Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62 * Stripe cache
63 */
64
65 #define NR_STRIPES 256
66 #define STRIPE_SIZE PAGE_SIZE
67 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD 1
70 #define BYPASS_THRESHOLD 1
71 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81 * order without overlap. There may be several bio's per stripe+device, and
82 * a bio could span several devices.
83 * When walking this list for a particular stripe+device, we must never proceed
84 * beyond a bio that extends past this device, as the next bio might no longer
85 * be valid.
86 * This function is used to determine the 'next' bio in the list, given the sector
87 * of the current stripe+device
88 */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91 int sectors = bio->bi_size >> 9;
92 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 return bio->bi_next;
94 else
95 return NULL;
96 }
97
98 /*
99 * We maintain a biased count of active stripes in the bottom 16 bits of
100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 */
102 static inline int raid5_bi_phys_segments(struct bio *bio)
103 {
104 return bio->bi_phys_segments & 0xffff;
105 }
106
107 static inline int raid5_bi_hw_segments(struct bio *bio)
108 {
109 return (bio->bi_phys_segments >> 16) & 0xffff;
110 }
111
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 {
114 --bio->bi_phys_segments;
115 return raid5_bi_phys_segments(bio);
116 }
117
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 {
120 unsigned short val = raid5_bi_hw_segments(bio);
121
122 --val;
123 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 return val;
125 }
126
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 {
129 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 }
131
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
134 {
135 if (sh->ddf_layout)
136 /* ddf always start from first device */
137 return 0;
138 /* md starts just after Q block */
139 if (sh->qd_idx == sh->disks - 1)
140 return 0;
141 else
142 return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146 disk++;
147 return (disk < raid_disks) ? disk : 0;
148 }
149
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151 * We need to map each disk to a 'slot', where the data disks are slot
152 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153 * is raid_disks-1. This help does that mapping.
154 */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 int *count, int syndrome_disks)
157 {
158 int slot = *count;
159
160 if (sh->ddf_layout)
161 (*count)++;
162 if (idx == sh->pd_idx)
163 return syndrome_disks;
164 if (idx == sh->qd_idx)
165 return syndrome_disks + 1;
166 if (!sh->ddf_layout)
167 (*count)++;
168 return slot;
169 }
170
171 static void return_io(struct bio *return_bi)
172 {
173 struct bio *bi = return_bi;
174 while (bi) {
175
176 return_bi = bi->bi_next;
177 bi->bi_next = NULL;
178 bi->bi_size = 0;
179 bio_endio(bi, 0);
180 bi = return_bi;
181 }
182 }
183
184 static void print_raid5_conf (struct r5conf *conf);
185
186 static int stripe_operations_active(struct stripe_head *sh)
187 {
188 return sh->check_state || sh->reconstruct_state ||
189 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191 }
192
193 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194 {
195 if (atomic_dec_and_test(&sh->count)) {
196 BUG_ON(!list_empty(&sh->lru));
197 BUG_ON(atomic_read(&conf->active_stripes)==0);
198 if (test_bit(STRIPE_HANDLE, &sh->state)) {
199 if (test_bit(STRIPE_DELAYED, &sh->state))
200 list_add_tail(&sh->lru, &conf->delayed_list);
201 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202 sh->bm_seq - conf->seq_write > 0)
203 list_add_tail(&sh->lru, &conf->bitmap_list);
204 else {
205 clear_bit(STRIPE_BIT_DELAY, &sh->state);
206 list_add_tail(&sh->lru, &conf->handle_list);
207 }
208 md_wakeup_thread(conf->mddev->thread);
209 } else {
210 BUG_ON(stripe_operations_active(sh));
211 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
212 atomic_dec(&conf->preread_active_stripes);
213 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
214 md_wakeup_thread(conf->mddev->thread);
215 }
216 atomic_dec(&conf->active_stripes);
217 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
218 list_add_tail(&sh->lru, &conf->inactive_list);
219 wake_up(&conf->wait_for_stripe);
220 if (conf->retry_read_aligned)
221 md_wakeup_thread(conf->mddev->thread);
222 }
223 }
224 }
225 }
226
227 static void release_stripe(struct stripe_head *sh)
228 {
229 struct r5conf *conf = sh->raid_conf;
230 unsigned long flags;
231
232 spin_lock_irqsave(&conf->device_lock, flags);
233 __release_stripe(conf, sh);
234 spin_unlock_irqrestore(&conf->device_lock, flags);
235 }
236
237 static inline void remove_hash(struct stripe_head *sh)
238 {
239 pr_debug("remove_hash(), stripe %llu\n",
240 (unsigned long long)sh->sector);
241
242 hlist_del_init(&sh->hash);
243 }
244
245 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
246 {
247 struct hlist_head *hp = stripe_hash(conf, sh->sector);
248
249 pr_debug("insert_hash(), stripe %llu\n",
250 (unsigned long long)sh->sector);
251
252 hlist_add_head(&sh->hash, hp);
253 }
254
255
256 /* find an idle stripe, make sure it is unhashed, and return it. */
257 static struct stripe_head *get_free_stripe(struct r5conf *conf)
258 {
259 struct stripe_head *sh = NULL;
260 struct list_head *first;
261
262 if (list_empty(&conf->inactive_list))
263 goto out;
264 first = conf->inactive_list.next;
265 sh = list_entry(first, struct stripe_head, lru);
266 list_del_init(first);
267 remove_hash(sh);
268 atomic_inc(&conf->active_stripes);
269 out:
270 return sh;
271 }
272
273 static void shrink_buffers(struct stripe_head *sh)
274 {
275 struct page *p;
276 int i;
277 int num = sh->raid_conf->pool_size;
278
279 for (i = 0; i < num ; i++) {
280 p = sh->dev[i].page;
281 if (!p)
282 continue;
283 sh->dev[i].page = NULL;
284 put_page(p);
285 }
286 }
287
288 static int grow_buffers(struct stripe_head *sh)
289 {
290 int i;
291 int num = sh->raid_conf->pool_size;
292
293 for (i = 0; i < num; i++) {
294 struct page *page;
295
296 if (!(page = alloc_page(GFP_KERNEL))) {
297 return 1;
298 }
299 sh->dev[i].page = page;
300 }
301 return 0;
302 }
303
304 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
305 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
306 struct stripe_head *sh);
307
308 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
309 {
310 struct r5conf *conf = sh->raid_conf;
311 int i;
312
313 BUG_ON(atomic_read(&sh->count) != 0);
314 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
315 BUG_ON(stripe_operations_active(sh));
316
317 pr_debug("init_stripe called, stripe %llu\n",
318 (unsigned long long)sh->sector);
319
320 remove_hash(sh);
321
322 sh->generation = conf->generation - previous;
323 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
324 sh->sector = sector;
325 stripe_set_idx(sector, conf, previous, sh);
326 sh->state = 0;
327
328
329 for (i = sh->disks; i--; ) {
330 struct r5dev *dev = &sh->dev[i];
331
332 if (dev->toread || dev->read || dev->towrite || dev->written ||
333 test_bit(R5_LOCKED, &dev->flags)) {
334 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
335 (unsigned long long)sh->sector, i, dev->toread,
336 dev->read, dev->towrite, dev->written,
337 test_bit(R5_LOCKED, &dev->flags));
338 WARN_ON(1);
339 }
340 dev->flags = 0;
341 raid5_build_block(sh, i, previous);
342 }
343 insert_hash(conf, sh);
344 }
345
346 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
347 short generation)
348 {
349 struct stripe_head *sh;
350 struct hlist_node *hn;
351
352 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354 if (sh->sector == sector && sh->generation == generation)
355 return sh;
356 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
357 return NULL;
358 }
359
360 /*
361 * Need to check if array has failed when deciding whether to:
362 * - start an array
363 * - remove non-faulty devices
364 * - add a spare
365 * - allow a reshape
366 * This determination is simple when no reshape is happening.
367 * However if there is a reshape, we need to carefully check
368 * both the before and after sections.
369 * This is because some failed devices may only affect one
370 * of the two sections, and some non-in_sync devices may
371 * be insync in the section most affected by failed devices.
372 */
373 static int calc_degraded(struct r5conf *conf)
374 {
375 int degraded, degraded2;
376 int i;
377
378 rcu_read_lock();
379 degraded = 0;
380 for (i = 0; i < conf->previous_raid_disks; i++) {
381 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
382 if (!rdev || test_bit(Faulty, &rdev->flags))
383 degraded++;
384 else if (test_bit(In_sync, &rdev->flags))
385 ;
386 else
387 /* not in-sync or faulty.
388 * If the reshape increases the number of devices,
389 * this is being recovered by the reshape, so
390 * this 'previous' section is not in_sync.
391 * If the number of devices is being reduced however,
392 * the device can only be part of the array if
393 * we are reverting a reshape, so this section will
394 * be in-sync.
395 */
396 if (conf->raid_disks >= conf->previous_raid_disks)
397 degraded++;
398 }
399 rcu_read_unlock();
400 if (conf->raid_disks == conf->previous_raid_disks)
401 return degraded;
402 rcu_read_lock();
403 degraded2 = 0;
404 for (i = 0; i < conf->raid_disks; i++) {
405 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
406 if (!rdev || test_bit(Faulty, &rdev->flags))
407 degraded2++;
408 else if (test_bit(In_sync, &rdev->flags))
409 ;
410 else
411 /* not in-sync or faulty.
412 * If reshape increases the number of devices, this
413 * section has already been recovered, else it
414 * almost certainly hasn't.
415 */
416 if (conf->raid_disks <= conf->previous_raid_disks)
417 degraded2++;
418 }
419 rcu_read_unlock();
420 if (degraded2 > degraded)
421 return degraded2;
422 return degraded;
423 }
424
425 static int has_failed(struct r5conf *conf)
426 {
427 int degraded;
428
429 if (conf->mddev->reshape_position == MaxSector)
430 return conf->mddev->degraded > conf->max_degraded;
431
432 degraded = calc_degraded(conf);
433 if (degraded > conf->max_degraded)
434 return 1;
435 return 0;
436 }
437
438 static struct stripe_head *
439 get_active_stripe(struct r5conf *conf, sector_t sector,
440 int previous, int noblock, int noquiesce)
441 {
442 struct stripe_head *sh;
443
444 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
445
446 spin_lock_irq(&conf->device_lock);
447
448 do {
449 wait_event_lock_irq(conf->wait_for_stripe,
450 conf->quiesce == 0 || noquiesce,
451 conf->device_lock, /* nothing */);
452 sh = __find_stripe(conf, sector, conf->generation - previous);
453 if (!sh) {
454 if (!conf->inactive_blocked)
455 sh = get_free_stripe(conf);
456 if (noblock && sh == NULL)
457 break;
458 if (!sh) {
459 conf->inactive_blocked = 1;
460 wait_event_lock_irq(conf->wait_for_stripe,
461 !list_empty(&conf->inactive_list) &&
462 (atomic_read(&conf->active_stripes)
463 < (conf->max_nr_stripes *3/4)
464 || !conf->inactive_blocked),
465 conf->device_lock,
466 );
467 conf->inactive_blocked = 0;
468 } else
469 init_stripe(sh, sector, previous);
470 } else {
471 if (atomic_read(&sh->count)) {
472 BUG_ON(!list_empty(&sh->lru)
473 && !test_bit(STRIPE_EXPANDING, &sh->state));
474 } else {
475 if (!test_bit(STRIPE_HANDLE, &sh->state))
476 atomic_inc(&conf->active_stripes);
477 if (list_empty(&sh->lru) &&
478 !test_bit(STRIPE_EXPANDING, &sh->state))
479 BUG();
480 list_del_init(&sh->lru);
481 }
482 }
483 } while (sh == NULL);
484
485 if (sh)
486 atomic_inc(&sh->count);
487
488 spin_unlock_irq(&conf->device_lock);
489 return sh;
490 }
491
492 static void
493 raid5_end_read_request(struct bio *bi, int error);
494 static void
495 raid5_end_write_request(struct bio *bi, int error);
496
497 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
498 {
499 struct r5conf *conf = sh->raid_conf;
500 int i, disks = sh->disks;
501
502 might_sleep();
503
504 for (i = disks; i--; ) {
505 int rw;
506 int replace_only = 0;
507 struct bio *bi, *rbi;
508 struct md_rdev *rdev, *rrdev = NULL;
509 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
510 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
511 rw = WRITE_FUA;
512 else
513 rw = WRITE;
514 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
515 rw = READ;
516 else if (test_and_clear_bit(R5_WantReplace,
517 &sh->dev[i].flags)) {
518 rw = WRITE;
519 replace_only = 1;
520 } else
521 continue;
522
523 bi = &sh->dev[i].req;
524 rbi = &sh->dev[i].rreq; /* For writing to replacement */
525
526 bi->bi_rw = rw;
527 rbi->bi_rw = rw;
528 if (rw & WRITE) {
529 bi->bi_end_io = raid5_end_write_request;
530 rbi->bi_end_io = raid5_end_write_request;
531 } else
532 bi->bi_end_io = raid5_end_read_request;
533
534 rcu_read_lock();
535 rrdev = rcu_dereference(conf->disks[i].replacement);
536 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
537 rdev = rcu_dereference(conf->disks[i].rdev);
538 if (!rdev) {
539 rdev = rrdev;
540 rrdev = NULL;
541 }
542 if (rw & WRITE) {
543 if (replace_only)
544 rdev = NULL;
545 if (rdev == rrdev)
546 /* We raced and saw duplicates */
547 rrdev = NULL;
548 } else {
549 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
550 rdev = rrdev;
551 rrdev = NULL;
552 }
553
554 if (rdev && test_bit(Faulty, &rdev->flags))
555 rdev = NULL;
556 if (rdev)
557 atomic_inc(&rdev->nr_pending);
558 if (rrdev && test_bit(Faulty, &rrdev->flags))
559 rrdev = NULL;
560 if (rrdev)
561 atomic_inc(&rrdev->nr_pending);
562 rcu_read_unlock();
563
564 /* We have already checked bad blocks for reads. Now
565 * need to check for writes. We never accept write errors
566 * on the replacement, so we don't to check rrdev.
