Merge branch 'master' into next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mmc / host / mmc_spi.c
1 /*
2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3 *
4 * (C) Copyright 2005, Intec Automation,
5 * Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 * Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 * Jan Nikitenko <jan.nikitenko@gmail.com>
11 *
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/bio.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/crc7.h>
32 #include <linux/crc-itu-t.h>
33 #include <linux/scatterlist.h>
34
35 #include <linux/mmc/host.h>
36 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
37
38 #include <linux/spi/spi.h>
39 #include <linux/spi/mmc_spi.h>
40
41 #include <asm/unaligned.h>
42
43
44 /* NOTES:
45 *
46 * - For now, we won't try to interoperate with a real mmc/sd/sdio
47 * controller, although some of them do have hardware support for
48 * SPI protocol. The main reason for such configs would be mmc-ish
49 * cards like DataFlash, which don't support that "native" protocol.
50 *
51 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
52 * switch between driver stacks, and in any case if "native" mode
53 * is available, it will be faster and hence preferable.
54 *
55 * - MMC depends on a different chipselect management policy than the
56 * SPI interface currently supports for shared bus segments: it needs
57 * to issue multiple spi_message requests with the chipselect active,
58 * using the results of one message to decide the next one to issue.
59 *
60 * Pending updates to the programming interface, this driver expects
61 * that it not share the bus with other drivers (precluding conflicts).
62 *
63 * - We tell the controller to keep the chipselect active from the
64 * beginning of an mmc_host_ops.request until the end. So beware
65 * of SPI controller drivers that mis-handle the cs_change flag!
66 *
67 * However, many cards seem OK with chipselect flapping up/down
68 * during that time ... at least on unshared bus segments.
69 */
70
71
72 /*
73 * Local protocol constants, internal to data block protocols.
74 */
75
76 /* Response tokens used to ack each block written: */
77 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
78 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
79 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
80 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
81
82 /* Read and write blocks start with these tokens and end with crc;
83 * on error, read tokens act like a subset of R2_SPI_* values.
84 */
85 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
86 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
87 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
88
89 #define MMC_SPI_BLOCKSIZE 512
90
91
92 /* These fixed timeouts come from the latest SD specs, which say to ignore
93 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
94 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
95 * reads which takes nowhere near that long. Older cards may be able to use
96 * shorter timeouts ... but why bother?
97 */
98 #define r1b_timeout (HZ * 3)
99
100 /* One of the critical speed parameters is the amount of data which may
101 * be transfered in one command. If this value is too low, the SD card
102 * controller has to do multiple partial block writes (argggh!). With
103 * today (2008) SD cards there is little speed gain if we transfer more
104 * than 64 KBytes at a time. So use this value until there is any indication
105 * that we should do more here.
106 */
107 #define MMC_SPI_BLOCKSATONCE 128
108
109 /****************************************************************************/
110
111 /*
112 * Local Data Structures
113 */
114
115 /* "scratch" is per-{command,block} data exchanged with the card */
116 struct scratch {
117 u8 status[29];
118 u8 data_token;
119 __be16 crc_val;
120 };
121
122 struct mmc_spi_host {
123 struct mmc_host *mmc;
124 struct spi_device *spi;
125
126 unsigned char power_mode;
127 u16 powerup_msecs;
128
129 struct mmc_spi_platform_data *pdata;
130
131 /* for bulk data transfers */
132 struct spi_transfer token, t, crc, early_status;
133 struct spi_message m;
134
135 /* for status readback */
136 struct spi_transfer status;
137 struct spi_message readback;
138
139 /* underlying DMA-aware controller, or null */
140 struct device *dma_dev;
141
142 /* buffer used for commands and for message "overhead" */
143 struct scratch *data;
144 dma_addr_t data_dma;
145
146 /* Specs say to write ones most of the time, even when the card
147 * has no need to read its input data; and many cards won't care.
148 * This is our source of those ones.
149 */
150 void *ones;
151 dma_addr_t ones_dma;
152 };
153
154
155 /****************************************************************************/
156
157 /*
158 * MMC-over-SPI protocol glue, used by the MMC stack interface
159 */
160
161 static inline int mmc_cs_off(struct mmc_spi_host *host)
162 {
163 /* chipselect will always be inactive after setup() */
164 return spi_setup(host->spi);
165 }
166
167 static int
168 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
169 {
170 int status;
171
172 if (len > sizeof(*host->data)) {
173 WARN_ON(1);
174 return -EIO;
175 }
176
177 host->status.len = len;
178
179 if (host->dma_dev)
180 dma_sync_single_for_device(host->dma_dev,
181 host->data_dma, sizeof(*host->data),
182 DMA_FROM_DEVICE);
183
184 status = spi_sync(host->spi, &host->readback);
185
186 if (host->dma_dev)
187 dma_sync_single_for_cpu(host->dma_dev,
188 host->data_dma, sizeof(*host->data),
189 DMA_FROM_DEVICE);
190
191 return status;
192 }
193
194 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
195 unsigned n, u8 byte)
196 {
197 u8 *cp = host->data->status;
198 unsigned long start = jiffies;
199
200 while (1) {
201 int status;
202 unsigned i;
203
204 status = mmc_spi_readbytes(host, n);
205 if (status < 0)
206 return status;
207
208 for (i = 0; i < n; i++) {
209 if (cp[i] != byte)
210 return cp[i];
211 }
212
213 if (time_is_before_jiffies(start + timeout))
214 break;
215
216 /* If we need long timeouts, we may release the CPU.
217 * We use jiffies here because we want to have a relation
218 * between elapsed time and the blocking of the scheduler.
219 */
220 if (time_is_before_jiffies(start+1))
221 schedule();
222 }
223 return -ETIMEDOUT;
224 }
225
226 static inline int
227 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
228 {
229 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
230 }
231
232 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
233 {
234 return mmc_spi_skip(host, timeout, 1, 0xff);
235 }
236
237
238 /*
239 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
240 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
241 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
242 *
243 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
244 * newer cards R7 (IF_COND).
