Merge tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / mmc / host / dw_mmc.c
1 /*
2 * Synopsys DesignWare Multimedia Card Interface driver
3 * (Based on NXP driver for lpc 31xx)
4 *
5 * Copyright (C) 2009 NXP Semiconductors
6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/iopoll.h>
23 #include <linux/ioport.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/seq_file.h>
28 #include <linux/slab.h>
29 #include <linux/stat.h>
30 #include <linux/delay.h>
31 #include <linux/irq.h>
32 #include <linux/mmc/card.h>
33 #include <linux/mmc/host.h>
34 #include <linux/mmc/mmc.h>
35 #include <linux/mmc/sd.h>
36 #include <linux/mmc/sdio.h>
37 #include <linux/bitops.h>
38 #include <linux/regulator/consumer.h>
39 #include <linux/of.h>
40 #include <linux/of_gpio.h>
41 #include <linux/mmc/slot-gpio.h>
42
43 #include "dw_mmc.h"
44
45 /* Common flag combinations */
46 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
47 SDMMC_INT_HTO | SDMMC_INT_SBE | \
48 SDMMC_INT_EBE | SDMMC_INT_HLE)
49 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
50 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
51 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
52 DW_MCI_CMD_ERROR_FLAGS)
53 #define DW_MCI_SEND_STATUS 1
54 #define DW_MCI_RECV_STATUS 2
55 #define DW_MCI_DMA_THRESHOLD 16
56
57 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
58 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
59
60 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
61 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
62 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
63 SDMMC_IDMAC_INT_TI)
64
65 #define DESC_RING_BUF_SZ PAGE_SIZE
66
67 struct idmac_desc_64addr {
68 u32 des0; /* Control Descriptor */
69 #define IDMAC_OWN_CLR64(x) \
70 !((x) & cpu_to_le32(IDMAC_DES0_OWN))
71
72 u32 des1; /* Reserved */
73
74 u32 des2; /*Buffer sizes */
75 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
76 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
77 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
78
79 u32 des3; /* Reserved */
80
81 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
82 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
83
84 u32 des6; /* Lower 32-bits of Next Descriptor Address */
85 u32 des7; /* Upper 32-bits of Next Descriptor Address */
86 };
87
88 struct idmac_desc {
89 __le32 des0; /* Control Descriptor */
90 #define IDMAC_DES0_DIC BIT(1)
91 #define IDMAC_DES0_LD BIT(2)
92 #define IDMAC_DES0_FD BIT(3)
93 #define IDMAC_DES0_CH BIT(4)
94 #define IDMAC_DES0_ER BIT(5)
95 #define IDMAC_DES0_CES BIT(30)
96 #define IDMAC_DES0_OWN BIT(31)
97
98 __le32 des1; /* Buffer sizes */
99 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
100 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
101
102 __le32 des2; /* buffer 1 physical address */
103
104 __le32 des3; /* buffer 2 physical address */
105 };
106
107 /* Each descriptor can transfer up to 4KB of data in chained mode */
108 #define DW_MCI_DESC_DATA_LENGTH 0x1000
109
110 #if defined(CONFIG_DEBUG_FS)
111 static int dw_mci_req_show(struct seq_file *s, void *v)
112 {
113 struct dw_mci_slot *slot = s->private;
114 struct mmc_request *mrq;
115 struct mmc_command *cmd;
116 struct mmc_command *stop;
117 struct mmc_data *data;
118
119 /* Make sure we get a consistent snapshot */
120 spin_lock_bh(&slot->host->lock);
121 mrq = slot->mrq;
122
123 if (mrq) {
124 cmd = mrq->cmd;
125 data = mrq->data;
126 stop = mrq->stop;
127
128 if (cmd)
129 seq_printf(s,
130 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
131 cmd->opcode, cmd->arg, cmd->flags,
132 cmd->resp[0], cmd->resp[1], cmd->resp[2],
133 cmd->resp[2], cmd->error);
134 if (data)
135 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
136 data->bytes_xfered, data->blocks,
137 data->blksz, data->flags, data->error);
138 if (stop)
139 seq_printf(s,
140 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
141 stop->opcode, stop->arg, stop->flags,
142 stop->resp[0], stop->resp[1], stop->resp[2],
143 stop->resp[2], stop->error);
144 }
145
146 spin_unlock_bh(&slot->host->lock);
147
148 return 0;
149 }
150
151 static int dw_mci_req_open(struct inode *inode, struct file *file)
152 {
153 return single_open(file, dw_mci_req_show, inode->i_private);
154 }
155
156 static const struct file_operations dw_mci_req_fops = {
157 .owner = THIS_MODULE,
158 .open = dw_mci_req_open,
159 .read = seq_read,
160 .llseek = seq_lseek,
161 .release = single_release,
162 };
163
164 static int dw_mci_regs_show(struct seq_file *s, void *v)
165 {
166 struct dw_mci *host = s->private;
167
168 seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
169 seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
170 seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
171 seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
172 seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
173 seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
174
175 return 0;
176 }
177
178 static int dw_mci_regs_open(struct inode *inode, struct file *file)
179 {
180 return single_open(file, dw_mci_regs_show, inode->i_private);
181 }
182
183 static const struct file_operations dw_mci_regs_fops = {
184 .owner = THIS_MODULE,
185 .open = dw_mci_regs_open,
186 .read = seq_read,
187 .llseek = seq_lseek,
188 .release = single_release,
189 };
190
191 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
192 {
193 struct mmc_host *mmc = slot->mmc;
194 struct dw_mci *host = slot->host;
195 struct dentry *root;
196 struct dentry *node;
197
198 root = mmc->debugfs_root;
199 if (!root)
200 return;
201
202 node = debugfs_create_file("regs", S_IRUSR, root, host,
203 &dw_mci_regs_fops);
204 if (!node)
205 goto err;
206
207 node = debugfs_create_file("req", S_IRUSR, root, slot,
208 &dw_mci_req_fops);
209 if (!node)
210 goto err;
211
212 node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
213 if (!node)
214 goto err;
215
216 node = debugfs_create_x32("pending_events", S_IRUSR, root,
217 (u32 *)&host->pending_events);
218 if (!node)
219 goto err;
220
221 node = debugfs_create_x32("completed_events", S_IRUSR, root,
222 (u32 *)&host->completed_events);
223 if (!node)
224 goto err;
225
226 return;
227
228 err:
229 dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
230 }
231 #endif /* defined(CONFIG_DEBUG_FS) */
232
233 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
234 {
235 u32 ctrl;
236
237 ctrl = mci_readl(host, CTRL);
238 ctrl |= reset;
239 mci_writel(host, CTRL, ctrl);
240
241 /* wait till resets clear */
242 if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
243 !(ctrl & reset),
244 1, 500 * USEC_PER_MSEC)) {
245 dev_err(host->dev,
246 "Timeout resetting block (ctrl reset %#x)\n",
247 ctrl & reset);
248 return false;
249 }
250
251 return true;
252 }
253
254 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
255 {
256 u32 status;
257
258 /*
259 * Databook says that before issuing a new data transfer command
260 * we need to check to see if the card is busy. Data transfer commands
261 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
262 *
263 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
264 * expected.
265 */
266 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
267 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
268 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
269 status,
270 !(status & SDMMC_STATUS_BUSY),
271 10, 500 * USEC_PER_MSEC))
272 dev_err(host->dev, "Busy; trying anyway\n");
273 }
274 }
275
276 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
277 {
278 struct dw_mci *host = slot->host;
279 unsigned int cmd_status = 0;
280
281 mci_writel(host, CMDARG, arg);
282 wmb(); /* drain writebuffer */
283 dw_mci_wait_while_busy(host, cmd);
284 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
285
286 if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
287 !(cmd_status & SDMMC_CMD_START),
288 1, 500 * USEC_PER_MSEC))
289 dev_err(&slot->mmc->class_dev,
290 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
291 cmd, arg, cmd_status);
292 }
293
294 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
295 {
296 struct dw_mci_slot *slot = mmc_priv(mmc);
297 struct dw_mci *host = slot->host;
298 u32 cmdr;
299
300 cmd->error = -EINPROGRESS;
301 cmdr = cmd->opcode;
302
303 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
304 cmd->opcode == MMC_GO_IDLE_STATE ||
305 cmd->opcode == MMC_GO_INACTIVE_STATE ||
306 (cmd->opcode == SD_IO_RW_DIRECT &&
307 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
308 cmdr |= SDMMC_CMD_STOP;
309 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
310 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
311
312 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
313 u32 clk_en_a;
314
315 /* Special bit makes CMD11 not die */
316 cmdr |= SDMMC_CMD_VOLT_SWITCH;
317
318 /* Change state to continue to handle CMD11 weirdness */
319 WARN_ON(slot->host->state != STATE_SENDING_CMD);
320 slot->host->state = STATE_SENDING_CMD11;
321
322 /*
323 * We need to disable low power mode (automatic clock stop)
324 * while doing voltage switch so we don't confuse the card,
325 * since stopping the clock is a specific part of the UHS
326 * voltage change dance.
327 *
328 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
329 * unconditionally turned back on in dw_mci_setup_bus() if it's
330 * ever called with a non-zero clock. That shouldn't happen
331 * until the voltage change is all done.
332 */
333 clk_en_a = mci_readl(host, CLKENA);
334 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
335 mci_writel(host, CLKENA, clk_en_a);
336 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
337 SDMMC_CMD_PRV_DAT_WAIT, 0);
338 }
339
340 if (cmd->flags & MMC_RSP_PRESENT) {
341 /* We expect a response, so set this bit */
342 cmdr |= SDMMC_CMD_RESP_EXP;
343 if (cmd->flags & MMC_RSP_136)
344 cmdr |= SDMMC_CMD_RESP_LONG;
345 }
346
347 if (cmd->flags & MMC_RSP_CRC)
348 cmdr |= SDMMC_CMD_RESP_CRC;
349
350 if (cmd->data) {
351 cmdr |= SDMMC_CMD_DAT_EXP;
352 if (cmd->data->flags & MMC_DATA_WRITE)
353 cmdr |= SDMMC_CMD_DAT_WR;
354 }
355
356 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
357 cmdr |= SDMMC_CMD_USE_HOLD_REG;
358
359 return cmdr;
360 }
361
362 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
363 {
364 struct mmc_command *stop;
365 u32 cmdr;
366
367 if (!cmd->data)
368 return 0;
369
370 stop = &host->stop_abort;
371 cmdr = cmd->opcode;
372 memset(stop, 0, sizeof(struct mmc_command));
373
374 if (cmdr == MMC_READ_SINGLE_BLOCK ||
375 cmdr == MMC_READ_MULTIPLE_BLOCK ||
376 cmdr == MMC_WRITE_BLOCK ||
377 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
378 cmdr == MMC_SEND_TUNING_BLOCK ||
379 cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
380 stop->opcode = MMC_STOP_TRANSMISSION;
381 stop->arg = 0;
382 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
383 } else if (cmdr == SD_IO_RW_EXTENDED) {
384 stop->opcode = SD_IO_RW_DIRECT;
385 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
386 ((cmd->arg >> 28) & 0x7);
387 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
388 } else {
389 return 0;
390 }
391
392 cmdr = stop->opcode | SDMMC_CMD_STOP |
393 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
394
395 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
396 cmdr |= SDMMC_CMD_USE_HOLD_REG;
397
398 return cmdr;
399 }
400
401 static inline void dw_mci_set_cto(struct dw_mci *host)
402 {
403 unsigned int cto_clks;
404 unsigned int cto_div;
405 unsigned int cto_ms;
406 unsigned long irqflags;
407
408 cto_clks = mci_readl(host, TMOUT) & 0xff;
409 cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
410 if (cto_div == 0)
411 cto_div = 1;
412 cto_ms = DIV_ROUND_UP(MSEC_PER_SEC * cto_clks * cto_div, host->bus_hz);
413
414 /* add a bit spare time */
415 cto_ms += 10;
416
417 /*
418 * The durations we're working with are fairly short so we have to be
419 * extra careful about synchronization here. Specifically in hardware a
420 * command timeout is _at most_ 5.1 ms, so that means we expect an
421 * interrupt (either command done or timeout) to come rather quickly
422 * after the mci_writel. ...but just in case we have a long interrupt
423 * latency let's add a bit of paranoia.
424 *
425 * In general we'll assume that at least an interrupt will be asserted
426 * in hardware by the time the cto_timer runs. ...and if it hasn't
427 * been asserted in hardware by that time then we'll assume it'll never
428 * come.
