RDMA/hfi1: change PCI bar addr assignments to Linux API functions
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / mmc / host / mmci.c
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40
41 #include <asm/div64.h>
42 #include <asm/io.h>
43
44 #include "mmci.h"
45 #include "mmci_qcom_dml.h"
46
47 #define DRIVER_NAME "mmci-pl18x"
48
49 static unsigned int fmax = 515633;
50
51 /**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 * is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 * is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @st_sdio: enable ST specific SDIO logic
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68 * register
69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70 * @pwrreg_powerup: power up value for MMCIPOWER register
71 * @f_max: maximum clk frequency supported by the controller.
72 * @signal_direction: input/out direction of bus signals can be indicated
73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74 * @busy_detect: true if the variant supports busy detection on DAT0.
75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
77 * indicating that the card is busy
78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
79 * getting busy end detection interrupts
80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
81 * @explicit_mclk_control: enable explicit mclk control in driver.
82 * @qcom_fifo: enables qcom specific fifo pio read logic.
83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
84 * @reversed_irq_handling: handle data irq before cmd irq.
85 */
86 struct variant_data {
87 unsigned int clkreg;
88 unsigned int clkreg_enable;
89 unsigned int clkreg_8bit_bus_enable;
90 unsigned int clkreg_neg_edge_enable;
91 unsigned int datalength_bits;
92 unsigned int fifosize;
93 unsigned int fifohalfsize;
94 unsigned int data_cmd_enable;
95 unsigned int datactrl_mask_ddrmode;
96 unsigned int datactrl_mask_sdio;
97 bool st_sdio;
98 bool st_clkdiv;
99 bool blksz_datactrl16;
100 bool blksz_datactrl4;
101 u32 pwrreg_powerup;
102 u32 f_max;
103 bool signal_direction;
104 bool pwrreg_clkgate;
105 bool busy_detect;
106 u32 busy_dpsm_flag;
107 u32 busy_detect_flag;
108 u32 busy_detect_mask;
109 bool pwrreg_nopower;
110 bool explicit_mclk_control;
111 bool qcom_fifo;
112 bool qcom_dml;
113 bool reversed_irq_handling;
114 };
115
116 static struct variant_data variant_arm = {
117 .fifosize = 16 * 4,
118 .fifohalfsize = 8 * 4,
119 .datalength_bits = 16,
120 .pwrreg_powerup = MCI_PWR_UP,
121 .f_max = 100000000,
122 .reversed_irq_handling = true,
123 };
124
125 static struct variant_data variant_arm_extended_fifo = {
126 .fifosize = 128 * 4,
127 .fifohalfsize = 64 * 4,
128 .datalength_bits = 16,
129 .pwrreg_powerup = MCI_PWR_UP,
130 .f_max = 100000000,
131 };
132
133 static struct variant_data variant_arm_extended_fifo_hwfc = {
134 .fifosize = 128 * 4,
135 .fifohalfsize = 64 * 4,
136 .clkreg_enable = MCI_ARM_HWFCEN,
137 .datalength_bits = 16,
138 .pwrreg_powerup = MCI_PWR_UP,
139 .f_max = 100000000,
140 };
141
142 static struct variant_data variant_u300 = {
143 .fifosize = 16 * 4,
144 .fifohalfsize = 8 * 4,
145 .clkreg_enable = MCI_ST_U300_HWFCEN,
146 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
147 .datalength_bits = 16,
148 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
149 .st_sdio = true,
150 .pwrreg_powerup = MCI_PWR_ON,
151 .f_max = 100000000,
152 .signal_direction = true,
153 .pwrreg_clkgate = true,
154 .pwrreg_nopower = true,
155 };
156
157 static struct variant_data variant_nomadik = {
158 .fifosize = 16 * 4,
159 .fifohalfsize = 8 * 4,
160 .clkreg = MCI_CLK_ENABLE,
161 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
162 .datalength_bits = 24,
163 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
164 .st_sdio = true,
165 .st_clkdiv = true,
166 .pwrreg_powerup = MCI_PWR_ON,
167 .f_max = 100000000,
168 .signal_direction = true,
169 .pwrreg_clkgate = true,
170 .pwrreg_nopower = true,
171 };
172
173 static struct variant_data variant_ux500 = {
174 .fifosize = 30 * 4,
175 .fifohalfsize = 8 * 4,
176 .clkreg = MCI_CLK_ENABLE,
177 .clkreg_enable = MCI_ST_UX500_HWFCEN,
178 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
179 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
180 .datalength_bits = 24,
181 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
182 .st_sdio = true,
183 .st_clkdiv = true,
184 .pwrreg_powerup = MCI_PWR_ON,
185 .f_max = 100000000,
186 .signal_direction = true,
187 .pwrreg_clkgate = true,
188 .busy_detect = true,
189 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
190 .busy_detect_flag = MCI_ST_CARDBUSY,
191 .busy_detect_mask = MCI_ST_BUSYENDMASK,
192 .pwrreg_nopower = true,
193 };
194
195 static struct variant_data variant_ux500v2 = {
196 .fifosize = 30 * 4,
197 .fifohalfsize = 8 * 4,
198 .clkreg = MCI_CLK_ENABLE,
199 .clkreg_enable = MCI_ST_UX500_HWFCEN,
200 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
201 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
202 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
203 .datalength_bits = 24,
204 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
205 .st_sdio = true,
206 .st_clkdiv = true,
207 .blksz_datactrl16 = true,
208 .pwrreg_powerup = MCI_PWR_ON,
209 .f_max = 100000000,
210 .signal_direction = true,
211 .pwrreg_clkgate = true,
212 .busy_detect = true,
213 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
214 .busy_detect_flag = MCI_ST_CARDBUSY,
215 .busy_detect_mask = MCI_ST_BUSYENDMASK,
216 .pwrreg_nopower = true,
217 };
218
219 static struct variant_data variant_qcom = {
220 .fifosize = 16 * 4,
221 .fifohalfsize = 8 * 4,
222 .clkreg = MCI_CLK_ENABLE,
223 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
224 MCI_QCOM_CLK_SELECT_IN_FBCLK,
225 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
226 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
227 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
228 .blksz_datactrl4 = true,
229 .datalength_bits = 24,
230 .pwrreg_powerup = MCI_PWR_UP,
231 .f_max = 208000000,
232 .explicit_mclk_control = true,
233 .qcom_fifo = true,
234 .qcom_dml = true,
235 };
236
237 /* Busy detection for the ST Micro variant */
238 static int mmci_card_busy(struct mmc_host *mmc)
239 {
240 struct mmci_host *host = mmc_priv(mmc);
241 unsigned long flags;
242 int busy = 0;
243
244 spin_lock_irqsave(&host->lock, flags);
245 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
246 busy = 1;
247 spin_unlock_irqrestore(&host->lock, flags);
248
249 return busy;
250 }
251
252 /*
253 * Validate mmc prerequisites
254 */
255 static int mmci_validate_data(struct mmci_host *host,
256 struct mmc_data *data)
257 {
258 if (!data)
259 return 0;
260
261 if (!is_power_of_2(data->blksz)) {
262 dev_err(mmc_dev(host->mmc),
263 "unsupported block size (%d bytes)\n", data->blksz);
264 return -EINVAL;
265 }
266
267 return 0;
268 }
269
270 static void mmci_reg_delay(struct mmci_host *host)
271 {
272 /*
273 * According to the spec, at least three feedback clock cycles
274 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
275 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
276 * Worst delay time during card init is at 100 kHz => 30 us.
