Merge branch 'gpio/merge' of git://git.secretlab.ca/git/linux-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / media / rc / rc-main.c
1 /* rc-main.c - Remote Controller core module
2 *
3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15 #include <media/rc-core.h>
16 #include <linux/spinlock.h>
17 #include <linux/delay.h>
18 #include <linux/input.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include "rc-core-priv.h"
22
23 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
24 #define IR_TAB_MIN_SIZE 256
25 #define IR_TAB_MAX_SIZE 8192
26
27 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
28 #define IR_KEYPRESS_TIMEOUT 250
29
30 /* Used to keep track of known keymaps */
31 static LIST_HEAD(rc_map_list);
32 static DEFINE_SPINLOCK(rc_map_lock);
33
34 static struct rc_map_list *seek_rc_map(const char *name)
35 {
36 struct rc_map_list *map = NULL;
37
38 spin_lock(&rc_map_lock);
39 list_for_each_entry(map, &rc_map_list, list) {
40 if (!strcmp(name, map->map.name)) {
41 spin_unlock(&rc_map_lock);
42 return map;
43 }
44 }
45 spin_unlock(&rc_map_lock);
46
47 return NULL;
48 }
49
50 struct rc_map *rc_map_get(const char *name)
51 {
52
53 struct rc_map_list *map;
54
55 map = seek_rc_map(name);
56 #ifdef MODULE
57 if (!map) {
58 int rc = request_module(name);
59 if (rc < 0) {
60 printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
61 return NULL;
62 }
63 msleep(20); /* Give some time for IR to register */
64
65 map = seek_rc_map(name);
66 }
67 #endif
68 if (!map) {
69 printk(KERN_ERR "IR keymap %s not found\n", name);
70 return NULL;
71 }
72
73 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
74
75 return &map->map;
76 }
77 EXPORT_SYMBOL_GPL(rc_map_get);
78
79 int rc_map_register(struct rc_map_list *map)
80 {
81 spin_lock(&rc_map_lock);
82 list_add_tail(&map->list, &rc_map_list);
83 spin_unlock(&rc_map_lock);
84 return 0;
85 }
86 EXPORT_SYMBOL_GPL(rc_map_register);
87
88 void rc_map_unregister(struct rc_map_list *map)
89 {
90 spin_lock(&rc_map_lock);
91 list_del(&map->list);
92 spin_unlock(&rc_map_lock);
93 }
94 EXPORT_SYMBOL_GPL(rc_map_unregister);
95
96
97 static struct rc_map_table empty[] = {
98 { 0x2a, KEY_COFFEE },
99 };
100
101 static struct rc_map_list empty_map = {
102 .map = {
103 .scan = empty,
104 .size = ARRAY_SIZE(empty),
105 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */
106 .name = RC_MAP_EMPTY,
107 }
108 };
109
110 /**
111 * ir_create_table() - initializes a scancode table
112 * @rc_map: the rc_map to initialize
113 * @name: name to assign to the table
114 * @rc_type: ir type to assign to the new table
115 * @size: initial size of the table
116 * @return: zero on success or a negative error code
117 *
118 * This routine will initialize the rc_map and will allocate
119 * memory to hold at least the specified number of elements.
120 */
121 static int ir_create_table(struct rc_map *rc_map,
122 const char *name, u64 rc_type, size_t size)
123 {
124 rc_map->name = name;
125 rc_map->rc_type = rc_type;
126 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
127 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
128 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
129 if (!rc_map->scan)
130 return -ENOMEM;
131
132 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
133 rc_map->size, rc_map->alloc);
134 return 0;
135 }
136
137 /**
138 * ir_free_table() - frees memory allocated by a scancode table
139 * @rc_map: the table whose mappings need to be freed
140 *
141 * This routine will free memory alloctaed for key mappings used by given
142 * scancode table.
143 */
144 static void ir_free_table(struct rc_map *rc_map)
145 {
146 rc_map->size = 0;
147 kfree(rc_map->scan);
148 rc_map->scan = NULL;
149 }
150
151 /**
152 * ir_resize_table() - resizes a scancode table if necessary
153 * @rc_map: the rc_map to resize
154 * @gfp_flags: gfp flags to use when allocating memory
155 * @return: zero on success or a negative error code
156 *
157 * This routine will shrink the rc_map if it has lots of
158 * unused entries and grow it if it is full.
