mtd: m25p80: add support for Macronix MX25L12805D
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / drivers / mtd / devices / m25p80.c
1 /*
2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 *
4 * Author: Mike Lavender, mike@steroidmicros.com
5 *
6 * Copyright (c) 2005, Intec Automation Inc.
7 *
8 * Some parts are based on lart.c by Abraham Van Der Merwe
9 *
10 * Cleaned up and generalized based on mtd_dataflash.c
11 *
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/mutex.h>
23 #include <linux/math64.h>
24
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/partitions.h>
27
28 #include <linux/spi/spi.h>
29 #include <linux/spi/flash.h>
30
31
32 #define FLASH_PAGESIZE 256
33
34 /* Flash opcodes. */
35 #define OPCODE_WREN 0x06 /* Write enable */
36 #define OPCODE_RDSR 0x05 /* Read status register */
37 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
38 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
39 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
40 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
41 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
42 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
43 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
44 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
45 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
46
47 /* Status Register bits. */
48 #define SR_WIP 1 /* Write in progress */
49 #define SR_WEL 2 /* Write enable latch */
50 /* meaning of other SR_* bits may differ between vendors */
51 #define SR_BP0 4 /* Block protect 0 */
52 #define SR_BP1 8 /* Block protect 1 */
53 #define SR_BP2 0x10 /* Block protect 2 */
54 #define SR_SRWD 0x80 /* SR write protect */
55
56 /* Define max times to check status register before we give up. */
57 #define MAX_READY_WAIT_JIFFIES (10 * HZ) /* eg. M25P128 specs 6s max sector erase */
58 #define CMD_SIZE 4
59
60 #ifdef CONFIG_M25PXX_USE_FAST_READ
61 #define OPCODE_READ OPCODE_FAST_READ
62 #define FAST_READ_DUMMY_BYTE 1
63 #else
64 #define OPCODE_READ OPCODE_NORM_READ
65 #define FAST_READ_DUMMY_BYTE 0
66 #endif
67
68 /****************************************************************************/
69
70 struct m25p {
71 struct spi_device *spi;
72 struct mutex lock;
73 struct mtd_info mtd;
74 unsigned partitioned:1;
75 u8 erase_opcode;
76 u8 command[CMD_SIZE + FAST_READ_DUMMY_BYTE];
77 };
78
79 static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
80 {
81 return container_of(mtd, struct m25p, mtd);
82 }
83
84 /****************************************************************************/
85
86 /*
87 * Internal helper functions
88 */
89
90 /*
91 * Read the status register, returning its value in the location
92 * Return the status register value.
93 * Returns negative if error occurred.
94 */
95 static int read_sr(struct m25p *flash)
96 {
97 ssize_t retval;
98 u8 code = OPCODE_RDSR;
99 u8 val;
100
101 retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
102
103 if (retval < 0) {
104 dev_err(&flash->spi->dev, "error %d reading SR\n",
105 (int) retval);
106 return retval;
107 }
108
109 return val;
110 }
111
112 /*
113 * Write status register 1 byte
114 * Returns negative if error occurred.
115 */
116 static int write_sr(struct m25p *flash, u8 val)
117 {
118 flash->command[0] = OPCODE_WRSR;
119 flash->command[1] = val;
120
121 return spi_write(flash->spi, flash->command, 2);
122 }
123
124 /*
125 * Set write enable latch with Write Enable command.
126 * Returns negative if error occurred.
127 */
128 static inline int write_enable(struct m25p *flash)
129 {
130 u8 code = OPCODE_WREN;
131
132 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
133 }
134
135
136 /*
137 * Service routine to read status register until ready, or timeout occurs.
138 * Returns non-zero if error.
139 */
140 static int wait_till_ready(struct m25p *flash)
141 {
142 unsigned long deadline;
143 int sr;
144
145 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
146
147 do {
148 if ((sr = read_sr(flash)) < 0)
149 break;
150 else if (!(sr & SR_WIP))
151 return 0;
152
153 cond_resched();
154
155 } while (!time_after_eq(jiffies, deadline));
156
157 return 1;
158 }
159
160 /*
161 * Erase the whole flash memory
162 *
163 * Returns 0 if successful, non-zero otherwise.