277 * Worst delay time when up and running is at 25 MHz => 120 ns.
278 */
279 if (host->cclk < 25000000)
280 udelay(30);
281 else
282 ndelay(120);
283 }
284
285 /*
286 * This must be called with host->lock held
287 */
288 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
289 {
290 if (host->clk_reg != clk) {
291 host->clk_reg = clk;
292 writel(clk, host->base + MMCICLOCK);
293 }
294 }
295
296 /*
297 * This must be called with host->lock held
298 */
299 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
300 {
301 if (host->pwr_reg != pwr) {
302 host->pwr_reg = pwr;
303 writel(pwr, host->base + MMCIPOWER);
304 }
305 }
306
307 /*
308 * This must be called with host->lock held
309 */
310 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
311 {
312 /* Keep busy mode in DPSM if enabled */
313 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
314
315 if (host->datactrl_reg != datactrl) {
316 host->datactrl_reg = datactrl;
317 writel(datactrl, host->base + MMCIDATACTRL);
318 }
319 }
320
321 /*
322 * This must be called with host->lock held
323 */
324 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
325 {
326 struct variant_data *variant = host->variant;
327 u32 clk = variant->clkreg;
328
329 /* Make sure cclk reflects the current calculated clock */
330 host->cclk = 0;
331
332 if (desired) {
333 if (variant->explicit_mclk_control) {
334 host->cclk = host->mclk;
335 } else if (desired >= host->mclk) {
336 clk = MCI_CLK_BYPASS;
337 if (variant->st_clkdiv)
338 clk |= MCI_ST_UX500_NEG_EDGE;
339 host->cclk = host->mclk;
340 } else if (variant->st_clkdiv) {
341 /*
342 * DB8500 TRM says f = mclk / (clkdiv + 2)
343 * => clkdiv = (mclk / f) - 2
344 * Round the divider up so we don't exceed the max
345 * frequency
346 */
347 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
348 if (clk >= 256)
349 clk = 255;
350 host->cclk = host->mclk / (clk + 2);
351 } else {
352 /*
353 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
354 * => clkdiv = mclk / (2 * f) - 1
355 */
356 clk = host->mclk / (2 * desired) - 1;
357 if (clk >= 256)
358 clk = 255;
359 host->cclk = host->mclk / (2 * (clk + 1));
360 }
361
362 clk |= variant->clkreg_enable;
363 clk |= MCI_CLK_ENABLE;
364 /* This hasn't proven to be worthwhile */
365 /* clk |= MCI_CLK_PWRSAVE; */
366 }
367
368 /* Set actual clock for debug */
369 host->mmc->actual_clock = host->cclk;
370
371 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
372 clk |= MCI_4BIT_BUS;
373 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
374 clk |= variant->clkreg_8bit_bus_enable;
375
376 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
377 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
378 clk |= variant->clkreg_neg_edge_enable;
379
380 mmci_write_clkreg(host, clk);
381 }
382
383 static void
384 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
385 {
386 writel(0, host->base + MMCICOMMAND);
387
388 BUG_ON(host->data);
389
390 host->mrq = NULL;
391 host->cmd = NULL;
392
393 mmc_request_done(host->mmc, mrq);
394 }
395
396 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
397 {
398 void __iomem *base = host->base;
399
400 if (host->singleirq) {
401 unsigned int mask0 = readl(base + MMCIMASK0);
402
403 mask0 &= ~MCI_IRQ1MASK;
404 mask0 |= mask;
405
406 writel(mask0, base + MMCIMASK0);
407 }
408
409 writel(mask, base + MMCIMASK1);
410 }
411
412 static void mmci_stop_data(struct mmci_host *host)
413 {
414 mmci_write_datactrlreg(host, 0);
415 mmci_set_mask1(host, 0);
416 host->data = NULL;
417 }
418
419 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
420 {
421 unsigned int flags = SG_MITER_ATOMIC;
422
423 if (data->flags & MMC_DATA_READ)
424 flags |= SG_MITER_TO_SG;
425 else
426 flags |= SG_MITER_FROM_SG;
427
428 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
429 }
430
431 /*
432 * All the DMA operation mode stuff goes inside this ifdef.
433 * This assumes that you have a generic DMA device interface,
434 * no custom DMA interfaces are supported.
435 */
436 #ifdef CONFIG_DMA_ENGINE
437 static void mmci_dma_setup(struct mmci_host *host)
438 {
439 const char *rxname, *txname;
440 struct variant_data *variant = host->variant;
441
442 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
443 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
444
445 /* initialize pre request cookie */
446 host->next_data.cookie = 1;
447
448 /*
449 * If only an RX channel is specified, the driver will
450 * attempt to use it bidirectionally, however if it is
451 * is specified but cannot be located, DMA will be disabled.
452 */
453 if (host->dma_rx_channel && !host->dma_tx_channel)
454 host->dma_tx_channel = host->dma_rx_channel;
455
456 if (host->dma_rx_channel)
457 rxname = dma_chan_name(host->dma_rx_channel);
458 else
459 rxname = "none";
460
461 if (host->dma_tx_channel)
462 txname = dma_chan_name(host->dma_tx_channel);
463 else
464 txname = "none";
465
466 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
467 rxname, txname);
468
469 /*
470 * Limit the maximum segment size in any SG entry according to
471 * the parameters of the DMA engine device.
472 */
473 if (host->dma_tx_channel) {
474 struct device *dev = host->dma_tx_channel->device->dev;
475 unsigned int max_seg_size = dma_get_max_seg_size(dev);
476
477 if (max_seg_size < host->mmc->max_seg_size)
478 host->mmc->max_seg_size = max_seg_size;
479 }
480 if (host->dma_rx_channel) {
481 struct device *dev = host->dma_rx_channel->device->dev;
482 unsigned int max_seg_size = dma_get_max_seg_size(dev);
483
484 if (max_seg_size < host->mmc->max_seg_size)
485 host->mmc->max_seg_size = max_seg_size;
486 }
487
488 if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
489 if (dml_hw_init(host, host->mmc->parent->of_node))
490 variant->qcom_dml = false;
491 }
492
493 /*
494 * This is used in or so inline it
495 * so it can be discarded.