567 */
568 while ((rw & WRITE) && rdev &&
569 test_bit(WriteErrorSeen, &rdev->flags)) {
570 sector_t first_bad;
571 int bad_sectors;
572 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
573 &first_bad, &bad_sectors);
574 if (!bad)
575 break;
576
577 if (bad < 0) {
578 set_bit(BlockedBadBlocks, &rdev->flags);
579 if (!conf->mddev->external &&
580 conf->mddev->flags) {
581 /* It is very unlikely, but we might
582 * still need to write out the
583 * bad block log - better give it
584 * a chance*/
585 md_check_recovery(conf->mddev);
586 }
587 md_wait_for_blocked_rdev(rdev, conf->mddev);
588 } else {
589 /* Acknowledged bad block - skip the write */
590 rdev_dec_pending(rdev, conf->mddev);
591 rdev = NULL;
592 }
593 }
594
595 if (rdev) {
596 if (s->syncing || s->expanding || s->expanded
597 || s->replacing)
598 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
599
600 set_bit(STRIPE_IO_STARTED, &sh->state);
601
602 bi->bi_bdev = rdev->bdev;
603 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
604 __func__, (unsigned long long)sh->sector,
605 bi->bi_rw, i);
606 atomic_inc(&sh->count);
607 bi->bi_sector = sh->sector + rdev->data_offset;
608 bi->bi_flags = 1 << BIO_UPTODATE;
609 bi->bi_idx = 0;
610 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
611 bi->bi_io_vec[0].bv_offset = 0;
612 bi->bi_size = STRIPE_SIZE;
613 bi->bi_next = NULL;
614 if (rrdev)
615 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
616 generic_make_request(bi);
617 }
618 if (rrdev) {
619 if (s->syncing || s->expanding || s->expanded
620 || s->replacing)
621 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
622
623 set_bit(STRIPE_IO_STARTED, &sh->state);
624
625 rbi->bi_bdev = rrdev->bdev;
626 pr_debug("%s: for %llu schedule op %ld on "
627 "replacement disc %d\n",
628 __func__, (unsigned long long)sh->sector,
629 rbi->bi_rw, i);
630 atomic_inc(&sh->count);
631 rbi->bi_sector = sh->sector + rrdev->data_offset;
632 rbi->bi_flags = 1 << BIO_UPTODATE;
633 rbi->bi_idx = 0;
634 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
635 rbi->bi_io_vec[0].bv_offset = 0;
636 rbi->bi_size = STRIPE_SIZE;
637 rbi->bi_next = NULL;
638 generic_make_request(rbi);
639 }
640 if (!rdev && !rrdev) {
641 if (rw & WRITE)
642 set_bit(STRIPE_DEGRADED, &sh->state);
643 pr_debug("skip op %ld on disc %d for sector %llu\n",
644 bi->bi_rw, i, (unsigned long long)sh->sector);
645 clear_bit(R5_LOCKED, &sh->dev[i].flags);
646 set_bit(STRIPE_HANDLE, &sh->state);
647 }
648 }
649 }
650
651 static struct dma_async_tx_descriptor *
652 async_copy_data(int frombio, struct bio *bio, struct page *page,
653 sector_t sector, struct dma_async_tx_descriptor *tx)
654 {
655 struct bio_vec *bvl;
656 struct page *bio_page;
657 int i;
658 int page_offset;
659 struct async_submit_ctl submit;
660 enum async_tx_flags flags = 0;
661
662 if (bio->bi_sector >= sector)
663 page_offset = (signed)(bio->bi_sector - sector) * 512;
664 else
665 page_offset = (signed)(sector - bio->bi_sector) * -512;
666
667 if (frombio)
668 flags |= ASYNC_TX_FENCE;
669 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
670
671 bio_for_each_segment(bvl, bio, i) {
672 int len = bvl->bv_len;
673 int clen;
674 int b_offset = 0;
675
676 if (page_offset < 0) {
677 b_offset = -page_offset;
678 page_offset += b_offset;
679 len -= b_offset;
680 }
681
682 if (len > 0 && page_offset + len > STRIPE_SIZE)
683 clen = STRIPE_SIZE - page_offset;
684 else
685 clen = len;
686
687 if (clen > 0) {
688 b_offset += bvl->bv_offset;
689 bio_page = bvl->bv_page;
690 if (frombio)
691 tx = async_memcpy(page, bio_page, page_offset,
692 b_offset, clen, &submit);
693 else
694 tx = async_memcpy(bio_page, page, b_offset,
695 page_offset, clen, &submit);
696 }
697 /* chain the operations */
698 submit.depend_tx = tx;
699
700 if (clen < len) /* hit end of page */
701 break;
702 page_offset += len;
703 }
704
705 return tx;
706 }
707
708 static void ops_complete_biofill(void *stripe_head_ref)
709 {
710 struct stripe_head *sh = stripe_head_ref;
711 struct bio *return_bi = NULL;
712 struct r5conf *conf = sh->raid_conf;
713 int i;
714
715 pr_debug("%s: stripe %llu\n", __func__,
716 (unsigned long long)sh->sector);
717
718 /* clear completed biofills */
719 spin_lock_irq(&conf->device_lock);
720 for (i = sh->disks; i--; ) {
721 struct r5dev *dev = &sh->dev[i];
722
723 /* acknowledge completion of a biofill operation */
724 /* and check if we need to reply to a read request,
725 * new R5_Wantfill requests are held off until
726 * !STRIPE_BIOFILL_RUN
727 */
728 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
729 struct bio *rbi, *rbi2;
730
731 BUG_ON(!dev->read);
732 rbi = dev->read;
733 dev->read = NULL;
734 while (rbi && rbi->bi_sector <
735 dev->sector + STRIPE_SECTORS) {
736 rbi2 = r5_next_bio(rbi, dev->sector);
737 if (!raid5_dec_bi_phys_segments(rbi)) {
738 rbi->bi_next = return_bi;
739 return_bi = rbi;
740 }
741 rbi = rbi2;
742 }
743 }
744 }
745 spin_unlock_irq(&conf->device_lock);
746 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
747
748 return_io(return_bi);
749
750 set_bit(STRIPE_HANDLE, &sh->state);
751 release_stripe(sh);
752 }
753
754 static void ops_run_biofill(struct stripe_head *sh)
755 {
756 struct dma_async_tx_descriptor *tx = NULL;
757 struct r5conf *conf = sh->raid_conf;
758 struct async_submit_ctl submit;
759 int i;
760
761 pr_debug("%s: stripe %llu\n", __func__,
762 (unsigned long long)sh->sector);
763
764 for (i = sh->disks; i--; ) {
765 struct r5dev *dev = &sh->dev[i];
766 if (test_bit(R5_Wantfill, &dev->flags)) {
767 struct bio *rbi;
768 spin_lock_irq(&conf->device_lock);
769 dev->read = rbi = dev->toread;
770 dev->toread = NULL;
771 spin_unlock_irq(&conf->device_lock);
772 while (rbi && rbi->bi_sector <
773 dev->sector + STRIPE_SECTORS) {
774 tx = async_copy_data(0, rbi, dev->page,
775 dev->sector, tx);
776 rbi = r5_next_bio(rbi, dev->sector);
777 }
778 }
779 }
780
781 atomic_inc(&sh->count);
782 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
783 async_trigger_callback(&submit);
784 }
785
786 static void mark_target_uptodate(struct stripe_head *sh, int target)
787 {
788 struct r5dev *tgt;
789
790 if (target < 0)
791 return;
792
793 tgt = &sh->dev[target];
794 set_bit(R5_UPTODATE, &tgt->flags);
795 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
796 clear_bit(R5_Wantcompute, &tgt->flags);
797 }
798
799 static void ops_complete_compute(void *stripe_head_ref)
800 {
801 struct stripe_head *sh = stripe_head_ref;
802
803 pr_debug("%s: stripe %llu\n", __func__,
804 (unsigned long long)sh->sector);
805
806 /* mark the computed target(s) as uptodate */
807 mark_target_uptodate(sh, sh->ops.target);
808 mark_target_uptodate(sh, sh->ops.target2);
809
810 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
811 if (sh->check_state == check_state_compute_run)
812 sh->check_state = check_state_compute_result;
813 set_bit(STRIPE_HANDLE, &sh->state);
814 release_stripe(sh);
815 }
816
817 /* return a pointer to the address conversion region of the scribble buffer */
818 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
819 struct raid5_percpu *percpu)
820 {
821 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
822 }
823
824 static struct dma_async_tx_descriptor *
825 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
826 {
827 int disks = sh->disks;
828 struct page **xor_srcs = percpu->scribble;
829 int target = sh->ops.target;
830 struct r5dev *tgt = &sh->dev[target];
831 struct page *xor_dest = tgt->page;
832 int count = 0;
833 struct dma_async_tx_descriptor *tx;
834 struct async_submit_ctl submit;
835 int i;
836
837 pr_debug("%s: stripe %llu block: %d\n",
838 __func__, (unsigned long long)sh->sector, target);
839 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
840
841 for (i = disks; i--; )
842 if (i != target)
843 xor_srcs[count++] = sh->dev[i].page;
844
845 atomic_inc(&sh->count);
846
847 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
848 ops_complete_compute, sh, to_addr_conv(sh, percpu));
849 if (unlikely(count == 1))
850 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
851 else
852 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
853
854 return tx;
855 }
856
857 /* set_syndrome_sources - populate source buffers for gen_syndrome
858 * @srcs - (struct page *) array of size sh->disks
859 * @sh - stripe_head to parse
860 *
861 * Populates srcs in proper layout order for the stripe and returns the
862 * 'count' of sources to be used in a call to async_gen_syndrome. The P
863 * destination buffer is recorded in srcs[count] and the Q destination
864 * is recorded in srcs[count+1]].
865 */
866 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
867 {
868 int disks = sh->disks;
869 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
870 int d0_idx = raid6_d0(sh);
871 int count;
872 int i;
873
874 for (i = 0; i < disks; i++)
875 srcs[i] = NULL;
876
877 count = 0;
878 i = d0_idx;
879 do {
880 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
881
882 srcs[slot] = sh->dev[i].page;
883 i = raid6_next_disk(i, disks);
884 } while (i != d0_idx);
885
886 return syndrome_disks;
887 }
888
889 static struct dma_async_tx_descriptor *
890 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
891 {
892 int disks = sh->disks;
893 struct page **blocks = percpu->scribble;
894 int target;
895 int qd_idx = sh->qd_idx;
896 struct dma_async_tx_descriptor *tx;
897 struct async_submit_ctl submit;
898 struct r5dev *tgt;
899 struct page *dest;
900 int i;
901 int count;
902
903 if (sh->ops.target < 0)
904 target = sh->ops.target2;
905 else if (sh->ops.target2 < 0)
906 target = sh->ops.target;
907 else
908 /* we should only have one valid target */
909 BUG();
910 BUG_ON(target < 0);
911 pr_debug("%s: stripe %llu block: %d\n",
912 __func__, (unsigned long long)sh->sector, target);
913
914 tgt = &sh->dev[target];
915 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
916 dest = tgt->page;
917
918 atomic_inc(&sh->count);
919
920 if (target == qd_idx) {
921 count = set_syndrome_sources(blocks, sh);
922 blocks[count] = NULL; /* regenerating p is not necessary */
923 BUG_ON(blocks[count+1] != dest); /* q should already be set */
924 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
925 ops_complete_compute, sh,
926 to_addr_conv(sh, percpu));
927 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
928 } else {
929 /* Compute any data- or p-drive using XOR */
930 count = 0;
931 for (i = disks; i-- ; ) {
932 if (i == target || i == qd_idx)
933 continue;
934 blocks[count++] = sh->dev[i].page;
935 }
936
937 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
938 NULL, ops_complete_compute, sh,
939 to_addr_conv(sh, percpu));
940 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
941 }
942
943 return tx;
944 }
945
946 static struct dma_async_tx_descriptor *
947 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
948 {
949 int i, count, disks = sh->disks;
950 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
951 int d0_idx = raid6_d0(sh);
952 int faila = -1, failb = -1;
953 int target = sh->ops.target;
954 int target2 = sh->ops.target2;
955 struct r5dev *tgt = &sh->dev[target];
956 struct r5dev *tgt2 = &sh->dev[target2];
957 struct dma_async_tx_descriptor *tx;
958 struct page **blocks = percpu->scribble;
959 struct async_submit_ctl submit;
960
961 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
962 __func__, (unsigned long long)sh->sector, target, target2);
963 BUG_ON(target < 0 || target2 < 0);
964 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
965 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
966
967 /* we need to open-code set_syndrome_sources to handle the
968 * slot number conversion for 'faila' and 'failb'
969 */
970 for (i = 0; i < disks ; i++)
971 blocks[i] = NULL;
972 count = 0;
973 i = d0_idx;
974 do {
975 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
976
977 blocks[slot] = sh->dev[i].page;
978
979 if (i == target)
980 faila = slot;
981 if (i == target2)
982 failb = slot;
983 i = raid6_next_disk(i, disks);
984 } while (i != d0_idx);
985
986 BUG_ON(faila == failb);
987 if (failb < faila)
988 swap(faila, failb);
989 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
990 __func__, (unsigned long long)sh->sector, faila, failb);
991
992 atomic_inc(&sh->count);
993
994 if (failb == syndrome_disks+1) {
995 /* Q disk is one of the missing disks */
996 if (faila == syndrome_disks) {
997 /* Missing P+Q, just recompute */
998 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
999 ops_complete_compute, sh,
1000 to_addr_conv(sh, percpu));
1001 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1002 STRIPE_SIZE, &submit);
1003 } else {
1004 struct page *dest;
1005 int data_target;
1006 int qd_idx = sh->qd_idx;
1007
1008 /* Missing D+Q: recompute D from P, then recompute Q */
1009 if (target == qd_idx)
1010 data_target = target2;
1011 else
1012 data_target = target;
1013
1014 count = 0;
1015 for (i = disks; i-- ; ) {
1016 if (i == data_target || i == qd_idx)
1017 continue;
1018 blocks[count++] = sh->dev[i].page;
1019 }
1020 dest = sh->dev[data_target].page;
1021 init_async_submit(&submit,
1022 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1023 NULL, NULL, NULL,
1024 to_addr_conv(sh, percpu));
1025 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1026 &submit);
1027
1028 count = set_syndrome_sources(blocks, sh);
1029 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1030 ops_complete_compute, sh,
1031 to_addr_conv(sh, percpu));
1032 return async_gen_syndrome(blocks, 0, count+2,
1033 STRIPE_SIZE, &submit);
1034 }
1035 } else {
1036 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1037 ops_complete_compute, sh,
1038 to_addr_conv(sh, percpu));
1039 if (failb == syndrome_disks) {
1040 /* We're missing D+P. */
1041 return async_raid6_datap_recov(syndrome_disks+2,
1042 STRIPE_SIZE, faila,
1043 blocks, &submit);
1044 } else {
1045 /* We're missing D+D. */
1046 return async_raid6_2data_recov(syndrome_disks+2,
1047 STRIPE_SIZE, faila, failb,
1048 blocks, &submit);
1049 }
1050 }
1051 }
1052
1053
1054 static void ops_complete_prexor(void *stripe_head_ref)
1055 {
1056 struct stripe_head *sh = stripe_head_ref;
1057
1058 pr_debug("%s: stripe %llu\n", __func__,
1059 (unsigned long long)sh->sector);
1060 }
1061
1062 static struct dma_async_tx_descriptor *
1063 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1064 struct dma_async_tx_descriptor *tx)
1065 {
1066 int disks = sh->disks;
1067 struct page **xor_srcs = percpu->scribble;
1068 int count = 0, pd_idx = sh->pd_idx, i;
1069 struct async_submit_ctl submit;
1070
1071 /* existing parity data subtracted */
1072 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1073
1074 pr_debug("%s: stripe %llu\n", __func__,
1075 (unsigned long long)sh->sector);
1076
1077 for (i = disks; i--; ) {
1078 struct r5dev *dev = &sh->dev[i];
1079 /* Only process blocks that are known to be uptodate */
1080 if (test_bit(R5_Wantdrain, &dev->flags))
1081 xor_srcs[count++] = dev->page;
1082 }
1083
1084 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1085 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1086 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1087
1088 return tx;
1089 }
1090
1091 static struct dma_async_tx_descriptor *
1092 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1093 {
1094 int disks = sh->disks;
1095 int i;
1096
1097 pr_debug("%s: stripe %llu\n", __func__,
1098 (unsigned long long)sh->sector);
1099
1100 for (i = disks; i--; ) {
1101 struct r5dev *dev = &sh->dev[i];
1102 struct bio *chosen;
1103
1104 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1105 struct bio *wbi;
1106
1107 spin_lock_irq(&sh->raid_conf->device_lock);
1108 chosen = dev->towrite;
1109 dev->towrite = NULL;
1110 BUG_ON(dev->written);
1111 wbi = dev->written = chosen;
1112 spin_unlock_irq(&sh->raid_conf->device_lock);
1113
1114 while (wbi && wbi->bi_sector <
1115 dev->sector + STRIPE_SECTORS) {
1116 if (wbi->bi_rw & REQ_FUA)
1117 set_bit(R5_WantFUA, &dev->flags);
1118 tx = async_copy_data(1, wbi, dev->page,
1119 dev->sector, tx);
1120 wbi = r5_next_bio(wbi, dev->sector);
1121 }
1122 }
1123 }
1124
1125 return tx;
1126 }
1127
1128 static void ops_complete_reconstruct(void *stripe_head_ref)
1129 {
1130 struct stripe_head *sh = stripe_head_ref;
1131 int disks = sh->disks;
1132 int pd_idx = sh->pd_idx;
1133 int qd_idx = sh->qd_idx;
1134 int i;
1135 bool fua = false;
1136
1137 pr_debug("%s: stripe %llu\n", __func__,
1138 (unsigned long long)sh->sector);
1139
1140 for (i = disks; i--; )
1141 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1142
1143 for (i = disks; i--; ) {
1144 struct r5dev *dev = &sh->dev[i];
1145
1146 if (dev->written || i == pd_idx || i == qd_idx) {
1147 set_bit(R5_UPTODATE, &dev->flags);
1148 if (fua)
1149 set_bit(R5_WantFUA, &dev->flags);
1150 }
1151 }
1152
1153 if (sh->reconstruct_state == reconstruct_state_drain_run)
1154 sh->reconstruct_state = reconstruct_state_drain_result;
1155 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1156 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1157 else {
1158 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1159 sh->reconstruct_state = reconstruct_state_result;
1160 }
1161
1162 set_bit(STRIPE_HANDLE, &sh->state);
1163 release_stripe(sh);
1164 }
1165
1166 static void
1167 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1168 struct dma_async_tx_descriptor *tx)
1169 {
1170 int disks = sh->disks;
1171 struct page **xor_srcs = percpu->scribble;
1172 struct async_submit_ctl submit;
1173 int count = 0, pd_idx = sh->pd_idx, i;
1174 struct page *xor_dest;
1175 int prexor = 0;
1176 unsigned long flags;
1177
1178 pr_debug("%s: stripe %llu\n", __func__,
1179 (unsigned long long)sh->sector);
1180
1181 /* check if prexor is active which means only process blocks
1182 * that are part of a read-modify-write (written)
1183 */
