Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / media / video / uvc / uvc_queue.c
1 /*
2 * uvc_queue.c -- USB Video Class driver - Buffers management
3 *
4 * Copyright (C) 2005-2010
5 * Laurent Pinchart (laurent.pinchart@ideasonboard.com)
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/usb.h>
19 #include <linux/videodev2.h>
20 #include <linux/vmalloc.h>
21 #include <linux/wait.h>
22 #include <asm/atomic.h>
23
24 #include "uvcvideo.h"
25
26 /* ------------------------------------------------------------------------
27 * Video buffers queue management.
28 *
29 * Video queues is initialized by uvc_queue_init(). The function performs
30 * basic initialization of the uvc_video_queue struct and never fails.
31 *
32 * Video buffer allocation and freeing are performed by uvc_alloc_buffers and
33 * uvc_free_buffers respectively. The former acquires the video queue lock,
34 * while the later must be called with the lock held (so that allocation can
35 * free previously allocated buffers). Trying to free buffers that are mapped
36 * to user space will return -EBUSY.
37 *
38 * Video buffers are managed using two queues. However, unlike most USB video
39 * drivers that use an in queue and an out queue, we use a main queue to hold
40 * all queued buffers (both 'empty' and 'done' buffers), and an irq queue to
41 * hold empty buffers. This design (copied from video-buf) minimizes locking
42 * in interrupt, as only one queue is shared between interrupt and user
43 * contexts.
44 *
45 * Use cases
46 * ---------
47 *
48 * Unless stated otherwise, all operations that modify the irq buffers queue
49 * are protected by the irq spinlock.
50 *
51 * 1. The user queues the buffers, starts streaming and dequeues a buffer.
52 *
53 * The buffers are added to the main and irq queues. Both operations are
54 * protected by the queue lock, and the later is protected by the irq
55 * spinlock as well.
56 *
57 * The completion handler fetches a buffer from the irq queue and fills it
58 * with video data. If no buffer is available (irq queue empty), the handler
59 * returns immediately.
60 *
61 * When the buffer is full, the completion handler removes it from the irq
62 * queue, marks it as done (UVC_BUF_STATE_DONE) and wakes its wait queue.
63 * At that point, any process waiting on the buffer will be woken up. If a
64 * process tries to dequeue a buffer after it has been marked done, the
65 * dequeing will succeed immediately.
66 *
67 * 2. Buffers are queued, user is waiting on a buffer and the device gets
68 * disconnected.
69 *
70 * When the device is disconnected, the kernel calls the completion handler
71 * with an appropriate status code. The handler marks all buffers in the
72 * irq queue as being erroneous (UVC_BUF_STATE_ERROR) and wakes them up so
73 * that any process waiting on a buffer gets woken up.
74 *
75 * Waking up up the first buffer on the irq list is not enough, as the
76 * process waiting on the buffer might restart the dequeue operation
77 * immediately.
78 *
79 */
80
81 void uvc_queue_init(struct uvc_video_queue *queue, enum v4l2_buf_type type,
82 int drop_corrupted)
83 {
84 mutex_init(&queue->mutex);
85 spin_lock_init(&queue->irqlock);
86 INIT_LIST_HEAD(&queue->mainqueue);
87 INIT_LIST_HEAD(&queue->irqqueue);
88 queue->flags = drop_corrupted ? UVC_QUEUE_DROP_CORRUPTED : 0;
89 queue->type = type;
90 }
91
92 /*
93 * Free the video buffers.
94 *
95 * This function must be called with the queue lock held.
96 */
97 static int __uvc_free_buffers(struct uvc_video_queue *queue)
98 {
99 unsigned int i;
100
101 for (i = 0; i < queue->count; ++i) {
102 if (queue->buffer[i].vma_use_count != 0)
103 return -EBUSY;
104 }
105
106 if (queue->count) {
107 vfree(queue->mem);
108 queue->count = 0;
109 }
110
111 return 0;
112 }
113
114 int uvc_free_buffers(struct uvc_video_queue *queue)
115 {
116 int ret;
117
118 mutex_lock(&queue->mutex);
119 ret = __uvc_free_buffers(queue);
120 mutex_unlock(&queue->mutex);
121
122 return ret;
123 }
124
125 /*
126 * Allocate the video buffers.
127 *
128 * Pages are reserved to make sure they will not be swapped, as they will be
129 * filled in the URB completion handler.
130 *
131 * Buffers will be individually mapped, so they must all be page aligned.
