Merge tag 'fcoe' into fixes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mfd / db8500-prcmu.c
1 /*
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
4 *
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
10 * U8500 PRCM Unit interface driver
11 *
12 */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/uaccess.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/dbx500-prcmu.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/regulator/db8500-prcmu.h>
34 #include <linux/regulator/machine.h>
35 #include <linux/cpufreq.h>
36 #include <linux/platform_data/ux500_wdt.h>
37 #include <linux/platform_data/db8500_thermal.h>
38 #include "dbx500-prcmu-regs.h"
39
40 /* Index of different voltages to be used when accessing AVSData */
41 #define PRCM_AVS_BASE 0x2FC
42 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
43 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
44 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
45 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
46 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
47 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
48 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
49 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
50 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
51 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
52 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
53 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
54 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
55
56 #define PRCM_AVS_VOLTAGE 0
57 #define PRCM_AVS_VOLTAGE_MASK 0x3f
58 #define PRCM_AVS_ISSLOWSTARTUP 6
59 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
60 #define PRCM_AVS_ISMODEENABLE 7
61 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
62
63 #define PRCM_BOOT_STATUS 0xFFF
64 #define PRCM_ROMCODE_A2P 0xFFE
65 #define PRCM_ROMCODE_P2A 0xFFD
66 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
67
68 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
69
70 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
71 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
72 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
73 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
74 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
75 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
76 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
77 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
78
79 /* Req Mailboxes */
80 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
81 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
82 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
83 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
84 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
85 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
86
87 /* Ack Mailboxes */
88 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
89 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
90 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
91 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
92 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
93 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
94
95 /* Mailbox 0 headers */
96 #define MB0H_POWER_STATE_TRANS 0
97 #define MB0H_CONFIG_WAKEUPS_EXE 1
98 #define MB0H_READ_WAKEUP_ACK 3
99 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
100
101 #define MB0H_WAKEUP_EXE 2
102 #define MB0H_WAKEUP_SLEEP 5
103
104 /* Mailbox 0 REQs */
105 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
106 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
107 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
108 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
109 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
110 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
111
112 /* Mailbox 0 ACKs */
113 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
114 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
115 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
116 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
117 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
118 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
119 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
120
121 /* Mailbox 1 headers */
122 #define MB1H_ARM_APE_OPP 0x0
123 #define MB1H_RESET_MODEM 0x2
124 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
125 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
126 #define MB1H_RELEASE_USB_WAKEUP 0x5
127 #define MB1H_PLL_ON_OFF 0x6
128
129 /* Mailbox 1 Requests */
130 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
131 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
132 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
133 #define PLL_SOC0_OFF 0x1
134 #define PLL_SOC0_ON 0x2
135 #define PLL_SOC1_OFF 0x4
136 #define PLL_SOC1_ON 0x8
137
138 /* Mailbox 1 ACKs */
139 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
140 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
141 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
142 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
143
144 /* Mailbox 2 headers */
145 #define MB2H_DPS 0x0
146 #define MB2H_AUTO_PWR 0x1
147
148 /* Mailbox 2 REQs */
149 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
150 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
151 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
152 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
153 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
154 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
155 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
156 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
157 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
158 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
159
160 /* Mailbox 2 ACKs */
161 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
162 #define HWACC_PWR_ST_OK 0xFE
163
164 /* Mailbox 3 headers */
165 #define MB3H_ANC 0x0
166 #define MB3H_SIDETONE 0x1
167 #define MB3H_SYSCLK 0xE
168
169 /* Mailbox 3 Requests */
170 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
171 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
172 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
173 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
174 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
176 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
177
178 /* Mailbox 4 headers */
179 #define MB4H_DDR_INIT 0x0
180 #define MB4H_MEM_ST 0x1
181 #define MB4H_HOTDOG 0x12
182 #define MB4H_HOTMON 0x13
183 #define MB4H_HOT_PERIOD 0x14
184 #define MB4H_A9WDOG_CONF 0x16
185 #define MB4H_A9WDOG_EN 0x17
186 #define MB4H_A9WDOG_DIS 0x18
187 #define MB4H_A9WDOG_LOAD 0x19
188 #define MB4H_A9WDOG_KICK 0x20
189
190 /* Mailbox 4 Requests */
191 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
192 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
193 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
194 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
195 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
198 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
199 #define HOTMON_CONFIG_LOW BIT(0)
200 #define HOTMON_CONFIG_HIGH BIT(1)
201 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
202 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
203 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
204 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
205 #define A9WDOG_AUTO_OFF_EN BIT(7)
206 #define A9WDOG_AUTO_OFF_DIS 0
207 #define A9WDOG_ID_MASK 0xf
208
209 /* Mailbox 5 Requests */
210 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
211 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
212 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
213 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
214 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
215 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
216 #define PRCMU_I2C_STOP_EN BIT(3)
217
218 /* Mailbox 5 ACKs */
219 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
220 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
221 #define I2C_WR_OK 0x1
222 #define I2C_RD_OK 0x2
223
224 #define NUM_MB 8
225 #define MBOX_BIT BIT
226 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
227
228 /*
229 * Wakeups/IRQs
230 */
231
232 #define WAKEUP_BIT_RTC BIT(0)
233 #define WAKEUP_BIT_RTT0 BIT(1)
234 #define WAKEUP_BIT_RTT1 BIT(2)
235 #define WAKEUP_BIT_HSI0 BIT(3)
236 #define WAKEUP_BIT_HSI1 BIT(4)
237 #define WAKEUP_BIT_CA_WAKE BIT(5)
238 #define WAKEUP_BIT_USB BIT(6)
239 #define WAKEUP_BIT_ABB BIT(7)
240 #define WAKEUP_BIT_ABB_FIFO BIT(8)
241 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
242 #define WAKEUP_BIT_CA_SLEEP BIT(10)
243 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
244 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
245 #define WAKEUP_BIT_ANC_OK BIT(13)
246 #define WAKEUP_BIT_SW_ERROR BIT(14)
247 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
248 #define WAKEUP_BIT_ARM BIT(17)
249 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
250 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
251 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
252 #define WAKEUP_BIT_GPIO0 BIT(23)
253 #define WAKEUP_BIT_GPIO1 BIT(24)
254 #define WAKEUP_BIT_GPIO2 BIT(25)
255 #define WAKEUP_BIT_GPIO3 BIT(26)
256 #define WAKEUP_BIT_GPIO4 BIT(27)
257 #define WAKEUP_BIT_GPIO5 BIT(28)
258 #define WAKEUP_BIT_GPIO6 BIT(29)
259 #define WAKEUP_BIT_GPIO7 BIT(30)
260 #define WAKEUP_BIT_GPIO8 BIT(31)
261
262 static struct {
263 bool valid;
264 struct prcmu_fw_version version;
265 } fw_info;
266
267 static struct irq_domain *db8500_irq_domain;
268
269 /*
270 * This vector maps irq numbers to the bits in the bit field used in
271 * communication with the PRCMU firmware.
272 *
273 * The reason for having this is to keep the irq numbers contiguous even though
274 * the bits in the bit field are not. (The bits also have a tendency to move
275 * around, to further complicate matters.)
276 */
277 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
278 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
279
280 #define IRQ_PRCMU_RTC 0
281 #define IRQ_PRCMU_RTT0 1
282 #define IRQ_PRCMU_RTT1 2
283 #define IRQ_PRCMU_HSI0 3
284 #define IRQ_PRCMU_HSI1 4
285 #define IRQ_PRCMU_CA_WAKE 5
286 #define IRQ_PRCMU_USB 6
287 #define IRQ_PRCMU_ABB 7
288 #define IRQ_PRCMU_ABB_FIFO 8
289 #define IRQ_PRCMU_ARM 9
290 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
291 #define IRQ_PRCMU_GPIO0 11
292 #define IRQ_PRCMU_GPIO1 12
293 #define IRQ_PRCMU_GPIO2 13
294 #define IRQ_PRCMU_GPIO3 14
295 #define IRQ_PRCMU_GPIO4 15
296 #define IRQ_PRCMU_GPIO5 16
297 #define IRQ_PRCMU_GPIO6 17
298 #define IRQ_PRCMU_GPIO7 18
299 #define IRQ_PRCMU_GPIO8 19
300 #define IRQ_PRCMU_CA_SLEEP 20
301 #define IRQ_PRCMU_HOTMON_LOW 21
302 #define IRQ_PRCMU_HOTMON_HIGH 22
303 #define NUM_PRCMU_WAKEUPS 23
304
305 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
306 IRQ_ENTRY(RTC),
307 IRQ_ENTRY(RTT0),
308 IRQ_ENTRY(RTT1),
309 IRQ_ENTRY(HSI0),
310 IRQ_ENTRY(HSI1),
311 IRQ_ENTRY(CA_WAKE),
312 IRQ_ENTRY(USB),
313 IRQ_ENTRY(ABB),
314 IRQ_ENTRY(ABB_FIFO),
315 IRQ_ENTRY(CA_SLEEP),
316 IRQ_ENTRY(ARM),
317 IRQ_ENTRY(HOTMON_LOW),
318 IRQ_ENTRY(HOTMON_HIGH),
319 IRQ_ENTRY(MODEM_SW_RESET_REQ),
320 IRQ_ENTRY(GPIO0),
321 IRQ_ENTRY(GPIO1),
322 IRQ_ENTRY(GPIO2),
323 IRQ_ENTRY(GPIO3),
324 IRQ_ENTRY(GPIO4),
325 IRQ_ENTRY(GPIO5),
326 IRQ_ENTRY(GPIO6),
327 IRQ_ENTRY(GPIO7),
328 IRQ_ENTRY(GPIO8)
329 };
330
331 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
332 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
333 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
334 WAKEUP_ENTRY(RTC),
335 WAKEUP_ENTRY(RTT0),
336 WAKEUP_ENTRY(RTT1),
337 WAKEUP_ENTRY(HSI0),
338 WAKEUP_ENTRY(HSI1),
339 WAKEUP_ENTRY(USB),
340 WAKEUP_ENTRY(ABB),
341 WAKEUP_ENTRY(ABB_FIFO),
342 WAKEUP_ENTRY(ARM)
343 };
344
345 /*
346 * mb0_transfer - state needed for mailbox 0 communication.
347 * @lock: The transaction lock.
348 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
349 * the request data.
350 * @mask_work: Work structure used for (un)masking wakeup interrupts.
351 * @req: Request data that need to persist between requests.
