Merge branch 'for-4.14-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / mmc / host / dw_mmc.c
1 /*
2 * Synopsys DesignWare Multimedia Card Interface driver
3 * (Based on NXP driver for lpc 31xx)
4 *
5 * Copyright (C) 2009 NXP Semiconductors
6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/iopoll.h>
23 #include <linux/ioport.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/seq_file.h>
28 #include <linux/slab.h>
29 #include <linux/stat.h>
30 #include <linux/delay.h>
31 #include <linux/irq.h>
32 #include <linux/mmc/card.h>
33 #include <linux/mmc/host.h>
34 #include <linux/mmc/mmc.h>
35 #include <linux/mmc/sd.h>
36 #include <linux/mmc/sdio.h>
37 #include <linux/bitops.h>
38 #include <linux/regulator/consumer.h>
39 #include <linux/of.h>
40 #include <linux/of_gpio.h>
41 #include <linux/mmc/slot-gpio.h>
42
43 #include "dw_mmc.h"
44
45 /* Common flag combinations */
46 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
47 SDMMC_INT_HTO | SDMMC_INT_SBE | \
48 SDMMC_INT_EBE | SDMMC_INT_HLE)
49 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
50 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
51 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
52 DW_MCI_CMD_ERROR_FLAGS)
53 #define DW_MCI_SEND_STATUS 1
54 #define DW_MCI_RECV_STATUS 2
55 #define DW_MCI_DMA_THRESHOLD 16
56
57 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
58 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
59
60 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
61 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
62 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
63 SDMMC_IDMAC_INT_TI)
64
65 #define DESC_RING_BUF_SZ PAGE_SIZE
66
67 struct idmac_desc_64addr {
68 u32 des0; /* Control Descriptor */
69 #define IDMAC_OWN_CLR64(x) \
70 !((x) & cpu_to_le32(IDMAC_DES0_OWN))
71
72 u32 des1; /* Reserved */
73
74 u32 des2; /*Buffer sizes */
75 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
76 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
77 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
78
79 u32 des3; /* Reserved */
80
81 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
82 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
83
84 u32 des6; /* Lower 32-bits of Next Descriptor Address */
85 u32 des7; /* Upper 32-bits of Next Descriptor Address */
86 };
87
88 struct idmac_desc {
89 __le32 des0; /* Control Descriptor */
90 #define IDMAC_DES0_DIC BIT(1)
91 #define IDMAC_DES0_LD BIT(2)
92 #define IDMAC_DES0_FD BIT(3)
93 #define IDMAC_DES0_CH BIT(4)
94 #define IDMAC_DES0_ER BIT(5)
95 #define IDMAC_DES0_CES BIT(30)
96 #define IDMAC_DES0_OWN BIT(31)
97
98 __le32 des1; /* Buffer sizes */
99 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
100 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
101
102 __le32 des2; /* buffer 1 physical address */
103
104 __le32 des3; /* buffer 2 physical address */
105 };
106
107 /* Each descriptor can transfer up to 4KB of data in chained mode */
108 #define DW_MCI_DESC_DATA_LENGTH 0x1000
109
110 #if defined(CONFIG_DEBUG_FS)
111 static int dw_mci_req_show(struct seq_file *s, void *v)
112 {
113 struct dw_mci_slot *slot = s->private;
114 struct mmc_request *mrq;
115 struct mmc_command *cmd;
116 struct mmc_command *stop;
117 struct mmc_data *data;
118
119 /* Make sure we get a consistent snapshot */
120 spin_lock_bh(&slot->host->lock);
121 mrq = slot->mrq;
122
123 if (mrq) {
124 cmd = mrq->cmd;
125 data = mrq->data;
126 stop = mrq->stop;
127
128 if (cmd)
129 seq_printf(s,
130 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
131 cmd->opcode, cmd->arg, cmd->flags,
132 cmd->resp[0], cmd->resp[1], cmd->resp[2],
133 cmd->resp[2], cmd->error);
134 if (data)
135 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
136 data->bytes_xfered, data->blocks,
137 data->blksz, data->flags, data->error);
138 if (stop)
139 seq_printf(s,
140 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
141 stop->opcode, stop->arg, stop->flags,
142 stop->resp[0], stop->resp[1], stop->resp[2],
143 stop->resp[2], stop->error);
144 }
145
146 spin_unlock_bh(&slot->host->lock);
147
148 return 0;
149 }
150
151 static int dw_mci_req_open(struct inode *inode, struct file *file)
152 {
153 return single_open(file, dw_mci_req_show, inode->i_private);
154 }
155
156 static const struct file_operations dw_mci_req_fops = {
157 .owner = THIS_MODULE,
158 .open = dw_mci_req_open,
159 .read = seq_read,
160 .llseek = seq_lseek,
161 .release = single_release,
162 };
163
164 static int dw_mci_regs_show(struct seq_file *s, void *v)
165 {
166 struct dw_mci *host = s->private;
167
168 seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
169 seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
170 seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
171 seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
172 seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
173 seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
174
175 return 0;
176 }
177
178 static int dw_mci_regs_open(struct inode *inode, struct file *file)
179 {
180 return single_open(file, dw_mci_regs_show, inode->i_private);
181 }
182
183 static const struct file_operations dw_mci_regs_fops = {
184 .owner = THIS_MODULE,
185 .open = dw_mci_regs_open,
186 .read = seq_read,
187 .llseek = seq_lseek,
188 .release = single_release,
189 };
190
191 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
192 {
193 struct mmc_host *mmc = slot->mmc;
194 struct dw_mci *host = slot->host;
195 struct dentry *root;
196 struct dentry *node;
197
198 root = mmc->debugfs_root;
199 if (!root)
200 return;
201
202 node = debugfs_create_file("regs", S_IRUSR, root, host,
203 &dw_mci_regs_fops);
204 if (!node)
205 goto err;
206
207 node = debugfs_create_file("req", S_IRUSR, root, slot,
208 &dw_mci_req_fops);
209 if (!node)
210 goto err;
211
212 node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
213 if (!node)
214 goto err;
215
216 node = debugfs_create_x32("pending_events", S_IRUSR, root,
217 (u32 *)&host->pending_events);
218 if (!node)
219 goto err;
220
221 node = debugfs_create_x32("completed_events", S_IRUSR, root,
222 (u32 *)&host->completed_events);
223 if (!node)
224 goto err;
225
226 return;
227
228 err:
229 dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
230 }
231 #endif /* defined(CONFIG_DEBUG_FS) */
232
233 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
234 {
235 u32 ctrl;
236
237 ctrl = mci_readl(host, CTRL);
238 ctrl |= reset;
239 mci_writel(host, CTRL, ctrl);
240
241 /* wait till resets clear */
242 if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
243 !(ctrl & reset),
244 1, 500 * USEC_PER_MSEC)) {
245 dev_err(host->dev,
246 "Timeout resetting block (ctrl reset %#x)\n",
247 ctrl & reset);
248 return false;
249 }
250
251 return true;
252 }
253
254 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
255 {
256 u32 status;
257
258 /*
259 * Databook says that before issuing a new data transfer command
260 * we need to check to see if the card is busy. Data transfer commands
261 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
262 *
263 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
264 * expected.
265 */
266 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
267 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
268 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
269 status,
270 !(status & SDMMC_STATUS_BUSY),
271 10, 500 * USEC_PER_MSEC))
272 dev_err(host->dev, "Busy; trying anyway\n");
273 }
274 }
275
276 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
277 {
278 struct dw_mci *host = slot->host;
279 unsigned int cmd_status = 0;
280
281 mci_writel(host, CMDARG, arg);
282 wmb(); /* drain writebuffer */
283 dw_mci_wait_while_busy(host, cmd);
284 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
285
286 if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
287 !(cmd_status & SDMMC_CMD_START),
288 1, 500 * USEC_PER_MSEC))
289 dev_err(&slot->mmc->class_dev,
290 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
291 cmd, arg, cmd_status);
292 }
293
294 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
295 {
296 struct dw_mci_slot *slot = mmc_priv(mmc);
297 struct dw_mci *host = slot->host;
298 u32 cmdr;
299
300 cmd->error = -EINPROGRESS;
301 cmdr = cmd->opcode;
302
303 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
304 cmd->opcode == MMC_GO_IDLE_STATE ||
305 cmd->opcode == MMC_GO_INACTIVE_STATE ||
306 (cmd->opcode == SD_IO_RW_DIRECT &&
307 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
308 cmdr |= SDMMC_CMD_STOP;
309 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
310 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
311
312 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
313 u32 clk_en_a;
314
315 /* Special bit makes CMD11 not die */
316 cmdr |= SDMMC_CMD_VOLT_SWITCH;
317
318 /* Change state to continue to handle CMD11 weirdness */
319 WARN_ON(slot->host->state != STATE_SENDING_CMD);
320 slot->host->state = STATE_SENDING_CMD11;
321
322 /*
323 * We need to disable low power mode (automatic clock stop)
324 * while doing voltage switch so we don't confuse the card,
325 * since stopping the clock is a specific part of the UHS
326 * voltage change dance.
327 *
328 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
329 * unconditionally turned back on in dw_mci_setup_bus() if it's
330 * ever called with a non-zero clock. That shouldn't happen
331 * until the voltage change is all done.
332 */
333 clk_en_a = mci_readl(host, CLKENA);
334 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
335 mci_writel(host, CLKENA, clk_en_a);
336 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
337 SDMMC_CMD_PRV_DAT_WAIT, 0);
338 }
339
340 if (cmd->flags & MMC_RSP_PRESENT) {
341 /* We expect a response, so set this bit */
342 cmdr |= SDMMC_CMD_RESP_EXP;
343 if (cmd->flags & MMC_RSP_136)
344 cmdr |= SDMMC_CMD_RESP_LONG;
345 }
346
347 if (cmd->flags & MMC_RSP_CRC)
348 cmdr |= SDMMC_CMD_RESP_CRC;
349
350 if (cmd->data) {
351 cmdr |= SDMMC_CMD_DAT_EXP;
352 if (cmd->data->flags & MMC_DATA_WRITE)
353 cmdr |= SDMMC_CMD_DAT_WR;
354 }
355
356 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
357 cmdr |= SDMMC_CMD_USE_HOLD_REG;
358
359 return cmdr;
360 }
361
362 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
363 {
364 struct mmc_command *stop;
365 u32 cmdr;
366
367 if (!cmd->data)
368 return 0;
369
370 stop = &host->stop_abort;
371 cmdr = cmd->opcode;
372 memset(stop, 0, sizeof(struct mmc_command));
373
374 if (cmdr == MMC_READ_SINGLE_BLOCK ||
375 cmdr == MMC_READ_MULTIPLE_BLOCK ||
376 cmdr == MMC_WRITE_BLOCK ||
377 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
378 cmdr == MMC_SEND_TUNING_BLOCK ||
379 cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
380 stop->opcode = MMC_STOP_TRANSMISSION;
381 stop->arg = 0;
382 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
383 } else if (cmdr == SD_IO_RW_EXTENDED) {
384 stop->opcode = SD_IO_RW_DIRECT;
385 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
386 ((cmd->arg >> 28) & 0x7);
387 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
388 } else {
389 return 0;
390 }
391
392 cmdr = stop->opcode | SDMMC_CMD_STOP |
393 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
394
395 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
396 cmdr |= SDMMC_CMD_USE_HOLD_REG;
397
398 return cmdr;
399 }
400
401 static inline void dw_mci_set_cto(struct dw_mci *host)
402 {
403 unsigned int cto_clks;
404 unsigned int cto_ms;
405
406 cto_clks = mci_readl(host, TMOUT) & 0xff;
407 cto_ms = DIV_ROUND_UP(cto_clks, host->bus_hz / 1000);
408
409 /* add a bit spare time */
410 cto_ms += 10;
411
412 mod_timer(&host->cto_timer,
413 jiffies + msecs_to_jiffies(cto_ms) + 1);
414 }
415
416 static void dw_mci_start_command(struct dw_mci *host,
417 struct mmc_command *cmd, u32 cmd_flags)
418 {
419 host->cmd = cmd;
420 dev_vdbg(host->dev,
421 "start command: ARGR=0x%08x CMDR=0x%08x\n",
422 cmd->arg, cmd_flags);
423
424 mci_writel(host, CMDARG, cmd->arg);
425 wmb(); /* drain writebuffer */
426 dw_mci_wait_while_busy(host, cmd_flags);
427
428 /* response expected command only */
429 if (cmd_flags & SDMMC_CMD_RESP_EXP)
430 dw_mci_set_cto(host);
431
432 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
433 }
434
435 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
436 {
437 struct mmc_command *stop = &host->stop_abort;
438
439 dw_mci_start_command(host, stop, host->stop_cmdr);
440 }
441
442 /* DMA interface functions */
443 static void dw_mci_stop_dma(struct dw_mci *host)
444 {
445 if (host->using_dma) {
446 host->dma_ops->stop(host);
447 host->dma_ops->cleanup(host);
448 }
449
450 /* Data transfer was stopped by the interrupt handler */
451 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
452 }
453
454 static void dw_mci_dma_cleanup(struct dw_mci *host)
455 {
456 struct mmc_data *data = host->data;
457
458 if (data && data->host_cookie == COOKIE_MAPPED) {
459 dma_unmap_sg(host->dev,
460 data->sg,
461 data->sg_len,
462 mmc_get_dma_dir(data));
463 data->host_cookie = COOKIE_UNMAPPED;
464 }
465 }
466
467 static void dw_mci_idmac_reset(struct dw_mci *host)
468 {
469 u32 bmod = mci_readl(host, BMOD);
470 /* Software reset of DMA */
471 bmod |= SDMMC_IDMAC_SWRESET;
472 mci_writel(host, BMOD, bmod);
473 }
474
475 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
476 {
477 u32 temp;
478
479 /* Disable and reset the IDMAC interface */
480 temp = mci_readl(host, CTRL);
481 temp &= ~SDMMC_CTRL_USE_IDMAC;
482 temp |= SDMMC_CTRL_DMA_RESET;
483 mci_writel(host, CTRL, temp);
484
485 /* Stop the IDMAC running */
486 temp = mci_readl(host, BMOD);
487 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
488 temp |= SDMMC_IDMAC_SWRESET;
489 mci_writel(host, BMOD, temp);
490 }
491
492 static void dw_mci_dmac_complete_dma(void *arg)
493 {
494 struct dw_mci *host = arg;
495 struct mmc_data *data = host->data;
496
497 dev_vdbg(host->dev, "DMA complete\n");
498
499 if ((host->use_dma == TRANS_MODE_EDMAC) &&
500 data && (data->flags & MMC_DATA_READ))
501 /* Invalidate cache after read */
502 dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
503 data->sg,
504 data->sg_len,
505 DMA_FROM_DEVICE);
506
507 host->dma_ops->cleanup(host);
508
509 /*
510 * If the card was removed, data will be NULL. No point in trying to
511 * send the stop command or waiting for NBUSY in this case.