496 */
497 static inline void mmci_dma_release(struct mmci_host *host)
498 {
499 if (host->dma_rx_channel)
500 dma_release_channel(host->dma_rx_channel);
501 if (host->dma_tx_channel)
502 dma_release_channel(host->dma_tx_channel);
503 host->dma_rx_channel = host->dma_tx_channel = NULL;
504 }
505
506 static void mmci_dma_data_error(struct mmci_host *host)
507 {
508 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
509 dmaengine_terminate_all(host->dma_current);
510 host->dma_in_progress = false;
511 host->dma_current = NULL;
512 host->dma_desc_current = NULL;
513 host->data->host_cookie = 0;
514 }
515
516 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
517 {
518 struct dma_chan *chan;
519
520 if (data->flags & MMC_DATA_READ)
521 chan = host->dma_rx_channel;
522 else
523 chan = host->dma_tx_channel;
524
525 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
526 mmc_get_dma_dir(data));
527 }
528
529 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
530 {
531 u32 status;
532 int i;
533
534 /* Wait up to 1ms for the DMA to complete */
535 for (i = 0; ; i++) {
536 status = readl(host->base + MMCISTATUS);
537 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
538 break;
539 udelay(10);
540 }
541
542 /*
543 * Check to see whether we still have some data left in the FIFO -
544 * this catches DMA controllers which are unable to monitor the
545 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
546 * contiguous buffers. On TX, we'll get a FIFO underrun error.
547 */
548 if (status & MCI_RXDATAAVLBLMASK) {
549 mmci_dma_data_error(host);
550 if (!data->error)
551 data->error = -EIO;
552 }
553
554 if (!data->host_cookie)
555 mmci_dma_unmap(host, data);
556
557 /*
558 * Use of DMA with scatter-gather is impossible.
559 * Give up with DMA and switch back to PIO mode.
560 */
561 if (status & MCI_RXDATAAVLBLMASK) {
562 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
563 mmci_dma_release(host);
564 }
565
566 host->dma_in_progress = false;
567 host->dma_current = NULL;
568 host->dma_desc_current = NULL;
569 }
570
571 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
572 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
573 struct dma_chan **dma_chan,
574 struct dma_async_tx_descriptor **dma_desc)
575 {
576 struct variant_data *variant = host->variant;
577 struct dma_slave_config conf = {
578 .src_addr = host->phybase + MMCIFIFO,
579 .dst_addr = host->phybase + MMCIFIFO,
580 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
581 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
582 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
583 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
584 .device_fc = false,
585 };
586 struct dma_chan *chan;
587 struct dma_device *device;
588 struct dma_async_tx_descriptor *desc;
589 int nr_sg;
590 unsigned long flags = DMA_CTRL_ACK;
591
592 if (data->flags & MMC_DATA_READ) {
593 conf.direction = DMA_DEV_TO_MEM;
594 chan = host->dma_rx_channel;
595 } else {
596 conf.direction = DMA_MEM_TO_DEV;
597 chan = host->dma_tx_channel;
598 }
599
600 /* If there's no DMA channel, fall back to PIO */
601 if (!chan)
602 return -EINVAL;
603
604 /* If less than or equal to the fifo size, don't bother with DMA */
605 if (data->blksz * data->blocks <= variant->fifosize)
606 return -EINVAL;
607
608 device = chan->device;
609 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
610 mmc_get_dma_dir(data));
611 if (nr_sg == 0)
612 return -EINVAL;
613
614 if (host->variant->qcom_dml)
615 flags |= DMA_PREP_INTERRUPT;
616
617 dmaengine_slave_config(chan, &conf);
618 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
619 conf.direction, flags);
620 if (!desc)
621 goto unmap_exit;
622
623 *dma_chan = chan;
624 *dma_desc = desc;
625
626 return 0;
627
628 unmap_exit:
629 dma_unmap_sg(device->dev, data->sg, data->sg_len,
630 mmc_get_dma_dir(data));
631 return -ENOMEM;
632 }
633
634 static inline int mmci_dma_prep_data(struct mmci_host *host,
635 struct mmc_data *data)
636 {
637 /* Check if next job is already prepared. */
638 if (host->dma_current && host->dma_desc_current)
639 return 0;
640
641 /* No job were prepared thus do it now. */
642 return __mmci_dma_prep_data(host, data, &host->dma_current,
643 &host->dma_desc_current);
644 }
645
646 static inline int mmci_dma_prep_next(struct mmci_host *host,
647 struct mmc_data *data)
648 {
649 struct mmci_host_next *nd = &host->next_data;
650 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
651 }
652
653 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
654 {
655 int ret;
656 struct mmc_data *data = host->data;
657
658 ret = mmci_dma_prep_data(host, host->data);
659 if (ret)
660 return ret;
661
662 /* Okay, go for it. */
663 dev_vdbg(mmc_dev(host->mmc),
664 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
665 data->sg_len, data->blksz, data->blocks, data->flags);
666 host->dma_in_progress = true;
667 dmaengine_submit(host->dma_desc_current);
668 dma_async_issue_pending(host->dma_current);
669
670 if (host->variant->qcom_dml)
671 dml_start_xfer(host, data);
672
673 datactrl |= MCI_DPSM_DMAENABLE;
674
675 /* Trigger the DMA transfer */
676 mmci_write_datactrlreg(host, datactrl);
677
678 /*
679 * Let the MMCI say when the data is ended and it's time
680 * to fire next DMA request. When that happens, MMCI will
681 * call mmci_data_end()
682 */
683 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
684 host->base + MMCIMASK0);
685 return 0;
686 }
687
688 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
689 {
690 struct mmci_host_next *next = &host->next_data;
691
692 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
693 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
694
695 host->dma_desc_current = next->dma_desc;
696 host->dma_current = next->dma_chan;
697 next->dma_desc = NULL;
698 next->dma_chan = NULL;
699 }
700
701 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
702 {
703 struct mmci_host *host = mmc_priv(mmc);
704 struct mmc_data *data = mrq->data;
705 struct mmci_host_next *nd = &host->next_data;
706
707 if (!data)
708 return;
709
710 BUG_ON(data->host_cookie);
711
712 if (mmci_validate_data(host, data))
713 return;
714
715 if (!mmci_dma_prep_next(host, data))
716 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
717 }
718
719 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
720 int err)
721 {
722 struct mmci_host *host = mmc_priv(mmc);
723 struct mmc_data *data = mrq->data;
724
725 if (!data || !data->host_cookie)
726 return;
727
728 mmci_dma_unmap(host, data);
729
730 if (err) {
731 struct mmci_host_next *next = &host->next_data;
732 struct dma_chan *chan;
733 if (data->flags & MMC_DATA_READ)
734 chan = host->dma_rx_channel;
735 else
736 chan = host->dma_tx_channel;
737 dmaengine_terminate_all(chan);
738
739 if (host->dma_desc_current == next->dma_desc)
740 host->dma_desc_current = NULL;
741
742 if (host->dma_current == next->dma_chan) {
743 host->dma_in_progress = false;
744 host->dma_current = NULL;
745 }
746
747 next->dma_desc = NULL;
748 next->dma_chan = NULL;
749 data->host_cookie = 0;
750 }
751 }
752
753 #else
754 /* Blank functions if the DMA engine is not available */
755 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
756 {
757 }
758 static inline void mmci_dma_setup(struct mmci_host *host)
759 {
760 }
761
762 static inline void mmci_dma_release(struct mmci_host *host)
763 {
764 }
765
766 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
767 {
768 }
769
770 static inline void mmci_dma_finalize(struct mmci_host *host,
771 struct mmc_data *data)
772 {
773 }
774
775 static inline void mmci_dma_data_error(struct mmci_host *host)
776 {
777 }
778
779 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
780 {
781 return -ENOSYS;
782 }
783
784 #define mmci_pre_request NULL
785 #define mmci_post_request NULL
786
787 #endif
788
789 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
790 {
791 struct variant_data *variant = host->variant;
792 unsigned int datactrl, timeout, irqmask;
793 unsigned long long clks;
794 void __iomem *base;
795 int blksz_bits;
796
797 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
798 data->blksz, data->blocks, data->flags);
799
800 host->data = data;
801 host->size = data->blksz * data->blocks;
802 data->bytes_xfered = 0;
803
804 clks = (unsigned long long)data->timeout_ns * host->cclk;
805 do_div(clks, NSEC_PER_SEC);
806
807 timeout = data->timeout_clks + (unsigned int)clks;
808
809 base = host->base;
810 writel(timeout, base + MMCIDATATIMER);
811 writel(host->size, base + MMCIDATALENGTH);
812
813 blksz_bits = ffs(data->blksz) - 1;
814 BUG_ON(1 << blksz_bits != data->blksz);
815
816 if (variant->blksz_datactrl16)
817 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
818 else if (variant->blksz_datactrl4)
819 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
820 else
821 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
822
823 if (data->flags & MMC_DATA_READ)
824 datactrl |= MCI_DPSM_DIRECTION;
825
826 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
827 u32 clk;
828
829 datactrl |= variant->datactrl_mask_sdio;
830
831 /*
832 * The ST Micro variant for SDIO small write transfers
833 * needs to have clock H/W flow control disabled,
834 * otherwise the transfer will not start. The threshold
835 * depends on the rate of MCLK.