352 */
353 static struct {
354 spinlock_t lock;
355 spinlock_t dbb_irqs_lock;
356 struct work_struct mask_work;
357 struct mutex ac_wake_lock;
358 struct completion ac_wake_work;
359 struct {
360 u32 dbb_irqs;
361 u32 dbb_wakeups;
362 u32 abb_events;
363 } req;
364 } mb0_transfer;
365
366 /*
367 * mb1_transfer - state needed for mailbox 1 communication.
368 * @lock: The transaction lock.
369 * @work: The transaction completion structure.
370 * @ape_opp: The current APE OPP.
371 * @ack: Reply ("acknowledge") data.
372 */
373 static struct {
374 struct mutex lock;
375 struct completion work;
376 u8 ape_opp;
377 struct {
378 u8 header;
379 u8 arm_opp;
380 u8 ape_opp;
381 u8 ape_voltage_status;
382 } ack;
383 } mb1_transfer;
384
385 /*
386 * mb2_transfer - state needed for mailbox 2 communication.
387 * @lock: The transaction lock.
388 * @work: The transaction completion structure.
389 * @auto_pm_lock: The autonomous power management configuration lock.
390 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
391 * @req: Request data that need to persist between requests.
392 * @ack: Reply ("acknowledge") data.
393 */
394 static struct {
395 struct mutex lock;
396 struct completion work;
397 spinlock_t auto_pm_lock;
398 bool auto_pm_enabled;
399 struct {
400 u8 status;
401 } ack;
402 } mb2_transfer;
403
404 /*
405 * mb3_transfer - state needed for mailbox 3 communication.
406 * @lock: The request lock.
407 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
408 * @sysclk_work: Work structure used for sysclk requests.
409 */
410 static struct {
411 spinlock_t lock;
412 struct mutex sysclk_lock;
413 struct completion sysclk_work;
414 } mb3_transfer;
415
416 /*
417 * mb4_transfer - state needed for mailbox 4 communication.
418 * @lock: The transaction lock.
419 * @work: The transaction completion structure.
420 */
421 static struct {
422 struct mutex lock;
423 struct completion work;
424 } mb4_transfer;
425
426 /*
427 * mb5_transfer - state needed for mailbox 5 communication.
428 * @lock: The transaction lock.
429 * @work: The transaction completion structure.
430 * @ack: Reply ("acknowledge") data.
431 */
432 static struct {
433 struct mutex lock;
434 struct completion work;
435 struct {
436 u8 status;
437 u8 value;
438 } ack;
439 } mb5_transfer;
440
441 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
442
443 /* Spinlocks */
444 static DEFINE_SPINLOCK(prcmu_lock);
445 static DEFINE_SPINLOCK(clkout_lock);
446
447 /* Global var to runtime determine TCDM base for v2 or v1 */
448 static __iomem void *tcdm_base;
449 static __iomem void *prcmu_base;
450
451 struct clk_mgt {
452 u32 offset;
453 u32 pllsw;
454 int branch;
455 bool clk38div;
456 };
457
458 enum {
459 PLL_RAW,
460 PLL_FIX,
461 PLL_DIV
462 };
463
464 static DEFINE_SPINLOCK(clk_mgt_lock);
465
466 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
467 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
468 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
469 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
470 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
471 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
473 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
474 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
475 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
476 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
477 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
478 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
479 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
480 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
481 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
482 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
483 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
484 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
485 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
486 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
487 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
488 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
489 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
490 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
491 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
492 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
493 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
494 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
495 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
496 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
497 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
498 };
499
500 struct dsiclk {
501 u32 divsel_mask;
502 u32 divsel_shift;
503 u32 divsel;
504 };
505
506 static struct dsiclk dsiclk[2] = {
507 {
508 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
509 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
510 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
511 },
512 {
513 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
514 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
515 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
516 }
517 };
518
519 struct dsiescclk {
520 u32 en;
521 u32 div_mask;
522 u32 div_shift;
523 };
524
525 static struct dsiescclk dsiescclk[3] = {
526 {
527 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
528 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
529 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
530 },
531 {
532 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
533 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
534 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
535 },
536 {
537 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
538 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
539 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
540 }
541 };
542
543
544 /*
545 * Used by MCDE to setup all necessary PRCMU registers
546 */
547 #define PRCMU_RESET_DSIPLL 0x00004000
548 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
549
550 #define PRCMU_CLK_PLL_DIV_SHIFT 0
551 #define PRCMU_CLK_PLL_SW_SHIFT 5
552 #define PRCMU_CLK_38 (1 << 9)
553 #define PRCMU_CLK_38_SRC (1 << 10)
554 #define PRCMU_CLK_38_DIV (1 << 11)
555
556 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
557 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
558
559 /* DPI 50000000 Hz */
560 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
561 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
562 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
563
564 /* D=101, N=1, R=4, SELDIV2=0 */
565 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
566
567 #define PRCMU_ENABLE_PLLDSI 0x00000001
568 #define PRCMU_DISABLE_PLLDSI 0x00000000
569 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
570 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
571 /* ESC clk, div0=1, div1=1, div2=3 */
572 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
573 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
574 #define PRCMU_DSI_RESET_SW 0x00000007
575
576 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
577
578 int db8500_prcmu_enable_dsipll(void)
579 {
580 int i;
581
582 /* Clear DSIPLL_RESETN */
583 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
584 /* Unclamp DSIPLL in/out */
585 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
586
587 /* Set DSI PLL FREQ */
588 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
589 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
590 /* Enable Escape clocks */
591 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
592
593 /* Start DSI PLL */
594 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
595 /* Reset DSI PLL */
596 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
597 for (i = 0; i < 10; i++) {
598 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
599 == PRCMU_PLLDSI_LOCKP_LOCKED)
600 break;
601 udelay(100);
602 }
603 /* Set DSIPLL_RESETN */
604 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
605 return 0;
606 }
607
608 int db8500_prcmu_disable_dsipll(void)
609 {
610 /* Disable dsi pll */
611 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
612 /* Disable escapeclock */
613 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
614 return 0;
615 }
616
617 int db8500_prcmu_set_display_clocks(void)
618 {
619 unsigned long flags;
620
621 spin_lock_irqsave(&clk_mgt_lock, flags);
622
623 /* Grab the HW semaphore. */
624 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
625 cpu_relax();
626
627 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
628 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
629 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
630
631 /* Release the HW semaphore. */
632 writel(0, PRCM_SEM);
633
634 spin_unlock_irqrestore(&clk_mgt_lock, flags);
635
636 return 0;
637 }
638
639 u32 db8500_prcmu_read(unsigned int reg)
640 {
641 return readl(prcmu_base + reg);
642 }
643
644 void db8500_prcmu_write(unsigned int reg, u32 value)
645 {
646 unsigned long flags;
647
648 spin_lock_irqsave(&prcmu_lock, flags);
649 writel(value, (prcmu_base + reg));
650 spin_unlock_irqrestore(&prcmu_lock, flags);
651 }
652
653 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
654 {
655 u32 val;
656 unsigned long flags;
657
658 spin_lock_irqsave(&prcmu_lock, flags);
659 val = readl(prcmu_base + reg);
660 val = ((val & ~mask) | (value & mask));
661 writel(val, (prcmu_base + reg));
662 spin_unlock_irqrestore(&prcmu_lock, flags);
663 }
664
665 struct prcmu_fw_version *prcmu_get_fw_version(void)
666 {
667 return fw_info.valid ? &fw_info.version : NULL;
668 }
669
670 bool prcmu_has_arm_maxopp(void)
671 {
672 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
673 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
674 }
675
676 /**
677 * prcmu_get_boot_status - PRCMU boot status checking
678 * Returns: the current PRCMU boot status
679 */
680 int prcmu_get_boot_status(void)
681 {
682 return readb(tcdm_base + PRCM_BOOT_STATUS);
683 }
684
685 /**
686 * prcmu_set_rc_a2p - This function is used to run few power state sequences
687 * @val: Value to be set, i.e. transition requested
688 * Returns: 0 on success, -EINVAL on invalid argument
689 *
690 * This function is used to run the following power state sequences -
691 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
692 */
693 int prcmu_set_rc_a2p(enum romcode_write val)
694 {
695 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
696 return -EINVAL;
697 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
698 return 0;
699 }
700
701 /**
702 * prcmu_get_rc_p2a - This function is used to get power state sequences
703 * Returns: the power transition that has last happened
704 *
705 * This function can return the following transitions-
706 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
707 */
708 enum romcode_read prcmu_get_rc_p2a(void)
709 {
710 return readb(tcdm_base + PRCM_ROMCODE_P2A);
711 }
712
713 /**
714 * prcmu_get_current_mode - Return the current XP70 power mode
715 * Returns: Returns the current AP(ARM) power mode: init,
716 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
717 */
718 enum ap_pwrst prcmu_get_xp70_current_state(void)
719 {
720 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
721 }
722
723 /**
724 * prcmu_config_clkout - Configure one of the programmable clock outputs.
725 * @clkout: The CLKOUT number (0 or 1).
726 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
727 * @div: The divider to be applied.
728 *
729 * Configures one of the programmable clock outputs (CLKOUTs).
730 * @div should be in the range [1,63] to request a configuration, or 0 to
731 * inform that the configuration is no longer requested.