512 */
513 if (data) {
514 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
515 tasklet_schedule(&host->tasklet);
516 }
517 }
518
519 static int dw_mci_idmac_init(struct dw_mci *host)
520 {
521 int i;
522
523 if (host->dma_64bit_address == 1) {
524 struct idmac_desc_64addr *p;
525 /* Number of descriptors in the ring buffer */
526 host->ring_size =
527 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
528
529 /* Forward link the descriptor list */
530 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
531 i++, p++) {
532 p->des6 = (host->sg_dma +
533 (sizeof(struct idmac_desc_64addr) *
534 (i + 1))) & 0xffffffff;
535
536 p->des7 = (u64)(host->sg_dma +
537 (sizeof(struct idmac_desc_64addr) *
538 (i + 1))) >> 32;
539 /* Initialize reserved and buffer size fields to "0" */
540 p->des1 = 0;
541 p->des2 = 0;
542 p->des3 = 0;
543 }
544
545 /* Set the last descriptor as the end-of-ring descriptor */
546 p->des6 = host->sg_dma & 0xffffffff;
547 p->des7 = (u64)host->sg_dma >> 32;
548 p->des0 = IDMAC_DES0_ER;
549
550 } else {
551 struct idmac_desc *p;
552 /* Number of descriptors in the ring buffer */
553 host->ring_size =
554 DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
555
556 /* Forward link the descriptor list */
557 for (i = 0, p = host->sg_cpu;
558 i < host->ring_size - 1;
559 i++, p++) {
560 p->des3 = cpu_to_le32(host->sg_dma +
561 (sizeof(struct idmac_desc) * (i + 1)));
562 p->des1 = 0;
563 }
564
565 /* Set the last descriptor as the end-of-ring descriptor */
566 p->des3 = cpu_to_le32(host->sg_dma);
567 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
568 }
569
570 dw_mci_idmac_reset(host);
571
572 if (host->dma_64bit_address == 1) {
573 /* Mask out interrupts - get Tx & Rx complete only */
574 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
575 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
576 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
577
578 /* Set the descriptor base address */
579 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
580 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
581
582 } else {
583 /* Mask out interrupts - get Tx & Rx complete only */
584 mci_writel(host, IDSTS, IDMAC_INT_CLR);
585 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
586 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
587
588 /* Set the descriptor base address */
589 mci_writel(host, DBADDR, host->sg_dma);
590 }
591
592 return 0;
593 }
594
595 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
596 struct mmc_data *data,
597 unsigned int sg_len)
598 {
599 unsigned int desc_len;
600 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
601 u32 val;
602 int i;
603
604 desc_first = desc_last = desc = host->sg_cpu;
605
606 for (i = 0; i < sg_len; i++) {
607 unsigned int length = sg_dma_len(&data->sg[i]);
608
609 u64 mem_addr = sg_dma_address(&data->sg[i]);
610
611 for ( ; length ; desc++) {
612 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
613 length : DW_MCI_DESC_DATA_LENGTH;
614
615 length -= desc_len;
616
617 /*
618 * Wait for the former clear OWN bit operation
619 * of IDMAC to make sure that this descriptor
620 * isn't still owned by IDMAC as IDMAC's write
621 * ops and CPU's read ops are asynchronous.
622 */
623 if (readl_poll_timeout_atomic(&desc->des0, val,
624 !(val & IDMAC_DES0_OWN),
625 10, 100 * USEC_PER_MSEC))
626 goto err_own_bit;
627
628 /*
629 * Set the OWN bit and disable interrupts
630 * for this descriptor
631 */
632 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
633 IDMAC_DES0_CH;
634
635 /* Buffer length */
636 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
637
638 /* Physical address to DMA to/from */
639 desc->des4 = mem_addr & 0xffffffff;
640 desc->des5 = mem_addr >> 32;
641
642 /* Update physical address for the next desc */
643 mem_addr += desc_len;
644
645 /* Save pointer to the last descriptor */
646 desc_last = desc;
647 }
648 }
649
650 /* Set first descriptor */
651 desc_first->des0 |= IDMAC_DES0_FD;
652
653 /* Set last descriptor */
654 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
655 desc_last->des0 |= IDMAC_DES0_LD;
656
657 return 0;
658 err_own_bit:
659 /* restore the descriptor chain as it's polluted */
660 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
661 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
662 dw_mci_idmac_init(host);
663 return -EINVAL;
664 }
665
666
667 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
668 struct mmc_data *data,
669 unsigned int sg_len)
670 {
671 unsigned int desc_len;
672 struct idmac_desc *desc_first, *desc_last, *desc;
673 u32 val;
674 int i;
675
676 desc_first = desc_last = desc = host->sg_cpu;
677
678 for (i = 0; i < sg_len; i++) {
679 unsigned int length = sg_dma_len(&data->sg[i]);
680
681 u32 mem_addr = sg_dma_address(&data->sg[i]);
682
683 for ( ; length ; desc++) {
684 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
685 length : DW_MCI_DESC_DATA_LENGTH;
686
687 length -= desc_len;
688
689 /*
690 * Wait for the former clear OWN bit operation
691 * of IDMAC to make sure that this descriptor
692 * isn't still owned by IDMAC as IDMAC's write
693 * ops and CPU's read ops are asynchronous.
694 */
695 if (readl_poll_timeout_atomic(&desc->des0, val,
696 IDMAC_OWN_CLR64(val),
697 10,
698 100 * USEC_PER_MSEC))
699 goto err_own_bit;
700
701 /*
702 * Set the OWN bit and disable interrupts
703 * for this descriptor
704 */
705 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
706 IDMAC_DES0_DIC |
707 IDMAC_DES0_CH);
708
709 /* Buffer length */
710 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
711
712 /* Physical address to DMA to/from */
713 desc->des2 = cpu_to_le32(mem_addr);
714
715 /* Update physical address for the next desc */
716 mem_addr += desc_len;
717
718 /* Save pointer to the last descriptor */
719 desc_last = desc;
720 }
721 }
722
723 /* Set first descriptor */
724 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
725
726 /* Set last descriptor */
727 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
728 IDMAC_DES0_DIC));
729 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
730
731 return 0;
732 err_own_bit:
733 /* restore the descriptor chain as it's polluted */
734 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
735 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
736 dw_mci_idmac_init(host);
737 return -EINVAL;
738 }
739
740 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
741 {
742 u32 temp;
743 int ret;
744
745 if (host->dma_64bit_address == 1)
746 ret = dw_mci_prepare_desc64(host, host->data, sg_len);
747 else
748 ret = dw_mci_prepare_desc32(host, host->data, sg_len);
749
750 if (ret)
751 goto out;
752
753 /* drain writebuffer */
754 wmb();
755
756 /* Make sure to reset DMA in case we did PIO before this */
757 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
758 dw_mci_idmac_reset(host);
759
760 /* Select IDMAC interface */
761 temp = mci_readl(host, CTRL);
762 temp |= SDMMC_CTRL_USE_IDMAC;
763 mci_writel(host, CTRL, temp);
764
765 /* drain writebuffer */
766 wmb();
767
768 /* Enable the IDMAC */
769 temp = mci_readl(host, BMOD);
770 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
771 mci_writel(host, BMOD, temp);
772
773 /* Start it running */
774 mci_writel(host, PLDMND, 1);
775
776 out:
777 return ret;
778 }
779
780 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
781 .init = dw_mci_idmac_init,
782 .start = dw_mci_idmac_start_dma,
783 .stop = dw_mci_idmac_stop_dma,
784 .complete = dw_mci_dmac_complete_dma,
785 .cleanup = dw_mci_dma_cleanup,
786 };
787
788 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
789 {
790 dmaengine_terminate_async(host->dms->ch);
791 }
792
793 static int dw_mci_edmac_start_dma(struct dw_mci *host,
794 unsigned int sg_len)
795 {
796 struct dma_slave_config cfg;
797 struct dma_async_tx_descriptor *desc = NULL;
798 struct scatterlist *sgl = host->data->sg;
799 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
800 u32 sg_elems = host->data->sg_len;
801 u32 fifoth_val;
802 u32 fifo_offset = host->fifo_reg - host->regs;
803 int ret = 0;
804
805 /* Set external dma config: burst size, burst width */
806 cfg.dst_addr = host->phy_regs + fifo_offset;
807 cfg.src_addr = cfg.dst_addr;
808 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
809 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
810
811 /* Match burst msize with external dma config */
812 fifoth_val = mci_readl(host, FIFOTH);
813 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
814 cfg.src_maxburst = cfg.dst_maxburst;
815
816 if (host->data->flags & MMC_DATA_WRITE)
817 cfg.direction = DMA_MEM_TO_DEV;
818 else
819 cfg.direction = DMA_DEV_TO_MEM;
820
821 ret = dmaengine_slave_config(host->dms->ch, &cfg);
822 if (ret) {
823 dev_err(host->dev, "Failed to config edmac.\n");
824 return -EBUSY;
825 }
826
827 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
828 sg_len, cfg.direction,
829 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
830 if (!desc) {
831 dev_err(host->dev, "Can't prepare slave sg.\n");
832 return -EBUSY;
833 }
834
835 /* Set dw_mci_dmac_complete_dma as callback */
836 desc->callback = dw_mci_dmac_complete_dma;
837 desc->callback_param = (void *)host;
838 dmaengine_submit(desc);
839
840 /* Flush cache before write */
841 if (host->data->flags & MMC_DATA_WRITE)
842 dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
843 sg_elems, DMA_TO_DEVICE);
844
845 dma_async_issue_pending(host->dms->ch);
846
847 return 0;
848 }
849
850 static int dw_mci_edmac_init(struct dw_mci *host)
851 {
852 /* Request external dma channel */
853 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
854 if (!host->dms)
855 return -ENOMEM;
856
857 host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
858 if (!host->dms->ch) {
859 dev_err(host->dev, "Failed to get external DMA channel.\n");
860 kfree(host->dms);
861 host->dms = NULL;
862 return -ENXIO;
863 }
864
865 return 0;
866 }
867
868 static void dw_mci_edmac_exit(struct dw_mci *host)
869 {
870 if (host->dms) {
871 if (host->dms->ch) {
872 dma_release_channel(host->dms->ch);
873 host->dms->ch = NULL;
874 }
875 kfree(host->dms);
876 host->dms = NULL;
877 }
878 }
879
880 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
881 .init = dw_mci_edmac_init,
882 .exit = dw_mci_edmac_exit,
883 .start = dw_mci_edmac_start_dma,
884 .stop = dw_mci_edmac_stop_dma,
885 .complete = dw_mci_dmac_complete_dma,
886 .cleanup = dw_mci_dma_cleanup,
887 };
888
889 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
890 struct mmc_data *data,
891 int cookie)
892 {
893 struct scatterlist *sg;
894 unsigned int i, sg_len;
895
896 if (data->host_cookie == COOKIE_PRE_MAPPED)
897 return data->sg_len;
898
899 /*
900 * We don't do DMA on "complex" transfers, i.e. with
901 * non-word-aligned buffers or lengths. Also, we don't bother
902 * with all the DMA setup overhead for short transfers.
