Merge branch 'timer/cleanup' into late/mvebu2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2 * MMCIF eMMC driver.
3 *
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
10 *
11 *
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
16 *
17 */
18
19 /*
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
22 *
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
30 *
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
34 *
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
43 */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/pagemap.h>
61 #include <linux/platform_device.h>
62 #include <linux/pm_qos.h>
63 #include <linux/pm_runtime.h>
64 #include <linux/spinlock.h>
65 #include <linux/module.h>
66
67 #define DRIVER_NAME "sh_mmcif"
68 #define DRIVER_VERSION "2010-04-28"
69
70 /* CE_CMD_SET */
71 #define CMD_MASK 0x3f000000
72 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
73 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
74 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
75 #define CMD_SET_RBSY (1 << 21) /* R1b */
76 #define CMD_SET_CCSEN (1 << 20)
77 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
78 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
79 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
80 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
81 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
82 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
83 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
84 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
85 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
86 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
87 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
88 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
89 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
90 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
91 #define CMD_SET_CCSH (1 << 5)
92 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
93 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
94 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
95 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
96
97 /* CE_CMD_CTRL */
98 #define CMD_CTRL_BREAK (1 << 0)
99
100 /* CE_BLOCK_SET */
101 #define BLOCK_SIZE_MASK 0x0000ffff
102
103 /* CE_INT */
104 #define INT_CCSDE (1 << 29)
105 #define INT_CMD12DRE (1 << 26)
106 #define INT_CMD12RBE (1 << 25)
107 #define INT_CMD12CRE (1 << 24)
108 #define INT_DTRANE (1 << 23)
109 #define INT_BUFRE (1 << 22)
110 #define INT_BUFWEN (1 << 21)
111 #define INT_BUFREN (1 << 20)
112 #define INT_CCSRCV (1 << 19)
113 #define INT_RBSYE (1 << 17)
114 #define INT_CRSPE (1 << 16)
115 #define INT_CMDVIO (1 << 15)
116 #define INT_BUFVIO (1 << 14)
117 #define INT_WDATERR (1 << 11)
118 #define INT_RDATERR (1 << 10)
119 #define INT_RIDXERR (1 << 9)
120 #define INT_RSPERR (1 << 8)
121 #define INT_CCSTO (1 << 5)
122 #define INT_CRCSTO (1 << 4)
123 #define INT_WDATTO (1 << 3)
124 #define INT_RDATTO (1 << 2)
125 #define INT_RBSYTO (1 << 1)
126 #define INT_RSPTO (1 << 0)
127 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
128 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
129 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
130 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
131
132 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
133 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
134 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
135
136 /* CE_INT_MASK */
137 #define MASK_ALL 0x00000000
138 #define MASK_MCCSDE (1 << 29)
139 #define MASK_MCMD12DRE (1 << 26)
140 #define MASK_MCMD12RBE (1 << 25)
141 #define MASK_MCMD12CRE (1 << 24)
142 #define MASK_MDTRANE (1 << 23)
143 #define MASK_MBUFRE (1 << 22)
144 #define MASK_MBUFWEN (1 << 21)
145 #define MASK_MBUFREN (1 << 20)
146 #define MASK_MCCSRCV (1 << 19)
147 #define MASK_MRBSYE (1 << 17)
148 #define MASK_MCRSPE (1 << 16)
149 #define MASK_MCMDVIO (1 << 15)
150 #define MASK_MBUFVIO (1 << 14)
151 #define MASK_MWDATERR (1 << 11)
152 #define MASK_MRDATERR (1 << 10)
153 #define MASK_MRIDXERR (1 << 9)
154 #define MASK_MRSPERR (1 << 8)
155 #define MASK_MCCSTO (1 << 5)
156 #define MASK_MCRCSTO (1 << 4)
157 #define MASK_MWDATTO (1 << 3)
158 #define MASK_MRDATTO (1 << 2)
159 #define MASK_MRBSYTO (1 << 1)
160 #define MASK_MRSPTO (1 << 0)
161
162 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
163 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
164 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
165 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
166
167 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
168 MASK_MBUFREN | MASK_MBUFWEN | \
169 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
170 MASK_MCMD12RBE | MASK_MCMD12CRE)
171
172 /* CE_HOST_STS1 */
173 #define STS1_CMDSEQ (1 << 31)
174
175 /* CE_HOST_STS2 */
176 #define STS2_CRCSTE (1 << 31)
177 #define STS2_CRC16E (1 << 30)
178 #define STS2_AC12CRCE (1 << 29)
179 #define STS2_RSPCRC7E (1 << 28)
180 #define STS2_CRCSTEBE (1 << 27)
181 #define STS2_RDATEBE (1 << 26)
182 #define STS2_AC12REBE (1 << 25)
183 #define STS2_RSPEBE (1 << 24)
184 #define STS2_AC12IDXE (1 << 23)
185 #define STS2_RSPIDXE (1 << 22)
186 #define STS2_CCSTO (1 << 15)
187 #define STS2_RDATTO (1 << 14)
188 #define STS2_DATBSYTO (1 << 13)
189 #define STS2_CRCSTTO (1 << 12)
190 #define STS2_AC12BSYTO (1 << 11)
191 #define STS2_RSPBSYTO (1 << 10)
192 #define STS2_AC12RSPTO (1 << 9)
