Fix common misspellings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / chips / cfi_cmdset_0002.c
1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
15 *
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17 *
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19 *
20 * This code is GPL
21 */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/reboot.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
40
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
43
44 #define MAX_WORD_RETRIES 3
45
46 #define SST49LF004B 0x0060
47 #define SST49LF040B 0x0050
48 #define SST49LF008A 0x005a
49 #define AT49BV6416 0x00d6
50
51 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
55 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
56 static void cfi_amdstd_sync (struct mtd_info *);
57 static int cfi_amdstd_suspend (struct mtd_info *);
58 static void cfi_amdstd_resume (struct mtd_info *);
59 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
60 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61
62 static void cfi_amdstd_destroy(struct mtd_info *);
63
64 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
65 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
66
67 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
68 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
69 #include "fwh_lock.h"
70
71 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
72 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
73
74 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
75 .probe = NULL, /* Not usable directly */
76 .destroy = cfi_amdstd_destroy,
77 .name = "cfi_cmdset_0002",
78 .module = THIS_MODULE
79 };
80
81
82 /* #define DEBUG_CFI_FEATURES */
83
84
85 #ifdef DEBUG_CFI_FEATURES
86 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
87 {
88 const char* erase_suspend[3] = {
89 "Not supported", "Read only", "Read/write"
90 };
91 const char* top_bottom[6] = {
92 "No WP", "8x8KiB sectors at top & bottom, no WP",
93 "Bottom boot", "Top boot",
94 "Uniform, Bottom WP", "Uniform, Top WP"
95 };
96
97 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
98 printk(" Address sensitive unlock: %s\n",
99 (extp->SiliconRevision & 1) ? "Not required" : "Required");
100
101 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
102 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
103 else
104 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
105
106 if (extp->BlkProt == 0)
107 printk(" Block protection: Not supported\n");
108 else
109 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
110
111
112 printk(" Temporary block unprotect: %s\n",
113 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
114 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
115 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
116 printk(" Burst mode: %s\n",
117 extp->BurstMode ? "Supported" : "Not supported");
118 if (extp->PageMode == 0)
119 printk(" Page mode: Not supported\n");
120 else
121 printk(" Page mode: %d word page\n", extp->PageMode << 2);
122
123 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
124 extp->VppMin >> 4, extp->VppMin & 0xf);
125 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
126 extp->VppMax >> 4, extp->VppMax & 0xf);
127
128 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
129 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
130 else
131 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
132 }
133 #endif
134
135 #ifdef AMD_BOOTLOC_BUG
136 /* Wheee. Bring me the head of someone at AMD. */
137 static void fixup_amd_bootblock(struct mtd_info *mtd)
138 {
139 struct map_info *map = mtd->priv;
140 struct cfi_private *cfi = map->fldrv_priv;
141 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
142 __u8 major = extp->MajorVersion;
143 __u8 minor = extp->MinorVersion;
144
145 if (((major << 8) | minor) < 0x3131) {
146 /* CFI version 1.0 => don't trust bootloc */
147
148 DEBUG(MTD_DEBUG_LEVEL1,
149 "%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
150 map->name, cfi->mfr, cfi->id);
151
152 /* AFAICS all 29LV400 with a bottom boot block have a device ID
153 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
154 * These were badly detected as they have the 0x80 bit set
155 * so treat them as a special case.
156 */
157 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
158
159 /* Macronix added CFI to their 2nd generation
160 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
161 * Fujitsu, Spansion, EON, ESI and older Macronix)
162 * has CFI.
163 *
164 * Therefore also check the manufacturer.
165 * This reduces the risk of false detection due to
166 * the 8-bit device ID.
167 */
168 (cfi->mfr == CFI_MFR_MACRONIX)) {
169 DEBUG(MTD_DEBUG_LEVEL1,
170 "%s: Macronix MX29LV400C with bottom boot block"
171 " detected\n", map->name);
172 extp->TopBottom = 2; /* bottom boot */
173 } else
174 if (cfi->id & 0x80) {
175 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
176 extp->TopBottom = 3; /* top boot */
177 } else {
178 extp->TopBottom = 2; /* bottom boot */
179 }
180
181 DEBUG(MTD_DEBUG_LEVEL1,
182 "%s: AMD CFI PRI V%c.%c has no boot block field;"
183 " deduced %s from Device ID\n", map->name, major, minor,
184 extp->TopBottom == 2 ? "bottom" : "top");
185 }
186 }
187 #endif
188
189 static void fixup_use_write_buffers(struct mtd_info *mtd)
190 {
191 struct map_info *map = mtd->priv;
192 struct cfi_private *cfi = map->fldrv_priv;
193 if (cfi->cfiq->BufWriteTimeoutTyp) {
194 DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
195 mtd->write = cfi_amdstd_write_buffers;
196 }
197 }
198
199 /* Atmel chips don't use the same PRI format as AMD chips */
200 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
201 {
202 struct map_info *map = mtd->priv;
203 struct cfi_private *cfi = map->fldrv_priv;
204 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
205 struct cfi_pri_atmel atmel_pri;
206
207 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
208 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
209
210 if (atmel_pri.Features & 0x02)
211 extp->EraseSuspend = 2;
212
213 /* Some chips got it backwards... */
214 if (cfi->id == AT49BV6416) {
215 if (atmel_pri.BottomBoot)
216 extp->TopBottom = 3;
217 else
218 extp->TopBottom = 2;
219 } else {
220 if (atmel_pri.BottomBoot)
221 extp->TopBottom = 2;
222 else
223 extp->TopBottom = 3;
224 }
225
226 /* burst write mode not supported */
227 cfi->cfiq->BufWriteTimeoutTyp = 0;
228 cfi->cfiq->BufWriteTimeoutMax = 0;
229 }
230
231 static void fixup_use_secsi(struct mtd_info *mtd)
232 {
233 /* Setup for chips with a secsi area */
234 mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
235 mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
236 }
237
238 static void fixup_use_erase_chip(struct mtd_info *mtd)
239 {
240 struct map_info *map = mtd->priv;
241 struct cfi_private *cfi = map->fldrv_priv;
242 if ((cfi->cfiq->NumEraseRegions == 1) &&
243 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
244 mtd->erase = cfi_amdstd_erase_chip;
245 }
246
247 }
248
249 /*
250 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
251 * locked by default.
252 */
253 static void fixup_use_atmel_lock(struct mtd_info *mtd)
254 {
255 mtd->lock = cfi_atmel_lock;
256 mtd->unlock = cfi_atmel_unlock;
257 mtd->flags |= MTD_POWERUP_LOCK;
258 }
259
260 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
261 {
262 struct map_info *map = mtd->priv;
263 struct cfi_private *cfi = map->fldrv_priv;
264
265 /*
266 * These flashes report two separate eraseblock regions based on the
267 * sector_erase-size and block_erase-size, although they both operate on the
268 * same memory. This is not allowed according to CFI, so we just pick the
269 * sector_erase-size.