903 */
904 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
905 return -EINVAL;
906
907 if (data->blksz & 3)
908 return -EINVAL;
909
910 for_each_sg(data->sg, sg, data->sg_len, i) {
911 if (sg->offset & 3 || sg->length & 3)
912 return -EINVAL;
913 }
914
915 sg_len = dma_map_sg(host->dev,
916 data->sg,
917 data->sg_len,
918 mmc_get_dma_dir(data));
919 if (sg_len == 0)
920 return -EINVAL;
921
922 data->host_cookie = cookie;
923
924 return sg_len;
925 }
926
927 static void dw_mci_pre_req(struct mmc_host *mmc,
928 struct mmc_request *mrq)
929 {
930 struct dw_mci_slot *slot = mmc_priv(mmc);
931 struct mmc_data *data = mrq->data;
932
933 if (!slot->host->use_dma || !data)
934 return;
935
936 /* This data might be unmapped at this time */
937 data->host_cookie = COOKIE_UNMAPPED;
938
939 if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
940 COOKIE_PRE_MAPPED) < 0)
941 data->host_cookie = COOKIE_UNMAPPED;
942 }
943
944 static void dw_mci_post_req(struct mmc_host *mmc,
945 struct mmc_request *mrq,
946 int err)
947 {
948 struct dw_mci_slot *slot = mmc_priv(mmc);
949 struct mmc_data *data = mrq->data;
950
951 if (!slot->host->use_dma || !data)
952 return;
953
954 if (data->host_cookie != COOKIE_UNMAPPED)
955 dma_unmap_sg(slot->host->dev,
956 data->sg,
957 data->sg_len,
958 mmc_get_dma_dir(data));
959 data->host_cookie = COOKIE_UNMAPPED;
960 }
961
962 static int dw_mci_get_cd(struct mmc_host *mmc)
963 {
964 int present;
965 struct dw_mci_slot *slot = mmc_priv(mmc);
966 struct dw_mci *host = slot->host;
967 int gpio_cd = mmc_gpio_get_cd(mmc);
968
969 /* Use platform get_cd function, else try onboard card detect */
970 if (((mmc->caps & MMC_CAP_NEEDS_POLL)
971 || !mmc_card_is_removable(mmc))) {
972 present = 1;
973
974 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
975 if (mmc->caps & MMC_CAP_NEEDS_POLL) {
976 dev_info(&mmc->class_dev,
977 "card is polling.\n");
978 } else {
979 dev_info(&mmc->class_dev,
980 "card is non-removable.\n");
981 }
982 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
983 }
984
985 return present;
986 } else if (gpio_cd >= 0)
987 present = gpio_cd;
988 else
989 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
990 == 0 ? 1 : 0;
991
992 spin_lock_bh(&host->lock);
993 if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
994 dev_dbg(&mmc->class_dev, "card is present\n");
995 else if (!present &&
996 !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
997 dev_dbg(&mmc->class_dev, "card is not present\n");
998 spin_unlock_bh(&host->lock);
999
1000 return present;
1001 }
1002
1003 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
1004 {
1005 unsigned int blksz = data->blksz;
1006 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
1007 u32 fifo_width = 1 << host->data_shift;
1008 u32 blksz_depth = blksz / fifo_width, fifoth_val;
1009 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
1010 int idx = ARRAY_SIZE(mszs) - 1;
1011
1012 /* pio should ship this scenario */
1013 if (!host->use_dma)
1014 return;
1015
1016 tx_wmark = (host->fifo_depth) / 2;
1017 tx_wmark_invers = host->fifo_depth - tx_wmark;
1018
1019 /*
1020 * MSIZE is '1',
1021 * if blksz is not a multiple of the FIFO width
1022 */
1023 if (blksz % fifo_width)
1024 goto done;
1025
1026 do {
1027 if (!((blksz_depth % mszs[idx]) ||
1028 (tx_wmark_invers % mszs[idx]))) {
1029 msize = idx;
1030 rx_wmark = mszs[idx] - 1;
1031 break;
1032 }
1033 } while (--idx > 0);
1034 /*
1035 * If idx is '0', it won't be tried
1036 * Thus, initial values are uesed
1037 */
1038 done:
1039 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1040 mci_writel(host, FIFOTH, fifoth_val);
1041 }
1042
1043 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1044 {
1045 unsigned int blksz = data->blksz;
1046 u32 blksz_depth, fifo_depth;
1047 u16 thld_size;
1048 u8 enable;
1049
1050 /*
1051 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1052 * in the FIFO region, so we really shouldn't access it).
1053 */
1054 if (host->verid < DW_MMC_240A ||
1055 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1056 return;
1057
1058 /*
1059 * Card write Threshold is introduced since 2.80a
1060 * It's used when HS400 mode is enabled.
1061 */
1062 if (data->flags & MMC_DATA_WRITE &&
1063 !(host->timing != MMC_TIMING_MMC_HS400))
1064 return;
1065
1066 if (data->flags & MMC_DATA_WRITE)
1067 enable = SDMMC_CARD_WR_THR_EN;
1068 else
1069 enable = SDMMC_CARD_RD_THR_EN;
1070
1071 if (host->timing != MMC_TIMING_MMC_HS200 &&
1072 host->timing != MMC_TIMING_UHS_SDR104)
1073 goto disable;
1074
1075 blksz_depth = blksz / (1 << host->data_shift);
1076 fifo_depth = host->fifo_depth;
1077
1078 if (blksz_depth > fifo_depth)
1079 goto disable;
1080
1081 /*
1082 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1083 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1084 * Currently just choose blksz.
1085 */
1086 thld_size = blksz;
1087 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1088 return;
1089
1090 disable:
1091 mci_writel(host, CDTHRCTL, 0);
1092 }
1093
1094 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1095 {
1096 unsigned long irqflags;
1097 int sg_len;
1098 u32 temp;
1099
1100 host->using_dma = 0;
1101
1102 /* If we don't have a channel, we can't do DMA */
1103 if (!host->use_dma)
1104 return -ENODEV;
1105
1106 sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1107 if (sg_len < 0) {
1108 host->dma_ops->stop(host);
1109 return sg_len;
1110 }
1111
1112 host->using_dma = 1;
1113
1114 if (host->use_dma == TRANS_MODE_IDMAC)
1115 dev_vdbg(host->dev,
1116 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1117 (unsigned long)host->sg_cpu,
1118 (unsigned long)host->sg_dma,
1119 sg_len);
1120
1121 /*
1122 * Decide the MSIZE and RX/TX Watermark.
1123 * If current block size is same with previous size,
1124 * no need to update fifoth.
1125 */
1126 if (host->prev_blksz != data->blksz)
1127 dw_mci_adjust_fifoth(host, data);
1128
1129 /* Enable the DMA interface */
1130 temp = mci_readl(host, CTRL);
1131 temp |= SDMMC_CTRL_DMA_ENABLE;
1132 mci_writel(host, CTRL, temp);
1133
1134 /* Disable RX/TX IRQs, let DMA handle it */
1135 spin_lock_irqsave(&host->irq_lock, irqflags);
1136 temp = mci_readl(host, INTMASK);
1137 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1138 mci_writel(host, INTMASK, temp);
1139 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1140
1141 if (host->dma_ops->start(host, sg_len)) {
1142 host->dma_ops->stop(host);
1143 /* We can't do DMA, try PIO for this one */
1144 dev_dbg(host->dev,
1145 "%s: fall back to PIO mode for current transfer\n",
1146 __func__);
1147 return -ENODEV;
1148 }
1149
1150 return 0;
1151 }
1152
1153 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1154 {
1155 unsigned long irqflags;
1156 int flags = SG_MITER_ATOMIC;
1157 u32 temp;
1158
1159 data->error = -EINPROGRESS;
1160
1161 WARN_ON(host->data);
1162 host->sg = NULL;
1163 host->data = data;
1164
1165 if (data->flags & MMC_DATA_READ)
1166 host->dir_status = DW_MCI_RECV_STATUS;
1167 else
1168 host->dir_status = DW_MCI_SEND_STATUS;
1169
1170 dw_mci_ctrl_thld(host, data);
1171
1172 if (dw_mci_submit_data_dma(host, data)) {
1173 if (host->data->flags & MMC_DATA_READ)
1174 flags |= SG_MITER_TO_SG;
1175 else
1176 flags |= SG_MITER_FROM_SG;
1177
1178 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1179 host->sg = data->sg;
1180 host->part_buf_start = 0;
1181 host->part_buf_count = 0;
1182
1183 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1184
1185 spin_lock_irqsave(&host->irq_lock, irqflags);
1186 temp = mci_readl(host, INTMASK);
1187 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1188 mci_writel(host, INTMASK, temp);
1189 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1190
1191 temp = mci_readl(host, CTRL);
1192 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1193 mci_writel(host, CTRL, temp);
1194
1195 /*
1196 * Use the initial fifoth_val for PIO mode. If wm_algined
1197 * is set, we set watermark same as data size.
1198 * If next issued data may be transfered by DMA mode,
1199 * prev_blksz should be invalidated.
1200 */
1201 if (host->wm_aligned)
1202 dw_mci_adjust_fifoth(host, data);
1203 else
1204 mci_writel(host, FIFOTH, host->fifoth_val);
1205 host->prev_blksz = 0;
1206 } else {
1207 /*
1208 * Keep the current block size.
1209 * It will be used to decide whether to update
1210 * fifoth register next time.
1211 */
1212 host->prev_blksz = data->blksz;
1213 }
1214 }
1215
1216 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1217 {
1218 struct dw_mci *host = slot->host;
1219 unsigned int clock = slot->clock;
1220 u32 div;
1221 u32 clk_en_a;
1222 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1223
1224 /* We must continue to set bit 28 in CMD until the change is complete */
1225 if (host->state == STATE_WAITING_CMD11_DONE)
1226 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1227
1228 if (!clock) {
1229 mci_writel(host, CLKENA, 0);
1230 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1231 } else if (clock != host->current_speed || force_clkinit) {
1232 div = host->bus_hz / clock;
1233 if (host->bus_hz % clock && host->bus_hz > clock)
1234 /*
1235 * move the + 1 after the divide to prevent
1236 * over-clocking the card.
1237 */
1238 div += 1;
1239
1240 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1241
1242 if ((clock != slot->__clk_old &&
1243 !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1244 force_clkinit) {
1245 /* Silent the verbose log if calling from PM context */
1246 if (!force_clkinit)
1247 dev_info(&slot->mmc->class_dev,
1248 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1249 slot->id, host->bus_hz, clock,
1250 div ? ((host->bus_hz / div) >> 1) :
1251 host->bus_hz, div);
1252
1253 /*
1254 * If card is polling, display the message only
1255 * one time at boot time.
1256 */
1257 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1258 slot->mmc->f_min == clock)
1259 set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1260 }
1261
1262 /* disable clock */
1263 mci_writel(host, CLKENA, 0);
1264 mci_writel(host, CLKSRC, 0);
1265
1266 /* inform CIU */
1267 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1268
1269 /* set clock to desired speed */
1270 mci_writel(host, CLKDIV, div);
1271
1272 /* inform CIU */
1273 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1274
1275 /* enable clock; only low power if no SDIO */
1276 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1277 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1278 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1279 mci_writel(host, CLKENA, clk_en_a);
1280
1281 /* inform CIU */
1282 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1283
1284 /* keep the last clock value that was requested from core */
1285 slot->__clk_old = clock;
1286 }
1287
1288 host->current_speed = clock;
1289
1290 /* Set the current slot bus width */
1291 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1292 }
1293
1294 static void __dw_mci_start_request(struct dw_mci *host,
1295 struct dw_mci_slot *slot,
1296 struct mmc_command *cmd)
1297 {
1298 struct mmc_request *mrq;
1299 struct mmc_data *data;
1300 u32 cmdflags;
1301
1302 mrq = slot->mrq;
1303
1304 host->mrq = mrq;
1305
1306 host->pending_events = 0;
1307 host->completed_events = 0;
1308 host->cmd_status = 0;
1309 host->data_status = 0;
1310 host->dir_status = 0;
1311
1312 data = cmd->data;
1313 if (data) {
1314 mci_writel(host, TMOUT, 0xFFFFFFFF);
1315 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1316 mci_writel(host, BLKSIZ, data->blksz);
1317 }
1318
1319 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1320
1321 /* this is the first command, send the initialization clock */
1322 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1323 cmdflags |= SDMMC_CMD_INIT;
1324
1325 if (data) {
1326 dw_mci_submit_data(host, data);
1327 wmb(); /* drain writebuffer */
1328 }
1329
1330 dw_mci_start_command(host, cmd, cmdflags);
1331
1332 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1333 unsigned long irqflags;
1334
1335 /*
1336 * Databook says to fail after 2ms w/ no response, but evidence
1337 * shows that sometimes the cmd11 interrupt takes over 130ms.