836 */
837 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
838 (host->size < 8 ||
839 (host->size <= 8 && host->mclk > 50000000)))
840 clk = host->clk_reg & ~variant->clkreg_enable;
841 else
842 clk = host->clk_reg | variant->clkreg_enable;
843
844 mmci_write_clkreg(host, clk);
845 }
846
847 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
848 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
849 datactrl |= variant->datactrl_mask_ddrmode;
850
851 /*
852 * Attempt to use DMA operation mode, if this
853 * should fail, fall back to PIO mode
854 */
855 if (!mmci_dma_start_data(host, datactrl))
856 return;
857
858 /* IRQ mode, map the SG list for CPU reading/writing */
859 mmci_init_sg(host, data);
860
861 if (data->flags & MMC_DATA_READ) {
862 irqmask = MCI_RXFIFOHALFFULLMASK;
863
864 /*
865 * If we have less than the fifo 'half-full' threshold to
866 * transfer, trigger a PIO interrupt as soon as any data
867 * is available.
868 */
869 if (host->size < variant->fifohalfsize)
870 irqmask |= MCI_RXDATAAVLBLMASK;
871 } else {
872 /*
873 * We don't actually need to include "FIFO empty" here
874 * since its implicit in "FIFO half empty".
875 */
876 irqmask = MCI_TXFIFOHALFEMPTYMASK;
877 }
878
879 mmci_write_datactrlreg(host, datactrl);
880 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
881 mmci_set_mask1(host, irqmask);
882 }
883
884 static void
885 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
886 {
887 void __iomem *base = host->base;
888
889 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
890 cmd->opcode, cmd->arg, cmd->flags);
891
892 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
893 writel(0, base + MMCICOMMAND);
894 mmci_reg_delay(host);
895 }
896
897 c |= cmd->opcode | MCI_CPSM_ENABLE;
898 if (cmd->flags & MMC_RSP_PRESENT) {
899 if (cmd->flags & MMC_RSP_136)
900 c |= MCI_CPSM_LONGRSP;
901 c |= MCI_CPSM_RESPONSE;
902 }
903 if (/*interrupt*/0)
904 c |= MCI_CPSM_INTERRUPT;
905
906 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
907 c |= host->variant->data_cmd_enable;
908
909 host->cmd = cmd;
910
911 writel(cmd->arg, base + MMCIARGUMENT);
912 writel(c, base + MMCICOMMAND);
913 }
914
915 static void
916 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
917 unsigned int status)
918 {
919 /* Make sure we have data to handle */
920 if (!data)
921 return;
922
923 /* First check for errors */
924 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
925 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
926 u32 remain, success;
927
928 /* Terminate the DMA transfer */
929 if (dma_inprogress(host)) {
930 mmci_dma_data_error(host);
931 mmci_dma_unmap(host, data);
932 }
933
934 /*
935 * Calculate how far we are into the transfer. Note that
936 * the data counter gives the number of bytes transferred
937 * on the MMC bus, not on the host side. On reads, this
938 * can be as much as a FIFO-worth of data ahead. This
939 * matters for FIFO overruns only.
940 */
941 remain = readl(host->base + MMCIDATACNT);
942 success = data->blksz * data->blocks - remain;
943
944 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
945 status, success);
946 if (status & MCI_DATACRCFAIL) {
947 /* Last block was not successful */
948 success -= 1;
949 data->error = -EILSEQ;
950 } else if (status & MCI_DATATIMEOUT) {
951 data->error = -ETIMEDOUT;
952 } else if (status & MCI_STARTBITERR) {
953 data->error = -ECOMM;
954 } else if (status & MCI_TXUNDERRUN) {
955 data->error = -EIO;
956 } else if (status & MCI_RXOVERRUN) {
957 if (success > host->variant->fifosize)
958 success -= host->variant->fifosize;
959 else
960 success = 0;
961 data->error = -EIO;
962 }
963 data->bytes_xfered = round_down(success, data->blksz);
964 }
965
966 if (status & MCI_DATABLOCKEND)
967 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
968
969 if (status & MCI_DATAEND || data->error) {
970 if (dma_inprogress(host))
971 mmci_dma_finalize(host, data);
972 mmci_stop_data(host);
973
974 if (!data->error)
975 /* The error clause is handled above, success! */
976 data->bytes_xfered = data->blksz * data->blocks;
977
978 if (!data->stop || host->mrq->sbc) {
979 mmci_request_end(host, data->mrq);
980 } else {
981 mmci_start_command(host, data->stop, 0);
982 }
983 }
984 }
985
986 static void
987 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
988 unsigned int status)
989 {
990 void __iomem *base = host->base;
991 bool sbc;
992
993 if (!cmd)
994 return;
995
996 sbc = (cmd == host->mrq->sbc);
997
998 /*
999 * We need to be one of these interrupts to be considered worth
1000 * handling. Note that we tag on any latent IRQs postponed
1001 * due to waiting for busy status.
1002 */
1003 if (!((status|host->busy_status) &
1004 (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1005 return;
1006
1007 /*
1008 * ST Micro variant: handle busy detection.
1009 */
1010 if (host->variant->busy_detect) {
1011 bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1012
1013 /* We are busy with a command, return */
1014 if (host->busy_status &&
1015 (status & host->variant->busy_detect_flag))
1016 return;
1017
1018 /*
1019 * We were not busy, but we now got a busy response on
1020 * something that was not an error, and we double-check
1021 * that the special busy status bit is still set before
1022 * proceeding.