1184 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1185 prexor = 1;
1186 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1187 for (i = disks; i--; ) {
1188 struct r5dev *dev = &sh->dev[i];
1189 if (dev->written)
1190 xor_srcs[count++] = dev->page;
1191 }
1192 } else {
1193 xor_dest = sh->dev[pd_idx].page;
1194 for (i = disks; i--; ) {
1195 struct r5dev *dev = &sh->dev[i];
1196 if (i != pd_idx)
1197 xor_srcs[count++] = dev->page;
1198 }
1199 }
1200
1201 /* 1/ if we prexor'd then the dest is reused as a source
1202 * 2/ if we did not prexor then we are redoing the parity
1203 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1204 * for the synchronous xor case
1205 */
1206 flags = ASYNC_TX_ACK |
1207 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1208
1209 atomic_inc(&sh->count);
1210
1211 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1212 to_addr_conv(sh, percpu));
1213 if (unlikely(count == 1))
1214 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1215 else
1216 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1217 }
1218
1219 static void
1220 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1221 struct dma_async_tx_descriptor *tx)
1222 {
1223 struct async_submit_ctl submit;
1224 struct page **blocks = percpu->scribble;
1225 int count;
1226
1227 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1228
1229 count = set_syndrome_sources(blocks, sh);
1230
1231 atomic_inc(&sh->count);
1232
1233 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1234 sh, to_addr_conv(sh, percpu));
1235 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1236 }
1237
1238 static void ops_complete_check(void *stripe_head_ref)
1239 {
1240 struct stripe_head *sh = stripe_head_ref;
1241
1242 pr_debug("%s: stripe %llu\n", __func__,
1243 (unsigned long long)sh->sector);
1244
1245 sh->check_state = check_state_check_result;
1246 set_bit(STRIPE_HANDLE, &sh->state);
1247 release_stripe(sh);
1248 }
1249
1250 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1251 {
1252 int disks = sh->disks;
1253 int pd_idx = sh->pd_idx;
1254 int qd_idx = sh->qd_idx;
1255 struct page *xor_dest;
1256 struct page **xor_srcs = percpu->scribble;
1257 struct dma_async_tx_descriptor *tx;
1258 struct async_submit_ctl submit;
1259 int count;
1260 int i;
1261
1262 pr_debug("%s: stripe %llu\n", __func__,
1263 (unsigned long long)sh->sector);
1264
1265 count = 0;
1266 xor_dest = sh->dev[pd_idx].page;
1267 xor_srcs[count++] = xor_dest;
1268 for (i = disks; i--; ) {
1269 if (i == pd_idx || i == qd_idx)
1270 continue;
1271 xor_srcs[count++] = sh->dev[i].page;
1272 }
1273
1274 init_async_submit(&submit, 0, NULL, NULL, NULL,
1275 to_addr_conv(sh, percpu));
1276 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1277 &sh->ops.zero_sum_result, &submit);
1278
1279 atomic_inc(&sh->count);
1280 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1281 tx = async_trigger_callback(&submit);
1282 }
1283
1284 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1285 {
1286 struct page **srcs = percpu->scribble;
1287 struct async_submit_ctl submit;
1288 int count;
1289
1290 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1291 (unsigned long long)sh->sector, checkp);
1292
1293 count = set_syndrome_sources(srcs, sh);
1294 if (!checkp)
1295 srcs[count] = NULL;
1296
1297 atomic_inc(&sh->count);
1298 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1299 sh, to_addr_conv(sh, percpu));
1300 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1301 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1302 }
1303
1304 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1305 {
1306 int overlap_clear = 0, i, disks = sh->disks;
1307 struct dma_async_tx_descriptor *tx = NULL;
1308 struct r5conf *conf = sh->raid_conf;
1309 int level = conf->level;
1310 struct raid5_percpu *percpu;
1311 unsigned long cpu;
1312
1313 cpu = get_cpu();
1314 percpu = per_cpu_ptr(conf->percpu, cpu);
1315 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1316 ops_run_biofill(sh);
1317 overlap_clear++;
1318 }
1319
1320 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1321 if (level < 6)
1322 tx = ops_run_compute5(sh, percpu);
1323 else {
1324 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1325 tx = ops_run_compute6_1(sh, percpu);
1326 else
1327 tx = ops_run_compute6_2(sh, percpu);
1328 }
1329 /* terminate the chain if reconstruct is not set to be run */
1330 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1331 async_tx_ack(tx);
1332 }
1333
1334 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1335 tx = ops_run_prexor(sh, percpu, tx);
1336
1337 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1338 tx = ops_run_biodrain(sh, tx);
1339 overlap_clear++;
1340 }
1341
1342 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1343 if (level < 6)
1344 ops_run_reconstruct5(sh, percpu, tx);
1345 else
1346 ops_run_reconstruct6(sh, percpu, tx);
1347 }
1348
1349 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1350 if (sh->check_state == check_state_run)
1351 ops_run_check_p(sh, percpu);
1352 else if (sh->check_state == check_state_run_q)
1353 ops_run_check_pq(sh, percpu, 0);
1354 else if (sh->check_state == check_state_run_pq)
1355 ops_run_check_pq(sh, percpu, 1);
1356 else
1357 BUG();
1358 }
1359
1360 if (overlap_clear)
1361 for (i = disks; i--; ) {
1362 struct r5dev *dev = &sh->dev[i];
1363 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1364 wake_up(&sh->raid_conf->wait_for_overlap);
1365 }
1366 put_cpu();
1367 }
1368
1369 #ifdef CONFIG_MULTICORE_RAID456
1370 static void async_run_ops(void *param, async_cookie_t cookie)
1371 {
1372 struct stripe_head *sh = param;
1373 unsigned long ops_request = sh->ops.request;
1374
1375 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1376 wake_up(&sh->ops.wait_for_ops);
1377
1378 __raid_run_ops(sh, ops_request);
1379 release_stripe(sh);
1380 }
1381
1382 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1383 {
1384 /* since handle_stripe can be called outside of raid5d context
1385 * we need to ensure sh->ops.request is de-staged before another
1386 * request arrives
1387 */
1388 wait_event(sh->ops.wait_for_ops,
1389 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1390 sh->ops.request = ops_request;
1391
1392 atomic_inc(&sh->count);
1393 async_schedule(async_run_ops, sh);
1394 }
1395 #else
1396 #define raid_run_ops __raid_run_ops
1397 #endif
1398
1399 static int grow_one_stripe(struct r5conf *conf)
1400 {
1401 struct stripe_head *sh;
1402 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1403 if (!sh)
1404 return 0;
1405
1406 sh->raid_conf = conf;
1407 #ifdef CONFIG_MULTICORE_RAID456
1408 init_waitqueue_head(&sh->ops.wait_for_ops);
1409 #endif
1410
1411 if (grow_buffers(sh)) {
1412 shrink_buffers(sh);
1413 kmem_cache_free(conf->slab_cache, sh);
1414 return 0;
1415 }
1416 /* we just created an active stripe so... */
1417 atomic_set(&sh->count, 1);
1418 atomic_inc(&conf->active_stripes);
1419 INIT_LIST_HEAD(&sh->lru);
1420 release_stripe(sh);
1421 return 1;
1422 }
1423
1424 static int grow_stripes(struct r5conf *conf, int num)
1425 {
1426 struct kmem_cache *sc;
1427 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1428
1429 if (conf->mddev->gendisk)
1430 sprintf(conf->cache_name[0],
1431 "raid%d-%s", conf->level, mdname(conf->mddev));
1432 else
1433 sprintf(conf->cache_name[0],
1434 "raid%d-%p", conf->level, conf->mddev);
1435 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1436
1437 conf->active_name = 0;
1438 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1439 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1440 0, 0, NULL);
1441 if (!sc)
1442 return 1;
1443 conf->slab_cache = sc;
1444 conf->pool_size = devs;
1445 while (num--)
1446 if (!grow_one_stripe(conf))
1447 return 1;
1448 return 0;
1449 }
1450
1451 /**
1452 * scribble_len - return the required size of the scribble region
1453 * @num - total number of disks in the array
1454 *
1455 * The size must be enough to contain:
1456 * 1/ a struct page pointer for each device in the array +2
1457 * 2/ room to convert each entry in (1) to its corresponding dma
1458 * (dma_map_page()) or page (page_address()) address.
1459 *
1460 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1461 * calculate over all devices (not just the data blocks), using zeros in place
1462 * of the P and Q blocks.
1463 */
1464 static size_t scribble_len(int num)
1465 {
1466 size_t len;
1467
1468 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1469
1470 return len;
1471 }
1472
1473 static int resize_stripes(struct r5conf *conf, int newsize)
1474 {
1475 /* Make all the stripes able to hold 'newsize' devices.
1476 * New slots in each stripe get 'page' set to a new page.
1477 *
1478 * This happens in stages:
1479 * 1/ create a new kmem_cache and allocate the required number of
1480 * stripe_heads.
1481 * 2/ gather all the old stripe_heads and tranfer the pages across
1482 * to the new stripe_heads. This will have the side effect of
1483 * freezing the array as once all stripe_heads have been collected,
1484 * no IO will be possible. Old stripe heads are freed once their
1485 * pages have been transferred over, and the old kmem_cache is
1486 * freed when all stripes are done.
1487 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1488 * we simple return a failre status - no need to clean anything up.
1489 * 4/ allocate new pages for the new slots in the new stripe_heads.
1490 * If this fails, we don't bother trying the shrink the
1491 * stripe_heads down again, we just leave them as they are.
1492 * As each stripe_head is processed the new one is released into
1493 * active service.
1494 *
1495 * Once step2 is started, we cannot afford to wait for a write,
1496 * so we use GFP_NOIO allocations.
1497 */
1498 struct stripe_head *osh, *nsh;
1499 LIST_HEAD(newstripes);
1500 struct disk_info *ndisks;
1501 unsigned long cpu;
1502 int err;
1503 struct kmem_cache *sc;
1504 int i;
1505
1506 if (newsize <= conf->pool_size)
1507 return 0; /* never bother to shrink */
1508
1509 err = md_allow_write(conf->mddev);
1510 if (err)
1511 return err;
1512
1513 /* Step 1 */
1514 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1515 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1516 0, 0, NULL);
1517 if (!sc)
1518 return -ENOMEM;
1519
1520 for (i = conf->max_nr_stripes; i; i--) {
1521 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1522 if (!nsh)
1523 break;
1524
1525 nsh->raid_conf = conf;
1526 #ifdef CONFIG_MULTICORE_RAID456
1527 init_waitqueue_head(&nsh->ops.wait_for_ops);
1528 #endif
1529
1530 list_add(&nsh->lru, &newstripes);
1531 }
1532 if (i) {
1533 /* didn't get enough, give up */
1534 while (!list_empty(&newstripes)) {
1535 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1536 list_del(&nsh->lru);
1537 kmem_cache_free(sc, nsh);
1538 }
1539 kmem_cache_destroy(sc);
1540 return -ENOMEM;
1541 }
1542 /* Step 2 - Must use GFP_NOIO now.
1543 * OK, we have enough stripes, start collecting inactive
1544 * stripes and copying them over
1545 */
1546 list_for_each_entry(nsh, &newstripes, lru) {
1547 spin_lock_irq(&conf->device_lock);
1548 wait_event_lock_irq(conf->wait_for_stripe,
1549 !list_empty(&conf->inactive_list),
1550 conf->device_lock,
1551 );
1552 osh = get_free_stripe(conf);
1553 spin_unlock_irq(&conf->device_lock);
1554 atomic_set(&nsh->count, 1);
1555 for(i=0; i<conf->pool_size; i++)
1556 nsh->dev[i].page = osh->dev[i].page;
1557 for( ; i<newsize; i++)
1558 nsh->dev[i].page = NULL;
1559 kmem_cache_free(conf->slab_cache, osh);
1560 }
1561 kmem_cache_destroy(conf->slab_cache);
1562
1563 /* Step 3.
1564 * At this point, we are holding all the stripes so the array
1565 * is completely stalled, so now is a good time to resize
1566 * conf->disks and the scribble region
1567 */
1568 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1569 if (ndisks) {
1570 for (i=0; i<conf->raid_disks; i++)
1571 ndisks[i] = conf->disks[i];
1572 kfree(conf->disks);
1573 conf->disks = ndisks;
1574 } else
1575 err = -ENOMEM;
1576
1577 get_online_cpus();
1578 conf->scribble_len = scribble_len(newsize);
1579 for_each_present_cpu(cpu) {
1580 struct raid5_percpu *percpu;
1581 void *scribble;
1582
1583 percpu = per_cpu_ptr(conf->percpu, cpu);
1584 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1585
1586 if (scribble) {
1587 kfree(percpu->scribble);
1588 percpu->scribble = scribble;
1589 } else {
1590 err = -ENOMEM;
1591 break;
1592 }
1593 }
1594 put_online_cpus();
1595
1596 /* Step 4, return new stripes to service */
1597 while(!list_empty(&newstripes)) {
1598 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1599 list_del_init(&nsh->lru);
1600
1601 for (i=conf->raid_disks; i < newsize; i++)
1602 if (nsh->dev[i].page == NULL) {
1603 struct page *p = alloc_page(GFP_NOIO);
1604 nsh->dev[i].page = p;
1605 if (!p)
1606 err = -ENOMEM;
1607 }
1608 release_stripe(nsh);
1609 }
1610 /* critical section pass, GFP_NOIO no longer needed */
1611
1612 conf->slab_cache = sc;
1613 conf->active_name = 1-conf->active_name;
1614 conf->pool_size = newsize;
1615 return err;
1616 }
1617
1618 static int drop_one_stripe(struct r5conf *conf)
1619 {
1620 struct stripe_head *sh;
1621
1622 spin_lock_irq(&conf->device_lock);
1623 sh = get_free_stripe(conf);
1624 spin_unlock_irq(&conf->device_lock);
1625 if (!sh)
1626 return 0;
1627 BUG_ON(atomic_read(&sh->count));
1628 shrink_buffers(sh);
1629 kmem_cache_free(conf->slab_cache, sh);
1630 atomic_dec(&conf->active_stripes);
1631 return 1;
1632 }
1633
1634 static void shrink_stripes(struct r5conf *conf)
1635 {
1636 while (drop_one_stripe(conf))
1637 ;
1638
1639 if (conf->slab_cache)
1640 kmem_cache_destroy(conf->slab_cache);
1641 conf->slab_cache = NULL;
1642 }
1643
1644 static void raid5_end_read_request(struct bio * bi, int error)
1645 {
1646 struct stripe_head *sh = bi->bi_private;
1647 struct r5conf *conf = sh->raid_conf;
1648 int disks = sh->disks, i;
1649 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1650 char b[BDEVNAME_SIZE];
1651 struct md_rdev *rdev = NULL;
1652
1653
1654 for (i=0 ; i<disks; i++)
1655 if (bi == &sh->dev[i].req)
1656 break;
1657
1658 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1659 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1660 uptodate);
1661 if (i == disks) {
1662 BUG();
1663 return;
1664 }
1665 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1666 /* If replacement finished while this request was outstanding,
1667 * 'replacement' might be NULL already.
1668 * In that case it moved down to 'rdev'.
1669 * rdev is not removed until all requests are finished.
1670 */
1671 rdev = conf->disks[i].replacement;
1672 if (!rdev)
1673 rdev = conf->disks[i].rdev;
1674
1675 if (uptodate) {
1676 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1677 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1678 /* Note that this cannot happen on a
1679 * replacement device. We just fail those on
1680 * any error
1681 */
1682 printk_ratelimited(
1683 KERN_INFO
1684 "md/raid:%s: read error corrected"
1685 " (%lu sectors at %llu on %s)\n",
1686 mdname(conf->mddev), STRIPE_SECTORS,
1687 (unsigned long long)(sh->sector
1688 + rdev->data_offset),
1689 bdevname(rdev->bdev, b));
1690 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1691 clear_bit(R5_ReadError, &sh->dev[i].flags);
1692 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1693 }
1694 if (atomic_read(&rdev->read_errors))
1695 atomic_set(&rdev->read_errors, 0);
1696 } else {
1697 const char *bdn = bdevname(rdev->bdev, b);
1698 int retry = 0;
1699
1700 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1701 atomic_inc(&rdev->read_errors);
1702 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1703 printk_ratelimited(
1704 KERN_WARNING
1705 "md/raid:%s: read error on replacement device "
1706 "(sector %llu on %s).\n",
1707 mdname(conf->mddev),
1708 (unsigned long long)(sh->sector
1709 + rdev->data_offset),
1710 bdn);
1711 else if (conf->mddev->degraded >= conf->max_degraded)
1712 printk_ratelimited(
1713 KERN_WARNING
1714 "md/raid:%s: read error not correctable "
1715 "(sector %llu on %s).\n",
1716 mdname(conf->mddev),
1717 (unsigned long long)(sh->sector
1718 + rdev->data_offset),
1719 bdn);
1720 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1721 /* Oh, no!!! */
1722 printk_ratelimited(
1723 KERN_WARNING
1724 "md/raid:%s: read error NOT corrected!! "
1725 "(sector %llu on %s).\n",
1726 mdname(conf->mddev),
1727 (unsigned long long)(sh->sector
1728 + rdev->data_offset),
1729 bdn);
1730 else if (atomic_read(&rdev->read_errors)
1731 > conf->max_nr_stripes)
1732 printk(KERN_WARNING
1733 "md/raid:%s: Too many read errors, failing device %s.\n",
1734 mdname(conf->mddev), bdn);
1735 else
1736 retry = 1;
1737 if (retry)
1738 set_bit(R5_ReadError, &sh->dev[i].flags);
1739 else {
1740 clear_bit(R5_ReadError, &sh->dev[i].flags);
1741 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1742 md_error(conf->mddev, rdev);
1743 }
1744 }
1745 rdev_dec_pending(rdev, conf->mddev);
1746 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1747 set_bit(STRIPE_HANDLE, &sh->state);
1748 release_stripe(sh);
1749 }
1750
1751 static void raid5_end_write_request(struct bio *bi, int error)
1752 {
1753 struct stripe_head *sh = bi->bi_private;
1754 struct r5conf *conf = sh->raid_conf;
1755 int disks = sh->disks, i;
1756 struct md_rdev *uninitialized_var(rdev);
1757 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1758 sector_t first_bad;
1759 int bad_sectors;
1760 int replacement = 0;
1761
1762 for (i = 0 ; i < disks; i++) {
1763 if (bi == &sh->dev[i].req) {
1764 rdev = conf->disks[i].rdev;
1765 break;
1766 }
1767 if (bi == &sh->dev[i].rreq) {
1768 rdev = conf->disks[i].replacement;
1769 if (rdev)
1770 replacement = 1;
1771 else
1772 /* rdev was removed and 'replacement'
1773 * replaced it. rdev is not removed
1774 * until all requests are finished.