245 */
246
247 static char *maptype(struct mmc_command *cmd)
248 {
249 switch (mmc_spi_resp_type(cmd)) {
250 case MMC_RSP_SPI_R1: return "R1";
251 case MMC_RSP_SPI_R1B: return "R1B";
252 case MMC_RSP_SPI_R2: return "R2/R5";
253 case MMC_RSP_SPI_R3: return "R3/R4/R7";
254 default: return "?";
255 }
256 }
257
258 /* return zero, else negative errno after setting cmd->error */
259 static int mmc_spi_response_get(struct mmc_spi_host *host,
260 struct mmc_command *cmd, int cs_on)
261 {
262 u8 *cp = host->data->status;
263 u8 *end = cp + host->t.len;
264 int value = 0;
265 int bitshift;
266 u8 leftover = 0;
267 unsigned short rotator;
268 int i;
269 char tag[32];
270
271 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
272 cmd->opcode, maptype(cmd));
273
274 /* Except for data block reads, the whole response will already
275 * be stored in the scratch buffer. It's somewhere after the
276 * command and the first byte we read after it. We ignore that
277 * first byte. After STOP_TRANSMISSION command it may include
278 * two data bits, but otherwise it's all ones.
279 */
280 cp += 8;
281 while (cp < end && *cp == 0xff)
282 cp++;
283
284 /* Data block reads (R1 response types) may need more data... */
285 if (cp == end) {
286 cp = host->data->status;
287 end = cp+1;
288
289 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
290 * status byte ... and we already scanned 2 bytes.
291 *
292 * REVISIT block read paths use nasty byte-at-a-time I/O
293 * so it can always DMA directly into the target buffer.
294 * It'd probably be better to memcpy() the first chunk and
295 * avoid extra i/o calls...
296 *
297 * Note we check for more than 8 bytes, because in practice,
298 * some SD cards are slow...
299 */
300 for (i = 2; i < 16; i++) {
301 value = mmc_spi_readbytes(host, 1);
302 if (value < 0)
303 goto done;
304 if (*cp != 0xff)
305 goto checkstatus;
306 }
307 value = -ETIMEDOUT;
308 goto done;
309 }
310
311 checkstatus:
312 bitshift = 0;
313 if (*cp & 0x80) {
314 /* Houston, we have an ugly card with a bit-shifted response */
315 rotator = *cp++ << 8;
316 /* read the next byte */
317 if (cp == end) {
318 value = mmc_spi_readbytes(host, 1);
319 if (value < 0)
320 goto done;
321 cp = host->data->status;
322 end = cp+1;
323 }
324 rotator |= *cp++;
325 while (rotator & 0x8000) {
326 bitshift++;
327 rotator <<= 1;
328 }
329 cmd->resp[0] = rotator >> 8;
330 leftover = rotator;
331 } else {
332 cmd->resp[0] = *cp++;
333 }
334 cmd->error = 0;
335
336 /* Status byte: the entire seven-bit R1 response. */
337 if (cmd->resp[0] != 0) {
338 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
339 & cmd->resp[0])
340 value = -EFAULT; /* Bad address */
341 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
342 value = -ENOSYS; /* Function not implemented */
343 else if (R1_SPI_COM_CRC & cmd->resp[0])
344 value = -EILSEQ; /* Illegal byte sequence */
345 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
346 & cmd->resp[0])
347 value = -EIO; /* I/O error */
348 /* else R1_SPI_IDLE, "it's resetting" */
349 }
350
351 switch (mmc_spi_resp_type(cmd)) {
352
353 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
354 * and less-common stuff like various erase operations.
355 */
356 case MMC_RSP_SPI_R1B:
357 /* maybe we read all the busy tokens already */
358 while (cp < end && *cp == 0)
359 cp++;
360 if (cp == end)
361 mmc_spi_wait_unbusy(host, r1b_timeout);
362 break;
363
364 /* SPI R2 == R1 + second status byte; SEND_STATUS
365 * SPI R5 == R1 + data byte; IO_RW_DIRECT
366 */
367 case MMC_RSP_SPI_R2:
368 /* read the next byte */
369 if (cp == end) {
370 value = mmc_spi_readbytes(host, 1);
371 if (value < 0)
372 goto done;
373 cp = host->data->status;
374 end = cp+1;
375 }
376 if (bitshift) {
377 rotator = leftover << 8;
378 rotator |= *cp << bitshift;
379 cmd->resp[0] |= (rotator & 0xFF00);
380 } else {
381 cmd->resp[0] |= *cp << 8;
382 }
383 break;
384
385 /* SPI R3, R4, or R7 == R1 + 4 bytes */
386 case MMC_RSP_SPI_R3:
387 rotator = leftover << 8;
388 cmd->resp[1] = 0;
389 for (i = 0; i < 4; i++) {
390 cmd->resp[1] <<= 8;
391 /* read the next byte */
392 if (cp == end) {
393 value = mmc_spi_readbytes(host, 1);
394 if (value < 0)
395 goto done;
396 cp = host->data->status;
397 end = cp+1;
398 }
399 if (bitshift) {
400 rotator |= *cp++ << bitshift;
401 cmd->resp[1] |= (rotator >> 8);
402 rotator <<= 8;
403 } else {
404 cmd->resp[1] |= *cp++;
405 }
406 }
407 break;
408
409 /* SPI R1 == just one status byte */
410 case MMC_RSP_SPI_R1:
411 break;
412
413 default:
414 dev_dbg(&host->spi->dev, "bad response type %04x\n",
415 mmc_spi_resp_type(cmd));
416 if (value >= 0)
417 value = -EINVAL;
418 goto done;
419 }
420
421 if (value < 0)
422 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
423 tag, cmd->resp[0], cmd->resp[1]);
424
425 /* disable chipselect on errors and some success cases */
426 if (value >= 0 && cs_on)
427 return value;
428 done:
429 if (value < 0)
430 cmd->error = value;
431 mmc_cs_off(host);
432 return value;
433 }
434
435 /* Issue command and read its response.
436 * Returns zero on success, negative for error.
437 *
438 * On error, caller must cope with mmc core retry mechanism. That
439 * means immediate low-level resubmit, which affects the bus lock...