159 */
160 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
161 {
162 unsigned int oldalloc = rc_map->alloc;
163 unsigned int newalloc = oldalloc;
164 struct rc_map_table *oldscan = rc_map->scan;
165 struct rc_map_table *newscan;
166
167 if (rc_map->size == rc_map->len) {
168 /* All entries in use -> grow keytable */
169 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
170 return -ENOMEM;
171
172 newalloc *= 2;
173 IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
174 }
175
176 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
177 /* Less than 1/3 of entries in use -> shrink keytable */
178 newalloc /= 2;
179 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
180 }
181
182 if (newalloc == oldalloc)
183 return 0;
184
185 newscan = kmalloc(newalloc, gfp_flags);
186 if (!newscan) {
187 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
188 return -ENOMEM;
189 }
190
191 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
192 rc_map->scan = newscan;
193 rc_map->alloc = newalloc;
194 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
195 kfree(oldscan);
196 return 0;
197 }
198
199 /**
200 * ir_update_mapping() - set a keycode in the scancode->keycode table
201 * @dev: the struct rc_dev device descriptor
202 * @rc_map: scancode table to be adjusted
203 * @index: index of the mapping that needs to be updated
204 * @keycode: the desired keycode
205 * @return: previous keycode assigned to the mapping
206 *
207 * This routine is used to update scancode->keycode mapping at given
208 * position.
209 */
210 static unsigned int ir_update_mapping(struct rc_dev *dev,
211 struct rc_map *rc_map,
212 unsigned int index,
213 unsigned int new_keycode)
214 {
215 int old_keycode = rc_map->scan[index].keycode;
216 int i;
217
218 /* Did the user wish to remove the mapping? */
219 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
220 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
221 index, rc_map->scan[index].scancode);
222 rc_map->len--;
223 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
224 (rc_map->len - index) * sizeof(struct rc_map_table));
225 } else {
226 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
227 index,
228 old_keycode == KEY_RESERVED ? "New" : "Replacing",
229 rc_map->scan[index].scancode, new_keycode);
230 rc_map->scan[index].keycode = new_keycode;
231 __set_bit(new_keycode, dev->input_dev->keybit);
232 }
233
234 if (old_keycode != KEY_RESERVED) {
235 /* A previous mapping was updated... */
236 __clear_bit(old_keycode, dev->input_dev->keybit);
237 /* ... but another scancode might use the same keycode */
238 for (i = 0; i < rc_map->len; i++) {
239 if (rc_map->scan[i].keycode == old_keycode) {
240 __set_bit(old_keycode, dev->input_dev->keybit);
241 break;
242 }
243 }
244
245 /* Possibly shrink the keytable, failure is not a problem */
246 ir_resize_table(rc_map, GFP_ATOMIC);
247 }
248
249 return old_keycode;
250 }
251
252 /**
253 * ir_establish_scancode() - set a keycode in the scancode->keycode table
254 * @dev: the struct rc_dev device descriptor
255 * @rc_map: scancode table to be searched
256 * @scancode: the desired scancode
257 * @resize: controls whether we allowed to resize the table to
258 * accommodate not yet present scancodes
259 * @return: index of the mapping containing scancode in question
260 * or -1U in case of failure.
261 *
262 * This routine is used to locate given scancode in rc_map.
263 * If scancode is not yet present the routine will allocate a new slot
264 * for it.
265 */
266 static unsigned int ir_establish_scancode(struct rc_dev *dev,
267 struct rc_map *rc_map,
268 unsigned int scancode,
269 bool resize)
270 {
271 unsigned int i;
272
273 /*
274 * Unfortunately, some hardware-based IR decoders don't provide
275 * all bits for the complete IR code. In general, they provide only
276 * the command part of the IR code. Yet, as it is possible to replace
277 * the provided IR with another one, it is needed to allow loading
278 * IR tables from other remotes. So, we support specifying a mask to
279 * indicate the valid bits of the scancodes.
280 */
281 if (dev->scanmask)
282 scancode &= dev->scanmask;
283
284 /* First check if we already have a mapping for this ir command */
285 for (i = 0; i < rc_map->len; i++) {
286 if (rc_map->scan[i].scancode == scancode)
287 return i;
288
289 /* Keytable is sorted from lowest to highest scancode */
290 if (rc_map->scan[i].scancode >= scancode)
291 break;
292 }
293
294 /* No previous mapping found, we might need to grow the table */
295 if (rc_map->size == rc_map->len) {
296 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
297 return -1U;
298 }
299
300 /* i is the proper index to insert our new keycode */
301 if (i < rc_map->len)
302 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
303 (rc_map->len - i) * sizeof(struct rc_map_table));
304 rc_map->scan[i].scancode = scancode;
305 rc_map->scan[i].keycode = KEY_RESERVED;
306 rc_map->len++;
307
308 return i;
309 }
310
311 /**
312 * ir_setkeycode() - set a keycode in the scancode->keycode table
313 * @idev: the struct input_dev device descriptor
314 * @scancode: the desired scancode
315 * @keycode: result
316 * @return: -EINVAL if the keycode could not be inserted, otherwise zero.