1338 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1339 * is just about to roll over.
1340 *
1341 * We do this whole thing under spinlock and only if the
1342 * command hasn't already completed (indicating the the irq
1343 * already ran so we don't want the timeout).
1344 */
1345 spin_lock_irqsave(&host->irq_lock, irqflags);
1346 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1347 mod_timer(&host->cmd11_timer,
1348 jiffies + msecs_to_jiffies(500) + 1);
1349 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1350 }
1351
1352 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1353 }
1354
1355 static void dw_mci_start_request(struct dw_mci *host,
1356 struct dw_mci_slot *slot)
1357 {
1358 struct mmc_request *mrq = slot->mrq;
1359 struct mmc_command *cmd;
1360
1361 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1362 __dw_mci_start_request(host, slot, cmd);
1363 }
1364
1365 /* must be called with host->lock held */
1366 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1367 struct mmc_request *mrq)
1368 {
1369 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1370 host->state);
1371
1372 slot->mrq = mrq;
1373
1374 if (host->state == STATE_WAITING_CMD11_DONE) {
1375 dev_warn(&slot->mmc->class_dev,
1376 "Voltage change didn't complete\n");
1377 /*
1378 * this case isn't expected to happen, so we can
1379 * either crash here or just try to continue on
1380 * in the closest possible state
1381 */
1382 host->state = STATE_IDLE;
1383 }
1384
1385 if (host->state == STATE_IDLE) {
1386 host->state = STATE_SENDING_CMD;
1387 dw_mci_start_request(host, slot);
1388 } else {
1389 list_add_tail(&slot->queue_node, &host->queue);
1390 }
1391 }
1392
1393 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1394 {
1395 struct dw_mci_slot *slot = mmc_priv(mmc);
1396 struct dw_mci *host = slot->host;
1397
1398 WARN_ON(slot->mrq);
1399
1400 /*
1401 * The check for card presence and queueing of the request must be
1402 * atomic, otherwise the card could be removed in between and the
1403 * request wouldn't fail until another card was inserted.
1404 */
1405
1406 if (!dw_mci_get_cd(mmc)) {
1407 mrq->cmd->error = -ENOMEDIUM;
1408 mmc_request_done(mmc, mrq);
1409 return;
1410 }
1411
1412 spin_lock_bh(&host->lock);
1413
1414 dw_mci_queue_request(host, slot, mrq);
1415
1416 spin_unlock_bh(&host->lock);
1417 }
1418
1419 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1420 {
1421 struct dw_mci_slot *slot = mmc_priv(mmc);
1422 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1423 u32 regs;
1424 int ret;
1425
1426 switch (ios->bus_width) {
1427 case MMC_BUS_WIDTH_4:
1428 slot->ctype = SDMMC_CTYPE_4BIT;
1429 break;
1430 case MMC_BUS_WIDTH_8:
1431 slot->ctype = SDMMC_CTYPE_8BIT;
1432 break;
1433 default:
1434 /* set default 1 bit mode */
1435 slot->ctype = SDMMC_CTYPE_1BIT;
1436 }
1437
1438 regs = mci_readl(slot->host, UHS_REG);
1439
1440 /* DDR mode set */
1441 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1442 ios->timing == MMC_TIMING_UHS_DDR50 ||
1443 ios->timing == MMC_TIMING_MMC_HS400)
1444 regs |= ((0x1 << slot->id) << 16);
1445 else
1446 regs &= ~((0x1 << slot->id) << 16);
1447
1448 mci_writel(slot->host, UHS_REG, regs);
1449 slot->host->timing = ios->timing;
1450
1451 /*
1452 * Use mirror of ios->clock to prevent race with mmc
1453 * core ios update when finding the minimum.
1454 */
1455 slot->clock = ios->clock;
1456
1457 if (drv_data && drv_data->set_ios)
1458 drv_data->set_ios(slot->host, ios);
1459
1460 switch (ios->power_mode) {
1461 case MMC_POWER_UP:
1462 if (!IS_ERR(mmc->supply.vmmc)) {
1463 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1464 ios->vdd);
1465 if (ret) {
1466 dev_err(slot->host->dev,
1467 "failed to enable vmmc regulator\n");
1468 /*return, if failed turn on vmmc*/
1469 return;
1470 }
1471 }
1472 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1473 regs = mci_readl(slot->host, PWREN);
1474 regs |= (1 << slot->id);
1475 mci_writel(slot->host, PWREN, regs);
1476 break;
1477 case MMC_POWER_ON:
1478 if (!slot->host->vqmmc_enabled) {
1479 if (!IS_ERR(mmc->supply.vqmmc)) {
1480 ret = regulator_enable(mmc->supply.vqmmc);
1481 if (ret < 0)
1482 dev_err(slot->host->dev,
1483 "failed to enable vqmmc\n");
1484 else
1485 slot->host->vqmmc_enabled = true;
1486
1487 } else {
1488 /* Keep track so we don't reset again */
1489 slot->host->vqmmc_enabled = true;
1490 }
1491
1492 /* Reset our state machine after powering on */
1493 dw_mci_ctrl_reset(slot->host,
1494 SDMMC_CTRL_ALL_RESET_FLAGS);
1495 }
1496
1497 /* Adjust clock / bus width after power is up */
1498 dw_mci_setup_bus(slot, false);
1499
1500 break;
1501 case MMC_POWER_OFF:
1502 /* Turn clock off before power goes down */
1503 dw_mci_setup_bus(slot, false);
1504
1505 if (!IS_ERR(mmc->supply.vmmc))
1506 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1507
1508 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1509 regulator_disable(mmc->supply.vqmmc);
1510 slot->host->vqmmc_enabled = false;
1511
1512 regs = mci_readl(slot->host, PWREN);
1513 regs &= ~(1 << slot->id);
1514 mci_writel(slot->host, PWREN, regs);
1515 break;
1516 default:
1517 break;
1518 }
1519
1520 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1521 slot->host->state = STATE_IDLE;
1522 }
1523
1524 static int dw_mci_card_busy(struct mmc_host *mmc)
1525 {
1526 struct dw_mci_slot *slot = mmc_priv(mmc);
1527 u32 status;
1528
1529 /*
1530 * Check the busy bit which is low when DAT[3:0]
1531 * (the data lines) are 0000
1532 */
1533 status = mci_readl(slot->host, STATUS);
1534
1535 return !!(status & SDMMC_STATUS_BUSY);
1536 }
1537
1538 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1539 {
1540 struct dw_mci_slot *slot = mmc_priv(mmc);
1541 struct dw_mci *host = slot->host;
1542 const struct dw_mci_drv_data *drv_data = host->drv_data;
1543 u32 uhs;
1544 u32 v18 = SDMMC_UHS_18V << slot->id;
1545 int ret;
1546
1547 if (drv_data && drv_data->switch_voltage)
1548 return drv_data->switch_voltage(mmc, ios);
1549
1550 /*
1551 * Program the voltage. Note that some instances of dw_mmc may use
1552 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1553 * does no harm but you need to set the regulator directly. Try both.
1554 */
1555 uhs = mci_readl(host, UHS_REG);
1556 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1557 uhs &= ~v18;
1558 else
1559 uhs |= v18;
1560
1561 if (!IS_ERR(mmc->supply.vqmmc)) {
1562 ret = mmc_regulator_set_vqmmc(mmc, ios);
1563
1564 if (ret) {
1565 dev_dbg(&mmc->class_dev,
1566 "Regulator set error %d - %s V\n",
1567 ret, uhs & v18 ? "1.8" : "3.3");
1568 return ret;
1569 }
1570 }
1571 mci_writel(host, UHS_REG, uhs);
1572
1573 return 0;
1574 }
1575
1576 static int dw_mci_get_ro(struct mmc_host *mmc)
1577 {
1578 int read_only;
1579 struct dw_mci_slot *slot = mmc_priv(mmc);
1580 int gpio_ro = mmc_gpio_get_ro(mmc);
1581
1582 /* Use platform get_ro function, else try on board write protect */
1583 if (gpio_ro >= 0)
1584 read_only = gpio_ro;
1585 else
1586 read_only =
1587 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1588
1589 dev_dbg(&mmc->class_dev, "card is %s\n",
1590 read_only ? "read-only" : "read-write");
1591
1592 return read_only;
1593 }
1594
1595 static void dw_mci_hw_reset(struct mmc_host *mmc)
1596 {
1597 struct dw_mci_slot *slot = mmc_priv(mmc);
1598 struct dw_mci *host = slot->host;
1599 int reset;
1600
1601 if (host->use_dma == TRANS_MODE_IDMAC)
1602 dw_mci_idmac_reset(host);
1603
1604 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1605 SDMMC_CTRL_FIFO_RESET))
1606 return;
1607
1608 /*
1609 * According to eMMC spec, card reset procedure:
1610 * tRstW >= 1us: RST_n pulse width
1611 * tRSCA >= 200us: RST_n to Command time
1612 * tRSTH >= 1us: RST_n high period
1613 */
1614 reset = mci_readl(host, RST_N);
1615 reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1616 mci_writel(host, RST_N, reset);
1617 usleep_range(1, 2);
1618 reset |= SDMMC_RST_HWACTIVE << slot->id;
1619 mci_writel(host, RST_N, reset);
1620 usleep_range(200, 300);
1621 }
1622
1623 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1624 {
1625 struct dw_mci_slot *slot = mmc_priv(mmc);
1626 struct dw_mci *host = slot->host;
1627
1628 /*
1629 * Low power mode will stop the card clock when idle. According to the
1630 * description of the CLKENA register we should disable low power mode
1631 * for SDIO cards if we need SDIO interrupts to work.
1632 */
1633 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1634 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1635 u32 clk_en_a_old;
1636 u32 clk_en_a;
1637
1638 clk_en_a_old = mci_readl(host, CLKENA);
1639
1640 if (card->type == MMC_TYPE_SDIO ||
1641 card->type == MMC_TYPE_SD_COMBO) {
1642 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1643 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1644 } else {
1645 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1646 clk_en_a = clk_en_a_old | clken_low_pwr;
1647 }
1648
1649 if (clk_en_a != clk_en_a_old) {
1650 mci_writel(host, CLKENA, clk_en_a);
1651 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1652 SDMMC_CMD_PRV_DAT_WAIT, 0);
1653 }
1654 }
1655 }
1656
1657 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1658 {
1659 struct dw_mci *host = slot->host;
1660 unsigned long irqflags;
1661 u32 int_mask;
1662
1663 spin_lock_irqsave(&host->irq_lock, irqflags);
1664
1665 /* Enable/disable Slot Specific SDIO interrupt */
1666 int_mask = mci_readl(host, INTMASK);
1667 if (enb)
1668 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1669 else
1670 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1671 mci_writel(host, INTMASK, int_mask);
1672
1673 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1674 }
1675
1676 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1677 {
1678 struct dw_mci_slot *slot = mmc_priv(mmc);
1679 struct dw_mci *host = slot->host;
1680
1681 __dw_mci_enable_sdio_irq(slot, enb);
1682
1683 /* Avoid runtime suspending the device when SDIO IRQ is enabled */
1684 if (enb)
1685 pm_runtime_get_noresume(host->dev);
1686 else
1687 pm_runtime_put_noidle(host->dev);
1688 }
1689
1690 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1691 {
1692 struct dw_mci_slot *slot = mmc_priv(mmc);
1693
1694 __dw_mci_enable_sdio_irq(slot, 1);
1695 }
1696
1697 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1698 {
1699 struct dw_mci_slot *slot = mmc_priv(mmc);
1700 struct dw_mci *host = slot->host;
1701 const struct dw_mci_drv_data *drv_data = host->drv_data;
1702 int err = -EINVAL;
1703
1704 if (drv_data && drv_data->execute_tuning)
1705 err = drv_data->execute_tuning(slot, opcode);
1706 return err;
1707 }
1708
1709 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1710 struct mmc_ios *ios)
1711 {
1712 struct dw_mci_slot *slot = mmc_priv(mmc);
1713 struct dw_mci *host = slot->host;
1714 const struct dw_mci_drv_data *drv_data = host->drv_data;
1715
1716 if (drv_data && drv_data->prepare_hs400_tuning)
1717 return drv_data->prepare_hs400_tuning(host, ios);
1718
1719 return 0;
1720 }
1721
1722 static bool dw_mci_reset(struct dw_mci *host)
1723 {
1724 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1725 bool ret = false;
1726 u32 status = 0;
1727
1728 /*
1729 * Resetting generates a block interrupt, hence setting
1730 * the scatter-gather pointer to NULL.