1775 */
1776 rdev = conf->disks[i].rdev;
1777 break;
1778 }
1779 }
1780 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1781 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1782 uptodate);
1783 if (i == disks) {
1784 BUG();
1785 return;
1786 }
1787
1788 if (replacement) {
1789 if (!uptodate)
1790 md_error(conf->mddev, rdev);
1791 else if (is_badblock(rdev, sh->sector,
1792 STRIPE_SECTORS,
1793 &first_bad, &bad_sectors))
1794 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1795 } else {
1796 if (!uptodate) {
1797 set_bit(WriteErrorSeen, &rdev->flags);
1798 set_bit(R5_WriteError, &sh->dev[i].flags);
1799 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1800 set_bit(MD_RECOVERY_NEEDED,
1801 &rdev->mddev->recovery);
1802 } else if (is_badblock(rdev, sh->sector,
1803 STRIPE_SECTORS,
1804 &first_bad, &bad_sectors))
1805 set_bit(R5_MadeGood, &sh->dev[i].flags);
1806 }
1807 rdev_dec_pending(rdev, conf->mddev);
1808
1809 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1810 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1811 set_bit(STRIPE_HANDLE, &sh->state);
1812 release_stripe(sh);
1813 }
1814
1815 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1816
1817 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1818 {
1819 struct r5dev *dev = &sh->dev[i];
1820
1821 bio_init(&dev->req);
1822 dev->req.bi_io_vec = &dev->vec;
1823 dev->req.bi_vcnt++;
1824 dev->req.bi_max_vecs++;
1825 dev->req.bi_private = sh;
1826 dev->vec.bv_page = dev->page;
1827
1828 bio_init(&dev->rreq);
1829 dev->rreq.bi_io_vec = &dev->rvec;
1830 dev->rreq.bi_vcnt++;
1831 dev->rreq.bi_max_vecs++;
1832 dev->rreq.bi_private = sh;
1833 dev->rvec.bv_page = dev->page;
1834
1835 dev->flags = 0;
1836 dev->sector = compute_blocknr(sh, i, previous);
1837 }
1838
1839 static void error(struct mddev *mddev, struct md_rdev *rdev)
1840 {
1841 char b[BDEVNAME_SIZE];
1842 struct r5conf *conf = mddev->private;
1843 unsigned long flags;
1844 pr_debug("raid456: error called\n");
1845
1846 spin_lock_irqsave(&conf->device_lock, flags);
1847 clear_bit(In_sync, &rdev->flags);
1848 mddev->degraded = calc_degraded(conf);
1849 spin_unlock_irqrestore(&conf->device_lock, flags);
1850 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1851
1852 set_bit(Blocked, &rdev->flags);
1853 set_bit(Faulty, &rdev->flags);
1854 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1855 printk(KERN_ALERT
1856 "md/raid:%s: Disk failure on %s, disabling device.\n"
1857 "md/raid:%s: Operation continuing on %d devices.\n",
1858 mdname(mddev),
1859 bdevname(rdev->bdev, b),
1860 mdname(mddev),
1861 conf->raid_disks - mddev->degraded);
1862 }
1863
1864 /*
1865 * Input: a 'big' sector number,
1866 * Output: index of the data and parity disk, and the sector # in them.
1867 */
1868 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1869 int previous, int *dd_idx,
1870 struct stripe_head *sh)
1871 {
1872 sector_t stripe, stripe2;
1873 sector_t chunk_number;
1874 unsigned int chunk_offset;
1875 int pd_idx, qd_idx;
1876 int ddf_layout = 0;
1877 sector_t new_sector;
1878 int algorithm = previous ? conf->prev_algo
1879 : conf->algorithm;
1880 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1881 : conf->chunk_sectors;
1882 int raid_disks = previous ? conf->previous_raid_disks
1883 : conf->raid_disks;
1884 int data_disks = raid_disks - conf->max_degraded;
1885
1886 /* First compute the information on this sector */
1887
1888 /*
1889 * Compute the chunk number and the sector offset inside the chunk
1890 */
1891 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1892 chunk_number = r_sector;
1893
1894 /*
1895 * Compute the stripe number
1896 */
1897 stripe = chunk_number;
1898 *dd_idx = sector_div(stripe, data_disks);
1899 stripe2 = stripe;
1900 /*
1901 * Select the parity disk based on the user selected algorithm.
1902 */
1903 pd_idx = qd_idx = -1;
1904 switch(conf->level) {
1905 case 4:
1906 pd_idx = data_disks;
1907 break;
1908 case 5:
1909 switch (algorithm) {
1910 case ALGORITHM_LEFT_ASYMMETRIC:
1911 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1912 if (*dd_idx >= pd_idx)
1913 (*dd_idx)++;
1914 break;
1915 case ALGORITHM_RIGHT_ASYMMETRIC:
1916 pd_idx = sector_div(stripe2, raid_disks);
1917 if (*dd_idx >= pd_idx)
1918 (*dd_idx)++;
1919 break;
1920 case ALGORITHM_LEFT_SYMMETRIC:
1921 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1922 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1923 break;
1924 case ALGORITHM_RIGHT_SYMMETRIC:
1925 pd_idx = sector_div(stripe2, raid_disks);
1926 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1927 break;
1928 case ALGORITHM_PARITY_0:
1929 pd_idx = 0;
1930 (*dd_idx)++;
1931 break;
1932 case ALGORITHM_PARITY_N:
1933 pd_idx = data_disks;
1934 break;
1935 default:
1936 BUG();
1937 }
1938 break;
1939 case 6:
1940
1941 switch (algorithm) {
1942 case ALGORITHM_LEFT_ASYMMETRIC:
1943 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1944 qd_idx = pd_idx + 1;
1945 if (pd_idx == raid_disks-1) {
1946 (*dd_idx)++; /* Q D D D P */
1947 qd_idx = 0;
1948 } else if (*dd_idx >= pd_idx)
1949 (*dd_idx) += 2; /* D D P Q D */
1950 break;
1951 case ALGORITHM_RIGHT_ASYMMETRIC:
1952 pd_idx = sector_div(stripe2, raid_disks);
1953 qd_idx = pd_idx + 1;
1954 if (pd_idx == raid_disks-1) {
1955 (*dd_idx)++; /* Q D D D P */
1956 qd_idx = 0;
1957 } else if (*dd_idx >= pd_idx)
1958 (*dd_idx) += 2; /* D D P Q D */
1959 break;
1960 case ALGORITHM_LEFT_SYMMETRIC:
1961 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1962 qd_idx = (pd_idx + 1) % raid_disks;
1963 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1964 break;
1965 case ALGORITHM_RIGHT_SYMMETRIC:
1966 pd_idx = sector_div(stripe2, raid_disks);
1967 qd_idx = (pd_idx + 1) % raid_disks;
1968 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1969 break;
1970
1971 case ALGORITHM_PARITY_0:
1972 pd_idx = 0;
1973 qd_idx = 1;
1974 (*dd_idx) += 2;
1975 break;
1976 case ALGORITHM_PARITY_N:
1977 pd_idx = data_disks;
1978 qd_idx = data_disks + 1;
1979 break;
1980
1981 case ALGORITHM_ROTATING_ZERO_RESTART:
1982 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1983 * of blocks for computing Q is different.
1984 */
1985 pd_idx = sector_div(stripe2, raid_disks);
1986 qd_idx = pd_idx + 1;
1987 if (pd_idx == raid_disks-1) {
1988 (*dd_idx)++; /* Q D D D P */
1989 qd_idx = 0;
1990 } else if (*dd_idx >= pd_idx)
1991 (*dd_idx) += 2; /* D D P Q D */
1992 ddf_layout = 1;
1993 break;
1994
1995 case ALGORITHM_ROTATING_N_RESTART:
1996 /* Same a left_asymmetric, by first stripe is
1997 * D D D P Q rather than
1998 * Q D D D P
1999 */
2000 stripe2 += 1;
2001 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2002 qd_idx = pd_idx + 1;
2003 if (pd_idx == raid_disks-1) {
2004 (*dd_idx)++; /* Q D D D P */
2005 qd_idx = 0;
2006 } else if (*dd_idx >= pd_idx)
2007 (*dd_idx) += 2; /* D D P Q D */
2008 ddf_layout = 1;
2009 break;
2010
2011 case ALGORITHM_ROTATING_N_CONTINUE:
2012 /* Same as left_symmetric but Q is before P */
2013 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2014 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2015 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2016 ddf_layout = 1;
2017 break;
2018
2019 case ALGORITHM_LEFT_ASYMMETRIC_6:
2020 /* RAID5 left_asymmetric, with Q on last device */
2021 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2022 if (*dd_idx >= pd_idx)
2023 (*dd_idx)++;
2024 qd_idx = raid_disks - 1;
2025 break;
2026
2027 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2028 pd_idx = sector_div(stripe2, raid_disks-1);
2029 if (*dd_idx >= pd_idx)
2030 (*dd_idx)++;
2031 qd_idx = raid_disks - 1;
2032 break;
2033
2034 case ALGORITHM_LEFT_SYMMETRIC_6:
2035 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2036 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2037 qd_idx = raid_disks - 1;
2038 break;
2039
2040 case ALGORITHM_RIGHT_SYMMETRIC_6:
2041 pd_idx = sector_div(stripe2, raid_disks-1);
2042 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2043 qd_idx = raid_disks - 1;
2044 break;
2045
2046 case ALGORITHM_PARITY_0_6:
2047 pd_idx = 0;
2048 (*dd_idx)++;
2049 qd_idx = raid_disks - 1;
2050 break;
2051
2052 default:
2053 BUG();
2054 }
2055 break;
2056 }
2057
2058 if (sh) {
2059 sh->pd_idx = pd_idx;
2060 sh->qd_idx = qd_idx;
2061 sh->ddf_layout = ddf_layout;
2062 }
2063 /*
2064 * Finally, compute the new sector number
2065 */
2066 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2067 return new_sector;
2068 }
2069
2070
2071 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2072 {
2073 struct r5conf *conf = sh->raid_conf;
2074 int raid_disks = sh->disks;
2075 int data_disks = raid_disks - conf->max_degraded;
2076 sector_t new_sector = sh->sector, check;
2077 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2078 : conf->chunk_sectors;
2079 int algorithm = previous ? conf->prev_algo
2080 : conf->algorithm;
2081 sector_t stripe;
2082 int chunk_offset;
2083 sector_t chunk_number;
2084 int dummy1, dd_idx = i;
2085 sector_t r_sector;
2086 struct stripe_head sh2;
2087
2088
2089 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2090 stripe = new_sector;
2091
2092 if (i == sh->pd_idx)
2093 return 0;
2094 switch(conf->level) {
2095 case 4: break;
2096 case 5:
2097 switch (algorithm) {
2098 case ALGORITHM_LEFT_ASYMMETRIC:
2099 case ALGORITHM_RIGHT_ASYMMETRIC:
2100 if (i > sh->pd_idx)
2101 i--;
2102 break;
2103 case ALGORITHM_LEFT_SYMMETRIC:
2104 case ALGORITHM_RIGHT_SYMMETRIC:
2105 if (i < sh->pd_idx)
2106 i += raid_disks;
2107 i -= (sh->pd_idx + 1);
2108 break;
2109 case ALGORITHM_PARITY_0:
2110 i -= 1;
2111 break;
2112 case ALGORITHM_PARITY_N:
2113 break;
2114 default:
2115 BUG();
2116 }
2117 break;
2118 case 6:
2119 if (i == sh->qd_idx)
2120 return 0; /* It is the Q disk */
2121 switch (algorithm) {
2122 case ALGORITHM_LEFT_ASYMMETRIC:
2123 case ALGORITHM_RIGHT_ASYMMETRIC:
2124 case ALGORITHM_ROTATING_ZERO_RESTART:
2125 case ALGORITHM_ROTATING_N_RESTART:
2126 if (sh->pd_idx == raid_disks-1)
2127 i--; /* Q D D D P */
2128 else if (i > sh->pd_idx)
2129 i -= 2; /* D D P Q D */
2130 break;
2131 case ALGORITHM_LEFT_SYMMETRIC:
2132 case ALGORITHM_RIGHT_SYMMETRIC:
2133 if (sh->pd_idx == raid_disks-1)
2134 i--; /* Q D D D P */
2135 else {
2136 /* D D P Q D */
2137 if (i < sh->pd_idx)
2138 i += raid_disks;
2139 i -= (sh->pd_idx + 2);
2140 }
2141 break;
2142 case ALGORITHM_PARITY_0:
2143 i -= 2;
2144 break;
2145 case ALGORITHM_PARITY_N:
2146 break;
2147 case ALGORITHM_ROTATING_N_CONTINUE:
2148 /* Like left_symmetric, but P is before Q */
2149 if (sh->pd_idx == 0)
2150 i--; /* P D D D Q */
2151 else {
2152 /* D D Q P D */
2153 if (i < sh->pd_idx)
2154 i += raid_disks;
2155 i -= (sh->pd_idx + 1);
2156 }
2157 break;
2158 case ALGORITHM_LEFT_ASYMMETRIC_6:
2159 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2160 if (i > sh->pd_idx)
2161 i--;
2162 break;
2163 case ALGORITHM_LEFT_SYMMETRIC_6:
2164 case ALGORITHM_RIGHT_SYMMETRIC_6:
2165 if (i < sh->pd_idx)
2166 i += data_disks + 1;
2167 i -= (sh->pd_idx + 1);
2168 break;
2169 case ALGORITHM_PARITY_0_6:
2170 i -= 1;
2171 break;
2172 default:
2173 BUG();
2174 }
2175 break;
2176 }
2177
2178 chunk_number = stripe * data_disks + i;
2179 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2180
2181 check = raid5_compute_sector(conf, r_sector,
2182 previous, &dummy1, &sh2);
2183 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2184 || sh2.qd_idx != sh->qd_idx) {
2185 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2186 mdname(conf->mddev));
2187 return 0;
2188 }
2189 return r_sector;
2190 }
2191
2192
2193 static void
2194 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2195 int rcw, int expand)
2196 {
2197 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2198 struct r5conf *conf = sh->raid_conf;
2199 int level = conf->level;
2200
2201 if (rcw) {
2202 /* if we are not expanding this is a proper write request, and
2203 * there will be bios with new data to be drained into the
2204 * stripe cache
2205 */
2206 if (!expand) {
2207 sh->reconstruct_state = reconstruct_state_drain_run;
2208 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2209 } else
2210 sh->reconstruct_state = reconstruct_state_run;
2211
2212 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2213
2214 for (i = disks; i--; ) {
2215 struct r5dev *dev = &sh->dev[i];
2216
2217 if (dev->towrite) {
2218 set_bit(R5_LOCKED, &dev->flags);
2219 set_bit(R5_Wantdrain, &dev->flags);
2220 if (!expand)
2221 clear_bit(R5_UPTODATE, &dev->flags);
2222 s->locked++;
2223 }
2224 }
2225 if (s->locked + conf->max_degraded == disks)
2226 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2227 atomic_inc(&conf->pending_full_writes);
2228 } else {
2229 BUG_ON(level == 6);
2230 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2231 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2232
2233 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2234 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2235 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2236 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2237
2238 for (i = disks; i--; ) {
2239 struct r5dev *dev = &sh->dev[i];
2240 if (i == pd_idx)
2241 continue;
2242
2243 if (dev->towrite &&
2244 (test_bit(R5_UPTODATE, &dev->flags) ||
2245 test_bit(R5_Wantcompute, &dev->flags))) {
2246 set_bit(R5_Wantdrain, &dev->flags);
2247 set_bit(R5_LOCKED, &dev->flags);
2248 clear_bit(R5_UPTODATE, &dev->flags);
2249 s->locked++;
2250 }
2251 }
2252 }
2253
2254 /* keep the parity disk(s) locked while asynchronous operations
2255 * are in flight
2256 */
2257 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2258 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2259 s->locked++;
2260
2261 if (level == 6) {
2262 int qd_idx = sh->qd_idx;
2263 struct r5dev *dev = &sh->dev[qd_idx];
2264
2265 set_bit(R5_LOCKED, &dev->flags);
2266 clear_bit(R5_UPTODATE, &dev->flags);
2267 s->locked++;
2268 }
2269
2270 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2271 __func__, (unsigned long long)sh->sector,
2272 s->locked, s->ops_request);
2273 }
2274
2275 /*
2276 * Each stripe/dev can have one or more bion attached.
2277 * toread/towrite point to the first in a chain.
2278 * The bi_next chain must be in order.
