Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ecryptfs...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / media / rc / rc-main.c
1 /* rc-main.c - Remote Controller core module
2 *
3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15 #include <media/rc-core.h>
16 #include <linux/spinlock.h>
17 #include <linux/delay.h>
18 #include <linux/input.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include "rc-core-priv.h"
22
23 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
24 #define IR_TAB_MIN_SIZE 256
25 #define IR_TAB_MAX_SIZE 8192
26
27 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
28 #define IR_KEYPRESS_TIMEOUT 250
29
30 /* Used to keep track of known keymaps */
31 static LIST_HEAD(rc_map_list);
32 static DEFINE_SPINLOCK(rc_map_lock);
33
34 static struct rc_map_list *seek_rc_map(const char *name)
35 {
36 struct rc_map_list *map = NULL;
37
38 spin_lock(&rc_map_lock);
39 list_for_each_entry(map, &rc_map_list, list) {
40 if (!strcmp(name, map->map.name)) {
41 spin_unlock(&rc_map_lock);
42 return map;
43 }
44 }
45 spin_unlock(&rc_map_lock);
46
47 return NULL;
48 }
49
50 struct rc_map *rc_map_get(const char *name)
51 {
52
53 struct rc_map_list *map;
54
55 map = seek_rc_map(name);
56 #ifdef MODULE
57 if (!map) {
58 int rc = request_module(name);
59 if (rc < 0) {
60 printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
61 return NULL;
62 }
63 msleep(20); /* Give some time for IR to register */
64
65 map = seek_rc_map(name);
66 }
67 #endif
68 if (!map) {
69 printk(KERN_ERR "IR keymap %s not found\n", name);
70 return NULL;
71 }
72
73 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
74
75 return &map->map;
76 }
77 EXPORT_SYMBOL_GPL(rc_map_get);
78
79 int rc_map_register(struct rc_map_list *map)
80 {
81 spin_lock(&rc_map_lock);
82 list_add_tail(&map->list, &rc_map_list);
83 spin_unlock(&rc_map_lock);
84 return 0;
85 }
86 EXPORT_SYMBOL_GPL(rc_map_register);
87
88 void rc_map_unregister(struct rc_map_list *map)
89 {
90 spin_lock(&rc_map_lock);
91 list_del(&map->list);
92 spin_unlock(&rc_map_lock);
93 }
94 EXPORT_SYMBOL_GPL(rc_map_unregister);
95
96
97 static struct rc_map_table empty[] = {
98 { 0x2a, KEY_COFFEE },
99 };
100
101 static struct rc_map_list empty_map = {
102 .map = {
103 .scan = empty,
104 .size = ARRAY_SIZE(empty),
105 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */
106 .name = RC_MAP_EMPTY,
107 }
108 };
109
110 /**
111 * ir_create_table() - initializes a scancode table
112 * @rc_map: the rc_map to initialize
113 * @name: name to assign to the table
114 * @rc_type: ir type to assign to the new table
115 * @size: initial size of the table
116 * @return: zero on success or a negative error code
117 *
118 * This routine will initialize the rc_map and will allocate
119 * memory to hold at least the specified number of elements.
120 */
121 static int ir_create_table(struct rc_map *rc_map,
122 const char *name, u64 rc_type, size_t size)
123 {
124 rc_map->name = name;
125 rc_map->rc_type = rc_type;
126 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
127 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
128 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
129 if (!rc_map->scan)
130 return -ENOMEM;
131
132 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
133 rc_map->size, rc_map->alloc);
134 return 0;
135 }
136
137 /**
138 * ir_free_table() - frees memory allocated by a scancode table
139 * @rc_map: the table whose mappings need to be freed
140 *
141 * This routine will free memory alloctaed for key mappings used by given
142 * scancode table.
143 */
144 static void ir_free_table(struct rc_map *rc_map)
145 {
146 rc_map->size = 0;
147 kfree(rc_map->scan);
148 rc_map->scan = NULL;
149 }
150
151 /**
152 * ir_resize_table() - resizes a scancode table if necessary
153 * @rc_map: the rc_map to resize
154 * @gfp_flags: gfp flags to use when allocating memory
155 * @return: zero on success or a negative error code
156 *
157 * This routine will shrink the rc_map if it has lots of
158 * unused entries and grow it if it is full.