429 */
430 spin_lock_irqsave(&host->irq_lock, irqflags);
431 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
432 mod_timer(&host->cto_timer,
433 jiffies + msecs_to_jiffies(cto_ms) + 1);
434 spin_unlock_irqrestore(&host->irq_lock, irqflags);
435 }
436
437 static void dw_mci_start_command(struct dw_mci *host,
438 struct mmc_command *cmd, u32 cmd_flags)
439 {
440 host->cmd = cmd;
441 dev_vdbg(host->dev,
442 "start command: ARGR=0x%08x CMDR=0x%08x\n",
443 cmd->arg, cmd_flags);
444
445 mci_writel(host, CMDARG, cmd->arg);
446 wmb(); /* drain writebuffer */
447 dw_mci_wait_while_busy(host, cmd_flags);
448
449 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
450
451 /* response expected command only */
452 if (cmd_flags & SDMMC_CMD_RESP_EXP)
453 dw_mci_set_cto(host);
454 }
455
456 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
457 {
458 struct mmc_command *stop = &host->stop_abort;
459
460 dw_mci_start_command(host, stop, host->stop_cmdr);
461 }
462
463 /* DMA interface functions */
464 static void dw_mci_stop_dma(struct dw_mci *host)
465 {
466 if (host->using_dma) {
467 host->dma_ops->stop(host);
468 host->dma_ops->cleanup(host);
469 }
470
471 /* Data transfer was stopped by the interrupt handler */
472 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
473 }
474
475 static void dw_mci_dma_cleanup(struct dw_mci *host)
476 {
477 struct mmc_data *data = host->data;
478
479 if (data && data->host_cookie == COOKIE_MAPPED) {
480 dma_unmap_sg(host->dev,
481 data->sg,
482 data->sg_len,
483 mmc_get_dma_dir(data));
484 data->host_cookie = COOKIE_UNMAPPED;
485 }
486 }
487
488 static void dw_mci_idmac_reset(struct dw_mci *host)
489 {
490 u32 bmod = mci_readl(host, BMOD);
491 /* Software reset of DMA */
492 bmod |= SDMMC_IDMAC_SWRESET;
493 mci_writel(host, BMOD, bmod);
494 }
495
496 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
497 {
498 u32 temp;
499
500 /* Disable and reset the IDMAC interface */
501 temp = mci_readl(host, CTRL);
502 temp &= ~SDMMC_CTRL_USE_IDMAC;
503 temp |= SDMMC_CTRL_DMA_RESET;
504 mci_writel(host, CTRL, temp);
505
506 /* Stop the IDMAC running */
507 temp = mci_readl(host, BMOD);
508 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
509 temp |= SDMMC_IDMAC_SWRESET;
510 mci_writel(host, BMOD, temp);
511 }
512
513 static void dw_mci_dmac_complete_dma(void *arg)
514 {
515 struct dw_mci *host = arg;
516 struct mmc_data *data = host->data;
517
518 dev_vdbg(host->dev, "DMA complete\n");
519
520 if ((host->use_dma == TRANS_MODE_EDMAC) &&
521 data && (data->flags & MMC_DATA_READ))
522 /* Invalidate cache after read */
523 dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
524 data->sg,
525 data->sg_len,
526 DMA_FROM_DEVICE);
527
528 host->dma_ops->cleanup(host);
529
530 /*
531 * If the card was removed, data will be NULL. No point in trying to
532 * send the stop command or waiting for NBUSY in this case.
533 */
534 if (data) {
535 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
536 tasklet_schedule(&host->tasklet);
537 }
538 }
539
540 static int dw_mci_idmac_init(struct dw_mci *host)
541 {
542 int i;
543
544 if (host->dma_64bit_address == 1) {
545 struct idmac_desc_64addr *p;
546 /* Number of descriptors in the ring buffer */
547 host->ring_size =
548 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
549
550 /* Forward link the descriptor list */
551 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
552 i++, p++) {
553 p->des6 = (host->sg_dma +
554 (sizeof(struct idmac_desc_64addr) *
555 (i + 1))) & 0xffffffff;
556
557 p->des7 = (u64)(host->sg_dma +
558 (sizeof(struct idmac_desc_64addr) *
559 (i + 1))) >> 32;
560 /* Initialize reserved and buffer size fields to "0" */
561 p->des1 = 0;
562 p->des2 = 0;
563 p->des3 = 0;
564 }
565
566 /* Set the last descriptor as the end-of-ring descriptor */
567 p->des6 = host->sg_dma & 0xffffffff;
568 p->des7 = (u64)host->sg_dma >> 32;
569 p->des0 = IDMAC_DES0_ER;
570
571 } else {
572 struct idmac_desc *p;
573 /* Number of descriptors in the ring buffer */
574 host->ring_size =
575 DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
576
577 /* Forward link the descriptor list */
578 for (i = 0, p = host->sg_cpu;
579 i < host->ring_size - 1;
580 i++, p++) {
581 p->des3 = cpu_to_le32(host->sg_dma +
582 (sizeof(struct idmac_desc) * (i + 1)));
583 p->des1 = 0;
584 }
585
586 /* Set the last descriptor as the end-of-ring descriptor */
587 p->des3 = cpu_to_le32(host->sg_dma);
588 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
589 }
590
591 dw_mci_idmac_reset(host);
592
593 if (host->dma_64bit_address == 1) {
594 /* Mask out interrupts - get Tx & Rx complete only */
595 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
596 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
597 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
598
599 /* Set the descriptor base address */
600 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
601 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
602
603 } else {
604 /* Mask out interrupts - get Tx & Rx complete only */
605 mci_writel(host, IDSTS, IDMAC_INT_CLR);
606 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
607 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
608
609 /* Set the descriptor base address */
610 mci_writel(host, DBADDR, host->sg_dma);
611 }
612
613 return 0;
614 }
615
616 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
617 struct mmc_data *data,
618 unsigned int sg_len)
619 {
620 unsigned int desc_len;
621 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
622 u32 val;
623 int i;
624
625 desc_first = desc_last = desc = host->sg_cpu;
626
627 for (i = 0; i < sg_len; i++) {
628 unsigned int length = sg_dma_len(&data->sg[i]);
629
630 u64 mem_addr = sg_dma_address(&data->sg[i]);
631
632 for ( ; length ; desc++) {
633 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
634 length : DW_MCI_DESC_DATA_LENGTH;
635
636 length -= desc_len;
637
638 /*
639 * Wait for the former clear OWN bit operation
640 * of IDMAC to make sure that this descriptor
641 * isn't still owned by IDMAC as IDMAC's write
642 * ops and CPU's read ops are asynchronous.
643 */
644 if (readl_poll_timeout_atomic(&desc->des0, val,
645 !(val & IDMAC_DES0_OWN),
646 10, 100 * USEC_PER_MSEC))
647 goto err_own_bit;
648
649 /*
650 * Set the OWN bit and disable interrupts
651 * for this descriptor
652 */
653 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
654 IDMAC_DES0_CH;
655
656 /* Buffer length */
657 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
658
659 /* Physical address to DMA to/from */
660 desc->des4 = mem_addr & 0xffffffff;
661 desc->des5 = mem_addr >> 32;
662
663 /* Update physical address for the next desc */
664 mem_addr += desc_len;
665
666 /* Save pointer to the last descriptor */
667 desc_last = desc;
668 }
669 }
670
671 /* Set first descriptor */
672 desc_first->des0 |= IDMAC_DES0_FD;
673
674 /* Set last descriptor */
675 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
676 desc_last->des0 |= IDMAC_DES0_LD;
677
678 return 0;
679 err_own_bit:
680 /* restore the descriptor chain as it's polluted */
681 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
682 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
683 dw_mci_idmac_init(host);
684 return -EINVAL;
685 }
686
687
688 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
689 struct mmc_data *data,
690 unsigned int sg_len)
691 {
692 unsigned int desc_len;
693 struct idmac_desc *desc_first, *desc_last, *desc;
694 u32 val;
695 int i;
696
697 desc_first = desc_last = desc = host->sg_cpu;
698
699 for (i = 0; i < sg_len; i++) {
700 unsigned int length = sg_dma_len(&data->sg[i]);
701
702 u32 mem_addr = sg_dma_address(&data->sg[i]);
703
704 for ( ; length ; desc++) {
705 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
706 length : DW_MCI_DESC_DATA_LENGTH;
707
708 length -= desc_len;
709
710 /*
711 * Wait for the former clear OWN bit operation
712 * of IDMAC to make sure that this descriptor
713 * isn't still owned by IDMAC as IDMAC's write
714 * ops and CPU's read ops are asynchronous.
715 */
716 if (readl_poll_timeout_atomic(&desc->des0, val,
717 IDMAC_OWN_CLR64(val),
718 10,
719 100 * USEC_PER_MSEC))
720 goto err_own_bit;
721
722 /*
723 * Set the OWN bit and disable interrupts
724 * for this descriptor
725 */
726 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
727 IDMAC_DES0_DIC |
728 IDMAC_DES0_CH);
729
730 /* Buffer length */
731 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
732
733 /* Physical address to DMA to/from */
734 desc->des2 = cpu_to_le32(mem_addr);
735
736 /* Update physical address for the next desc */
737 mem_addr += desc_len;
738
739 /* Save pointer to the last descriptor */
740 desc_last = desc;
741 }
742 }
743
744 /* Set first descriptor */
745 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
746
747 /* Set last descriptor */
748 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
749 IDMAC_DES0_DIC));
750 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
751
752 return 0;
753 err_own_bit:
754 /* restore the descriptor chain as it's polluted */
755 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
756 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
757 dw_mci_idmac_init(host);
758 return -EINVAL;
759 }
760
761 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
762 {
763 u32 temp;
764 int ret;
765
766 if (host->dma_64bit_address == 1)
767 ret = dw_mci_prepare_desc64(host, host->data, sg_len);
768 else
769 ret = dw_mci_prepare_desc32(host, host->data, sg_len);
770
771 if (ret)
772 goto out;
773
774 /* drain writebuffer */
775 wmb();
776
777 /* Make sure to reset DMA in case we did PIO before this */
778 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
779 dw_mci_idmac_reset(host);
780
781 /* Select IDMAC interface */
782 temp = mci_readl(host, CTRL);
783 temp |= SDMMC_CTRL_USE_IDMAC;
784 mci_writel(host, CTRL, temp);
785
786 /* drain writebuffer */
787 wmb();
788
789 /* Enable the IDMAC */
790 temp = mci_readl(host, BMOD);
791 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
792 mci_writel(host, BMOD, temp);
793
794 /* Start it running */
795 mci_writel(host, PLDMND, 1);
796
797 out:
798 return ret;
799 }
800
801 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
802 .init = dw_mci_idmac_init,
803 .start = dw_mci_idmac_start_dma,
804 .stop = dw_mci_idmac_stop_dma,
805 .complete = dw_mci_dmac_complete_dma,
806 .cleanup = dw_mci_dma_cleanup,
807 };
808
809 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
810 {
811 dmaengine_terminate_async(host->dms->ch);
812 }
813
814 static int dw_mci_edmac_start_dma(struct dw_mci *host,
815 unsigned int sg_len)
816 {
817 struct dma_slave_config cfg;
818 struct dma_async_tx_descriptor *desc = NULL;
819 struct scatterlist *sgl = host->data->sg;
820 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
821 u32 sg_elems = host->data->sg_len;
822 u32 fifoth_val;
823 u32 fifo_offset = host->fifo_reg - host->regs;
824 int ret = 0;
825
826 /* Set external dma config: burst size, burst width */
827 cfg.dst_addr = host->phy_regs + fifo_offset;
828 cfg.src_addr = cfg.dst_addr;
829 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
830 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
831
832 /* Match burst msize with external dma config */
833 fifoth_val = mci_readl(host, FIFOTH);
834 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
835 cfg.src_maxburst = cfg.dst_maxburst;
836
837 if (host->data->flags & MMC_DATA_WRITE)
838 cfg.direction = DMA_MEM_TO_DEV;
839 else
840 cfg.direction = DMA_DEV_TO_MEM;
841
842 ret = dmaengine_slave_config(host->dms->ch, &cfg);
843 if (ret) {
844 dev_err(host->dev, "Failed to config edmac.\n");
845 return -EBUSY;
846 }
847
848 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
849 sg_len, cfg.direction,
850 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
851 if (!desc) {
852 dev_err(host->dev, "Can't prepare slave sg.\n");
853 return -EBUSY;
854 }
855
856 /* Set dw_mci_dmac_complete_dma as callback */
857 desc->callback = dw_mci_dmac_complete_dma;
858 desc->callback_param = (void *)host;
859 dmaengine_submit(desc);
860
861 /* Flush cache before write */
862 if (host->data->flags & MMC_DATA_WRITE)
863 dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
864 sg_elems, DMA_TO_DEVICE);
865
866 dma_async_issue_pending(host->dms->ch);
867
868 return 0;
869 }
870
871 static int dw_mci_edmac_init(struct dw_mci *host)
872 {
873 /* Request external dma channel */
874 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
875 if (!host->dms)
876 return -ENOMEM;
877
878 host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
879 if (!host->dms->ch) {
880 dev_err(host->dev, "Failed to get external DMA channel.\n");
881 kfree(host->dms);
882 host->dms = NULL;
883 return -ENXIO;
884 }
885
886 return 0;
887 }
888
889 static void dw_mci_edmac_exit(struct dw_mci *host)
890 {
891 if (host->dms) {
892 if (host->dms->ch) {
893 dma_release_channel(host->dms->ch);
894 host->dms->ch = NULL;
895 }
896 kfree(host->dms);
897 host->dms = NULL;
898 }
899 }
900
901 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
902 .init = dw_mci_edmac_init,
903 .exit = dw_mci_edmac_exit,
904 .start = dw_mci_edmac_start_dma,
905 .stop = dw_mci_edmac_stop_dma,
906 .complete = dw_mci_dmac_complete_dma,
907 .cleanup = dw_mci_dma_cleanup,
908 };
909
910 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
911 struct mmc_data *data,
912 int cookie)
913 {
914 struct scatterlist *sg;
915 unsigned int i, sg_len;
916
917 if (data->host_cookie == COOKIE_PRE_MAPPED)
918 return data->sg_len;
919
920 /*
921 * We don't do DMA on "complex" transfers, i.e. with
922 * non-word-aligned buffers or lengths. Also, we don't bother
923 * with all the DMA setup overhead for short transfers.