440 */
441 static int
442 mmc_spi_command_send(struct mmc_spi_host *host,
443 struct mmc_request *mrq,
444 struct mmc_command *cmd, int cs_on)
445 {
446 struct scratch *data = host->data;
447 u8 *cp = data->status;
448 u32 arg = cmd->arg;
449 int status;
450 struct spi_transfer *t;
451
452 /* We can handle most commands (except block reads) in one full
453 * duplex I/O operation before either starting the next transfer
454 * (data block or command) or else deselecting the card.
455 *
456 * First, write 7 bytes:
457 * - an all-ones byte to ensure the card is ready
458 * - opcode byte (plus start and transmission bits)
459 * - four bytes of big-endian argument
460 * - crc7 (plus end bit) ... always computed, it's cheap
461 *
462 * We init the whole buffer to all-ones, which is what we need
463 * to write while we're reading (later) response data.
464 */
465 memset(cp++, 0xff, sizeof(data->status));
466
467 *cp++ = 0x40 | cmd->opcode;
468 *cp++ = (u8)(arg >> 24);
469 *cp++ = (u8)(arg >> 16);
470 *cp++ = (u8)(arg >> 8);
471 *cp++ = (u8)arg;
472 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
473
474 /* Then, read up to 13 bytes (while writing all-ones):
475 * - N(CR) (== 1..8) bytes of all-ones
476 * - status byte (for all response types)
477 * - the rest of the response, either:
478 * + nothing, for R1 or R1B responses
479 * + second status byte, for R2 responses
480 * + four data bytes, for R3 and R7 responses
481 *
482 * Finally, read some more bytes ... in the nice cases we know in
483 * advance how many, and reading 1 more is always OK:
484 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
485 * - N(RC) (== 1..N) bytes of all-ones, before next command
486 * - N(WR) (== 1..N) bytes of all-ones, before data write
487 *
488 * So in those cases one full duplex I/O of at most 21 bytes will
489 * handle the whole command, leaving the card ready to receive a
490 * data block or new command. We do that whenever we can, shaving
491 * CPU and IRQ costs (especially when using DMA or FIFOs).
492 *
493 * There are two other cases, where it's not generally practical
494 * to rely on a single I/O:
495 *
496 * - R1B responses need at least N(EC) bytes of all-zeroes.
497 *
498 * In this case we can *try* to fit it into one I/O, then
499 * maybe read more data later.
500 *
501 * - Data block reads are more troublesome, since a variable
502 * number of padding bytes precede the token and data.
503 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
504 * + N(AC) (== 1..many) bytes of all-ones
505 *
506 * In this case we currently only have minimal speedups here:
507 * when N(CR) == 1 we can avoid I/O in response_get().
508 */
509 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
510 cp += 2; /* min(N(CR)) + status */
511 /* R1 */
512 } else {
513 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
514 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
515 cp++;
516 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
517 cp += 4;
518 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
519 cp = data->status + sizeof(data->status);
520 /* else: R1 (most commands) */
521 }
522
523 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
524 cmd->opcode, maptype(cmd));
525
526 /* send command, leaving chipselect active */
527 spi_message_init(&host->m);
528
529 t = &host->t;
530 memset(t, 0, sizeof(*t));
531 t->tx_buf = t->rx_buf = data->status;
532 t->tx_dma = t->rx_dma = host->data_dma;
533 t->len = cp - data->status;
534 t->cs_change = 1;
535 spi_message_add_tail(t, &host->m);
536
537 if (host->dma_dev) {
538 host->m.is_dma_mapped = 1;
539 dma_sync_single_for_device(host->dma_dev,
540 host->data_dma, sizeof(*host->data),
541 DMA_BIDIRECTIONAL);
542 }
543 status = spi_sync(host->spi, &host->m);
544
545 if (host->dma_dev)
546 dma_sync_single_for_cpu(host->dma_dev,
547 host->data_dma, sizeof(*host->data),
548 DMA_BIDIRECTIONAL);
549 if (status < 0) {
550 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
551 cmd->error = status;
552 return status;
553 }
554
555 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
556 return mmc_spi_response_get(host, cmd, cs_on);
557 }
558
559 /* Build data message with up to four separate transfers. For TX, we
560 * start by writing the data token. And in most cases, we finish with
561 * a status transfer.
562 *
563 * We always provide TX data for data and CRC. The MMC/SD protocol
564 * requires us to write ones; but Linux defaults to writing zeroes;
565 * so we explicitly initialize it to all ones on RX paths.
566 *
567 * We also handle DMA mapping, so the underlying SPI controller does
568 * not need to (re)do it for each message.
569 */
570 static void
571 mmc_spi_setup_data_message(
572 struct mmc_spi_host *host,
573 int multiple,
574 enum dma_data_direction direction)
575 {
576 struct spi_transfer *t;
577 struct scratch *scratch = host->data;
578 dma_addr_t dma = host->data_dma;
579
580 spi_message_init(&host->m);
581 if (dma)
582 host->m.is_dma_mapped = 1;
583
584 /* for reads, readblock() skips 0xff bytes before finding
585 * the token; for writes, this transfer issues that token.
586 */
587 if (direction == DMA_TO_DEVICE) {
588 t = &host->token;
589 memset(t, 0, sizeof(*t));
590 t->len = 1;
591 if (multiple)
592 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
593 else
594 scratch->data_token = SPI_TOKEN_SINGLE;
595 t->tx_buf = &scratch->data_token;
596 if (dma)
597 t->tx_dma = dma + offsetof(struct scratch, data_token);
598 spi_message_add_tail(t, &host->m);
599 }
600
601 /* Body of transfer is buffer, then CRC ...
602 * either TX-only, or RX with TX-ones.
603 */
604 t = &host->t;
605 memset(t, 0, sizeof(*t));
606 t->tx_buf = host->ones;
607 t->tx_dma = host->ones_dma;
608 /* length and actual buffer info are written later */
609 spi_message_add_tail(t, &host->m);
610
611 t = &host->crc;
612 memset(t, 0, sizeof(*t));
613 t->len = 2;
614 if (direction == DMA_TO_DEVICE) {
615 /* the actual CRC may get written later */
616 t->tx_buf = &scratch->crc_val;
617 if (dma)
618 t->tx_dma = dma + offsetof(struct scratch, crc_val);
619 } else {
620 t->tx_buf = host->ones;
621 t->tx_dma = host->ones_dma;
622 t->rx_buf = &scratch->crc_val;
623 if (dma)
624 t->rx_dma = dma + offsetof(struct scratch, crc_val);
625 }
626 spi_message_add_tail(t, &host->m);
627
628 /*
629 * A single block read is followed by N(EC) [0+] all-ones bytes
630 * before deselect ... don't bother.