159 */
160 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
161 {
162 unsigned int oldalloc = rc_map->alloc;
163 unsigned int newalloc = oldalloc;
164 struct rc_map_table *oldscan = rc_map->scan;
165 struct rc_map_table *newscan;
166
167 if (rc_map->size == rc_map->len) {
168 /* All entries in use -> grow keytable */
169 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
170 return -ENOMEM;
171
172 newalloc *= 2;
173 IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
174 }
175
176 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
177 /* Less than 1/3 of entries in use -> shrink keytable */
178 newalloc /= 2;
179 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
180 }
181
182 if (newalloc == oldalloc)
183 return 0;
184
185 newscan = kmalloc(newalloc, gfp_flags);
186 if (!newscan) {
187 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
188 return -ENOMEM;
189 }
190
191 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
192 rc_map->scan = newscan;
193 rc_map->alloc = newalloc;
194 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
195 kfree(oldscan);
196 return 0;
197 }
198
199 /**
200 * ir_update_mapping() - set a keycode in the scancode->keycode table
201 * @dev: the struct rc_dev device descriptor
202 * @rc_map: scancode table to be adjusted
203 * @index: index of the mapping that needs to be updated
204 * @keycode: the desired keycode
205 * @return: previous keycode assigned to the mapping
206 *
207 * This routine is used to update scancode->keycode mapping at given
208 * position.
209 */
210 static unsigned int ir_update_mapping(struct rc_dev *dev,
211 struct rc_map *rc_map,
212 unsigned int index,
213 unsigned int new_keycode)
214 {
215 int old_keycode = rc_map->scan[index].keycode;
216 int i;
217
218 /* Did the user wish to remove the mapping? */
219 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
220 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
221 index, rc_map->scan[index].scancode);
222 rc_map->len--;
223 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
224 (rc_map->len - index) * sizeof(struct rc_map_table));
225 } else {
226 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
227 index,
228 old_keycode == KEY_RESERVED ? "New" : "Replacing",
229 rc_map->scan[index].scancode, new_keycode);
230 rc_map->scan[index].keycode = new_keycode;
231 __set_bit(new_keycode, dev->input_dev->keybit);
232 }
233
234 if (old_keycode != KEY_RESERVED) {
235 /* A previous mapping was updated... */
236 __clear_bit(old_keycode, dev->input_dev->keybit);
237 /* ... but another scancode might use the same keycode */
238 for (i = 0; i < rc_map->len; i++) {
239 if (rc_map->scan[i].keycode == old_keycode) {
240 __set_bit(old_keycode, dev->input_dev->keybit);
241 break;
242 }
243 }
244
245 /* Possibly shrink the keytable, failure is not a problem */
246 ir_resize_table(rc_map, GFP_ATOMIC);
247 }
248
249 return old_keycode;
250 }
251
252 /**
253 * ir_establish_scancode() - set a keycode in the scancode->keycode table
254 * @dev: the struct rc_dev device descriptor
255 * @rc_map: scancode table to be searched
256 * @scancode: the desired scancode
257 * @resize: controls whether we allowed to resize the table to
258 * accommodate not yet present scancodes
259 * @return: index of the mapping containing scancode in question
260 * or -1U in case of failure.
261 *
262 * This routine is used to locate given scancode in rc_map.
263 * If scancode is not yet present the routine will allocate a new slot
264 * for it.
265 */
266 static unsigned int ir_establish_scancode(struct rc_dev *dev,
267 struct rc_map *rc_map,
268 unsigned int scancode,
269 bool resize)
270 {
271 unsigned int i;
272
273 /*
274 * Unfortunately, some hardware-based IR decoders don't provide
275 * all bits for the complete IR code. In general, they provide only
276 * the command part of the IR code. Yet, as it is possible to replace
277 * the provided IR with another one, it is needed to allow loading
278 * IR tables from other remotes. So, we support specifying a mask to
279 * indicate the valid bits of the scancodes.
280 */
281 if (dev->scanmask)
282 scancode &= dev->scanmask;
283
284 /* First check if we already have a mapping for this ir command */
285 for (i = 0; i < rc_map->len; i++) {
286 if (rc_map->scan[i].scancode == scancode)
287 return i;
288
289 /* Keytable is sorted from lowest to highest scancode */
290 if (rc_map->scan[i].scancode >= scancode)
291 break;
292 }
293
294 /* No previous mapping found, we might need to grow the table */
295 if (rc_map->size == rc_map->len) {
296 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
297 return -1U;
298 }
299
300 /* i is the proper index to insert our new keycode */
301 if (i < rc_map->len)
302 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
303 (rc_map->len - i) * sizeof(struct rc_map_table));
304 rc_map->scan[i].scancode = scancode;
305 rc_map->scan[i].keycode = KEY_RESERVED;
306 rc_map->len++;
307
308 return i;
309 }
310
311 /**
312 * ir_setkeycode() - set a keycode in the scancode->keycode table
313 * @idev: the struct input_dev device descriptor
314 * @scancode: the desired scancode
315 * @keycode: result
316 * @return: -EINVAL if the keycode could not be inserted, otherwise zero.