732 */
733 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
734 {
735 static int requests[2];
736 int r = 0;
737 unsigned long flags;
738 u32 val;
739 u32 bits;
740 u32 mask;
741 u32 div_mask;
742
743 BUG_ON(clkout > 1);
744 BUG_ON(div > 63);
745 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
746
747 if (!div && !requests[clkout])
748 return -EINVAL;
749
750 switch (clkout) {
751 case 0:
752 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
753 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
754 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
755 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
756 break;
757 case 1:
758 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
759 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
760 PRCM_CLKOCR_CLK1TYPE);
761 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
762 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
763 break;
764 }
765 bits &= mask;
766
767 spin_lock_irqsave(&clkout_lock, flags);
768
769 val = readl(PRCM_CLKOCR);
770 if (val & div_mask) {
771 if (div) {
772 if ((val & mask) != bits) {
773 r = -EBUSY;
774 goto unlock_and_return;
775 }
776 } else {
777 if ((val & mask & ~div_mask) != bits) {
778 r = -EINVAL;
779 goto unlock_and_return;
780 }
781 }
782 }
783 writel((bits | (val & ~mask)), PRCM_CLKOCR);
784 requests[clkout] += (div ? 1 : -1);
785
786 unlock_and_return:
787 spin_unlock_irqrestore(&clkout_lock, flags);
788
789 return r;
790 }
791
792 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
793 {
794 unsigned long flags;
795
796 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
797
798 spin_lock_irqsave(&mb0_transfer.lock, flags);
799
800 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
801 cpu_relax();
802
803 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
804 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
805 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
806 writeb((keep_ulp_clk ? 1 : 0),
807 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
808 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
809 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
810
811 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
812
813 return 0;
814 }
815
816 u8 db8500_prcmu_get_power_state_result(void)
817 {
818 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
819 }
820
821 /* This function should only be called while mb0_transfer.lock is held. */
822 static void config_wakeups(void)
823 {
824 const u8 header[2] = {
825 MB0H_CONFIG_WAKEUPS_EXE,
826 MB0H_CONFIG_WAKEUPS_SLEEP
827 };
828 static u32 last_dbb_events;
829 static u32 last_abb_events;
830 u32 dbb_events;
831 u32 abb_events;
832 unsigned int i;
833
834 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
835 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
836
837 abb_events = mb0_transfer.req.abb_events;
838
839 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
840 return;
841
842 for (i = 0; i < 2; i++) {
843 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
844 cpu_relax();
845 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
846 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
847 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
848 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
849 }
850 last_dbb_events = dbb_events;
851 last_abb_events = abb_events;
852 }
853
854 void db8500_prcmu_enable_wakeups(u32 wakeups)
855 {
856 unsigned long flags;
857 u32 bits;
858 int i;
859
860 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
861
862 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
863 if (wakeups & BIT(i))
864 bits |= prcmu_wakeup_bit[i];
865 }
866
867 spin_lock_irqsave(&mb0_transfer.lock, flags);
868
869 mb0_transfer.req.dbb_wakeups = bits;
870 config_wakeups();
871
872 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
873 }
874
875 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
876 {
877 unsigned long flags;
878
879 spin_lock_irqsave(&mb0_transfer.lock, flags);
880
881 mb0_transfer.req.abb_events = abb_events;
882 config_wakeups();
883
884 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
885 }
886
887 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
888 {
889 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
890 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
891 else
892 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
893 }
894
895 /**
896 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
897 * @opp: The new ARM operating point to which transition is to be made
898 * Returns: 0 on success, non-zero on failure
899 *
900 * This function sets the the operating point of the ARM.
901 */
902 int db8500_prcmu_set_arm_opp(u8 opp)
903 {
904 int r;
905
906 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
907 return -EINVAL;
908
909 r = 0;
910
911 mutex_lock(&mb1_transfer.lock);
912
913 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
914 cpu_relax();
915
916 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
917 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
918 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
919
920 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
921 wait_for_completion(&mb1_transfer.work);
922
923 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
924 (mb1_transfer.ack.arm_opp != opp))
925 r = -EIO;
926
927 mutex_unlock(&mb1_transfer.lock);
928
929 return r;
930 }
931
932 /**
933 * db8500_prcmu_get_arm_opp - get the current ARM OPP
934 *
935 * Returns: the current ARM OPP
936 */
937 int db8500_prcmu_get_arm_opp(void)
938 {
939 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
940 }
941
942 /**
943 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
944 *
945 * Returns: the current DDR OPP
946 */
947 int db8500_prcmu_get_ddr_opp(void)
948 {
949 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
950 }
951
952 /**
953 * db8500_set_ddr_opp - set the appropriate DDR OPP
954 * @opp: The new DDR operating point to which transition is to be made
955 * Returns: 0 on success, non-zero on failure
956 *
957 * This function sets the operating point of the DDR.
958 */
959 static bool enable_set_ddr_opp;
960 int db8500_prcmu_set_ddr_opp(u8 opp)
961 {
962 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
963 return -EINVAL;
964 /* Changing the DDR OPP can hang the hardware pre-v21 */
965 if (enable_set_ddr_opp)
966 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
967
968 return 0;
969 }
970
971 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
972 static void request_even_slower_clocks(bool enable)
973 {
974 u32 clock_reg[] = {
975 PRCM_ACLK_MGT,
976 PRCM_DMACLK_MGT
977 };
978 unsigned long flags;
979 unsigned int i;
980
981 spin_lock_irqsave(&clk_mgt_lock, flags);
982
983 /* Grab the HW semaphore. */
984 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
985 cpu_relax();
986
987 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
988 u32 val;
989 u32 div;
990
991 val = readl(prcmu_base + clock_reg[i]);
992 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
993 if (enable) {
994 if ((div <= 1) || (div > 15)) {
995 pr_err("prcmu: Bad clock divider %d in %s\n",
996 div, __func__);
997 goto unlock_and_return;
998 }
999 div <<= 1;
1000 } else {
1001 if (div <= 2)
1002 goto unlock_and_return;
1003 div >>= 1;
1004 }
1005 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1006 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1007 writel(val, prcmu_base + clock_reg[i]);
1008 }
1009
1010 unlock_and_return:
1011 /* Release the HW semaphore. */
1012 writel(0, PRCM_SEM);
1013
1014 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1015 }
1016
1017 /**
1018 * db8500_set_ape_opp - set the appropriate APE OPP
1019 * @opp: The new APE operating point to which transition is to be made
1020 * Returns: 0 on success, non-zero on failure
1021 *
1022 * This function sets the operating point of the APE.
1023 */
1024 int db8500_prcmu_set_ape_opp(u8 opp)
1025 {
1026 int r = 0;
1027
1028 if (opp == mb1_transfer.ape_opp)
1029 return 0;
1030
1031 mutex_lock(&mb1_transfer.lock);
1032
1033 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1034 request_even_slower_clocks(false);
1035
1036 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1037 goto skip_message;
1038
1039 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1040 cpu_relax();
1041
1042 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1043 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1044 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1045 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1046
1047 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1048 wait_for_completion(&mb1_transfer.work);
1049
1050 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1051 (mb1_transfer.ack.ape_opp != opp))
1052 r = -EIO;
1053
1054 skip_message:
1055 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1056 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1057 request_even_slower_clocks(true);
1058 if (!r)
1059 mb1_transfer.ape_opp = opp;
1060
1061 mutex_unlock(&mb1_transfer.lock);
1062
1063 return r;
1064 }
1065
1066 /**
1067 * db8500_prcmu_get_ape_opp - get the current APE OPP
1068 *
1069 * Returns: the current APE OPP
1070 */
1071 int db8500_prcmu_get_ape_opp(void)
1072 {
1073 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1074 }
1075
1076 /**
1077 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1078 * @enable: true to request the higher voltage, false to drop a request.
1079 *
1080 * Calls to this function to enable and disable requests must be balanced.
1081 */
1082 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1083 {
1084 int r = 0;
1085 u8 header;
1086 static unsigned int requests;
1087
1088 mutex_lock(&mb1_transfer.lock);
1089
1090 if (enable) {
1091 if (0 != requests++)
1092 goto unlock_and_return;
1093 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1094 } else {
1095 if (requests == 0) {
1096 r = -EIO;
1097 goto unlock_and_return;
1098 } else if (1 != requests--) {
1099 goto unlock_and_return;
1100 }
1101 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1102 }
1103
1104 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1105 cpu_relax();
1106
1107 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1108
1109 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1110 wait_for_completion(&mb1_transfer.work);
1111
1112 if ((mb1_transfer.ack.header != header) ||
1113 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1114 r = -EIO;
1115
1116 unlock_and_return:
1117 mutex_unlock(&mb1_transfer.lock);
1118
1119 return r;
1120 }
1121
1122 /**
1123 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1124 *
1125 * This function releases the power state requirements of a USB wakeup.
1126 */
1127 int prcmu_release_usb_wakeup_state(void)
1128 {
1129 int r = 0;
1130
1131 mutex_lock(&mb1_transfer.lock);
1132
1133 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1134 cpu_relax();
1135
1136 writeb(MB1H_RELEASE_USB_WAKEUP,
1137 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1138
1139 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1140 wait_for_completion(&mb1_transfer.work);
1141
1142 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1143 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1144 r = -EIO;
1145
1146 mutex_unlock(&mb1_transfer.lock);
1147
1148 return r;
1149 }
1150
1151 static int request_pll(u8 clock, bool enable)
1152 {
1153 int r = 0;
1154
1155 if (clock == PRCMU_PLLSOC0)
1156 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1157 else if (clock == PRCMU_PLLSOC1)
1158 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1159 else
1160 return -EINVAL;
1161
1162 mutex_lock(&mb1_transfer.lock);
1163
1164 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1165 cpu_relax();
1166
1167 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1168 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1169
1170 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1171 wait_for_completion(&mb1_transfer.work);
1172
1173 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1174 r = -EIO;
1175
1176 mutex_unlock(&mb1_transfer.lock);
1177
1178 return r;
1179 }
1180
1181 /**
1182 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1183 * @epod_id: The EPOD to set
1184 * @epod_state: The new EPOD state
1185 *
1186 * This function sets the state of a EPOD (power domain). It may not be called
1187 * from interrupt context.
1188 */
1189 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1190 {
1191 int r = 0;
1192 bool ram_retention = false;
1193 int i;
1194
1195 /* check argument */
1196 BUG_ON(epod_id >= NUM_EPOD_ID);
1197
1198 /* set flag if retention is possible */
1199 switch (epod_id) {
1200 case EPOD_ID_SVAMMDSP:
1201 case EPOD_ID_SIAMMDSP:
1202 case EPOD_ID_ESRAM12:
1203 case EPOD_ID_ESRAM34:
1204 ram_retention = true;
1205 break;
1206 }
1207
1208 /* check argument */
1209 BUG_ON(epod_state > EPOD_STATE_ON);
1210 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1211
1212 /* get lock */
1213 mutex_lock(&mb2_transfer.lock);
1214
1215 /* wait for mailbox */
1216 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1217 cpu_relax();
1218
1219 /* fill in mailbox */
1220 for (i = 0; i < NUM_EPOD_ID; i++)
1221 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1222 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1223
1224 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1225
1226 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1227
1228 /*
1229 * The current firmware version does not handle errors correctly,
1230 * and we cannot recover if there is an error.
1231 * This is expected to change when the firmware is updated.
1232 */
1233 if (!wait_for_completion_timeout(&mb2_transfer.work,
1234 msecs_to_jiffies(20000))) {
1235 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1236 __func__);
1237 r = -EIO;
1238 goto unlock_and_return;
1239 }
1240
1241 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1242 r = -EIO;
1243
1244 unlock_and_return:
1245 mutex_unlock(&mb2_transfer.lock);
1246 return r;
1247 }
1248
1249 /**
1250 * prcmu_configure_auto_pm - Configure autonomous power management.
1251 * @sleep: Configuration for ApSleep.