2279 */
2280 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2281 {
2282 struct bio **bip;
2283 struct r5conf *conf = sh->raid_conf;
2284 int firstwrite=0;
2285
2286 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2287 (unsigned long long)bi->bi_sector,
2288 (unsigned long long)sh->sector);
2289
2290
2291 spin_lock_irq(&conf->device_lock);
2292 if (forwrite) {
2293 bip = &sh->dev[dd_idx].towrite;
2294 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2295 firstwrite = 1;
2296 } else
2297 bip = &sh->dev[dd_idx].toread;
2298 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2299 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2300 goto overlap;
2301 bip = & (*bip)->bi_next;
2302 }
2303 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2304 goto overlap;
2305
2306 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2307 if (*bip)
2308 bi->bi_next = *bip;
2309 *bip = bi;
2310 bi->bi_phys_segments++;
2311
2312 if (forwrite) {
2313 /* check if page is covered */
2314 sector_t sector = sh->dev[dd_idx].sector;
2315 for (bi=sh->dev[dd_idx].towrite;
2316 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2317 bi && bi->bi_sector <= sector;
2318 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2319 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2320 sector = bi->bi_sector + (bi->bi_size>>9);
2321 }
2322 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2323 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2324 }
2325 spin_unlock_irq(&conf->device_lock);
2326
2327 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2328 (unsigned long long)(*bip)->bi_sector,
2329 (unsigned long long)sh->sector, dd_idx);
2330
2331 if (conf->mddev->bitmap && firstwrite) {
2332 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2333 STRIPE_SECTORS, 0);
2334 sh->bm_seq = conf->seq_flush+1;
2335 set_bit(STRIPE_BIT_DELAY, &sh->state);
2336 }
2337 return 1;
2338
2339 overlap:
2340 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2341 spin_unlock_irq(&conf->device_lock);
2342 return 0;
2343 }
2344
2345 static void end_reshape(struct r5conf *conf);
2346
2347 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2348 struct stripe_head *sh)
2349 {
2350 int sectors_per_chunk =
2351 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2352 int dd_idx;
2353 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2354 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2355
2356 raid5_compute_sector(conf,
2357 stripe * (disks - conf->max_degraded)
2358 *sectors_per_chunk + chunk_offset,
2359 previous,
2360 &dd_idx, sh);
2361 }
2362
2363 static void
2364 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2365 struct stripe_head_state *s, int disks,
2366 struct bio **return_bi)
2367 {
2368 int i;
2369 for (i = disks; i--; ) {
2370 struct bio *bi;
2371 int bitmap_end = 0;
2372
2373 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2374 struct md_rdev *rdev;
2375 rcu_read_lock();
2376 rdev = rcu_dereference(conf->disks[i].rdev);
2377 if (rdev && test_bit(In_sync, &rdev->flags))
2378 atomic_inc(&rdev->nr_pending);
2379 else
2380 rdev = NULL;
2381 rcu_read_unlock();
2382 if (rdev) {
2383 if (!rdev_set_badblocks(
2384 rdev,
2385 sh->sector,
2386 STRIPE_SECTORS, 0))
2387 md_error(conf->mddev, rdev);
2388 rdev_dec_pending(rdev, conf->mddev);
2389 }
2390 }
2391 spin_lock_irq(&conf->device_lock);
2392 /* fail all writes first */
2393 bi = sh->dev[i].towrite;
2394 sh->dev[i].towrite = NULL;
2395 if (bi) {
2396 s->to_write--;
2397 bitmap_end = 1;
2398 }
2399
2400 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2401 wake_up(&conf->wait_for_overlap);
2402
2403 while (bi && bi->bi_sector <
2404 sh->dev[i].sector + STRIPE_SECTORS) {
2405 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2406 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2407 if (!raid5_dec_bi_phys_segments(bi)) {
2408 md_write_end(conf->mddev);
2409 bi->bi_next = *return_bi;
2410 *return_bi = bi;
2411 }
2412 bi = nextbi;
2413 }
2414 /* and fail all 'written' */
2415 bi = sh->dev[i].written;
2416 sh->dev[i].written = NULL;
2417 if (bi) bitmap_end = 1;
2418 while (bi && bi->bi_sector <
2419 sh->dev[i].sector + STRIPE_SECTORS) {
2420 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2421 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2422 if (!raid5_dec_bi_phys_segments(bi)) {
2423 md_write_end(conf->mddev);
2424 bi->bi_next = *return_bi;
2425 *return_bi = bi;
2426 }
2427 bi = bi2;
2428 }
2429
2430 /* fail any reads if this device is non-operational and
2431 * the data has not reached the cache yet.
2432 */
2433 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2434 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2435 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2436 bi = sh->dev[i].toread;
2437 sh->dev[i].toread = NULL;
2438 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2439 wake_up(&conf->wait_for_overlap);
2440 if (bi) s->to_read--;
2441 while (bi && bi->bi_sector <
2442 sh->dev[i].sector + STRIPE_SECTORS) {
2443 struct bio *nextbi =
2444 r5_next_bio(bi, sh->dev[i].sector);
2445 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2446 if (!raid5_dec_bi_phys_segments(bi)) {
2447 bi->bi_next = *return_bi;
2448 *return_bi = bi;
2449 }
2450 bi = nextbi;
2451 }
2452 }
2453 spin_unlock_irq(&conf->device_lock);
2454 if (bitmap_end)
2455 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2456 STRIPE_SECTORS, 0, 0);
2457 /* If we were in the middle of a write the parity block might
2458 * still be locked - so just clear all R5_LOCKED flags
2459 */
2460 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2461 }
2462
2463 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2464 if (atomic_dec_and_test(&conf->pending_full_writes))
2465 md_wakeup_thread(conf->mddev->thread);
2466 }
2467
2468 static void
2469 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2470 struct stripe_head_state *s)
2471 {
2472 int abort = 0;
2473 int i;
2474
2475 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2476 clear_bit(STRIPE_SYNCING, &sh->state);
2477 s->syncing = 0;
2478 s->replacing = 0;
2479 /* There is nothing more to do for sync/check/repair.
2480 * For recover/replace we need to record a bad block on all
2481 * non-sync devices, or abort the recovery
2482 */
2483 if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2484 return;
2485 /* During recovery devices cannot be removed, so locking and
2486 * refcounting of rdevs is not needed
2487 */
2488 for (i = 0; i < conf->raid_disks; i++) {
2489 struct md_rdev *rdev = conf->disks[i].rdev;
2490 if (rdev
2491 && !test_bit(Faulty, &rdev->flags)
2492 && !test_bit(In_sync, &rdev->flags)
2493 && !rdev_set_badblocks(rdev, sh->sector,
2494 STRIPE_SECTORS, 0))
2495 abort = 1;
2496 rdev = conf->disks[i].replacement;
2497 if (rdev
2498 && !test_bit(Faulty, &rdev->flags)
2499 && !test_bit(In_sync, &rdev->flags)
2500 && !rdev_set_badblocks(rdev, sh->sector,
2501 STRIPE_SECTORS, 0))
2502 abort = 1;
2503 }
2504 if (abort) {
2505 conf->recovery_disabled = conf->mddev->recovery_disabled;
2506 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2507 }
2508 }
2509
2510 static int want_replace(struct stripe_head *sh, int disk_idx)
2511 {
2512 struct md_rdev *rdev;
2513 int rv = 0;
2514 /* Doing recovery so rcu locking not required */
2515 rdev = sh->raid_conf->disks[disk_idx].replacement;
2516 if (rdev
2517 && !test_bit(Faulty, &rdev->flags)
2518 && !test_bit(In_sync, &rdev->flags)
2519 && (rdev->recovery_offset <= sh->sector
2520 || rdev->mddev->recovery_cp <= sh->sector))
2521 rv = 1;
2522
2523 return rv;
2524 }
2525
2526 /* fetch_block - checks the given member device to see if its data needs
2527 * to be read or computed to satisfy a request.
2528 *
2529 * Returns 1 when no more member devices need to be checked, otherwise returns
2530 * 0 to tell the loop in handle_stripe_fill to continue
2531 */
2532 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2533 int disk_idx, int disks)
2534 {
2535 struct r5dev *dev = &sh->dev[disk_idx];
2536 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2537 &sh->dev[s->failed_num[1]] };
2538
2539 /* is the data in this block needed, and can we get it? */
2540 if (!test_bit(R5_LOCKED, &dev->flags) &&
2541 !test_bit(R5_UPTODATE, &dev->flags) &&
2542 (dev->toread ||
2543 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2544 s->syncing || s->expanding ||
2545 (s->replacing && want_replace(sh, disk_idx)) ||
2546 (s->failed >= 1 && fdev[0]->toread) ||
2547 (s->failed >= 2 && fdev[1]->toread) ||
2548 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2549 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2550 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2551 /* we would like to get this block, possibly by computing it,
2552 * otherwise read it if the backing disk is insync
2553 */
2554 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2555 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2556 if ((s->uptodate == disks - 1) &&
2557 (s->failed && (disk_idx == s->failed_num[0] ||
2558 disk_idx == s->failed_num[1]))) {
2559 /* have disk failed, and we're requested to fetch it;
2560 * do compute it
2561 */
2562 pr_debug("Computing stripe %llu block %d\n",
2563 (unsigned long long)sh->sector, disk_idx);
2564 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2565 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2566 set_bit(R5_Wantcompute, &dev->flags);
2567 sh->ops.target = disk_idx;
2568 sh->ops.target2 = -1; /* no 2nd target */
2569 s->req_compute = 1;
2570 /* Careful: from this point on 'uptodate' is in the eye
2571 * of raid_run_ops which services 'compute' operations
2572 * before writes. R5_Wantcompute flags a block that will
2573 * be R5_UPTODATE by the time it is needed for a
2574 * subsequent operation.
2575 */
2576 s->uptodate++;
2577 return 1;
2578 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2579 /* Computing 2-failure is *very* expensive; only
2580 * do it if failed >= 2
2581 */
2582 int other;
2583 for (other = disks; other--; ) {
2584 if (other == disk_idx)
2585 continue;
2586 if (!test_bit(R5_UPTODATE,
2587 &sh->dev[other].flags))
2588 break;
2589 }
2590 BUG_ON(other < 0);
2591 pr_debug("Computing stripe %llu blocks %d,%d\n",
2592 (unsigned long long)sh->sector,
2593 disk_idx, other);
2594 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2595 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2596 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2597 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2598 sh->ops.target = disk_idx;
2599 sh->ops.target2 = other;
2600 s->uptodate += 2;
2601 s->req_compute = 1;
2602 return 1;
2603 } else if (test_bit(R5_Insync, &dev->flags)) {
2604 set_bit(R5_LOCKED, &dev->flags);
2605 set_bit(R5_Wantread, &dev->flags);
2606 s->locked++;
2607 pr_debug("Reading block %d (sync=%d)\n",
2608 disk_idx, s->syncing);
2609 }
2610 }
2611
2612 return 0;
2613 }
2614
2615 /**
2616 * handle_stripe_fill - read or compute data to satisfy pending requests.
2617 */
2618 static void handle_stripe_fill(struct stripe_head *sh,
2619 struct stripe_head_state *s,
2620 int disks)
2621 {
2622 int i;
2623
2624 /* look for blocks to read/compute, skip this if a compute
2625 * is already in flight, or if the stripe contents are in the
2626 * midst of changing due to a write
2627 */
2628 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2629 !sh->reconstruct_state)
2630 for (i = disks; i--; )
2631 if (fetch_block(sh, s, i, disks))
2632 break;
2633 set_bit(STRIPE_HANDLE, &sh->state);
2634 }
2635
2636
2637 /* handle_stripe_clean_event
2638 * any written block on an uptodate or failed drive can be returned.
2639 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2640 * never LOCKED, so we don't need to test 'failed' directly.
2641 */
2642 static void handle_stripe_clean_event(struct r5conf *conf,
2643 struct stripe_head *sh, int disks, struct bio **return_bi)
2644 {
2645 int i;
2646 struct r5dev *dev;
2647
2648 for (i = disks; i--; )
2649 if (sh->dev[i].written) {
2650 dev = &sh->dev[i];
2651 if (!test_bit(R5_LOCKED, &dev->flags) &&
2652 test_bit(R5_UPTODATE, &dev->flags)) {
2653 /* We can return any write requests */
2654 struct bio *wbi, *wbi2;
2655 int bitmap_end = 0;
2656 pr_debug("Return write for disc %d\n", i);
2657 spin_lock_irq(&conf->device_lock);
2658 wbi = dev->written;
2659 dev->written = NULL;
2660 while (wbi && wbi->bi_sector <
2661 dev->sector + STRIPE_SECTORS) {
2662 wbi2 = r5_next_bio(wbi, dev->sector);
2663 if (!raid5_dec_bi_phys_segments(wbi)) {
2664 md_write_end(conf->mddev);
2665 wbi->bi_next = *return_bi;
2666 *return_bi = wbi;
2667 }
2668 wbi = wbi2;
2669 }
2670 if (dev->towrite == NULL)
2671 bitmap_end = 1;
2672 spin_unlock_irq(&conf->device_lock);
2673 if (bitmap_end)
2674 bitmap_endwrite(conf->mddev->bitmap,
2675 sh->sector,
2676 STRIPE_SECTORS,
2677 !test_bit(STRIPE_DEGRADED, &sh->state),
2678 0);
2679 }
2680 }
2681
2682 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2683 if (atomic_dec_and_test(&conf->pending_full_writes))
2684 md_wakeup_thread(conf->mddev->thread);
2685 }
2686
2687 static void handle_stripe_dirtying(struct r5conf *conf,
2688 struct stripe_head *sh,
2689 struct stripe_head_state *s,
2690 int disks)
2691 {
2692 int rmw = 0, rcw = 0, i;
2693 if (conf->max_degraded == 2) {
2694 /* RAID6 requires 'rcw' in current implementation
2695 * Calculate the real rcw later - for now fake it
2696 * look like rcw is cheaper
2697 */
2698 rcw = 1; rmw = 2;
2699 } else for (i = disks; i--; ) {
2700 /* would I have to read this buffer for read_modify_write */
2701 struct r5dev *dev = &sh->dev[i];
2702 if ((dev->towrite || i == sh->pd_idx) &&
2703 !test_bit(R5_LOCKED, &dev->flags) &&
2704 !(test_bit(R5_UPTODATE, &dev->flags) ||
2705 test_bit(R5_Wantcompute, &dev->flags))) {
2706 if (test_bit(R5_Insync, &dev->flags))
2707 rmw++;
2708 else
2709 rmw += 2*disks; /* cannot read it */
2710 }
2711 /* Would I have to read this buffer for reconstruct_write */
2712 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2713 !test_bit(R5_LOCKED, &dev->flags) &&
2714 !(test_bit(R5_UPTODATE, &dev->flags) ||
2715 test_bit(R5_Wantcompute, &dev->flags))) {
2716 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2717 else
2718 rcw += 2*disks;
2719 }
2720 }
2721 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2722 (unsigned long long)sh->sector, rmw, rcw);
2723 set_bit(STRIPE_HANDLE, &sh->state);
2724 if (rmw < rcw && rmw > 0)
2725 /* prefer read-modify-write, but need to get some data */
2726 for (i = disks; i--; ) {
2727 struct r5dev *dev = &sh->dev[i];
2728 if ((dev->towrite || i == sh->pd_idx) &&
2729 !test_bit(R5_LOCKED, &dev->flags) &&
2730 !(test_bit(R5_UPTODATE, &dev->flags) ||
2731 test_bit(R5_Wantcompute, &dev->flags)) &&
2732 test_bit(R5_Insync, &dev->flags)) {
2733 if (
2734 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2735 pr_debug("Read_old block "
2736 "%d for r-m-w\n", i);
2737 set_bit(R5_LOCKED, &dev->flags);
2738 set_bit(R5_Wantread, &dev->flags);
2739 s->locked++;
2740 } else {
2741 set_bit(STRIPE_DELAYED, &sh->state);
2742 set_bit(STRIPE_HANDLE, &sh->state);
2743 }
2744 }
2745 }
2746 if (rcw <= rmw && rcw > 0) {
2747 /* want reconstruct write, but need to get some data */
2748 rcw = 0;
2749 for (i = disks; i--; ) {
2750 struct r5dev *dev = &sh->dev[i];
2751 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2752 i != sh->pd_idx && i != sh->qd_idx &&
2753 !test_bit(R5_LOCKED, &dev->flags) &&
2754 !(test_bit(R5_UPTODATE, &dev->flags) ||
2755 test_bit(R5_Wantcompute, &dev->flags))) {
2756 rcw++;
2757 if (!test_bit(R5_Insync, &dev->flags))
2758 continue; /* it's a failed drive */
2759 if (
2760 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2761 pr_debug("Read_old block "
2762 "%d for Reconstruct\n", i);
2763 set_bit(R5_LOCKED, &dev->flags);
2764 set_bit(R5_Wantread, &dev->flags);
2765 s->locked++;
2766 } else {
2767 set_bit(STRIPE_DELAYED, &sh->state);
2768 set_bit(STRIPE_HANDLE, &sh->state);
2769 }
2770 }
2771 }
2772 }
2773 /* now if nothing is locked, and if we have enough data,
2774 * we can start a write request
2775 */
2776 /* since handle_stripe can be called at any time we need to handle the
2777 * case where a compute block operation has been submitted and then a
2778 * subsequent call wants to start a write request. raid_run_ops only
2779 * handles the case where compute block and reconstruct are requested
2780 * simultaneously. If this is not the case then new writes need to be
2781 * held off until the compute completes.