317 *
318 * This routine is used to handle evdev EVIOCSKEY ioctl.
319 */
320 static int ir_setkeycode(struct input_dev *idev,
321 const struct input_keymap_entry *ke,
322 unsigned int *old_keycode)
323 {
324 struct rc_dev *rdev = input_get_drvdata(idev);
325 struct rc_map *rc_map = &rdev->rc_map;
326 unsigned int index;
327 unsigned int scancode;
328 int retval = 0;
329 unsigned long flags;
330
331 spin_lock_irqsave(&rc_map->lock, flags);
332
333 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
334 index = ke->index;
335 if (index >= rc_map->len) {
336 retval = -EINVAL;
337 goto out;
338 }
339 } else {
340 retval = input_scancode_to_scalar(ke, &scancode);
341 if (retval)
342 goto out;
343
344 index = ir_establish_scancode(rdev, rc_map, scancode, true);
345 if (index >= rc_map->len) {
346 retval = -ENOMEM;
347 goto out;
348 }
349 }
350
351 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
352
353 out:
354 spin_unlock_irqrestore(&rc_map->lock, flags);
355 return retval;
356 }
357
358 /**
359 * ir_setkeytable() - sets several entries in the scancode->keycode table
360 * @dev: the struct rc_dev device descriptor
361 * @to: the struct rc_map to copy entries to
362 * @from: the struct rc_map to copy entries from
363 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
364 *
365 * This routine is used to handle table initialization.
366 */
367 static int ir_setkeytable(struct rc_dev *dev,
368 const struct rc_map *from)
369 {
370 struct rc_map *rc_map = &dev->rc_map;
371 unsigned int i, index;
372 int rc;
373
374 rc = ir_create_table(rc_map, from->name,
375 from->rc_type, from->size);
376 if (rc)
377 return rc;
378
379 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
380 rc_map->size, rc_map->alloc);
381
382 for (i = 0; i < from->size; i++) {
383 index = ir_establish_scancode(dev, rc_map,
384 from->scan[i].scancode, false);
385 if (index >= rc_map->len) {
386 rc = -ENOMEM;
387 break;
388 }
389
390 ir_update_mapping(dev, rc_map, index,
391 from->scan[i].keycode);
392 }
393
394 if (rc)
395 ir_free_table(rc_map);
396
397 return rc;
398 }
399
400 /**
401 * ir_lookup_by_scancode() - locate mapping by scancode
402 * @rc_map: the struct rc_map to search
403 * @scancode: scancode to look for in the table
404 * @return: index in the table, -1U if not found
405 *
406 * This routine performs binary search in RC keykeymap table for
407 * given scancode.
408 */
409 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
410 unsigned int scancode)
411 {
412 int start = 0;
413 int end = rc_map->len - 1;
414 int mid;
415
416 while (start <= end) {
417 mid = (start + end) / 2;
418 if (rc_map->scan[mid].scancode < scancode)
419 start = mid + 1;
420 else if (rc_map->scan[mid].scancode > scancode)
421 end = mid - 1;
422 else
423 return mid;
424 }
425
426 return -1U;
427 }
428
429 /**
430 * ir_getkeycode() - get a keycode from the scancode->keycode table
431 * @idev: the struct input_dev device descriptor
432 * @scancode: the desired scancode
433 * @keycode: used to return the keycode, if found, or KEY_RESERVED
434 * @return: always returns zero.
435 *
436 * This routine is used to handle evdev EVIOCGKEY ioctl.
437 */
438 static int ir_getkeycode(struct input_dev *idev,
439 struct input_keymap_entry *ke)
440 {
441 struct rc_dev *rdev = input_get_drvdata(idev);
442 struct rc_map *rc_map = &rdev->rc_map;
443 struct rc_map_table *entry;
444 unsigned long flags;
445 unsigned int index;
446 unsigned int scancode;
447 int retval;
448
449 spin_lock_irqsave(&rc_map->lock, flags);
450
451 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
452 index = ke->index;
453 } else {
454 retval = input_scancode_to_scalar(ke, &scancode);
455 if (retval)
456 goto out;
457
458 index = ir_lookup_by_scancode(rc_map, scancode);
459 }
460
461 if (index < rc_map->len) {
462 entry = &rc_map->scan[index];
463
464 ke->index = index;
465 ke->keycode = entry->keycode;
466 ke->len = sizeof(entry->scancode);
467 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
468
469 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
470 /*
471 * We do not really know the valid range of scancodes
472 * so let's respond with KEY_RESERVED to anything we
473 * do not have mapping for [yet].