164 */
165 static int erase_chip(struct m25p *flash)
166 {
167 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
168 dev_name(&flash->spi->dev), __func__,
169 (long long)(flash->mtd.size >> 10));
170
171 /* Wait until finished previous write command. */
172 if (wait_till_ready(flash))
173 return 1;
174
175 /* Send write enable, then erase commands. */
176 write_enable(flash);
177
178 /* Set up command buffer. */
179 flash->command[0] = OPCODE_CHIP_ERASE;
180
181 spi_write(flash->spi, flash->command, 1);
182
183 return 0;
184 }
185
186 /*
187 * Erase one sector of flash memory at offset ``offset'' which is any
188 * address within the sector which should be erased.
189 *
190 * Returns 0 if successful, non-zero otherwise.
191 */
192 static int erase_sector(struct m25p *flash, u32 offset)
193 {
194 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
195 dev_name(&flash->spi->dev), __func__,
196 flash->mtd.erasesize / 1024, offset);
197
198 /* Wait until finished previous write command. */
199 if (wait_till_ready(flash))
200 return 1;
201
202 /* Send write enable, then erase commands. */
203 write_enable(flash);
204
205 /* Set up command buffer. */
206 flash->command[0] = flash->erase_opcode;
207 flash->command[1] = offset >> 16;
208 flash->command[2] = offset >> 8;
209 flash->command[3] = offset;
210
211 spi_write(flash->spi, flash->command, CMD_SIZE);
212
213 return 0;
214 }
215
216 /****************************************************************************/
217
218 /*
219 * MTD implementation
220 */
221
222 /*
223 * Erase an address range on the flash chip. The address range may extend
224 * one or more erase sectors. Return an error is there is a problem erasing.
225 */
226 static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
227 {
228 struct m25p *flash = mtd_to_m25p(mtd);
229 u32 addr,len;
230 uint32_t rem;
231
232 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
233 dev_name(&flash->spi->dev), __func__, "at",
234 (long long)instr->addr, (long long)instr->len);
235
236 /* sanity checks */
237 if (instr->addr + instr->len > flash->mtd.size)
238 return -EINVAL;
239 div_u64_rem(instr->len, mtd->erasesize, &rem);
240 if (rem)
241 return -EINVAL;
242
243 addr = instr->addr;
244 len = instr->len;
245
246 mutex_lock(&flash->lock);
247
248 /* whole-chip erase? */
249 if (len == flash->mtd.size) {
250 if (erase_chip(flash)) {
251 instr->state = MTD_ERASE_FAILED;
252 mutex_unlock(&flash->lock);
253 return -EIO;
254 }
255
256 /* REVISIT in some cases we could speed up erasing large regions
257 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
258 * to use "small sector erase", but that's not always optimal.
259 */
260
261 /* "sector"-at-a-time erase */
262 } else {
263 while (len) {
264 if (erase_sector(flash, addr)) {
265 instr->state = MTD_ERASE_FAILED;
266 mutex_unlock(&flash->lock);
267 return -EIO;
268 }
269
270 addr += mtd->erasesize;
271 len -= mtd->erasesize;
272 }
273 }
274
275 mutex_unlock(&flash->lock);
276
277 instr->state = MTD_ERASE_DONE;
278 mtd_erase_callback(instr);
279
280 return 0;
281 }
282
283 /*
284 * Read an address range from the flash chip. The address range
285 * may be any size provided it is within the physical boundaries.
286 */
287 static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
288 size_t *retlen, u_char *buf)
289 {
290 struct m25p *flash = mtd_to_m25p(mtd);
291 struct spi_transfer t[2];
292 struct spi_message m;
293
294 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
295 dev_name(&flash->spi->dev), __func__, "from",
296 (u32)from, len);
297
298 /* sanity checks */
299 if (!len)
300 return 0;
301
302 if (from + len > flash->mtd.size)
303 return -EINVAL;
304
305 spi_message_init(&m);
306 memset(t, 0, (sizeof t));
307
308 /* NOTE:
309 * OPCODE_FAST_READ (if available) is faster.
310 * Should add 1 byte DUMMY_BYTE.