317 *
318 * This routine is used to handle evdev EVIOCSKEY ioctl.
319 */
320 static int ir_setkeycode(struct input_dev *idev,
321 const struct input_keymap_entry *ke,
322 unsigned int *old_keycode)
323 {
324 struct rc_dev *rdev = input_get_drvdata(idev);
325 struct rc_map *rc_map = &rdev->rc_map;
326 unsigned int index;
327 unsigned int scancode;
328 int retval = 0;
329 unsigned long flags;
330
331 spin_lock_irqsave(&rc_map->lock, flags);
332
333 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
334 index = ke->index;
335 if (index >= rc_map->len) {
336 retval = -EINVAL;
337 goto out;
338 }
339 } else {
340 retval = input_scancode_to_scalar(ke, &scancode);
341 if (retval)
342 goto out;
343
344 index = ir_establish_scancode(rdev, rc_map, scancode, true);
345 if (index >= rc_map->len) {
346 retval = -ENOMEM;
347 goto out;
348 }
349 }
350
351 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
352
353 out:
354 spin_unlock_irqrestore(&rc_map->lock, flags);
355 return retval;
356 }
357
358 /**
359 * ir_setkeytable() - sets several entries in the scancode->keycode table
360 * @dev: the struct rc_dev device descriptor
361 * @to: the struct rc_map to copy entries to
362 * @from: the struct rc_map to copy entries from
363 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
364 *
365 * This routine is used to handle table initialization.
366 */
367 static int ir_setkeytable(struct rc_dev *dev,
368 const struct rc_map *from)
369 {
370 struct rc_map *rc_map = &dev->rc_map;
371 unsigned int i, index;
372 int rc;
373
374 rc = ir_create_table(rc_map, from->name,
375 from->rc_type, from->size);
376 if (rc)
377 return rc;
378
379 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
380 rc_map->size, rc_map->alloc);
381
382 for (i = 0; i < from->size; i++) {
383 index = ir_establish_scancode(dev, rc_map,
384 from->scan[i].scancode, false);
385 if (index >= rc_map->len) {
386 rc = -ENOMEM;
387 break;
388 }
389
390 ir_update_mapping(dev, rc_map, index,
391 from->scan[i].keycode);
392 }
393
394 if (rc)
395 ir_free_table(rc_map);
396
397 return rc;
398 }
399
400 /**
401 * ir_lookup_by_scancode() - locate mapping by scancode
402 * @rc_map: the struct rc_map to search
403 * @scancode: scancode to look for in the table
404 * @return: index in the table, -1U if not found
405 *
406 * This routine performs binary search in RC keykeymap table for
407 * given scancode.
408 */
409 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
410 unsigned int scancode)
411 {
412 int start = 0;
413 int end = rc_map->len - 1;
414 int mid;
415
416 while (start <= end) {
417 mid = (start + end) / 2;
418 if (rc_map->scan[mid].scancode < scancode)
419 start = mid + 1;
420 else if (rc_map->scan[mid].scancode > scancode)
421 end = mid - 1;
422 else
423 return mid;
424 }
425
426 return -1U;
427 }
428
429 /**
430 * ir_getkeycode() - get a keycode from the scancode->keycode table
431 * @idev: the struct input_dev device descriptor
432 * @scancode: the desired scancode
433 * @keycode: used to return the keycode, if found, or KEY_RESERVED
434 * @return: always returns zero.
435 *
436 * This routine is used to handle evdev EVIOCGKEY ioctl.
437 */
438 static int ir_getkeycode(struct input_dev *idev,
439 struct input_keymap_entry *ke)
440 {
441 struct rc_dev *rdev = input_get_drvdata(idev);
442 struct rc_map *rc_map = &rdev->rc_map;
443 struct rc_map_table *entry;
444 unsigned long flags;
445 unsigned int index;
446 unsigned int scancode;
447 int retval;
448
449 spin_lock_irqsave(&rc_map->lock, flags);
450
451 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
452 index = ke->index;
453 } else {
454 retval = input_scancode_to_scalar(ke, &scancode);
455 if (retval)
456 goto out;
457
458 index = ir_lookup_by_scancode(rc_map, scancode);
459 }
460
461 if (index < rc_map->len) {
462 entry = &rc_map->scan[index];
463
464 ke->index = index;
465 ke->keycode = entry->keycode;
466 ke->len = sizeof(entry->scancode);
467 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
468
469 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
470 /*
471 * We do not really know the valid range of scancodes
472 * so let's respond with KEY_RESERVED to anything we
473 * do not have mapping for [yet].