270 */
271 cfi->cfiq->NumEraseRegions = 1;
272 }
273
274 static void fixup_sst39vf(struct mtd_info *mtd)
275 {
276 struct map_info *map = mtd->priv;
277 struct cfi_private *cfi = map->fldrv_priv;
278
279 fixup_old_sst_eraseregion(mtd);
280
281 cfi->addr_unlock1 = 0x5555;
282 cfi->addr_unlock2 = 0x2AAA;
283 }
284
285 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
286 {
287 struct map_info *map = mtd->priv;
288 struct cfi_private *cfi = map->fldrv_priv;
289
290 fixup_old_sst_eraseregion(mtd);
291
292 cfi->addr_unlock1 = 0x555;
293 cfi->addr_unlock2 = 0x2AA;
294
295 cfi->sector_erase_cmd = CMD(0x50);
296 }
297
298 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
299 {
300 struct map_info *map = mtd->priv;
301 struct cfi_private *cfi = map->fldrv_priv;
302
303 fixup_sst39vf_rev_b(mtd);
304
305 /*
306 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
307 * it should report a size of 8KBytes (0x0020*256).
308 */
309 cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
310 pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
311 }
312
313 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
314 {
315 struct map_info *map = mtd->priv;
316 struct cfi_private *cfi = map->fldrv_priv;
317
318 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
319 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
320 pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
321 }
322 }
323
324 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
325 {
326 struct map_info *map = mtd->priv;
327 struct cfi_private *cfi = map->fldrv_priv;
328
329 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
330 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
331 pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
332 }
333 }
334
335 /* Used to fix CFI-Tables of chips without Extended Query Tables */
336 static struct cfi_fixup cfi_nopri_fixup_table[] = {
337 { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
338 { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
339 { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
340 { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
341 { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
342 { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
343 { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
344 { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
345 { 0, 0, NULL }
346 };
347
348 static struct cfi_fixup cfi_fixup_table[] = {
349 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
350 #ifdef AMD_BOOTLOC_BUG
351 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
352 { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
353 { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
354 #endif
355 { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
356 { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
357 { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
358 { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
359 { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
360 { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
361 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
362 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
363 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
364 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
365 { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
366 { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
367 { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
368 { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
369 #if !FORCE_WORD_WRITE
370 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
371 #endif
372 { 0, 0, NULL }
373 };
374 static struct cfi_fixup jedec_fixup_table[] = {
375 { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
376 { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
377 { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
378 { 0, 0, NULL }
379 };
380
381 static struct cfi_fixup fixup_table[] = {
382 /* The CFI vendor ids and the JEDEC vendor IDs appear
383 * to be common. It is like the devices id's are as
384 * well. This table is to pick all cases where
385 * we know that is the case.
386 */
387 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
388 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
389 { 0, 0, NULL }
390 };
391
392
393 static void cfi_fixup_major_minor(struct cfi_private *cfi,
394 struct cfi_pri_amdstd *extp)
395 {
396 if (cfi->mfr == CFI_MFR_SAMSUNG) {
397 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
398 (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
399 /*
400 * Samsung K8P2815UQB and K8D6x16UxM chips
401 * report major=0 / minor=0.
402 * K8D3x16UxC chips report major=3 / minor=3.
403 */
404 printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
405 " Extended Query version to 1.%c\n",
406 extp->MinorVersion);
407 extp->MajorVersion = '1';
408 }
409 }
410
411 /*
412 * SST 38VF640x chips report major=0xFF / minor=0xFF.
413 */
414 if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
415 extp->MajorVersion = '1';
416 extp->MinorVersion = '0';
417 }
418 }
419
420 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
421 {
422 struct cfi_private *cfi = map->fldrv_priv;
423 struct mtd_info *mtd;
424 int i;
425
426 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
427 if (!mtd) {
428 printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
429 return NULL;
430 }
431 mtd->priv = map;
432 mtd->type = MTD_NORFLASH;
433
434 /* Fill in the default mtd operations */
435 mtd->erase = cfi_amdstd_erase_varsize;
436 mtd->write = cfi_amdstd_write_words;
437 mtd->read = cfi_amdstd_read;
438 mtd->sync = cfi_amdstd_sync;
439 mtd->suspend = cfi_amdstd_suspend;
440 mtd->resume = cfi_amdstd_resume;
441 mtd->flags = MTD_CAP_NORFLASH;
442 mtd->name = map->name;
443 mtd->writesize = 1;
444 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
445
446 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): write buffer size %d\n",
447 __func__, mtd->writebufsize);
448
449 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
450
451 if (cfi->cfi_mode==CFI_MODE_CFI){
452 unsigned char bootloc;
453 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
454 struct cfi_pri_amdstd *extp;
455
456 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
457 if (extp) {
458 /*
459 * It's a real CFI chip, not one for which the probe
460 * routine faked a CFI structure.
461 */
462 cfi_fixup_major_minor(cfi, extp);
463
464 /*
465 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4
466 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
467 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
468 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
469 */
470 if (extp->MajorVersion != '1' ||
471 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '4'))) {
472 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
473 "version %c.%c (%#02x/%#02x).\n",
474 extp->MajorVersion, extp->MinorVersion,
475 extp->MajorVersion, extp->MinorVersion);
476 kfree(extp);
477 kfree(mtd);
478 return NULL;
479 }
480
481 printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
482 extp->MajorVersion, extp->MinorVersion);
483
484 /* Install our own private info structure */
485 cfi->cmdset_priv = extp;
486
487 /* Apply cfi device specific fixups */
488 cfi_fixup(mtd, cfi_fixup_table);
489
490 #ifdef DEBUG_CFI_FEATURES
491 /* Tell the user about it in lots of lovely detail */
492 cfi_tell_features(extp);
493 #endif
494
495 bootloc = extp->TopBottom;
496 if ((bootloc < 2) || (bootloc > 5)) {
497 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
498 "bank location (%d). Assuming bottom.\n",
499 map->name, bootloc);
500 bootloc = 2;
501 }
502
503 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
504 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
505
506 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
507 int j = (cfi->cfiq->NumEraseRegions-1)-i;
508 __u32 swap;
509
510 swap = cfi->cfiq->EraseRegionInfo[i];
511 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
512 cfi->cfiq->EraseRegionInfo[j] = swap;
513 }
514 }
515 /* Set the default CFI lock/unlock addresses */
516 cfi->addr_unlock1 = 0x555;
517 cfi->addr_unlock2 = 0x2aa;
518 }
519 cfi_fixup(mtd, cfi_nopri_fixup_table);
520
521 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
522 kfree(mtd);
523 return NULL;
524 }
525
526 } /* CFI mode */
527 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
528 /* Apply jedec specific fixups */
529 cfi_fixup(mtd, jedec_fixup_table);
530 }
531 /* Apply generic fixups */
532 cfi_fixup(mtd, fixup_table);
533
534 for (i=0; i< cfi->numchips; i++) {
535 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
536 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
537 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
538 cfi->chips[i].ref_point_counter = 0;
539 init_waitqueue_head(&(cfi->chips[i].wq));
540 }
541
542 map->fldrv = &cfi_amdstd_chipdrv;
543
544 return cfi_amdstd_setup(mtd);
545 }
546 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
547 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
548 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
549 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
550 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
551
552 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
553 {
554 struct map_info *map = mtd->priv;
555 struct cfi_private *cfi = map->fldrv_priv;
556 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
557 unsigned long offset = 0;
558 int i,j;
559
560 printk(KERN_NOTICE "number of %s chips: %d\n",
561 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
562 /* Select the correct geometry setup */
563 mtd->size = devsize * cfi->numchips;
564
565 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
566 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
567 * mtd->numeraseregions, GFP_KERNEL);
568 if (!mtd->eraseregions) {
569 printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
570 goto setup_err;
571 }
572
573 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
574 unsigned long ernum, ersize;
575 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
576 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
577
578 if (mtd->erasesize < ersize) {
579 mtd->erasesize = ersize;
580 }
581 for (j=0; j<cfi->numchips; j++) {
582 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
583 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
584 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
585 }
586 offset += (ersize * ernum);
587 }
588 if (offset != devsize) {
589 /* Argh */
590 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
591 goto setup_err;
592 }
593
594 __module_get(THIS_MODULE);
595 register_reboot_notifier(&mtd->reboot_notifier);
596 return mtd;
597
598 setup_err:
599 kfree(mtd->eraseregions);
600 kfree(mtd);
601 kfree(cfi->cmdset_priv);
602 kfree(cfi->cfiq);
603 return NULL;
604 }
605
606 /*
607 * Return true if the chip is ready.