193 #define STS2_RSPTO (1 << 8)
194 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
195 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
196 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
197 STS2_DATBSYTO | STS2_CRCSTTO | \
198 STS2_AC12BSYTO | STS2_RSPBSYTO | \
199 STS2_AC12RSPTO | STS2_RSPTO)
200
201 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
202 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
203 #define CLKDEV_INIT 400000 /* 400 KHz */
204
205 enum mmcif_state {
206 STATE_IDLE,
207 STATE_REQUEST,
208 STATE_IOS,
209 STATE_TIMEOUT,
210 };
211
212 enum mmcif_wait_for {
213 MMCIF_WAIT_FOR_REQUEST,
214 MMCIF_WAIT_FOR_CMD,
215 MMCIF_WAIT_FOR_MREAD,
216 MMCIF_WAIT_FOR_MWRITE,
217 MMCIF_WAIT_FOR_READ,
218 MMCIF_WAIT_FOR_WRITE,
219 MMCIF_WAIT_FOR_READ_END,
220 MMCIF_WAIT_FOR_WRITE_END,
221 MMCIF_WAIT_FOR_STOP,
222 };
223
224 struct sh_mmcif_host {
225 struct mmc_host *mmc;
226 struct mmc_request *mrq;
227 struct platform_device *pd;
228 struct clk *hclk;
229 unsigned int clk;
230 int bus_width;
231 unsigned char timing;
232 bool sd_error;
233 bool dying;
234 long timeout;
235 void __iomem *addr;
236 u32 *pio_ptr;
237 spinlock_t lock; /* protect sh_mmcif_host::state */
238 enum mmcif_state state;
239 enum mmcif_wait_for wait_for;
240 struct delayed_work timeout_work;
241 size_t blocksize;
242 int sg_idx;
243 int sg_blkidx;
244 bool power;
245 bool card_present;
246 struct mutex thread_lock;
247
248 /* DMA support */
249 struct dma_chan *chan_rx;
250 struct dma_chan *chan_tx;
251 struct completion dma_complete;
252 bool dma_active;
253 };
254
255 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
256 unsigned int reg, u32 val)
257 {
258 writel(val | readl(host->addr + reg), host->addr + reg);
259 }
260
261 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
262 unsigned int reg, u32 val)
263 {
264 writel(~val & readl(host->addr + reg), host->addr + reg);
265 }
266
267 static void mmcif_dma_complete(void *arg)
268 {
269 struct sh_mmcif_host *host = arg;
270 struct mmc_request *mrq = host->mrq;
271
272 dev_dbg(&host->pd->dev, "Command completed\n");
273
274 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
275 dev_name(&host->pd->dev)))
276 return;
277
278 complete(&host->dma_complete);
279 }
280
281 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
282 {
283 struct mmc_data *data = host->mrq->data;
284 struct scatterlist *sg = data->sg;
285 struct dma_async_tx_descriptor *desc = NULL;
286 struct dma_chan *chan = host->chan_rx;
287 dma_cookie_t cookie = -EINVAL;
288 int ret;
289
290 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
291 DMA_FROM_DEVICE);
292 if (ret > 0) {
293 host->dma_active = true;
294 desc = dmaengine_prep_slave_sg(chan, sg, ret,
295 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
296 }
297
298 if (desc) {
299 desc->callback = mmcif_dma_complete;
300 desc->callback_param = host;
301 cookie = dmaengine_submit(desc);
302 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
303 dma_async_issue_pending(chan);
304 }
305 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
306 __func__, data->sg_len, ret, cookie);
307
308 if (!desc) {
309 /* DMA failed, fall back to PIO */
310 if (ret >= 0)
311 ret = -EIO;
312 host->chan_rx = NULL;
313 host->dma_active = false;
314 dma_release_channel(chan);
315 /* Free the Tx channel too */
316 chan = host->chan_tx;
317 if (chan) {
318 host->chan_tx = NULL;
319 dma_release_channel(chan);
320 }
321 dev_warn(&host->pd->dev,
322 "DMA failed: %d, falling back to PIO\n", ret);
323 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
324 }
325
326 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
327 desc, cookie, data->sg_len);
328 }
329
330 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
331 {
332 struct mmc_data *data = host->mrq->data;
333 struct scatterlist *sg = data->sg;
334 struct dma_async_tx_descriptor *desc = NULL;
335 struct dma_chan *chan = host->chan_tx;
336 dma_cookie_t cookie = -EINVAL;
337 int ret;
338
339 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
340 DMA_TO_DEVICE);
341 if (ret > 0) {
342 host->dma_active = true;
343 desc = dmaengine_prep_slave_sg(chan, sg, ret,
344 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
345 }
346
347 if (desc) {
348 desc->callback = mmcif_dma_complete;
349 desc->callback_param = host;
350 cookie = dmaengine_submit(desc);
351 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
352 dma_async_issue_pending(chan);
353 }
354 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
355 __func__, data->sg_len, ret, cookie);
356
357 if (!desc) {
358 /* DMA failed, fall back to PIO */
359 if (ret >= 0)
360 ret = -EIO;
361 host->chan_tx = NULL;
362 host->dma_active = false;
363 dma_release_channel(chan);
364 /* Free the Rx channel too */
365 chan = host->chan_rx;
366 if (chan) {
367 host->chan_rx = NULL;
368 dma_release_channel(chan);
369 }
370 dev_warn(&host->pd->dev,
371 "DMA failed: %d, falling back to PIO\n", ret);
372 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
373 }
374
375 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
376 desc, cookie);
377 }
378
379 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
380 struct sh_mmcif_plat_data *pdata)
381 {
382 struct resource *res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
383 struct dma_slave_config cfg;
384 dma_cap_mask_t mask;
385 int ret;
386
387 host->dma_active = false;
388
389 if (!pdata)
390 return;
391