474 */
475 ke->index = index;
476 ke->keycode = KEY_RESERVED;
477 } else {
478 retval = -EINVAL;
479 goto out;
480 }
481
482 retval = 0;
483
484 out:
485 spin_unlock_irqrestore(&rc_map->lock, flags);
486 return retval;
487 }
488
489 /**
490 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
491 * @dev: the struct rc_dev descriptor of the device
492 * @scancode: the scancode to look for
493 * @return: the corresponding keycode, or KEY_RESERVED
494 *
495 * This routine is used by drivers which need to convert a scancode to a
496 * keycode. Normally it should not be used since drivers should have no
497 * interest in keycodes.
498 */
499 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
500 {
501 struct rc_map *rc_map = &dev->rc_map;
502 unsigned int keycode;
503 unsigned int index;
504 unsigned long flags;
505
506 spin_lock_irqsave(&rc_map->lock, flags);
507
508 index = ir_lookup_by_scancode(rc_map, scancode);
509 keycode = index < rc_map->len ?
510 rc_map->scan[index].keycode : KEY_RESERVED;
511
512 spin_unlock_irqrestore(&rc_map->lock, flags);
513
514 if (keycode != KEY_RESERVED)
515 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
516 dev->input_name, scancode, keycode);
517
518 return keycode;
519 }
520 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
521
522 /**
523 * ir_do_keyup() - internal function to signal the release of a keypress
524 * @dev: the struct rc_dev descriptor of the device
525 * @sync: whether or not to call input_sync
526 *
527 * This function is used internally to release a keypress, it must be
528 * called with keylock held.
529 */
530 static void ir_do_keyup(struct rc_dev *dev, bool sync)
531 {
532 if (!dev->keypressed)
533 return;
534
535 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
536 input_report_key(dev->input_dev, dev->last_keycode, 0);
537 if (sync)
538 input_sync(dev->input_dev);
539 dev->keypressed = false;
540 }
541
542 /**
543 * rc_keyup() - signals the release of a keypress
544 * @dev: the struct rc_dev descriptor of the device
545 *
546 * This routine is used to signal that a key has been released on the
547 * remote control.
548 */
549 void rc_keyup(struct rc_dev *dev)
550 {
551 unsigned long flags;
552
553 spin_lock_irqsave(&dev->keylock, flags);
554 ir_do_keyup(dev, true);
555 spin_unlock_irqrestore(&dev->keylock, flags);
556 }
557 EXPORT_SYMBOL_GPL(rc_keyup);
558
559 /**
560 * ir_timer_keyup() - generates a keyup event after a timeout
561 * @cookie: a pointer to the struct rc_dev for the device
562 *
563 * This routine will generate a keyup event some time after a keydown event
564 * is generated when no further activity has been detected.
565 */
566 static void ir_timer_keyup(unsigned long cookie)
567 {
568 struct rc_dev *dev = (struct rc_dev *)cookie;
569 unsigned long flags;
570
571 /*
572 * ir->keyup_jiffies is used to prevent a race condition if a
573 * hardware interrupt occurs at this point and the keyup timer
574 * event is moved further into the future as a result.
575 *
576 * The timer will then be reactivated and this function called
577 * again in the future. We need to exit gracefully in that case
578 * to allow the input subsystem to do its auto-repeat magic or
579 * a keyup event might follow immediately after the keydown.
580 */
581 spin_lock_irqsave(&dev->keylock, flags);
582 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
583 ir_do_keyup(dev, true);
584 spin_unlock_irqrestore(&dev->keylock, flags);
585 }
586
587 /**
588 * rc_repeat() - signals that a key is still pressed
589 * @dev: the struct rc_dev descriptor of the device
590 *
591 * This routine is used by IR decoders when a repeat message which does
592 * not include the necessary bits to reproduce the scancode has been
593 * received.