608 *
609 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
610 * non-suspended sector) and is indicated by no toggle bits toggling.
611 *
612 * Note that anything more complicated than checking if no bits are toggling
613 * (including checking DQ5 for an error status) is tricky to get working
614 * correctly and is therefore not done (particularly with interleaved chips
615 * as each chip must be checked independently of the others).
616 */
617 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
618 {
619 map_word d, t;
620
621 d = map_read(map, addr);
622 t = map_read(map, addr);
623
624 return map_word_equal(map, d, t);
625 }
626
627 /*
628 * Return true if the chip is ready and has the correct value.
629 *
630 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
631 * non-suspended sector) and it is indicated by no bits toggling.
632 *
633 * Error are indicated by toggling bits or bits held with the wrong value,
634 * or with bits toggling.
635 *
636 * Note that anything more complicated than checking if no bits are toggling
637 * (including checking DQ5 for an error status) is tricky to get working
638 * correctly and is therefore not done (particularly with interleaved chips
639 * as each chip must be checked independently of the others).
640 *
641 */
642 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
643 {
644 map_word oldd, curd;
645
646 oldd = map_read(map, addr);
647 curd = map_read(map, addr);
648
649 return map_word_equal(map, oldd, curd) &&
650 map_word_equal(map, curd, expected);
651 }
652
653 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
654 {
655 DECLARE_WAITQUEUE(wait, current);
656 struct cfi_private *cfi = map->fldrv_priv;
657 unsigned long timeo;
658 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
659
660 resettime:
661 timeo = jiffies + HZ;
662 retry:
663 switch (chip->state) {
664
665 case FL_STATUS:
666 for (;;) {
667 if (chip_ready(map, adr))
668 break;
669
670 if (time_after(jiffies, timeo)) {
671 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
672 return -EIO;
673 }
674 mutex_unlock(&chip->mutex);
675 cfi_udelay(1);
676 mutex_lock(&chip->mutex);
677 /* Someone else might have been playing with it. */
678 goto retry;
679 }
680
681 case FL_READY:
682 case FL_CFI_QUERY:
683 case FL_JEDEC_QUERY:
684 return 0;
685
686 case FL_ERASING:
687 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
688 !(mode == FL_READY || mode == FL_POINT ||
689 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
690 goto sleep;
691
692 /* We could check to see if we're trying to access the sector
693 * that is currently being erased. However, no user will try
694 * anything like that so we just wait for the timeout. */
695
696 /* Erase suspend */
697 /* It's harmless to issue the Erase-Suspend and Erase-Resume
698 * commands when the erase algorithm isn't in progress. */
699 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
700 chip->oldstate = FL_ERASING;
701 chip->state = FL_ERASE_SUSPENDING;
702 chip->erase_suspended = 1;
703 for (;;) {
704 if (chip_ready(map, adr))
705 break;
706
707 if (time_after(jiffies, timeo)) {
708 /* Should have suspended the erase by now.
709 * Send an Erase-Resume command as either
710 * there was an error (so leave the erase
711 * routine to recover from it) or we trying to
712 * use the erase-in-progress sector. */
713 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
714 chip->state = FL_ERASING;
715 chip->oldstate = FL_READY;
716 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
717 return -EIO;
718 }
719
720 mutex_unlock(&chip->mutex);
721 cfi_udelay(1);
722 mutex_lock(&chip->mutex);
723 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
724 So we can just loop here. */
725 }
726 chip->state = FL_READY;
727 return 0;
728
729 case FL_XIP_WHILE_ERASING:
730 if (mode != FL_READY && mode != FL_POINT &&
731 (!cfip || !(cfip->EraseSuspend&2)))
732 goto sleep;
733 chip->oldstate = chip->state;
734 chip->state = FL_READY;
735 return 0;
736
737 case FL_SHUTDOWN:
738 /* The machine is rebooting */
739 return -EIO;
740
741 case FL_POINT:
742 /* Only if there's no operation suspended... */
743 if (mode == FL_READY && chip->oldstate == FL_READY)
744 return 0;
745
746 default:
747 sleep:
748 set_current_state(TASK_UNINTERRUPTIBLE);
749 add_wait_queue(&chip->wq, &wait);
750 mutex_unlock(&chip->mutex);
751 schedule();
752 remove_wait_queue(&chip->wq, &wait);
753 mutex_lock(&chip->mutex);
754 goto resettime;
755 }
756 }
757
758
759 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
760 {
761 struct cfi_private *cfi = map->fldrv_priv;
762
763 switch(chip->oldstate) {
764 case FL_ERASING:
765 chip->state = chip->oldstate;
766 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
767 chip->oldstate = FL_READY;
768 chip->state = FL_ERASING;
769 break;
770
771 case FL_XIP_WHILE_ERASING:
772 chip->state = chip->oldstate;
773 chip->oldstate = FL_READY;
774 break;
775
776 case FL_READY:
777 case FL_STATUS:
778 /* We should really make set_vpp() count, rather than doing this */
779 DISABLE_VPP(map);
780 break;
781 default:
782 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
783 }
784 wake_up(&chip->wq);
785 }
786
787 #ifdef CONFIG_MTD_XIP
788
789 /*
790 * No interrupt what so ever can be serviced while the flash isn't in array
791 * mode. This is ensured by the xip_disable() and xip_enable() functions
792 * enclosing any code path where the flash is known not to be in array mode.
793 * And within a XIP disabled code path, only functions marked with __xipram
794 * may be called and nothing else (it's a good thing to inspect generated
795 * assembly to make sure inline functions were actually inlined and that gcc
796 * didn't emit calls to its own support functions). Also configuring MTD CFI
797 * support to a single buswidth and a single interleave is also recommended.
798 */
799
800 static void xip_disable(struct map_info *map, struct flchip *chip,
801 unsigned long adr)
802 {
803 /* TODO: chips with no XIP use should ignore and return */
804 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
805 local_irq_disable();
806 }
807
808 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
809 unsigned long adr)
810 {
811 struct cfi_private *cfi = map->fldrv_priv;
812
813 if (chip->state != FL_POINT && chip->state != FL_READY) {
814 map_write(map, CMD(0xf0), adr);
815 chip->state = FL_READY;
816 }
817 (void) map_read(map, adr);
818 xip_iprefetch();
819 local_irq_enable();
820 }
821
822 /*
823 * When a delay is required for the flash operation to complete, the
824 * xip_udelay() function is polling for both the given timeout and pending
825 * (but still masked) hardware interrupts. Whenever there is an interrupt
826 * pending then the flash erase operation is suspended, array mode restored
827 * and interrupts unmasked. Task scheduling might also happen at that
828 * point. The CPU eventually returns from the interrupt or the call to
829 * schedule() and the suspended flash operation is resumed for the remaining
830 * of the delay period.