924 */
925 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
926 return -EINVAL;
927
928 if (data->blksz & 3)
929 return -EINVAL;
930
931 for_each_sg(data->sg, sg, data->sg_len, i) {
932 if (sg->offset & 3 || sg->length & 3)
933 return -EINVAL;
934 }
935
936 sg_len = dma_map_sg(host->dev,
937 data->sg,
938 data->sg_len,
939 mmc_get_dma_dir(data));
940 if (sg_len == 0)
941 return -EINVAL;
942
943 data->host_cookie = cookie;
944
945 return sg_len;
946 }
947
948 static void dw_mci_pre_req(struct mmc_host *mmc,
949 struct mmc_request *mrq)
950 {
951 struct dw_mci_slot *slot = mmc_priv(mmc);
952 struct mmc_data *data = mrq->data;
953
954 if (!slot->host->use_dma || !data)
955 return;
956
957 /* This data might be unmapped at this time */
958 data->host_cookie = COOKIE_UNMAPPED;
959
960 if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
961 COOKIE_PRE_MAPPED) < 0)
962 data->host_cookie = COOKIE_UNMAPPED;
963 }
964
965 static void dw_mci_post_req(struct mmc_host *mmc,
966 struct mmc_request *mrq,
967 int err)
968 {
969 struct dw_mci_slot *slot = mmc_priv(mmc);
970 struct mmc_data *data = mrq->data;
971
972 if (!slot->host->use_dma || !data)
973 return;
974
975 if (data->host_cookie != COOKIE_UNMAPPED)
976 dma_unmap_sg(slot->host->dev,
977 data->sg,
978 data->sg_len,
979 mmc_get_dma_dir(data));
980 data->host_cookie = COOKIE_UNMAPPED;
981 }
982
983 static int dw_mci_get_cd(struct mmc_host *mmc)
984 {
985 int present;
986 struct dw_mci_slot *slot = mmc_priv(mmc);
987 struct dw_mci *host = slot->host;
988 int gpio_cd = mmc_gpio_get_cd(mmc);
989
990 /* Use platform get_cd function, else try onboard card detect */
991 if (((mmc->caps & MMC_CAP_NEEDS_POLL)
992 || !mmc_card_is_removable(mmc))) {
993 present = 1;
994
995 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
996 if (mmc->caps & MMC_CAP_NEEDS_POLL) {
997 dev_info(&mmc->class_dev,
998 "card is polling.\n");
999 } else {
1000 dev_info(&mmc->class_dev,
1001 "card is non-removable.\n");
1002 }
1003 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1004 }
1005
1006 return present;
1007 } else if (gpio_cd >= 0)
1008 present = gpio_cd;
1009 else
1010 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
1011 == 0 ? 1 : 0;
1012
1013 spin_lock_bh(&host->lock);
1014 if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
1015 dev_dbg(&mmc->class_dev, "card is present\n");
1016 else if (!present &&
1017 !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
1018 dev_dbg(&mmc->class_dev, "card is not present\n");
1019 spin_unlock_bh(&host->lock);
1020
1021 return present;
1022 }
1023
1024 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
1025 {
1026 unsigned int blksz = data->blksz;
1027 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
1028 u32 fifo_width = 1 << host->data_shift;
1029 u32 blksz_depth = blksz / fifo_width, fifoth_val;
1030 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
1031 int idx = ARRAY_SIZE(mszs) - 1;
1032
1033 /* pio should ship this scenario */
1034 if (!host->use_dma)
1035 return;
1036
1037 tx_wmark = (host->fifo_depth) / 2;
1038 tx_wmark_invers = host->fifo_depth - tx_wmark;
1039
1040 /*
1041 * MSIZE is '1',
1042 * if blksz is not a multiple of the FIFO width
1043 */
1044 if (blksz % fifo_width)
1045 goto done;
1046
1047 do {
1048 if (!((blksz_depth % mszs[idx]) ||
1049 (tx_wmark_invers % mszs[idx]))) {
1050 msize = idx;
1051 rx_wmark = mszs[idx] - 1;
1052 break;
1053 }
1054 } while (--idx > 0);
1055 /*
1056 * If idx is '0', it won't be tried
1057 * Thus, initial values are uesed
1058 */
1059 done:
1060 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1061 mci_writel(host, FIFOTH, fifoth_val);
1062 }
1063
1064 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1065 {
1066 unsigned int blksz = data->blksz;
1067 u32 blksz_depth, fifo_depth;
1068 u16 thld_size;
1069 u8 enable;
1070
1071 /*
1072 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1073 * in the FIFO region, so we really shouldn't access it).
1074 */
1075 if (host->verid < DW_MMC_240A ||
1076 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1077 return;
1078
1079 /*
1080 * Card write Threshold is introduced since 2.80a
1081 * It's used when HS400 mode is enabled.
1082 */
1083 if (data->flags & MMC_DATA_WRITE &&
1084 !(host->timing != MMC_TIMING_MMC_HS400))
1085 return;
1086
1087 if (data->flags & MMC_DATA_WRITE)
1088 enable = SDMMC_CARD_WR_THR_EN;
1089 else
1090 enable = SDMMC_CARD_RD_THR_EN;
1091
1092 if (host->timing != MMC_TIMING_MMC_HS200 &&
1093 host->timing != MMC_TIMING_UHS_SDR104)
1094 goto disable;
1095
1096 blksz_depth = blksz / (1 << host->data_shift);
1097 fifo_depth = host->fifo_depth;
1098
1099 if (blksz_depth > fifo_depth)
1100 goto disable;
1101
1102 /*
1103 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1104 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1105 * Currently just choose blksz.
1106 */
1107 thld_size = blksz;
1108 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1109 return;
1110
1111 disable:
1112 mci_writel(host, CDTHRCTL, 0);
1113 }
1114
1115 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1116 {
1117 unsigned long irqflags;
1118 int sg_len;
1119 u32 temp;
1120
1121 host->using_dma = 0;
1122
1123 /* If we don't have a channel, we can't do DMA */
1124 if (!host->use_dma)
1125 return -ENODEV;
1126
1127 sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1128 if (sg_len < 0) {
1129 host->dma_ops->stop(host);
1130 return sg_len;
1131 }
1132
1133 host->using_dma = 1;
1134
1135 if (host->use_dma == TRANS_MODE_IDMAC)
1136 dev_vdbg(host->dev,
1137 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1138 (unsigned long)host->sg_cpu,
1139 (unsigned long)host->sg_dma,
1140 sg_len);
1141
1142 /*
1143 * Decide the MSIZE and RX/TX Watermark.
1144 * If current block size is same with previous size,
1145 * no need to update fifoth.
1146 */
1147 if (host->prev_blksz != data->blksz)
1148 dw_mci_adjust_fifoth(host, data);
1149
1150 /* Enable the DMA interface */
1151 temp = mci_readl(host, CTRL);
1152 temp |= SDMMC_CTRL_DMA_ENABLE;
1153 mci_writel(host, CTRL, temp);
1154
1155 /* Disable RX/TX IRQs, let DMA handle it */
1156 spin_lock_irqsave(&host->irq_lock, irqflags);
1157 temp = mci_readl(host, INTMASK);
1158 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1159 mci_writel(host, INTMASK, temp);
1160 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1161
1162 if (host->dma_ops->start(host, sg_len)) {
1163 host->dma_ops->stop(host);
1164 /* We can't do DMA, try PIO for this one */
1165 dev_dbg(host->dev,
1166 "%s: fall back to PIO mode for current transfer\n",
1167 __func__);
1168 return -ENODEV;
1169 }
1170
1171 return 0;
1172 }
1173
1174 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1175 {
1176 unsigned long irqflags;
1177 int flags = SG_MITER_ATOMIC;
1178 u32 temp;
1179
1180 data->error = -EINPROGRESS;
1181
1182 WARN_ON(host->data);
1183 host->sg = NULL;
1184 host->data = data;
1185
1186 if (data->flags & MMC_DATA_READ)
1187 host->dir_status = DW_MCI_RECV_STATUS;
1188 else
1189 host->dir_status = DW_MCI_SEND_STATUS;
1190
1191 dw_mci_ctrl_thld(host, data);
1192
1193 if (dw_mci_submit_data_dma(host, data)) {
1194 if (host->data->flags & MMC_DATA_READ)
1195 flags |= SG_MITER_TO_SG;
1196 else
1197 flags |= SG_MITER_FROM_SG;
1198
1199 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1200 host->sg = data->sg;
1201 host->part_buf_start = 0;
1202 host->part_buf_count = 0;
1203
1204 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1205
1206 spin_lock_irqsave(&host->irq_lock, irqflags);
1207 temp = mci_readl(host, INTMASK);
1208 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1209 mci_writel(host, INTMASK, temp);
1210 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1211
1212 temp = mci_readl(host, CTRL);
1213 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1214 mci_writel(host, CTRL, temp);
1215
1216 /*
1217 * Use the initial fifoth_val for PIO mode. If wm_algined
1218 * is set, we set watermark same as data size.
1219 * If next issued data may be transfered by DMA mode,
1220 * prev_blksz should be invalidated.
1221 */
1222 if (host->wm_aligned)
1223 dw_mci_adjust_fifoth(host, data);
1224 else
1225 mci_writel(host, FIFOTH, host->fifoth_val);
1226 host->prev_blksz = 0;
1227 } else {
1228 /*
1229 * Keep the current block size.
1230 * It will be used to decide whether to update
1231 * fifoth register next time.
1232 */
1233 host->prev_blksz = data->blksz;
1234 }
1235 }
1236
1237 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1238 {
1239 struct dw_mci *host = slot->host;
1240 unsigned int clock = slot->clock;
1241 u32 div;
1242 u32 clk_en_a;
1243 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1244
1245 /* We must continue to set bit 28 in CMD until the change is complete */
1246 if (host->state == STATE_WAITING_CMD11_DONE)
1247 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1248
1249 if (!clock) {
1250 mci_writel(host, CLKENA, 0);
1251 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1252 } else if (clock != host->current_speed || force_clkinit) {
1253 div = host->bus_hz / clock;
1254 if (host->bus_hz % clock && host->bus_hz > clock)
1255 /*
1256 * move the + 1 after the divide to prevent
1257 * over-clocking the card.
1258 */
1259 div += 1;
1260
1261 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1262
1263 if ((clock != slot->__clk_old &&
1264 !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1265 force_clkinit) {
1266 /* Silent the verbose log if calling from PM context */
1267 if (!force_clkinit)
1268 dev_info(&slot->mmc->class_dev,
1269 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1270 slot->id, host->bus_hz, clock,
1271 div ? ((host->bus_hz / div) >> 1) :
1272 host->bus_hz, div);
1273
1274 /*
1275 * If card is polling, display the message only
1276 * one time at boot time.
1277 */
1278 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1279 slot->mmc->f_min == clock)
1280 set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1281 }
1282
1283 /* disable clock */
1284 mci_writel(host, CLKENA, 0);
1285 mci_writel(host, CLKSRC, 0);
1286
1287 /* inform CIU */
1288 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1289
1290 /* set clock to desired speed */
1291 mci_writel(host, CLKDIV, div);
1292
1293 /* inform CIU */
1294 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1295
1296 /* enable clock; only low power if no SDIO */
1297 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1298 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1299 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1300 mci_writel(host, CLKENA, clk_en_a);
1301
1302 /* inform CIU */
1303 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1304
1305 /* keep the last clock value that was requested from core */
1306 slot->__clk_old = clock;
1307 }
1308
1309 host->current_speed = clock;
1310
1311 /* Set the current slot bus width */
1312 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1313 }
1314
1315 static void __dw_mci_start_request(struct dw_mci *host,
1316 struct dw_mci_slot *slot,
1317 struct mmc_command *cmd)
1318 {
1319 struct mmc_request *mrq;
1320 struct mmc_data *data;
1321 u32 cmdflags;
1322
1323 mrq = slot->mrq;
1324
1325 host->mrq = mrq;
1326
1327 host->pending_events = 0;
1328 host->completed_events = 0;
1329 host->cmd_status = 0;
1330 host->data_status = 0;
1331 host->dir_status = 0;
1332
1333 data = cmd->data;
1334 if (data) {
1335 mci_writel(host, TMOUT, 0xFFFFFFFF);
1336 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1337 mci_writel(host, BLKSIZ, data->blksz);
1338 }
1339
1340 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1341
1342 /* this is the first command, send the initialization clock */
1343 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1344 cmdflags |= SDMMC_CMD_INIT;
1345
1346 if (data) {
1347 dw_mci_submit_data(host, data);
1348 wmb(); /* drain writebuffer */
1349 }
1350
1351 dw_mci_start_command(host, cmd, cmdflags);
1352
1353 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1354 unsigned long irqflags;
1355
1356 /*
1357 * Databook says to fail after 2ms w/ no response, but evidence
1358 * shows that sometimes the cmd11 interrupt takes over 130ms.