1731 */
1732 if (host->sg) {
1733 sg_miter_stop(&host->sg_miter);
1734 host->sg = NULL;
1735 }
1736
1737 if (host->use_dma)
1738 flags |= SDMMC_CTRL_DMA_RESET;
1739
1740 if (dw_mci_ctrl_reset(host, flags)) {
1741 /*
1742 * In all cases we clear the RAWINTS
1743 * register to clear any interrupts.
1744 */
1745 mci_writel(host, RINTSTS, 0xFFFFFFFF);
1746
1747 if (!host->use_dma) {
1748 ret = true;
1749 goto ciu_out;
1750 }
1751
1752 /* Wait for dma_req to be cleared */
1753 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1754 status,
1755 !(status & SDMMC_STATUS_DMA_REQ),
1756 1, 500 * USEC_PER_MSEC)) {
1757 dev_err(host->dev,
1758 "%s: Timeout waiting for dma_req to be cleared\n",
1759 __func__);
1760 goto ciu_out;
1761 }
1762
1763 /* when using DMA next we reset the fifo again */
1764 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1765 goto ciu_out;
1766 } else {
1767 /* if the controller reset bit did clear, then set clock regs */
1768 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1769 dev_err(host->dev,
1770 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1771 __func__);
1772 goto ciu_out;
1773 }
1774 }
1775
1776 if (host->use_dma == TRANS_MODE_IDMAC)
1777 /* It is also recommended that we reset and reprogram idmac */
1778 dw_mci_idmac_reset(host);
1779
1780 ret = true;
1781
1782 ciu_out:
1783 /* After a CTRL reset we need to have CIU set clock registers */
1784 mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1785
1786 return ret;
1787 }
1788
1789 static const struct mmc_host_ops dw_mci_ops = {
1790 .request = dw_mci_request,
1791 .pre_req = dw_mci_pre_req,
1792 .post_req = dw_mci_post_req,
1793 .set_ios = dw_mci_set_ios,
1794 .get_ro = dw_mci_get_ro,
1795 .get_cd = dw_mci_get_cd,
1796 .hw_reset = dw_mci_hw_reset,
1797 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1798 .ack_sdio_irq = dw_mci_ack_sdio_irq,
1799 .execute_tuning = dw_mci_execute_tuning,
1800 .card_busy = dw_mci_card_busy,
1801 .start_signal_voltage_switch = dw_mci_switch_voltage,
1802 .init_card = dw_mci_init_card,
1803 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1804 };
1805
1806 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1807 __releases(&host->lock)
1808 __acquires(&host->lock)
1809 {
1810 struct dw_mci_slot *slot;
1811 struct mmc_host *prev_mmc = host->slot->mmc;
1812
1813 WARN_ON(host->cmd || host->data);
1814
1815 host->slot->mrq = NULL;
1816 host->mrq = NULL;
1817 if (!list_empty(&host->queue)) {
1818 slot = list_entry(host->queue.next,
1819 struct dw_mci_slot, queue_node);
1820 list_del(&slot->queue_node);
1821 dev_vdbg(host->dev, "list not empty: %s is next\n",
1822 mmc_hostname(slot->mmc));
1823 host->state = STATE_SENDING_CMD;
1824 dw_mci_start_request(host, slot);
1825 } else {
1826 dev_vdbg(host->dev, "list empty\n");
1827
1828 if (host->state == STATE_SENDING_CMD11)
1829 host->state = STATE_WAITING_CMD11_DONE;
1830 else
1831 host->state = STATE_IDLE;
1832 }
1833
1834 spin_unlock(&host->lock);
1835 mmc_request_done(prev_mmc, mrq);
1836 spin_lock(&host->lock);
1837 }
1838
1839 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1840 {
1841 u32 status = host->cmd_status;
1842
1843 host->cmd_status = 0;
1844
1845 /* Read the response from the card (up to 16 bytes) */
1846 if (cmd->flags & MMC_RSP_PRESENT) {
1847 if (cmd->flags & MMC_RSP_136) {
1848 cmd->resp[3] = mci_readl(host, RESP0);
1849 cmd->resp[2] = mci_readl(host, RESP1);
1850 cmd->resp[1] = mci_readl(host, RESP2);
1851 cmd->resp[0] = mci_readl(host, RESP3);
1852 } else {
1853 cmd->resp[0] = mci_readl(host, RESP0);
1854 cmd->resp[1] = 0;
1855 cmd->resp[2] = 0;
1856 cmd->resp[3] = 0;
1857 }
1858 }
1859
1860 if (status & SDMMC_INT_RTO)
1861 cmd->error = -ETIMEDOUT;
1862 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1863 cmd->error = -EILSEQ;
1864 else if (status & SDMMC_INT_RESP_ERR)
1865 cmd->error = -EIO;
1866 else
1867 cmd->error = 0;
1868
1869 return cmd->error;
1870 }
1871
1872 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1873 {
1874 u32 status = host->data_status;
1875
1876 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1877 if (status & SDMMC_INT_DRTO) {
1878 data->error = -ETIMEDOUT;
1879 } else if (status & SDMMC_INT_DCRC) {
1880 data->error = -EILSEQ;
1881 } else if (status & SDMMC_INT_EBE) {
1882 if (host->dir_status ==
1883 DW_MCI_SEND_STATUS) {
1884 /*
1885 * No data CRC status was returned.
1886 * The number of bytes transferred
1887 * will be exaggerated in PIO mode.
1888 */
1889 data->bytes_xfered = 0;
1890 data->error = -ETIMEDOUT;
1891 } else if (host->dir_status ==
1892 DW_MCI_RECV_STATUS) {
1893 data->error = -EILSEQ;
1894 }
1895 } else {
1896 /* SDMMC_INT_SBE is included */
1897 data->error = -EILSEQ;
1898 }
1899
1900 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1901
1902 /*
1903 * After an error, there may be data lingering
1904 * in the FIFO
1905 */
1906 dw_mci_reset(host);
1907 } else {
1908 data->bytes_xfered = data->blocks * data->blksz;
1909 data->error = 0;
1910 }
1911
1912 return data->error;
1913 }
1914
1915 static void dw_mci_set_drto(struct dw_mci *host)
1916 {
1917 unsigned int drto_clks;
1918 unsigned int drto_ms;
1919
1920 drto_clks = mci_readl(host, TMOUT) >> 8;
1921 drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1922
1923 /* add a bit spare time */
1924 drto_ms += 10;
1925
1926 mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1927 }
1928
1929 static void dw_mci_tasklet_func(unsigned long priv)
1930 {
1931 struct dw_mci *host = (struct dw_mci *)priv;
1932 struct mmc_data *data;
1933 struct mmc_command *cmd;
1934 struct mmc_request *mrq;
1935 enum dw_mci_state state;
1936 enum dw_mci_state prev_state;
1937 unsigned int err;
1938
1939 spin_lock(&host->lock);
1940
1941 state = host->state;
1942 data = host->data;
1943 mrq = host->mrq;
1944
1945 do {
1946 prev_state = state;
1947
1948 switch (state) {
1949 case STATE_IDLE:
1950 case STATE_WAITING_CMD11_DONE:
1951 break;
1952
1953 case STATE_SENDING_CMD11:
1954 case STATE_SENDING_CMD:
1955 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1956 &host->pending_events))
1957 break;
1958
1959 cmd = host->cmd;
1960 host->cmd = NULL;
1961 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1962 err = dw_mci_command_complete(host, cmd);
1963 if (cmd == mrq->sbc && !err) {
1964 prev_state = state = STATE_SENDING_CMD;
1965 __dw_mci_start_request(host, host->slot,
1966 mrq->cmd);
1967 goto unlock;
1968 }
1969
1970 if (cmd->data && err) {
1971 /*
1972 * During UHS tuning sequence, sending the stop
1973 * command after the response CRC error would
1974 * throw the system into a confused state
1975 * causing all future tuning phases to report
1976 * failure.
1977 *
1978 * In such case controller will move into a data
1979 * transfer state after a response error or
1980 * response CRC error. Let's let that finish
1981 * before trying to send a stop, so we'll go to
1982 * STATE_SENDING_DATA.
1983 *
1984 * Although letting the data transfer take place
1985 * will waste a bit of time (we already know
1986 * the command was bad), it can't cause any
1987 * errors since it's possible it would have
1988 * taken place anyway if this tasklet got
1989 * delayed. Allowing the transfer to take place
1990 * avoids races and keeps things simple.
1991 */
1992 if ((err != -ETIMEDOUT) &&
1993 (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
1994 state = STATE_SENDING_DATA;
1995 continue;
1996 }
1997
1998 dw_mci_stop_dma(host);
1999 send_stop_abort(host, data);
2000 state = STATE_SENDING_STOP;
2001 break;
2002 }
2003
2004 if (!cmd->data || err) {
2005 dw_mci_request_end(host, mrq);
2006 goto unlock;
2007 }
2008
2009 prev_state = state = STATE_SENDING_DATA;
2010 /* fall through */
2011
2012 case STATE_SENDING_DATA:
2013 /*
2014 * We could get a data error and never a transfer
2015 * complete so we'd better check for it here.
2016 *
2017 * Note that we don't really care if we also got a
2018 * transfer complete; stopping the DMA and sending an
2019 * abort won't hurt.
2020 */
2021 if (test_and_clear_bit(EVENT_DATA_ERROR,
2022 &host->pending_events)) {
2023 dw_mci_stop_dma(host);
2024 if (!(host->data_status & (SDMMC_INT_DRTO |
2025 SDMMC_INT_EBE)))
2026 send_stop_abort(host, data);
2027 state = STATE_DATA_ERROR;
2028 break;
2029 }
2030
2031 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2032 &host->pending_events)) {
2033 /*
2034 * If all data-related interrupts don't come
2035 * within the given time in reading data state.
2036 */
2037 if (host->dir_status == DW_MCI_RECV_STATUS)
2038 dw_mci_set_drto(host);
2039 break;
2040 }
2041
2042 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2043
2044 /*
2045 * Handle an EVENT_DATA_ERROR that might have shown up
2046 * before the transfer completed. This might not have
2047 * been caught by the check above because the interrupt
2048 * could have gone off between the previous check and
2049 * the check for transfer complete.
2050 *
2051 * Technically this ought not be needed assuming we
2052 * get a DATA_COMPLETE eventually (we'll notice the
2053 * error and end the request), but it shouldn't hurt.
2054 *
2055 * This has the advantage of sending the stop command.
2056 */
2057 if (test_and_clear_bit(EVENT_DATA_ERROR,
2058 &host->pending_events)) {
2059 dw_mci_stop_dma(host);
2060 if (!(host->data_status & (SDMMC_INT_DRTO |
2061 SDMMC_INT_EBE)))
2062 send_stop_abort(host, data);
2063 state = STATE_DATA_ERROR;
2064 break;
2065 }
2066 prev_state = state = STATE_DATA_BUSY;
2067
2068 /* fall through */
2069
2070 case STATE_DATA_BUSY:
2071 if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
2072 &host->pending_events)) {
2073 /*
2074 * If data error interrupt comes but data over
2075 * interrupt doesn't come within the given time.
2076 * in reading data state.
2077 */
2078 if (host->dir_status == DW_MCI_RECV_STATUS)
2079 dw_mci_set_drto(host);
2080 break;
2081 }
2082
2083 host->data = NULL;
2084 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2085 err = dw_mci_data_complete(host, data);
2086
2087 if (!err) {
2088 if (!data->stop || mrq->sbc) {
2089 if (mrq->sbc && data->stop)
2090 data->stop->error = 0;
2091 dw_mci_request_end(host, mrq);
2092 goto unlock;
2093 }
2094
2095 /* stop command for open-ended transfer*/
2096 if (data->stop)
2097 send_stop_abort(host, data);
2098 } else {
2099 /*
2100 * If we don't have a command complete now we'll
2101 * never get one since we just reset everything;
2102 * better end the request.
2103 *
2104 * If we do have a command complete we'll fall
2105 * through to the SENDING_STOP command and
2106 * everything will be peachy keen.
2107 */
2108 if (!test_bit(EVENT_CMD_COMPLETE,
2109 &host->pending_events)) {
2110 host->cmd = NULL;
2111 dw_mci_request_end(host, mrq);
2112 goto unlock;
2113 }
2114 }
2115
2116 /*
2117 * If err has non-zero,
2118 * stop-abort command has been already issued.