1023 */
1024 if (!host->busy_status && busy_resp &&
1025 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1026 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1027
1028 /* Clear the busy start IRQ */
1029 writel(host->variant->busy_detect_mask,
1030 host->base + MMCICLEAR);
1031
1032 /* Unmask the busy end IRQ */
1033 writel(readl(base + MMCIMASK0) |
1034 host->variant->busy_detect_mask,
1035 base + MMCIMASK0);
1036 /*
1037 * Now cache the last response status code (until
1038 * the busy bit goes low), and return.
1039 */
1040 host->busy_status =
1041 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1042 return;
1043 }
1044
1045 /*
1046 * At this point we are not busy with a command, we have
1047 * not received a new busy request, clear and mask the busy
1048 * end IRQ and fall through to process the IRQ.
1049 */
1050 if (host->busy_status) {
1051
1052 writel(host->variant->busy_detect_mask,
1053 host->base + MMCICLEAR);
1054
1055 writel(readl(base + MMCIMASK0) &
1056 ~host->variant->busy_detect_mask,
1057 base + MMCIMASK0);
1058 host->busy_status = 0;
1059 }
1060 }
1061
1062 host->cmd = NULL;
1063
1064 if (status & MCI_CMDTIMEOUT) {
1065 cmd->error = -ETIMEDOUT;
1066 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1067 cmd->error = -EILSEQ;
1068 } else {
1069 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1070 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1071 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1072 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1073 }
1074
1075 if ((!sbc && !cmd->data) || cmd->error) {
1076 if (host->data) {
1077 /* Terminate the DMA transfer */
1078 if (dma_inprogress(host)) {
1079 mmci_dma_data_error(host);
1080 mmci_dma_unmap(host, host->data);
1081 }
1082 mmci_stop_data(host);
1083 }
1084 mmci_request_end(host, host->mrq);
1085 } else if (sbc) {
1086 mmci_start_command(host, host->mrq->cmd, 0);
1087 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1088 mmci_start_data(host, cmd->data);
1089 }
1090 }
1091
1092 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1093 {
1094 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1095 }
1096
1097 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1098 {
1099 /*
1100 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1101 * from the fifo range should be used
1102 */
1103 if (status & MCI_RXFIFOHALFFULL)
1104 return host->variant->fifohalfsize;
1105 else if (status & MCI_RXDATAAVLBL)
1106 return 4;
1107
1108 return 0;
1109 }
1110
1111 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1112 {
1113 void __iomem *base = host->base;
1114 char *ptr = buffer;
1115 u32 status = readl(host->base + MMCISTATUS);
1116 int host_remain = host->size;
1117
1118 do {
1119 int count = host->get_rx_fifocnt(host, status, host_remain);
1120
1121 if (count > remain)
1122 count = remain;
1123
1124 if (count <= 0)
1125 break;
1126
1127 /*
1128 * SDIO especially may want to send something that is
1129 * not divisible by 4 (as opposed to card sectors
1130 * etc). Therefore make sure to always read the last bytes
1131 * while only doing full 32-bit reads towards the FIFO.
1132 */
1133 if (unlikely(count & 0x3)) {
1134 if (count < 4) {
1135 unsigned char buf[4];
1136 ioread32_rep(base + MMCIFIFO, buf, 1);
1137 memcpy(ptr, buf, count);
1138 } else {
1139 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1140 count &= ~0x3;
1141 }
1142 } else {
1143 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1144 }
1145
1146 ptr += count;
1147 remain -= count;
1148 host_remain -= count;
1149
1150 if (remain == 0)
1151 break;
1152
1153 status = readl(base + MMCISTATUS);
1154 } while (status & MCI_RXDATAAVLBL);
1155
1156 return ptr - buffer;
1157 }
1158
1159 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1160 {
1161 struct variant_data *variant = host->variant;
1162 void __iomem *base = host->base;
1163 char *ptr = buffer;
1164
1165 do {
1166 unsigned int count, maxcnt;
1167
1168 maxcnt = status & MCI_TXFIFOEMPTY ?
1169 variant->fifosize : variant->fifohalfsize;
1170 count = min(remain, maxcnt);
1171
1172 /*
1173 * SDIO especially may want to send something that is
1174 * not divisible by 4 (as opposed to card sectors
1175 * etc), and the FIFO only accept full 32-bit writes.
1176 * So compensate by adding +3 on the count, a single
1177 * byte become a 32bit write, 7 bytes will be two
1178 * 32bit writes etc.
1179 */
1180 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1181
1182 ptr += count;
1183 remain -= count;
1184
1185 if (remain == 0)
1186 break;
1187
1188 status = readl(base + MMCISTATUS);
1189 } while (status & MCI_TXFIFOHALFEMPTY);
1190
1191 return ptr - buffer;
1192 }
1193
1194 /*
1195 * PIO data transfer IRQ handler.
1196 */
1197 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1198 {
1199 struct mmci_host *host = dev_id;
1200 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1201 struct variant_data *variant = host->variant;
1202 void __iomem *base = host->base;
1203 unsigned long flags;
1204 u32 status;
1205
1206 status = readl(base + MMCISTATUS);
1207
1208 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1209
1210 local_irq_save(flags);
1211
1212 do {
1213 unsigned int remain, len;
1214 char *buffer;
1215
1216 /*
1217 * For write, we only need to test the half-empty flag
1218 * here - if the FIFO is completely empty, then by
1219 * definition it is more than half empty.
1220 *
1221 * For read, check for data available.
1222 */
1223 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1224 break;
1225
1226 if (!sg_miter_next(sg_miter))
1227 break;
1228
1229 buffer = sg_miter->addr;
1230 remain = sg_miter->length;
1231
1232 len = 0;
1233 if (status & MCI_RXACTIVE)
1234 len = mmci_pio_read(host, buffer, remain);
1235 if (status & MCI_TXACTIVE)
1236 len = mmci_pio_write(host, buffer, remain, status);
1237
1238 sg_miter->consumed = len;
1239
1240 host->size -= len;
1241 remain -= len;
1242
1243 if (remain)
1244 break;
1245
1246 status = readl(base + MMCISTATUS);
1247 } while (1);
1248
1249 sg_miter_stop(sg_miter);
1250
1251 local_irq_restore(flags);
1252
1253 /*
1254 * If we have less than the fifo 'half-full' threshold to transfer,
1255 * trigger a PIO interrupt as soon as any data is available.
1256 */
1257 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1258 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1259
1260 /*
1261 * If we run out of data, disable the data IRQs; this
1262 * prevents a race where the FIFO becomes empty before
1263 * the chip itself has disabled the data path, and
1264 * stops us racing with our data end IRQ.
1265 */
1266 if (host->size == 0) {
1267 mmci_set_mask1(host, 0);
1268 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1269 }
1270
1271 return IRQ_HANDLED;
1272 }
1273
1274 /*
1275 * Handle completion of command and data transfers.