311 */
312 t[0].tx_buf = flash->command;
313 t[0].len = CMD_SIZE + FAST_READ_DUMMY_BYTE;
314 spi_message_add_tail(&t[0], &m);
315
316 t[1].rx_buf = buf;
317 t[1].len = len;
318 spi_message_add_tail(&t[1], &m);
319
320 /* Byte count starts at zero. */
321 if (retlen)
322 *retlen = 0;
323
324 mutex_lock(&flash->lock);
325
326 /* Wait till previous write/erase is done. */
327 if (wait_till_ready(flash)) {
328 /* REVISIT status return?? */
329 mutex_unlock(&flash->lock);
330 return 1;
331 }
332
333 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
334 * clocks; and at this writing, every chip this driver handles
335 * supports that opcode.
336 */
337
338 /* Set up the write data buffer. */
339 flash->command[0] = OPCODE_READ;
340 flash->command[1] = from >> 16;
341 flash->command[2] = from >> 8;
342 flash->command[3] = from;
343
344 spi_sync(flash->spi, &m);
345
346 *retlen = m.actual_length - CMD_SIZE - FAST_READ_DUMMY_BYTE;
347
348 mutex_unlock(&flash->lock);
349
350 return 0;
351 }
352
353 /*
354 * Write an address range to the flash chip. Data must be written in
355 * FLASH_PAGESIZE chunks. The address range may be any size provided
356 * it is within the physical boundaries.
357 */
358 static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
359 size_t *retlen, const u_char *buf)
360 {
361 struct m25p *flash = mtd_to_m25p(mtd);
362 u32 page_offset, page_size;
363 struct spi_transfer t[2];
364 struct spi_message m;
365
366 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
367 dev_name(&flash->spi->dev), __func__, "to",
368 (u32)to, len);
369
370 if (retlen)
371 *retlen = 0;
372
373 /* sanity checks */
374 if (!len)
375 return(0);
376
377 if (to + len > flash->mtd.size)
378 return -EINVAL;
379
380 spi_message_init(&m);
381 memset(t, 0, (sizeof t));
382
383 t[0].tx_buf = flash->command;
384 t[0].len = CMD_SIZE;
385 spi_message_add_tail(&t[0], &m);
386
387 t[1].tx_buf = buf;
388 spi_message_add_tail(&t[1], &m);
389
390 mutex_lock(&flash->lock);
391
392 /* Wait until finished previous write command. */
393 if (wait_till_ready(flash)) {
394 mutex_unlock(&flash->lock);
395 return 1;
396 }
397
398 write_enable(flash);
399
400 /* Set up the opcode in the write buffer. */
401 flash->command[0] = OPCODE_PP;
402 flash->command[1] = to >> 16;
403 flash->command[2] = to >> 8;
404 flash->command[3] = to;
405
406 /* what page do we start with? */
407 page_offset = to % FLASH_PAGESIZE;
408
409 /* do all the bytes fit onto one page? */
410 if (page_offset + len <= FLASH_PAGESIZE) {
411 t[1].len = len;
412
413 spi_sync(flash->spi, &m);
414
415 *retlen = m.actual_length - CMD_SIZE;
416 } else {
417 u32 i;
418
419 /* the size of data remaining on the first page */
420 page_size = FLASH_PAGESIZE - page_offset;
421
422 t[1].len = page_size;
423 spi_sync(flash->spi, &m);
424
425 *retlen = m.actual_length - CMD_SIZE;
426
427 /* write everything in PAGESIZE chunks */
428 for (i = page_size; i < len; i += page_size) {
429 page_size = len - i;
430 if (page_size > FLASH_PAGESIZE)
431 page_size = FLASH_PAGESIZE;
432
433 /* write the next page to flash */
434 flash->command[1] = (to + i) >> 16;
435 flash->command[2] = (to + i) >> 8;
436 flash->command[3] = (to + i);
437
438 t[1].tx_buf = buf + i;
439 t[1].len = page_size;
440
441 wait_till_ready(flash);
442
443 write_enable(flash);
444
445 spi_sync(flash->spi, &m);
446
447 if (retlen)
448 *retlen += m.actual_length - CMD_SIZE;
449 }
450 }
451
452 mutex_unlock(&flash->lock);
453
454 return 0;
455 }
456
457
458 /****************************************************************************/
459
460 /*
461 * SPI device driver setup and teardown
462 */
463
464 struct flash_info {
465 char *name;
466
467 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
468 * a high byte of zero plus three data bytes: the manufacturer id,
469 * then a two byte device id.