831 *
832 * Warning: this function _will_ fool interrupt latency tracing tools.
833 */
834
835 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
836 unsigned long adr, int usec)
837 {
838 struct cfi_private *cfi = map->fldrv_priv;
839 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
840 map_word status, OK = CMD(0x80);
841 unsigned long suspended, start = xip_currtime();
842 flstate_t oldstate;
843
844 do {
845 cpu_relax();
846 if (xip_irqpending() && extp &&
847 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
848 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
849 /*
850 * Let's suspend the erase operation when supported.
851 * Note that we currently don't try to suspend
852 * interleaved chips if there is already another
853 * operation suspended (imagine what happens
854 * when one chip was already done with the current
855 * operation while another chip suspended it, then
856 * we resume the whole thing at once). Yes, it
857 * can happen!
858 */
859 map_write(map, CMD(0xb0), adr);
860 usec -= xip_elapsed_since(start);
861 suspended = xip_currtime();
862 do {
863 if (xip_elapsed_since(suspended) > 100000) {
864 /*
865 * The chip doesn't want to suspend
866 * after waiting for 100 msecs.
867 * This is a critical error but there
868 * is not much we can do here.
869 */
870 return;
871 }
872 status = map_read(map, adr);
873 } while (!map_word_andequal(map, status, OK, OK));
874
875 /* Suspend succeeded */
876 oldstate = chip->state;
877 if (!map_word_bitsset(map, status, CMD(0x40)))
878 break;
879 chip->state = FL_XIP_WHILE_ERASING;
880 chip->erase_suspended = 1;
881 map_write(map, CMD(0xf0), adr);
882 (void) map_read(map, adr);
883 xip_iprefetch();
884 local_irq_enable();
885 mutex_unlock(&chip->mutex);
886 xip_iprefetch();
887 cond_resched();
888
889 /*
890 * We're back. However someone else might have
891 * decided to go write to the chip if we are in
892 * a suspended erase state. If so let's wait
893 * until it's done.
894 */
895 mutex_lock(&chip->mutex);
896 while (chip->state != FL_XIP_WHILE_ERASING) {
897 DECLARE_WAITQUEUE(wait, current);
898 set_current_state(TASK_UNINTERRUPTIBLE);
899 add_wait_queue(&chip->wq, &wait);
900 mutex_unlock(&chip->mutex);
901 schedule();
902 remove_wait_queue(&chip->wq, &wait);
903 mutex_lock(&chip->mutex);
904 }
905 /* Disallow XIP again */
906 local_irq_disable();
907
908 /* Resume the write or erase operation */
909 map_write(map, cfi->sector_erase_cmd, adr);
910 chip->state = oldstate;
911 start = xip_currtime();
912 } else if (usec >= 1000000/HZ) {
913 /*
914 * Try to save on CPU power when waiting delay
915 * is at least a system timer tick period.
916 * No need to be extremely accurate here.
917 */
918 xip_cpu_idle();
919 }
920 status = map_read(map, adr);
921 } while (!map_word_andequal(map, status, OK, OK)
922 && xip_elapsed_since(start) < usec);
923 }
924
925 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
926
927 /*
928 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
929 * the flash is actively programming or erasing since we have to poll for
930 * the operation to complete anyway. We can't do that in a generic way with
931 * a XIP setup so do it before the actual flash operation in this case
932 * and stub it out from INVALIDATE_CACHE_UDELAY.
933 */
934 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
935 INVALIDATE_CACHED_RANGE(map, from, size)
936
937 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
938 UDELAY(map, chip, adr, usec)
939
940 /*
941 * Extra notes:
942 *
943 * Activating this XIP support changes the way the code works a bit. For
944 * example the code to suspend the current process when concurrent access
945 * happens is never executed because xip_udelay() will always return with the
946 * same chip state as it was entered with. This is why there is no care for
947 * the presence of add_wait_queue() or schedule() calls from within a couple
948 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
949 * The queueing and scheduling are always happening within xip_udelay().
950 *
951 * Similarly, get_chip() and put_chip() just happen to always be executed
952 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
953 * is in array mode, therefore never executing many cases therein and not
954 * causing any problem with XIP.
955 */
956
957 #else
958
959 #define xip_disable(map, chip, adr)
960 #define xip_enable(map, chip, adr)
961 #define XIP_INVAL_CACHED_RANGE(x...)
962
963 #define UDELAY(map, chip, adr, usec) \
964 do { \
965 mutex_unlock(&chip->mutex); \
966 cfi_udelay(usec); \
967 mutex_lock(&chip->mutex); \
968 } while (0)
969
970 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
971 do { \
972 mutex_unlock(&chip->mutex); \
973 INVALIDATE_CACHED_RANGE(map, adr, len); \
974 cfi_udelay(usec); \
975 mutex_lock(&chip->mutex); \
976 } while (0)
977
978 #endif
979
980 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
981 {
982 unsigned long cmd_addr;
983 struct cfi_private *cfi = map->fldrv_priv;
984 int ret;
985
986 adr += chip->start;
987
988 /* Ensure cmd read/writes are aligned. */
989 cmd_addr = adr & ~(map_bankwidth(map)-1);
990
991 mutex_lock(&chip->mutex);
992 ret = get_chip(map, chip, cmd_addr, FL_READY);
993 if (ret) {
994 mutex_unlock(&chip->mutex);
995 return ret;
996 }
997
998 if (chip->state != FL_POINT && chip->state != FL_READY) {
999 map_write(map, CMD(0xf0), cmd_addr);
1000 chip->state = FL_READY;
1001 }
1002
1003 map_copy_from(map, buf, adr, len);
1004
1005 put_chip(map, chip, cmd_addr);
1006
1007 mutex_unlock(&chip->mutex);
1008 return 0;
1009 }
1010
1011
1012 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1013 {
1014 struct map_info *map = mtd->priv;
1015 struct cfi_private *cfi = map->fldrv_priv;
1016 unsigned long ofs;
1017 int chipnum;
1018 int ret = 0;
1019
1020 /* ofs: offset within the first chip that the first read should start */
1021
1022 chipnum = (from >> cfi->chipshift);
1023 ofs = from - (chipnum << cfi->chipshift);
1024
1025
1026 *retlen = 0;
1027
1028 while (len) {
1029 unsigned long thislen;
1030
1031 if (chipnum >= cfi->numchips)
1032 break;
1033
1034 if ((len + ofs -1) >> cfi->chipshift)
1035 thislen = (1<<cfi->chipshift) - ofs;
1036 else
1037 thislen = len;
1038
1039 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1040 if (ret)
1041 break;
1042
1043 *retlen += thislen;
1044 len -= thislen;
1045 buf += thislen;
1046
1047 ofs = 0;
1048 chipnum++;
1049 }
1050 return ret;
1051 }
1052
1053
1054 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1055 {
1056 DECLARE_WAITQUEUE(wait, current);
1057 unsigned long timeo = jiffies + HZ;
1058 struct cfi_private *cfi = map->fldrv_priv;
1059
1060 retry:
1061 mutex_lock(&chip->mutex);
1062
1063 if (chip->state != FL_READY){
1064 set_current_state(TASK_UNINTERRUPTIBLE);
1065 add_wait_queue(&chip->wq, &wait);
1066
1067 mutex_unlock(&chip->mutex);
1068
1069 schedule();
1070 remove_wait_queue(&chip->wq, &wait);
1071 timeo = jiffies + HZ;
1072
1073 goto retry;
1074 }
1075
1076 adr += chip->start;
1077
1078 chip->state = FL_READY;
1079
1080 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1081 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1082 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1083
1084 map_copy_from(map, buf, adr, len);
1085
1086 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1087 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1088 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1089 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1090