474 */
475 ke->index = index;
476 ke->keycode = KEY_RESERVED;
477 } else {
478 retval = -EINVAL;
479 goto out;
480 }
481
482 retval = 0;
483
484 out:
485 spin_unlock_irqrestore(&rc_map->lock, flags);
486 return retval;
487 }
488
489 /**
490 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
491 * @dev: the struct rc_dev descriptor of the device
492 * @scancode: the scancode to look for
493 * @return: the corresponding keycode, or KEY_RESERVED
494 *
495 * This routine is used by drivers which need to convert a scancode to a
496 * keycode. Normally it should not be used since drivers should have no
497 * interest in keycodes.
498 */
499 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
500 {
501 struct rc_map *rc_map = &dev->rc_map;
502 unsigned int keycode;
503 unsigned int index;
504 unsigned long flags;
505
506 spin_lock_irqsave(&rc_map->lock, flags);
507
508 index = ir_lookup_by_scancode(rc_map, scancode);
509 keycode = index < rc_map->len ?
510 rc_map->scan[index].keycode : KEY_RESERVED;
511
512 spin_unlock_irqrestore(&rc_map->lock, flags);
513
514 if (keycode != KEY_RESERVED)
515 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
516 dev->input_name, scancode, keycode);
517
518 return keycode;
519 }
520 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
521
522 /**
523 * ir_do_keyup() - internal function to signal the release of a keypress
524 * @dev: the struct rc_dev descriptor of the device
525 *
526 * This function is used internally to release a keypress, it must be
527 * called with keylock held.
528 */
529 static void ir_do_keyup(struct rc_dev *dev)
530 {
531 if (!dev->keypressed)
532 return;
533
534 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
535 input_report_key(dev->input_dev, dev->last_keycode, 0);
536 input_sync(dev->input_dev);
537 dev->keypressed = false;
538 }
539
540 /**
541 * rc_keyup() - signals the release of a keypress
542 * @dev: the struct rc_dev descriptor of the device
543 *
544 * This routine is used to signal that a key has been released on the
545 * remote control.
546 */
547 void rc_keyup(struct rc_dev *dev)
548 {
549 unsigned long flags;
550
551 spin_lock_irqsave(&dev->keylock, flags);
552 ir_do_keyup(dev);
553 spin_unlock_irqrestore(&dev->keylock, flags);
554 }
555 EXPORT_SYMBOL_GPL(rc_keyup);
556
557 /**
558 * ir_timer_keyup() - generates a keyup event after a timeout
559 * @cookie: a pointer to the struct rc_dev for the device
560 *
561 * This routine will generate a keyup event some time after a keydown event
562 * is generated when no further activity has been detected.
563 */
564 static void ir_timer_keyup(unsigned long cookie)
565 {
566 struct rc_dev *dev = (struct rc_dev *)cookie;
567 unsigned long flags;
568
569 /*
570 * ir->keyup_jiffies is used to prevent a race condition if a
571 * hardware interrupt occurs at this point and the keyup timer
572 * event is moved further into the future as a result.
573 *
574 * The timer will then be reactivated and this function called
575 * again in the future. We need to exit gracefully in that case
576 * to allow the input subsystem to do its auto-repeat magic or
577 * a keyup event might follow immediately after the keydown.
578 */
579 spin_lock_irqsave(&dev->keylock, flags);
580 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
581 ir_do_keyup(dev);
582 spin_unlock_irqrestore(&dev->keylock, flags);
583 }
584
585 /**
586 * rc_repeat() - signals that a key is still pressed
587 * @dev: the struct rc_dev descriptor of the device
588 *
589 * This routine is used by IR decoders when a repeat message which does
590 * not include the necessary bits to reproduce the scancode has been
591 * received.