1252 * @idle: Configuration for ApIdle.
1253 */
1254 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1255 struct prcmu_auto_pm_config *idle)
1256 {
1257 u32 sleep_cfg;
1258 u32 idle_cfg;
1259 unsigned long flags;
1260
1261 BUG_ON((sleep == NULL) || (idle == NULL));
1262
1263 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1264 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1265 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1266 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1267 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1268 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1269
1270 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1271 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1272 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1273 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1274 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1275 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1276
1277 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1278
1279 /*
1280 * The autonomous power management configuration is done through
1281 * fields in mailbox 2, but these fields are only used as shared
1282 * variables - i.e. there is no need to send a message.
1283 */
1284 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1285 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1286
1287 mb2_transfer.auto_pm_enabled =
1288 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1289 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1290 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1291 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1292
1293 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1294 }
1295 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1296
1297 bool prcmu_is_auto_pm_enabled(void)
1298 {
1299 return mb2_transfer.auto_pm_enabled;
1300 }
1301
1302 static int request_sysclk(bool enable)
1303 {
1304 int r;
1305 unsigned long flags;
1306
1307 r = 0;
1308
1309 mutex_lock(&mb3_transfer.sysclk_lock);
1310
1311 spin_lock_irqsave(&mb3_transfer.lock, flags);
1312
1313 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1314 cpu_relax();
1315
1316 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1317
1318 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1319 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1320
1321 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1322
1323 /*
1324 * The firmware only sends an ACK if we want to enable the
1325 * SysClk, and it succeeds.
1326 */
1327 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1328 msecs_to_jiffies(20000))) {
1329 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1330 __func__);
1331 r = -EIO;
1332 }
1333
1334 mutex_unlock(&mb3_transfer.sysclk_lock);
1335
1336 return r;
1337 }
1338
1339 static int request_timclk(bool enable)
1340 {
1341 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1342
1343 if (!enable)
1344 val |= PRCM_TCR_STOP_TIMERS;
1345 writel(val, PRCM_TCR);
1346
1347 return 0;
1348 }
1349
1350 static int request_clock(u8 clock, bool enable)
1351 {
1352 u32 val;
1353 unsigned long flags;
1354
1355 spin_lock_irqsave(&clk_mgt_lock, flags);
1356
1357 /* Grab the HW semaphore. */
1358 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1359 cpu_relax();
1360
1361 val = readl(prcmu_base + clk_mgt[clock].offset);
1362 if (enable) {
1363 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1364 } else {
1365 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1366 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1367 }
1368 writel(val, prcmu_base + clk_mgt[clock].offset);
1369
1370 /* Release the HW semaphore. */
1371 writel(0, PRCM_SEM);
1372
1373 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1374
1375 return 0;
1376 }
1377
1378 static int request_sga_clock(u8 clock, bool enable)
1379 {
1380 u32 val;
1381 int ret;
1382
1383 if (enable) {
1384 val = readl(PRCM_CGATING_BYPASS);
1385 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1386 }
1387
1388 ret = request_clock(clock, enable);
1389
1390 if (!ret && !enable) {
1391 val = readl(PRCM_CGATING_BYPASS);
1392 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1393 }
1394
1395 return ret;
1396 }
1397
1398 static inline bool plldsi_locked(void)
1399 {
1400 return (readl(PRCM_PLLDSI_LOCKP) &
1401 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1402 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1403 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1404 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1405 }
1406
1407 static int request_plldsi(bool enable)
1408 {
1409 int r = 0;
1410 u32 val;
1411
1412 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1413 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1414 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1415
1416 val = readl(PRCM_PLLDSI_ENABLE);
1417 if (enable)
1418 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1419 else
1420 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1421 writel(val, PRCM_PLLDSI_ENABLE);
1422
1423 if (enable) {
1424 unsigned int i;
1425 bool locked = plldsi_locked();
1426
1427 for (i = 10; !locked && (i > 0); --i) {
1428 udelay(100);
1429 locked = plldsi_locked();
1430 }
1431 if (locked) {
1432 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1433 PRCM_APE_RESETN_SET);
1434 } else {
1435 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1436 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1437 PRCM_MMIP_LS_CLAMP_SET);
1438 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1439 writel(val, PRCM_PLLDSI_ENABLE);
1440 r = -EAGAIN;
1441 }
1442 } else {
1443 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1444 }
1445 return r;
1446 }
1447
1448 static int request_dsiclk(u8 n, bool enable)
1449 {
1450 u32 val;
1451
1452 val = readl(PRCM_DSI_PLLOUT_SEL);
1453 val &= ~dsiclk[n].divsel_mask;
1454 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1455 dsiclk[n].divsel_shift);
1456 writel(val, PRCM_DSI_PLLOUT_SEL);
1457 return 0;
1458 }
1459
1460 static int request_dsiescclk(u8 n, bool enable)
1461 {
1462 u32 val;
1463
1464 val = readl(PRCM_DSITVCLK_DIV);
1465 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1466 writel(val, PRCM_DSITVCLK_DIV);
1467 return 0;
1468 }
1469
1470 /**
1471 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1472 * @clock: The clock for which the request is made.
1473 * @enable: Whether the clock should be enabled (true) or disabled (false).
1474 *
1475 * This function should only be used by the clock implementation.
1476 * Do not use it from any other place!
1477 */
1478 int db8500_prcmu_request_clock(u8 clock, bool enable)
1479 {
1480 if (clock == PRCMU_SGACLK)
1481 return request_sga_clock(clock, enable);
1482 else if (clock < PRCMU_NUM_REG_CLOCKS)
1483 return request_clock(clock, enable);
1484 else if (clock == PRCMU_TIMCLK)
1485 return request_timclk(enable);
1486 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1487 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1488 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1489 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1490 else if (clock == PRCMU_PLLDSI)
1491 return request_plldsi(enable);
1492 else if (clock == PRCMU_SYSCLK)
1493 return request_sysclk(enable);
1494 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1495 return request_pll(clock, enable);
1496 else
1497 return -EINVAL;
1498 }
1499
1500 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1501 int branch)
1502 {
1503 u64 rate;
1504 u32 val;
1505 u32 d;
1506 u32 div = 1;
1507
1508 val = readl(reg);
1509
1510 rate = src_rate;
1511 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1512
1513 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1514 if (d > 1)
1515 div *= d;
1516
1517 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1518 if (d > 1)
1519 div *= d;
1520
1521 if (val & PRCM_PLL_FREQ_SELDIV2)
1522 div *= 2;
1523
1524 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1525 (val & PRCM_PLL_FREQ_DIV2EN) &&
1526 ((reg == PRCM_PLLSOC0_FREQ) ||
1527 (reg == PRCM_PLLARM_FREQ) ||
1528 (reg == PRCM_PLLDDR_FREQ))))
1529 div *= 2;
1530
1531 (void)do_div(rate, div);
1532
1533 return (unsigned long)rate;
1534 }
1535
1536 #define ROOT_CLOCK_RATE 38400000
1537
1538 static unsigned long clock_rate(u8 clock)
1539 {
1540 u32 val;
1541 u32 pllsw;
1542 unsigned long rate = ROOT_CLOCK_RATE;
1543
1544 val = readl(prcmu_base + clk_mgt[clock].offset);
1545
1546 if (val & PRCM_CLK_MGT_CLK38) {
1547 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1548 rate /= 2;
1549 return rate;
1550 }
1551
1552 val |= clk_mgt[clock].pllsw;
1553 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1554
1555 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1556 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1557 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1558 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1559 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1560 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1561 else
1562 return 0;
1563
1564 if ((clock == PRCMU_SGACLK) &&
1565 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1566 u64 r = (rate * 10);
1567
1568 (void)do_div(r, 25);
1569 return (unsigned long)r;
1570 }
1571 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1572 if (val)
1573 return rate / val;
1574 else
1575 return 0;
1576 }
1577
1578 static unsigned long armss_rate(void)
1579 {
1580 u32 r;
1581 unsigned long rate;
1582
1583 r = readl(PRCM_ARM_CHGCLKREQ);
1584
1585 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1586 /* External ARMCLKFIX clock */
1587
1588 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1589
1590 /* Check PRCM_ARM_CHGCLKREQ divider */
1591 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1592 rate /= 2;
1593
1594 /* Check PRCM_ARMCLKFIX_MGT divider */
1595 r = readl(PRCM_ARMCLKFIX_MGT);
1596 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1597 rate /= r;
1598
1599 } else {/* ARM PLL */
1600 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1601 }
1602
1603 return rate;
1604 }
1605
1606 static unsigned long dsiclk_rate(u8 n)
1607 {
1608 u32 divsel;
1609 u32 div = 1;
1610
1611 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1612 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1613
1614 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1615 divsel = dsiclk[n].divsel;
1616
1617 switch (divsel) {
1618 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1619 div *= 2;
1620 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1621 div *= 2;
1622 case PRCM_DSI_PLLOUT_SEL_PHI:
1623 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1624 PLL_RAW) / div;
1625 default:
1626 return 0;
1627 }
1628 }
1629
1630 static unsigned long dsiescclk_rate(u8 n)
1631 {
1632 u32 div;
1633
1634 div = readl(PRCM_DSITVCLK_DIV);
1635 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1636 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1637 }
1638
1639 unsigned long prcmu_clock_rate(u8 clock)
1640 {
1641 if (clock < PRCMU_NUM_REG_CLOCKS)
1642 return clock_rate(clock);
1643 else if (clock == PRCMU_TIMCLK)
1644 return ROOT_CLOCK_RATE / 16;
1645 else if (clock == PRCMU_SYSCLK)
1646 return ROOT_CLOCK_RATE;
1647 else if (clock == PRCMU_PLLSOC0)
1648 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1649 else if (clock == PRCMU_PLLSOC1)
1650 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1651 else if (clock == PRCMU_ARMSS)
1652 return armss_rate();
1653 else if (clock == PRCMU_PLLDDR)
1654 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1655 else if (clock == PRCMU_PLLDSI)
1656 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1657 PLL_RAW);
1658 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1659 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1660 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1661 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1662 else
1663 return 0;
1664 }
1665
1666 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1667 {
1668 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1669 return ROOT_CLOCK_RATE;
1670 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1671 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1672 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1673 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1674 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1675 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1676 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1677 else
1678 return 0;
1679 }
1680
1681 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1682 {
1683 u32 div;
1684
1685 div = (src_rate / rate);