2119 */
2120 prev_state = state = STATE_SENDING_STOP;
2121
2122 /* fall through */
2123
2124 case STATE_SENDING_STOP:
2125 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
2126 &host->pending_events))
2127 break;
2128
2129 /* CMD error in data command */
2130 if (mrq->cmd->error && mrq->data)
2131 dw_mci_reset(host);
2132
2133 host->cmd = NULL;
2134 host->data = NULL;
2135
2136 if (!mrq->sbc && mrq->stop)
2137 dw_mci_command_complete(host, mrq->stop);
2138 else
2139 host->cmd_status = 0;
2140
2141 dw_mci_request_end(host, mrq);
2142 goto unlock;
2143
2144 case STATE_DATA_ERROR:
2145 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2146 &host->pending_events))
2147 break;
2148
2149 state = STATE_DATA_BUSY;
2150 break;
2151 }
2152 } while (state != prev_state);
2153
2154 host->state = state;
2155 unlock:
2156 spin_unlock(&host->lock);
2157
2158 }
2159
2160 /* push final bytes to part_buf, only use during push */
2161 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2162 {
2163 memcpy((void *)&host->part_buf, buf, cnt);
2164 host->part_buf_count = cnt;
2165 }
2166
2167 /* append bytes to part_buf, only use during push */
2168 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2169 {
2170 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2171 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2172 host->part_buf_count += cnt;
2173 return cnt;
2174 }
2175
2176 /* pull first bytes from part_buf, only use during pull */
2177 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2178 {
2179 cnt = min_t(int, cnt, host->part_buf_count);
2180 if (cnt) {
2181 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2182 cnt);
2183 host->part_buf_count -= cnt;
2184 host->part_buf_start += cnt;
2185 }
2186 return cnt;
2187 }
2188
2189 /* pull final bytes from the part_buf, assuming it's just been filled */
2190 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2191 {
2192 memcpy(buf, &host->part_buf, cnt);
2193 host->part_buf_start = cnt;
2194 host->part_buf_count = (1 << host->data_shift) - cnt;
2195 }
2196
2197 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2198 {
2199 struct mmc_data *data = host->data;
2200 int init_cnt = cnt;
2201
2202 /* try and push anything in the part_buf */
2203 if (unlikely(host->part_buf_count)) {
2204 int len = dw_mci_push_part_bytes(host, buf, cnt);
2205
2206 buf += len;
2207 cnt -= len;
2208 if (host->part_buf_count == 2) {
2209 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2210 host->part_buf_count = 0;
2211 }
2212 }
2213 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2214 if (unlikely((unsigned long)buf & 0x1)) {
2215 while (cnt >= 2) {
2216 u16 aligned_buf[64];
2217 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2218 int items = len >> 1;
2219 int i;
2220 /* memcpy from input buffer into aligned buffer */
2221 memcpy(aligned_buf, buf, len);
2222 buf += len;
2223 cnt -= len;
2224 /* push data from aligned buffer into fifo */
2225 for (i = 0; i < items; ++i)
2226 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2227 }
2228 } else
2229 #endif
2230 {
2231 u16 *pdata = buf;
2232
2233 for (; cnt >= 2; cnt -= 2)
2234 mci_fifo_writew(host->fifo_reg, *pdata++);
2235 buf = pdata;
2236 }
2237 /* put anything remaining in the part_buf */
2238 if (cnt) {
2239 dw_mci_set_part_bytes(host, buf, cnt);
2240 /* Push data if we have reached the expected data length */
2241 if ((data->bytes_xfered + init_cnt) ==
2242 (data->blksz * data->blocks))
2243 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2244 }
2245 }
2246
2247 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2248 {
2249 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2250 if (unlikely((unsigned long)buf & 0x1)) {
2251 while (cnt >= 2) {
2252 /* pull data from fifo into aligned buffer */
2253 u16 aligned_buf[64];
2254 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2255 int items = len >> 1;
2256 int i;
2257
2258 for (i = 0; i < items; ++i)
2259 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2260 /* memcpy from aligned buffer into output buffer */
2261 memcpy(buf, aligned_buf, len);
2262 buf += len;
2263 cnt -= len;
2264 }
2265 } else
2266 #endif
2267 {
2268 u16 *pdata = buf;
2269
2270 for (; cnt >= 2; cnt -= 2)
2271 *pdata++ = mci_fifo_readw(host->fifo_reg);
2272 buf = pdata;
2273 }
2274 if (cnt) {
2275 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2276 dw_mci_pull_final_bytes(host, buf, cnt);
2277 }
2278 }
2279
2280 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2281 {
2282 struct mmc_data *data = host->data;
2283 int init_cnt = cnt;
2284
2285 /* try and push anything in the part_buf */
2286 if (unlikely(host->part_buf_count)) {
2287 int len = dw_mci_push_part_bytes(host, buf, cnt);
2288
2289 buf += len;
2290 cnt -= len;
2291 if (host->part_buf_count == 4) {
2292 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2293 host->part_buf_count = 0;
2294 }
2295 }
2296 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2297 if (unlikely((unsigned long)buf & 0x3)) {
2298 while (cnt >= 4) {
2299 u32 aligned_buf[32];
2300 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2301 int items = len >> 2;
2302 int i;
2303 /* memcpy from input buffer into aligned buffer */
2304 memcpy(aligned_buf, buf, len);
2305 buf += len;
2306 cnt -= len;
2307 /* push data from aligned buffer into fifo */
2308 for (i = 0; i < items; ++i)
2309 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2310 }
2311 } else
2312 #endif
2313 {
2314 u32 *pdata = buf;
2315
2316 for (; cnt >= 4; cnt -= 4)
2317 mci_fifo_writel(host->fifo_reg, *pdata++);
2318 buf = pdata;
2319 }
2320 /* put anything remaining in the part_buf */
2321 if (cnt) {
2322 dw_mci_set_part_bytes(host, buf, cnt);
2323 /* Push data if we have reached the expected data length */
2324 if ((data->bytes_xfered + init_cnt) ==
2325 (data->blksz * data->blocks))
2326 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2327 }
2328 }
2329
2330 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2331 {
2332 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2333 if (unlikely((unsigned long)buf & 0x3)) {
2334 while (cnt >= 4) {
2335 /* pull data from fifo into aligned buffer */
2336 u32 aligned_buf[32];
2337 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2338 int items = len >> 2;
2339 int i;
2340
2341 for (i = 0; i < items; ++i)
2342 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2343 /* memcpy from aligned buffer into output buffer */
2344 memcpy(buf, aligned_buf, len);
2345 buf += len;
2346 cnt -= len;
2347 }
2348 } else
2349 #endif
2350 {
2351 u32 *pdata = buf;
2352
2353 for (; cnt >= 4; cnt -= 4)
2354 *pdata++ = mci_fifo_readl(host->fifo_reg);
2355 buf = pdata;
2356 }
2357 if (cnt) {
2358 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2359 dw_mci_pull_final_bytes(host, buf, cnt);
2360 }
2361 }
2362
2363 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2364 {
2365 struct mmc_data *data = host->data;
2366 int init_cnt = cnt;
2367
2368 /* try and push anything in the part_buf */
2369 if (unlikely(host->part_buf_count)) {
2370 int len = dw_mci_push_part_bytes(host, buf, cnt);
2371
2372 buf += len;
2373 cnt -= len;
2374
2375 if (host->part_buf_count == 8) {
2376 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2377 host->part_buf_count = 0;
2378 }
2379 }
2380 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2381 if (unlikely((unsigned long)buf & 0x7)) {
2382 while (cnt >= 8) {
2383 u64 aligned_buf[16];
2384 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2385 int items = len >> 3;
2386 int i;
2387 /* memcpy from input buffer into aligned buffer */
2388 memcpy(aligned_buf, buf, len);
2389 buf += len;
2390 cnt -= len;
2391 /* push data from aligned buffer into fifo */
2392 for (i = 0; i < items; ++i)
2393 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2394 }
2395 } else
2396 #endif
2397 {
2398 u64 *pdata = buf;
2399
2400 for (; cnt >= 8; cnt -= 8)
2401 mci_fifo_writeq(host->fifo_reg, *pdata++);
2402 buf = pdata;
2403 }
2404 /* put anything remaining in the part_buf */
2405 if (cnt) {
2406 dw_mci_set_part_bytes(host, buf, cnt);
2407 /* Push data if we have reached the expected data length */
2408 if ((data->bytes_xfered + init_cnt) ==
2409 (data->blksz * data->blocks))
2410 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2411 }
2412 }
2413
2414 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2415 {
2416 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2417 if (unlikely((unsigned long)buf & 0x7)) {
2418 while (cnt >= 8) {
2419 /* pull data from fifo into aligned buffer */
2420 u64 aligned_buf[16];
2421 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2422 int items = len >> 3;
2423 int i;
2424
2425 for (i = 0; i < items; ++i)
2426 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2427
2428 /* memcpy from aligned buffer into output buffer */
2429 memcpy(buf, aligned_buf, len);
2430 buf += len;
2431 cnt -= len;
2432 }
2433 } else
2434 #endif
2435 {
2436 u64 *pdata = buf;
2437
2438 for (; cnt >= 8; cnt -= 8)
2439 *pdata++ = mci_fifo_readq(host->fifo_reg);
2440 buf = pdata;
2441 }
2442 if (cnt) {
2443 host->part_buf = mci_fifo_readq(host->fifo_reg);
2444 dw_mci_pull_final_bytes(host, buf, cnt);
2445 }
2446 }
2447
2448 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2449 {
2450 int len;
2451
2452 /* get remaining partial bytes */
2453 len = dw_mci_pull_part_bytes(host, buf, cnt);
2454 if (unlikely(len == cnt))
2455 return;
2456 buf += len;
2457 cnt -= len;
2458
2459 /* get the rest of the data */
2460 host->pull_data(host, buf, cnt);
2461 }
2462
2463 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2464 {
2465 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2466 void *buf;
2467 unsigned int offset;
2468 struct mmc_data *data = host->data;
2469 int shift = host->data_shift;
2470 u32 status;
2471 unsigned int len;
2472 unsigned int remain, fcnt;
2473
2474 do {
2475 if (!sg_miter_next(sg_miter))
2476 goto done;
2477
2478 host->sg = sg_miter->piter.sg;
2479 buf = sg_miter->addr;
2480 remain = sg_miter->length;
2481 offset = 0;
2482
2483 do {
2484 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2485 << shift) + host->part_buf_count;
2486 len = min(remain, fcnt);
2487 if (!len)
2488 break;
2489 dw_mci_pull_data(host, (void *)(buf + offset), len);
2490 data->bytes_xfered += len;
2491 offset += len;
2492 remain -= len;
2493 } while (remain);
2494
2495 sg_miter->consumed = offset;
2496 status = mci_readl(host, MINTSTS);
2497 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2498 /* if the RXDR is ready read again */
2499 } while ((status & SDMMC_INT_RXDR) ||
2500 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2501
2502 if (!remain) {
2503 if (!sg_miter_next(sg_miter))
2504 goto done;
2505 sg_miter->consumed = 0;
2506 }
2507 sg_miter_stop(sg_miter);
2508 return;
2509
2510 done:
2511 sg_miter_stop(sg_miter);
2512 host->sg = NULL;
2513 smp_wmb(); /* drain writebuffer */
2514 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2515 }
2516
2517 static void dw_mci_write_data_pio(struct dw_mci *host)
2518 {
2519 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2520 void *buf;
2521 unsigned int offset;
2522 struct mmc_data *data = host->data;
2523 int shift = host->data_shift;
2524 u32 status;
2525 unsigned int len;
2526 unsigned int fifo_depth = host->fifo_depth;
2527 unsigned int remain, fcnt;
2528
2529 do {
2530 if (!sg_miter_next(sg_miter))
2531 goto done;
2532
2533 host->sg = sg_miter->piter.sg;
2534 buf = sg_miter->addr;
2535 remain = sg_miter->length;
2536 offset = 0;
2537
2538 do {
2539 fcnt = ((fifo_depth -
2540 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2541 << shift) - host->part_buf_count;
2542 len = min(remain, fcnt);
2543 if (!len)
2544 break;
2545 host->push_data(host, (void *)(buf + offset), len);
2546 data->bytes_xfered += len;
2547 offset += len;
2548 remain -= len;
2549 } while (remain);
2550
2551 sg_miter->consumed = offset;
2552 status = mci_readl(host, MINTSTS);
2553 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2554 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2555
2556 if (!remain) {
2557 if (!sg_miter_next(sg_miter))
2558 goto done;
2559 sg_miter->consumed = 0;
2560 }
2561 sg_miter_stop(sg_miter);
2562 return;
2563
2564 done:
2565 sg_miter_stop(sg_miter);
2566 host->sg = NULL;
2567 smp_wmb(); /* drain writebuffer */
2568 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2569 }
2570
2571 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2572 {
2573 if (!host->cmd_status)
2574 host->cmd_status = status;
2575
2576 smp_wmb(); /* drain writebuffer */
2577
2578 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2579 tasklet_schedule(&host->tasklet);
2580 }
2581
2582 static void dw_mci_handle_cd(struct dw_mci *host)
2583 {
2584 struct dw_mci_slot *slot = host->slot;
2585
2586 if (slot->mmc->ops->card_event)
2587 slot->mmc->ops->card_event(slot->mmc);
2588 mmc_detect_change(slot->mmc,
2589 msecs_to_jiffies(host->pdata->detect_delay_ms));
2590 }
2591
2592 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2593 {
2594 struct dw_mci *host = dev_id;
2595 u32 pending;
2596 struct dw_mci_slot *slot = host->slot;
2597
2598 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2599
2600 if (pending) {
2601 /* Check volt switch first, since it can look like an error */
2602 if ((host->state == STATE_SENDING_CMD11) &&
2603 (pending & SDMMC_INT_VOLT_SWITCH)) {
2604 unsigned long irqflags;
2605
2606 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2607 pending &= ~SDMMC_INT_VOLT_SWITCH;
2608
2609 /*
2610 * Hold the lock; we know cmd11_timer can't be kicked
2611 * off after the lock is released, so safe to delete.