592 */
593 void rc_repeat(struct rc_dev *dev)
594 {
595 unsigned long flags;
596
597 spin_lock_irqsave(&dev->keylock, flags);
598
599 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
600
601 if (!dev->keypressed)
602 goto out;
603
604 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
605 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
606
607 out:
608 spin_unlock_irqrestore(&dev->keylock, flags);
609 }
610 EXPORT_SYMBOL_GPL(rc_repeat);
611
612 /**
613 * ir_do_keydown() - internal function to process a keypress
614 * @dev: the struct rc_dev descriptor of the device
615 * @scancode: the scancode of the keypress
616 * @keycode: the keycode of the keypress
617 * @toggle: the toggle value of the keypress
618 *
619 * This function is used internally to register a keypress, it must be
620 * called with keylock held.
621 */
622 static void ir_do_keydown(struct rc_dev *dev, int scancode,
623 u32 keycode, u8 toggle)
624 {
625 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
626
627 /* Repeat event? */
628 if (dev->keypressed &&
629 dev->last_scancode == scancode &&
630 dev->last_toggle == toggle)
631 return;
632
633 /* Release old keypress */
634 ir_do_keyup(dev);
635
636 dev->last_scancode = scancode;
637 dev->last_toggle = toggle;
638 dev->last_keycode = keycode;
639
640 if (keycode == KEY_RESERVED)
641 return;
642
643 /* Register a keypress */
644 dev->keypressed = true;
645 IR_dprintk(1, "%s: key down event, key 0x%04x, scancode 0x%04x\n",
646 dev->input_name, keycode, scancode);
647 input_report_key(dev->input_dev, dev->last_keycode, 1);
648 input_sync(dev->input_dev);
649 }
650
651 /**
652 * rc_keydown() - generates input event for a key press
653 * @dev: the struct rc_dev descriptor of the device
654 * @scancode: the scancode that we're seeking
655 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
656 * support toggle values, this should be set to zero)
657 *
658 * This routine is used to signal that a key has been pressed on the
659 * remote control.
660 */
661 void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
662 {
663 unsigned long flags;
664 u32 keycode = rc_g_keycode_from_table(dev, scancode);
665
666 spin_lock_irqsave(&dev->keylock, flags);
667 ir_do_keydown(dev, scancode, keycode, toggle);
668
669 if (dev->keypressed) {
670 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
671 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
672 }
673 spin_unlock_irqrestore(&dev->keylock, flags);
674 }
675 EXPORT_SYMBOL_GPL(rc_keydown);
676
677 /**
678 * rc_keydown_notimeout() - generates input event for a key press without
679 * an automatic keyup event at a later time
680 * @dev: the struct rc_dev descriptor of the device
681 * @scancode: the scancode that we're seeking
682 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
683 * support toggle values, this should be set to zero)
684 *
685 * This routine is used to signal that a key has been pressed on the
686 * remote control. The driver must manually call rc_keyup() at a later stage.
687 */
688 void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
689 {
690 unsigned long flags;
691 u32 keycode = rc_g_keycode_from_table(dev, scancode);
692
693 spin_lock_irqsave(&dev->keylock, flags);
694 ir_do_keydown(dev, scancode, keycode, toggle);
695 spin_unlock_irqrestore(&dev->keylock, flags);
696 }
697 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
698
699 static int ir_open(struct input_dev *idev)
700 {
701 struct rc_dev *rdev = input_get_drvdata(idev);
702
703 return rdev->open(rdev);
704 }
705
706 static void ir_close(struct input_dev *idev)
707 {
708 struct rc_dev *rdev = input_get_drvdata(idev);
709
710 if (rdev)
711 rdev->close(rdev);
712 }
713
714 /* class for /sys/class/rc */
715 static char *ir_devnode(struct device *dev, mode_t *mode)
716 {
717 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
718 }
719
720 static struct class ir_input_class = {
721 .name = "rc",
722 .devnode = ir_devnode,
723 };
724
725 static struct {
726 u64 type;
727 char *name;
728 } proto_names[] = {
729 { RC_TYPE_UNKNOWN, "unknown" },
730 { RC_TYPE_RC5, "rc-5" },
731 { RC_TYPE_NEC, "nec" },
732 { RC_TYPE_RC6, "rc-6" },
733 { RC_TYPE_JVC, "jvc" },
734 { RC_TYPE_SONY, "sony" },
735 { RC_TYPE_RC5_SZ, "rc-5-sz" },
736 { RC_TYPE_LIRC, "lirc" },
737 { RC_TYPE_OTHER, "other" },
738 };
739
740 #define PROTO_NONE "none"
741
742 /**
743 * show_protocols() - shows the current IR protocol(s)
744 * @device: the device descriptor
745 * @mattr: the device attribute struct (unused)
746 * @buf: a pointer to the output buffer
747 *
748 * This routine is a callback routine for input read the IR protocol type(s).