1091 wake_up(&chip->wq);
1092 mutex_unlock(&chip->mutex);
1093
1094 return 0;
1095 }
1096
1097 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1098 {
1099 struct map_info *map = mtd->priv;
1100 struct cfi_private *cfi = map->fldrv_priv;
1101 unsigned long ofs;
1102 int chipnum;
1103 int ret = 0;
1104
1105
1106 /* ofs: offset within the first chip that the first read should start */
1107
1108 /* 8 secsi bytes per chip */
1109 chipnum=from>>3;
1110 ofs=from & 7;
1111
1112
1113 *retlen = 0;
1114
1115 while (len) {
1116 unsigned long thislen;
1117
1118 if (chipnum >= cfi->numchips)
1119 break;
1120
1121 if ((len + ofs -1) >> 3)
1122 thislen = (1<<3) - ofs;
1123 else
1124 thislen = len;
1125
1126 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1127 if (ret)
1128 break;
1129
1130 *retlen += thislen;
1131 len -= thislen;
1132 buf += thislen;
1133
1134 ofs = 0;
1135 chipnum++;
1136 }
1137 return ret;
1138 }
1139
1140
1141 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1142 {
1143 struct cfi_private *cfi = map->fldrv_priv;
1144 unsigned long timeo = jiffies + HZ;
1145 /*
1146 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1147 * have a max write time of a few hundreds usec). However, we should
1148 * use the maximum timeout value given by the chip at probe time
1149 * instead. Unfortunately, struct flchip does have a field for
1150 * maximum timeout, only for typical which can be far too short
1151 * depending of the conditions. The ' + 1' is to avoid having a
1152 * timeout of 0 jiffies if HZ is smaller than 1000.
1153 */
1154 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1155 int ret = 0;
1156 map_word oldd;
1157 int retry_cnt = 0;
1158
1159 adr += chip->start;
1160
1161 mutex_lock(&chip->mutex);
1162 ret = get_chip(map, chip, adr, FL_WRITING);
1163 if (ret) {
1164 mutex_unlock(&chip->mutex);
1165 return ret;
1166 }
1167
1168 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1169 __func__, adr, datum.x[0] );
1170
1171 /*
1172 * Check for a NOP for the case when the datum to write is already
1173 * present - it saves time and works around buggy chips that corrupt
1174 * data at other locations when 0xff is written to a location that
1175 * already contains 0xff.
1176 */
1177 oldd = map_read(map, adr);
1178 if (map_word_equal(map, oldd, datum)) {
1179 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1180 __func__);
1181 goto op_done;
1182 }
1183
1184 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1185 ENABLE_VPP(map);
1186 xip_disable(map, chip, adr);
1187 retry:
1188 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1189 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1190 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1191 map_write(map, datum, adr);
1192 chip->state = FL_WRITING;
1193
1194 INVALIDATE_CACHE_UDELAY(map, chip,
1195 adr, map_bankwidth(map),
1196 chip->word_write_time);
1197
1198 /* See comment above for timeout value. */
1199 timeo = jiffies + uWriteTimeout;
1200 for (;;) {
1201 if (chip->state != FL_WRITING) {
1202 /* Someone's suspended the write. Sleep */
1203 DECLARE_WAITQUEUE(wait, current);
1204
1205 set_current_state(TASK_UNINTERRUPTIBLE);
1206 add_wait_queue(&chip->wq, &wait);
1207 mutex_unlock(&chip->mutex);
1208 schedule();
1209 remove_wait_queue(&chip->wq, &wait);
1210 timeo = jiffies + (HZ / 2); /* FIXME */
1211 mutex_lock(&chip->mutex);
1212 continue;
1213 }
1214
1215 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1216 xip_enable(map, chip, adr);
1217 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1218 xip_disable(map, chip, adr);
1219 break;
1220 }
1221
1222 if (chip_ready(map, adr))
1223 break;
1224
1225 /* Latency issues. Drop the lock, wait a while and retry */
1226 UDELAY(map, chip, adr, 1);
1227 }
1228 /* Did we succeed? */
1229 if (!chip_good(map, adr, datum)) {
1230 /* reset on all failures. */
1231 map_write( map, CMD(0xF0), chip->start );
1232 /* FIXME - should have reset delay before continuing */
1233
1234 if (++retry_cnt <= MAX_WORD_RETRIES)
1235 goto retry;
1236
1237 ret = -EIO;
1238 }
1239 xip_enable(map, chip, adr);
1240 op_done:
1241 chip->state = FL_READY;
1242 put_chip(map, chip, adr);
1243 mutex_unlock(&chip->mutex);
1244
1245 return ret;
1246 }
1247
1248
1249 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1250 size_t *retlen, const u_char *buf)
1251 {
1252 struct map_info *map = mtd->priv;
1253 struct cfi_private *cfi = map->fldrv_priv;
1254 int ret = 0;
1255 int chipnum;
1256 unsigned long ofs, chipstart;
1257 DECLARE_WAITQUEUE(wait, current);
1258
1259 *retlen = 0;
1260 if (!len)
1261 return 0;
1262
1263 chipnum = to >> cfi->chipshift;
1264 ofs = to - (chipnum << cfi->chipshift);
1265 chipstart = cfi->chips[chipnum].start;
1266
1267 /* If it's not bus-aligned, do the first byte write */
1268 if (ofs & (map_bankwidth(map)-1)) {
1269 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1270 int i = ofs - bus_ofs;
1271 int n = 0;
1272 map_word tmp_buf;
1273
1274 retry:
1275 mutex_lock(&cfi->chips[chipnum].mutex);
1276
1277 if (cfi->chips[chipnum].state != FL_READY) {
1278 set_current_state(TASK_UNINTERRUPTIBLE);
1279 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1280
1281 mutex_unlock(&cfi->chips[chipnum].mutex);
1282
1283 schedule();
1284 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1285 goto retry;
1286 }
1287
1288 /* Load 'tmp_buf' with old contents of flash */
1289 tmp_buf = map_read(map, bus_ofs+chipstart);
1290
1291 mutex_unlock(&cfi->chips[chipnum].mutex);
1292
1293 /* Number of bytes to copy from buffer */
1294 n = min_t(int, len, map_bankwidth(map)-i);
1295
1296 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1297
1298 ret = do_write_oneword(map, &cfi->chips[chipnum],
1299 bus_ofs, tmp_buf);
1300 if (ret)
1301 return ret;
1302
1303 ofs += n;
1304 buf += n;
1305 (*retlen) += n;
1306 len -= n;
1307
1308 if (ofs >> cfi->chipshift) {
1309 chipnum ++;
1310 ofs = 0;
1311 if (chipnum == cfi->numchips)
1312 return 0;
1313 }
1314 }
1315
1316 /* We are now aligned, write as much as possible */
1317 while(len >= map_bankwidth(map)) {
1318 map_word datum;
1319
1320 datum = map_word_load(map, buf);
1321
1322 ret = do_write_oneword(map, &cfi->chips[chipnum],
1323 ofs, datum);
1324 if (ret)
1325 return ret;
1326
1327 ofs += map_bankwidth(map);
1328 buf += map_bankwidth(map);
1329 (*retlen) += map_bankwidth(map);
1330 len -= map_bankwidth(map);
1331
1332 if (ofs >> cfi->chipshift) {
1333 chipnum ++;
1334 ofs = 0;
1335 if (chipnum == cfi->numchips)
1336 return 0;
1337 chipstart = cfi->chips[chipnum].start;
1338 }
1339 }
1340
1341 /* Write the trailing bytes if any */
1342 if (len & (map_bankwidth(map)-1)) {
1343 map_word tmp_buf;
1344
1345 retry1:
1346 mutex_lock(&cfi->chips[chipnum].mutex);
1347
1348 if (cfi->chips[chipnum].state != FL_READY) {
1349 set_current_state(TASK_UNINTERRUPTIBLE);
1350 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1351
1352 mutex_unlock(&cfi->chips[chipnum].mutex);
1353
1354 schedule();
1355 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1356 goto retry1;
1357 }
1358
1359 tmp_buf = map_read(map, ofs + chipstart);
1360
1361 mutex_unlock(&cfi->chips[chipnum].mutex);
1362
1363 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1364
1365 ret = do_write_oneword(map, &cfi->chips[chipnum],
1366 ofs, tmp_buf);
1367 if (ret)
1368 return ret;
1369
1370 (*retlen) += len;
1371 }
1372
1373 return 0;
1374 }
1375
1376
1377 /*
1378 * FIXME: interleaved mode not tested, and probably not supported!