392 if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
393 return;
394
395 /* We can only either use DMA for both Tx and Rx or not use it at all */
396 dma_cap_zero(mask);
397 dma_cap_set(DMA_SLAVE, mask);
398
399 host->chan_tx = dma_request_channel(mask, shdma_chan_filter,
400 (void *)pdata->slave_id_tx);
401 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
402 host->chan_tx);
403
404 if (!host->chan_tx)
405 return;
406
407 cfg.slave_id = pdata->slave_id_tx;
408 cfg.direction = DMA_MEM_TO_DEV;
409 cfg.dst_addr = res->start + MMCIF_CE_DATA;
410 cfg.src_addr = 0;
411 ret = dmaengine_slave_config(host->chan_tx, &cfg);
412 if (ret < 0)
413 goto ecfgtx;
414
415 host->chan_rx = dma_request_channel(mask, shdma_chan_filter,
416 (void *)pdata->slave_id_rx);
417 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
418 host->chan_rx);
419
420 if (!host->chan_rx)
421 goto erqrx;
422
423 cfg.slave_id = pdata->slave_id_rx;
424 cfg.direction = DMA_DEV_TO_MEM;
425 cfg.dst_addr = 0;
426 cfg.src_addr = res->start + MMCIF_CE_DATA;
427 ret = dmaengine_slave_config(host->chan_rx, &cfg);
428 if (ret < 0)
429 goto ecfgrx;
430
431 return;
432
433 ecfgrx:
434 dma_release_channel(host->chan_rx);
435 host->chan_rx = NULL;
436 erqrx:
437 ecfgtx:
438 dma_release_channel(host->chan_tx);
439 host->chan_tx = NULL;
440 }
441
442 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
443 {
444 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
445 /* Descriptors are freed automatically */
446 if (host->chan_tx) {
447 struct dma_chan *chan = host->chan_tx;
448 host->chan_tx = NULL;
449 dma_release_channel(chan);
450 }
451 if (host->chan_rx) {
452 struct dma_chan *chan = host->chan_rx;
453 host->chan_rx = NULL;
454 dma_release_channel(chan);
455 }
456
457 host->dma_active = false;
458 }
459
460 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
461 {
462 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
463 bool sup_pclk = p ? p->sup_pclk : false;
464
465 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
466 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
467
468 if (!clk)
469 return;
470 if (sup_pclk && clk == host->clk)
471 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
472 else
473 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
474 ((fls(DIV_ROUND_UP(host->clk,
475 clk) - 1) - 1) << 16));
476
477 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
478 }
479
480 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
481 {
482 u32 tmp;
483
484 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
485
486 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
487 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
488 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
489 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
490 /* byte swap on */
491 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
492 }
493
494 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
495 {
496 u32 state1, state2;
497 int ret, timeout;
498
499 host->sd_error = false;
500
501 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
502 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
503 dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
504 dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
505
506 if (state1 & STS1_CMDSEQ) {
507 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
508 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
509 for (timeout = 10000000; timeout; timeout--) {
510 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
511 & STS1_CMDSEQ))
512 break;
513 mdelay(1);
514 }
515 if (!timeout) {
516 dev_err(&host->pd->dev,
517 "Forced end of command sequence timeout err\n");
518 return -EIO;
519 }
520 sh_mmcif_sync_reset(host);
521 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
522 return -EIO;
523 }
524
525 if (state2 & STS2_CRC_ERR) {
526 dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
527 host->state, host->wait_for);
528 ret = -EIO;
529 } else if (state2 & STS2_TIMEOUT_ERR) {
530 dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
531 host->state, host->wait_for);
532 ret = -ETIMEDOUT;
533 } else {
534 dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
535 host->state, host->wait_for);
536 ret = -EIO;
537 }
538 return ret;
539 }
540
541 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
542 {
543 struct mmc_data *data = host->mrq->data;
544
545 host->sg_blkidx += host->blocksize;
546
547 /* data->sg->length must be a multiple of host->blocksize? */
548 BUG_ON(host->sg_blkidx > data->sg->length);
549
550 if (host->sg_blkidx == data->sg->length) {
551 host->sg_blkidx = 0;
552 if (++host->sg_idx < data->sg_len)
553 host->pio_ptr = sg_virt(++data->sg);
554 } else {
555 host->pio_ptr = p;
556 }
557
558 return host->sg_idx != data->sg_len;
559 }
560
561 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
562 struct mmc_request *mrq)
563 {
564 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
565 BLOCK_SIZE_MASK) + 3;
566
567 host->wait_for = MMCIF_WAIT_FOR_READ;
568
569 /* buf read enable */
570 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
571 }
572
573 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
574 {
575 struct mmc_data *data = host->mrq->data;
576 u32 *p = sg_virt(data->sg);
577 int i;
578
579 if (host->sd_error) {
580 data->error = sh_mmcif_error_manage(host);
581 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
582 return false;
583 }
584