132 */
133 int uvc_alloc_buffers(struct uvc_video_queue *queue, unsigned int nbuffers,
134 unsigned int buflength)
135 {
136 unsigned int bufsize = PAGE_ALIGN(buflength);
137 unsigned int i;
138 void *mem = NULL;
139 int ret;
140
141 if (nbuffers > UVC_MAX_VIDEO_BUFFERS)
142 nbuffers = UVC_MAX_VIDEO_BUFFERS;
143
144 mutex_lock(&queue->mutex);
145
146 if ((ret = __uvc_free_buffers(queue)) < 0)
147 goto done;
148
149 /* Bail out if no buffers should be allocated. */
150 if (nbuffers == 0)
151 goto done;
152
153 /* Decrement the number of buffers until allocation succeeds. */
154 for (; nbuffers > 0; --nbuffers) {
155 mem = vmalloc_32(nbuffers * bufsize);
156 if (mem != NULL)
157 break;
158 }
159
160 if (mem == NULL) {
161 ret = -ENOMEM;
162 goto done;
163 }
164
165 for (i = 0; i < nbuffers; ++i) {
166 memset(&queue->buffer[i], 0, sizeof queue->buffer[i]);
167 queue->buffer[i].buf.index = i;
168 queue->buffer[i].buf.m.offset = i * bufsize;
169 queue->buffer[i].buf.length = buflength;
170 queue->buffer[i].buf.type = queue->type;
171 queue->buffer[i].buf.field = V4L2_FIELD_NONE;
172 queue->buffer[i].buf.memory = V4L2_MEMORY_MMAP;
173 queue->buffer[i].buf.flags = 0;
174 init_waitqueue_head(&queue->buffer[i].wait);
175 }
176
177 queue->mem = mem;
178 queue->count = nbuffers;
179 queue->buf_size = bufsize;
180 ret = nbuffers;
181
182 done:
183 mutex_unlock(&queue->mutex);
184 return ret;
185 }
186
187 /*
188 * Check if buffers have been allocated.
189 */
190 int uvc_queue_allocated(struct uvc_video_queue *queue)
191 {
192 int allocated;
193
194 mutex_lock(&queue->mutex);
195 allocated = queue->count != 0;
196 mutex_unlock(&queue->mutex);
197
198 return allocated;
199 }
200
201 static void __uvc_query_buffer(struct uvc_buffer *buf,
202 struct v4l2_buffer *v4l2_buf)
203 {
204 memcpy(v4l2_buf, &buf->buf, sizeof *v4l2_buf);
205
206 if (buf->vma_use_count)
207 v4l2_buf->flags |= V4L2_BUF_FLAG_MAPPED;
208
209 switch (buf->state) {
210 case UVC_BUF_STATE_ERROR:
211 case UVC_BUF_STATE_DONE:
212 v4l2_buf->flags |= V4L2_BUF_FLAG_DONE;
213 break;
214 case UVC_BUF_STATE_QUEUED:
215 case UVC_BUF_STATE_ACTIVE:
216 case UVC_BUF_STATE_READY:
217 v4l2_buf->flags |= V4L2_BUF_FLAG_QUEUED;
218 break;
219 case UVC_BUF_STATE_IDLE:
220 default:
221 break;
222 }
223 }
224
225 int uvc_query_buffer(struct uvc_video_queue *queue,
226 struct v4l2_buffer *v4l2_buf)
227 {
228 int ret = 0;
229
230 mutex_lock(&queue->mutex);
231 if (v4l2_buf->index >= queue->count) {
232 ret = -EINVAL;
233 goto done;
234 }
235
236 __uvc_query_buffer(&queue->buffer[v4l2_buf->index], v4l2_buf);
237
238 done:
239 mutex_unlock(&queue->mutex);
240 return ret;
241 }
242
243 /*
244 * Queue a video buffer. Attempting to queue a buffer that has already been
245 * queued will return -EINVAL.