2782 */
2783 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2784 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2785 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2786 schedule_reconstruction(sh, s, rcw == 0, 0);
2787 }
2788
2789 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2790 struct stripe_head_state *s, int disks)
2791 {
2792 struct r5dev *dev = NULL;
2793
2794 set_bit(STRIPE_HANDLE, &sh->state);
2795
2796 switch (sh->check_state) {
2797 case check_state_idle:
2798 /* start a new check operation if there are no failures */
2799 if (s->failed == 0) {
2800 BUG_ON(s->uptodate != disks);
2801 sh->check_state = check_state_run;
2802 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2803 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2804 s->uptodate--;
2805 break;
2806 }
2807 dev = &sh->dev[s->failed_num[0]];
2808 /* fall through */
2809 case check_state_compute_result:
2810 sh->check_state = check_state_idle;
2811 if (!dev)
2812 dev = &sh->dev[sh->pd_idx];
2813
2814 /* check that a write has not made the stripe insync */
2815 if (test_bit(STRIPE_INSYNC, &sh->state))
2816 break;
2817
2818 /* either failed parity check, or recovery is happening */
2819 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2820 BUG_ON(s->uptodate != disks);
2821
2822 set_bit(R5_LOCKED, &dev->flags);
2823 s->locked++;
2824 set_bit(R5_Wantwrite, &dev->flags);
2825
2826 clear_bit(STRIPE_DEGRADED, &sh->state);
2827 set_bit(STRIPE_INSYNC, &sh->state);
2828 break;
2829 case check_state_run:
2830 break; /* we will be called again upon completion */
2831 case check_state_check_result:
2832 sh->check_state = check_state_idle;
2833
2834 /* if a failure occurred during the check operation, leave
2835 * STRIPE_INSYNC not set and let the stripe be handled again
2836 */
2837 if (s->failed)
2838 break;
2839
2840 /* handle a successful check operation, if parity is correct
2841 * we are done. Otherwise update the mismatch count and repair
2842 * parity if !MD_RECOVERY_CHECK
2843 */
2844 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2845 /* parity is correct (on disc,
2846 * not in buffer any more)
2847 */
2848 set_bit(STRIPE_INSYNC, &sh->state);
2849 else {
2850 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2851 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2852 /* don't try to repair!! */
2853 set_bit(STRIPE_INSYNC, &sh->state);
2854 else {
2855 sh->check_state = check_state_compute_run;
2856 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2857 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2858 set_bit(R5_Wantcompute,
2859 &sh->dev[sh->pd_idx].flags);
2860 sh->ops.target = sh->pd_idx;
2861 sh->ops.target2 = -1;
2862 s->uptodate++;
2863 }
2864 }
2865 break;
2866 case check_state_compute_run:
2867 break;
2868 default:
2869 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2870 __func__, sh->check_state,
2871 (unsigned long long) sh->sector);
2872 BUG();
2873 }
2874 }
2875
2876
2877 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2878 struct stripe_head_state *s,
2879 int disks)
2880 {
2881 int pd_idx = sh->pd_idx;
2882 int qd_idx = sh->qd_idx;
2883 struct r5dev *dev;
2884
2885 set_bit(STRIPE_HANDLE, &sh->state);
2886
2887 BUG_ON(s->failed > 2);
2888
2889 /* Want to check and possibly repair P and Q.
2890 * However there could be one 'failed' device, in which
2891 * case we can only check one of them, possibly using the
2892 * other to generate missing data
2893 */
2894
2895 switch (sh->check_state) {
2896 case check_state_idle:
2897 /* start a new check operation if there are < 2 failures */
2898 if (s->failed == s->q_failed) {
2899 /* The only possible failed device holds Q, so it
2900 * makes sense to check P (If anything else were failed,
2901 * we would have used P to recreate it).
2902 */
2903 sh->check_state = check_state_run;
2904 }
2905 if (!s->q_failed && s->failed < 2) {
2906 /* Q is not failed, and we didn't use it to generate
2907 * anything, so it makes sense to check it
2908 */
2909 if (sh->check_state == check_state_run)
2910 sh->check_state = check_state_run_pq;
2911 else
2912 sh->check_state = check_state_run_q;
2913 }
2914
2915 /* discard potentially stale zero_sum_result */
2916 sh->ops.zero_sum_result = 0;
2917
2918 if (sh->check_state == check_state_run) {
2919 /* async_xor_zero_sum destroys the contents of P */
2920 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2921 s->uptodate--;
2922 }
2923 if (sh->check_state >= check_state_run &&
2924 sh->check_state <= check_state_run_pq) {
2925 /* async_syndrome_zero_sum preserves P and Q, so
2926 * no need to mark them !uptodate here
2927 */
2928 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2929 break;
2930 }
2931
2932 /* we have 2-disk failure */
2933 BUG_ON(s->failed != 2);
2934 /* fall through */
2935 case check_state_compute_result:
2936 sh->check_state = check_state_idle;
2937
2938 /* check that a write has not made the stripe insync */
2939 if (test_bit(STRIPE_INSYNC, &sh->state))
2940 break;
2941
2942 /* now write out any block on a failed drive,
2943 * or P or Q if they were recomputed
2944 */
2945 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2946 if (s->failed == 2) {
2947 dev = &sh->dev[s->failed_num[1]];
2948 s->locked++;
2949 set_bit(R5_LOCKED, &dev->flags);
2950 set_bit(R5_Wantwrite, &dev->flags);
2951 }
2952 if (s->failed >= 1) {
2953 dev = &sh->dev[s->failed_num[0]];
2954 s->locked++;
2955 set_bit(R5_LOCKED, &dev->flags);
2956 set_bit(R5_Wantwrite, &dev->flags);
2957 }
2958 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2959 dev = &sh->dev[pd_idx];
2960 s->locked++;
2961 set_bit(R5_LOCKED, &dev->flags);
2962 set_bit(R5_Wantwrite, &dev->flags);
2963 }
2964 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2965 dev = &sh->dev[qd_idx];
2966 s->locked++;
2967 set_bit(R5_LOCKED, &dev->flags);
2968 set_bit(R5_Wantwrite, &dev->flags);
2969 }
2970 clear_bit(STRIPE_DEGRADED, &sh->state);
2971
2972 set_bit(STRIPE_INSYNC, &sh->state);
2973 break;
2974 case check_state_run:
2975 case check_state_run_q:
2976 case check_state_run_pq:
2977 break; /* we will be called again upon completion */
2978 case check_state_check_result:
2979 sh->check_state = check_state_idle;
2980
2981 /* handle a successful check operation, if parity is correct
2982 * we are done. Otherwise update the mismatch count and repair
2983 * parity if !MD_RECOVERY_CHECK
2984 */
2985 if (sh->ops.zero_sum_result == 0) {
2986 /* both parities are correct */
2987 if (!s->failed)
2988 set_bit(STRIPE_INSYNC, &sh->state);
2989 else {
2990 /* in contrast to the raid5 case we can validate
2991 * parity, but still have a failure to write
2992 * back
2993 */
2994 sh->check_state = check_state_compute_result;
2995 /* Returning at this point means that we may go
2996 * off and bring p and/or q uptodate again so
2997 * we make sure to check zero_sum_result again
2998 * to verify if p or q need writeback
2999 */
3000 }
3001 } else {
3002 conf->mddev->resync_mismatches += STRIPE_SECTORS;
3003 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3004 /* don't try to repair!! */
3005 set_bit(STRIPE_INSYNC, &sh->state);
3006 else {
3007 int *target = &sh->ops.target;
3008
3009 sh->ops.target = -1;
3010 sh->ops.target2 = -1;
3011 sh->check_state = check_state_compute_run;
3012 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3013 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3014 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3015 set_bit(R5_Wantcompute,
3016 &sh->dev[pd_idx].flags);
3017 *target = pd_idx;
3018 target = &sh->ops.target2;
3019 s->uptodate++;
3020 }
3021 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3022 set_bit(R5_Wantcompute,
3023 &sh->dev[qd_idx].flags);
3024 *target = qd_idx;
3025 s->uptodate++;
3026 }
3027 }
3028 }
3029 break;
3030 case check_state_compute_run:
3031 break;
3032 default:
3033 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3034 __func__, sh->check_state,
3035 (unsigned long long) sh->sector);
3036 BUG();
3037 }
3038 }
3039
3040 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3041 {
3042 int i;
3043
3044 /* We have read all the blocks in this stripe and now we need to
3045 * copy some of them into a target stripe for expand.
3046 */
3047 struct dma_async_tx_descriptor *tx = NULL;
3048 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3049 for (i = 0; i < sh->disks; i++)
3050 if (i != sh->pd_idx && i != sh->qd_idx) {
3051 int dd_idx, j;
3052 struct stripe_head *sh2;
3053 struct async_submit_ctl submit;
3054
3055 sector_t bn = compute_blocknr(sh, i, 1);
3056 sector_t s = raid5_compute_sector(conf, bn, 0,
3057 &dd_idx, NULL);
3058 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3059 if (sh2 == NULL)
3060 /* so far only the early blocks of this stripe
3061 * have been requested. When later blocks
3062 * get requested, we will try again
3063 */
3064 continue;
3065 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3066 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3067 /* must have already done this block */
3068 release_stripe(sh2);
3069 continue;
3070 }
3071
3072 /* place all the copies on one channel */
3073 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3074 tx = async_memcpy(sh2->dev[dd_idx].page,
3075 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3076 &submit);
3077
3078 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3079 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3080 for (j = 0; j < conf->raid_disks; j++)
3081 if (j != sh2->pd_idx &&
3082 j != sh2->qd_idx &&
3083 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3084 break;
3085 if (j == conf->raid_disks) {
3086 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3087 set_bit(STRIPE_HANDLE, &sh2->state);
3088 }
3089 release_stripe(sh2);
3090
3091 }
3092 /* done submitting copies, wait for them to complete */
3093 if (tx) {
3094 async_tx_ack(tx);
3095 dma_wait_for_async_tx(tx);
3096 }
3097 }
3098
3099 /*
3100 * handle_stripe - do things to a stripe.
3101 *
3102 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3103 * state of various bits to see what needs to be done.
3104 * Possible results:
3105 * return some read requests which now have data
3106 * return some write requests which are safely on storage
3107 * schedule a read on some buffers
3108 * schedule a write of some buffers
3109 * return confirmation of parity correctness
3110 *
3111 */
3112
3113 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3114 {
3115 struct r5conf *conf = sh->raid_conf;
3116 int disks = sh->disks;
3117 struct r5dev *dev;
3118 int i;
3119 int do_recovery = 0;
3120
3121 memset(s, 0, sizeof(*s));
3122
3123 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3124 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3125 s->failed_num[0] = -1;
3126 s->failed_num[1] = -1;
3127
3128 /* Now to look around and see what can be done */
3129 rcu_read_lock();
3130 spin_lock_irq(&conf->device_lock);
3131 for (i=disks; i--; ) {
3132 struct md_rdev *rdev;
3133 sector_t first_bad;
3134 int bad_sectors;
3135 int is_bad = 0;
3136
3137 dev = &sh->dev[i];
3138
3139 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3140 i, dev->flags,
3141 dev->toread, dev->towrite, dev->written);
3142 /* maybe we can reply to a read
3143 *
3144 * new wantfill requests are only permitted while
3145 * ops_complete_biofill is guaranteed to be inactive
3146 */
3147 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3148 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3149 set_bit(R5_Wantfill, &dev->flags);
3150
3151 /* now count some things */
3152 if (test_bit(R5_LOCKED, &dev->flags))
3153 s->locked++;
3154 if (test_bit(R5_UPTODATE, &dev->flags))
3155 s->uptodate++;
3156 if (test_bit(R5_Wantcompute, &dev->flags)) {
3157 s->compute++;
3158 BUG_ON(s->compute > 2);
3159 }
3160
3161 if (test_bit(R5_Wantfill, &dev->flags))
3162 s->to_fill++;
3163 else if (dev->toread)
3164 s->to_read++;
3165 if (dev->towrite) {
3166 s->to_write++;
3167 if (!test_bit(R5_OVERWRITE, &dev->flags))
3168 s->non_overwrite++;
3169 }
3170 if (dev->written)
3171 s->written++;
3172 /* Prefer to use the replacement for reads, but only
3173 * if it is recovered enough and has no bad blocks.
3174 */
3175 rdev = rcu_dereference(conf->disks[i].replacement);
3176 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3177 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3178 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3179 &first_bad, &bad_sectors))
3180 set_bit(R5_ReadRepl, &dev->flags);
3181 else {
3182 if (rdev)
3183 set_bit(R5_NeedReplace, &dev->flags);
3184 rdev = rcu_dereference(conf->disks[i].rdev);
3185 clear_bit(R5_ReadRepl, &dev->flags);
3186 }
3187 if (rdev && test_bit(Faulty, &rdev->flags))
3188 rdev = NULL;
3189 if (rdev) {
3190 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3191 &first_bad, &bad_sectors);
3192 if (s->blocked_rdev == NULL
3193 && (test_bit(Blocked, &rdev->flags)
3194 || is_bad < 0)) {
3195 if (is_bad < 0)
3196 set_bit(BlockedBadBlocks,
3197 &rdev->flags);
3198 s->blocked_rdev = rdev;
3199 atomic_inc(&rdev->nr_pending);
3200 }
3201 }
3202 clear_bit(R5_Insync, &dev->flags);
3203 if (!rdev)
3204 /* Not in-sync */;
3205 else if (is_bad) {
3206 /* also not in-sync */
3207 if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3208 /* treat as in-sync, but with a read error
3209 * which we can now try to correct
3210 */
3211 set_bit(R5_Insync, &dev->flags);
3212 set_bit(R5_ReadError, &dev->flags);
3213 }
3214 } else if (test_bit(In_sync, &rdev->flags))
3215 set_bit(R5_Insync, &dev->flags);
3216 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3217 /* in sync if before recovery_offset */
3218 set_bit(R5_Insync, &dev->flags);
3219 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3220 test_bit(R5_Expanded, &dev->flags))
3221 /* If we've reshaped into here, we assume it is Insync.
3222 * We will shortly update recovery_offset to make
3223 * it official.
3224 */
3225 set_bit(R5_Insync, &dev->flags);
3226
3227 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3228 /* This flag does not apply to '.replacement'
3229 * only to .rdev, so make sure to check that*/
3230 struct md_rdev *rdev2 = rcu_dereference(
3231 conf->disks[i].rdev);
3232 if (rdev2 == rdev)
3233 clear_bit(R5_Insync, &dev->flags);
3234 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3235 s->handle_bad_blocks = 1;
3236 atomic_inc(&rdev2->nr_pending);
3237 } else
3238 clear_bit(R5_WriteError, &dev->flags);
3239 }
3240 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3241 /* This flag does not apply to '.replacement'
3242 * only to .rdev, so make sure to check that*/
3243 struct md_rdev *rdev2 = rcu_dereference(
3244 conf->disks[i].rdev);
3245 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3246 s->handle_bad_blocks = 1;
3247 atomic_inc(&rdev2->nr_pending);
3248 } else
3249 clear_bit(R5_MadeGood, &dev->flags);
3250 }
3251 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3252 struct md_rdev *rdev2 = rcu_dereference(
3253 conf->disks[i].replacement);
3254 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3255 s->handle_bad_blocks = 1;
3256 atomic_inc(&rdev2->nr_pending);
3257 } else
3258 clear_bit(R5_MadeGoodRepl, &dev->flags);
3259 }
3260 if (!test_bit(R5_Insync, &dev->flags)) {
3261 /* The ReadError flag will just be confusing now */
3262 clear_bit(R5_ReadError, &dev->flags);
3263 clear_bit(R5_ReWrite, &dev->flags);
3264 }
3265 if (test_bit(R5_ReadError, &dev->flags))
3266 clear_bit(R5_Insync, &dev->flags);
3267 if (!test_bit(R5_Insync, &dev->flags)) {
3268 if (s->failed < 2)
3269 s->failed_num[s->failed] = i;
3270 s->failed++;
3271 if (rdev && !test_bit(Faulty, &rdev->flags))
3272 do_recovery = 1;
3273 }
3274 }
3275 spin_unlock_irq(&conf->device_lock);
3276 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3277 /* If there is a failed device being replaced,
3278 * we must be recovering.
3279 * else if we are after recovery_cp, we must be syncing
3280 * else we can only be replacing
3281 * sync and recovery both need to read all devices, and so
3282 * use the same flag.
3283 */
3284 if (do_recovery ||
3285 sh->sector >= conf->mddev->recovery_cp)
3286 s->syncing = 1;
3287 else
3288 s->replacing = 1;
3289 }
3290 rcu_read_unlock();
3291 }
3292
3293 static void handle_stripe(struct stripe_head *sh)
3294 {
3295 struct stripe_head_state s;
3296 struct r5conf *conf = sh->raid_conf;
3297 int i;
3298 int prexor;
3299 int disks = sh->disks;
3300 struct r5dev *pdev, *qdev;
3301
3302 clear_bit(STRIPE_HANDLE, &sh->state);
3303 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3304 /* already being handled, ensure it gets handled
3305 * again when current action finishes */
3306 set_bit(STRIPE_HANDLE, &sh->state);
3307 return;
3308 }
3309
3310 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3311 set_bit(STRIPE_SYNCING, &sh->state);
3312 clear_bit(STRIPE_INSYNC, &sh->state);
3313 }
3314 clear_bit(STRIPE_DELAYED, &sh->state);
3315
3316 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3317 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3318 (unsigned long long)sh->sector, sh->state,
3319 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3320 sh->check_state, sh->reconstruct_state);
3321
3322 analyse_stripe(sh, &s);
3323
3324 if (s.handle_bad_blocks) {
3325 set_bit(STRIPE_HANDLE, &sh->state);
3326 goto finish;
3327 }
3328
3329 if (unlikely(s.blocked_rdev)) {
3330 if (s.syncing || s.expanding || s.expanded ||
3331 s.replacing || s.to_write || s.written) {
3332 set_bit(STRIPE_HANDLE, &sh->state);
3333 goto finish;
3334 }
3335 /* There is nothing for the blocked_rdev to block */
3336 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3337 s.blocked_rdev = NULL;
3338 }
3339
3340 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3341 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3342 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3343 }
3344
3345 pr_debug("locked=%d uptodate=%d to_read=%d"
3346 " to_write=%d failed=%d failed_num=%d,%d\n",
3347 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3348 s.failed_num[0], s.failed_num[1]);
3349 /* check if the array has lost more than max_degraded devices and,
3350 * if so, some requests might need to be failed.