631 *
632 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
633 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
634 * collect that single byte, so readblock() doesn't need to.
635 *
636 * For a write, the one-byte data response follows immediately, then
637 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
638 * Then single block reads may deselect, and multiblock ones issue
639 * the next token (next data block, or STOP_TRAN). We can try to
640 * minimize I/O ops by using a single read to collect end-of-busy.
641 */
642 if (multiple || direction == DMA_TO_DEVICE) {
643 t = &host->early_status;
644 memset(t, 0, sizeof(*t));
645 t->len = (direction == DMA_TO_DEVICE)
646 ? sizeof(scratch->status)
647 : 1;
648 t->tx_buf = host->ones;
649 t->tx_dma = host->ones_dma;
650 t->rx_buf = scratch->status;
651 if (dma)
652 t->rx_dma = dma + offsetof(struct scratch, status);
653 t->cs_change = 1;
654 spi_message_add_tail(t, &host->m);
655 }
656 }
657
658 /*
659 * Write one block:
660 * - caller handled preceding N(WR) [1+] all-ones bytes
661 * - data block
662 * + token
663 * + data bytes
664 * + crc16
665 * - an all-ones byte ... card writes a data-response byte
666 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
667 *
668 * Return negative errno, else success.
669 */
670 static int
671 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
672 unsigned long timeout)
673 {
674 struct spi_device *spi = host->spi;
675 int status, i;
676 struct scratch *scratch = host->data;
677 u32 pattern;
678
679 if (host->mmc->use_spi_crc)
680 scratch->crc_val = cpu_to_be16(
681 crc_itu_t(0, t->tx_buf, t->len));
682 if (host->dma_dev)
683 dma_sync_single_for_device(host->dma_dev,
684 host->data_dma, sizeof(*scratch),
685 DMA_BIDIRECTIONAL);
686
687 status = spi_sync(spi, &host->m);
688
689 if (status != 0) {
690 dev_dbg(&spi->dev, "write error (%d)\n", status);
691 return status;
692 }
693
694 if (host->dma_dev)
695 dma_sync_single_for_cpu(host->dma_dev,
696 host->data_dma, sizeof(*scratch),
697 DMA_BIDIRECTIONAL);
698
699 /*
700 * Get the transmission data-response reply. It must follow
701 * immediately after the data block we transferred. This reply
702 * doesn't necessarily tell whether the write operation succeeded;
703 * it just says if the transmission was ok and whether *earlier*
704 * writes succeeded; see the standard.
705 *
706 * In practice, there are (even modern SDHC-)cards which are late
707 * in sending the response, and miss the time frame by a few bits,
708 * so we have to cope with this situation and check the response
709 * bit-by-bit. Arggh!!!
710 */
711 pattern = scratch->status[0] << 24;
712 pattern |= scratch->status[1] << 16;
713 pattern |= scratch->status[2] << 8;
714 pattern |= scratch->status[3];
715
716 /* First 3 bit of pattern are undefined */
717 pattern |= 0xE0000000;
718
719 /* left-adjust to leading 0 bit */
720 while (pattern & 0x80000000)
721 pattern <<= 1;
722 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
723 pattern >>= 27;
724
725 switch (pattern) {
726 case SPI_RESPONSE_ACCEPTED:
727 status = 0;
728 break;
729 case SPI_RESPONSE_CRC_ERR:
730 /* host shall then issue MMC_STOP_TRANSMISSION */
731 status = -EILSEQ;
732 break;
733 case SPI_RESPONSE_WRITE_ERR:
734 /* host shall then issue MMC_STOP_TRANSMISSION,
735 * and should MMC_SEND_STATUS to sort it out
736 */
737 status = -EIO;
738 break;
739 default:
740 status = -EPROTO;
741 break;
742 }
743 if (status != 0) {
744 dev_dbg(&spi->dev, "write error %02x (%d)\n",
745 scratch->status[0], status);
746 return status;
747 }
748
749 t->tx_buf += t->len;
750 if (host->dma_dev)
751 t->tx_dma += t->len;
752
753 /* Return when not busy. If we didn't collect that status yet,
754 * we'll need some more I/O.
755 */
756 for (i = 4; i < sizeof(scratch->status); i++) {
757 /* card is non-busy if the most recent bit is 1 */
758 if (scratch->status[i] & 0x01)
759 return 0;
760 }
761 return mmc_spi_wait_unbusy(host, timeout);
762 }
763
764 /*
765 * Read one block:
766 * - skip leading all-ones bytes ... either
767 * + N(AC) [1..f(clock,CSD)] usually, else
768 * + N(CX) [0..8] when reading CSD or CID
769 * - data block
770 * + token ... if error token, no data or crc
771 * + data bytes
772 * + crc16
773 *
774 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
775 * before dropping chipselect.
776 *
777 * For multiblock reads, caller either reads the next block or issues a
778 * STOP_TRANSMISSION command.
779 */
780 static int
781 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
782 unsigned long timeout)
783 {
784 struct spi_device *spi = host->spi;
785 int status;
786 struct scratch *scratch = host->data;
787 unsigned int bitshift;
788 u8 leftover;
789
790 /* At least one SD card sends an all-zeroes byte when N(CX)
791 * applies, before the all-ones bytes ... just cope with that.
792 */
793 status = mmc_spi_readbytes(host, 1);
794 if (status < 0)
795 return status;
796 status = scratch->status[0];
797 if (status == 0xff || status == 0)
798 status = mmc_spi_readtoken(host, timeout);
799
800 if (status < 0) {
801 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
802 return status;
803 }
804
805 /* The token may be bit-shifted...
806 * the first 0-bit precedes the data stream.