2612 */
2613 spin_lock_irqsave(&host->irq_lock, irqflags);
2614 dw_mci_cmd_interrupt(host, pending);
2615 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2616
2617 del_timer(&host->cmd11_timer);
2618 }
2619
2620 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2621 del_timer(&host->cto_timer);
2622 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2623 host->cmd_status = pending;
2624 smp_wmb(); /* drain writebuffer */
2625 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2626 }
2627
2628 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2629 /* if there is an error report DATA_ERROR */
2630 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2631 host->data_status = pending;
2632 smp_wmb(); /* drain writebuffer */
2633 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2634 tasklet_schedule(&host->tasklet);
2635 }
2636
2637 if (pending & SDMMC_INT_DATA_OVER) {
2638 del_timer(&host->dto_timer);
2639
2640 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2641 if (!host->data_status)
2642 host->data_status = pending;
2643 smp_wmb(); /* drain writebuffer */
2644 if (host->dir_status == DW_MCI_RECV_STATUS) {
2645 if (host->sg != NULL)
2646 dw_mci_read_data_pio(host, true);
2647 }
2648 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2649 tasklet_schedule(&host->tasklet);
2650 }
2651
2652 if (pending & SDMMC_INT_RXDR) {
2653 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2654 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2655 dw_mci_read_data_pio(host, false);
2656 }
2657
2658 if (pending & SDMMC_INT_TXDR) {
2659 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2660 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2661 dw_mci_write_data_pio(host);
2662 }
2663
2664 if (pending & SDMMC_INT_CMD_DONE) {
2665 del_timer(&host->cto_timer);
2666 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2667 dw_mci_cmd_interrupt(host, pending);
2668 }
2669
2670 if (pending & SDMMC_INT_CD) {
2671 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2672 dw_mci_handle_cd(host);
2673 }
2674
2675 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2676 mci_writel(host, RINTSTS,
2677 SDMMC_INT_SDIO(slot->sdio_id));
2678 __dw_mci_enable_sdio_irq(slot, 0);
2679 sdio_signal_irq(slot->mmc);
2680 }
2681
2682 }
2683
2684 if (host->use_dma != TRANS_MODE_IDMAC)
2685 return IRQ_HANDLED;
2686
2687 /* Handle IDMA interrupts */
2688 if (host->dma_64bit_address == 1) {
2689 pending = mci_readl(host, IDSTS64);
2690 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2691 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2692 SDMMC_IDMAC_INT_RI);
2693 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2694 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2695 host->dma_ops->complete((void *)host);
2696 }
2697 } else {
2698 pending = mci_readl(host, IDSTS);
2699 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2700 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2701 SDMMC_IDMAC_INT_RI);
2702 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2703 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2704 host->dma_ops->complete((void *)host);
2705 }
2706 }
2707
2708 return IRQ_HANDLED;
2709 }
2710
2711 static int dw_mci_init_slot(struct dw_mci *host)
2712 {
2713 struct mmc_host *mmc;
2714 struct dw_mci_slot *slot;
2715 const struct dw_mci_drv_data *drv_data = host->drv_data;
2716 int ctrl_id, ret;
2717 u32 freq[2];
2718
2719 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2720 if (!mmc)
2721 return -ENOMEM;
2722
2723 slot = mmc_priv(mmc);
2724 slot->id = 0;
2725 slot->sdio_id = host->sdio_id0 + slot->id;
2726 slot->mmc = mmc;
2727 slot->host = host;
2728 host->slot = slot;
2729
2730 mmc->ops = &dw_mci_ops;
2731 if (device_property_read_u32_array(host->dev, "clock-freq-min-max",
2732 freq, 2)) {
2733 mmc->f_min = DW_MCI_FREQ_MIN;
2734 mmc->f_max = DW_MCI_FREQ_MAX;
2735 } else {
2736 dev_info(host->dev,
2737 "'clock-freq-min-max' property was deprecated.\n");
2738 mmc->f_min = freq[0];
2739 mmc->f_max = freq[1];
2740 }
2741
2742 /*if there are external regulators, get them*/
2743 ret = mmc_regulator_get_supply(mmc);
2744 if (ret == -EPROBE_DEFER)
2745 goto err_host_allocated;
2746
2747 if (!mmc->ocr_avail)
2748 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2749
2750 if (host->pdata->caps)
2751 mmc->caps = host->pdata->caps;
2752
2753 /*
2754 * Support MMC_CAP_ERASE by default.
2755 * It needs to use trim/discard/erase commands.
2756 */
2757 mmc->caps |= MMC_CAP_ERASE;
2758
2759 if (host->pdata->pm_caps)
2760 mmc->pm_caps = host->pdata->pm_caps;
2761
2762 if (host->dev->of_node) {
2763 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2764 if (ctrl_id < 0)
2765 ctrl_id = 0;
2766 } else {
2767 ctrl_id = to_platform_device(host->dev)->id;
2768 }
2769 if (drv_data && drv_data->caps)
2770 mmc->caps |= drv_data->caps[ctrl_id];
2771
2772 if (host->pdata->caps2)
2773 mmc->caps2 = host->pdata->caps2;
2774
2775 ret = mmc_of_parse(mmc);
2776 if (ret)
2777 goto err_host_allocated;
2778
2779 /* Process SDIO IRQs through the sdio_irq_work. */
2780 if (mmc->caps & MMC_CAP_SDIO_IRQ)
2781 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2782
2783 /* Useful defaults if platform data is unset. */
2784 if (host->use_dma == TRANS_MODE_IDMAC) {
2785 mmc->max_segs = host->ring_size;
2786 mmc->max_blk_size = 65535;
2787 mmc->max_seg_size = 0x1000;
2788 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2789 mmc->max_blk_count = mmc->max_req_size / 512;
2790 } else if (host->use_dma == TRANS_MODE_EDMAC) {
2791 mmc->max_segs = 64;
2792 mmc->max_blk_size = 65535;
2793 mmc->max_blk_count = 65535;
2794 mmc->max_req_size =
2795 mmc->max_blk_size * mmc->max_blk_count;
2796 mmc->max_seg_size = mmc->max_req_size;
2797 } else {
2798 /* TRANS_MODE_PIO */
2799 mmc->max_segs = 64;
2800 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2801 mmc->max_blk_count = 512;
2802 mmc->max_req_size = mmc->max_blk_size *
2803 mmc->max_blk_count;
2804 mmc->max_seg_size = mmc->max_req_size;
2805 }
2806
2807 dw_mci_get_cd(mmc);
2808
2809 ret = mmc_add_host(mmc);
2810 if (ret)
2811 goto err_host_allocated;
2812
2813 #if defined(CONFIG_DEBUG_FS)
2814 dw_mci_init_debugfs(slot);
2815 #endif
2816
2817 return 0;
2818
2819 err_host_allocated:
2820 mmc_free_host(mmc);
2821 return ret;
2822 }
2823
2824 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2825 {
2826 /* Debugfs stuff is cleaned up by mmc core */
2827 mmc_remove_host(slot->mmc);
2828 slot->host->slot = NULL;
2829 mmc_free_host(slot->mmc);
2830 }
2831
2832 static void dw_mci_init_dma(struct dw_mci *host)
2833 {
2834 int addr_config;
2835 struct device *dev = host->dev;
2836
2837 /*
2838 * Check tansfer mode from HCON[17:16]
2839 * Clear the ambiguous description of dw_mmc databook:
2840 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2841 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2842 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2843 * 2b'11: Non DW DMA Interface -> pio only
2844 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2845 * simpler request/acknowledge handshake mechanism and both of them
2846 * are regarded as external dma master for dw_mmc.
2847 */
2848 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2849 if (host->use_dma == DMA_INTERFACE_IDMA) {
2850 host->use_dma = TRANS_MODE_IDMAC;
2851 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2852 host->use_dma == DMA_INTERFACE_GDMA) {
2853 host->use_dma = TRANS_MODE_EDMAC;
2854 } else {
2855 goto no_dma;
2856 }
2857
2858 /* Determine which DMA interface to use */
2859 if (host->use_dma == TRANS_MODE_IDMAC) {
2860 /*
2861 * Check ADDR_CONFIG bit in HCON to find
2862 * IDMAC address bus width
2863 */
2864 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2865
2866 if (addr_config == 1) {
2867 /* host supports IDMAC in 64-bit address mode */
2868 host->dma_64bit_address = 1;
2869 dev_info(host->dev,
2870 "IDMAC supports 64-bit address mode.\n");
2871 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2872 dma_set_coherent_mask(host->dev,
2873 DMA_BIT_MASK(64));
2874 } else {
2875 /* host supports IDMAC in 32-bit address mode */
2876 host->dma_64bit_address = 0;
2877 dev_info(host->dev,
2878 "IDMAC supports 32-bit address mode.\n");
2879 }
2880
2881 /* Alloc memory for sg translation */
2882 host->sg_cpu = dmam_alloc_coherent(host->dev,
2883 DESC_RING_BUF_SZ,
2884 &host->sg_dma, GFP_KERNEL);
2885 if (!host->sg_cpu) {
2886 dev_err(host->dev,
2887 "%s: could not alloc DMA memory\n",
2888 __func__);
2889 goto no_dma;
2890 }
2891
2892 host->dma_ops = &dw_mci_idmac_ops;
2893 dev_info(host->dev, "Using internal DMA controller.\n");
2894 } else {
2895 /* TRANS_MODE_EDMAC: check dma bindings again */
2896 if ((device_property_read_string_array(dev, "dma-names",
2897 NULL, 0) < 0) ||
2898 !device_property_present(dev, "dmas")) {
2899 goto no_dma;
2900 }
2901 host->dma_ops = &dw_mci_edmac_ops;
2902 dev_info(host->dev, "Using external DMA controller.\n");
2903 }
2904
2905 if (host->dma_ops->init && host->dma_ops->start &&
2906 host->dma_ops->stop && host->dma_ops->cleanup) {
2907 if (host->dma_ops->init(host)) {
2908 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2909 __func__);
2910 goto no_dma;
2911 }
2912 } else {
2913 dev_err(host->dev, "DMA initialization not found.\n");
2914 goto no_dma;
2915 }
2916
2917 return;
2918
2919 no_dma:
2920 dev_info(host->dev, "Using PIO mode.\n");
2921 host->use_dma = TRANS_MODE_PIO;
2922 }
2923
2924 static void dw_mci_cmd11_timer(unsigned long arg)
2925 {
2926 struct dw_mci *host = (struct dw_mci *)arg;
2927
2928 if (host->state != STATE_SENDING_CMD11) {
2929 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2930 return;
2931 }
2932
2933 host->cmd_status = SDMMC_INT_RTO;
2934 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2935 tasklet_schedule(&host->tasklet);
2936 }
2937
2938 static void dw_mci_cto_timer(unsigned long arg)
2939 {
2940 struct dw_mci *host = (struct dw_mci *)arg;
2941
2942 switch (host->state) {
2943 case STATE_SENDING_CMD11:
2944 case STATE_SENDING_CMD:
2945 case STATE_SENDING_STOP:
2946 /*
2947 * If CMD_DONE interrupt does NOT come in sending command
2948 * state, we should notify the driver to terminate current
2949 * transfer and report a command timeout to the core.
2950 */
2951 host->cmd_status = SDMMC_INT_RTO;
2952 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2953 tasklet_schedule(&host->tasklet);
2954 break;
2955 default:
2956 dev_warn(host->dev, "Unexpected command timeout, state %d\n",
2957 host->state);
2958 break;
2959 }
2960 }
2961
2962 static void dw_mci_dto_timer(unsigned long arg)
2963 {
2964 struct dw_mci *host = (struct dw_mci *)arg;
2965
2966 switch (host->state) {
2967 case STATE_SENDING_DATA:
2968 case STATE_DATA_BUSY:
2969 /*
2970 * If DTO interrupt does NOT come in sending data state,
2971 * we should notify the driver to terminate current transfer
2972 * and report a data timeout to the core.