594 */
595 void rc_repeat(struct rc_dev *dev)
596 {
597 unsigned long flags;
598
599 spin_lock_irqsave(&dev->keylock, flags);
600
601 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
602 input_sync(dev->input_dev);
603
604 if (!dev->keypressed)
605 goto out;
606
607 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
608 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
609
610 out:
611 spin_unlock_irqrestore(&dev->keylock, flags);
612 }
613 EXPORT_SYMBOL_GPL(rc_repeat);
614
615 /**
616 * ir_do_keydown() - internal function to process a keypress
617 * @dev: the struct rc_dev descriptor of the device
618 * @scancode: the scancode of the keypress
619 * @keycode: the keycode of the keypress
620 * @toggle: the toggle value of the keypress
621 *
622 * This function is used internally to register a keypress, it must be
623 * called with keylock held.
624 */
625 static void ir_do_keydown(struct rc_dev *dev, int scancode,
626 u32 keycode, u8 toggle)
627 {
628 bool new_event = !dev->keypressed ||
629 dev->last_scancode != scancode ||
630 dev->last_toggle != toggle;
631
632 if (new_event && dev->keypressed)
633 ir_do_keyup(dev, false);
634
635 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
636
637 if (new_event && keycode != KEY_RESERVED) {
638 /* Register a keypress */
639 dev->keypressed = true;
640 dev->last_scancode = scancode;
641 dev->last_toggle = toggle;
642 dev->last_keycode = keycode;
643
644 IR_dprintk(1, "%s: key down event, "
645 "key 0x%04x, scancode 0x%04x\n",
646 dev->input_name, keycode, scancode);
647 input_report_key(dev->input_dev, keycode, 1);
648 }
649
650 input_sync(dev->input_dev);
651 }
652
653 /**
654 * rc_keydown() - generates input event for a key press
655 * @dev: the struct rc_dev descriptor of the device
656 * @scancode: the scancode that we're seeking
657 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
658 * support toggle values, this should be set to zero)
659 *
660 * This routine is used to signal that a key has been pressed on the
661 * remote control.
662 */
663 void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
664 {
665 unsigned long flags;
666 u32 keycode = rc_g_keycode_from_table(dev, scancode);
667
668 spin_lock_irqsave(&dev->keylock, flags);
669 ir_do_keydown(dev, scancode, keycode, toggle);
670
671 if (dev->keypressed) {
672 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
673 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
674 }
675 spin_unlock_irqrestore(&dev->keylock, flags);
676 }
677 EXPORT_SYMBOL_GPL(rc_keydown);
678
679 /**
680 * rc_keydown_notimeout() - generates input event for a key press without
681 * an automatic keyup event at a later time
682 * @dev: the struct rc_dev descriptor of the device
683 * @scancode: the scancode that we're seeking
684 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
685 * support toggle values, this should be set to zero)
686 *
687 * This routine is used to signal that a key has been pressed on the
688 * remote control. The driver must manually call rc_keyup() at a later stage.
689 */
690 void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
691 {
692 unsigned long flags;
693 u32 keycode = rc_g_keycode_from_table(dev, scancode);
694
695 spin_lock_irqsave(&dev->keylock, flags);
696 ir_do_keydown(dev, scancode, keycode, toggle);
697 spin_unlock_irqrestore(&dev->keylock, flags);
698 }
699 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
700
701 static int ir_open(struct input_dev *idev)
702 {
703 struct rc_dev *rdev = input_get_drvdata(idev);
704
705 return rdev->open(rdev);
706 }
707
708 static void ir_close(struct input_dev *idev)
709 {
710 struct rc_dev *rdev = input_get_drvdata(idev);
711
712 if (rdev)
713 rdev->close(rdev);
714 }
715
716 /* class for /sys/class/rc */
717 static char *ir_devnode(struct device *dev, mode_t *mode)
718 {
719 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
720 }
721
722 static struct class ir_input_class = {
723 .name = "rc",
724 .devnode = ir_devnode,
725 };
726
727 static struct {
728 u64 type;
729 char *name;
730 } proto_names[] = {
731 { RC_TYPE_UNKNOWN, "unknown" },
732 { RC_TYPE_RC5, "rc-5" },
733 { RC_TYPE_NEC, "nec" },
734 { RC_TYPE_RC6, "rc-6" },
735 { RC_TYPE_JVC, "jvc" },
736 { RC_TYPE_SONY, "sony" },
737 { RC_TYPE_RC5_SZ, "rc-5-sz" },
738 { RC_TYPE_LIRC, "lirc" },
739 { RC_TYPE_OTHER, "other" },
740 };
741
742 #define PROTO_NONE "none"
743
744 /**
745 * show_protocols() - shows the current IR protocol(s)
746 * @device: the device descriptor
747 * @mattr: the device attribute struct (unused)
748 * @buf: a pointer to the output buffer
749 *
750 * This routine is a callback routine for input read the IR protocol type(s).