585 for (i = 0; i < host->blocksize / 4; i++)
586 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
587
588 /* buffer read end */
589 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
590 host->wait_for = MMCIF_WAIT_FOR_READ_END;
591
592 return true;
593 }
594
595 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
596 struct mmc_request *mrq)
597 {
598 struct mmc_data *data = mrq->data;
599
600 if (!data->sg_len || !data->sg->length)
601 return;
602
603 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
604 BLOCK_SIZE_MASK;
605
606 host->wait_for = MMCIF_WAIT_FOR_MREAD;
607 host->sg_idx = 0;
608 host->sg_blkidx = 0;
609 host->pio_ptr = sg_virt(data->sg);
610
611 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
612 }
613
614 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
615 {
616 struct mmc_data *data = host->mrq->data;
617 u32 *p = host->pio_ptr;
618 int i;
619
620 if (host->sd_error) {
621 data->error = sh_mmcif_error_manage(host);
622 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
623 return false;
624 }
625
626 BUG_ON(!data->sg->length);
627
628 for (i = 0; i < host->blocksize / 4; i++)
629 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
630
631 if (!sh_mmcif_next_block(host, p))
632 return false;
633
634 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
635
636 return true;
637 }
638
639 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
640 struct mmc_request *mrq)
641 {
642 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
643 BLOCK_SIZE_MASK) + 3;
644
645 host->wait_for = MMCIF_WAIT_FOR_WRITE;
646
647 /* buf write enable */
648 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
649 }
650
651 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
652 {
653 struct mmc_data *data = host->mrq->data;
654 u32 *p = sg_virt(data->sg);
655 int i;
656
657 if (host->sd_error) {
658 data->error = sh_mmcif_error_manage(host);
659 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
660 return false;
661 }
662
663 for (i = 0; i < host->blocksize / 4; i++)
664 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
665
666 /* buffer write end */
667 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
668 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
669
670 return true;
671 }
672
673 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
674 struct mmc_request *mrq)
675 {
676 struct mmc_data *data = mrq->data;
677
678 if (!data->sg_len || !data->sg->length)
679 return;
680
681 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
682 BLOCK_SIZE_MASK;
683
684 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
685 host->sg_idx = 0;
686 host->sg_blkidx = 0;
687 host->pio_ptr = sg_virt(data->sg);
688
689 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
690 }
691
692 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
693 {
694 struct mmc_data *data = host->mrq->data;
695 u32 *p = host->pio_ptr;
696 int i;
697
698 if (host->sd_error) {
699 data->error = sh_mmcif_error_manage(host);
700 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
701 return false;
702 }
703
704 BUG_ON(!data->sg->length);
705
706 for (i = 0; i < host->blocksize / 4; i++)
707 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
708
709 if (!sh_mmcif_next_block(host, p))
710 return false;
711
712 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
713
714 return true;
715 }
716
717 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
718 struct mmc_command *cmd)
719 {
720 if (cmd->flags & MMC_RSP_136) {
721 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
722 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
723 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
724 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
725 } else
726 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
727 }
728
729 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
730 struct mmc_command *cmd)
731 {
732 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
733 }
734
735 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
736 struct mmc_request *mrq)
737 {
738 struct mmc_data *data = mrq->data;
739 struct mmc_command *cmd = mrq->cmd;
740 u32 opc = cmd->opcode;
741 u32 tmp = 0;
742
743 /* Response Type check */
744 switch (mmc_resp_type(cmd)) {
745 case MMC_RSP_NONE:
746 tmp |= CMD_SET_RTYP_NO;
747 break;
748 case MMC_RSP_R1:
749 case MMC_RSP_R1B:
750 case MMC_RSP_R3:
751 tmp |= CMD_SET_RTYP_6B;
752 break;
753 case MMC_RSP_R2:
754 tmp |= CMD_SET_RTYP_17B;
755 break;
756 default:
757 dev_err(&host->pd->dev, "Unsupported response type.\n");
758 break;
759 }
760 switch (opc) {
761 /* RBSY */
762 case MMC_SLEEP_AWAKE:
763 case MMC_SWITCH:
764 case MMC_STOP_TRANSMISSION:
765 case MMC_SET_WRITE_PROT:
766 case MMC_CLR_WRITE_PROT:
767 case MMC_ERASE:
768 tmp |= CMD_SET_RBSY;
769 break;
770 }
771 /* WDAT / DATW */
772 if (data) {
773 tmp |= CMD_SET_WDAT;
774 switch (host->bus_width) {
775 case MMC_BUS_WIDTH_1:
776 tmp |= CMD_SET_DATW_1;
777 break;
778 case MMC_BUS_WIDTH_4:
779 tmp |= CMD_SET_DATW_4;
780 break;
781 case MMC_BUS_WIDTH_8:
782 tmp |= CMD_SET_DATW_8;
783 break;
784 default:
785 dev_err(&host->pd->dev, "Unsupported bus width.\n");
786 break;
787 }
788 switch (host->timing) {
789 case MMC_TIMING_UHS_DDR50:
790 /*
791 * MMC core will only set this timing, if the host
792 * advertises the MMC_CAP_UHS_DDR50 capability. MMCIF
793 * implementations with this capability, e.g. sh73a0,
794 * will have to set it in their platform data.