749 * it is trigged by reading /sys/class/rc/rc?/protocols.
750 * It returns the protocol names of supported protocols.
751 * Enabled protocols are printed in brackets.
752 *
753 * dev->lock is taken to guard against races between device
754 * registration, store_protocols and show_protocols.
755 */
756 static ssize_t show_protocols(struct device *device,
757 struct device_attribute *mattr, char *buf)
758 {
759 struct rc_dev *dev = to_rc_dev(device);
760 u64 allowed, enabled;
761 char *tmp = buf;
762 int i;
763
764 /* Device is being removed */
765 if (!dev)
766 return -EINVAL;
767
768 mutex_lock(&dev->lock);
769
770 if (dev->driver_type == RC_DRIVER_SCANCODE) {
771 enabled = dev->rc_map.rc_type;
772 allowed = dev->allowed_protos;
773 } else {
774 enabled = dev->raw->enabled_protocols;
775 allowed = ir_raw_get_allowed_protocols();
776 }
777
778 IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
779 (long long)allowed,
780 (long long)enabled);
781
782 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
783 if (allowed & enabled & proto_names[i].type)
784 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
785 else if (allowed & proto_names[i].type)
786 tmp += sprintf(tmp, "%s ", proto_names[i].name);
787 }
788
789 if (tmp != buf)
790 tmp--;
791 *tmp = '\n';
792
793 mutex_unlock(&dev->lock);
794
795 return tmp + 1 - buf;
796 }
797
798 /**
799 * store_protocols() - changes the current IR protocol(s)
800 * @device: the device descriptor
801 * @mattr: the device attribute struct (unused)
802 * @buf: a pointer to the input buffer
803 * @len: length of the input buffer
804 *
805 * This routine is for changing the IR protocol type.
806 * It is trigged by writing to /sys/class/rc/rc?/protocols.
807 * Writing "+proto" will add a protocol to the list of enabled protocols.
808 * Writing "-proto" will remove a protocol from the list of enabled protocols.
809 * Writing "proto" will enable only "proto".
810 * Writing "none" will disable all protocols.
811 * Returns -EINVAL if an invalid protocol combination or unknown protocol name
812 * is used, otherwise @len.
813 *
814 * dev->lock is taken to guard against races between device
815 * registration, store_protocols and show_protocols.
816 */
817 static ssize_t store_protocols(struct device *device,
818 struct device_attribute *mattr,
819 const char *data,
820 size_t len)
821 {
822 struct rc_dev *dev = to_rc_dev(device);
823 bool enable, disable;
824 const char *tmp;
825 u64 type;
826 u64 mask;
827 int rc, i, count = 0;
828 unsigned long flags;
829 ssize_t ret;
830
831 /* Device is being removed */
832 if (!dev)
833 return -EINVAL;
834
835 mutex_lock(&dev->lock);
836
837 if (dev->driver_type == RC_DRIVER_SCANCODE)
838 type = dev->rc_map.rc_type;
839 else if (dev->raw)
840 type = dev->raw->enabled_protocols;
841 else {
842 IR_dprintk(1, "Protocol switching not supported\n");
843 ret = -EINVAL;
844 goto out;
845 }
846
847 while ((tmp = strsep((char **) &data, " \n")) != NULL) {
848 if (!*tmp)
849 break;
850
851 if (*tmp == '+') {
852 enable = true;
853 disable = false;
854 tmp++;
855 } else if (*tmp == '-') {
856 enable = false;
857 disable = true;
858 tmp++;
859 } else {
860 enable = false;
861 disable = false;
862 }
863
864 if (!enable && !disable && !strncasecmp(tmp, PROTO_NONE, sizeof(PROTO_NONE))) {
865 tmp += sizeof(PROTO_NONE);
866 mask = 0;
867 count++;
868 } else {
869 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
870 if (!strcasecmp(tmp, proto_names[i].name)) {
871 tmp += strlen(proto_names[i].name);
872 mask = proto_names[i].type;
873 break;
874 }
875 }
876 if (i == ARRAY_SIZE(proto_names)) {
877 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
878 ret = -EINVAL;
879 goto out;
880 }
881 count++;
882 }
883
884 if (enable)
885 type |= mask;
886 else if (disable)
887 type &= ~mask;
888 else
889 type = mask;
890 }
891
892 if (!count) {
893 IR_dprintk(1, "Protocol not specified\n");
894 ret = -EINVAL;
895 goto out;
896 }