807 */
808 bitshift = 7;
809 while (status & 0x80) {
810 status <<= 1;
811 bitshift--;
812 }
813 leftover = status << 1;
814
815 if (host->dma_dev) {
816 dma_sync_single_for_device(host->dma_dev,
817 host->data_dma, sizeof(*scratch),
818 DMA_BIDIRECTIONAL);
819 dma_sync_single_for_device(host->dma_dev,
820 t->rx_dma, t->len,
821 DMA_FROM_DEVICE);
822 }
823
824 status = spi_sync(spi, &host->m);
825
826 if (host->dma_dev) {
827 dma_sync_single_for_cpu(host->dma_dev,
828 host->data_dma, sizeof(*scratch),
829 DMA_BIDIRECTIONAL);
830 dma_sync_single_for_cpu(host->dma_dev,
831 t->rx_dma, t->len,
832 DMA_FROM_DEVICE);
833 }
834
835 if (bitshift) {
836 /* Walk through the data and the crc and do
837 * all the magic to get byte-aligned data.
838 */
839 u8 *cp = t->rx_buf;
840 unsigned int len;
841 unsigned int bitright = 8 - bitshift;
842 u8 temp;
843 for (len = t->len; len; len--) {
844 temp = *cp;
845 *cp++ = leftover | (temp >> bitshift);
846 leftover = temp << bitright;
847 }
848 cp = (u8 *) &scratch->crc_val;
849 temp = *cp;
850 *cp++ = leftover | (temp >> bitshift);
851 leftover = temp << bitright;
852 temp = *cp;
853 *cp = leftover | (temp >> bitshift);
854 }
855
856 if (host->mmc->use_spi_crc) {
857 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
858
859 be16_to_cpus(&scratch->crc_val);
860 if (scratch->crc_val != crc) {
861 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
862 "computed=0x%04x len=%d\n",
863 scratch->crc_val, crc, t->len);
864 return -EILSEQ;
865 }
866 }
867
868 t->rx_buf += t->len;
869 if (host->dma_dev)
870 t->rx_dma += t->len;
871
872 return 0;
873 }
874
875 /*
876 * An MMC/SD data stage includes one or more blocks, optional CRCs,
877 * and inline handshaking. That handhaking makes it unlike most
878 * other SPI protocol stacks.
879 */
880 static void
881 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
882 struct mmc_data *data, u32 blk_size)
883 {
884 struct spi_device *spi = host->spi;
885 struct device *dma_dev = host->dma_dev;
886 struct spi_transfer *t;
887 enum dma_data_direction direction;
888 struct scatterlist *sg;
889 unsigned n_sg;
890 int multiple = (data->blocks > 1);
891 u32 clock_rate;
892 unsigned long timeout;
893
894 if (data->flags & MMC_DATA_READ)
895 direction = DMA_FROM_DEVICE;
896 else
897 direction = DMA_TO_DEVICE;
898 mmc_spi_setup_data_message(host, multiple, direction);
899 t = &host->t;
900
901 if (t->speed_hz)
902 clock_rate = t->speed_hz;
903 else
904 clock_rate = spi->max_speed_hz;
905
906 timeout = data->timeout_ns +
907 data->timeout_clks * 1000000 / clock_rate;
908 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
909
910 /* Handle scatterlist segments one at a time, with synch for
911 * each 512-byte block
912 */
913 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
914 int status = 0;
915 dma_addr_t dma_addr = 0;
916 void *kmap_addr;
917 unsigned length = sg->length;
918 enum dma_data_direction dir = direction;
919
920 /* set up dma mapping for controller drivers that might
921 * use DMA ... though they may fall back to PIO
922 */
923 if (dma_dev) {
924 /* never invalidate whole *shared* pages ... */
925 if ((sg->offset != 0 || length != PAGE_SIZE)
926 && dir == DMA_FROM_DEVICE)
927 dir = DMA_BIDIRECTIONAL;
928
929 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
930 PAGE_SIZE, dir);
931 if (direction == DMA_TO_DEVICE)
932 t->tx_dma = dma_addr + sg->offset;
933 else
934 t->rx_dma = dma_addr + sg->offset;
935 }
936
937 /* allow pio too; we don't allow highmem */
938 kmap_addr = kmap(sg_page(sg));
939 if (direction == DMA_TO_DEVICE)
940 t->tx_buf = kmap_addr + sg->offset;
941 else
942 t->rx_buf = kmap_addr + sg->offset;
943
944 /* transfer each block, and update request status */
945 while (length) {
946 t->len = min(length, blk_size);
947
948 dev_dbg(&host->spi->dev,
949 " mmc_spi: %s block, %d bytes\n",
950 (direction == DMA_TO_DEVICE)
951 ? "write"
952 : "read",
953 t->len);
954
955 if (direction == DMA_TO_DEVICE)
956 status = mmc_spi_writeblock(host, t, timeout);
957 else
958 status = mmc_spi_readblock(host, t, timeout);
959 if (status < 0)
960 break;
961
962 data->bytes_xfered += t->len;
963 length -= t->len;
964
965 if (!multiple)
966 break;
967 }
968
969 /* discard mappings */
970 if (direction == DMA_FROM_DEVICE)
971 flush_kernel_dcache_page(sg_page(sg));
972 kunmap(sg_page(sg));
973 if (dma_dev)
974 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
975
976 if (status < 0) {
977 data->error = status;
978 dev_dbg(&spi->dev, "%s status %d\n",
979 (direction == DMA_TO_DEVICE)
980 ? "write" : "read",
981 status);
982 break;
983 }
984 }
985
986 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
987 * can be issued before multiblock writes. Unlike its more widely
988 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
989 * that can affect the STOP_TRAN logic. Complete (and current)
990 * MMC specs should sort that out before Linux starts using CMD23.
991 */
992 if (direction == DMA_TO_DEVICE && multiple) {
993 struct scratch *scratch = host->data;
994 int tmp;
995 const unsigned statlen = sizeof(scratch->status);
996
997 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
998
999 /* Tweak the per-block message we set up earlier by morphing
1000 * it to hold single buffer with the token followed by some
1001 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1002 * "not busy any longer" status, and leave chip selected.