1359 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1360 * is just about to roll over.
1361 *
1362 * We do this whole thing under spinlock and only if the
1363 * command hasn't already completed (indicating the the irq
1364 * already ran so we don't want the timeout).
1365 */
1366 spin_lock_irqsave(&host->irq_lock, irqflags);
1367 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1368 mod_timer(&host->cmd11_timer,
1369 jiffies + msecs_to_jiffies(500) + 1);
1370 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1371 }
1372
1373 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1374 }
1375
1376 static void dw_mci_start_request(struct dw_mci *host,
1377 struct dw_mci_slot *slot)
1378 {
1379 struct mmc_request *mrq = slot->mrq;
1380 struct mmc_command *cmd;
1381
1382 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1383 __dw_mci_start_request(host, slot, cmd);
1384 }
1385
1386 /* must be called with host->lock held */
1387 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1388 struct mmc_request *mrq)
1389 {
1390 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1391 host->state);
1392
1393 slot->mrq = mrq;
1394
1395 if (host->state == STATE_WAITING_CMD11_DONE) {
1396 dev_warn(&slot->mmc->class_dev,
1397 "Voltage change didn't complete\n");
1398 /*
1399 * this case isn't expected to happen, so we can
1400 * either crash here or just try to continue on
1401 * in the closest possible state
1402 */
1403 host->state = STATE_IDLE;
1404 }
1405
1406 if (host->state == STATE_IDLE) {
1407 host->state = STATE_SENDING_CMD;
1408 dw_mci_start_request(host, slot);
1409 } else {
1410 list_add_tail(&slot->queue_node, &host->queue);
1411 }
1412 }
1413
1414 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1415 {
1416 struct dw_mci_slot *slot = mmc_priv(mmc);
1417 struct dw_mci *host = slot->host;
1418
1419 WARN_ON(slot->mrq);
1420
1421 /*
1422 * The check for card presence and queueing of the request must be
1423 * atomic, otherwise the card could be removed in between and the
1424 * request wouldn't fail until another card was inserted.
1425 */
1426
1427 if (!dw_mci_get_cd(mmc)) {
1428 mrq->cmd->error = -ENOMEDIUM;
1429 mmc_request_done(mmc, mrq);
1430 return;
1431 }
1432
1433 spin_lock_bh(&host->lock);
1434
1435 dw_mci_queue_request(host, slot, mrq);
1436
1437 spin_unlock_bh(&host->lock);
1438 }
1439
1440 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1441 {
1442 struct dw_mci_slot *slot = mmc_priv(mmc);
1443 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1444 u32 regs;
1445 int ret;
1446
1447 switch (ios->bus_width) {
1448 case MMC_BUS_WIDTH_4:
1449 slot->ctype = SDMMC_CTYPE_4BIT;
1450 break;
1451 case MMC_BUS_WIDTH_8:
1452 slot->ctype = SDMMC_CTYPE_8BIT;
1453 break;
1454 default:
1455 /* set default 1 bit mode */
1456 slot->ctype = SDMMC_CTYPE_1BIT;
1457 }
1458
1459 regs = mci_readl(slot->host, UHS_REG);
1460
1461 /* DDR mode set */
1462 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1463 ios->timing == MMC_TIMING_UHS_DDR50 ||
1464 ios->timing == MMC_TIMING_MMC_HS400)
1465 regs |= ((0x1 << slot->id) << 16);
1466 else
1467 regs &= ~((0x1 << slot->id) << 16);
1468
1469 mci_writel(slot->host, UHS_REG, regs);
1470 slot->host->timing = ios->timing;
1471
1472 /*
1473 * Use mirror of ios->clock to prevent race with mmc
1474 * core ios update when finding the minimum.
1475 */
1476 slot->clock = ios->clock;
1477
1478 if (drv_data && drv_data->set_ios)
1479 drv_data->set_ios(slot->host, ios);
1480
1481 switch (ios->power_mode) {
1482 case MMC_POWER_UP:
1483 if (!IS_ERR(mmc->supply.vmmc)) {
1484 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1485 ios->vdd);
1486 if (ret) {
1487 dev_err(slot->host->dev,
1488 "failed to enable vmmc regulator\n");
1489 /*return, if failed turn on vmmc*/
1490 return;
1491 }
1492 }
1493 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1494 regs = mci_readl(slot->host, PWREN);
1495 regs |= (1 << slot->id);
1496 mci_writel(slot->host, PWREN, regs);
1497 break;
1498 case MMC_POWER_ON:
1499 if (!slot->host->vqmmc_enabled) {
1500 if (!IS_ERR(mmc->supply.vqmmc)) {
1501 ret = regulator_enable(mmc->supply.vqmmc);
1502 if (ret < 0)
1503 dev_err(slot->host->dev,
1504 "failed to enable vqmmc\n");
1505 else
1506 slot->host->vqmmc_enabled = true;
1507
1508 } else {
1509 /* Keep track so we don't reset again */
1510 slot->host->vqmmc_enabled = true;
1511 }
1512
1513 /* Reset our state machine after powering on */
1514 dw_mci_ctrl_reset(slot->host,
1515 SDMMC_CTRL_ALL_RESET_FLAGS);
1516 }
1517
1518 /* Adjust clock / bus width after power is up */
1519 dw_mci_setup_bus(slot, false);
1520
1521 break;
1522 case MMC_POWER_OFF:
1523 /* Turn clock off before power goes down */
1524 dw_mci_setup_bus(slot, false);
1525
1526 if (!IS_ERR(mmc->supply.vmmc))
1527 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1528
1529 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1530 regulator_disable(mmc->supply.vqmmc);
1531 slot->host->vqmmc_enabled = false;
1532
1533 regs = mci_readl(slot->host, PWREN);
1534 regs &= ~(1 << slot->id);
1535 mci_writel(slot->host, PWREN, regs);
1536 break;
1537 default:
1538 break;
1539 }
1540
1541 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1542 slot->host->state = STATE_IDLE;
1543 }
1544
1545 static int dw_mci_card_busy(struct mmc_host *mmc)
1546 {
1547 struct dw_mci_slot *slot = mmc_priv(mmc);
1548 u32 status;
1549
1550 /*
1551 * Check the busy bit which is low when DAT[3:0]
1552 * (the data lines) are 0000
1553 */
1554 status = mci_readl(slot->host, STATUS);
1555
1556 return !!(status & SDMMC_STATUS_BUSY);
1557 }
1558
1559 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1560 {
1561 struct dw_mci_slot *slot = mmc_priv(mmc);
1562 struct dw_mci *host = slot->host;
1563 const struct dw_mci_drv_data *drv_data = host->drv_data;
1564 u32 uhs;
1565 u32 v18 = SDMMC_UHS_18V << slot->id;
1566 int ret;
1567
1568 if (drv_data && drv_data->switch_voltage)
1569 return drv_data->switch_voltage(mmc, ios);
1570
1571 /*
1572 * Program the voltage. Note that some instances of dw_mmc may use
1573 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1574 * does no harm but you need to set the regulator directly. Try both.
1575 */
1576 uhs = mci_readl(host, UHS_REG);
1577 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1578 uhs &= ~v18;
1579 else
1580 uhs |= v18;
1581
1582 if (!IS_ERR(mmc->supply.vqmmc)) {
1583 ret = mmc_regulator_set_vqmmc(mmc, ios);
1584
1585 if (ret) {
1586 dev_dbg(&mmc->class_dev,
1587 "Regulator set error %d - %s V\n",
1588 ret, uhs & v18 ? "1.8" : "3.3");
1589 return ret;
1590 }
1591 }
1592 mci_writel(host, UHS_REG, uhs);
1593
1594 return 0;
1595 }
1596
1597 static int dw_mci_get_ro(struct mmc_host *mmc)
1598 {
1599 int read_only;
1600 struct dw_mci_slot *slot = mmc_priv(mmc);
1601 int gpio_ro = mmc_gpio_get_ro(mmc);
1602
1603 /* Use platform get_ro function, else try on board write protect */
1604 if (gpio_ro >= 0)
1605 read_only = gpio_ro;
1606 else
1607 read_only =
1608 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1609
1610 dev_dbg(&mmc->class_dev, "card is %s\n",
1611 read_only ? "read-only" : "read-write");
1612
1613 return read_only;
1614 }
1615
1616 static void dw_mci_hw_reset(struct mmc_host *mmc)
1617 {
1618 struct dw_mci_slot *slot = mmc_priv(mmc);
1619 struct dw_mci *host = slot->host;
1620 int reset;
1621
1622 if (host->use_dma == TRANS_MODE_IDMAC)
1623 dw_mci_idmac_reset(host);
1624
1625 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1626 SDMMC_CTRL_FIFO_RESET))
1627 return;
1628
1629 /*
1630 * According to eMMC spec, card reset procedure:
1631 * tRstW >= 1us: RST_n pulse width
1632 * tRSCA >= 200us: RST_n to Command time
1633 * tRSTH >= 1us: RST_n high period
1634 */
1635 reset = mci_readl(host, RST_N);
1636 reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1637 mci_writel(host, RST_N, reset);
1638 usleep_range(1, 2);
1639 reset |= SDMMC_RST_HWACTIVE << slot->id;
1640 mci_writel(host, RST_N, reset);
1641 usleep_range(200, 300);
1642 }
1643
1644 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1645 {
1646 struct dw_mci_slot *slot = mmc_priv(mmc);
1647 struct dw_mci *host = slot->host;
1648
1649 /*
1650 * Low power mode will stop the card clock when idle. According to the
1651 * description of the CLKENA register we should disable low power mode
1652 * for SDIO cards if we need SDIO interrupts to work.
1653 */
1654 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1655 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1656 u32 clk_en_a_old;
1657 u32 clk_en_a;
1658
1659 clk_en_a_old = mci_readl(host, CLKENA);
1660
1661 if (card->type == MMC_TYPE_SDIO ||
1662 card->type == MMC_TYPE_SD_COMBO) {
1663 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1664 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1665 } else {
1666 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1667 clk_en_a = clk_en_a_old | clken_low_pwr;
1668 }
1669
1670 if (clk_en_a != clk_en_a_old) {
1671 mci_writel(host, CLKENA, clk_en_a);
1672 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1673 SDMMC_CMD_PRV_DAT_WAIT, 0);
1674 }
1675 }
1676 }
1677
1678 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1679 {
1680 struct dw_mci *host = slot->host;
1681 unsigned long irqflags;
1682 u32 int_mask;
1683
1684 spin_lock_irqsave(&host->irq_lock, irqflags);
1685
1686 /* Enable/disable Slot Specific SDIO interrupt */
1687 int_mask = mci_readl(host, INTMASK);
1688 if (enb)
1689 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1690 else
1691 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1692 mci_writel(host, INTMASK, int_mask);
1693
1694 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1695 }
1696
1697 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1698 {
1699 struct dw_mci_slot *slot = mmc_priv(mmc);
1700 struct dw_mci *host = slot->host;
1701
1702 __dw_mci_enable_sdio_irq(slot, enb);
1703
1704 /* Avoid runtime suspending the device when SDIO IRQ is enabled */
1705 if (enb)
1706 pm_runtime_get_noresume(host->dev);
1707 else
1708 pm_runtime_put_noidle(host->dev);
1709 }
1710
1711 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1712 {
1713 struct dw_mci_slot *slot = mmc_priv(mmc);
1714
1715 __dw_mci_enable_sdio_irq(slot, 1);
1716 }
1717
1718 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1719 {
1720 struct dw_mci_slot *slot = mmc_priv(mmc);
1721 struct dw_mci *host = slot->host;
1722 const struct dw_mci_drv_data *drv_data = host->drv_data;
1723 int err = -EINVAL;
1724
1725 if (drv_data && drv_data->execute_tuning)
1726 err = drv_data->execute_tuning(slot, opcode);
1727 return err;
1728 }
1729
1730 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1731 struct mmc_ios *ios)
1732 {
1733 struct dw_mci_slot *slot = mmc_priv(mmc);
1734 struct dw_mci *host = slot->host;
1735 const struct dw_mci_drv_data *drv_data = host->drv_data;
1736
1737 if (drv_data && drv_data->prepare_hs400_tuning)
1738 return drv_data->prepare_hs400_tuning(host, ios);
1739
1740 return 0;
1741 }
1742
1743 static bool dw_mci_reset(struct dw_mci *host)
1744 {
1745 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1746 bool ret = false;
1747 u32 status = 0;
1748
1749 /*
1750 * Resetting generates a block interrupt, hence setting
1751 * the scatter-gather pointer to NULL.
1752 */
1753 if (host->sg) {
1754 sg_miter_stop(&host->sg_miter);
1755 host->sg = NULL;
1756 }
1757
1758 if (host->use_dma)
1759 flags |= SDMMC_CTRL_DMA_RESET;
1760
1761 if (dw_mci_ctrl_reset(host, flags)) {
1762 /*
1763 * In all cases we clear the RAWINTS
1764 * register to clear any interrupts.