897
898 if (dev->change_protocol) {
899 rc = dev->change_protocol(dev, type);
900 if (rc < 0) {
901 IR_dprintk(1, "Error setting protocols to 0x%llx\n",
902 (long long)type);
903 ret = -EINVAL;
904 goto out;
905 }
906 }
907
908 if (dev->driver_type == RC_DRIVER_SCANCODE) {
909 spin_lock_irqsave(&dev->rc_map.lock, flags);
910 dev->rc_map.rc_type = type;
911 spin_unlock_irqrestore(&dev->rc_map.lock, flags);
912 } else {
913 dev->raw->enabled_protocols = type;
914 }
915
916 IR_dprintk(1, "Current protocol(s): 0x%llx\n",
917 (long long)type);
918
919 ret = len;
920
921 out:
922 mutex_unlock(&dev->lock);
923 return ret;
924 }
925
926 static void rc_dev_release(struct device *device)
927 {
928 struct rc_dev *dev = to_rc_dev(device);
929
930 kfree(dev);
931 module_put(THIS_MODULE);
932 }
933
934 #define ADD_HOTPLUG_VAR(fmt, val...) \
935 do { \
936 int err = add_uevent_var(env, fmt, val); \
937 if (err) \
938 return err; \
939 } while (0)
940
941 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
942 {
943 struct rc_dev *dev = to_rc_dev(device);
944
945 if (dev->rc_map.name)
946 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
947 if (dev->driver_name)
948 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
949
950 return 0;
951 }
952
953 /*
954 * Static device attribute struct with the sysfs attributes for IR's
955 */
956 static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR,
957 show_protocols, store_protocols);
958
959 static struct attribute *rc_dev_attrs[] = {
960 &dev_attr_protocols.attr,
961 NULL,
962 };
963
964 static struct attribute_group rc_dev_attr_grp = {
965 .attrs = rc_dev_attrs,
966 };
967
968 static const struct attribute_group *rc_dev_attr_groups[] = {
969 &rc_dev_attr_grp,
970 NULL
971 };
972
973 static struct device_type rc_dev_type = {
974 .groups = rc_dev_attr_groups,
975 .release = rc_dev_release,
976 .uevent = rc_dev_uevent,
977 };
978
979 struct rc_dev *rc_allocate_device(void)
980 {
981 struct rc_dev *dev;
982
983 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
984 if (!dev)
985 return NULL;
986
987 dev->input_dev = input_allocate_device();
988 if (!dev->input_dev) {
989 kfree(dev);
990 return NULL;
991 }
992
993 dev->input_dev->getkeycode = ir_getkeycode;
994 dev->input_dev->setkeycode = ir_setkeycode;
995 input_set_drvdata(dev->input_dev, dev);
996
997 spin_lock_init(&dev->rc_map.lock);
998 spin_lock_init(&dev->keylock);
999 mutex_init(&dev->lock);
1000 setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1001
1002 dev->dev.type = &rc_dev_type;
1003 dev->dev.class = &ir_input_class;
1004 device_initialize(&dev->dev);
1005
1006 __module_get(THIS_MODULE);
1007 return dev;
1008 }
1009 EXPORT_SYMBOL_GPL(rc_allocate_device);
1010
1011 void rc_free_device(struct rc_dev *dev)
1012 {
1013 if (dev) {
1014 input_free_device(dev->input_dev);
1015 put_device(&dev->dev);
1016 }
1017 }
1018 EXPORT_SYMBOL_GPL(rc_free_device);
1019
1020 int rc_register_device(struct rc_dev *dev)
1021 {
1022 static atomic_t devno = ATOMIC_INIT(0);
1023 struct rc_map *rc_map;
1024 const char *path;
1025 int rc;
1026
1027 if (!dev || !dev->map_name)
1028 return -EINVAL;
1029
1030 rc_map = rc_map_get(dev->map_name);
1031 if (!rc_map)
1032 rc_map = rc_map_get(RC_MAP_EMPTY);
1033 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1034 return -EINVAL;
1035
1036 set_bit(EV_KEY, dev->input_dev->evbit);
1037 set_bit(EV_REP, dev->input_dev->evbit);
1038 set_bit(EV_MSC, dev->input_dev->evbit);
1039 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1040 if (dev->open)
1041 dev->input_dev->open = ir_open;
1042 if (dev->close)
1043 dev->input_dev->close = ir_close;
1044
1045 /*
1046 * Take the lock here, as the device sysfs node will appear
1047 * when device_add() is called, which may trigger an ir-keytable udev
1048 * rule, which will in turn call show_protocols and access either
1049 * dev->rc_map.rc_type or dev->raw->enabled_protocols before it has
1050 * been initialized.