246 */
247 int uvc_queue_buffer(struct uvc_video_queue *queue,
248 struct v4l2_buffer *v4l2_buf)
249 {
250 struct uvc_buffer *buf;
251 unsigned long flags;
252 int ret = 0;
253
254 uvc_trace(UVC_TRACE_CAPTURE, "Queuing buffer %u.\n", v4l2_buf->index);
255
256 if (v4l2_buf->type != queue->type ||
257 v4l2_buf->memory != V4L2_MEMORY_MMAP) {
258 uvc_trace(UVC_TRACE_CAPTURE, "[E] Invalid buffer type (%u) "
259 "and/or memory (%u).\n", v4l2_buf->type,
260 v4l2_buf->memory);
261 return -EINVAL;
262 }
263
264 mutex_lock(&queue->mutex);
265 if (v4l2_buf->index >= queue->count) {
266 uvc_trace(UVC_TRACE_CAPTURE, "[E] Out of range index.\n");
267 ret = -EINVAL;
268 goto done;
269 }
270
271 buf = &queue->buffer[v4l2_buf->index];
272 if (buf->state != UVC_BUF_STATE_IDLE) {
273 uvc_trace(UVC_TRACE_CAPTURE, "[E] Invalid buffer state "
274 "(%u).\n", buf->state);
275 ret = -EINVAL;
276 goto done;
277 }
278
279 if (v4l2_buf->type == V4L2_BUF_TYPE_VIDEO_OUTPUT &&
280 v4l2_buf->bytesused > buf->buf.length) {
281 uvc_trace(UVC_TRACE_CAPTURE, "[E] Bytes used out of bounds.\n");
282 ret = -EINVAL;
283 goto done;
284 }
285
286 spin_lock_irqsave(&queue->irqlock, flags);
287 if (queue->flags & UVC_QUEUE_DISCONNECTED) {
288 spin_unlock_irqrestore(&queue->irqlock, flags);
289 ret = -ENODEV;
290 goto done;
291 }
292 buf->state = UVC_BUF_STATE_QUEUED;
293 if (v4l2_buf->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
294 buf->buf.bytesused = 0;
295 else
296 buf->buf.bytesused = v4l2_buf->bytesused;
297
298 list_add_tail(&buf->stream, &queue->mainqueue);
299 list_add_tail(&buf->queue, &queue->irqqueue);
300 spin_unlock_irqrestore(&queue->irqlock, flags);
301
302 done:
303 mutex_unlock(&queue->mutex);
304 return ret;
305 }
306
307 static int uvc_queue_waiton(struct uvc_buffer *buf, int nonblocking)
308 {
309 if (nonblocking) {
310 return (buf->state != UVC_BUF_STATE_QUEUED &&
311 buf->state != UVC_BUF_STATE_ACTIVE &&
312 buf->state != UVC_BUF_STATE_READY)
313 ? 0 : -EAGAIN;
314 }
315
316 return wait_event_interruptible(buf->wait,
317 buf->state != UVC_BUF_STATE_QUEUED &&
318 buf->state != UVC_BUF_STATE_ACTIVE &&
319 buf->state != UVC_BUF_STATE_READY);
320 }
321
322 /*
323 * Dequeue a video buffer. If nonblocking is false, block until a buffer is
324 * available.
325 */
326 int uvc_dequeue_buffer(struct uvc_video_queue *queue,
327 struct v4l2_buffer *v4l2_buf, int nonblocking)
328 {
329 struct uvc_buffer *buf;
330 int ret = 0;
331
332 if (v4l2_buf->type != queue->type ||
333 v4l2_buf->memory != V4L2_MEMORY_MMAP) {
334 uvc_trace(UVC_TRACE_CAPTURE, "[E] Invalid buffer type (%u) "
335 "and/or memory (%u).\n", v4l2_buf->type,
336 v4l2_buf->memory);
337 return -EINVAL;
338 }
339
340 mutex_lock(&queue->mutex);
341 if (list_empty(&queue->mainqueue)) {
342 uvc_trace(UVC_TRACE_CAPTURE, "[E] Empty buffer queue.\n");
343 ret = -EINVAL;
344 goto done;
345 }
346
347 buf = list_first_entry(&queue->mainqueue, struct uvc_buffer, stream);
348 if ((ret = uvc_queue_waiton(buf, nonblocking)) < 0)
349 goto done;
350
351 uvc_trace(UVC_TRACE_CAPTURE, "Dequeuing buffer %u (%u, %u bytes).\n",
352 buf->buf.index, buf->state, buf->buf.bytesused);
353
354 switch (buf->state) {
355 case UVC_BUF_STATE_ERROR:
356 uvc_trace(UVC_TRACE_CAPTURE, "[W] Corrupted data "
357 "(transmission error).\n");
358 ret = -EIO;
359 case UVC_BUF_STATE_DONE:
360 buf->state = UVC_BUF_STATE_IDLE;
361 break;
362
363 case UVC_BUF_STATE_IDLE:
364 case UVC_BUF_STATE_QUEUED:
365 case UVC_BUF_STATE_ACTIVE:
366 case UVC_BUF_STATE_READY:
367 default:
368 uvc_trace(UVC_TRACE_CAPTURE, "[E] Invalid buffer state %u "
369 "(driver bug?).\n", buf->state);
370 ret = -EINVAL;
371 goto done;
372 }
373
374 list_del(&buf->stream);
375 __uvc_query_buffer(buf, v4l2_buf);
376
377 done:
378 mutex_unlock(&queue->mutex);
379 return ret;
380 }
381
382 /*
383 * VMA operations.