1765 */
1766 mci_writel(host, RINTSTS, 0xFFFFFFFF);
1767
1768 if (!host->use_dma) {
1769 ret = true;
1770 goto ciu_out;
1771 }
1772
1773 /* Wait for dma_req to be cleared */
1774 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1775 status,
1776 !(status & SDMMC_STATUS_DMA_REQ),
1777 1, 500 * USEC_PER_MSEC)) {
1778 dev_err(host->dev,
1779 "%s: Timeout waiting for dma_req to be cleared\n",
1780 __func__);
1781 goto ciu_out;
1782 }
1783
1784 /* when using DMA next we reset the fifo again */
1785 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1786 goto ciu_out;
1787 } else {
1788 /* if the controller reset bit did clear, then set clock regs */
1789 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1790 dev_err(host->dev,
1791 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1792 __func__);
1793 goto ciu_out;
1794 }
1795 }
1796
1797 if (host->use_dma == TRANS_MODE_IDMAC)
1798 /* It is also recommended that we reset and reprogram idmac */
1799 dw_mci_idmac_reset(host);
1800
1801 ret = true;
1802
1803 ciu_out:
1804 /* After a CTRL reset we need to have CIU set clock registers */
1805 mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1806
1807 return ret;
1808 }
1809
1810 static const struct mmc_host_ops dw_mci_ops = {
1811 .request = dw_mci_request,
1812 .pre_req = dw_mci_pre_req,
1813 .post_req = dw_mci_post_req,
1814 .set_ios = dw_mci_set_ios,
1815 .get_ro = dw_mci_get_ro,
1816 .get_cd = dw_mci_get_cd,
1817 .hw_reset = dw_mci_hw_reset,
1818 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1819 .ack_sdio_irq = dw_mci_ack_sdio_irq,
1820 .execute_tuning = dw_mci_execute_tuning,
1821 .card_busy = dw_mci_card_busy,
1822 .start_signal_voltage_switch = dw_mci_switch_voltage,
1823 .init_card = dw_mci_init_card,
1824 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1825 };
1826
1827 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1828 __releases(&host->lock)
1829 __acquires(&host->lock)
1830 {
1831 struct dw_mci_slot *slot;
1832 struct mmc_host *prev_mmc = host->slot->mmc;
1833
1834 WARN_ON(host->cmd || host->data);
1835
1836 host->slot->mrq = NULL;
1837 host->mrq = NULL;
1838 if (!list_empty(&host->queue)) {
1839 slot = list_entry(host->queue.next,
1840 struct dw_mci_slot, queue_node);
1841 list_del(&slot->queue_node);
1842 dev_vdbg(host->dev, "list not empty: %s is next\n",
1843 mmc_hostname(slot->mmc));
1844 host->state = STATE_SENDING_CMD;
1845 dw_mci_start_request(host, slot);
1846 } else {
1847 dev_vdbg(host->dev, "list empty\n");
1848
1849 if (host->state == STATE_SENDING_CMD11)
1850 host->state = STATE_WAITING_CMD11_DONE;
1851 else
1852 host->state = STATE_IDLE;
1853 }
1854
1855 spin_unlock(&host->lock);
1856 mmc_request_done(prev_mmc, mrq);
1857 spin_lock(&host->lock);
1858 }
1859
1860 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1861 {
1862 u32 status = host->cmd_status;
1863
1864 host->cmd_status = 0;
1865
1866 /* Read the response from the card (up to 16 bytes) */
1867 if (cmd->flags & MMC_RSP_PRESENT) {
1868 if (cmd->flags & MMC_RSP_136) {
1869 cmd->resp[3] = mci_readl(host, RESP0);
1870 cmd->resp[2] = mci_readl(host, RESP1);
1871 cmd->resp[1] = mci_readl(host, RESP2);
1872 cmd->resp[0] = mci_readl(host, RESP3);
1873 } else {
1874 cmd->resp[0] = mci_readl(host, RESP0);
1875 cmd->resp[1] = 0;
1876 cmd->resp[2] = 0;
1877 cmd->resp[3] = 0;
1878 }
1879 }
1880
1881 if (status & SDMMC_INT_RTO)
1882 cmd->error = -ETIMEDOUT;
1883 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1884 cmd->error = -EILSEQ;
1885 else if (status & SDMMC_INT_RESP_ERR)
1886 cmd->error = -EIO;
1887 else
1888 cmd->error = 0;
1889
1890 return cmd->error;
1891 }
1892
1893 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1894 {
1895 u32 status = host->data_status;
1896
1897 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1898 if (status & SDMMC_INT_DRTO) {
1899 data->error = -ETIMEDOUT;
1900 } else if (status & SDMMC_INT_DCRC) {
1901 data->error = -EILSEQ;
1902 } else if (status & SDMMC_INT_EBE) {
1903 if (host->dir_status ==
1904 DW_MCI_SEND_STATUS) {
1905 /*
1906 * No data CRC status was returned.
1907 * The number of bytes transferred
1908 * will be exaggerated in PIO mode.
1909 */
1910 data->bytes_xfered = 0;
1911 data->error = -ETIMEDOUT;
1912 } else if (host->dir_status ==
1913 DW_MCI_RECV_STATUS) {
1914 data->error = -EILSEQ;
1915 }
1916 } else {
1917 /* SDMMC_INT_SBE is included */
1918 data->error = -EILSEQ;
1919 }
1920
1921 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1922
1923 /*
1924 * After an error, there may be data lingering
1925 * in the FIFO
1926 */
1927 dw_mci_reset(host);
1928 } else {
1929 data->bytes_xfered = data->blocks * data->blksz;
1930 data->error = 0;
1931 }
1932
1933 return data->error;
1934 }
1935
1936 static void dw_mci_set_drto(struct dw_mci *host)
1937 {
1938 unsigned int drto_clks;
1939 unsigned int drto_div;
1940 unsigned int drto_ms;
1941
1942 drto_clks = mci_readl(host, TMOUT) >> 8;
1943 drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
1944 if (drto_div == 0)
1945 drto_div = 1;
1946 drto_ms = DIV_ROUND_UP(MSEC_PER_SEC * drto_clks * drto_div,
1947 host->bus_hz);
1948
1949 /* add a bit spare time */
1950 drto_ms += 10;
1951
1952 mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1953 }
1954
1955 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
1956 {
1957 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1958 return false;
1959
1960 /*
1961 * Really be certain that the timer has stopped. This is a bit of
1962 * paranoia and could only really happen if we had really bad
1963 * interrupt latency and the interrupt routine and timeout were
1964 * running concurrently so that the del_timer() in the interrupt
1965 * handler couldn't run.
1966 */
1967 WARN_ON(del_timer_sync(&host->cto_timer));
1968 clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
1969
1970 return true;
1971 }
1972
1973 static void dw_mci_tasklet_func(unsigned long priv)
1974 {
1975 struct dw_mci *host = (struct dw_mci *)priv;
1976 struct mmc_data *data;
1977 struct mmc_command *cmd;
1978 struct mmc_request *mrq;
1979 enum dw_mci_state state;
1980 enum dw_mci_state prev_state;
1981 unsigned int err;
1982
1983 spin_lock(&host->lock);
1984
1985 state = host->state;
1986 data = host->data;
1987 mrq = host->mrq;
1988
1989 do {
1990 prev_state = state;
1991
1992 switch (state) {
1993 case STATE_IDLE:
1994 case STATE_WAITING_CMD11_DONE:
1995 break;
1996
1997 case STATE_SENDING_CMD11:
1998 case STATE_SENDING_CMD:
1999 if (!dw_mci_clear_pending_cmd_complete(host))
2000 break;
2001
2002 cmd = host->cmd;
2003 host->cmd = NULL;
2004 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
2005 err = dw_mci_command_complete(host, cmd);
2006 if (cmd == mrq->sbc && !err) {
2007 prev_state = state = STATE_SENDING_CMD;
2008 __dw_mci_start_request(host, host->slot,
2009 mrq->cmd);
2010 goto unlock;
2011 }
2012
2013 if (cmd->data && err) {
2014 /*
2015 * During UHS tuning sequence, sending the stop
2016 * command after the response CRC error would
2017 * throw the system into a confused state
2018 * causing all future tuning phases to report
2019 * failure.
2020 *
2021 * In such case controller will move into a data
2022 * transfer state after a response error or
2023 * response CRC error. Let's let that finish
2024 * before trying to send a stop, so we'll go to
2025 * STATE_SENDING_DATA.
2026 *
2027 * Although letting the data transfer take place
2028 * will waste a bit of time (we already know
2029 * the command was bad), it can't cause any
2030 * errors since it's possible it would have
2031 * taken place anyway if this tasklet got
2032 * delayed. Allowing the transfer to take place
2033 * avoids races and keeps things simple.
2034 */
2035 if ((err != -ETIMEDOUT) &&
2036 (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
2037 state = STATE_SENDING_DATA;
2038 continue;
2039 }
2040
2041 dw_mci_stop_dma(host);
2042 send_stop_abort(host, data);
2043 state = STATE_SENDING_STOP;
2044 break;
2045 }
2046
2047 if (!cmd->data || err) {
2048 dw_mci_request_end(host, mrq);
2049 goto unlock;
2050 }
2051
2052 prev_state = state = STATE_SENDING_DATA;
2053 /* fall through */
2054
2055 case STATE_SENDING_DATA:
2056 /*
2057 * We could get a data error and never a transfer
2058 * complete so we'd better check for it here.
2059 *
2060 * Note that we don't really care if we also got a
2061 * transfer complete; stopping the DMA and sending an
2062 * abort won't hurt.
2063 */
2064 if (test_and_clear_bit(EVENT_DATA_ERROR,
2065 &host->pending_events)) {
2066 dw_mci_stop_dma(host);
2067 if (!(host->data_status & (SDMMC_INT_DRTO |
2068 SDMMC_INT_EBE)))
2069 send_stop_abort(host, data);
2070 state = STATE_DATA_ERROR;
2071 break;
2072 }
2073
2074 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2075 &host->pending_events)) {
2076 /*
2077 * If all data-related interrupts don't come
2078 * within the given time in reading data state.
2079 */
2080 if (host->dir_status == DW_MCI_RECV_STATUS)
2081 dw_mci_set_drto(host);
2082 break;
2083 }
2084
2085 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2086
2087 /*
2088 * Handle an EVENT_DATA_ERROR that might have shown up
2089 * before the transfer completed. This might not have
2090 * been caught by the check above because the interrupt
2091 * could have gone off between the previous check and
2092 * the check for transfer complete.
2093 *
2094 * Technically this ought not be needed assuming we
2095 * get a DATA_COMPLETE eventually (we'll notice the
2096 * error and end the request), but it shouldn't hurt.
2097 *
2098 * This has the advantage of sending the stop command.
2099 */
2100 if (test_and_clear_bit(EVENT_DATA_ERROR,
2101 &host->pending_events)) {
2102 dw_mci_stop_dma(host);
2103 if (!(host->data_status & (SDMMC_INT_DRTO |
2104 SDMMC_INT_EBE)))
2105 send_stop_abort(host, data);
2106 state = STATE_DATA_ERROR;
2107 break;
2108 }
2109 prev_state = state = STATE_DATA_BUSY;
2110
2111 /* fall through */
2112
2113 case STATE_DATA_BUSY:
2114 if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
2115 &host->pending_events)) {
2116 /*
2117 * If data error interrupt comes but data over
2118 * interrupt doesn't come within the given time.
2119 * in reading data state.
2120 */
2121 if (host->dir_status == DW_MCI_RECV_STATUS)
2122 dw_mci_set_drto(host);
2123 break;
2124 }
2125
2126 host->data = NULL;
2127 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2128 err = dw_mci_data_complete(host, data);
2129
2130 if (!err) {
2131 if (!data->stop || mrq->sbc) {
2132 if (mrq->sbc && data->stop)
2133 data->stop->error = 0;
2134 dw_mci_request_end(host, mrq);
2135 goto unlock;
2136 }
2137
2138 /* stop command for open-ended transfer*/
2139 if (data->stop)
2140 send_stop_abort(host, data);
2141 } else {
2142 /*
2143 * If we don't have a command complete now we'll
2144 * never get one since we just reset everything;
2145 * better end the request.
2146 *
2147 * If we do have a command complete we'll fall
2148 * through to the SENDING_STOP command and
2149 * everything will be peachy keen.
2150 */
2151 if (!test_bit(EVENT_CMD_COMPLETE,
2152 &host->pending_events)) {
2153 host->cmd = NULL;
2154 dw_mci_request_end(host, mrq);
2155 goto unlock;
2156 }
2157 }
2158
2159 /*
2160 * If err has non-zero,
2161 * stop-abort command has been already issued.