2973 */
2974 host->data_status = SDMMC_INT_DRTO;
2975 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2976 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2977 tasklet_schedule(&host->tasklet);
2978 break;
2979 default:
2980 break;
2981 }
2982 }
2983
2984 #ifdef CONFIG_OF
2985 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2986 {
2987 struct dw_mci_board *pdata;
2988 struct device *dev = host->dev;
2989 const struct dw_mci_drv_data *drv_data = host->drv_data;
2990 int ret;
2991 u32 clock_frequency;
2992
2993 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2994 if (!pdata)
2995 return ERR_PTR(-ENOMEM);
2996
2997 /* find reset controller when exist */
2998 pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
2999 if (IS_ERR(pdata->rstc)) {
3000 if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
3001 return ERR_PTR(-EPROBE_DEFER);
3002 }
3003
3004 /* find out number of slots supported */
3005 if (!device_property_read_u32(dev, "num-slots", &pdata->num_slots))
3006 dev_info(dev, "'num-slots' was deprecated.\n");
3007
3008 if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3009 dev_info(dev,
3010 "fifo-depth property not found, using value of FIFOTH register as default\n");
3011
3012 device_property_read_u32(dev, "card-detect-delay",
3013 &pdata->detect_delay_ms);
3014
3015 device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3016
3017 if (device_property_present(dev, "fifo-watermark-aligned"))
3018 host->wm_aligned = true;
3019
3020 if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3021 pdata->bus_hz = clock_frequency;
3022
3023 if (drv_data && drv_data->parse_dt) {
3024 ret = drv_data->parse_dt(host);
3025 if (ret)
3026 return ERR_PTR(ret);
3027 }
3028
3029 return pdata;
3030 }
3031
3032 #else /* CONFIG_OF */
3033 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3034 {
3035 return ERR_PTR(-EINVAL);
3036 }
3037 #endif /* CONFIG_OF */
3038
3039 static void dw_mci_enable_cd(struct dw_mci *host)
3040 {
3041 unsigned long irqflags;
3042 u32 temp;
3043
3044 /*
3045 * No need for CD if all slots have a non-error GPIO
3046 * as well as broken card detection is found.
3047 */
3048 if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3049 return;
3050
3051 if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3052 spin_lock_irqsave(&host->irq_lock, irqflags);
3053 temp = mci_readl(host, INTMASK);
3054 temp |= SDMMC_INT_CD;
3055 mci_writel(host, INTMASK, temp);
3056 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3057 }
3058 }
3059
3060 int dw_mci_probe(struct dw_mci *host)
3061 {
3062 const struct dw_mci_drv_data *drv_data = host->drv_data;
3063 int width, i, ret = 0;
3064 u32 fifo_size;
3065
3066 if (!host->pdata) {
3067 host->pdata = dw_mci_parse_dt(host);
3068 if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3069 return -EPROBE_DEFER;
3070 } else if (IS_ERR(host->pdata)) {
3071 dev_err(host->dev, "platform data not available\n");
3072 return -EINVAL;
3073 }
3074 }
3075
3076 host->biu_clk = devm_clk_get(host->dev, "biu");
3077 if (IS_ERR(host->biu_clk)) {
3078 dev_dbg(host->dev, "biu clock not available\n");
3079 } else {
3080 ret = clk_prepare_enable(host->biu_clk);
3081 if (ret) {
3082 dev_err(host->dev, "failed to enable biu clock\n");
3083 return ret;
3084 }
3085 }
3086
3087 host->ciu_clk = devm_clk_get(host->dev, "ciu");
3088 if (IS_ERR(host->ciu_clk)) {
3089 dev_dbg(host->dev, "ciu clock not available\n");
3090 host->bus_hz = host->pdata->bus_hz;
3091 } else {
3092 ret = clk_prepare_enable(host->ciu_clk);
3093 if (ret) {
3094 dev_err(host->dev, "failed to enable ciu clock\n");
3095 goto err_clk_biu;
3096 }
3097
3098 if (host->pdata->bus_hz) {
3099 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3100 if (ret)
3101 dev_warn(host->dev,
3102 "Unable to set bus rate to %uHz\n",
3103 host->pdata->bus_hz);
3104 }
3105 host->bus_hz = clk_get_rate(host->ciu_clk);
3106 }
3107
3108 if (!host->bus_hz) {
3109 dev_err(host->dev,
3110 "Platform data must supply bus speed\n");
3111 ret = -ENODEV;
3112 goto err_clk_ciu;
3113 }
3114
3115 if (!IS_ERR(host->pdata->rstc)) {
3116 reset_control_assert(host->pdata->rstc);
3117 usleep_range(10, 50);
3118 reset_control_deassert(host->pdata->rstc);
3119 }
3120
3121 if (drv_data && drv_data->init) {
3122 ret = drv_data->init(host);
3123 if (ret) {
3124 dev_err(host->dev,
3125 "implementation specific init failed\n");
3126 goto err_clk_ciu;
3127 }
3128 }
3129
3130 setup_timer(&host->cmd11_timer,
3131 dw_mci_cmd11_timer, (unsigned long)host);
3132
3133 setup_timer(&host->cto_timer,
3134 dw_mci_cto_timer, (unsigned long)host);
3135
3136 setup_timer(&host->dto_timer,
3137 dw_mci_dto_timer, (unsigned long)host);
3138
3139 spin_lock_init(&host->lock);
3140 spin_lock_init(&host->irq_lock);
3141 INIT_LIST_HEAD(&host->queue);
3142
3143 /*
3144 * Get the host data width - this assumes that HCON has been set with
3145 * the correct values.
3146 */
3147 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3148 if (!i) {
3149 host->push_data = dw_mci_push_data16;
3150 host->pull_data = dw_mci_pull_data16;
3151 width = 16;
3152 host->data_shift = 1;
3153 } else if (i == 2) {
3154 host->push_data = dw_mci_push_data64;
3155 host->pull_data = dw_mci_pull_data64;
3156 width = 64;
3157 host->data_shift = 3;
3158 } else {
3159 /* Check for a reserved value, and warn if it is */
3160 WARN((i != 1),
3161 "HCON reports a reserved host data width!\n"
3162 "Defaulting to 32-bit access.\n");
3163 host->push_data = dw_mci_push_data32;
3164 host->pull_data = dw_mci_pull_data32;
3165 width = 32;
3166 host->data_shift = 2;
3167 }
3168
3169 /* Reset all blocks */
3170 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3171 ret = -ENODEV;
3172 goto err_clk_ciu;
3173 }
3174
3175 host->dma_ops = host->pdata->dma_ops;
3176 dw_mci_init_dma(host);
3177
3178 /* Clear the interrupts for the host controller */
3179 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3180 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3181
3182 /* Put in max timeout */
3183 mci_writel(host, TMOUT, 0xFFFFFFFF);
3184
3185 /*
3186 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3187 * Tx Mark = fifo_size / 2 DMA Size = 8
3188 */
3189 if (!host->pdata->fifo_depth) {
3190 /*
3191 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3192 * have been overwritten by the bootloader, just like we're
3193 * about to do, so if you know the value for your hardware, you
3194 * should put it in the platform data.
3195 */
3196 fifo_size = mci_readl(host, FIFOTH);
3197 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3198 } else {
3199 fifo_size = host->pdata->fifo_depth;
3200 }
3201 host->fifo_depth = fifo_size;
3202 host->fifoth_val =
3203 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3204 mci_writel(host, FIFOTH, host->fifoth_val);
3205
3206 /* disable clock to CIU */
3207 mci_writel(host, CLKENA, 0);
3208 mci_writel(host, CLKSRC, 0);
3209
3210 /*
3211 * In 2.40a spec, Data offset is changed.
3212 * Need to check the version-id and set data-offset for DATA register.
3213 */
3214 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3215 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3216
3217 if (host->data_addr_override)
3218 host->fifo_reg = host->regs + host->data_addr_override;
3219 else if (host->verid < DW_MMC_240A)
3220 host->fifo_reg = host->regs + DATA_OFFSET;
3221 else
3222 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3223
3224 tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3225 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3226 host->irq_flags, "dw-mci", host);
3227 if (ret)
3228 goto err_dmaunmap;
3229
3230 /*
3231 * Enable interrupts for command done, data over, data empty,
3232 * receive ready and error such as transmit, receive timeout, crc error
3233 */
3234 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3235 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3236 DW_MCI_ERROR_FLAGS);
3237 /* Enable mci interrupt */
3238 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3239
3240 dev_info(host->dev,
3241 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3242 host->irq, width, fifo_size);
3243
3244 /* We need at least one slot to succeed */
3245 ret = dw_mci_init_slot(host);
3246 if (ret) {
3247 dev_dbg(host->dev, "slot %d init failed\n", i);
3248 goto err_dmaunmap;
3249 }
3250
3251 /* Now that slots are all setup, we can enable card detect */
3252 dw_mci_enable_cd(host);
3253
3254 return 0;
3255
3256 err_dmaunmap:
3257 if (host->use_dma && host->dma_ops->exit)
3258 host->dma_ops->exit(host);
3259
3260 if (!IS_ERR(host->pdata->rstc))
3261 reset_control_assert(host->pdata->rstc);
3262
3263 err_clk_ciu:
3264 clk_disable_unprepare(host->ciu_clk);
3265
3266 err_clk_biu:
3267 clk_disable_unprepare(host->biu_clk);
3268
3269 return ret;
3270 }
3271 EXPORT_SYMBOL(dw_mci_probe);
3272
3273 void dw_mci_remove(struct dw_mci *host)
3274 {
3275 dev_dbg(host->dev, "remove slot\n");
3276 if (host->slot)
3277 dw_mci_cleanup_slot(host->slot);
3278
3279 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3280 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3281
3282 /* disable clock to CIU */
3283 mci_writel(host, CLKENA, 0);
3284 mci_writel(host, CLKSRC, 0);
3285
3286 if (host->use_dma && host->dma_ops->exit)
3287 host->dma_ops->exit(host);
3288
3289 if (!IS_ERR(host->pdata->rstc))
3290 reset_control_assert(host->pdata->rstc);
3291
3292 clk_disable_unprepare(host->ciu_clk);
3293 clk_disable_unprepare(host->biu_clk);
3294 }
3295 EXPORT_SYMBOL(dw_mci_remove);
3296
3297
3298
3299 #ifdef CONFIG_PM
3300 int dw_mci_runtime_suspend(struct device *dev)
3301 {
3302 struct dw_mci *host = dev_get_drvdata(dev);
3303
3304 if (host->use_dma && host->dma_ops->exit)
3305 host->dma_ops->exit(host);
3306
3307 clk_disable_unprepare(host->ciu_clk);
3308
3309 if (host->slot &&
3310 (mmc_can_gpio_cd(host->slot->mmc) ||
3311 !mmc_card_is_removable(host->slot->mmc)))
3312 clk_disable_unprepare(host->biu_clk);
3313
3314 return 0;
3315 }
3316 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3317
3318 int dw_mci_runtime_resume(struct device *dev)
3319 {
3320 int ret = 0;
3321 struct dw_mci *host = dev_get_drvdata(dev);
3322
3323 if (host->slot &&
3324 (mmc_can_gpio_cd(host->slot->mmc) ||
3325 !mmc_card_is_removable(host->slot->mmc))) {
3326 ret = clk_prepare_enable(host->biu_clk);
3327 if (ret)
3328 return ret;
3329 }
3330
3331 ret = clk_prepare_enable(host->ciu_clk);
3332 if (ret)
3333 goto err;
3334
3335 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3336 clk_disable_unprepare(host->ciu_clk);
3337 ret = -ENODEV;
3338 goto err;
3339 }
3340
3341 if (host->use_dma && host->dma_ops->init)
3342 host->dma_ops->init(host);
3343
3344 /*
3345 * Restore the initial value at FIFOTH register
3346 * And Invalidate the prev_blksz with zero
3347 */
3348 mci_writel(host, FIFOTH, host->fifoth_val);
3349 host->prev_blksz = 0;
3350
3351 /* Put in max timeout */
3352 mci_writel(host, TMOUT, 0xFFFFFFFF);
3353
3354 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3355 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3356 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3357 DW_MCI_ERROR_FLAGS);
3358 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3359
3360
3361 if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3362 dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3363
3364 /* Force setup bus to guarantee available clock output */
3365 dw_mci_setup_bus(host->slot, true);
3366
3367 /* Now that slots are all setup, we can enable card detect */
3368 dw_mci_enable_cd(host);
3369
3370 return 0;
3371
3372 err:
3373 if (host->slot &&
3374 (mmc_can_gpio_cd(host->slot->mmc) ||
3375 !mmc_card_is_removable(host->slot->mmc)))
3376 clk_disable_unprepare(host->biu_clk);
3377
3378 return ret;
3379 }
3380 EXPORT_SYMBOL(dw_mci_runtime_resume);
3381 #endif /* CONFIG_PM */
3382
3383 static int __init dw_mci_init(void)
3384 {
3385 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3386 return 0;
3387 }
3388
3389 static void __exit dw_mci_exit(void)
3390 {
3391 }
3392
3393 module_init(dw_mci_init);
3394 module_exit(dw_mci_exit);
3395
3396 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3397 MODULE_AUTHOR("NXP Semiconductor VietNam");
3398 MODULE_AUTHOR("Imagination Technologies Ltd");
3399 MODULE_LICENSE("GPL v2");