384 */
385 static void uvc_vm_open(struct vm_area_struct *vma)
386 {
387 struct uvc_buffer *buffer = vma->vm_private_data;
388 buffer->vma_use_count++;
389 }
390
391 static void uvc_vm_close(struct vm_area_struct *vma)
392 {
393 struct uvc_buffer *buffer = vma->vm_private_data;
394 buffer->vma_use_count--;
395 }
396
397 static const struct vm_operations_struct uvc_vm_ops = {
398 .open = uvc_vm_open,
399 .close = uvc_vm_close,
400 };
401
402 /*
403 * Memory-map a video buffer.
404 *
405 * This function implements video buffers memory mapping and is intended to be
406 * used by the device mmap handler.
407 */
408 int uvc_queue_mmap(struct uvc_video_queue *queue, struct vm_area_struct *vma)
409 {
410 struct uvc_buffer *uninitialized_var(buffer);
411 struct page *page;
412 unsigned long addr, start, size;
413 unsigned int i;
414 int ret = 0;
415
416 start = vma->vm_start;
417 size = vma->vm_end - vma->vm_start;
418
419 mutex_lock(&queue->mutex);
420
421 for (i = 0; i < queue->count; ++i) {
422 buffer = &queue->buffer[i];
423 if ((buffer->buf.m.offset >> PAGE_SHIFT) == vma->vm_pgoff)
424 break;
425 }
426
427 if (i == queue->count || PAGE_ALIGN(size) != queue->buf_size) {
428 ret = -EINVAL;
429 goto done;
430 }
431
432 /*
433 * VM_IO marks the area as being an mmaped region for I/O to a
434 * device. It also prevents the region from being core dumped.
435 */
436 vma->vm_flags |= VM_IO;
437
438 addr = (unsigned long)queue->mem + buffer->buf.m.offset;
439 #ifdef CONFIG_MMU
440 while (size > 0) {
441 page = vmalloc_to_page((void *)addr);
442 if ((ret = vm_insert_page(vma, start, page)) < 0)
443 goto done;
444
445 start += PAGE_SIZE;
446 addr += PAGE_SIZE;
447 size -= PAGE_SIZE;
448 }
449 #endif
450
451 vma->vm_ops = &uvc_vm_ops;
452 vma->vm_private_data = buffer;
453 uvc_vm_open(vma);
454
455 done:
456 mutex_unlock(&queue->mutex);
457 return ret;
458 }
459
460 /*
461 * Poll the video queue.
462 *
463 * This function implements video queue polling and is intended to be used by
464 * the device poll handler.
465 */
466 unsigned int uvc_queue_poll(struct uvc_video_queue *queue, struct file *file,
467 poll_table *wait)
468 {
469 struct uvc_buffer *buf;
470 unsigned int mask = 0;
471
472 mutex_lock(&queue->mutex);
473 if (list_empty(&queue->mainqueue)) {
474 mask |= POLLERR;
475 goto done;
476 }
477 buf = list_first_entry(&queue->mainqueue, struct uvc_buffer, stream);
478
479 poll_wait(file, &buf->wait, wait);
480 if (buf->state == UVC_BUF_STATE_DONE ||
481 buf->state == UVC_BUF_STATE_ERROR) {
482 if (queue->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
483 mask |= POLLIN | POLLRDNORM;
484 else
485 mask |= POLLOUT | POLLWRNORM;
486 }
487
488 done:
489 mutex_unlock(&queue->mutex);
490 return mask;
491 }
492
493 #ifndef CONFIG_MMU
494 /*
495 * Get unmapped area.
496 *
497 * NO-MMU arch need this function to make mmap() work correctly.