751 * it is trigged by reading /sys/class/rc/rc?/protocols.
752 * It returns the protocol names of supported protocols.
753 * Enabled protocols are printed in brackets.
754 *
755 * dev->lock is taken to guard against races between device
756 * registration, store_protocols and show_protocols.
757 */
758 static ssize_t show_protocols(struct device *device,
759 struct device_attribute *mattr, char *buf)
760 {
761 struct rc_dev *dev = to_rc_dev(device);
762 u64 allowed, enabled;
763 char *tmp = buf;
764 int i;
765
766 /* Device is being removed */
767 if (!dev)
768 return -EINVAL;
769
770 mutex_lock(&dev->lock);
771
772 if (dev->driver_type == RC_DRIVER_SCANCODE) {
773 enabled = dev->rc_map.rc_type;
774 allowed = dev->allowed_protos;
775 } else {
776 enabled = dev->raw->enabled_protocols;
777 allowed = ir_raw_get_allowed_protocols();
778 }
779
780 IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
781 (long long)allowed,
782 (long long)enabled);
783
784 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
785 if (allowed & enabled & proto_names[i].type)
786 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
787 else if (allowed & proto_names[i].type)
788 tmp += sprintf(tmp, "%s ", proto_names[i].name);
789 }
790
791 if (tmp != buf)
792 tmp--;
793 *tmp = '\n';
794
795 mutex_unlock(&dev->lock);
796
797 return tmp + 1 - buf;
798 }
799
800 /**
801 * store_protocols() - changes the current IR protocol(s)
802 * @device: the device descriptor
803 * @mattr: the device attribute struct (unused)
804 * @buf: a pointer to the input buffer
805 * @len: length of the input buffer
806 *
807 * This routine is for changing the IR protocol type.
808 * It is trigged by writing to /sys/class/rc/rc?/protocols.
809 * Writing "+proto" will add a protocol to the list of enabled protocols.
810 * Writing "-proto" will remove a protocol from the list of enabled protocols.
811 * Writing "proto" will enable only "proto".
812 * Writing "none" will disable all protocols.
813 * Returns -EINVAL if an invalid protocol combination or unknown protocol name
814 * is used, otherwise @len.
815 *
816 * dev->lock is taken to guard against races between device
817 * registration, store_protocols and show_protocols.
818 */
819 static ssize_t store_protocols(struct device *device,
820 struct device_attribute *mattr,
821 const char *data,
822 size_t len)
823 {
824 struct rc_dev *dev = to_rc_dev(device);
825 bool enable, disable;
826 const char *tmp;
827 u64 type;
828 u64 mask;
829 int rc, i, count = 0;
830 unsigned long flags;
831 ssize_t ret;
832
833 /* Device is being removed */
834 if (!dev)
835 return -EINVAL;
836
837 mutex_lock(&dev->lock);
838
839 if (dev->driver_type == RC_DRIVER_SCANCODE)
840 type = dev->rc_map.rc_type;
841 else if (dev->raw)
842 type = dev->raw->enabled_protocols;
843 else {
844 IR_dprintk(1, "Protocol switching not supported\n");
845 ret = -EINVAL;
846 goto out;
847 }
848
849 while ((tmp = strsep((char **) &data, " \n")) != NULL) {
850 if (!*tmp)
851 break;
852
853 if (*tmp == '+') {
854 enable = true;
855 disable = false;
856 tmp++;
857 } else if (*tmp == '-') {
858 enable = false;
859 disable = true;
860 tmp++;
861 } else {
862 enable = false;
863 disable = false;
864 }
865
866 if (!enable && !disable && !strncasecmp(tmp, PROTO_NONE, sizeof(PROTO_NONE))) {
867 tmp += sizeof(PROTO_NONE);
868 mask = 0;
869 count++;
870 } else {
871 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
872 if (!strcasecmp(tmp, proto_names[i].name)) {
873 tmp += strlen(proto_names[i].name);
874 mask = proto_names[i].type;
875 break;
876 }
877 }
878 if (i == ARRAY_SIZE(proto_names)) {
879 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
880 ret = -EINVAL;
881 goto out;
882 }
883 count++;
884 }
885
886 if (enable)
887 type |= mask;
888 else if (disable)
889 type &= ~mask;
890 else
891 type = mask;
892 }
893
894 if (!count) {
895 IR_dprintk(1, "Protocol not specified\n");
896 ret = -EINVAL;
897 goto out;
898 }