3351 */
3352 if (s.failed > conf->max_degraded) {
3353 sh->check_state = 0;
3354 sh->reconstruct_state = 0;
3355 if (s.to_read+s.to_write+s.written)
3356 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3357 if (s.syncing + s.replacing)
3358 handle_failed_sync(conf, sh, &s);
3359 }
3360
3361 /*
3362 * might be able to return some write requests if the parity blocks
3363 * are safe, or on a failed drive
3364 */
3365 pdev = &sh->dev[sh->pd_idx];
3366 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3367 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3368 qdev = &sh->dev[sh->qd_idx];
3369 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3370 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3371 || conf->level < 6;
3372
3373 if (s.written &&
3374 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3375 && !test_bit(R5_LOCKED, &pdev->flags)
3376 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3377 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3378 && !test_bit(R5_LOCKED, &qdev->flags)
3379 && test_bit(R5_UPTODATE, &qdev->flags)))))
3380 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3381
3382 /* Now we might consider reading some blocks, either to check/generate
3383 * parity, or to satisfy requests
3384 * or to load a block that is being partially written.
3385 */
3386 if (s.to_read || s.non_overwrite
3387 || (conf->level == 6 && s.to_write && s.failed)
3388 || (s.syncing && (s.uptodate + s.compute < disks))
3389 || s.replacing
3390 || s.expanding)
3391 handle_stripe_fill(sh, &s, disks);
3392
3393 /* Now we check to see if any write operations have recently
3394 * completed
3395 */
3396 prexor = 0;
3397 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3398 prexor = 1;
3399 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3400 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3401 sh->reconstruct_state = reconstruct_state_idle;
3402
3403 /* All the 'written' buffers and the parity block are ready to
3404 * be written back to disk
3405 */
3406 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3407 BUG_ON(sh->qd_idx >= 0 &&
3408 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3409 for (i = disks; i--; ) {
3410 struct r5dev *dev = &sh->dev[i];
3411 if (test_bit(R5_LOCKED, &dev->flags) &&
3412 (i == sh->pd_idx || i == sh->qd_idx ||
3413 dev->written)) {
3414 pr_debug("Writing block %d\n", i);
3415 set_bit(R5_Wantwrite, &dev->flags);
3416 if (prexor)
3417 continue;
3418 if (!test_bit(R5_Insync, &dev->flags) ||
3419 ((i == sh->pd_idx || i == sh->qd_idx) &&
3420 s.failed == 0))
3421 set_bit(STRIPE_INSYNC, &sh->state);
3422 }
3423 }
3424 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3425 s.dec_preread_active = 1;
3426 }
3427
3428 /* Now to consider new write requests and what else, if anything
3429 * should be read. We do not handle new writes when:
3430 * 1/ A 'write' operation (copy+xor) is already in flight.
3431 * 2/ A 'check' operation is in flight, as it may clobber the parity
3432 * block.
3433 */
3434 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3435 handle_stripe_dirtying(conf, sh, &s, disks);
3436
3437 /* maybe we need to check and possibly fix the parity for this stripe
3438 * Any reads will already have been scheduled, so we just see if enough
3439 * data is available. The parity check is held off while parity
3440 * dependent operations are in flight.
3441 */
3442 if (sh->check_state ||
3443 (s.syncing && s.locked == 0 &&
3444 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3445 !test_bit(STRIPE_INSYNC, &sh->state))) {
3446 if (conf->level == 6)
3447 handle_parity_checks6(conf, sh, &s, disks);
3448 else
3449 handle_parity_checks5(conf, sh, &s, disks);
3450 }
3451
3452 if (s.replacing && s.locked == 0
3453 && !test_bit(STRIPE_INSYNC, &sh->state)) {
3454 /* Write out to replacement devices where possible */
3455 for (i = 0; i < conf->raid_disks; i++)
3456 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3457 test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3458 set_bit(R5_WantReplace, &sh->dev[i].flags);
3459 set_bit(R5_LOCKED, &sh->dev[i].flags);
3460 s.locked++;
3461 }
3462 set_bit(STRIPE_INSYNC, &sh->state);
3463 }
3464 if ((s.syncing || s.replacing) && s.locked == 0 &&
3465 test_bit(STRIPE_INSYNC, &sh->state)) {
3466 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3467 clear_bit(STRIPE_SYNCING, &sh->state);
3468 }
3469
3470 /* If the failed drives are just a ReadError, then we might need
3471 * to progress the repair/check process
3472 */
3473 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3474 for (i = 0; i < s.failed; i++) {
3475 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3476 if (test_bit(R5_ReadError, &dev->flags)
3477 && !test_bit(R5_LOCKED, &dev->flags)
3478 && test_bit(R5_UPTODATE, &dev->flags)
3479 ) {
3480 if (!test_bit(R5_ReWrite, &dev->flags)) {
3481 set_bit(R5_Wantwrite, &dev->flags);
3482 set_bit(R5_ReWrite, &dev->flags);
3483 set_bit(R5_LOCKED, &dev->flags);
3484 s.locked++;
3485 } else {
3486 /* let's read it back */
3487 set_bit(R5_Wantread, &dev->flags);
3488 set_bit(R5_LOCKED, &dev->flags);
3489 s.locked++;
3490 }
3491 }
3492 }
3493
3494
3495 /* Finish reconstruct operations initiated by the expansion process */
3496 if (sh->reconstruct_state == reconstruct_state_result) {
3497 struct stripe_head *sh_src
3498 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3499 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3500 /* sh cannot be written until sh_src has been read.
3501 * so arrange for sh to be delayed a little
3502 */
3503 set_bit(STRIPE_DELAYED, &sh->state);
3504 set_bit(STRIPE_HANDLE, &sh->state);
3505 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3506 &sh_src->state))
3507 atomic_inc(&conf->preread_active_stripes);
3508 release_stripe(sh_src);
3509 goto finish;
3510 }
3511 if (sh_src)
3512 release_stripe(sh_src);
3513
3514 sh->reconstruct_state = reconstruct_state_idle;
3515 clear_bit(STRIPE_EXPANDING, &sh->state);
3516 for (i = conf->raid_disks; i--; ) {
3517 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3518 set_bit(R5_LOCKED, &sh->dev[i].flags);
3519 s.locked++;
3520 }
3521 }
3522
3523 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3524 !sh->reconstruct_state) {
3525 /* Need to write out all blocks after computing parity */
3526 sh->disks = conf->raid_disks;
3527 stripe_set_idx(sh->sector, conf, 0, sh);
3528 schedule_reconstruction(sh, &s, 1, 1);
3529 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3530 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3531 atomic_dec(&conf->reshape_stripes);
3532 wake_up(&conf->wait_for_overlap);
3533 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3534 }
3535
3536 if (s.expanding && s.locked == 0 &&
3537 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3538 handle_stripe_expansion(conf, sh);
3539
3540 finish:
3541 /* wait for this device to become unblocked */
3542 if (conf->mddev->external && unlikely(s.blocked_rdev))
3543 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3544
3545 if (s.handle_bad_blocks)
3546 for (i = disks; i--; ) {
3547 struct md_rdev *rdev;
3548 struct r5dev *dev = &sh->dev[i];
3549 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3550 /* We own a safe reference to the rdev */
3551 rdev = conf->disks[i].rdev;
3552 if (!rdev_set_badblocks(rdev, sh->sector,
3553 STRIPE_SECTORS, 0))
3554 md_error(conf->mddev, rdev);
3555 rdev_dec_pending(rdev, conf->mddev);
3556 }
3557 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3558 rdev = conf->disks[i].rdev;
3559 rdev_clear_badblocks(rdev, sh->sector,
3560 STRIPE_SECTORS);
3561 rdev_dec_pending(rdev, conf->mddev);
3562 }
3563 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3564 rdev = conf->disks[i].replacement;
3565 if (!rdev)
3566 /* rdev have been moved down */
3567 rdev = conf->disks[i].rdev;
3568 rdev_clear_badblocks(rdev, sh->sector,
3569 STRIPE_SECTORS);
3570 rdev_dec_pending(rdev, conf->mddev);
3571 }
3572 }
3573
3574 if (s.ops_request)
3575 raid_run_ops(sh, s.ops_request);
3576
3577 ops_run_io(sh, &s);
3578
3579 if (s.dec_preread_active) {
3580 /* We delay this until after ops_run_io so that if make_request
3581 * is waiting on a flush, it won't continue until the writes
3582 * have actually been submitted.
3583 */
3584 atomic_dec(&conf->preread_active_stripes);
3585 if (atomic_read(&conf->preread_active_stripes) <
3586 IO_THRESHOLD)
3587 md_wakeup_thread(conf->mddev->thread);
3588 }
3589
3590 return_io(s.return_bi);
3591
3592 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3593 }
3594
3595 static void raid5_activate_delayed(struct r5conf *conf)
3596 {
3597 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3598 while (!list_empty(&conf->delayed_list)) {
3599 struct list_head *l = conf->delayed_list.next;
3600 struct stripe_head *sh;
3601 sh = list_entry(l, struct stripe_head, lru);
3602 list_del_init(l);
3603 clear_bit(STRIPE_DELAYED, &sh->state);
3604 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3605 atomic_inc(&conf->preread_active_stripes);
3606 list_add_tail(&sh->lru, &conf->hold_list);
3607 }
3608 }
3609 }
3610
3611 static void activate_bit_delay(struct r5conf *conf)
3612 {
3613 /* device_lock is held */
3614 struct list_head head;
3615 list_add(&head, &conf->bitmap_list);
3616 list_del_init(&conf->bitmap_list);
3617 while (!list_empty(&head)) {
3618 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3619 list_del_init(&sh->lru);
3620 atomic_inc(&sh->count);
3621 __release_stripe(conf, sh);
3622 }
3623 }
3624
3625 int md_raid5_congested(struct mddev *mddev, int bits)
3626 {
3627 struct r5conf *conf = mddev->private;
3628
3629 /* No difference between reads and writes. Just check
3630 * how busy the stripe_cache is
3631 */
3632
3633 if (conf->inactive_blocked)
3634 return 1;
3635 if (conf->quiesce)
3636 return 1;
3637 if (list_empty_careful(&conf->inactive_list))
3638 return 1;
3639
3640 return 0;
3641 }
3642 EXPORT_SYMBOL_GPL(md_raid5_congested);
3643
3644 static int raid5_congested(void *data, int bits)
3645 {
3646 struct mddev *mddev = data;
3647
3648 return mddev_congested(mddev, bits) ||
3649 md_raid5_congested(mddev, bits);
3650 }
3651
3652 /* We want read requests to align with chunks where possible,
3653 * but write requests don't need to.
3654 */
3655 static int raid5_mergeable_bvec(struct request_queue *q,
3656 struct bvec_merge_data *bvm,
3657 struct bio_vec *biovec)
3658 {
3659 struct mddev *mddev = q->queuedata;
3660 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3661 int max;
3662 unsigned int chunk_sectors = mddev->chunk_sectors;
3663 unsigned int bio_sectors = bvm->bi_size >> 9;
3664
3665 if ((bvm->bi_rw & 1) == WRITE)
3666 return biovec->bv_len; /* always allow writes to be mergeable */
3667
3668 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3669 chunk_sectors = mddev->new_chunk_sectors;
3670 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3671 if (max < 0) max = 0;
3672 if (max <= biovec->bv_len && bio_sectors == 0)
3673 return biovec->bv_len;
3674 else
3675 return max;
3676 }
3677
3678
3679 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3680 {
3681 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3682 unsigned int chunk_sectors = mddev->chunk_sectors;
3683 unsigned int bio_sectors = bio->bi_size >> 9;
3684
3685 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3686 chunk_sectors = mddev->new_chunk_sectors;
3687 return chunk_sectors >=
3688 ((sector & (chunk_sectors - 1)) + bio_sectors);
3689 }
3690
3691 /*
3692 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3693 * later sampled by raid5d.
3694 */
3695 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3696 {
3697 unsigned long flags;
3698
3699 spin_lock_irqsave(&conf->device_lock, flags);
3700
3701 bi->bi_next = conf->retry_read_aligned_list;
3702 conf->retry_read_aligned_list = bi;
3703
3704 spin_unlock_irqrestore(&conf->device_lock, flags);
3705 md_wakeup_thread(conf->mddev->thread);
3706 }
3707
3708
3709 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3710 {
3711 struct bio *bi;
3712
3713 bi = conf->retry_read_aligned;
3714 if (bi) {
3715 conf->retry_read_aligned = NULL;
3716 return bi;
3717 }
3718 bi = conf->retry_read_aligned_list;
3719 if(bi) {
3720 conf->retry_read_aligned_list = bi->bi_next;
3721 bi->bi_next = NULL;
3722 /*
3723 * this sets the active strip count to 1 and the processed
3724 * strip count to zero (upper 8 bits)
3725 */
3726 bi->bi_phys_segments = 1; /* biased count of active stripes */
3727 }
3728
3729 return bi;
3730 }
3731
3732
3733 /*
3734 * The "raid5_align_endio" should check if the read succeeded and if it
3735 * did, call bio_endio on the original bio (having bio_put the new bio
3736 * first).
3737 * If the read failed..
3738 */
3739 static void raid5_align_endio(struct bio *bi, int error)
3740 {
3741 struct bio* raid_bi = bi->bi_private;
3742 struct mddev *mddev;
3743 struct r5conf *conf;
3744 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3745 struct md_rdev *rdev;
3746
3747 bio_put(bi);
3748
3749 rdev = (void*)raid_bi->bi_next;
3750 raid_bi->bi_next = NULL;
3751 mddev = rdev->mddev;
3752 conf = mddev->private;
3753
3754 rdev_dec_pending(rdev, conf->mddev);
3755
3756 if (!error && uptodate) {
3757 bio_endio(raid_bi, 0);
3758 if (atomic_dec_and_test(&conf->active_aligned_reads))
3759 wake_up(&conf->wait_for_stripe);
3760 return;
3761 }
3762
3763
3764 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3765
3766 add_bio_to_retry(raid_bi, conf);
3767 }
3768
3769 static int bio_fits_rdev(struct bio *bi)
3770 {
3771 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3772
3773 if ((bi->bi_size>>9) > queue_max_sectors(q))
3774 return 0;
3775 blk_recount_segments(q, bi);
3776 if (bi->bi_phys_segments > queue_max_segments(q))
3777 return 0;
3778
3779 if (q->merge_bvec_fn)
3780 /* it's too hard to apply the merge_bvec_fn at this stage,
3781 * just just give up
3782 */
3783 return 0;
3784
3785 return 1;
3786 }
3787
3788
3789 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3790 {
3791 struct r5conf *conf = mddev->private;
3792 int dd_idx;
3793 struct bio* align_bi;
3794 struct md_rdev *rdev;
3795 sector_t end_sector;
3796
3797 if (!in_chunk_boundary(mddev, raid_bio)) {
3798 pr_debug("chunk_aligned_read : non aligned\n");
3799 return 0;
3800 }
3801 /*
3802 * use bio_clone_mddev to make a copy of the bio
3803 */
3804 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3805 if (!align_bi)
3806 return 0;
3807 /*
3808 * set bi_end_io to a new function, and set bi_private to the
3809 * original bio.
3810 */
3811 align_bi->bi_end_io = raid5_align_endio;
3812 align_bi->bi_private = raid_bio;
3813 /*
3814 * compute position
3815 */
3816 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3817 0,
3818 &dd_idx, NULL);
3819
3820 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3821 rcu_read_lock();
3822 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3823 if (!rdev || test_bit(Faulty, &rdev->flags) ||
3824 rdev->recovery_offset < end_sector) {
3825 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3826 if (rdev &&
3827 (test_bit(Faulty, &rdev->flags) ||
3828 !(test_bit(In_sync, &rdev->flags) ||
3829 rdev->recovery_offset >= end_sector)))
3830 rdev = NULL;
3831 }
3832 if (rdev) {
3833 sector_t first_bad;
3834 int bad_sectors;
3835
3836 atomic_inc(&rdev->nr_pending);
3837 rcu_read_unlock();
3838 raid_bio->bi_next = (void*)rdev;
3839 align_bi->bi_bdev = rdev->bdev;
3840 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3841 align_bi->bi_sector += rdev->data_offset;
3842
3843 if (!bio_fits_rdev(align_bi) ||
3844 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3845 &first_bad, &bad_sectors)) {
3846 /* too big in some way, or has a known bad block */
3847 bio_put(align_bi);
3848 rdev_dec_pending(rdev, mddev);
3849 return 0;
3850 }
3851
3852 spin_lock_irq(&conf->device_lock);
3853 wait_event_lock_irq(conf->wait_for_stripe,
3854 conf->quiesce == 0,
3855 conf->device_lock, /* nothing */);
3856 atomic_inc(&conf->active_aligned_reads);
3857 spin_unlock_irq(&conf->device_lock);
3858
3859 generic_make_request(align_bi);
3860 return 1;
3861 } else {
3862 rcu_read_unlock();
3863 bio_put(align_bi);
3864 return 0;
3865 }
3866 }
3867
3868 /* __get_priority_stripe - get the next stripe to process
3869 *
3870 * Full stripe writes are allowed to pass preread active stripes up until
3871 * the bypass_threshold is exceeded. In general the bypass_count
3872 * increments when the handle_list is handled before the hold_list; however, it
3873 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3874 * stripe with in flight i/o. The bypass_count will be reset when the
3875 * head of the hold_list has changed, i.e. the head was promoted to the
3876 * handle_list.