2162 */
2163 prev_state = state = STATE_SENDING_STOP;
2164
2165 /* fall through */
2166
2167 case STATE_SENDING_STOP:
2168 if (!dw_mci_clear_pending_cmd_complete(host))
2169 break;
2170
2171 /* CMD error in data command */
2172 if (mrq->cmd->error && mrq->data)
2173 dw_mci_reset(host);
2174
2175 host->cmd = NULL;
2176 host->data = NULL;
2177
2178 if (!mrq->sbc && mrq->stop)
2179 dw_mci_command_complete(host, mrq->stop);
2180 else
2181 host->cmd_status = 0;
2182
2183 dw_mci_request_end(host, mrq);
2184 goto unlock;
2185
2186 case STATE_DATA_ERROR:
2187 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2188 &host->pending_events))
2189 break;
2190
2191 state = STATE_DATA_BUSY;
2192 break;
2193 }
2194 } while (state != prev_state);
2195
2196 host->state = state;
2197 unlock:
2198 spin_unlock(&host->lock);
2199
2200 }
2201
2202 /* push final bytes to part_buf, only use during push */
2203 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2204 {
2205 memcpy((void *)&host->part_buf, buf, cnt);
2206 host->part_buf_count = cnt;
2207 }
2208
2209 /* append bytes to part_buf, only use during push */
2210 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2211 {
2212 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2213 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2214 host->part_buf_count += cnt;
2215 return cnt;
2216 }
2217
2218 /* pull first bytes from part_buf, only use during pull */
2219 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2220 {
2221 cnt = min_t(int, cnt, host->part_buf_count);
2222 if (cnt) {
2223 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2224 cnt);
2225 host->part_buf_count -= cnt;
2226 host->part_buf_start += cnt;
2227 }
2228 return cnt;
2229 }
2230
2231 /* pull final bytes from the part_buf, assuming it's just been filled */
2232 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2233 {
2234 memcpy(buf, &host->part_buf, cnt);
2235 host->part_buf_start = cnt;
2236 host->part_buf_count = (1 << host->data_shift) - cnt;
2237 }
2238
2239 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2240 {
2241 struct mmc_data *data = host->data;
2242 int init_cnt = cnt;
2243
2244 /* try and push anything in the part_buf */
2245 if (unlikely(host->part_buf_count)) {
2246 int len = dw_mci_push_part_bytes(host, buf, cnt);
2247
2248 buf += len;
2249 cnt -= len;
2250 if (host->part_buf_count == 2) {
2251 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2252 host->part_buf_count = 0;
2253 }
2254 }
2255 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2256 if (unlikely((unsigned long)buf & 0x1)) {
2257 while (cnt >= 2) {
2258 u16 aligned_buf[64];
2259 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2260 int items = len >> 1;
2261 int i;
2262 /* memcpy from input buffer into aligned buffer */
2263 memcpy(aligned_buf, buf, len);
2264 buf += len;
2265 cnt -= len;
2266 /* push data from aligned buffer into fifo */
2267 for (i = 0; i < items; ++i)
2268 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2269 }
2270 } else
2271 #endif
2272 {
2273 u16 *pdata = buf;
2274
2275 for (; cnt >= 2; cnt -= 2)
2276 mci_fifo_writew(host->fifo_reg, *pdata++);
2277 buf = pdata;
2278 }
2279 /* put anything remaining in the part_buf */
2280 if (cnt) {
2281 dw_mci_set_part_bytes(host, buf, cnt);
2282 /* Push data if we have reached the expected data length */
2283 if ((data->bytes_xfered + init_cnt) ==
2284 (data->blksz * data->blocks))
2285 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2286 }
2287 }
2288
2289 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2290 {
2291 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2292 if (unlikely((unsigned long)buf & 0x1)) {
2293 while (cnt >= 2) {
2294 /* pull data from fifo into aligned buffer */
2295 u16 aligned_buf[64];
2296 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2297 int items = len >> 1;
2298 int i;
2299
2300 for (i = 0; i < items; ++i)
2301 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2302 /* memcpy from aligned buffer into output buffer */
2303 memcpy(buf, aligned_buf, len);
2304 buf += len;
2305 cnt -= len;
2306 }
2307 } else
2308 #endif
2309 {
2310 u16 *pdata = buf;
2311
2312 for (; cnt >= 2; cnt -= 2)
2313 *pdata++ = mci_fifo_readw(host->fifo_reg);
2314 buf = pdata;
2315 }
2316 if (cnt) {
2317 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2318 dw_mci_pull_final_bytes(host, buf, cnt);
2319 }
2320 }
2321
2322 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2323 {
2324 struct mmc_data *data = host->data;
2325 int init_cnt = cnt;
2326
2327 /* try and push anything in the part_buf */
2328 if (unlikely(host->part_buf_count)) {
2329 int len = dw_mci_push_part_bytes(host, buf, cnt);
2330
2331 buf += len;
2332 cnt -= len;
2333 if (host->part_buf_count == 4) {
2334 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2335 host->part_buf_count = 0;
2336 }
2337 }
2338 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2339 if (unlikely((unsigned long)buf & 0x3)) {
2340 while (cnt >= 4) {
2341 u32 aligned_buf[32];
2342 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2343 int items = len >> 2;
2344 int i;
2345 /* memcpy from input buffer into aligned buffer */
2346 memcpy(aligned_buf, buf, len);
2347 buf += len;
2348 cnt -= len;
2349 /* push data from aligned buffer into fifo */
2350 for (i = 0; i < items; ++i)
2351 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2352 }
2353 } else
2354 #endif
2355 {
2356 u32 *pdata = buf;
2357
2358 for (; cnt >= 4; cnt -= 4)
2359 mci_fifo_writel(host->fifo_reg, *pdata++);
2360 buf = pdata;
2361 }
2362 /* put anything remaining in the part_buf */
2363 if (cnt) {
2364 dw_mci_set_part_bytes(host, buf, cnt);
2365 /* Push data if we have reached the expected data length */
2366 if ((data->bytes_xfered + init_cnt) ==
2367 (data->blksz * data->blocks))
2368 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2369 }
2370 }
2371
2372 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2373 {
2374 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2375 if (unlikely((unsigned long)buf & 0x3)) {
2376 while (cnt >= 4) {
2377 /* pull data from fifo into aligned buffer */
2378 u32 aligned_buf[32];
2379 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2380 int items = len >> 2;
2381 int i;
2382
2383 for (i = 0; i < items; ++i)
2384 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2385 /* memcpy from aligned buffer into output buffer */
2386 memcpy(buf, aligned_buf, len);
2387 buf += len;
2388 cnt -= len;
2389 }
2390 } else
2391 #endif
2392 {
2393 u32 *pdata = buf;
2394
2395 for (; cnt >= 4; cnt -= 4)
2396 *pdata++ = mci_fifo_readl(host->fifo_reg);
2397 buf = pdata;
2398 }
2399 if (cnt) {
2400 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2401 dw_mci_pull_final_bytes(host, buf, cnt);
2402 }
2403 }
2404
2405 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2406 {
2407 struct mmc_data *data = host->data;
2408 int init_cnt = cnt;
2409
2410 /* try and push anything in the part_buf */
2411 if (unlikely(host->part_buf_count)) {
2412 int len = dw_mci_push_part_bytes(host, buf, cnt);
2413
2414 buf += len;
2415 cnt -= len;
2416
2417 if (host->part_buf_count == 8) {
2418 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2419 host->part_buf_count = 0;
2420 }
2421 }
2422 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2423 if (unlikely((unsigned long)buf & 0x7)) {
2424 while (cnt >= 8) {
2425 u64 aligned_buf[16];
2426 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2427 int items = len >> 3;
2428 int i;
2429 /* memcpy from input buffer into aligned buffer */
2430 memcpy(aligned_buf, buf, len);
2431 buf += len;
2432 cnt -= len;
2433 /* push data from aligned buffer into fifo */
2434 for (i = 0; i < items; ++i)
2435 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2436 }
2437 } else
2438 #endif
2439 {
2440 u64 *pdata = buf;
2441
2442 for (; cnt >= 8; cnt -= 8)
2443 mci_fifo_writeq(host->fifo_reg, *pdata++);
2444 buf = pdata;
2445 }
2446 /* put anything remaining in the part_buf */
2447 if (cnt) {
2448 dw_mci_set_part_bytes(host, buf, cnt);
2449 /* Push data if we have reached the expected data length */
2450 if ((data->bytes_xfered + init_cnt) ==
2451 (data->blksz * data->blocks))
2452 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2453 }
2454 }
2455
2456 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2457 {
2458 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2459 if (unlikely((unsigned long)buf & 0x7)) {
2460 while (cnt >= 8) {
2461 /* pull data from fifo into aligned buffer */
2462 u64 aligned_buf[16];
2463 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2464 int items = len >> 3;
2465 int i;
2466
2467 for (i = 0; i < items; ++i)
2468 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2469
2470 /* memcpy from aligned buffer into output buffer */
2471 memcpy(buf, aligned_buf, len);
2472 buf += len;
2473 cnt -= len;
2474 }
2475 } else
2476 #endif
2477 {
2478 u64 *pdata = buf;
2479
2480 for (; cnt >= 8; cnt -= 8)
2481 *pdata++ = mci_fifo_readq(host->fifo_reg);
2482 buf = pdata;
2483 }
2484 if (cnt) {
2485 host->part_buf = mci_fifo_readq(host->fifo_reg);
2486 dw_mci_pull_final_bytes(host, buf, cnt);
2487 }
2488 }
2489
2490 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2491 {
2492 int len;
2493
2494 /* get remaining partial bytes */
2495 len = dw_mci_pull_part_bytes(host, buf, cnt);
2496 if (unlikely(len == cnt))
2497 return;
2498 buf += len;
2499 cnt -= len;
2500
2501 /* get the rest of the data */
2502 host->pull_data(host, buf, cnt);
2503 }
2504
2505 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2506 {
2507 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2508 void *buf;
2509 unsigned int offset;
2510 struct mmc_data *data = host->data;
2511 int shift = host->data_shift;
2512 u32 status;
2513 unsigned int len;
2514 unsigned int remain, fcnt;
2515
2516 do {
2517 if (!sg_miter_next(sg_miter))
2518 goto done;
2519
2520 host->sg = sg_miter->piter.sg;
2521 buf = sg_miter->addr;
2522 remain = sg_miter->length;
2523 offset = 0;
2524
2525 do {
2526 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2527 << shift) + host->part_buf_count;
2528 len = min(remain, fcnt);
2529 if (!len)
2530 break;
2531 dw_mci_pull_data(host, (void *)(buf + offset), len);
2532 data->bytes_xfered += len;
2533 offset += len;
2534 remain -= len;
2535 } while (remain);
2536
2537 sg_miter->consumed = offset;
2538 status = mci_readl(host, MINTSTS);
2539 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2540 /* if the RXDR is ready read again */
2541 } while ((status & SDMMC_INT_RXDR) ||
2542 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2543
2544 if (!remain) {
2545 if (!sg_miter_next(sg_miter))
2546 goto done;
2547 sg_miter->consumed = 0;
2548 }
2549 sg_miter_stop(sg_miter);
2550 return;
2551
2552 done:
2553 sg_miter_stop(sg_miter);
2554 host->sg = NULL;
2555 smp_wmb(); /* drain writebuffer */
2556 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2557 }
2558
2559 static void dw_mci_write_data_pio(struct dw_mci *host)
2560 {
2561 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2562 void *buf;
2563 unsigned int offset;
2564 struct mmc_data *data = host->data;
2565 int shift = host->data_shift;
2566 u32 status;
2567 unsigned int len;
2568 unsigned int fifo_depth = host->fifo_depth;
2569 unsigned int remain, fcnt;
2570
2571 do {
2572 if (!sg_miter_next(sg_miter))
2573 goto done;
2574
2575 host->sg = sg_miter->piter.sg;
2576 buf = sg_miter->addr;
2577 remain = sg_miter->length;
2578 offset = 0;
2579
2580 do {
2581 fcnt = ((fifo_depth -
2582 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2583 << shift) - host->part_buf_count;
2584 len = min(remain, fcnt);
2585 if (!len)
2586 break;
2587 host->push_data(host, (void *)(buf + offset), len);
2588 data->bytes_xfered += len;
2589 offset += len;
2590 remain -= len;
2591 } while (remain);
2592
2593 sg_miter->consumed = offset;
2594 status = mci_readl(host, MINTSTS);
2595 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2596 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2597
2598 if (!remain) {
2599 if (!sg_miter_next(sg_miter))
2600 goto done;
2601 sg_miter->consumed = 0;
2602 }
2603 sg_miter_stop(sg_miter);
2604 return;
2605
2606 done:
2607 sg_miter_stop(sg_miter);
2608 host->sg = NULL;
2609 smp_wmb(); /* drain writebuffer */
2610 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2611 }
2612
2613 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2614 {
2615 del_timer(&host->cto_timer);
2616
2617 if (!host->cmd_status)
2618 host->cmd_status = status;
2619
2620 smp_wmb(); /* drain writebuffer */
2621
2622 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2623 tasklet_schedule(&host->tasklet);
2624 }
2625
2626 static void dw_mci_handle_cd(struct dw_mci *host)
2627 {
2628 struct dw_mci_slot *slot = host->slot;
2629
2630 if (slot->mmc->ops->card_event)
2631 slot->mmc->ops->card_event(slot->mmc);
2632 mmc_detect_change(slot->mmc,
2633 msecs_to_jiffies(host->pdata->detect_delay_ms));
2634 }
2635
2636 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2637 {
2638 struct dw_mci *host = dev_id;
2639 u32 pending;
2640 struct dw_mci_slot *slot = host->slot;
2641 unsigned long irqflags;
2642
2643 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2644
2645 if (pending) {
2646 /* Check volt switch first, since it can look like an error */
2647 if ((host->state == STATE_SENDING_CMD11) &&
2648 (pending & SDMMC_INT_VOLT_SWITCH)) {
2649 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2650 pending &= ~SDMMC_INT_VOLT_SWITCH;
2651
2652 /*
2653 * Hold the lock; we know cmd11_timer can't be kicked
2654 * off after the lock is released, so safe to delete.