899
900 if (dev->change_protocol) {
901 rc = dev->change_protocol(dev, type);
902 if (rc < 0) {
903 IR_dprintk(1, "Error setting protocols to 0x%llx\n",
904 (long long)type);
905 ret = -EINVAL;
906 goto out;
907 }
908 }
909
910 if (dev->driver_type == RC_DRIVER_SCANCODE) {
911 spin_lock_irqsave(&dev->rc_map.lock, flags);
912 dev->rc_map.rc_type = type;
913 spin_unlock_irqrestore(&dev->rc_map.lock, flags);
914 } else {
915 dev->raw->enabled_protocols = type;
916 }
917
918 IR_dprintk(1, "Current protocol(s): 0x%llx\n",
919 (long long)type);
920
921 ret = len;
922
923 out:
924 mutex_unlock(&dev->lock);
925 return ret;
926 }
927
928 static void rc_dev_release(struct device *device)
929 {
930 struct rc_dev *dev = to_rc_dev(device);
931
932 kfree(dev);
933 module_put(THIS_MODULE);
934 }
935
936 #define ADD_HOTPLUG_VAR(fmt, val...) \
937 do { \
938 int err = add_uevent_var(env, fmt, val); \
939 if (err) \
940 return err; \
941 } while (0)
942
943 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
944 {
945 struct rc_dev *dev = to_rc_dev(device);
946
947 if (dev->rc_map.name)
948 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
949 if (dev->driver_name)
950 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
951
952 return 0;
953 }
954
955 /*
956 * Static device attribute struct with the sysfs attributes for IR's
957 */
958 static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR,
959 show_protocols, store_protocols);
960
961 static struct attribute *rc_dev_attrs[] = {
962 &dev_attr_protocols.attr,
963 NULL,
964 };
965
966 static struct attribute_group rc_dev_attr_grp = {
967 .attrs = rc_dev_attrs,
968 };
969
970 static const struct attribute_group *rc_dev_attr_groups[] = {
971 &rc_dev_attr_grp,
972 NULL
973 };
974
975 static struct device_type rc_dev_type = {
976 .groups = rc_dev_attr_groups,
977 .release = rc_dev_release,
978 .uevent = rc_dev_uevent,
979 };
980
981 struct rc_dev *rc_allocate_device(void)
982 {
983 struct rc_dev *dev;
984
985 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
986 if (!dev)
987 return NULL;
988
989 dev->input_dev = input_allocate_device();
990 if (!dev->input_dev) {
991 kfree(dev);
992 return NULL;
993 }
994
995 dev->input_dev->getkeycode = ir_getkeycode;
996 dev->input_dev->setkeycode = ir_setkeycode;
997 input_set_drvdata(dev->input_dev, dev);
998
999 spin_lock_init(&dev->rc_map.lock);
1000 spin_lock_init(&dev->keylock);
1001 mutex_init(&dev->lock);
1002 setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1003
1004 dev->dev.type = &rc_dev_type;
1005 dev->dev.class = &ir_input_class;
1006 device_initialize(&dev->dev);
1007
1008 __module_get(THIS_MODULE);
1009 return dev;
1010 }
1011 EXPORT_SYMBOL_GPL(rc_allocate_device);
1012
1013 void rc_free_device(struct rc_dev *dev)
1014 {
1015 if (dev) {
1016 input_free_device(dev->input_dev);
1017 put_device(&dev->dev);
1018 }
1019 }
1020 EXPORT_SYMBOL_GPL(rc_free_device);
1021
1022 int rc_register_device(struct rc_dev *dev)
1023 {
1024 static atomic_t devno = ATOMIC_INIT(0);
1025 struct rc_map *rc_map;
1026 const char *path;
1027 int rc;
1028
1029 if (!dev || !dev->map_name)
1030 return -EINVAL;
1031
1032 rc_map = rc_map_get(dev->map_name);
1033 if (!rc_map)
1034 rc_map = rc_map_get(RC_MAP_EMPTY);
1035 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1036 return -EINVAL;
1037
1038 set_bit(EV_KEY, dev->input_dev->evbit);
1039 set_bit(EV_REP, dev->input_dev->evbit);
1040 set_bit(EV_MSC, dev->input_dev->evbit);
1041 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1042 if (dev->open)
1043 dev->input_dev->open = ir_open;
1044 if (dev->close)
1045 dev->input_dev->close = ir_close;
1046
1047 /*
1048 * Take the lock here, as the device sysfs node will appear
1049 * when device_add() is called, which may trigger an ir-keytable udev
1050 * rule, which will in turn call show_protocols and access either
1051 * dev->rc_map.rc_type or dev->raw->enabled_protocols before it has
1052 * been initialized.