1276 */
1277 static irqreturn_t mmci_irq(int irq, void *dev_id)
1278 {
1279 struct mmci_host *host = dev_id;
1280 u32 status;
1281 int ret = 0;
1282
1283 spin_lock(&host->lock);
1284
1285 do {
1286 status = readl(host->base + MMCISTATUS);
1287
1288 if (host->singleirq) {
1289 if (status & readl(host->base + MMCIMASK1))
1290 mmci_pio_irq(irq, dev_id);
1291
1292 status &= ~MCI_IRQ1MASK;
1293 }
1294
1295 /*
1296 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1297 * enabled) in mmci_cmd_irq() function where ST Micro busy
1298 * detection variant is handled. Considering the HW seems to be
1299 * triggering the IRQ on both edges while monitoring DAT0 for
1300 * busy completion and that same status bit is used to monitor
1301 * start and end of busy detection, special care must be taken
1302 * to make sure that both start and end interrupts are always
1303 * cleared one after the other.
1304 */
1305 status &= readl(host->base + MMCIMASK0);
1306 if (host->variant->busy_detect)
1307 writel(status & ~host->variant->busy_detect_mask,
1308 host->base + MMCICLEAR);
1309 else
1310 writel(status, host->base + MMCICLEAR);
1311
1312 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1313
1314 if (host->variant->reversed_irq_handling) {
1315 mmci_data_irq(host, host->data, status);
1316 mmci_cmd_irq(host, host->cmd, status);
1317 } else {
1318 mmci_cmd_irq(host, host->cmd, status);
1319 mmci_data_irq(host, host->data, status);
1320 }
1321
1322 /*
1323 * Don't poll for busy completion in irq context.
1324 */
1325 if (host->variant->busy_detect && host->busy_status)
1326 status &= ~host->variant->busy_detect_flag;
1327
1328 ret = 1;
1329 } while (status);
1330
1331 spin_unlock(&host->lock);
1332
1333 return IRQ_RETVAL(ret);
1334 }
1335
1336 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1337 {
1338 struct mmci_host *host = mmc_priv(mmc);
1339 unsigned long flags;
1340
1341 WARN_ON(host->mrq != NULL);
1342
1343 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1344 if (mrq->cmd->error) {
1345 mmc_request_done(mmc, mrq);
1346 return;
1347 }
1348
1349 spin_lock_irqsave(&host->lock, flags);
1350
1351 host->mrq = mrq;
1352
1353 if (mrq->data)
1354 mmci_get_next_data(host, mrq->data);
1355
1356 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1357 mmci_start_data(host, mrq->data);
1358
1359 if (mrq->sbc)
1360 mmci_start_command(host, mrq->sbc, 0);
1361 else
1362 mmci_start_command(host, mrq->cmd, 0);
1363
1364 spin_unlock_irqrestore(&host->lock, flags);
1365 }
1366
1367 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1368 {
1369 struct mmci_host *host = mmc_priv(mmc);
1370 struct variant_data *variant = host->variant;
1371 u32 pwr = 0;
1372 unsigned long flags;
1373 int ret;
1374
1375 if (host->plat->ios_handler &&
1376 host->plat->ios_handler(mmc_dev(mmc), ios))
1377 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1378
1379 switch (ios->power_mode) {
1380 case MMC_POWER_OFF:
1381 if (!IS_ERR(mmc->supply.vmmc))
1382 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1383
1384 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1385 regulator_disable(mmc->supply.vqmmc);
1386 host->vqmmc_enabled = false;
1387 }
1388
1389 break;
1390 case MMC_POWER_UP:
1391 if (!IS_ERR(mmc->supply.vmmc))
1392 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1393
1394 /*
1395 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1396 * and instead uses MCI_PWR_ON so apply whatever value is
1397 * configured in the variant data.
1398 */
1399 pwr |= variant->pwrreg_powerup;
1400
1401 break;
1402 case MMC_POWER_ON:
1403 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1404 ret = regulator_enable(mmc->supply.vqmmc);
1405 if (ret < 0)
1406 dev_err(mmc_dev(mmc),
1407 "failed to enable vqmmc regulator\n");
1408 else
1409 host->vqmmc_enabled = true;
1410 }
1411
1412 pwr |= MCI_PWR_ON;
1413 break;
1414 }
1415
1416 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1417 /*
1418 * The ST Micro variant has some additional bits
1419 * indicating signal direction for the signals in
1420 * the SD/MMC bus and feedback-clock usage.
1421 */
1422 pwr |= host->pwr_reg_add;
1423
1424 if (ios->bus_width == MMC_BUS_WIDTH_4)
1425 pwr &= ~MCI_ST_DATA74DIREN;
1426 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1427 pwr &= (~MCI_ST_DATA74DIREN &
1428 ~MCI_ST_DATA31DIREN &
1429 ~MCI_ST_DATA2DIREN);
1430 }
1431
1432 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1433 if (host->hw_designer != AMBA_VENDOR_ST)
1434 pwr |= MCI_ROD;
1435 else {
1436 /*
1437 * The ST Micro variant use the ROD bit for something
1438 * else and only has OD (Open Drain).
1439 */
1440 pwr |= MCI_OD;
1441 }
1442 }
1443
1444 /*
1445 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1446 * gating the clock, the MCI_PWR_ON bit is cleared.