1003 */
1004 INIT_LIST_HEAD(&host->m.transfers);
1005 list_add(&host->early_status.transfer_list,
1006 &host->m.transfers);
1007
1008 memset(scratch->status, 0xff, statlen);
1009 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1010
1011 host->early_status.tx_buf = host->early_status.rx_buf;
1012 host->early_status.tx_dma = host->early_status.rx_dma;
1013 host->early_status.len = statlen;
1014
1015 if (host->dma_dev)
1016 dma_sync_single_for_device(host->dma_dev,
1017 host->data_dma, sizeof(*scratch),
1018 DMA_BIDIRECTIONAL);
1019
1020 tmp = spi_sync(spi, &host->m);
1021
1022 if (host->dma_dev)
1023 dma_sync_single_for_cpu(host->dma_dev,
1024 host->data_dma, sizeof(*scratch),
1025 DMA_BIDIRECTIONAL);
1026
1027 if (tmp < 0) {
1028 if (!data->error)
1029 data->error = tmp;
1030 return;
1031 }
1032
1033 /* Ideally we collected "not busy" status with one I/O,
1034 * avoiding wasteful byte-at-a-time scanning... but more
1035 * I/O is often needed.
1036 */
1037 for (tmp = 2; tmp < statlen; tmp++) {
1038 if (scratch->status[tmp] != 0)
1039 return;
1040 }
1041 tmp = mmc_spi_wait_unbusy(host, timeout);
1042 if (tmp < 0 && !data->error)
1043 data->error = tmp;
1044 }
1045 }
1046
1047 /****************************************************************************/
1048
1049 /*
1050 * MMC driver implementation -- the interface to the MMC stack
1051 */
1052
1053 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1054 {
1055 struct mmc_spi_host *host = mmc_priv(mmc);
1056 int status = -EINVAL;
1057
1058 #ifdef DEBUG
1059 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1060 {
1061 struct mmc_command *cmd;
1062 int invalid = 0;
1063
1064 cmd = mrq->cmd;
1065 if (!mmc_spi_resp_type(cmd)) {
1066 dev_dbg(&host->spi->dev, "bogus command\n");
1067 cmd->error = -EINVAL;
1068 invalid = 1;
1069 }
1070
1071 cmd = mrq->stop;
1072 if (cmd && !mmc_spi_resp_type(cmd)) {
1073 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1074 cmd->error = -EINVAL;
1075 invalid = 1;
1076 }
1077
1078 if (invalid) {
1079 dump_stack();
1080 mmc_request_done(host->mmc, mrq);
1081 return;
1082 }
1083 }
1084 #endif
1085
1086 /* issue command; then optionally data and stop */
1087 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1088 if (status == 0 && mrq->data) {
1089 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1090 if (mrq->stop)
1091 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1092 else
1093 mmc_cs_off(host);
1094 }
1095
1096 mmc_request_done(host->mmc, mrq);
1097 }
1098
1099 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1100 *
1101 * NOTE that here we can't know that the card has just been powered up;
1102 * not all MMC/SD sockets support power switching.
1103 *
1104 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1105 * this doesn't seem to do the right thing at all...
1106 */
1107 static void mmc_spi_initsequence(struct mmc_spi_host *host)
1108 {
1109 /* Try to be very sure any previous command has completed;
1110 * wait till not-busy, skip debris from any old commands.
1111 */
1112 mmc_spi_wait_unbusy(host, r1b_timeout);
1113 mmc_spi_readbytes(host, 10);
1114
1115 /*
1116 * Do a burst with chipselect active-high. We need to do this to
1117 * meet the requirement of 74 clock cycles with both chipselect
1118 * and CMD (MOSI) high before CMD0 ... after the card has been
1119 * powered up to Vdd(min), and so is ready to take commands.
1120 *
1121 * Some cards are particularly needy of this (e.g. Viking "SD256")
1122 * while most others don't seem to care.
1123 *
1124 * Note that this is one of the places MMC/SD plays games with the
1125 * SPI protocol. Another is that when chipselect is released while
1126 * the card returns BUSY status, the clock must issue several cycles
1127 * with chipselect high before the card will stop driving its output.
1128 */
1129 host->spi->mode |= SPI_CS_HIGH;
1130 if (spi_setup(host->spi) != 0) {
1131 /* Just warn; most cards work without it. */
1132 dev_warn(&host->spi->dev,
1133 "can't change chip-select polarity\n");
1134 host->spi->mode &= ~SPI_CS_HIGH;
1135 } else {
1136 mmc_spi_readbytes(host, 18);
1137
1138 host->spi->mode &= ~SPI_CS_HIGH;
1139 if (spi_setup(host->spi) != 0) {
1140 /* Wot, we can't get the same setup we had before? */
1141 dev_err(&host->spi->dev,
1142 "can't restore chip-select polarity\n");
1143 }
1144 }
1145 }
1146
1147 static char *mmc_powerstring(u8 power_mode)
1148 {
1149 switch (power_mode) {
1150 case MMC_POWER_OFF: return "off";
1151 case MMC_POWER_UP: return "up";
1152 case MMC_POWER_ON: return "on";
1153 }
1154 return "?";
1155 }
1156
1157 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1158 {
1159 struct mmc_spi_host *host = mmc_priv(mmc);
1160
1161 if (host->power_mode != ios->power_mode) {
1162 int canpower;
1163
1164 canpower = host->pdata && host->pdata->setpower;
1165
1166 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1167 mmc_powerstring(ios->power_mode),
1168 ios->vdd,
1169 canpower ? ", can switch" : "");
1170
1171 /* switch power on/off if possible, accounting for
1172 * max 250msec powerup time if needed.
1173 */
1174 if (canpower) {
1175 switch (ios->power_mode) {
1176 case MMC_POWER_OFF:
1177 case MMC_POWER_UP:
1178 host->pdata->setpower(&host->spi->dev,
1179 ios->vdd);
1180 if (ios->power_mode == MMC_POWER_UP)
1181 msleep(host->powerup_msecs);
1182 }
1183 }
1184
1185 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1186 if (ios->power_mode == MMC_POWER_ON)
1187 mmc_spi_initsequence(host);
1188
1189 /* If powering down, ground all card inputs to avoid power
1190 * delivery from data lines! On a shared SPI bus, this
1191 * will probably be temporary; 6.4.2 of the simplified SD
1192 * spec says this must last at least 1msec.
