash->lock);
826 dev_set_drvdata(&spi->dev, flash);
827
828 /*
829 * Atmel and SST serial flash tend to power
830 * up with the software protection bits set
831 */
832
833 if (info->jedec_id >> 16 == 0x1f ||
834 info->jedec_id >> 16 == 0xbf) {
835 write_enable(flash);
836 write_sr(flash, 0);
837 }
838
839 if (data && data->name)
840 flash->mtd.name = data->name;
841 else
842 flash->mtd.name = dev_name(&spi->dev);
843
844 flash->mtd.type = MTD_NORFLASH;
845 flash->mtd.writesize = 1;
846 flash->mtd.flags = MTD_CAP_NORFLASH;
847 flash->mtd.size = info->sector_size * info->n_sectors;
848 flash->mtd.erase = m25p80_erase;
849 flash->mtd.read = m25p80_read;
850
851 /* sst flash chips use AAI word program */
852 if (info->jedec_id >> 16 == 0xbf)
853 flash->mtd.write = sst_write;
854 else
855 flash->mtd.write = m25p80_write;
856
857 /* prefer "small sector" erase if possible */
858 if (info->flags & SECT_4K) {
859 flash->erase_opcode = OPCODE_BE_4K;
860 flash->mtd.erasesize = 4096;
861 } else {
862 flash->erase_opcode = OPCODE_SE;
863 flash->mtd.erasesize = info->sector_size;
864 }
865
866 if (info->flags & M25P_NO_ERASE)
867 flash->mtd.flags |= MTD_NO_ERASE;
868
869 flash->mtd.dev.parent = &spi->dev;
870 flash->page_size = info->page_size;
871 flash->addr_width = info->addr_width;
872
873 dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
874 (long long)flash->mtd.size >> 10);
875
876 DEBUG(MTD_DEBUG_LEVEL2,
877 "mtd .name = %s, .size = 0x%llx (%lldMiB) "
878 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
879 flash->mtd.name,
880 (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
881 flash->mtd.erasesize, flash->mtd.erasesize / 1024,
882 flash->mtd.numeraseregions);
883
884 if (flash->mtd.numeraseregions)
885 for (i = 0; i < flash->mtd.numeraseregions; i++)
886 DEBUG(MTD_DEBUG_LEVEL2,
887 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
888 ".erasesize = 0x%.8x (%uKiB), "
889 ".numblocks = %d }\n",
890 i, (long long)flash->mtd.eraseregions[i].offset,
891 flash->mtd.eraseregions[i].erasesize,
892 flash->mtd.eraseregions[i].erasesize / 1024,
893 flash->mtd.eraseregions[i].numblocks);
894
895
896 /* partitions should match sector boundaries; and it may be good to
897 * use readonly partitions for writeprotected sectors (BP2..BP0).
898 */
899 if (mtd_has_partitions()) {
900 struct mtd_partition *parts = NULL;
901 int nr_parts = 0;
902
903 if (mtd_has_cmdlinepart()) {
904 static const char *part_probes[]
905 = { "cmdlinepart", NULL, };
906
907 nr_parts = parse_mtd_partitions(&flash->mtd,
908 part_probes, &parts, 0);
909 }
910
911 if (nr_parts <= 0 && data && data->parts) {
912 parts = data->parts;
913 nr_parts = data->nr_parts;
914 }
915
916 if (nr_parts > 0) {
917 for (i = 0; i < nr_parts; i++) {
918 DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
919 "{.name = %s, .offset = 0x%llx, "
920 ".size = 0x%llx (%lldKiB) }\n",
921 i, parts[i].name,
922 (long long)parts[i].offset,
923 (long long)parts[i].size,
924 (long long)(parts[i].size >> 10));
925 }
926 flash->partitioned = 1;
927 return add_mtd_partitions(&flash->mtd, parts, nr_parts);
928 }
929 } else if (data && data->nr_parts)
930 dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
931 data->nr_parts, data->name);
932
933 return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
934 }
935
936
937 static int __devexit m25p_remove(struct spi_device *spi)
938 {
939 struct m25p *flash = dev_get_drvdata(&spi->dev);
940 int status;
941
942 /* Clean up MTD stuff. */
943 if (mtd_has_partitions() && flash->partitioned)
944 status = del_mtd_partitions(&flash->mtd);
945 else
946 status = del_mtd_device(&flash->mtd);
947 if (status == 0) {
948 kfree(flash->command);
949 kfree(flash);
950 }
951 return 0;
952 }
953
954
955 static struct spi_driver m25p80_driver = {
956 .driver = {
957 .name = "m25p80",
958 .bus = &spi_bus_type,
959 .owner = THIS_MODULE,
960 },
961 .id_table = m25p_ids,
962 .probe = m25p_probe,
963 .remove = __devexit_p(m25p_remove),
964
965 /* REVISIT: many of these chips have deep power-down modes, which
966 * should clearly be entered on suspend() to minimize power use.
967 * And also when they're otherwise idle...
968 */
969 };
970
971
972 static int __init m25p80_init(void)
973 {
974 return spi_register_driver(&m25p80_driver);
975 }
976
977
978 static void __exit m25p80_exit(void)
979 {
980 spi_unregister_driver(&m25p80_driver);
981 }
982
983
984 module_init(m25p80_init);
985 module_exit(m25p80_exit);
986
987 MODULE_LICENSE("GPL");
988 MODULE_AUTHOR("Mike Lavender");
989 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");