1686 if (div == 0)
1687 return 1;
1688 if (rate < (src_rate / div))
1689 div++;
1690 return div;
1691 }
1692
1693 static long round_clock_rate(u8 clock, unsigned long rate)
1694 {
1695 u32 val;
1696 u32 div;
1697 unsigned long src_rate;
1698 long rounded_rate;
1699
1700 val = readl(prcmu_base + clk_mgt[clock].offset);
1701 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1702 clk_mgt[clock].branch);
1703 div = clock_divider(src_rate, rate);
1704 if (val & PRCM_CLK_MGT_CLK38) {
1705 if (clk_mgt[clock].clk38div) {
1706 if (div > 2)
1707 div = 2;
1708 } else {
1709 div = 1;
1710 }
1711 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1712 u64 r = (src_rate * 10);
1713
1714 (void)do_div(r, 25);
1715 if (r <= rate)
1716 return (unsigned long)r;
1717 }
1718 rounded_rate = (src_rate / min(div, (u32)31));
1719
1720 return rounded_rate;
1721 }
1722
1723 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1724 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1725 { .frequency = 200000, .index = ARM_EXTCLK,},
1726 { .frequency = 400000, .index = ARM_50_OPP,},
1727 { .frequency = 800000, .index = ARM_100_OPP,},
1728 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1729 { .frequency = CPUFREQ_TABLE_END,},
1730 };
1731
1732 static long round_armss_rate(unsigned long rate)
1733 {
1734 long freq = 0;
1735 int i = 0;
1736
1737 /* cpufreq table frequencies is in KHz. */
1738 rate = rate / 1000;
1739
1740 /* Find the corresponding arm opp from the cpufreq table. */
1741 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1742 freq = db8500_cpufreq_table[i].frequency;
1743 if (freq == rate)
1744 break;
1745 i++;
1746 }
1747
1748 /* Return the last valid value, even if a match was not found. */
1749 return freq * 1000;
1750 }
1751
1752 #define MIN_PLL_VCO_RATE 600000000ULL
1753 #define MAX_PLL_VCO_RATE 1680640000ULL
1754
1755 static long round_plldsi_rate(unsigned long rate)
1756 {
1757 long rounded_rate = 0;
1758 unsigned long src_rate;
1759 unsigned long rem;
1760 u32 r;
1761
1762 src_rate = clock_rate(PRCMU_HDMICLK);
1763 rem = rate;
1764
1765 for (r = 7; (rem > 0) && (r > 0); r--) {
1766 u64 d;
1767
1768 d = (r * rate);
1769 (void)do_div(d, src_rate);
1770 if (d < 6)
1771 d = 6;
1772 else if (d > 255)
1773 d = 255;
1774 d *= src_rate;
1775 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1776 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1777 continue;
1778 (void)do_div(d, r);
1779 if (rate < d) {
1780 if (rounded_rate == 0)
1781 rounded_rate = (long)d;
1782 break;
1783 }
1784 if ((rate - d) < rem) {
1785 rem = (rate - d);
1786 rounded_rate = (long)d;
1787 }
1788 }
1789 return rounded_rate;
1790 }
1791
1792 static long round_dsiclk_rate(unsigned long rate)
1793 {
1794 u32 div;
1795 unsigned long src_rate;
1796 long rounded_rate;
1797
1798 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1799 PLL_RAW);
1800 div = clock_divider(src_rate, rate);
1801 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1802
1803 return rounded_rate;
1804 }
1805
1806 static long round_dsiescclk_rate(unsigned long rate)
1807 {
1808 u32 div;
1809 unsigned long src_rate;
1810 long rounded_rate;
1811
1812 src_rate = clock_rate(PRCMU_TVCLK);
1813 div = clock_divider(src_rate, rate);
1814 rounded_rate = (src_rate / min(div, (u32)255));
1815
1816 return rounded_rate;
1817 }
1818
1819 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1820 {
1821 if (clock < PRCMU_NUM_REG_CLOCKS)
1822 return round_clock_rate(clock, rate);
1823 else if (clock == PRCMU_ARMSS)
1824 return round_armss_rate(rate);
1825 else if (clock == PRCMU_PLLDSI)
1826 return round_plldsi_rate(rate);
1827 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1828 return round_dsiclk_rate(rate);
1829 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1830 return round_dsiescclk_rate(rate);
1831 else
1832 return (long)prcmu_clock_rate(clock);
1833 }
1834
1835 static void set_clock_rate(u8 clock, unsigned long rate)
1836 {
1837 u32 val;
1838 u32 div;
1839 unsigned long src_rate;
1840 unsigned long flags;
1841
1842 spin_lock_irqsave(&clk_mgt_lock, flags);
1843
1844 /* Grab the HW semaphore. */
1845 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1846 cpu_relax();
1847
1848 val = readl(prcmu_base + clk_mgt[clock].offset);
1849 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1850 clk_mgt[clock].branch);
1851 div = clock_divider(src_rate, rate);
1852 if (val & PRCM_CLK_MGT_CLK38) {
1853 if (clk_mgt[clock].clk38div) {
1854 if (div > 1)
1855 val |= PRCM_CLK_MGT_CLK38DIV;
1856 else
1857 val &= ~PRCM_CLK_MGT_CLK38DIV;
1858 }
1859 } else if (clock == PRCMU_SGACLK) {
1860 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1861 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1862 if (div == 3) {
1863 u64 r = (src_rate * 10);
1864
1865 (void)do_div(r, 25);
1866 if (r <= rate) {
1867 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1868 div = 0;
1869 }
1870 }
1871 val |= min(div, (u32)31);
1872 } else {
1873 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1874 val |= min(div, (u32)31);
1875 }
1876 writel(val, prcmu_base + clk_mgt[clock].offset);
1877
1878 /* Release the HW semaphore. */
1879 writel(0, PRCM_SEM);
1880
1881 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1882 }
1883
1884 static int set_armss_rate(unsigned long rate)
1885 {
1886 int i = 0;
1887
1888 /* cpufreq table frequencies is in KHz. */
1889 rate = rate / 1000;
1890
1891 /* Find the corresponding arm opp from the cpufreq table. */
1892 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1893 if (db8500_cpufreq_table[i].frequency == rate)
1894 break;
1895 i++;
1896 }
1897
1898 if (db8500_cpufreq_table[i].frequency != rate)
1899 return -EINVAL;
1900
1901 /* Set the new arm opp. */
1902 return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
1903 }
1904
1905 static int set_plldsi_rate(unsigned long rate)
1906 {
1907 unsigned long src_rate;
1908 unsigned long rem;
1909 u32 pll_freq = 0;
1910 u32 r;
1911
1912 src_rate = clock_rate(PRCMU_HDMICLK);
1913 rem = rate;
1914
1915 for (r = 7; (rem > 0) && (r > 0); r--) {
1916 u64 d;
1917 u64 hwrate;
1918
1919 d = (r * rate);
1920 (void)do_div(d, src_rate);
1921 if (d < 6)
1922 d = 6;
1923 else if (d > 255)
1924 d = 255;
1925 hwrate = (d * src_rate);
1926 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1927 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1928 continue;
1929 (void)do_div(hwrate, r);
1930 if (rate < hwrate) {
1931 if (pll_freq == 0)
1932 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1933 (r << PRCM_PLL_FREQ_R_SHIFT));
1934 break;
1935 }
1936 if ((rate - hwrate) < rem) {
1937 rem = (rate - hwrate);
1938 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1939 (r << PRCM_PLL_FREQ_R_SHIFT));
1940 }
1941 }
1942 if (pll_freq == 0)
1943 return -EINVAL;
1944
1945 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1946 writel(pll_freq, PRCM_PLLDSI_FREQ);
1947
1948 return 0;
1949 }
1950
1951 static void set_dsiclk_rate(u8 n, unsigned long rate)
1952 {
1953 u32 val;
1954 u32 div;
1955
1956 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1957 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1958
1959 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1960 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1961 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1962
1963 val = readl(PRCM_DSI_PLLOUT_SEL);
1964 val &= ~dsiclk[n].divsel_mask;
1965 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1966 writel(val, PRCM_DSI_PLLOUT_SEL);
1967 }
1968
1969 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1970 {
1971 u32 val;
1972 u32 div;
1973
1974 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1975 val = readl(PRCM_DSITVCLK_DIV);
1976 val &= ~dsiescclk[n].div_mask;
1977 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1978 writel(val, PRCM_DSITVCLK_DIV);
1979 }
1980
1981 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1982 {
1983 if (clock < PRCMU_NUM_REG_CLOCKS)
1984 set_clock_rate(clock, rate);
1985 else if (clock == PRCMU_ARMSS)
1986 return set_armss_rate(rate);
1987 else if (clock == PRCMU_PLLDSI)
1988 return set_plldsi_rate(rate);
1989 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1990 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1991 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1992 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1993 return 0;
1994 }
1995
1996 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1997 {
1998 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1999 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2000 return -EINVAL;
2001
2002 mutex_lock(&mb4_transfer.lock);
2003
2004 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2005 cpu_relax();
2006
2007 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2008 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2009 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2010 writeb(DDR_PWR_STATE_ON,
2011 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2012 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2013
2014 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2015 wait_for_completion(&mb4_transfer.work);
2016
2017 mutex_unlock(&mb4_transfer.lock);
2018
2019 return 0;
2020 }
2021
2022 int db8500_prcmu_config_hotdog(u8 threshold)
2023 {
2024 mutex_lock(&mb4_transfer.lock);
2025
2026 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2027 cpu_relax();
2028
2029 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2030 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2031
2032 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2033 wait_for_completion(&mb4_transfer.work);
2034
2035 mutex_unlock(&mb4_transfer.lock);
2036
2037 return 0;
2038 }
2039
2040 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2041 {
2042 mutex_lock(&mb4_transfer.lock);
2043
2044 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2045 cpu_relax();
2046
2047 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2048 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2049 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2050 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2051 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2052
2053 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2054 wait_for_completion(&mb4_transfer.work);
2055
2056 mutex_unlock(&mb4_transfer.lock);
2057
2058 return 0;
2059 }
2060
2061 static int config_hot_period(u16 val)
2062 {
2063 mutex_lock(&mb4_transfer.lock);
2064
2065 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2066 cpu_relax();
2067
2068 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2069 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2070
2071 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2072 wait_for_completion(&mb4_transfer.work);
2073
2074 mutex_unlock(&mb4_transfer.lock);
2075
2076 return 0;
2077 }
2078
2079 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2080 {
2081 if (cycles32k == 0xFFFF)
2082 return -EINVAL;
2083
2084 return config_hot_period(cycles32k);
2085 }
2086
2087 int db8500_prcmu_stop_temp_sense(void)
2088 {
2089 return config_hot_period(0xFFFF);
2090 }
2091
2092 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2093 {
2094
2095 mutex_lock(&mb4_transfer.lock);
2096
2097 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2098 cpu_relax();
2099
2100 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2101 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2102 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2103 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2104
2105 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2106
2107 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2108 wait_for_completion(&mb4_transfer.work);
2109
2110 mutex_unlock(&mb4_transfer.lock);
2111
2112 return 0;
2113
2114 }
2115
2116 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2117 {
2118 BUG_ON(num == 0 || num > 0xf);
2119 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2120 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2121 A9WDOG_AUTO_OFF_DIS);
2122 }
2123 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2124
2125 int db8500_prcmu_enable_a9wdog(u8 id)
2126 {
2127 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2128 }
2129 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2130
2131 int db8500_prcmu_disable_a9wdog(u8 id)
2132 {
2133 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2134 }
2135 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2136
2137 int db8500_prcmu_kick_a9wdog(u8 id)
2138 {
2139 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2140 }
2141 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2142
2143 /*
2144 * timeout is 28 bit, in ms.