1053 */
1054 mutex_lock(&dev->lock);
1055
1056 dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1);
1057 dev_set_name(&dev->dev, "rc%ld", dev->devno);
1058 dev_set_drvdata(&dev->dev, dev);
1059 rc = device_add(&dev->dev);
1060 if (rc)
1061 goto out_unlock;
1062
1063 rc = ir_setkeytable(dev, rc_map);
1064 if (rc)
1065 goto out_dev;
1066
1067 dev->input_dev->dev.parent = &dev->dev;
1068 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1069 dev->input_dev->phys = dev->input_phys;
1070 dev->input_dev->name = dev->input_name;
1071 rc = input_register_device(dev->input_dev);
1072 if (rc)
1073 goto out_table;
1074
1075 /*
1076 * Default delay of 250ms is too short for some protocols, especially
1077 * since the timeout is currently set to 250ms. Increase it to 500ms,
1078 * to avoid wrong repetition of the keycodes. Note that this must be
1079 * set after the call to input_register_device().
1080 */
1081 dev->input_dev->rep[REP_DELAY] = 500;
1082
1083 /*
1084 * As a repeat event on protocols like RC-5 and NEC take as long as
1085 * 110/114ms, using 33ms as a repeat period is not the right thing
1086 * to do.
1087 */
1088 dev->input_dev->rep[REP_PERIOD] = 125;
1089
1090 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1091 printk(KERN_INFO "%s: %s as %s\n",
1092 dev_name(&dev->dev),
1093 dev->input_name ? dev->input_name : "Unspecified device",
1094 path ? path : "N/A");
1095 kfree(path);
1096
1097 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1098 rc = ir_raw_event_register(dev);
1099 if (rc < 0)
1100 goto out_input;
1101 }
1102 mutex_unlock(&dev->lock);
1103
1104 if (dev->change_protocol) {
1105 rc = dev->change_protocol(dev, rc_map->rc_type);
1106 if (rc < 0)
1107 goto out_raw;
1108 }
1109
1110 IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
1111 dev->devno,
1112 dev->driver_name ? dev->driver_name : "unknown",
1113 rc_map->name ? rc_map->name : "unknown",
1114 dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1115
1116 return 0;
1117
1118 out_raw:
1119 if (dev->driver_type == RC_DRIVER_IR_RAW)
1120 ir_raw_event_unregister(dev);
1121 out_input:
1122 input_unregister_device(dev->input_dev);
1123 dev->input_dev = NULL;
1124 out_table:
1125 ir_free_table(&dev->rc_map);
1126 out_dev:
1127 device_del(&dev->dev);
1128 out_unlock:
1129 mutex_unlock(&dev->lock);
1130 return rc;
1131 }
1132 EXPORT_SYMBOL_GPL(rc_register_device);
1133
1134 void rc_unregister_device(struct rc_dev *dev)
1135 {
1136 if (!dev)
1137 return;
1138
1139 del_timer_sync(&dev->timer_keyup);
1140
1141 if (dev->driver_type == RC_DRIVER_IR_RAW)
1142 ir_raw_event_unregister(dev);
1143
1144 input_unregister_device(dev->input_dev);
1145 dev->input_dev = NULL;
1146
1147 ir_free_table(&dev->rc_map);
1148 IR_dprintk(1, "Freed keycode table\n");
1149
1150 device_unregister(&dev->dev);
1151 }
1152 EXPORT_SYMBOL_GPL(rc_unregister_device);
1153
1154 /*
1155 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1156 */
1157
1158 static int __init rc_core_init(void)
1159 {
1160 int rc = class_register(&ir_input_class);
1161 if (rc) {
1162 printk(KERN_ERR "rc_core: unable to register rc class\n");
1163 return rc;
1164 }
1165
1166 /* Initialize/load the decoders/keymap code that will be used */
1167 ir_raw_init();
1168 rc_map_register(&empty_map);
1169
1170 return 0;
1171 }
1172
1173 static void __exit rc_core_exit(void)
1174 {
1175 class_unregister(&ir_input_class);
1176 rc_map_unregister(&empty_map);
1177 }
1178
1179 module_init(rc_core_init);
1180 module_exit(rc_core_exit);
1181
1182 int rc_core_debug; /* ir_debug level (0,1,2) */
1183 EXPORT_SYMBOL_GPL(rc_core_debug);
1184 module_param_named(debug, rc_core_debug, int, 0644);
1185
1186 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1187 MODULE_LICENSE("GPL");