470 */
471 u32 jedec_id;
472 u16 ext_id;
473
474 /* The size listed here is what works with OPCODE_SE, which isn't
475 * necessarily called a "sector" by the vendor.
476 */
477 unsigned sector_size;
478 u16 n_sectors;
479
480 u16 flags;
481 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
482 };
483
484
485 /* NOTE: double check command sets and memory organization when you add
486 * more flash chips. This current list focusses on newer chips, which
487 * have been converging on command sets which including JEDEC ID.
488 */
489 static struct flash_info __devinitdata m25p_data [] = {
490
491 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
492 { "at25fs010", 0x1f6601, 0, 32 * 1024, 4, SECT_4K, },
493 { "at25fs040", 0x1f6604, 0, 64 * 1024, 8, SECT_4K, },
494
495 { "at25df041a", 0x1f4401, 0, 64 * 1024, 8, SECT_4K, },
496 { "at25df641", 0x1f4800, 0, 64 * 1024, 128, SECT_4K, },
497
498 { "at26f004", 0x1f0400, 0, 64 * 1024, 8, SECT_4K, },
499 { "at26df081a", 0x1f4501, 0, 64 * 1024, 16, SECT_4K, },
500 { "at26df161a", 0x1f4601, 0, 64 * 1024, 32, SECT_4K, },
501 { "at26df321", 0x1f4701, 0, 64 * 1024, 64, SECT_4K, },
502
503 /* Macronix */
504 { "mx25l12805d", 0xc22018, 0, 64 * 1024, 256, },
505
506 /* Spansion -- single (large) sector size only, at least
507 * for the chips listed here (without boot sectors).
508 */
509 { "s25sl004a", 0x010212, 0, 64 * 1024, 8, },
510 { "s25sl008a", 0x010213, 0, 64 * 1024, 16, },
511 { "s25sl016a", 0x010214, 0, 64 * 1024, 32, },
512 { "s25sl032a", 0x010215, 0, 64 * 1024, 64, },
513 { "s25sl064a", 0x010216, 0, 64 * 1024, 128, },
514 { "s25sl12800", 0x012018, 0x0300, 256 * 1024, 64, },
515 { "s25sl12801", 0x012018, 0x0301, 64 * 1024, 256, },
516
517 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
518 { "sst25vf040b", 0xbf258d, 0, 64 * 1024, 8, SECT_4K, },
519 { "sst25vf080b", 0xbf258e, 0, 64 * 1024, 16, SECT_4K, },
520 { "sst25vf016b", 0xbf2541, 0, 64 * 1024, 32, SECT_4K, },
521 { "sst25vf032b", 0xbf254a, 0, 64 * 1024, 64, SECT_4K, },
522
523 /* ST Microelectronics -- newer production may have feature updates */
524 { "m25p05", 0x202010, 0, 32 * 1024, 2, },
525 { "m25p10", 0x202011, 0, 32 * 1024, 4, },
526 { "m25p20", 0x202012, 0, 64 * 1024, 4, },
527 { "m25p40", 0x202013, 0, 64 * 1024, 8, },
528 { "m25p80", 0, 0, 64 * 1024, 16, },
529 { "m25p16", 0x202015, 0, 64 * 1024, 32, },
530 { "m25p32", 0x202016, 0, 64 * 1024, 64, },
531 { "m25p64", 0x202017, 0, 64 * 1024, 128, },
532 { "m25p128", 0x202018, 0, 256 * 1024, 64, },
533
534 { "m45pe10", 0x204011, 0, 64 * 1024, 2, },
535 { "m45pe80", 0x204014, 0, 64 * 1024, 16, },
536 { "m45pe16", 0x204015, 0, 64 * 1024, 32, },
537
538 { "m25pe80", 0x208014, 0, 64 * 1024, 16, },
539 { "m25pe16", 0x208015, 0, 64 * 1024, 32, SECT_4K, },
540
541 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
542 { "w25x10", 0xef3011, 0, 64 * 1024, 2, SECT_4K, },
543 { "w25x20", 0xef3012, 0, 64 * 1024, 4, SECT_4K, },
544 { "w25x40", 0xef3013, 0, 64 * 1024, 8, SECT_4K, },
545 { "w25x80", 0xef3014, 0, 64 * 1024, 16, SECT_4K, },
546 { "w25x16", 0xef3015, 0, 64 * 1024, 32, SECT_4K, },
547 { "w25x32", 0xef3016, 0, 64 * 1024, 64, SECT_4K, },
548 { "w25x64", 0xef3017, 0, 64 * 1024, 128, SECT_4K, },
549 };
550
551 static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
552 {
553 int tmp;
554 u8 code = OPCODE_RDID;
555 u8 id[5];
556 u32 jedec;
557 u16 ext_jedec;
558 struct flash_info *info;
559
560 /* JEDEC also defines an optional "extended device information"
561 * string for after vendor-specific data, after the three bytes
562 * we use here. Supporting some chips might require using it.