2145 */
2146 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2147 {
2148 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2149 (id & A9WDOG_ID_MASK) |
2150 /*
2151 * Put the lowest 28 bits of timeout at
2152 * offset 4. Four first bits are used for id.
2153 */
2154 (u8)((timeout << 4) & 0xf0),
2155 (u8)((timeout >> 4) & 0xff),
2156 (u8)((timeout >> 12) & 0xff),
2157 (u8)((timeout >> 20) & 0xff));
2158 }
2159 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2160
2161 /**
2162 * prcmu_abb_read() - Read register value(s) from the ABB.
2163 * @slave: The I2C slave address.
2164 * @reg: The (start) register address.
2165 * @value: The read out value(s).
2166 * @size: The number of registers to read.
2167 *
2168 * Reads register value(s) from the ABB.
2169 * @size has to be 1 for the current firmware version.
2170 */
2171 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2172 {
2173 int r;
2174
2175 if (size != 1)
2176 return -EINVAL;
2177
2178 mutex_lock(&mb5_transfer.lock);
2179
2180 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2181 cpu_relax();
2182
2183 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2184 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2185 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2186 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2187 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2188
2189 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2190
2191 if (!wait_for_completion_timeout(&mb5_transfer.work,
2192 msecs_to_jiffies(20000))) {
2193 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2194 __func__);
2195 r = -EIO;
2196 } else {
2197 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2198 }
2199
2200 if (!r)
2201 *value = mb5_transfer.ack.value;
2202
2203 mutex_unlock(&mb5_transfer.lock);
2204
2205 return r;
2206 }
2207
2208 /**
2209 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2210 * @slave: The I2C slave address.
2211 * @reg: The (start) register address.
2212 * @value: The value(s) to write.
2213 * @mask: The mask(s) to use.
2214 * @size: The number of registers to write.
2215 *
2216 * Writes masked register value(s) to the ABB.
2217 * For each @value, only the bits set to 1 in the corresponding @mask
2218 * will be written. The other bits are not changed.
2219 * @size has to be 1 for the current firmware version.
2220 */
2221 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2222 {
2223 int r;
2224
2225 if (size != 1)
2226 return -EINVAL;
2227
2228 mutex_lock(&mb5_transfer.lock);
2229
2230 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2231 cpu_relax();
2232
2233 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2234 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2235 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2236 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2237 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2238
2239 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2240
2241 if (!wait_for_completion_timeout(&mb5_transfer.work,
2242 msecs_to_jiffies(20000))) {
2243 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2244 __func__);
2245 r = -EIO;
2246 } else {
2247 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2248 }
2249
2250 mutex_unlock(&mb5_transfer.lock);
2251
2252 return r;
2253 }
2254
2255 /**
2256 * prcmu_abb_write() - Write register value(s) to the ABB.
2257 * @slave: The I2C slave address.
2258 * @reg: The (start) register address.
2259 * @value: The value(s) to write.
2260 * @size: The number of registers to write.
2261 *
2262 * Writes register value(s) to the ABB.
2263 * @size has to be 1 for the current firmware version.
2264 */
2265 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2266 {
2267 u8 mask = ~0;
2268
2269 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2270 }
2271
2272 /**
2273 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2274 */
2275 int prcmu_ac_wake_req(void)
2276 {
2277 u32 val;
2278 int ret = 0;
2279
2280 mutex_lock(&mb0_transfer.ac_wake_lock);
2281
2282 val = readl(PRCM_HOSTACCESS_REQ);
2283 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2284 goto unlock_and_return;
2285
2286 atomic_set(&ac_wake_req_state, 1);
2287
2288 /*
2289 * Force Modem Wake-up before hostaccess_req ping-pong.
2290 * It prevents Modem to enter in Sleep while acking the hostaccess
2291 * request. The 31us delay has been calculated by HWI.
2292 */
2293 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2294 writel(val, PRCM_HOSTACCESS_REQ);
2295
2296 udelay(31);
2297
2298 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2299 writel(val, PRCM_HOSTACCESS_REQ);
2300
2301 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2302 msecs_to_jiffies(5000))) {
2303 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2304 db8500_prcmu_debug_dump(__func__, true, true);
2305 #endif
2306 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2307 __func__);
2308 ret = -EFAULT;
2309 }
2310
2311 unlock_and_return:
2312 mutex_unlock(&mb0_transfer.ac_wake_lock);
2313 return ret;
2314 }
2315
2316 /**
2317 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2318 */
2319 void prcmu_ac_sleep_req()
2320 {
2321 u32 val;
2322
2323 mutex_lock(&mb0_transfer.ac_wake_lock);
2324
2325 val = readl(PRCM_HOSTACCESS_REQ);
2326 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2327 goto unlock_and_return;
2328
2329 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2330 PRCM_HOSTACCESS_REQ);
2331
2332 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2333 msecs_to_jiffies(5000))) {
2334 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2335 __func__);
2336 }
2337
2338 atomic_set(&ac_wake_req_state, 0);
2339
2340 unlock_and_return:
2341 mutex_unlock(&mb0_transfer.ac_wake_lock);
2342 }
2343
2344 bool db8500_prcmu_is_ac_wake_requested(void)
2345 {
2346 return (atomic_read(&ac_wake_req_state) != 0);
2347 }
2348
2349 /**
2350 * db8500_prcmu_system_reset - System reset
2351 *
2352 * Saves the reset reason code and then sets the APE_SOFTRST register which
2353 * fires interrupt to fw
2354 */
2355 void db8500_prcmu_system_reset(u16 reset_code)
2356 {
2357 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2358 writel(1, PRCM_APE_SOFTRST);
2359 }
2360
2361 /**
2362 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2363 *
2364 * Retrieves the reset reason code stored by prcmu_system_reset() before
2365 * last restart.
2366 */
2367 u16 db8500_prcmu_get_reset_code(void)
2368 {
2369 return readw(tcdm_base + PRCM_SW_RST_REASON);
2370 }
2371
2372 /**
2373 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2374 */
2375 void db8500_prcmu_modem_reset(void)
2376 {
2377 mutex_lock(&mb1_transfer.lock);
2378
2379 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2380 cpu_relax();
2381
2382 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2383 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2384 wait_for_completion(&mb1_transfer.work);
2385
2386 /*
2387 * No need to check return from PRCMU as modem should go in reset state
2388 * This state is already managed by upper layer
2389 */
2390
2391 mutex_unlock(&mb1_transfer.lock);
2392 }
2393
2394 static void ack_dbb_wakeup(void)
2395 {
2396 unsigned long flags;
2397
2398 spin_lock_irqsave(&mb0_transfer.lock, flags);
2399
2400 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2401 cpu_relax();
2402
2403 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2404 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2405
2406 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2407 }
2408
2409 static inline void print_unknown_header_warning(u8 n, u8 header)
2410 {
2411 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2412 header, n);
2413 }
2414
2415 static bool read_mailbox_0(void)
2416 {
2417 bool r;
2418 u32 ev;
2419 unsigned int n;
2420 u8 header;
2421
2422 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2423 switch (header) {
2424 case MB0H_WAKEUP_EXE:
2425 case MB0H_WAKEUP_SLEEP:
2426 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2427 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2428 else
2429 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2430
2431 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2432 complete(&mb0_transfer.ac_wake_work);
2433 if (ev & WAKEUP_BIT_SYSCLK_OK)
2434 complete(&mb3_transfer.sysclk_work);
2435
2436 ev &= mb0_transfer.req.dbb_irqs;
2437
2438 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2439 if (ev & prcmu_irq_bit[n])
2440 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2441 }
2442 r = true;
2443 break;
2444 default:
2445 print_unknown_header_warning(0, header);
2446 r = false;
2447 break;
2448 }
2449 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2450 return r;
2451 }
2452
2453 static bool read_mailbox_1(void)
2454 {
2455 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2456 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2457 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2458 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2459 PRCM_ACK_MB1_CURRENT_APE_OPP);
2460 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2461 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2462 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2463 complete(&mb1_transfer.work);
2464 return false;
2465 }
2466
2467 static bool read_mailbox_2(void)
2468 {
2469 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2470 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2471 complete(&mb2_transfer.work);
2472 return false;
2473 }
2474
2475 static bool read_mailbox_3(void)
2476 {
2477 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2478 return false;
2479 }
2480
2481 static bool read_mailbox_4(void)
2482 {
2483 u8 header;
2484 bool do_complete = true;
2485
2486 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2487 switch (header) {
2488 case MB4H_MEM_ST:
2489 case MB4H_HOTDOG:
2490 case MB4H_HOTMON:
2491 case MB4H_HOT_PERIOD:
2492 case MB4H_A9WDOG_CONF:
2493 case MB4H_A9WDOG_EN:
2494 case MB4H_A9WDOG_DIS:
2495 case MB4H_A9WDOG_LOAD:
2496 case MB4H_A9WDOG_KICK:
2497 break;
2498 default:
2499 print_unknown_header_warning(4, header);
2500 do_complete = false;
2501 break;
2502 }
2503
2504 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2505
2506 if (do_complete)
2507 complete(&mb4_transfer.work);
2508
2509 return false;
2510 }
2511
2512 static bool read_mailbox_5(void)
2513 {
2514 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2515 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2516 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2517 complete(&mb5_transfer.work);
2518 return false;
2519 }
2520
2521 static bool read_mailbox_6(void)
2522 {
2523 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2524 return false;
2525 }
2526