1447 */
1448 if (!ios->clock && variant->pwrreg_clkgate)
1449 pwr &= ~MCI_PWR_ON;
1450
1451 if (host->variant->explicit_mclk_control &&
1452 ios->clock != host->clock_cache) {
1453 ret = clk_set_rate(host->clk, ios->clock);
1454 if (ret < 0)
1455 dev_err(mmc_dev(host->mmc),
1456 "Error setting clock rate (%d)\n", ret);
1457 else
1458 host->mclk = clk_get_rate(host->clk);
1459 }
1460 host->clock_cache = ios->clock;
1461
1462 spin_lock_irqsave(&host->lock, flags);
1463
1464 mmci_set_clkreg(host, ios->clock);
1465 mmci_write_pwrreg(host, pwr);
1466 mmci_reg_delay(host);
1467
1468 spin_unlock_irqrestore(&host->lock, flags);
1469 }
1470
1471 static int mmci_get_cd(struct mmc_host *mmc)
1472 {
1473 struct mmci_host *host = mmc_priv(mmc);
1474 struct mmci_platform_data *plat = host->plat;
1475 unsigned int status = mmc_gpio_get_cd(mmc);
1476
1477 if (status == -ENOSYS) {
1478 if (!plat->status)
1479 return 1; /* Assume always present */
1480
1481 status = plat->status(mmc_dev(host->mmc));
1482 }
1483 return status;
1484 }
1485
1486 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1487 {
1488 int ret = 0;
1489
1490 if (!IS_ERR(mmc->supply.vqmmc)) {
1491
1492 switch (ios->signal_voltage) {
1493 case MMC_SIGNAL_VOLTAGE_330:
1494 ret = regulator_set_voltage(mmc->supply.vqmmc,
1495 2700000, 3600000);
1496 break;
1497 case MMC_SIGNAL_VOLTAGE_180:
1498 ret = regulator_set_voltage(mmc->supply.vqmmc,
1499 1700000, 1950000);
1500 break;
1501 case MMC_SIGNAL_VOLTAGE_120:
1502 ret = regulator_set_voltage(mmc->supply.vqmmc,
1503 1100000, 1300000);
1504 break;
1505 }
1506
1507 if (ret)
1508 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1509 }
1510
1511 return ret;
1512 }
1513
1514 static struct mmc_host_ops mmci_ops = {
1515 .request = mmci_request,
1516 .pre_req = mmci_pre_request,
1517 .post_req = mmci_post_request,
1518 .set_ios = mmci_set_ios,
1519 .get_ro = mmc_gpio_get_ro,
1520 .get_cd = mmci_get_cd,
1521 .start_signal_voltage_switch = mmci_sig_volt_switch,
1522 };
1523
1524 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1525 {
1526 struct mmci_host *host = mmc_priv(mmc);
1527 int ret = mmc_of_parse(mmc);
1528
1529 if (ret)
1530 return ret;
1531
1532 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1533 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1534 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1535 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1536 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1537 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1538 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1539 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1540 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1541 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1542 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1543 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1544
1545 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1546 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1547 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1548 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1549
1550 return 0;
1551 }
1552
1553 static int mmci_probe(struct amba_device *dev,
1554 const struct amba_id *id)
1555 {
1556 struct mmci_platform_data *plat = dev->dev.platform_data;
1557 struct device_node *np = dev->dev.of_node;
1558 struct variant_data *variant = id->data;
1559 struct mmci_host *host;
1560 struct mmc_host *mmc;
1561 int ret;
1562
1563 /* Must have platform data or Device Tree. */
1564 if (!plat && !np) {
1565 dev_err(&dev->dev, "No plat data or DT found\n");
1566 return -EINVAL;
1567 }
1568
1569 if (!plat) {
1570 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1571 if (!plat)
1572 return -ENOMEM;
1573 }
1574
1575 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1576 if (!mmc)
1577 return -ENOMEM;
1578
1579 ret = mmci_of_parse(np, mmc);
1580 if (ret)
1581 goto host_free;
1582
1583 host = mmc_priv(mmc);
1584 host->mmc = mmc;
1585
1586 host->hw_designer = amba_manf(dev);
1587 host->hw_revision = amba_rev(dev);
1588 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1589 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1590
1591 host->clk = devm_clk_get(&dev->dev, NULL);
1592 if (IS_ERR(host->clk)) {
1593 ret = PTR_ERR(host->clk);
1594 goto host_free;
1595 }
1596
1597 ret = clk_prepare_enable(host->clk);
1598 if (ret)
1599 goto host_free;
1600
1601 if (variant->qcom_fifo)
1602 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1603 else
1604 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1605
1606 host->plat = plat;
1607 host->variant = variant;
1608 host->mclk = clk_get_rate(host->clk);
1609 /*
1610 * According to the spec, mclk is max 100 MHz,
1611 * so we try to adjust the clock down to this,
1612 * (if possible).
1613 */
1614 if (host->mclk > variant->f_max) {
1615 ret = clk_set_rate(host->clk, variant->f_max);
1616 if (ret < 0)
1617 goto clk_disable;
1618 host->mclk = clk_get_rate(host->clk);
1619 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1620 host->mclk);
1621 }
1622
1623 host->phybase = dev->res.start;
1624 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1625 if (IS_ERR(host->base)) {
1626 ret = PTR_ERR(host->base);
1627 goto clk_disable;
1628 }
1629
1630 /*
1631 * The ARM and ST versions of the block have slightly different
1632 * clock divider equations which means that the minimum divider
1633 * differs too.
1634 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1635 */
1636 if (variant->st_clkdiv)
1637 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1638 else if (variant->explicit_mclk_control)
1639 mmc->f_min = clk_round_rate(host->clk, 100000);
1640 else
1641 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1642 /*
1643 * If no maximum operating frequency is supplied, fall back to use
1644 * the module parameter, which has a (low) default value in case it
1645 * is not specified. Either value must not exceed the clock rate into
1646 * the block, of course.
1647 */
1648 if (mmc->f_max)
1649 mmc->f_max = variant->explicit_mclk_control ?
1650 min(variant->f_max, mmc->f_max) :
1651 min(host->mclk, mmc->f_max);
1652 else
1653 mmc->f_max = variant->explicit_mclk_control ?
1654 fmax : min(host->mclk, fmax);
1655
1656
1657 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1658
1659 /* Get regulators and the supported OCR mask */
1660 ret = mmc_regulator_get_supply(mmc);
1661 if (ret == -EPROBE_DEFER)
1662 goto clk_disable;
1663
1664 if (!mmc->ocr_avail)
1665 mmc->ocr_avail = plat->ocr_mask;
1666 else if (plat->ocr_mask)
1667 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1668
1669 /* DT takes precedence over platform data. */
1670 if (!np) {
1671 if (!plat->cd_invert)
1672 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1673 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1674 }
1675
1676 /* We support these capabilities. */
1677 mmc->caps |= MMC_CAP_CMD23;
1678
1679 /*
1680 * Enable busy detection.
1681 */
1682 if (variant->busy_detect) {
1683 mmci_ops.card_busy = mmci_card_busy;
1684 /*
1685 * Not all variants have a flag to enable busy detection
1686 * in the DPSM, but if they do, set it here.
1687 */
1688 if (variant->busy_dpsm_flag)
1689 mmci_write_datactrlreg(host,
1690 host->variant->busy_dpsm_flag);
1691 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1692 mmc->max_busy_timeout = 0;
1693 }
1694
1695 mmc->ops = &mmci_ops;
1696
1697 /* We support these PM capabilities. */
1698 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1699
1700 /*
1701 * We can do SGIO
1702 */
1703 mmc->max_segs = NR_SG;
1704
1705 /*
1706 * Since only a certain number of bits are valid in the data length
1707 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1708 * single request.
1709 */
1710 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1711
1712 /*
1713 * Set the maximum segment size. Since we aren't doing DMA
1714 * (yet) we are only limited by the data length register.
1715 */
1716 mmc->max_seg_size = mmc->max_req_size;
1717
1718 /*
1719 * Block size can be up to 2048 bytes, but must be a power of two.
1720 */
1721 mmc->max_blk_size = 1 << 11;
1722
1723 /*
1724 * Limit the number of blocks transferred so that we don't overflow
1725 * the maximum request size.