563 */
564 tmp = spi_write_then_read(spi, &code, 1, id, 5);
565 if (tmp < 0) {
566 DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
567 dev_name(&spi->dev), tmp);
568 return NULL;
569 }
570 jedec = id[0];
571 jedec = jedec << 8;
572 jedec |= id[1];
573 jedec = jedec << 8;
574 jedec |= id[2];
575
576 ext_jedec = id[3] << 8 | id[4];
577
578 for (tmp = 0, info = m25p_data;
579 tmp < ARRAY_SIZE(m25p_data);
580 tmp++, info++) {
581 if (info->jedec_id == jedec) {
582 if (info->ext_id != 0 && info->ext_id != ext_jedec)
583 continue;
584 return info;
585 }
586 }
587 dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
588 return NULL;
589 }
590
591
592 /*
593 * board specific setup should have ensured the SPI clock used here
594 * matches what the READ command supports, at least until this driver
595 * understands FAST_READ (for clocks over 25 MHz).
596 */
597 static int __devinit m25p_probe(struct spi_device *spi)
598 {
599 struct flash_platform_data *data;
600 struct m25p *flash;
601 struct flash_info *info;
602 unsigned i;
603
604 /* Platform data helps sort out which chip type we have, as
605 * well as how this board partitions it. If we don't have
606 * a chip ID, try the JEDEC id commands; they'll work for most
607 * newer chips, even if we don't recognize the particular chip.
608 */
609 data = spi->dev.platform_data;
610 if (data && data->type) {
611 for (i = 0, info = m25p_data;
612 i < ARRAY_SIZE(m25p_data);
613 i++, info++) {
614 if (strcmp(data->type, info->name) == 0)
615 break;
616 }
617
618 /* unrecognized chip? */
619 if (i == ARRAY_SIZE(m25p_data)) {
620 DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n",
621 dev_name(&spi->dev), data->type);
622 info = NULL;
623
624 /* recognized; is that chip really what's there? */
625 } else if (info->jedec_id) {
626 struct flash_info *chip = jedec_probe(spi);
627
628 if (!chip || chip != info) {
629 dev_warn(&spi->dev, "found %s, expected %s\n",
630 chip ? chip->name : "UNKNOWN",
631 info->name);
632 info = NULL;
633 }
634 }
635 } else
636 info = jedec_probe(spi);
637
638 if (!info)
639 return -ENODEV;
640
641 flash = kzalloc(sizeof *flash, GFP_KERNEL);
642 if (!flash)
643 return -ENOMEM;
644
645 flash->spi = spi;
646 mutex_init(&flash->lock);
647 dev_set_drvdata(&spi->dev, flash);
648
649 /*
650 * Atmel serial flash tend to power up
651 * with the software protection bits set
652 */
653
654 if (info->jedec_id >> 16 == 0x1f) {
655 write_enable(flash);
656 write_sr(flash, 0);
657 }
658
659 if (data && data->name)
660 flash->mtd.name = data->name;
661 else
662 flash->mtd.name = dev_name(&spi->dev);
663
664 flash->mtd.type = MTD_NORFLASH;
665 flash->mtd.writesize = 1;
666 flash->mtd.flags = MTD_CAP_NORFLASH;
667 flash->mtd.size = info->sector_size * info->n_sectors;
668 flash->mtd.erase = m25p80_erase;
669 flash->mtd.read = m25p80_read;
670 flash->mtd.write = m25p80_write;
671
672 /* prefer "small sector" erase if possible */
673 if (info->flags & SECT_4K) {
674 flash->erase_opcode = OPCODE_BE_4K;
675 flash->mtd.erasesize = 4096;
676 } else {
677 flash->erase_opcode = OPCODE_SE;
678 flash->mtd.erasesize = info->sector_size;
679 }
680
681 flash->mtd.dev.parent = &spi->dev;
682