2527 static bool read_mailbox_7(void)
2528 {
2529 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2530 return false;
2531 }
2532
2533 static bool (* const read_mailbox[NUM_MB])(void) = {
2534 read_mailbox_0,
2535 read_mailbox_1,
2536 read_mailbox_2,
2537 read_mailbox_3,
2538 read_mailbox_4,
2539 read_mailbox_5,
2540 read_mailbox_6,
2541 read_mailbox_7
2542 };
2543
2544 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2545 {
2546 u32 bits;
2547 u8 n;
2548 irqreturn_t r;
2549
2550 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2551 if (unlikely(!bits))
2552 return IRQ_NONE;
2553
2554 r = IRQ_HANDLED;
2555 for (n = 0; bits; n++) {
2556 if (bits & MBOX_BIT(n)) {
2557 bits -= MBOX_BIT(n);
2558 if (read_mailbox[n]())
2559 r = IRQ_WAKE_THREAD;
2560 }
2561 }
2562 return r;
2563 }
2564
2565 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2566 {
2567 ack_dbb_wakeup();
2568 return IRQ_HANDLED;
2569 }
2570
2571 static void prcmu_mask_work(struct work_struct *work)
2572 {
2573 unsigned long flags;
2574
2575 spin_lock_irqsave(&mb0_transfer.lock, flags);
2576
2577 config_wakeups();
2578
2579 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2580 }
2581
2582 static void prcmu_irq_mask(struct irq_data *d)
2583 {
2584 unsigned long flags;
2585
2586 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2587
2588 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2589
2590 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2591
2592 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2593 schedule_work(&mb0_transfer.mask_work);
2594 }
2595
2596 static void prcmu_irq_unmask(struct irq_data *d)
2597 {
2598 unsigned long flags;
2599
2600 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2601
2602 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2603
2604 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2605
2606 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2607 schedule_work(&mb0_transfer.mask_work);
2608 }
2609
2610 static void noop(struct irq_data *d)
2611 {
2612 }
2613
2614 static struct irq_chip prcmu_irq_chip = {
2615 .name = "prcmu",
2616 .irq_disable = prcmu_irq_mask,
2617 .irq_ack = noop,
2618 .irq_mask = prcmu_irq_mask,
2619 .irq_unmask = prcmu_irq_unmask,
2620 };
2621
2622 static __init char *fw_project_name(u32 project)
2623 {
2624 switch (project) {
2625 case PRCMU_FW_PROJECT_U8500:
2626 return "U8500";
2627 case PRCMU_FW_PROJECT_U8400:
2628 return "U8400";
2629 case PRCMU_FW_PROJECT_U9500:
2630 return "U9500";
2631 case PRCMU_FW_PROJECT_U8500_MBB:
2632 return "U8500 MBB";
2633 case PRCMU_FW_PROJECT_U8500_C1:
2634 return "U8500 C1";
2635 case PRCMU_FW_PROJECT_U8500_C2:
2636 return "U8500 C2";
2637 case PRCMU_FW_PROJECT_U8500_C3:
2638 return "U8500 C3";
2639 case PRCMU_FW_PROJECT_U8500_C4:
2640 return "U8500 C4";
2641 case PRCMU_FW_PROJECT_U9500_MBL:
2642 return "U9500 MBL";
2643 case PRCMU_FW_PROJECT_U8500_MBL:
2644 return "U8500 MBL";
2645 case PRCMU_FW_PROJECT_U8500_MBL2:
2646 return "U8500 MBL2";
2647 case PRCMU_FW_PROJECT_U8520:
2648 return "U8520 MBL";
2649 case PRCMU_FW_PROJECT_U8420:
2650 return "U8420";
2651 case PRCMU_FW_PROJECT_U9540:
2652 return "U9540";
2653 case PRCMU_FW_PROJECT_A9420:
2654 return "A9420";
2655 case PRCMU_FW_PROJECT_L8540:
2656 return "L8540";
2657 case PRCMU_FW_PROJECT_L8580:
2658 return "L8580";
2659 default:
2660 return "Unknown";
2661 }
2662 }
2663
2664 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2665 irq_hw_number_t hwirq)
2666 {
2667 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2668 handle_simple_irq);
2669 set_irq_flags(virq, IRQF_VALID);
2670
2671 return 0;
2672 }
2673
2674 static struct irq_domain_ops db8500_irq_ops = {
2675 .map = db8500_irq_map,
2676 .xlate = irq_domain_xlate_twocell,
2677 };
2678
2679 static int db8500_irq_init(struct device_node *np, int irq_base)
2680 {
2681 int i;
2682
2683 /* In the device tree case, just take some IRQs */
2684 if (np)
2685 irq_base = 0;
2686
2687 db8500_irq_domain = irq_domain_add_simple(
2688 np, NUM_PRCMU_WAKEUPS, irq_base,
2689 &db8500_irq_ops, NULL);
2690
2691 if (!db8500_irq_domain) {
2692 pr_err("Failed to create irqdomain\n");
2693 return -ENOSYS;
2694 }
2695
2696 /* All wakeups will be used, so create mappings for all */
2697 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2698 irq_create_mapping(db8500_irq_domain, i);
2699
2700 return 0;
2701 }
2702
2703 static void dbx500_fw_version_init(struct platform_device *pdev,
2704 u32 version_offset)
2705 {
2706 struct resource *res;
2707 void __iomem *tcpm_base;
2708 u32 version;
2709
2710 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2711 "prcmu-tcpm");
2712 if (!res) {
2713 dev_err(&pdev->dev,
2714 "Error: no prcmu tcpm memory region provided\n");
2715 return;
2716 }
2717 tcpm_base = ioremap(res->start, resource_size(res));
2718 if (!tcpm_base) {
2719 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2720 return;
2721 }
2722
2723 version = readl(tcpm_base + version_offset);
2724 fw_info.version.project = (version & 0xFF);
2725 fw_info.version.api_version = (version >> 8) & 0xFF;
2726 fw_info.version.func_version = (version >> 16) & 0xFF;
2727 fw_info.version.errata = (version >> 24) & 0xFF;
2728 strncpy(fw_info.version.project_name,
2729 fw_project_name(fw_info.version.project),
2730 PRCMU_FW_PROJECT_NAME_LEN);
2731 fw_info.valid = true;
2732 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2733 fw_info.version.project_name,
2734 fw_info.version.project,
2735 fw_info.version.api_version,
2736 fw_info.version.func_version,
2737 fw_info.version.errata);
2738 iounmap(tcpm_base);
2739 }
2740
2741 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2742 {
2743 /*
2744 * This is a temporary remap to bring up the clocks. It is
2745 * subsequently replaces with a real remap. After the merge of
2746 * the mailbox subsystem all of this early code goes away, and the
2747 * clock driver can probe independently. An early initcall will
2748 * still be needed, but it can be diverted into drivers/clk/ux500.
2749 */
2750 prcmu_base = ioremap(phy_base, size);
2751 if (!prcmu_base)
2752 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2753
2754 spin_lock_init(&mb0_transfer.lock);
2755 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2756 mutex_init(&mb0_transfer.ac_wake_lock);
2757 init_completion(&mb0_transfer.ac_wake_work);
2758 mutex_init(&mb1_transfer.lock);
2759 init_completion(&mb1_transfer.work);
2760 mb1_transfer.ape_opp = APE_NO_CHANGE;
2761 mutex_init(&mb2_transfer.lock);
2762 init_completion(&mb2_transfer.work);
2763 spin_lock_init(&mb2_transfer.auto_pm_lock);
2764 spin_lock_init(&mb3_transfer.lock);
2765 mutex_init(&mb3_transfer.sysclk_lock);
2766 init_completion(&mb3_transfer.sysclk_work);
2767 mutex_init(&mb4_transfer.lock);
2768 init_completion(&mb4_transfer.work);
2769 mutex_init(&mb5_transfer.lock);
2770 init_completion(&mb5_transfer.work);
2771
2772 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2773 }
2774
2775 static void __init init_prcm_registers(void)
2776 {
2777 u32 val;
2778
2779 val = readl(PRCM_A9PL_FORCE_CLKEN);
2780 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2781 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2782 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2783 }
2784
2785 /*
2786 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2787 */
2788 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2789 REGULATOR_SUPPLY("v-ape", NULL),
2790 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2791 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2792 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2793 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2794 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2795 /* "v-mmc" changed to "vcore" in the mainline kernel */
2796 REGULATOR_SUPPLY("vcore", "sdi0"),
2797 REGULATOR_SUPPLY("vcore", "sdi1"),
2798 REGULATOR_SUPPLY("vcore", "sdi2"),
2799 REGULATOR_SUPPLY("vcore", "sdi3"),
2800 REGULATOR_SUPPLY("vcore", "sdi4"),
2801 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2802 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2803 /* "v-uart" changed to "vcore" in the mainline kernel */
2804 REGULATOR_SUPPLY("vcore", "uart0"),
2805 REGULATOR_SUPPLY("vcore", "uart1"),
2806 REGULATOR_SUPPLY("vcore", "uart2"),
2807 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2808 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2809 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2810 };
2811
2812 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2813 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2814 /* AV8100 regulator */
2815 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2816 };
2817
2818 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2819 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2820 REGULATOR_SUPPLY("vsupply", "mcde"),
2821 };
2822
2823 /* SVA MMDSP regulator switch */
2824 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2825 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2826 };
2827
2828 /* SVA pipe regulator switch */
2829 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2830 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2831 };
2832
2833 /* SIA MMDSP regulator switch */
2834 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2835 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2836 };
2837
2838 /* SIA pipe regulator switch */
2839 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2840 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2841 };
2842
2843 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2844 REGULATOR_SUPPLY("v-mali", NULL),
2845 };
2846
2847 /* ESRAM1 and 2 regulator switch */
2848 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2849 REGULATOR_SUPPLY("esram12", "cm_control"),
2850 };
2851
2852 /* ESRAM3 and 4 regulator switch */
2853 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2854 REGULATOR_SUPPLY("v-esram34", "mcde"),
2855 REGULATOR_SUPPLY("esram34", "cm_control"),
2856 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2857 };
2858
2859 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2860 [DB8500_REGULATOR_VAPE] = {
2861 .constraints = {
2862 .name = "db8500-vape",
2863 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2864 .always_on = true,
2865 },
2866 .consumer_supplies = db8500_vape_consumers,
2867 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2868 },
2869 [DB8500_REGULATOR_VARM] = {
2870 .constraints = {
2871 .name = "db8500-varm",
2872 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2873 },
2874 },
2875 [DB8500_REGULATOR_VMODEM] = {
2876 .constraints = {
2877 .name = "db8500-vmodem",
2878 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2879 },
2880 },
2881 [DB8500_REGULATOR_VPLL] = {