1379 */
1380 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1381 unsigned long adr, const u_char *buf,
1382 int len)
1383 {
1384 struct cfi_private *cfi = map->fldrv_priv;
1385 unsigned long timeo = jiffies + HZ;
1386 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1387 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1388 int ret = -EIO;
1389 unsigned long cmd_adr;
1390 int z, words;
1391 map_word datum;
1392
1393 adr += chip->start;
1394 cmd_adr = adr;
1395
1396 mutex_lock(&chip->mutex);
1397 ret = get_chip(map, chip, adr, FL_WRITING);
1398 if (ret) {
1399 mutex_unlock(&chip->mutex);
1400 return ret;
1401 }
1402
1403 datum = map_word_load(map, buf);
1404
1405 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1406 __func__, adr, datum.x[0] );
1407
1408 XIP_INVAL_CACHED_RANGE(map, adr, len);
1409 ENABLE_VPP(map);
1410 xip_disable(map, chip, cmd_adr);
1411
1412 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1413 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1414
1415 /* Write Buffer Load */
1416 map_write(map, CMD(0x25), cmd_adr);
1417
1418 chip->state = FL_WRITING_TO_BUFFER;
1419
1420 /* Write length of data to come */
1421 words = len / map_bankwidth(map);
1422 map_write(map, CMD(words - 1), cmd_adr);
1423 /* Write data */
1424 z = 0;
1425 while(z < words * map_bankwidth(map)) {
1426 datum = map_word_load(map, buf);
1427 map_write(map, datum, adr + z);
1428
1429 z += map_bankwidth(map);
1430 buf += map_bankwidth(map);
1431 }
1432 z -= map_bankwidth(map);
1433
1434 adr += z;
1435
1436 /* Write Buffer Program Confirm: GO GO GO */
1437 map_write(map, CMD(0x29), cmd_adr);
1438 chip->state = FL_WRITING;
1439
1440 INVALIDATE_CACHE_UDELAY(map, chip,
1441 adr, map_bankwidth(map),
1442 chip->word_write_time);
1443
1444 timeo = jiffies + uWriteTimeout;
1445
1446 for (;;) {
1447 if (chip->state != FL_WRITING) {
1448 /* Someone's suspended the write. Sleep */
1449 DECLARE_WAITQUEUE(wait, current);
1450
1451 set_current_state(TASK_UNINTERRUPTIBLE);
1452 add_wait_queue(&chip->wq, &wait);
1453 mutex_unlock(&chip->mutex);
1454 schedule();
1455 remove_wait_queue(&chip->wq, &wait);
1456 timeo = jiffies + (HZ / 2); /* FIXME */
1457 mutex_lock(&chip->mutex);
1458 continue;
1459 }
1460
1461 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1462 break;
1463
1464 if (chip_ready(map, adr)) {
1465 xip_enable(map, chip, adr);
1466 goto op_done;
1467 }
1468
1469 /* Latency issues. Drop the lock, wait a while and retry */
1470 UDELAY(map, chip, adr, 1);
1471 }
1472
1473 /* reset on all failures. */
1474 map_write( map, CMD(0xF0), chip->start );
1475 xip_enable(map, chip, adr);
1476 /* FIXME - should have reset delay before continuing */
1477
1478 printk(KERN_WARNING "MTD %s(): software timeout\n",
1479 __func__ );
1480
1481 ret = -EIO;
1482 op_done:
1483 chip->state = FL_READY;
1484 put_chip(map, chip, adr);
1485 mutex_unlock(&chip->mutex);
1486
1487 return ret;
1488 }
1489
1490
1491 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1492 size_t *retlen, const u_char *buf)
1493 {
1494 struct map_info *map = mtd->priv;
1495 struct cfi_private *cfi = map->fldrv_priv;
1496 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1497 int ret = 0;
1498 int chipnum;
1499 unsigned long ofs;
1500
1501 *retlen = 0;
1502 if (!len)
1503 return 0;
1504
1505 chipnum = to >> cfi->chipshift;
1506 ofs = to - (chipnum << cfi->chipshift);
1507
1508 /* If it's not bus-aligned, do the first word write */
1509 if (ofs & (map_bankwidth(map)-1)) {
1510 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1511 if (local_len > len)
1512 local_len = len;
1513 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1514 local_len, retlen, buf);
1515 if (ret)
1516 return ret;
1517 ofs += local_len;
1518 buf += local_len;
1519 len -= local_len;
1520
1521 if (ofs >> cfi->chipshift) {
1522 chipnum ++;
1523 ofs = 0;
1524 if (chipnum == cfi->numchips)
1525 return 0;
1526 }
1527 }
1528
1529 /* Write buffer is worth it only if more than one word to write... */
1530 while (len >= map_bankwidth(map) * 2) {
1531 /* We must not cross write block boundaries */
1532 int size = wbufsize - (ofs & (wbufsize-1));
1533
1534 if (size > len)
1535 size = len;
1536 if (size % map_bankwidth(map))
1537 size -= size % map_bankwidth(map);
1538
1539 ret = do_write_buffer(map, &cfi->chips[chipnum],
1540 ofs, buf, size);
1541 if (ret)
1542 return ret;
1543
1544 ofs += size;
1545 buf += size;
1546 (*retlen) += size;
1547 len -= size;
1548
1549 if (ofs >> cfi->chipshift) {
1550 chipnum ++;
1551 ofs = 0;
1552 if (chipnum == cfi->numchips)
1553 return 0;
1554 }
1555 }
1556
1557 if (len) {
1558 size_t retlen_dregs = 0;
1559
1560 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1561 len, &retlen_dregs, buf);
1562
1563 *retlen += retlen_dregs;
1564 return ret;
1565 }
1566
1567 return 0;
1568 }
1569
1570
1571 /*
1572 * Handle devices with one erase region, that only implement
1573 * the chip erase command.