1051 */
1052 mutex_lock(&dev->lock);
1053
1054 dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1);
1055 dev_set_name(&dev->dev, "rc%ld", dev->devno);
1056 dev_set_drvdata(&dev->dev, dev);
1057 rc = device_add(&dev->dev);
1058 if (rc)
1059 goto out_unlock;
1060
1061 rc = ir_setkeytable(dev, rc_map);
1062 if (rc)
1063 goto out_dev;
1064
1065 dev->input_dev->dev.parent = &dev->dev;
1066 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1067 dev->input_dev->phys = dev->input_phys;
1068 dev->input_dev->name = dev->input_name;
1069 rc = input_register_device(dev->input_dev);
1070 if (rc)
1071 goto out_table;
1072
1073 /*
1074 * Default delay of 250ms is too short for some protocols, especially
1075 * since the timeout is currently set to 250ms. Increase it to 500ms,
1076 * to avoid wrong repetition of the keycodes. Note that this must be
1077 * set after the call to input_register_device().
1078 */
1079 dev->input_dev->rep[REP_DELAY] = 500;
1080
1081 /*
1082 * As a repeat event on protocols like RC-5 and NEC take as long as
1083 * 110/114ms, using 33ms as a repeat period is not the right thing
1084 * to do.
1085 */
1086 dev->input_dev->rep[REP_PERIOD] = 125;
1087
1088 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1089 printk(KERN_INFO "%s: %s as %s\n",
1090 dev_name(&dev->dev),
1091 dev->input_name ? dev->input_name : "Unspecified device",
1092 path ? path : "N/A");
1093 kfree(path);
1094
1095 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1096 rc = ir_raw_event_register(dev);
1097 if (rc < 0)
1098 goto out_input;
1099 }
1100 mutex_unlock(&dev->lock);
1101
1102 if (dev->change_protocol) {
1103 rc = dev->change_protocol(dev, rc_map->rc_type);
1104 if (rc < 0)
1105 goto out_raw;
1106 }
1107
1108 IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
1109 dev->devno,
1110 dev->driver_name ? dev->driver_name : "unknown",
1111 rc_map->name ? rc_map->name : "unknown",
1112 dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1113
1114 return 0;
1115
1116 out_raw:
1117 if (dev->driver_type == RC_DRIVER_IR_RAW)
1118 ir_raw_event_unregister(dev);
1119 out_input:
1120 input_unregister_device(dev->input_dev);
1121 dev->input_dev = NULL;
1122 out_table:
1123 ir_free_table(&dev->rc_map);
1124 out_dev:
1125 device_del(&dev->dev);
1126 out_unlock:
1127 mutex_unlock(&dev->lock);
1128 return rc;
1129 }
1130 EXPORT_SYMBOL_GPL(rc_register_device);
1131
1132 void rc_unregister_device(struct rc_dev *dev)
1133 {
1134 if (!dev)
1135 return;
1136
1137 del_timer_sync(&dev->timer_keyup);
1138
1139 if (dev->driver_type == RC_DRIVER_IR_RAW)
1140 ir_raw_event_unregister(dev);
1141
1142 input_unregister_device(dev->input_dev);
1143 dev->input_dev = NULL;
1144
1145 ir_free_table(&dev->rc_map);
1146 IR_dprintk(1, "Freed keycode table\n");
1147
1148 device_unregister(&dev->dev);
1149 }
1150 EXPORT_SYMBOL_GPL(rc_unregister_device);
1151
1152 /*
1153 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1154 */
1155
1156 static int __init rc_core_init(void)
1157 {
1158 int rc = class_register(&ir_input_class);
1159 if (rc) {
1160 printk(KERN_ERR "rc_core: unable to register rc class\n");
1161 return rc;
1162 }
1163
1164 /* Initialize/load the decoders/keymap code that will be used */
1165 ir_raw_init();
1166 rc_map_register(&empty_map);
1167
1168 return 0;
1169 }
1170
1171 static void __exit rc_core_exit(void)
1172 {
1173 class_unregister(&ir_input_class);
1174 rc_map_unregister(&empty_map);
1175 }
1176
1177 module_init(rc_core_init);
1178 module_exit(rc_core_exit);
1179
1180 int rc_core_debug; /* ir_debug level (0,1,2) */
1181 EXPORT_SYMBOL_GPL(rc_core_debug);
1182 module_param_named(debug, rc_core_debug, int, 0644);
1183
1184 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1185 MODULE_LICENSE("GPL");