498 */
499 unsigned long uvc_queue_get_unmapped_area(struct uvc_video_queue *queue,
500 unsigned long pgoff)
501 {
502 struct uvc_buffer *buffer;
503 unsigned int i;
504 unsigned long ret;
505
506 mutex_lock(&queue->mutex);
507 for (i = 0; i < queue->count; ++i) {
508 buffer = &queue->buffer[i];
509 if ((buffer->buf.m.offset >> PAGE_SHIFT) == pgoff)
510 break;
511 }
512 if (i == queue->count) {
513 ret = -EINVAL;
514 goto done;
515 }
516 ret = (unsigned long)queue->mem + buffer->buf.m.offset;
517 done:
518 mutex_unlock(&queue->mutex);
519 return ret;
520 }
521 #endif
522
523 /*
524 * Enable or disable the video buffers queue.
525 *
526 * The queue must be enabled before starting video acquisition and must be
527 * disabled after stopping it. This ensures that the video buffers queue
528 * state can be properly initialized before buffers are accessed from the
529 * interrupt handler.
530 *
531 * Enabling the video queue returns -EBUSY if the queue is already enabled.
532 *
533 * Disabling the video queue cancels the queue and removes all buffers from
534 * the main queue.
535 *
536 * This function can't be called from interrupt context. Use
537 * uvc_queue_cancel() instead.
538 */
539 int uvc_queue_enable(struct uvc_video_queue *queue, int enable)
540 {
541 unsigned int i;
542 int ret = 0;
543
544 mutex_lock(&queue->mutex);
545 if (enable) {
546 if (uvc_queue_streaming(queue)) {
547 ret = -EBUSY;
548 goto done;
549 }
550 queue->flags |= UVC_QUEUE_STREAMING;
551 queue->buf_used = 0;
552 } else {
553 uvc_queue_cancel(queue, 0);
554 INIT_LIST_HEAD(&queue->mainqueue);
555
556 for (i = 0; i < queue->count; ++i) {
557 queue->buffer[i].error = 0;
558 queue->buffer[i].state = UVC_BUF_STATE_IDLE;
559 }
560
561 queue->flags &= ~UVC_QUEUE_STREAMING;
562 }
563
564 done:
565 mutex_unlock(&queue->mutex);
566 return ret;
567 }
568
569 /*
570 * Cancel the video buffers queue.
571 *
572 * Cancelling the queue marks all buffers on the irq queue as erroneous,
573 * wakes them up and removes them from the queue.
574 *
575 * If the disconnect parameter is set, further calls to uvc_queue_buffer will
576 * fail with -ENODEV.
577 *
578 * This function acquires the irq spinlock and can be called from interrupt
579 * context.
580 */
581 void uvc_queue_cancel(struct uvc_video_queue *queue, int disconnect)
582 {
583 struct uvc_buffer *buf;
584 unsigned long flags;
585
586 spin_lock_irqsave(&queue->irqlock, flags);
587 while (!list_empty(&queue->irqqueue)) {
588 buf = list_first_entry(&queue->irqqueue, struct uvc_buffer,
589 queue);
590 list_del(&buf->queue);
591 buf->state = UVC_BUF_STATE_ERROR;
592 wake_up(&buf->wait);
593 }
594 /* This must be protected by the irqlock spinlock to avoid race
595 * conditions between uvc_queue_buffer and the disconnection event that
596 * could result in an interruptible wait in uvc_dequeue_buffer. Do not
597 * blindly replace this logic by checking for the UVC_DEV_DISCONNECTED
598 * state outside the queue code.
599 */
600 if (disconnect)
601 queue->flags |= UVC_QUEUE_DISCONNECTED;
602 spin_unlock_irqrestore(&queue->irqlock, flags);
603 }
604
605 struct uvc_buffer *uvc_queue_next_buffer(struct uvc_video_queue *queue,
606 struct uvc_buffer *buf)
607 {
608 struct uvc_buffer *nextbuf;
609 unsigned long flags;
610
611 if ((queue->flags & UVC_QUEUE_DROP_CORRUPTED) && buf->error) {
612 buf->error = 0;
613 buf->state = UVC_BUF_STATE_QUEUED;
614 buf->buf.bytesused = 0;
615 return buf;
616 }
617
618 spin_lock_irqsave(&queue->irqlock, flags);
619 list_del(&buf->queue);
620 buf->error = 0;
621 buf->state = UVC_BUF_STATE_DONE;
622 if (!list_empty(&queue->irqqueue))
623 nextbuf = list_first_entry(&queue->irqqueue, struct uvc_buffer,
624 queue);
625 else
626 nextbuf = NULL;
627 spin_unlock_irqrestore(&queue->irqlock, flags);
628
629 wake_up(&buf->wait);
630 return nextbuf;
631 }
632