1574 */
1575 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1576 {
1577 struct cfi_private *cfi = map->fldrv_priv;
1578 unsigned long timeo = jiffies + HZ;
1579 unsigned long int adr;
1580 DECLARE_WAITQUEUE(wait, current);
1581 int ret = 0;
1582
1583 adr = cfi->addr_unlock1;
1584
1585 mutex_lock(&chip->mutex);
1586 ret = get_chip(map, chip, adr, FL_WRITING);
1587 if (ret) {
1588 mutex_unlock(&chip->mutex);
1589 return ret;
1590 }
1591
1592 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1593 __func__, chip->start );
1594
1595 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1596 ENABLE_VPP(map);
1597 xip_disable(map, chip, adr);
1598
1599 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1600 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1601 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1602 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1603 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1604 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1605
1606 chip->state = FL_ERASING;
1607 chip->erase_suspended = 0;
1608 chip->in_progress_block_addr = adr;
1609
1610 INVALIDATE_CACHE_UDELAY(map, chip,
1611 adr, map->size,
1612 chip->erase_time*500);
1613
1614 timeo = jiffies + (HZ*20);
1615
1616 for (;;) {
1617 if (chip->state != FL_ERASING) {
1618 /* Someone's suspended the erase. Sleep */
1619 set_current_state(TASK_UNINTERRUPTIBLE);
1620 add_wait_queue(&chip->wq, &wait);
1621 mutex_unlock(&chip->mutex);
1622 schedule();
1623 remove_wait_queue(&chip->wq, &wait);
1624 mutex_lock(&chip->mutex);
1625 continue;
1626 }
1627 if (chip->erase_suspended) {
1628 /* This erase was suspended and resumed.
1629 Adjust the timeout */
1630 timeo = jiffies + (HZ*20); /* FIXME */
1631 chip->erase_suspended = 0;
1632 }
1633
1634 if (chip_ready(map, adr))
1635 break;
1636
1637 if (time_after(jiffies, timeo)) {
1638 printk(KERN_WARNING "MTD %s(): software timeout\n",
1639 __func__ );
1640 break;
1641 }
1642
1643 /* Latency issues. Drop the lock, wait a while and retry */
1644 UDELAY(map, chip, adr, 1000000/HZ);
1645 }
1646 /* Did we succeed? */
1647 if (!chip_good(map, adr, map_word_ff(map))) {
1648 /* reset on all failures. */
1649 map_write( map, CMD(0xF0), chip->start );
1650 /* FIXME - should have reset delay before continuing */
1651
1652 ret = -EIO;
1653 }
1654
1655 chip->state = FL_READY;
1656 xip_enable(map, chip, adr);
1657 put_chip(map, chip, adr);
1658 mutex_unlock(&chip->mutex);
1659
1660 return ret;
1661 }
1662
1663
1664 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1665 {
1666 struct cfi_private *cfi = map->fldrv_priv;
1667 unsigned long timeo = jiffies + HZ;
1668 DECLARE_WAITQUEUE(wait, current);
1669 int ret = 0;
1670
1671 adr += chip->start;
1672
1673 mutex_lock(&chip->mutex);
1674 ret = get_chip(map, chip, adr, FL_ERASING);
1675 if (ret) {
1676 mutex_unlock(&chip->mutex);
1677 return ret;
1678 }
1679
1680 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1681 __func__, adr );
1682
1683 XIP_INVAL_CACHED_RANGE(map, adr, len);
1684 ENABLE_VPP(map);
1685 xip_disable(map, chip, adr);
1686
1687 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1688 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1689 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1690 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1691 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1692 map_write(map, cfi->sector_erase_cmd, adr);
1693
1694 chip->state = FL_ERASING;
1695 chip->erase_suspended = 0;
1696 chip->in_progress_block_addr = adr;
1697
1698 INVALIDATE_CACHE_UDELAY(map, chip,
1699 adr, len,
1700 chip->erase_time*500);
1701
1702 timeo = jiffies + (HZ*20);
1703
1704 for (;;) {
1705 if (chip->state != FL_ERASING) {
1706 /* Someone's suspended the erase. Sleep */
1707 set_current_state(TASK_UNINTERRUPTIBLE);
1708 add_wait_queue(&chip->wq, &wait);
1709 mutex_unlock(&chip->mutex);
1710 schedule();
1711 remove_wait_queue(&chip->wq, &wait);
1712 mutex_lock(&chip->mutex);
1713 continue;
1714 }
1715 if (chip->erase_suspended) {
1716 /* This erase was suspended and resumed.
1717 Adjust the timeout */
1718 timeo = jiffies + (HZ*20); /* FIXME */
1719 chip->erase_suspended = 0;
1720 }
1721
1722 if (chip_ready(map, adr)) {
1723 xip_enable(map, chip, adr);
1724 break;
1725 }
1726
1727 if (time_after(jiffies, timeo)) {
1728 xip_enable(map, chip, adr);
1729 printk(KERN_WARNING "MTD %s(): software timeout\n",
1730 __func__ );
1731 break;
1732 }
1733
1734 /* Latency issues. Drop the lock, wait a while and retry */
1735 UDELAY(map, chip, adr, 1000000/HZ);
1736 }
1737 /* Did we succeed? */
1738 if (!chip_good(map, adr, map_word_ff(map))) {
1739 /* reset on all failures. */
1740 map_write( map, CMD(0xF0), chip->start );
1741 /* FIXME - should have reset delay before continuing */
1742
1743 ret = -EIO;
1744 }
1745
1746 chip->state = FL_READY;
1747 put_chip(map, chip, adr);
1748 mutex_unlock(&chip->mutex);
1749 return ret;
1750 }
1751
1752
1753 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1754 {
1755 unsigned long ofs, len;
1756 int ret;
1757
1758 ofs = instr->addr;
1759 len = instr->len;
1760
1761 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1762 if (ret)
1763 return ret;
1764
1765 instr->state = MTD_ERASE_DONE;
1766 mtd_erase_callback(instr);
1767
1768 return 0;
1769 }
1770
1771
1772 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1773 {
1774 struct map_info *map = mtd->priv;
1775 struct cfi_private *cfi = map->fldrv_priv;
1776 int ret = 0;
1777
1778 if (instr->addr != 0)
1779 return -EINVAL;
1780
1781 if (instr->len != mtd->size)
1782 return -EINVAL;
1783
1784 ret = do_erase_chip(map, &cfi->chips[0]);
1785 if (ret)
1786 return ret;
1787
1788 instr->state = MTD_ERASE_DONE;
1789 mtd_erase_callback(instr);
1790
1791 return 0;
1792 }
1793
1794 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1795 unsigned long adr, int len, void *thunk)
1796 {
1797 struct cfi_private *cfi = map->fldrv_priv;
1798 int ret;
1799
1800 mutex_lock(&chip->mutex);
1801 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1802 if (ret)
1803 goto out_unlock;
1804 chip->state = FL_LOCKING;
1805
1806 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1807 __func__, adr, len);
1808
1809 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1810 cfi->device_type, NULL);
1811 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1812 cfi->device_type, NULL);
1813 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1814 cfi->device_type, NULL);
1815 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1816 cfi->device_type, NULL);
1817 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1818 cfi->device_type, NULL);
1819 map_write(map, CMD(0x40), chip->start + adr);
1820
1821 chip->state = FL_READY;
1822 put_chip(map, chip, adr + chip->start);
1823 ret = 0;
1824
1825 out_unlock:
1826 mutex_unlock(&chip->mutex);
1827 return ret;
1828 }
1829
1830 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1831 unsigned long adr, int len, void *thunk)
1832 {
1833 struct cfi_private *cfi = map->fldrv_priv;
1834 int ret;
1835
1836 mutex_lock(&chip->mutex);
1837 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1838 if (ret)
1839 goto out_unlock;
1840 chip->state = FL_UNLOCKING;
1841
1842 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1843 __func__, adr, len);
1844
1845 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1846 cfi->device_type, NULL);
1847 map_write(map, CMD(0x70), adr);
1848
1849 chip->state = FL_READY;
1850 put_chip(map, chip, adr + chip->start);
1851 ret = 0;
1852
1853 out_unlock:
1854 mutex_unlock(&chip->mutex);
1855 return ret;
1856 }
1857
1858 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1859 {
1860 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1861 }
1862
1863 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1864 {
1865 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1866 }
1867
1868
1869 static void cfi_amdstd_sync (struct mtd_info *mtd)
1870 {
1871 struct map_info *map = mtd->priv;
1872 struct cfi_private *cfi = map->fldrv_priv;
1873 int i;
1874 struct flchip *chip;
1875 int ret = 0;
1876 DECLARE_WAITQUEUE(wait, current);
1877
1878 for (i=0; !ret && i<cfi->numchips; i++) {
1879 chip = &cfi->chips[i];
1880
1881 retry:
1882 mutex_lock(&chip->mutex);
1883
1884 switch(chip->state) {
1885 case FL_READY:
1886 case FL_STATUS:
1887 case FL_CFI_QUERY:
1888 case FL_JEDEC_QUERY:
1889 chip->oldstate = chip->state;
1890 chip->state = FL_SYNCING;
1891 /* No need to wake_up() on this state change -
1892 * as the whole point is that nobody can do anything
1893 * with the chip now anyway.