683 dev_info(&spi->dev, "%s (%lld Kbytes)\n", info->name,
684 (long long)flash->mtd.size >> 10);
685
686 DEBUG(MTD_DEBUG_LEVEL2,
687 "mtd .name = %s, .size = 0x%llx (%lldMiB) "
688 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
689 flash->mtd.name,
690 (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
691 flash->mtd.erasesize, flash->mtd.erasesize / 1024,
692 flash->mtd.numeraseregions);
693
694 if (flash->mtd.numeraseregions)
695 for (i = 0; i < flash->mtd.numeraseregions; i++)
696 DEBUG(MTD_DEBUG_LEVEL2,
697 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
698 ".erasesize = 0x%.8x (%uKiB), "
699 ".numblocks = %d }\n",
700 i, (long long)flash->mtd.eraseregions[i].offset,
701 flash->mtd.eraseregions[i].erasesize,
702 flash->mtd.eraseregions[i].erasesize / 1024,
703 flash->mtd.eraseregions[i].numblocks);
704
705
706 /* partitions should match sector boundaries; and it may be good to
707 * use readonly partitions for writeprotected sectors (BP2..BP0).
708 */
709 if (mtd_has_partitions()) {
710 struct mtd_partition *parts = NULL;
711 int nr_parts = 0;
712
713 if (mtd_has_cmdlinepart()) {
714 static const char *part_probes[]
715 = { "cmdlinepart", NULL, };
716
717 nr_parts = parse_mtd_partitions(&flash->mtd,
718 part_probes, &parts, 0);
719 }
720
721 if (nr_parts <= 0 && data && data->parts) {
722 parts = data->parts;
723 nr_parts = data->nr_parts;
724 }
725
726 if (nr_parts > 0) {
727 for (i = 0; i < nr_parts; i++) {
728 DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
729 "{.name = %s, .offset = 0x%llx, "
730 ".size = 0x%llx (%lldKiB) }\n",
731 i, parts[i].name,
732 (long long)parts[i].offset,
733 (long long)parts[i].size,
734 (long long)(parts[i].size >> 10));
735 }
736 flash->partitioned = 1;
737 return add_mtd_partitions(&flash->mtd, parts, nr_parts);
738 }
739 } else if (data->nr_parts)
740 dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
741 data->nr_parts, data->name);
742
743 return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
744 }
745
746
747 static int __devexit m25p_remove(struct spi_device *spi)
748 {
749 struct m25p *flash = dev_get_drvdata(&spi->dev);
750 int status;
751
752 /* Clean up MTD stuff. */
753 if (mtd_has_partitions() && flash->partitioned)
754 status = del_mtd_partitions(&flash->mtd);
755 else
756 status = del_mtd_device(&flash->mtd);
757 if (status == 0)
758 kfree(flash);
759 return 0;
760 }
761
762
763 static struct spi_driver m25p80_driver = {
764 .driver = {
765 .name = "m25p80",
766 .bus = &spi_bus_type,
767 .owner = THIS_MODULE,
768 },
769 .probe = m25p_probe,
770 .remove = __devexit_p(m25p_remove),
771
772 /* REVISIT: many of these chips have deep power-down modes, which
773 * should clearly be entered on suspend() to minimize power use.
774 * And also when they're otherwise idle...
775 */
776 };
777
778
779 static int m25p80_init(void)
780 {
781 return spi_register_driver(&m25p80_driver);
782 }
783
784
785 static void m25p80_exit(void)
786 {
787 spi_unregister_driver(&m25p80_driver);
788 }
789
790
791 module_init(m25p80_init);
792 module_exit(m25p80_exit);
793
794 MODULE_LICENSE("GPL");
795 MODULE_AUTHOR("Mike Lavender");
796 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");