795 */
796 tmp |= CMD_SET_DARS;
797 break;
798 }
799 }
800 /* DWEN */
801 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
802 tmp |= CMD_SET_DWEN;
803 /* CMLTE/CMD12EN */
804 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
805 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
806 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
807 data->blocks << 16);
808 }
809 /* RIDXC[1:0] check bits */
810 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
811 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
812 tmp |= CMD_SET_RIDXC_BITS;
813 /* RCRC7C[1:0] check bits */
814 if (opc == MMC_SEND_OP_COND)
815 tmp |= CMD_SET_CRC7C_BITS;
816 /* RCRC7C[1:0] internal CRC7 */
817 if (opc == MMC_ALL_SEND_CID ||
818 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
819 tmp |= CMD_SET_CRC7C_INTERNAL;
820
821 return (opc << 24) | tmp;
822 }
823
824 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
825 struct mmc_request *mrq, u32 opc)
826 {
827 switch (opc) {
828 case MMC_READ_MULTIPLE_BLOCK:
829 sh_mmcif_multi_read(host, mrq);
830 return 0;
831 case MMC_WRITE_MULTIPLE_BLOCK:
832 sh_mmcif_multi_write(host, mrq);
833 return 0;
834 case MMC_WRITE_BLOCK:
835 sh_mmcif_single_write(host, mrq);
836 return 0;
837 case MMC_READ_SINGLE_BLOCK:
838 case MMC_SEND_EXT_CSD:
839 sh_mmcif_single_read(host, mrq);
840 return 0;
841 default:
842 dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
843 return -EINVAL;
844 }
845 }
846
847 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
848 struct mmc_request *mrq)
849 {
850 struct mmc_command *cmd = mrq->cmd;
851 u32 opc = cmd->opcode;
852 u32 mask;
853
854 switch (opc) {
855 /* response busy check */
856 case MMC_SLEEP_AWAKE:
857 case MMC_SWITCH:
858 case MMC_STOP_TRANSMISSION:
859 case MMC_SET_WRITE_PROT:
860 case MMC_CLR_WRITE_PROT:
861 case MMC_ERASE:
862 mask = MASK_START_CMD | MASK_MRBSYE;
863 break;
864 default:
865 mask = MASK_START_CMD | MASK_MCRSPE;
866 break;
867 }
868
869 if (mrq->data) {
870 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
871 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
872 mrq->data->blksz);
873 }
874 opc = sh_mmcif_set_cmd(host, mrq);
875
876 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
877 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
878 /* set arg */
879 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
880 /* set cmd */
881 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
882
883 host->wait_for = MMCIF_WAIT_FOR_CMD;
884 schedule_delayed_work(&host->timeout_work, host->timeout);
885 }
886
887 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
888 struct mmc_request *mrq)
889 {
890 switch (mrq->cmd->opcode) {
891 case MMC_READ_MULTIPLE_BLOCK:
892 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
893 break;
894 case MMC_WRITE_MULTIPLE_BLOCK:
895 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
896 break;
897 default:
898 dev_err(&host->pd->dev, "unsupported stop cmd\n");
899 mrq->stop->error = sh_mmcif_error_manage(host);
900 return;
901 }
902
903 host->wait_for = MMCIF_WAIT_FOR_STOP;
904 }
905
906 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
907 {
908 struct sh_mmcif_host *host = mmc_priv(mmc);
909 unsigned long flags;
910
911 spin_lock_irqsave(&host->lock, flags);
912 if (host->state != STATE_IDLE) {
913 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
914 spin_unlock_irqrestore(&host->lock, flags);
915 mrq->cmd->error = -EAGAIN;
916 mmc_request_done(mmc, mrq);
917 return;
918 }
919
920 host->state = STATE_REQUEST;
921 spin_unlock_irqrestore(&host->lock, flags);
922
923 switch (mrq->cmd->opcode) {
924 /* MMCIF does not support SD/SDIO command */
925 case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
926 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
927 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
928 break;
929 case MMC_APP_CMD:
930 case SD_IO_RW_DIRECT:
931 host->state = STATE_IDLE;
932 mrq->cmd->error = -ETIMEDOUT;
933 mmc_request_done(mmc, mrq);
934 return;
935 default:
936 break;
937 }
938
939 host->mrq = mrq;
940
941 sh_mmcif_start_cmd(host, mrq);
942 }
943
944 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
945 {
946 int ret = clk_enable(host->hclk);
947
948 if (!ret) {
949 host->clk = clk_get_rate(host->hclk);
950 host->mmc->f_max = host->clk / 2;
951 host->mmc->f_min = host->clk / 512;
952 }
953
954 return ret;
955 }
956
957 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
958 {
959 struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
960 struct mmc_host *mmc = host->mmc;
961
962 if (pd && pd->set_pwr)
963 pd->set_pwr(host->pd, ios->power_mode != MMC_POWER_OFF);
964 if (!IS_ERR(mmc->supply.vmmc))
965 /* Errors ignored... */
966 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
967 ios->power_mode ? ios->vdd : 0);
968 }
969
970 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
971 {
972 struct sh_mmcif_host *host = mmc_priv(mmc);
973 unsigned long flags;
974
975 spin_lock_irqsave(&host->lock, flags);
976 if (host->state != STATE_IDLE) {
977 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
978 spin_unlock_irqrestore(&host->lock, flags);
979 return;
980 }
981
982 host->state = STATE_IOS;
983 spin_unlock_irqrestore(&host->lock, flags);
984
985 if (ios->power_mode == MMC_POWER_UP) {