2655 */
2656 spin_lock_irqsave(&host->irq_lock, irqflags);
2657 dw_mci_cmd_interrupt(host, pending);
2658 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2659
2660 del_timer(&host->cmd11_timer);
2661 }
2662
2663 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2664 spin_lock_irqsave(&host->irq_lock, irqflags);
2665
2666 del_timer(&host->cto_timer);
2667 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2668 host->cmd_status = pending;
2669 smp_wmb(); /* drain writebuffer */
2670 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2671
2672 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2673 }
2674
2675 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2676 /* if there is an error report DATA_ERROR */
2677 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2678 host->data_status = pending;
2679 smp_wmb(); /* drain writebuffer */
2680 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2681 tasklet_schedule(&host->tasklet);
2682 }
2683
2684 if (pending & SDMMC_INT_DATA_OVER) {
2685 del_timer(&host->dto_timer);
2686
2687 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2688 if (!host->data_status)
2689 host->data_status = pending;
2690 smp_wmb(); /* drain writebuffer */
2691 if (host->dir_status == DW_MCI_RECV_STATUS) {
2692 if (host->sg != NULL)
2693 dw_mci_read_data_pio(host, true);
2694 }
2695 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2696 tasklet_schedule(&host->tasklet);
2697 }
2698
2699 if (pending & SDMMC_INT_RXDR) {
2700 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2701 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2702 dw_mci_read_data_pio(host, false);
2703 }
2704
2705 if (pending & SDMMC_INT_TXDR) {
2706 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2707 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2708 dw_mci_write_data_pio(host);
2709 }
2710
2711 if (pending & SDMMC_INT_CMD_DONE) {
2712 spin_lock_irqsave(&host->irq_lock, irqflags);
2713
2714 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2715 dw_mci_cmd_interrupt(host, pending);
2716
2717 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2718 }
2719
2720 if (pending & SDMMC_INT_CD) {
2721 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2722 dw_mci_handle_cd(host);
2723 }
2724
2725 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2726 mci_writel(host, RINTSTS,
2727 SDMMC_INT_SDIO(slot->sdio_id));
2728 __dw_mci_enable_sdio_irq(slot, 0);
2729 sdio_signal_irq(slot->mmc);
2730 }
2731
2732 }
2733
2734 if (host->use_dma != TRANS_MODE_IDMAC)
2735 return IRQ_HANDLED;
2736
2737 /* Handle IDMA interrupts */
2738 if (host->dma_64bit_address == 1) {
2739 pending = mci_readl(host, IDSTS64);
2740 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2741 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2742 SDMMC_IDMAC_INT_RI);
2743 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2744 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2745 host->dma_ops->complete((void *)host);
2746 }
2747 } else {
2748 pending = mci_readl(host, IDSTS);
2749 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2750 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2751 SDMMC_IDMAC_INT_RI);
2752 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2753 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2754 host->dma_ops->complete((void *)host);
2755 }
2756 }
2757
2758 return IRQ_HANDLED;
2759 }
2760
2761 static int dw_mci_init_slot(struct dw_mci *host)
2762 {
2763 struct mmc_host *mmc;
2764 struct dw_mci_slot *slot;
2765 const struct dw_mci_drv_data *drv_data = host->drv_data;
2766 int ctrl_id, ret;
2767 u32 freq[2];
2768
2769 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2770 if (!mmc)
2771 return -ENOMEM;
2772
2773 slot = mmc_priv(mmc);
2774 slot->id = 0;
2775 slot->sdio_id = host->sdio_id0 + slot->id;
2776 slot->mmc = mmc;
2777 slot->host = host;
2778 host->slot = slot;
2779
2780 mmc->ops = &dw_mci_ops;
2781 if (device_property_read_u32_array(host->dev, "clock-freq-min-max",
2782 freq, 2)) {
2783 mmc->f_min = DW_MCI_FREQ_MIN;
2784 mmc->f_max = DW_MCI_FREQ_MAX;
2785 } else {
2786 dev_info(host->dev,
2787 "'clock-freq-min-max' property was deprecated.\n");
2788 mmc->f_min = freq[0];
2789 mmc->f_max = freq[1];
2790 }
2791
2792 /*if there are external regulators, get them*/
2793 ret = mmc_regulator_get_supply(mmc);
2794 if (ret == -EPROBE_DEFER)
2795 goto err_host_allocated;
2796
2797 if (!mmc->ocr_avail)
2798 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2799
2800 if (host->pdata->caps)
2801 mmc->caps = host->pdata->caps;
2802
2803 /*
2804 * Support MMC_CAP_ERASE by default.
2805 * It needs to use trim/discard/erase commands.
2806 */
2807 mmc->caps |= MMC_CAP_ERASE;
2808
2809 if (host->pdata->pm_caps)
2810 mmc->pm_caps = host->pdata->pm_caps;
2811
2812 if (host->dev->of_node) {
2813 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2814 if (ctrl_id < 0)
2815 ctrl_id = 0;
2816 } else {
2817 ctrl_id = to_platform_device(host->dev)->id;
2818 }
2819 if (drv_data && drv_data->caps)
2820 mmc->caps |= drv_data->caps[ctrl_id];
2821
2822 if (host->pdata->caps2)
2823 mmc->caps2 = host->pdata->caps2;
2824
2825 ret = mmc_of_parse(mmc);
2826 if (ret)
2827 goto err_host_allocated;
2828
2829 /* Process SDIO IRQs through the sdio_irq_work. */
2830 if (mmc->caps & MMC_CAP_SDIO_IRQ)
2831 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2832
2833 /* Useful defaults if platform data is unset. */
2834 if (host->use_dma == TRANS_MODE_IDMAC) {
2835 mmc->max_segs = host->ring_size;
2836 mmc->max_blk_size = 65535;
2837 mmc->max_seg_size = 0x1000;
2838 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2839 mmc->max_blk_count = mmc->max_req_size / 512;
2840 } else if (host->use_dma == TRANS_MODE_EDMAC) {
2841 mmc->max_segs = 64;
2842 mmc->max_blk_size = 65535;
2843 mmc->max_blk_count = 65535;
2844 mmc->max_req_size =
2845 mmc->max_blk_size * mmc->max_blk_count;
2846 mmc->max_seg_size = mmc->max_req_size;
2847 } else {
2848 /* TRANS_MODE_PIO */
2849 mmc->max_segs = 64;
2850 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2851 mmc->max_blk_count = 512;
2852 mmc->max_req_size = mmc->max_blk_size *
2853 mmc->max_blk_count;
2854 mmc->max_seg_size = mmc->max_req_size;
2855 }
2856
2857 dw_mci_get_cd(mmc);
2858
2859 ret = mmc_add_host(mmc);
2860 if (ret)
2861 goto err_host_allocated;
2862
2863 #if defined(CONFIG_DEBUG_FS)
2864 dw_mci_init_debugfs(slot);
2865 #endif
2866
2867 return 0;
2868
2869 err_host_allocated:
2870 mmc_free_host(mmc);
2871 return ret;
2872 }
2873
2874 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2875 {
2876 /* Debugfs stuff is cleaned up by mmc core */
2877 mmc_remove_host(slot->mmc);
2878 slot->host->slot = NULL;
2879 mmc_free_host(slot->mmc);
2880 }
2881
2882 static void dw_mci_init_dma(struct dw_mci *host)
2883 {
2884 int addr_config;
2885 struct device *dev = host->dev;
2886
2887 /*
2888 * Check tansfer mode from HCON[17:16]
2889 * Clear the ambiguous description of dw_mmc databook:
2890 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2891 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2892 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2893 * 2b'11: Non DW DMA Interface -> pio only
2894 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2895 * simpler request/acknowledge handshake mechanism and both of them
2896 * are regarded as external dma master for dw_mmc.
2897 */
2898 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2899 if (host->use_dma == DMA_INTERFACE_IDMA) {
2900 host->use_dma = TRANS_MODE_IDMAC;
2901 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2902 host->use_dma == DMA_INTERFACE_GDMA) {
2903 host->use_dma = TRANS_MODE_EDMAC;
2904 } else {
2905 goto no_dma;
2906 }
2907
2908 /* Determine which DMA interface to use */
2909 if (host->use_dma == TRANS_MODE_IDMAC) {
2910 /*
2911 * Check ADDR_CONFIG bit in HCON to find
2912 * IDMAC address bus width
2913 */
2914 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2915
2916 if (addr_config == 1) {
2917 /* host supports IDMAC in 64-bit address mode */
2918 host->dma_64bit_address = 1;
2919 dev_info(host->dev,
2920 "IDMAC supports 64-bit address mode.\n");
2921 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2922 dma_set_coherent_mask(host->dev,
2923 DMA_BIT_MASK(64));
2924 } else {
2925 /* host supports IDMAC in 32-bit address mode */
2926 host->dma_64bit_address = 0;
2927 dev_info(host->dev,
2928 "IDMAC supports 32-bit address mode.\n");
2929 }
2930
2931 /* Alloc memory for sg translation */
2932 host->sg_cpu = dmam_alloc_coherent(host->dev,
2933 DESC_RING_BUF_SZ,
2934 &host->sg_dma, GFP_KERNEL);
2935 if (!host->sg_cpu) {
2936 dev_err(host->dev,
2937 "%s: could not alloc DMA memory\n",
2938 __func__);
2939 goto no_dma;
2940 }
2941
2942 host->dma_ops = &dw_mci_idmac_ops;
2943 dev_info(host->dev, "Using internal DMA controller.\n");
2944 } else {
2945 /* TRANS_MODE_EDMAC: check dma bindings again */
2946 if ((device_property_read_string_array(dev, "dma-names",
2947 NULL, 0) < 0) ||
2948 !device_property_present(dev, "dmas")) {
2949 goto no_dma;
2950 }
2951 host->dma_ops = &dw_mci_edmac_ops;
2952 dev_info(host->dev, "Using external DMA controller.\n");
2953 }
2954
2955 if (host->dma_ops->init && host->dma_ops->start &&
2956 host->dma_ops->stop && host->dma_ops->cleanup) {
2957 if (host->dma_ops->init(host)) {
2958 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2959 __func__);
2960 goto no_dma;
2961 }
2962 } else {
2963 dev_err(host->dev, "DMA initialization not found.\n");
2964 goto no_dma;
2965 }
2966
2967 return;
2968
2969 no_dma:
2970 dev_info(host->dev, "Using PIO mode.\n");
2971 host->use_dma = TRANS_MODE_PIO;
2972 }
2973
2974 static void dw_mci_cmd11_timer(unsigned long arg)
2975 {
2976 struct dw_mci *host = (struct dw_mci *)arg;
2977
2978 if (host->state != STATE_SENDING_CMD11) {
2979 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2980 return;
2981 }
2982
2983 host->cmd_status = SDMMC_INT_RTO;
2984 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2985 tasklet_schedule(&host->tasklet);
2986 }
2987
2988 static void dw_mci_cto_timer(unsigned long arg)
2989 {
2990 struct dw_mci *host = (struct dw_mci *)arg;
2991 unsigned long irqflags;
2992 u32 pending;
2993
2994 spin_lock_irqsave(&host->irq_lock, irqflags);
2995
2996 /*
2997 * If somehow we have very bad interrupt latency it's remotely possible
2998 * that the timer could fire while the interrupt is still pending or
2999 * while the interrupt is midway through running. Let's be paranoid
3000 * and detect those two cases. Note that this is paranoia is somewhat
3001 * justified because in this function we don't actually cancel the
3002 * pending command in the controller--we just assume it will never come.
3003 */
3004 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3005 if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3006 /* The interrupt should fire; no need to act but we can warn */
3007 dev_warn(host->dev, "Unexpected interrupt latency\n");
3008 goto exit;
3009 }
3010 if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3011 /* Presumably interrupt handler couldn't delete the timer */
3012 dev_warn(host->dev, "CTO timeout when already completed\n");
3013 goto exit;
3014 }
3015
3016 /*
3017 * Continued paranoia to make sure we're in the state we expect.
3018 * This paranoia isn't really justified but it seems good to be safe.
3019 */
3020 switch (host->state) {
3021 case STATE_SENDING_CMD11:
3022 case STATE_SENDING_CMD:
3023 case STATE_SENDING_STOP:
3024 /*
3025 * If CMD_DONE interrupt does NOT come in sending command
3026 * state, we should notify the driver to terminate current
3027 * transfer and report a command timeout to the core.
3028 */
3029 host->cmd_status = SDMMC_INT_RTO;
3030 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3031 tasklet_schedule(&host->tasklet);
3032 break;
3033 default:
3034 dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3035 host->state);
3036 break;
3037 }
3038
3039 exit:
3040 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3041 }
3042
3043 static void dw_mci_dto_timer(unsigned long arg)
3044 {
3045 struct dw_mci *host = (struct dw_mci *)arg;
3046
3047 switch (host->state) {
3048 case STATE_SENDING_DATA:
3049 case STATE_DATA_BUSY:
3050 /*
3051 * If DTO interrupt does NOT come in sending data state,
3052 * we should notify the driver to terminate current transfer
3053 * and report a data timeout to the core.