1193 *
1194 * - Clock low means CPOL 0, e.g. mode 0
1195 * - MOSI low comes from writing zero
1196 * - Chipselect is usually active low...
1197 */
1198 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1199 int mres;
1200 u8 nullbyte = 0;
1201
1202 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1203 mres = spi_setup(host->spi);
1204 if (mres < 0)
1205 dev_dbg(&host->spi->dev,
1206 "switch to SPI mode 0 failed\n");
1207
1208 if (spi_write(host->spi, &nullbyte, 1) < 0)
1209 dev_dbg(&host->spi->dev,
1210 "put spi signals to low failed\n");
1211
1212 /*
1213 * Now clock should be low due to spi mode 0;
1214 * MOSI should be low because of written 0x00;
1215 * chipselect should be low (it is active low)
1216 * power supply is off, so now MMC is off too!
1217 *
1218 * FIXME no, chipselect can be high since the
1219 * device is inactive and SPI_CS_HIGH is clear...
1220 */
1221 msleep(10);
1222 if (mres == 0) {
1223 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1224 mres = spi_setup(host->spi);
1225 if (mres < 0)
1226 dev_dbg(&host->spi->dev,
1227 "switch back to SPI mode 3"
1228 " failed\n");
1229 }
1230 }
1231
1232 host->power_mode = ios->power_mode;
1233 }
1234
1235 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1236 int status;
1237
1238 host->spi->max_speed_hz = ios->clock;
1239 status = spi_setup(host->spi);
1240 dev_dbg(&host->spi->dev,
1241 "mmc_spi: clock to %d Hz, %d\n",
1242 host->spi->max_speed_hz, status);
1243 }
1244 }
1245
1246 static int mmc_spi_get_ro(struct mmc_host *mmc)
1247 {
1248 struct mmc_spi_host *host = mmc_priv(mmc);
1249
1250 if (host->pdata && host->pdata->get_ro)
1251 return !!host->pdata->get_ro(mmc->parent);
1252 /*
1253 * Board doesn't support read only detection; let the mmc core
1254 * decide what to do.
1255 */
1256 return -ENOSYS;
1257 }
1258
1259 static int mmc_spi_get_cd(struct mmc_host *mmc)
1260 {
1261 struct mmc_spi_host *host = mmc_priv(mmc);
1262
1263 if (host->pdata && host->pdata->get_cd)
1264 return !!host->pdata->get_cd(mmc->parent);
1265 return -ENOSYS;
1266 }
1267
1268 static const struct mmc_host_ops mmc_spi_ops = {
1269 .request = mmc_spi_request,
1270 .set_ios = mmc_spi_set_ios,
1271 .get_ro = mmc_spi_get_ro,
1272 .get_cd = mmc_spi_get_cd,
1273 };
1274
1275
1276 /****************************************************************************/
1277
1278 /*
1279 * SPI driver implementation
1280 */
1281
1282 static irqreturn_t
1283 mmc_spi_detect_irq(int irq, void *mmc)
1284 {
1285 struct mmc_spi_host *host = mmc_priv(mmc);
1286 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1287
1288 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1289 return IRQ_HANDLED;
1290 }
1291
1292 struct count_children {
1293 unsigned n;
1294 struct bus_type *bus;
1295 };
1296
1297 static int maybe_count_child(struct device *dev, void *c)
1298 {
1299 struct count_children *ccp = c;
1300
1301 if (dev->bus == ccp->bus) {
1302 if (ccp->n)
1303 return -EBUSY;
1304 ccp->n++;
1305 }
1306 return 0;
1307 }
1308
1309 static int mmc_spi_probe(struct spi_device *spi)
1310 {
1311 void *ones;
1312 struct mmc_host *mmc;
1313 struct mmc_spi_host *host;
1314 int status;
1315
1316 /* We rely on full duplex transfers, mostly to reduce
1317 * per-transfer overheads (by making fewer transfers).
1318 */
1319 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1320 return -EINVAL;
1321
1322 /* MMC and SD specs only seem to care that sampling is on the
1323 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1324 * should be legit. We'll use mode 0 since the steady state is 0,
1325 * which is appropriate for hotplugging, unless the platform data
1326 * specify mode 3 (if hardware is not compatible to mode 0).
1327 */
1328 if (spi->mode != SPI_MODE_3)
1329 spi->mode = SPI_MODE_0;
1330 spi->bits_per_word = 8;
1331
1332 status = spi_setup(spi);
1333 if (status < 0) {
1334 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1335 spi->mode, spi->max_speed_hz / 1000,
1336 status);
1337 return status;
1338 }
1339
1340 /* We can use the bus safely iff nobody else will interfere with us.
1341 * Most commands consist of one SPI message to issue a command, then
1342 * several more to collect its response, then possibly more for data
1343 * transfer. Clocking access to other devices during that period will
1344 * corrupt the command execution.
1345 *
1346 * Until we have software primitives which guarantee non-interference,
1347 * we'll aim for a hardware-level guarantee.
1348 *
1349 * REVISIT we can't guarantee another device won't be added later...
1350 */
1351 if (spi->master->num_chipselect > 1) {
1352 struct count_children cc;
1353
1354 cc.n = 0;
1355 cc.bus = spi->dev.bus;
1356 status = device_for_each_child(spi->dev.parent, &cc,
1357 maybe_count_child);
1358 if (status < 0) {
1359 dev_err(&spi->dev, "can't share SPI bus\n");
1360 return status;
1361 }
1362
1363 dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n");
1364 }
1365
1366 /* We need a supply of ones to transmit. This is the only time
1367 * the CPU touches these, so cache coherency isn't a concern.
1368 *
1369 * NOTE if many systems use more than one MMC-over-SPI connector
1370 * it'd save some memory to share this. That's evidently rare.
1371 */
1372 status = -ENOMEM;
1373 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1374 if (!ones)
1375 goto nomem;
1376 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1377
1378 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1379 if (!mmc)
1380 goto nomem;
1381
1382 mmc->ops = &mmc_spi_ops;
1383 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1384 mmc->max_hw_segs = MMC_SPI_BLOCKSATONCE;
1385 mmc->max_phys_segs = MMC_SPI_BLOCKSATONCE;
1386 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1387 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1388
1389 mmc->caps = MMC_CAP_SPI;
1390
1391 /* SPI doesn't need the lowspeed device identification thing for
1392 * MMC or SD cards, since it never comes up in open drain mode.