986 if (!host->card_present) {
987 /* See if we also get DMA */
988 sh_mmcif_request_dma(host, host->pd->dev.platform_data);
989 host->card_present = true;
990 }
991 sh_mmcif_set_power(host, ios);
992 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
993 /* clock stop */
994 sh_mmcif_clock_control(host, 0);
995 if (ios->power_mode == MMC_POWER_OFF) {
996 if (host->card_present) {
997 sh_mmcif_release_dma(host);
998 host->card_present = false;
999 }
1000 }
1001 if (host->power) {
1002 pm_runtime_put_sync(&host->pd->dev);
1003 clk_disable(host->hclk);
1004 host->power = false;
1005 if (ios->power_mode == MMC_POWER_OFF)
1006 sh_mmcif_set_power(host, ios);
1007 }
1008 host->state = STATE_IDLE;
1009 return;
1010 }
1011
1012 if (ios->clock) {
1013 if (!host->power) {
1014 sh_mmcif_clk_update(host);
1015 pm_runtime_get_sync(&host->pd->dev);
1016 host->power = true;
1017 sh_mmcif_sync_reset(host);
1018 }
1019 sh_mmcif_clock_control(host, ios->clock);
1020 }
1021
1022 host->timing = ios->timing;
1023 host->bus_width = ios->bus_width;
1024 host->state = STATE_IDLE;
1025 }
1026
1027 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1028 {
1029 struct sh_mmcif_host *host = mmc_priv(mmc);
1030 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1031 int ret = mmc_gpio_get_cd(mmc);
1032
1033 if (ret >= 0)
1034 return ret;
1035
1036 if (!p || !p->get_cd)
1037 return -ENOSYS;
1038 else
1039 return p->get_cd(host->pd);
1040 }
1041
1042 static struct mmc_host_ops sh_mmcif_ops = {
1043 .request = sh_mmcif_request,
1044 .set_ios = sh_mmcif_set_ios,
1045 .get_cd = sh_mmcif_get_cd,
1046 };
1047
1048 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1049 {
1050 struct mmc_command *cmd = host->mrq->cmd;
1051 struct mmc_data *data = host->mrq->data;
1052 long time;
1053
1054 if (host->sd_error) {
1055 switch (cmd->opcode) {
1056 case MMC_ALL_SEND_CID:
1057 case MMC_SELECT_CARD:
1058 case MMC_APP_CMD:
1059 cmd->error = -ETIMEDOUT;
1060 break;
1061 default:
1062 cmd->error = sh_mmcif_error_manage(host);
1063 break;
1064 }
1065 dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1066 cmd->opcode, cmd->error);
1067 host->sd_error = false;
1068 return false;
1069 }
1070 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1071 cmd->error = 0;
1072 return false;
1073 }
1074
1075 sh_mmcif_get_response(host, cmd);
1076
1077 if (!data)
1078 return false;
1079
1080 /*
1081 * Completion can be signalled from DMA callback and error, so, have to
1082 * reset here, before setting .dma_active
1083 */
1084 init_completion(&host->dma_complete);
1085
1086 if (data->flags & MMC_DATA_READ) {
1087 if (host->chan_rx)
1088 sh_mmcif_start_dma_rx(host);
1089 } else {
1090 if (host->chan_tx)
1091 sh_mmcif_start_dma_tx(host);
1092 }
1093
1094 if (!host->dma_active) {
1095 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1096 return !data->error;
1097 }
1098
1099 /* Running in the IRQ thread, can sleep */
1100 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1101 host->timeout);
1102
1103 if (data->flags & MMC_DATA_READ)
1104 dma_unmap_sg(host->chan_rx->device->dev,
1105 data->sg, data->sg_len,
1106 DMA_FROM_DEVICE);
1107 else
1108 dma_unmap_sg(host->chan_tx->device->dev,
1109 data->sg, data->sg_len,
1110 DMA_TO_DEVICE);
1111
1112 if (host->sd_error) {
1113 dev_err(host->mmc->parent,
1114 "Error IRQ while waiting for DMA completion!\n");
1115 /* Woken up by an error IRQ: abort DMA */
1116 data->error = sh_mmcif_error_manage(host);
1117 } else if (!time) {
1118 dev_err(host->mmc->parent, "DMA timeout!\n");
1119 data->error = -ETIMEDOUT;
1120 } else if (time < 0) {
1121 dev_err(host->mmc->parent,
1122 "wait_for_completion_...() error %ld!\n", time);
1123 data->error = time;
1124 }
1125 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1126 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1127 host->dma_active = false;
1128
1129 if (data->error) {
1130 data->bytes_xfered = 0;
1131 /* Abort DMA */
1132 if (data->flags & MMC_DATA_READ)
1133 dmaengine_terminate_all(host->chan_rx);
1134 else
1135 dmaengine_terminate_all(host->chan_tx);
1136 }
1137
1138 return false;
1139 }
1140
1141 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1142 {
1143 struct sh_mmcif_host *host = dev_id;
1144 struct mmc_request *mrq;
1145 bool wait = false;
1146
1147 cancel_delayed_work_sync(&host->timeout_work);
1148
1149 mutex_lock(&host->thread_lock);
1150
1151 mrq = host->mrq;
1152 if (!mrq) {
1153 dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1154 host->state, host->wait_for);
1155 mutex_unlock(&host->thread_lock);
1156 return IRQ_HANDLED;
1157 }
1158
1159 /*
1160 * All handlers return true, if processing continues, and false, if the
1161 * request has to be completed - successfully or not
1162 */
1163 switch (host->wait_for) {
1164 case MMCIF_WAIT_FOR_REQUEST:
1165 /* We're too late, the timeout has already kicked in */
1166 mutex_unlock(&host->thread_lock);
1167 return IRQ_HANDLED;
1168 case MMCIF_WAIT_FOR_CMD:
1169 /* Wait for data? */
1170 wait = sh_mmcif_end_cmd(host);
1171 break;
1172 case MMCIF_WAIT_FOR_MREAD:
1173 /* Wait for more data? */
1174 wait = sh_mmcif_mread_block(host);
1175 break;
1176 case MMCIF_WAIT_FOR_READ:
1177 /* Wait for data end? */
1178 wait = sh_mmcif_read_block(host);
1179 break;
1180 case MMCIF_WAIT_FOR_MWRITE:
1181 /* Wait data to write? */
1182 wait = sh_mmcif_mwrite_block(host);
1183 break;
1184 case MMCIF_WAIT_FOR_WRITE:
1185 /* Wait for data end? */
1186 wait = sh_mmcif_write_block(host);
1187 break;
1188 case MMCIF_WAIT_FOR_STOP:
1189 if (host->sd_error) {
1190 mrq->stop->error = sh_mmcif_error_manage(host);
1191 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1192 break;
1193 }
1194 sh_mmcif_get_cmd12response(host, mrq->stop);
1195 mrq->stop->error = 0;
1196 break;
1197 case MMCIF_WAIT_FOR_READ_END:
1198 case MMCIF_WAIT_FOR_WRITE_END:
1199 if (host->sd_error) {
1200 mrq->data->error = sh_mmcif_error_manage(host);
1201 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1202 }
1203 break;
1204 default:
1205 BUG();
1206 }
1207
1208 if (wait) {
1209 schedule_delayed_work(&host->timeout_work, host->timeout);
1210 /* Wait for more data */
1211 mutex_unlock(&host->thread_lock);
1212 return IRQ_HANDLED;
1213 }
1214
1215 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1216 struct mmc_data *data = mrq->data;
1217 if (!mrq->cmd->error && data && !data->error)
1218 data->bytes_xfered =
1219 data->blocks * data->blksz;
1220
1221 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1222 sh_mmcif_stop_cmd(host, mrq);
1223 if (!mrq->stop->error) {
1224 schedule_delayed_work(&host->timeout_work, host->timeout);
1225 mutex_unlock(&host->thread_lock);
1226 return IRQ_HANDLED;
1227 }
1228 }
1229 }
1230
1231 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1232 host->state = STATE_IDLE;
1233 host->mrq = NULL;
1234 mmc_request_done(host->mmc, mrq);
1235
1236 mutex_unlock(&host->thread_lock);
1237
1238 return IRQ_HANDLED;
1239 }
1240
1241 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1242 {
1243 struct sh_mmcif_host *host = dev_id;
1244 u32 state;
1245
1246 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1247 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1248 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1249
1250 if (state & ~MASK_CLEAN)
1251 dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1252 state);
1253
1254 if (state & INT_ERR_STS || state & ~INT_ALL) {
1255 host->sd_error = true;
1256 dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1257 }
1258 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1259 if (!host->mrq)
1260 dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1261 if (!host->dma_active)
1262 return IRQ_WAKE_THREAD;
1263 else if (host->sd_error)
1264 mmcif_dma_complete(host);
1265 } else {
1266 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1267 }
1268
1269 return IRQ_HANDLED;
1270 }
1271
1272 static void mmcif_timeout_work(struct work_struct *work)
1273 {
1274 struct delayed_work *d = container_of(work, struct delayed_work, work);
1275 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1276 struct mmc_request *mrq = host->mrq;
1277 unsigned long flags;
1278
1279 if (host->dying)
1280 /* Don't run after mmc_remove_host() */
1281 return;
1282
1283 dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1284 host->wait_for, mrq->cmd->opcode);
1285
1286 spin_lock_irqsave(&host->lock, flags);
1287 if (host->state == STATE_IDLE) {
1288 spin_unlock_irqrestore(&host->lock, flags);
1289 return;
1290 }
1291
1292 host->state = STATE_TIMEOUT;
1293 spin_unlock_irqrestore(&host->lock, flags);
1294
1295 /*
1296 * Handle races with cancel_delayed_work(), unless
1297 * cancel_delayed_work_sync() is used
1298 */
1299 switch (host->wait_for) {
1300 case MMCIF_WAIT_FOR_CMD:
1301 mrq->cmd->error = sh_mmcif_error_manage(host);
1302 break;
1303 case MMCIF_WAIT_FOR_STOP:
1304 mrq->stop->error = sh_mmcif_error_manage(host);
1305 break;
1306 case MMCIF_WAIT_FOR_MREAD:
1307 case MMCIF_WAIT_FOR_MWRITE:
1308 case MMCIF_WAIT_FOR_READ:
1309 case MMCIF_WAIT_FOR_WRITE:
1310 case MMCIF_WAIT_FOR_READ_END:
1311 case MMCIF_WAIT_FOR_WRITE_END:
1312 mrq->data->error = sh_mmcif_error_manage(host);
1313 break;
1314 default:
1315 BUG();
1316 }
1317
1318 host->state = STATE_IDLE;
1319 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1320 host->mrq = NULL;
1321 mmc_request_done(host->mmc, mrq);
1322 }
1323
1324 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1325 {
1326 struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1327 struct mmc_host *mmc = host->mmc;
1328
1329 mmc_regulator_get_supply(mmc);
1330
1331 if (!pd)
1332 return;
1333
1334 if (!mmc->ocr_avail)
1335 mmc->ocr_avail = pd->ocr;
1336 else if (pd->ocr)
1337 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1338 }
1339
1340 static int sh_mmcif_probe(struct platform_device *pdev)
1341 {
1342 int ret = 0, irq[2];
1343 struct mmc_host *mmc;
1344 struct sh_mmcif_host *host;
1345 struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1346 struct resource *res;
1347 void __iomem *reg;
1348 const char *name;
1349
1350 irq[0] = platform_get_irq(pdev, 0);
1351 irq[1] = platform_get_irq(pdev, 1);
1352 if (irq[0] < 0) {
1353 dev_err(&pdev->dev, "Get irq error\n");
1354 return -ENXIO;
1355 }
1356 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1357 if (!res) {
1358 dev_err(&pdev->dev, "platform_get_resource error.\n");
1359 return -ENXIO;
1360 }
1361 reg = ioremap(res->start, resource_size(res));
1362 if (!reg) {
1363 dev_err(&pdev->dev, "ioremap error.\n");
1364 return -ENOMEM;
1365 }
1366