2882 .constraints = {
2883 .name = "db8500-vpll",
2884 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2885 },
2886 },
2887 [DB8500_REGULATOR_VSMPS1] = {
2888 .constraints = {
2889 .name = "db8500-vsmps1",
2890 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2891 },
2892 },
2893 [DB8500_REGULATOR_VSMPS2] = {
2894 .constraints = {
2895 .name = "db8500-vsmps2",
2896 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2897 },
2898 .consumer_supplies = db8500_vsmps2_consumers,
2899 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2900 },
2901 [DB8500_REGULATOR_VSMPS3] = {
2902 .constraints = {
2903 .name = "db8500-vsmps3",
2904 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2905 },
2906 },
2907 [DB8500_REGULATOR_VRF1] = {
2908 .constraints = {
2909 .name = "db8500-vrf1",
2910 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911 },
2912 },
2913 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2914 /* dependency to u8500-vape is handled outside regulator framework */
2915 .constraints = {
2916 .name = "db8500-sva-mmdsp",
2917 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2918 },
2919 .consumer_supplies = db8500_svammdsp_consumers,
2920 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2921 },
2922 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2923 .constraints = {
2924 /* "ret" means "retention" */
2925 .name = "db8500-sva-mmdsp-ret",
2926 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2927 },
2928 },
2929 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2930 /* dependency to u8500-vape is handled outside regulator framework */
2931 .constraints = {
2932 .name = "db8500-sva-pipe",
2933 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2934 },
2935 .consumer_supplies = db8500_svapipe_consumers,
2936 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2937 },
2938 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2939 /* dependency to u8500-vape is handled outside regulator framework */
2940 .constraints = {
2941 .name = "db8500-sia-mmdsp",
2942 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2943 },
2944 .consumer_supplies = db8500_siammdsp_consumers,
2945 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2946 },
2947 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2948 .constraints = {
2949 .name = "db8500-sia-mmdsp-ret",
2950 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2951 },
2952 },
2953 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2954 /* dependency to u8500-vape is handled outside regulator framework */
2955 .constraints = {
2956 .name = "db8500-sia-pipe",
2957 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2958 },
2959 .consumer_supplies = db8500_siapipe_consumers,
2960 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2961 },
2962 [DB8500_REGULATOR_SWITCH_SGA] = {
2963 .supply_regulator = "db8500-vape",
2964 .constraints = {
2965 .name = "db8500-sga",
2966 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2967 },
2968 .consumer_supplies = db8500_sga_consumers,
2969 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2970
2971 },
2972 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2973 .supply_regulator = "db8500-vape",
2974 .constraints = {
2975 .name = "db8500-b2r2-mcde",
2976 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2977 },
2978 .consumer_supplies = db8500_b2r2_mcde_consumers,
2979 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2980 },
2981 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2982 /*
2983 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2984 * no need to hold Vape
2985 */
2986 .constraints = {
2987 .name = "db8500-esram12",
2988 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2989 },
2990 .consumer_supplies = db8500_esram12_consumers,
2991 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2992 },
2993 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2994 .constraints = {
2995 .name = "db8500-esram12-ret",
2996 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2997 },
2998 },
2999 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
3000 /*
3001 * esram34 is set in retention and supplied by Vsafe when Vape is off,
3002 * no need to hold Vape
3003 */
3004 .constraints = {
3005 .name = "db8500-esram34",
3006 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3007 },
3008 .consumer_supplies = db8500_esram34_consumers,
3009 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3010 },
3011 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3012 .constraints = {
3013 .name = "db8500-esram34-ret",
3014 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3015 },
3016 },
3017 };
3018
3019 static struct ux500_wdt_data db8500_wdt_pdata = {
3020 .timeout = 600, /* 10 minutes */
3021 .has_28_bits_resolution = true,
3022 };
3023 /*
3024 * Thermal Sensor
3025 */
3026
3027 static struct resource db8500_thsens_resources[] = {
3028 {
3029 .name = "IRQ_HOTMON_LOW",
3030 .start = IRQ_PRCMU_HOTMON_LOW,
3031 .end = IRQ_PRCMU_HOTMON_LOW,
3032 .flags = IORESOURCE_IRQ,
3033 },
3034 {
3035 .name = "IRQ_HOTMON_HIGH",
3036 .start = IRQ_PRCMU_HOTMON_HIGH,
3037 .end = IRQ_PRCMU_HOTMON_HIGH,
3038 .flags = IORESOURCE_IRQ,
3039 },
3040 };
3041
3042 static struct db8500_thsens_platform_data db8500_thsens_data = {
3043 .trip_points[0] = {
3044 .temp = 70000,
3045 .type = THERMAL_TRIP_ACTIVE,
3046 .cdev_name = {
3047 [0] = "thermal-cpufreq-0",
3048 },
3049 },
3050 .trip_points[1] = {
3051 .temp = 75000,
3052 .type = THERMAL_TRIP_ACTIVE,
3053 .cdev_name = {
3054 [0] = "thermal-cpufreq-0",
3055 },
3056 },
3057 .trip_points[2] = {
3058 .temp = 80000,
3059 .type = THERMAL_TRIP_ACTIVE,
3060 .cdev_name = {
3061 [0] = "thermal-cpufreq-0",
3062 },
3063 },
3064 .trip_points[3] = {
3065 .temp = 85000,
3066 .type = THERMAL_TRIP_CRITICAL,
3067 },
3068 .num_trips = 4,
3069 };
3070
3071 static struct mfd_cell common_prcmu_devs[] = {
3072 {
3073 .name = "ux500_wdt",
3074 .platform_data = &db8500_wdt_pdata,
3075 .pdata_size = sizeof(db8500_wdt_pdata),
3076 .id = -1,
3077 },
3078 };
3079
3080 static struct mfd_cell db8500_prcmu_devs[] = {
3081 {
3082 .name = "db8500-prcmu-regulators",
3083 .of_compatible = "stericsson,db8500-prcmu-regulator",
3084 .platform_data = &db8500_regulators,
3085 .pdata_size = sizeof(db8500_regulators),
3086 },
3087 {
3088 .name = "cpufreq-ux500",
3089 .of_compatible = "stericsson,cpufreq-ux500",
3090 .platform_data = &db8500_cpufreq_table,
3091 .pdata_size = sizeof(db8500_cpufreq_table),
3092 },
3093 {
3094 .name = "db8500-thermal",
3095 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3096 .resources = db8500_thsens_resources,
3097 .platform_data = &db8500_thsens_data,
3098 },
3099 };
3100
3101 static void db8500_prcmu_update_cpufreq(void)
3102 {
3103 if (prcmu_has_arm_maxopp()) {
3104 db8500_cpufreq_table[3].frequency = 1000000;
3105 db8500_cpufreq_table[3].index = ARM_MAX_OPP;
3106 }
3107 }
3108
3109 static int db8500_prcmu_register_ab8500(struct device *parent,
3110 struct ab8500_platform_data *pdata,
3111 int irq)
3112 {
3113 struct resource ab8500_resource = DEFINE_RES_IRQ(irq);
3114 struct mfd_cell ab8500_cell = {
3115 .name = "ab8500-core",
3116 .of_compatible = "stericsson,ab8500",
3117 .id = AB8500_VERSION_AB8500,
3118 .platform_data = pdata,
3119 .pdata_size = sizeof(struct ab8500_platform_data),
3120 .resources = &ab8500_resource,
3121 .num_resources = 1,
3122 };
3123
3124 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3125 }
3126
3127 /**
3128 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3129 *
3130 */
3131 static int db8500_prcmu_probe(struct platform_device *pdev)
3132 {
3133 struct device_node *np = pdev->dev.of_node;
3134 struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3135 int irq = 0, err = 0;
3136 struct resource *res;
3137
3138 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3139 if (!res) {
3140 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3141 return -ENOENT;
3142 }
3143 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3144 if (!prcmu_base) {
3145 dev_err(&pdev->dev,
3146 "failed to ioremap prcmu register memory\n");
3147 return -ENOENT;
3148 }
3149 init_prcm_registers();
3150 dbx500_fw_version_init(pdev, pdata->version_offset);
3151 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3152 if (!res) {
3153 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3154 return -ENOENT;
3155 }
3156 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3157 resource_size(res));
3158
3159 /* Clean up the mailbox interrupts after pre-kernel code. */
3160 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3161
3162 irq = platform_get_irq(pdev, 0);
3163 if (irq <= 0) {
3164 dev_err(&pdev->dev, "no prcmu irq provided\n");
3165 return -ENOENT;
3166 }
3167
3168 err = request_threaded_irq(irq, prcmu_irq_handler,
3169 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3170 if (err < 0) {
3171 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3172 err = -EBUSY;
3173 goto no_irq_return;
3174 }
3175
3176 db8500_irq_init(np, pdata->irq_base);
3177
3178 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3179
3180 db8500_prcmu_update_cpufreq();
3181
3182 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3183 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3184 if (err) {
3185 pr_err("prcmu: Failed to add subdevices\n");
3186 return err;
3187 }
3188
3189 /* TODO: Remove restriction when clk definitions are available. */
3190 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3191 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3192 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3193 db8500_irq_domain);
3194 if (err) {
3195 mfd_remove_devices(&pdev->dev);
3196 pr_err("prcmu: Failed to add subdevices\n");
3197 goto no_irq_return;
3198 }
3199 }
3200
3201 err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata,
3202 pdata->ab_irq);
3203 if (err) {
3204 mfd_remove_devices(&pdev->dev);
3205 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3206 goto no_irq_return;
3207 }
3208
3209 pr_info("DB8500 PRCMU initialized\n");
3210
3211 no_irq_return:
3212 return err;
3213 }
3214 static const struct of_device_id db8500_prcmu_match[] = {
3215 { .compatible = "stericsson,db8500-prcmu"},
3216 { },
3217 };
3218
3219 static struct platform_driver db8500_prcmu_driver = {
3220 .driver = {
3221 .name = "db8500-prcmu",
3222 .owner = THIS_MODULE,
3223 .of_match_table = db8500_prcmu_match,
3224 },
3225 .probe = db8500_prcmu_probe,
3226 };
3227
3228 static int __init db8500_prcmu_init(void)
3229 {
3230 return platform_driver_register(&db8500_prcmu_driver);
3231 }
3232
3233 core_initcall(db8500_prcmu_init);
3234
3235 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3236 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3237 MODULE_LICENSE("GPL v2");