1393 * That's good; some SPI masters can't handle very low speeds!
1394 *
1395 * However, low speed SDIO cards need not handle over 400 KHz;
1396 * that's the only reason not to use a few MHz for f_min (until
1397 * the upper layer reads the target frequency from the CSD).
1398 */
1399 mmc->f_min = 400000;
1400 mmc->f_max = spi->max_speed_hz;
1401
1402 host = mmc_priv(mmc);
1403 host->mmc = mmc;
1404 host->spi = spi;
1405
1406 host->ones = ones;
1407
1408 /* Platform data is used to hook up things like card sensing
1409 * and power switching gpios.
1410 */
1411 host->pdata = mmc_spi_get_pdata(spi);
1412 if (host->pdata)
1413 mmc->ocr_avail = host->pdata->ocr_mask;
1414 if (!mmc->ocr_avail) {
1415 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1416 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1417 }
1418 if (host->pdata && host->pdata->setpower) {
1419 host->powerup_msecs = host->pdata->powerup_msecs;
1420 if (!host->powerup_msecs || host->powerup_msecs > 250)
1421 host->powerup_msecs = 250;
1422 }
1423
1424 dev_set_drvdata(&spi->dev, mmc);
1425
1426 /* preallocate dma buffers */
1427 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1428 if (!host->data)
1429 goto fail_nobuf1;
1430
1431 if (spi->master->dev.parent->dma_mask) {
1432 struct device *dev = spi->master->dev.parent;
1433
1434 host->dma_dev = dev;
1435 host->ones_dma = dma_map_single(dev, ones,
1436 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1437 host->data_dma = dma_map_single(dev, host->data,
1438 sizeof(*host->data), DMA_BIDIRECTIONAL);
1439
1440 /* REVISIT in theory those map operations can fail... */
1441
1442 dma_sync_single_for_cpu(host->dma_dev,
1443 host->data_dma, sizeof(*host->data),
1444 DMA_BIDIRECTIONAL);
1445 }
1446
1447 /* setup message for status/busy readback */
1448 spi_message_init(&host->readback);
1449 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1450
1451 spi_message_add_tail(&host->status, &host->readback);
1452 host->status.tx_buf = host->ones;
1453 host->status.tx_dma = host->ones_dma;
1454 host->status.rx_buf = &host->data->status;
1455 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1456 host->status.cs_change = 1;
1457
1458 /* register card detect irq */
1459 if (host->pdata && host->pdata->init) {
1460 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1461 if (status != 0)
1462 goto fail_glue_init;
1463 }
1464
1465 /* pass platform capabilities, if any */
1466 if (host->pdata)
1467 mmc->caps |= host->pdata->caps;
1468
1469 status = mmc_add_host(mmc);
1470 if (status != 0)
1471 goto fail_add_host;
1472
1473 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1474 dev_name(&mmc->class_dev),
1475 host->dma_dev ? "" : ", no DMA",
1476 (host->pdata && host->pdata->get_ro)
1477 ? "" : ", no WP",
1478 (host->pdata && host->pdata->setpower)
1479 ? "" : ", no poweroff",
1480 (mmc->caps & MMC_CAP_NEEDS_POLL)
1481 ? ", cd polling" : "");
1482 return 0;
1483
1484 fail_add_host:
1485 mmc_remove_host (mmc);
1486 fail_glue_init:
1487 if (host->dma_dev)
1488 dma_unmap_single(host->dma_dev, host->data_dma,
1489 sizeof(*host->data), DMA_BIDIRECTIONAL);
1490 kfree(host->data);
1491
1492 fail_nobuf1:
1493 mmc_free_host(mmc);
1494 mmc_spi_put_pdata(spi);
1495 dev_set_drvdata(&spi->dev, NULL);
1496
1497 nomem:
1498 kfree(ones);
1499 return status;
1500 }
1501
1502
1503 static int __devexit mmc_spi_remove(struct spi_device *spi)
1504 {
1505 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1506 struct mmc_spi_host *host;
1507
1508 if (mmc) {
1509 host = mmc_priv(mmc);
1510
1511 /* prevent new mmc_detect_change() calls */
1512 if (host->pdata && host->pdata->exit)
1513 host->pdata->exit(&spi->dev, mmc);
1514
1515 mmc_remove_host(mmc);
1516
1517 if (host->dma_dev) {
1518 dma_unmap_single(host->dma_dev, host->ones_dma,
1519 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1520 dma_unmap_single(host->dma_dev, host->data_dma,
1521 sizeof(*host->data), DMA_BIDIRECTIONAL);
1522 }
1523
1524 kfree(host->data);
1525 kfree(host->ones);
1526
1527 spi->max_speed_hz = mmc->f_max;
1528 mmc_free_host(mmc);
1529 mmc_spi_put_pdata(spi);
1530 dev_set_drvdata(&spi->dev, NULL);
1531 }
1532 return 0;
1533 }
1534
1535
1536 static struct spi_driver mmc_spi_driver = {
1537 .driver = {
1538 .name = "mmc_spi",
1539 .bus = &spi_bus_type,
1540 .owner = THIS_MODULE,
1541 },
1542 .probe = mmc_spi_probe,
1543 .remove = __devexit_p(mmc_spi_remove),
1544 };
1545
1546
1547 static int __init mmc_spi_init(void)
1548 {
1549 return spi_register_driver(&mmc_spi_driver);
1550 }
1551 module_init(mmc_spi_init);
1552
1553
1554 static void __exit mmc_spi_exit(void)
1555 {
1556 spi_unregister_driver(&mmc_spi_driver);
1557 }
1558 module_exit(mmc_spi_exit);
1559
1560
1561 MODULE_AUTHOR("Mike Lavender, David Brownell, "
1562 "Hans-Peter Nilsson, Jan Nikitenko");
1563 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1564 MODULE_LICENSE("GPL");
1565 MODULE_ALIAS("spi:mmc_spi");