1894 */
1895 case FL_SYNCING:
1896 mutex_unlock(&chip->mutex);
1897 break;
1898
1899 default:
1900 /* Not an idle state */
1901 set_current_state(TASK_UNINTERRUPTIBLE);
1902 add_wait_queue(&chip->wq, &wait);
1903
1904 mutex_unlock(&chip->mutex);
1905
1906 schedule();
1907
1908 remove_wait_queue(&chip->wq, &wait);
1909
1910 goto retry;
1911 }
1912 }
1913
1914 /* Unlock the chips again */
1915
1916 for (i--; i >=0; i--) {
1917 chip = &cfi->chips[i];
1918
1919 mutex_lock(&chip->mutex);
1920
1921 if (chip->state == FL_SYNCING) {
1922 chip->state = chip->oldstate;
1923 wake_up(&chip->wq);
1924 }
1925 mutex_unlock(&chip->mutex);
1926 }
1927 }
1928
1929
1930 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1931 {
1932 struct map_info *map = mtd->priv;
1933 struct cfi_private *cfi = map->fldrv_priv;
1934 int i;
1935 struct flchip *chip;
1936 int ret = 0;
1937
1938 for (i=0; !ret && i<cfi->numchips; i++) {
1939 chip = &cfi->chips[i];
1940
1941 mutex_lock(&chip->mutex);
1942
1943 switch(chip->state) {
1944 case FL_READY:
1945 case FL_STATUS:
1946 case FL_CFI_QUERY:
1947 case FL_JEDEC_QUERY:
1948 chip->oldstate = chip->state;
1949 chip->state = FL_PM_SUSPENDED;
1950 /* No need to wake_up() on this state change -
1951 * as the whole point is that nobody can do anything
1952 * with the chip now anyway.
1953 */
1954 case FL_PM_SUSPENDED:
1955 break;
1956
1957 default:
1958 ret = -EAGAIN;
1959 break;
1960 }
1961 mutex_unlock(&chip->mutex);
1962 }
1963
1964 /* Unlock the chips again */
1965
1966 if (ret) {
1967 for (i--; i >=0; i--) {
1968 chip = &cfi->chips[i];
1969
1970 mutex_lock(&chip->mutex);
1971
1972 if (chip->state == FL_PM_SUSPENDED) {
1973 chip->state = chip->oldstate;
1974 wake_up(&chip->wq);
1975 }
1976 mutex_unlock(&chip->mutex);
1977 }
1978 }
1979
1980 return ret;
1981 }
1982
1983
1984 static void cfi_amdstd_resume(struct mtd_info *mtd)
1985 {
1986 struct map_info *map = mtd->priv;
1987 struct cfi_private *cfi = map->fldrv_priv;
1988 int i;
1989 struct flchip *chip;
1990
1991 for (i=0; i<cfi->numchips; i++) {
1992
1993 chip = &cfi->chips[i];
1994
1995 mutex_lock(&chip->mutex);
1996
1997 if (chip->state == FL_PM_SUSPENDED) {
1998 chip->state = FL_READY;
1999 map_write(map, CMD(0xF0), chip->start);
2000 wake_up(&chip->wq);
2001 }
2002 else
2003 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2004
2005 mutex_unlock(&chip->mutex);
2006 }
2007 }
2008
2009
2010 /*
2011 * Ensure that the flash device is put back into read array mode before
2012 * unloading the driver or rebooting. On some systems, rebooting while
2013 * the flash is in query/program/erase mode will prevent the CPU from
2014 * fetching the bootloader code, requiring a hard reset or power cycle.
2015 */
2016 static int cfi_amdstd_reset(struct mtd_info *mtd)
2017 {
2018 struct map_info *map = mtd->priv;
2019 struct cfi_private *cfi = map->fldrv_priv;
2020 int i, ret;
2021 struct flchip *chip;
2022
2023 for (i = 0; i < cfi->numchips; i++) {
2024
2025 chip = &cfi->chips[i];
2026
2027 mutex_lock(&chip->mutex);
2028
2029 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2030 if (!ret) {
2031 map_write(map, CMD(0xF0), chip->start);
2032 chip->state = FL_SHUTDOWN;
2033 put_chip(map, chip, chip->start);
2034 }
2035
2036 mutex_unlock(&chip->mutex);
2037 }
2038
2039 return 0;
2040 }
2041
2042
2043 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2044 void *v)
2045 {
2046 struct mtd_info *mtd;
2047
2048 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2049 cfi_amdstd_reset(mtd);
2050 return NOTIFY_DONE;
2051 }
2052
2053
2054 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2055 {
2056 struct map_info *map = mtd->priv;
2057 struct cfi_private *cfi = map->fldrv_priv;
2058
2059 cfi_amdstd_reset(mtd);
2060 unregister_reboot_notifier(&mtd->reboot_notifier);
2061 kfree(cfi->cmdset_priv);
2062 kfree(cfi->cfiq);
2063 kfree(cfi);
2064 kfree(mtd->eraseregions);
2065 }
2066
2067 MODULE_LICENSE("GPL");
2068 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2069 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2070 MODULE_ALIAS("cfi_cmdset_0006");
2071 MODULE_ALIAS("cfi_cmdset_0701");