1726 */
1727 mmc->max_blk_count = mmc->max_req_size >> 11;
1728
1729 spin_lock_init(&host->lock);
1730
1731 writel(0, host->base + MMCIMASK0);
1732 writel(0, host->base + MMCIMASK1);
1733 writel(0xfff, host->base + MMCICLEAR);
1734
1735 /*
1736 * If:
1737 * - not using DT but using a descriptor table, or
1738 * - using a table of descriptors ALONGSIDE DT, or
1739 * look up these descriptors named "cd" and "wp" right here, fail
1740 * silently of these do not exist and proceed to try platform data
1741 */
1742 if (!np) {
1743 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1744 if (ret < 0) {
1745 if (ret == -EPROBE_DEFER)
1746 goto clk_disable;
1747 else if (gpio_is_valid(plat->gpio_cd)) {
1748 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1749 if (ret)
1750 goto clk_disable;
1751 }
1752 }
1753
1754 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1755 if (ret < 0) {
1756 if (ret == -EPROBE_DEFER)
1757 goto clk_disable;
1758 else if (gpio_is_valid(plat->gpio_wp)) {
1759 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1760 if (ret)
1761 goto clk_disable;
1762 }
1763 }
1764 }
1765
1766 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1767 DRIVER_NAME " (cmd)", host);
1768 if (ret)
1769 goto clk_disable;
1770
1771 if (!dev->irq[1])
1772 host->singleirq = true;
1773 else {
1774 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1775 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1776 if (ret)
1777 goto clk_disable;
1778 }
1779
1780 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1781
1782 amba_set_drvdata(dev, mmc);
1783
1784 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1785 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1786 amba_rev(dev), (unsigned long long)dev->res.start,
1787 dev->irq[0], dev->irq[1]);
1788
1789 mmci_dma_setup(host);
1790
1791 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1792 pm_runtime_use_autosuspend(&dev->dev);
1793
1794 mmc_add_host(mmc);
1795
1796 pm_runtime_put(&dev->dev);
1797 return 0;
1798
1799 clk_disable:
1800 clk_disable_unprepare(host->clk);
1801 host_free:
1802 mmc_free_host(mmc);
1803 return ret;
1804 }
1805
1806 static int mmci_remove(struct amba_device *dev)
1807 {
1808 struct mmc_host *mmc = amba_get_drvdata(dev);
1809
1810 if (mmc) {
1811 struct mmci_host *host = mmc_priv(mmc);
1812
1813 /*
1814 * Undo pm_runtime_put() in probe. We use the _sync
1815 * version here so that we can access the primecell.
1816 */
1817 pm_runtime_get_sync(&dev->dev);
1818
1819 mmc_remove_host(mmc);
1820
1821 writel(0, host->base + MMCIMASK0);
1822 writel(0, host->base + MMCIMASK1);
1823
1824 writel(0, host->base + MMCICOMMAND);
1825 writel(0, host->base + MMCIDATACTRL);
1826
1827 mmci_dma_release(host);
1828 clk_disable_unprepare(host->clk);
1829 mmc_free_host(mmc);
1830 }
1831
1832 return 0;
1833 }
1834
1835 #ifdef CONFIG_PM
1836 static void mmci_save(struct mmci_host *host)
1837 {
1838 unsigned long flags;
1839
1840 spin_lock_irqsave(&host->lock, flags);
1841
1842 writel(0, host->base + MMCIMASK0);
1843 if (host->variant->pwrreg_nopower) {
1844 writel(0, host->base + MMCIDATACTRL);
1845 writel(0, host->base + MMCIPOWER);
1846 writel(0, host->base + MMCICLOCK);
1847 }
1848 mmci_reg_delay(host);
1849
1850 spin_unlock_irqrestore(&host->lock, flags);
1851 }
1852
1853 static void mmci_restore(struct mmci_host *host)
1854 {
1855 unsigned long flags;
1856
1857 spin_lock_irqsave(&host->lock, flags);
1858
1859 if (host->variant->pwrreg_nopower) {
1860 writel(host->clk_reg, host->base + MMCICLOCK);
1861 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1862 writel(host->pwr_reg, host->base + MMCIPOWER);
1863 }
1864 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1865 mmci_reg_delay(host);
1866
1867 spin_unlock_irqrestore(&host->lock, flags);
1868 }
1869
1870 static int mmci_runtime_suspend(struct device *dev)
1871 {
1872 struct amba_device *adev = to_amba_device(dev);
1873 struct mmc_host *mmc = amba_get_drvdata(adev);
1874
1875 if (mmc) {
1876 struct mmci_host *host = mmc_priv(mmc);
1877 pinctrl_pm_select_sleep_state(dev);
1878 mmci_save(host);
1879 clk_disable_unprepare(host->clk);
1880 }
1881
1882 return 0;
1883 }
1884
1885 static int mmci_runtime_resume(struct device *dev)
1886 {
1887 struct amba_device *adev = to_amba_device(dev);
1888 struct mmc_host *mmc = amba_get_drvdata(adev);
1889
1890 if (mmc) {
1891 struct mmci_host *host = mmc_priv(mmc);
1892 clk_prepare_enable(host->clk);
1893 mmci_restore(host);
1894 pinctrl_pm_select_default_state(dev);
1895 }
1896
1897 return 0;
1898 }
1899 #endif
1900
1901 static const struct dev_pm_ops mmci_dev_pm_ops = {
1902 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1903 pm_runtime_force_resume)
1904 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1905 };
1906
1907 static struct amba_id mmci_ids[] = {
1908 {
1909 .id = 0x00041180,
1910 .mask = 0xff0fffff,
1911 .data = &variant_arm,
1912 },
1913 {
1914 .id = 0x01041180,
1915 .mask = 0xff0fffff,
1916 .data = &variant_arm_extended_fifo,
1917 },
1918 {
1919 .id = 0x02041180,
1920 .mask = 0xff0fffff,
1921 .data = &variant_arm_extended_fifo_hwfc,
1922 },
1923 {
1924 .id = 0x00041181,
1925 .mask = 0x000fffff,
1926 .data = &variant_arm,
1927 },
1928 /* ST Micro variants */
1929 {
1930 .id = 0x00180180,
1931 .mask = 0x00ffffff,
1932 .data = &variant_u300,
1933 },
1934 {
1935 .id = 0x10180180,
1936 .mask = 0xf0ffffff,
1937 .data = &variant_nomadik,
1938 },
1939 {
1940 .id = 0x00280180,
1941 .mask = 0x00ffffff,
1942 .data = &variant_nomadik,
1943 },
1944 {
1945 .id = 0x00480180,
1946 .mask = 0xf0ffffff,
1947 .data = &variant_ux500,
1948 },
1949 {
1950 .id = 0x10480180,
1951 .mask = 0xf0ffffff,
1952 .data = &variant_ux500v2,
1953 },
1954 /* Qualcomm variants */
1955 {
1956 .id = 0x00051180,
1957 .mask = 0x000fffff,
1958 .data = &variant_qcom,
1959 },
1960 { 0, 0 },
1961 };
1962
1963 MODULE_DEVICE_TABLE(amba, mmci_ids);
1964
1965 static struct amba_driver mmci_driver = {
1966 .drv = {
1967 .name = DRIVER_NAME,
1968 .pm = &mmci_dev_pm_ops,
1969 },
1970 .probe = mmci_probe,
1971 .remove = mmci_remove,
1972 .id_table = mmci_ids,
1973 };
1974
1975 module_amba_driver(mmci_driver);
1976
1977 module_param(fmax, uint, 0444);
1978
1979 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1980 MODULE_LICENSE("GPL");