3054 */
3055 host->data_status = SDMMC_INT_DRTO;
3056 set_bit(EVENT_DATA_ERROR, &host->pending_events);
3057 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3058 tasklet_schedule(&host->tasklet);
3059 break;
3060 default:
3061 break;
3062 }
3063 }
3064
3065 #ifdef CONFIG_OF
3066 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3067 {
3068 struct dw_mci_board *pdata;
3069 struct device *dev = host->dev;
3070 const struct dw_mci_drv_data *drv_data = host->drv_data;
3071 int ret;
3072 u32 clock_frequency;
3073
3074 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3075 if (!pdata)
3076 return ERR_PTR(-ENOMEM);
3077
3078 /* find reset controller when exist */
3079 pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3080 if (IS_ERR(pdata->rstc)) {
3081 if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
3082 return ERR_PTR(-EPROBE_DEFER);
3083 }
3084
3085 /* find out number of slots supported */
3086 if (!device_property_read_u32(dev, "num-slots", &pdata->num_slots))
3087 dev_info(dev, "'num-slots' was deprecated.\n");
3088
3089 if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3090 dev_info(dev,
3091 "fifo-depth property not found, using value of FIFOTH register as default\n");
3092
3093 device_property_read_u32(dev, "card-detect-delay",
3094 &pdata->detect_delay_ms);
3095
3096 device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3097
3098 if (device_property_present(dev, "fifo-watermark-aligned"))
3099 host->wm_aligned = true;
3100
3101 if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3102 pdata->bus_hz = clock_frequency;
3103
3104 if (drv_data && drv_data->parse_dt) {
3105 ret = drv_data->parse_dt(host);
3106 if (ret)
3107 return ERR_PTR(ret);
3108 }
3109
3110 return pdata;
3111 }
3112
3113 #else /* CONFIG_OF */
3114 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3115 {
3116 return ERR_PTR(-EINVAL);
3117 }
3118 #endif /* CONFIG_OF */
3119
3120 static void dw_mci_enable_cd(struct dw_mci *host)
3121 {
3122 unsigned long irqflags;
3123 u32 temp;
3124
3125 /*
3126 * No need for CD if all slots have a non-error GPIO
3127 * as well as broken card detection is found.
3128 */
3129 if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3130 return;
3131
3132 if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3133 spin_lock_irqsave(&host->irq_lock, irqflags);
3134 temp = mci_readl(host, INTMASK);
3135 temp |= SDMMC_INT_CD;
3136 mci_writel(host, INTMASK, temp);
3137 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3138 }
3139 }
3140
3141 int dw_mci_probe(struct dw_mci *host)
3142 {
3143 const struct dw_mci_drv_data *drv_data = host->drv_data;
3144 int width, i, ret = 0;
3145 u32 fifo_size;
3146
3147 if (!host->pdata) {
3148 host->pdata = dw_mci_parse_dt(host);
3149 if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3150 return -EPROBE_DEFER;
3151 } else if (IS_ERR(host->pdata)) {
3152 dev_err(host->dev, "platform data not available\n");
3153 return -EINVAL;
3154 }
3155 }
3156
3157 host->biu_clk = devm_clk_get(host->dev, "biu");
3158 if (IS_ERR(host->biu_clk)) {
3159 dev_dbg(host->dev, "biu clock not available\n");
3160 } else {
3161 ret = clk_prepare_enable(host->biu_clk);
3162 if (ret) {
3163 dev_err(host->dev, "failed to enable biu clock\n");
3164 return ret;
3165 }
3166 }
3167
3168 host->ciu_clk = devm_clk_get(host->dev, "ciu");
3169 if (IS_ERR(host->ciu_clk)) {
3170 dev_dbg(host->dev, "ciu clock not available\n");
3171 host->bus_hz = host->pdata->bus_hz;
3172 } else {
3173 ret = clk_prepare_enable(host->ciu_clk);
3174 if (ret) {
3175 dev_err(host->dev, "failed to enable ciu clock\n");
3176 goto err_clk_biu;
3177 }
3178
3179 if (host->pdata->bus_hz) {
3180 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3181 if (ret)
3182 dev_warn(host->dev,
3183 "Unable to set bus rate to %uHz\n",
3184 host->pdata->bus_hz);
3185 }
3186 host->bus_hz = clk_get_rate(host->ciu_clk);
3187 }
3188
3189 if (!host->bus_hz) {
3190 dev_err(host->dev,
3191 "Platform data must supply bus speed\n");
3192 ret = -ENODEV;
3193 goto err_clk_ciu;
3194 }
3195
3196 if (!IS_ERR(host->pdata->rstc)) {
3197 reset_control_assert(host->pdata->rstc);
3198 usleep_range(10, 50);
3199 reset_control_deassert(host->pdata->rstc);
3200 }
3201
3202 if (drv_data && drv_data->init) {
3203 ret = drv_data->init(host);
3204 if (ret) {
3205 dev_err(host->dev,
3206 "implementation specific init failed\n");
3207 goto err_clk_ciu;
3208 }
3209 }
3210
3211 setup_timer(&host->cmd11_timer,
3212 dw_mci_cmd11_timer, (unsigned long)host);
3213
3214 setup_timer(&host->cto_timer,
3215 dw_mci_cto_timer, (unsigned long)host);
3216
3217 setup_timer(&host->dto_timer,
3218 dw_mci_dto_timer, (unsigned long)host);
3219
3220 spin_lock_init(&host->lock);
3221 spin_lock_init(&host->irq_lock);
3222 INIT_LIST_HEAD(&host->queue);
3223
3224 /*
3225 * Get the host data width - this assumes that HCON has been set with
3226 * the correct values.
3227 */
3228 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3229 if (!i) {
3230 host->push_data = dw_mci_push_data16;
3231 host->pull_data = dw_mci_pull_data16;
3232 width = 16;
3233 host->data_shift = 1;
3234 } else if (i == 2) {
3235 host->push_data = dw_mci_push_data64;
3236 host->pull_data = dw_mci_pull_data64;
3237 width = 64;
3238 host->data_shift = 3;
3239 } else {
3240 /* Check for a reserved value, and warn if it is */
3241 WARN((i != 1),
3242 "HCON reports a reserved host data width!\n"
3243 "Defaulting to 32-bit access.\n");
3244 host->push_data = dw_mci_push_data32;
3245 host->pull_data = dw_mci_pull_data32;
3246 width = 32;
3247 host->data_shift = 2;
3248 }
3249
3250 /* Reset all blocks */
3251 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3252 ret = -ENODEV;
3253 goto err_clk_ciu;
3254 }
3255
3256 host->dma_ops = host->pdata->dma_ops;
3257 dw_mci_init_dma(host);
3258
3259 /* Clear the interrupts for the host controller */
3260 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3261 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3262
3263 /* Put in max timeout */
3264 mci_writel(host, TMOUT, 0xFFFFFFFF);
3265
3266 /*
3267 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3268 * Tx Mark = fifo_size / 2 DMA Size = 8
3269 */
3270 if (!host->pdata->fifo_depth) {
3271 /*
3272 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3273 * have been overwritten by the bootloader, just like we're
3274 * about to do, so if you know the value for your hardware, you
3275 * should put it in the platform data.
3276 */
3277 fifo_size = mci_readl(host, FIFOTH);
3278 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3279 } else {
3280 fifo_size = host->pdata->fifo_depth;
3281 }
3282 host->fifo_depth = fifo_size;
3283 host->fifoth_val =
3284 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3285 mci_writel(host, FIFOTH, host->fifoth_val);
3286
3287 /* disable clock to CIU */
3288 mci_writel(host, CLKENA, 0);
3289 mci_writel(host, CLKSRC, 0);
3290
3291 /*
3292 * In 2.40a spec, Data offset is changed.
3293 * Need to check the version-id and set data-offset for DATA register.
3294 */
3295 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3296 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3297
3298 if (host->data_addr_override)
3299 host->fifo_reg = host->regs + host->data_addr_override;
3300 else if (host->verid < DW_MMC_240A)
3301 host->fifo_reg = host->regs + DATA_OFFSET;
3302 else
3303 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3304
3305 tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3306 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3307 host->irq_flags, "dw-mci", host);
3308 if (ret)
3309 goto err_dmaunmap;
3310
3311 /*
3312 * Enable interrupts for command done, data over, data empty,
3313 * receive ready and error such as transmit, receive timeout, crc error
3314 */
3315 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3316 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3317 DW_MCI_ERROR_FLAGS);
3318 /* Enable mci interrupt */
3319 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3320
3321 dev_info(host->dev,
3322 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3323 host->irq, width, fifo_size);
3324
3325 /* We need at least one slot to succeed */
3326 ret = dw_mci_init_slot(host);
3327 if (ret) {
3328 dev_dbg(host->dev, "slot %d init failed\n", i);
3329 goto err_dmaunmap;
3330 }
3331
3332 /* Now that slots are all setup, we can enable card detect */
3333 dw_mci_enable_cd(host);
3334
3335 return 0;
3336
3337 err_dmaunmap:
3338 if (host->use_dma && host->dma_ops->exit)
3339 host->dma_ops->exit(host);
3340
3341 if (!IS_ERR(host->pdata->rstc))
3342 reset_control_assert(host->pdata->rstc);
3343
3344 err_clk_ciu:
3345 clk_disable_unprepare(host->ciu_clk);
3346
3347 err_clk_biu:
3348 clk_disable_unprepare(host->biu_clk);
3349
3350 return ret;
3351 }
3352 EXPORT_SYMBOL(dw_mci_probe);
3353
3354 void dw_mci_remove(struct dw_mci *host)
3355 {
3356 dev_dbg(host->dev, "remove slot\n");
3357 if (host->slot)
3358 dw_mci_cleanup_slot(host->slot);
3359
3360 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3361 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3362
3363 /* disable clock to CIU */
3364 mci_writel(host, CLKENA, 0);
3365 mci_writel(host, CLKSRC, 0);
3366
3367 if (host->use_dma && host->dma_ops->exit)
3368 host->dma_ops->exit(host);
3369
3370 if (!IS_ERR(host->pdata->rstc))
3371 reset_control_assert(host->pdata->rstc);
3372
3373 clk_disable_unprepare(host->ciu_clk);
3374 clk_disable_unprepare(host->biu_clk);
3375 }
3376 EXPORT_SYMBOL(dw_mci_remove);
3377
3378
3379
3380 #ifdef CONFIG_PM
3381 int dw_mci_runtime_suspend(struct device *dev)
3382 {
3383 struct dw_mci *host = dev_get_drvdata(dev);
3384
3385 if (host->use_dma && host->dma_ops->exit)
3386 host->dma_ops->exit(host);
3387
3388 clk_disable_unprepare(host->ciu_clk);
3389
3390 if (host->slot &&
3391 (mmc_can_gpio_cd(host->slot->mmc) ||
3392 !mmc_card_is_removable(host->slot->mmc)))
3393 clk_disable_unprepare(host->biu_clk);
3394
3395 return 0;
3396 }
3397 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3398
3399 int dw_mci_runtime_resume(struct device *dev)
3400 {
3401 int ret = 0;
3402 struct dw_mci *host = dev_get_drvdata(dev);
3403
3404 if (host->slot &&
3405 (mmc_can_gpio_cd(host->slot->mmc) ||
3406 !mmc_card_is_removable(host->slot->mmc))) {
3407 ret = clk_prepare_enable(host->biu_clk);
3408 if (ret)
3409 return ret;
3410 }
3411
3412 ret = clk_prepare_enable(host->ciu_clk);
3413 if (ret)
3414 goto err;
3415
3416 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3417 clk_disable_unprepare(host->ciu_clk);
3418 ret = -ENODEV;
3419 goto err;
3420 }
3421
3422 if (host->use_dma && host->dma_ops->init)
3423 host->dma_ops->init(host);
3424
3425 /*
3426 * Restore the initial value at FIFOTH register
3427 * And Invalidate the prev_blksz with zero
3428 */
3429 mci_writel(host, FIFOTH, host->fifoth_val);
3430 host->prev_blksz = 0;
3431
3432 /* Put in max timeout */
3433 mci_writel(host, TMOUT, 0xFFFFFFFF);
3434
3435 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3436 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3437 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3438 DW_MCI_ERROR_FLAGS);
3439 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3440
3441
3442 if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3443 dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3444
3445 /* Force setup bus to guarantee available clock output */
3446 dw_mci_setup_bus(host->slot, true);
3447
3448 /* Now that slots are all setup, we can enable card detect */
3449 dw_mci_enable_cd(host);
3450
3451 return 0;
3452
3453 err:
3454 if (host->slot &&
3455 (mmc_can_gpio_cd(host->slot->mmc) ||
3456 !mmc_card_is_removable(host->slot->mmc)))
3457 clk_disable_unprepare(host->biu_clk);
3458
3459 return ret;
3460 }
3461 EXPORT_SYMBOL(dw_mci_runtime_resume);
3462 #endif /* CONFIG_PM */
3463
3464 static int __init dw_mci_init(void)
3465 {
3466 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3467 return 0;
3468 }
3469
3470 static void __exit dw_mci_exit(void)
3471 {
3472 }
3473
3474 module_init(dw_mci_init);
3475 module_exit(dw_mci_exit);
3476
3477 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3478 MODULE_AUTHOR("NXP Semiconductor VietNam");
3479 MODULE_AUTHOR("Imagination Technologies Ltd");
3480 MODULE_LICENSE("GPL v2");