1367 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1368 if (!mmc) {
1369 ret = -ENOMEM;
1370 goto ealloch;
1371 }
1372 host = mmc_priv(mmc);
1373 host->mmc = mmc;
1374 host->addr = reg;
1375 host->timeout = msecs_to_jiffies(1000);
1376
1377 host->pd = pdev;
1378
1379 spin_lock_init(&host->lock);
1380
1381 mmc->ops = &sh_mmcif_ops;
1382 sh_mmcif_init_ocr(host);
1383
1384 mmc->caps = MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1385 if (pd && pd->caps)
1386 mmc->caps |= pd->caps;
1387 mmc->max_segs = 32;
1388 mmc->max_blk_size = 512;
1389 mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1390 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1391 mmc->max_seg_size = mmc->max_req_size;
1392
1393 platform_set_drvdata(pdev, host);
1394
1395 pm_runtime_enable(&pdev->dev);
1396 host->power = false;
1397
1398 host->hclk = clk_get(&pdev->dev, NULL);
1399 if (IS_ERR(host->hclk)) {
1400 ret = PTR_ERR(host->hclk);
1401 dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1402 goto eclkget;
1403 }
1404 ret = sh_mmcif_clk_update(host);
1405 if (ret < 0)
1406 goto eclkupdate;
1407
1408 ret = pm_runtime_resume(&pdev->dev);
1409 if (ret < 0)
1410 goto eresume;
1411
1412 INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1413
1414 sh_mmcif_sync_reset(host);
1415 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1416
1417 name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error";
1418 ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, name, host);
1419 if (ret) {
1420 dev_err(&pdev->dev, "request_irq error (%s)\n", name);
1421 goto ereqirq0;
1422 }
1423 if (irq[1] >= 0) {
1424 ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt,
1425 0, "sh_mmc:int", host);
1426 if (ret) {
1427 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1428 goto ereqirq1;
1429 }
1430 }
1431
1432 if (pd && pd->use_cd_gpio) {
1433 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio);
1434 if (ret < 0)
1435 goto erqcd;
1436 }
1437
1438 mutex_init(&host->thread_lock);
1439
1440 clk_disable(host->hclk);
1441 ret = mmc_add_host(mmc);
1442 if (ret < 0)
1443 goto emmcaddh;
1444
1445 dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1446
1447 dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1448 dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1449 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1450 return ret;
1451
1452 emmcaddh:
1453 erqcd:
1454 if (irq[1] >= 0)
1455 free_irq(irq[1], host);
1456 ereqirq1:
1457 free_irq(irq[0], host);
1458 ereqirq0:
1459 pm_runtime_suspend(&pdev->dev);
1460 eresume:
1461 clk_disable(host->hclk);
1462 eclkupdate:
1463 clk_put(host->hclk);
1464 eclkget:
1465 pm_runtime_disable(&pdev->dev);
1466 mmc_free_host(mmc);
1467 ealloch:
1468 iounmap(reg);
1469 return ret;
1470 }
1471
1472 static int sh_mmcif_remove(struct platform_device *pdev)
1473 {
1474 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1475 int irq[2];
1476
1477 host->dying = true;
1478 clk_enable(host->hclk);
1479 pm_runtime_get_sync(&pdev->dev);
1480
1481 dev_pm_qos_hide_latency_limit(&pdev->dev);
1482
1483 mmc_remove_host(host->mmc);
1484 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1485
1486 /*
1487 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1488 * mmc_remove_host() call above. But swapping order doesn't help either
1489 * (a query on the linux-mmc mailing list didn't bring any replies).
1490 */
1491 cancel_delayed_work_sync(&host->timeout_work);
1492
1493 if (host->addr)
1494 iounmap(host->addr);
1495
1496 irq[0] = platform_get_irq(pdev, 0);
1497 irq[1] = platform_get_irq(pdev, 1);
1498
1499 free_irq(irq[0], host);
1500 if (irq[1] >= 0)
1501 free_irq(irq[1], host);
1502
1503 platform_set_drvdata(pdev, NULL);
1504
1505 clk_disable(host->hclk);
1506 mmc_free_host(host->mmc);
1507 pm_runtime_put_sync(&pdev->dev);
1508 pm_runtime_disable(&pdev->dev);
1509
1510 return 0;
1511 }
1512
1513 #ifdef CONFIG_PM
1514 static int sh_mmcif_suspend(struct device *dev)
1515 {
1516 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1517 int ret = mmc_suspend_host(host->mmc);
1518
1519 if (!ret)
1520 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1521
1522 return ret;
1523 }
1524
1525 static int sh_mmcif_resume(struct device *dev)
1526 {
1527 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1528
1529 return mmc_resume_host(host->mmc);
1530 }
1531 #else
1532 #define sh_mmcif_suspend NULL
1533 #define sh_mmcif_resume NULL
1534 #endif /* CONFIG_PM */
1535
1536 static const struct of_device_id mmcif_of_match[] = {
1537 { .compatible = "renesas,sh-mmcif" },
1538 { }
1539 };
1540 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1541
1542 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1543 .suspend = sh_mmcif_suspend,
1544 .resume = sh_mmcif_resume,
1545 };
1546
1547 static struct platform_driver sh_mmcif_driver = {
1548 .probe = sh_mmcif_probe,
1549 .remove = sh_mmcif_remove,
1550 .driver = {
1551 .name = DRIVER_NAME,
1552 .pm = &sh_mmcif_dev_pm_ops,
1553 .owner = THIS_MODULE,
1554 .of_match_table = mmcif_of_match,
1555 },
1556 };
1557
1558 module_platform_driver(sh_mmcif_driver);
1559
1560 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1561 MODULE_LICENSE("GPL");
1562 MODULE_ALIAS("platform:" DRIVER_NAME);
1563 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");