3877 */
3878 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3879 {
3880 struct stripe_head *sh;
3881
3882 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3883 __func__,
3884 list_empty(&conf->handle_list) ? "empty" : "busy",
3885 list_empty(&conf->hold_list) ? "empty" : "busy",
3886 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3887
3888 if (!list_empty(&conf->handle_list)) {
3889 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3890
3891 if (list_empty(&conf->hold_list))
3892 conf->bypass_count = 0;
3893 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3894 if (conf->hold_list.next == conf->last_hold)
3895 conf->bypass_count++;
3896 else {
3897 conf->last_hold = conf->hold_list.next;
3898 conf->bypass_count -= conf->bypass_threshold;
3899 if (conf->bypass_count < 0)
3900 conf->bypass_count = 0;
3901 }
3902 }
3903 } else if (!list_empty(&conf->hold_list) &&
3904 ((conf->bypass_threshold &&
3905 conf->bypass_count > conf->bypass_threshold) ||
3906 atomic_read(&conf->pending_full_writes) == 0)) {
3907 sh = list_entry(conf->hold_list.next,
3908 typeof(*sh), lru);
3909 conf->bypass_count -= conf->bypass_threshold;
3910 if (conf->bypass_count < 0)
3911 conf->bypass_count = 0;
3912 } else
3913 return NULL;
3914
3915 list_del_init(&sh->lru);
3916 atomic_inc(&sh->count);
3917 BUG_ON(atomic_read(&sh->count) != 1);
3918 return sh;
3919 }
3920
3921 static void make_request(struct mddev *mddev, struct bio * bi)
3922 {
3923 struct r5conf *conf = mddev->private;
3924 int dd_idx;
3925 sector_t new_sector;
3926 sector_t logical_sector, last_sector;
3927 struct stripe_head *sh;
3928 const int rw = bio_data_dir(bi);
3929 int remaining;
3930 int plugged;
3931
3932 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3933 md_flush_request(mddev, bi);
3934 return;
3935 }
3936
3937 md_write_start(mddev, bi);
3938
3939 if (rw == READ &&
3940 mddev->reshape_position == MaxSector &&
3941 chunk_aligned_read(mddev,bi))
3942 return;
3943
3944 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3945 last_sector = bi->bi_sector + (bi->bi_size>>9);
3946 bi->bi_next = NULL;
3947 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3948
3949 plugged = mddev_check_plugged(mddev);
3950 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3951 DEFINE_WAIT(w);
3952 int disks, data_disks;
3953 int previous;
3954
3955 retry:
3956 previous = 0;
3957 disks = conf->raid_disks;
3958 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3959 if (unlikely(conf->reshape_progress != MaxSector)) {
3960 /* spinlock is needed as reshape_progress may be
3961 * 64bit on a 32bit platform, and so it might be
3962 * possible to see a half-updated value
3963 * Of course reshape_progress could change after
3964 * the lock is dropped, so once we get a reference
3965 * to the stripe that we think it is, we will have
3966 * to check again.
3967 */
3968 spin_lock_irq(&conf->device_lock);
3969 if (mddev->delta_disks < 0
3970 ? logical_sector < conf->reshape_progress
3971 : logical_sector >= conf->reshape_progress) {
3972 disks = conf->previous_raid_disks;
3973 previous = 1;
3974 } else {
3975 if (mddev->delta_disks < 0
3976 ? logical_sector < conf->reshape_safe
3977 : logical_sector >= conf->reshape_safe) {
3978 spin_unlock_irq(&conf->device_lock);
3979 schedule();
3980 goto retry;
3981 }
3982 }
3983 spin_unlock_irq(&conf->device_lock);
3984 }
3985 data_disks = disks - conf->max_degraded;
3986
3987 new_sector = raid5_compute_sector(conf, logical_sector,
3988 previous,
3989 &dd_idx, NULL);
3990 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3991 (unsigned long long)new_sector,
3992 (unsigned long long)logical_sector);
3993
3994 sh = get_active_stripe(conf, new_sector, previous,
3995 (bi->bi_rw&RWA_MASK), 0);
3996 if (sh) {
3997 if (unlikely(previous)) {
3998 /* expansion might have moved on while waiting for a
3999 * stripe, so we must do the range check again.
4000 * Expansion could still move past after this
4001 * test, but as we are holding a reference to
4002 * 'sh', we know that if that happens,
4003 * STRIPE_EXPANDING will get set and the expansion
4004 * won't proceed until we finish with the stripe.
4005 */
4006 int must_retry = 0;
4007 spin_lock_irq(&conf->device_lock);
4008 if (mddev->delta_disks < 0
4009 ? logical_sector >= conf->reshape_progress
4010 : logical_sector < conf->reshape_progress)
4011 /* mismatch, need to try again */
4012 must_retry = 1;
4013 spin_unlock_irq(&conf->device_lock);
4014 if (must_retry) {
4015 release_stripe(sh);
4016 schedule();
4017 goto retry;
4018 }
4019 }
4020
4021 if (rw == WRITE &&
4022 logical_sector >= mddev->suspend_lo &&
4023 logical_sector < mddev->suspend_hi) {
4024 release_stripe(sh);
4025 /* As the suspend_* range is controlled by
4026 * userspace, we want an interruptible
4027 * wait.
4028 */
4029 flush_signals(current);
4030 prepare_to_wait(&conf->wait_for_overlap,
4031 &w, TASK_INTERRUPTIBLE);
4032 if (logical_sector >= mddev->suspend_lo &&
4033 logical_sector < mddev->suspend_hi)
4034 schedule();
4035 goto retry;
4036 }
4037
4038 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4039 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4040 /* Stripe is busy expanding or
4041 * add failed due to overlap. Flush everything
4042 * and wait a while
4043 */
4044 md_wakeup_thread(mddev->thread);
4045 release_stripe(sh);
4046 schedule();
4047 goto retry;
4048 }
4049 finish_wait(&conf->wait_for_overlap, &w);
4050 set_bit(STRIPE_HANDLE, &sh->state);
4051 clear_bit(STRIPE_DELAYED, &sh->state);
4052 if ((bi->bi_rw & REQ_SYNC) &&
4053 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4054 atomic_inc(&conf->preread_active_stripes);
4055 release_stripe(sh);
4056 } else {
4057 /* cannot get stripe for read-ahead, just give-up */
4058 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4059 finish_wait(&conf->wait_for_overlap, &w);
4060 break;
4061 }
4062
4063 }
4064 if (!plugged)
4065 md_wakeup_thread(mddev->thread);
4066
4067 spin_lock_irq(&conf->device_lock);
4068 remaining = raid5_dec_bi_phys_segments(bi);
4069 spin_unlock_irq(&conf->device_lock);
4070 if (remaining == 0) {
4071
4072 if ( rw == WRITE )
4073 md_write_end(mddev);
4074
4075 bio_endio(bi, 0);
4076 }
4077 }
4078
4079 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4080
4081 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4082 {
4083 /* reshaping is quite different to recovery/resync so it is
4084 * handled quite separately ... here.
4085 *
4086 * On each call to sync_request, we gather one chunk worth of
4087 * destination stripes and flag them as expanding.
4088 * Then we find all the source stripes and request reads.
4089 * As the reads complete, handle_stripe will copy the data
4090 * into the destination stripe and release that stripe.
4091 */
4092 struct r5conf *conf = mddev->private;
4093 struct stripe_head *sh;
4094 sector_t first_sector, last_sector;
4095 int raid_disks = conf->previous_raid_disks;
4096 int data_disks = raid_disks - conf->max_degraded;
4097 int new_data_disks = conf->raid_disks - conf->max_degraded;
4098 int i;
4099 int dd_idx;
4100 sector_t writepos, readpos, safepos;
4101 sector_t stripe_addr;
4102 int reshape_sectors;
4103 struct list_head stripes;
4104
4105 if (sector_nr == 0) {
4106 /* If restarting in the middle, skip the initial sectors */
4107 if (mddev->delta_disks < 0 &&
4108 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4109 sector_nr = raid5_size(mddev, 0, 0)
4110 - conf->reshape_progress;
4111 } else if (mddev->delta_disks >= 0 &&
4112 conf->reshape_progress > 0)
4113 sector_nr = conf->reshape_progress;
4114 sector_div(sector_nr, new_data_disks);
4115 if (sector_nr) {
4116 mddev->curr_resync_completed = sector_nr;
4117 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4118 *skipped = 1;
4119 return sector_nr;
4120 }
4121 }
4122
4123 /* We need to process a full chunk at a time.
4124 * If old and new chunk sizes differ, we need to process the
4125 * largest of these
4126 */
4127 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4128 reshape_sectors = mddev->new_chunk_sectors;
4129 else
4130 reshape_sectors = mddev->chunk_sectors;
4131
4132 /* we update the metadata when there is more than 3Meg
4133 * in the block range (that is rather arbitrary, should
4134 * probably be time based) or when the data about to be
4135 * copied would over-write the source of the data at
4136 * the front of the range.
4137 * i.e. one new_stripe along from reshape_progress new_maps
4138 * to after where reshape_safe old_maps to
4139 */
4140 writepos = conf->reshape_progress;
4141 sector_div(writepos, new_data_disks);
4142 readpos = conf->reshape_progress;
4143 sector_div(readpos, data_disks);
4144 safepos = conf->reshape_safe;
4145 sector_div(safepos, data_disks);
4146 if (mddev->delta_disks < 0) {
4147 writepos -= min_t(sector_t, reshape_sectors, writepos);
4148 readpos += reshape_sectors;
4149 safepos += reshape_sectors;
4150 } else {
4151 writepos += reshape_sectors;
4152 readpos -= min_t(sector_t, reshape_sectors, readpos);
4153 safepos -= min_t(sector_t, reshape_sectors, safepos);
4154 }
4155
4156 /* 'writepos' is the most advanced device address we might write.
4157 * 'readpos' is the least advanced device address we might read.
4158 * 'safepos' is the least address recorded in the metadata as having
4159 * been reshaped.
4160 * If 'readpos' is behind 'writepos', then there is no way that we can
4161 * ensure safety in the face of a crash - that must be done by userspace
4162 * making a backup of the data. So in that case there is no particular
4163 * rush to update metadata.
4164 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4165 * update the metadata to advance 'safepos' to match 'readpos' so that
4166 * we can be safe in the event of a crash.
4167 * So we insist on updating metadata if safepos is behind writepos and
4168 * readpos is beyond writepos.
4169 * In any case, update the metadata every 10 seconds.
4170 * Maybe that number should be configurable, but I'm not sure it is
4171 * worth it.... maybe it could be a multiple of safemode_delay???
4172 */
4173 if ((mddev->delta_disks < 0
4174 ? (safepos > writepos && readpos < writepos)
4175 : (safepos < writepos && readpos > writepos)) ||
4176 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4177 /* Cannot proceed until we've updated the superblock... */
4178 wait_event(conf->wait_for_overlap,
4179 atomic_read(&conf->reshape_stripes)==0);
4180 mddev->reshape_position = conf->reshape_progress;
4181 mddev->curr_resync_completed = sector_nr;
4182 conf->reshape_checkpoint = jiffies;
4183 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4184 md_wakeup_thread(mddev->thread);
4185 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4186 kthread_should_stop());
4187 spin_lock_irq(&conf->device_lock);
4188 conf->reshape_safe = mddev->reshape_position;
4189 spin_unlock_irq(&conf->device_lock);
4190 wake_up(&conf->wait_for_overlap);
4191 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4192 }
4193
4194 if (mddev->delta_disks < 0) {
4195 BUG_ON(conf->reshape_progress == 0);
4196 stripe_addr = writepos;
4197 BUG_ON((mddev->dev_sectors &
4198 ~((sector_t)reshape_sectors - 1))
4199 - reshape_sectors - stripe_addr
4200 != sector_nr);
4201 } else {
4202 BUG_ON(writepos != sector_nr + reshape_sectors);
4203 stripe_addr = sector_nr;
4204 }
4205 INIT_LIST_HEAD(&stripes);
4206 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4207 int j;
4208 int skipped_disk = 0;
4209 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4210 set_bit(STRIPE_EXPANDING, &sh->state);
4211 atomic_inc(&conf->reshape_stripes);
4212 /* If any of this stripe is beyond the end of the old
4213 * array, then we need to zero those blocks
4214 */
4215 for (j=sh->disks; j--;) {
4216 sector_t s;
4217 if (j == sh->pd_idx)
4218 continue;
4219 if (conf->level == 6 &&
4220 j == sh->qd_idx)
4221 continue;
4222 s = compute_blocknr(sh, j, 0);
4223 if (s < raid5_size(mddev, 0, 0)) {
4224 skipped_disk = 1;
4225 continue;
4226 }
4227 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4228 set_bit(R5_Expanded, &sh->dev[j].flags);
4229 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4230 }
4231 if (!skipped_disk) {
4232 set_bit(STRIPE_EXPAND_READY, &sh->state);
4233 set_bit(STRIPE_HANDLE, &sh->state);
4234 }
4235 list_add(&sh->lru, &stripes);
4236 }
4237 spin_lock_irq(&conf->device_lock);
4238 if (mddev->delta_disks < 0)
4239 conf->reshape_progress -= reshape_sectors * new_data_disks;
4240 else
4241 conf->reshape_progress += reshape_sectors * new_data_disks;
4242 spin_unlock_irq(&conf->device_lock);
4243 /* Ok, those stripe are ready. We can start scheduling
4244 * reads on the source stripes.
4245 * The source stripes are determined by mapping the first and last
4246 * block on the destination stripes.
4247 */
4248 first_sector =
4249 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4250 1, &dd_idx, NULL);
4251 last_sector =
4252 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4253 * new_data_disks - 1),
4254 1, &dd_idx, NULL);
4255 if (last_sector >= mddev->dev_sectors)
4256 last_sector = mddev->dev_sectors - 1;
4257 while (first_sector <= last_sector) {
4258 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4259 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4260 set_bit(STRIPE_HANDLE, &sh->state);
4261 release_stripe(sh);
4262 first_sector += STRIPE_SECTORS;
4263 }
4264 /* Now that the sources are clearly marked, we can release
4265 * the destination stripes
4266 */
4267 while (!list_empty(&stripes)) {
4268 sh = list_entry(stripes.next, struct stripe_head, lru);
4269 list_del_init(&sh->lru);
4270 release_stripe(sh);
4271 }
4272 /* If this takes us to the resync_max point where we have to pause,
4273 * then we need to write out the superblock.
4274 */
4275 sector_nr += reshape_sectors;
4276 if ((sector_nr - mddev->curr_resync_completed) * 2
4277 >= mddev->resync_max - mddev->curr_resync_completed) {
4278 /* Cannot proceed until we've updated the superblock... */
4279 wait_event(conf->wait_for_overlap,
4280 atomic_read(&conf->reshape_stripes) == 0);
4281 mddev->reshape_position = conf->reshape_progress;
4282 mddev->curr_resync_completed = sector_nr;
4283 conf->reshape_checkpoint = jiffies;
4284 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4285 md_wakeup_thread(mddev->thread);
4286 wait_event(mddev->sb_wait,
4287 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4288 || kthread_should_stop());
4289 spin_lock_irq(&conf->device_lock);
4290 conf->reshape_safe = mddev->reshape_position;
4291 spin_unlock_irq(&conf->device_lock);
4292 wake_up(&conf->wait_for_overlap);
4293 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4294 }
4295 return reshape_sectors;
4296 }
4297
4298 /* FIXME go_faster isn't used */
4299 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4300 {
4301 struct r5conf *conf = mddev->private;
4302 struct stripe_head *sh;
4303 sector_t max_sector = mddev->dev_sectors;
4304 sector_t sync_blocks;
4305 int still_degraded = 0;
4306 int i;
4307
4308 if (sector_nr >= max_sector) {
4309 /* just being told to finish up .. nothing much to do */
4310
4311 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4312 end_reshape(conf);
4313 return 0;
4314 }
4315
4316 if (mddev->curr_resync < max_sector) /* aborted */
4317 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4318 &sync_blocks, 1);
4319 else /* completed sync */
4320 conf->fullsync = 0;
4321 bitmap_close_sync(mddev->bitmap);
4322
4323 return 0;
4324 }
4325
4326 /* Allow raid5_quiesce to complete */
4327 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4328
4329 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4330 return reshape_request(mddev, sector_nr, skipped);
4331
4332 /* No need to check resync_max as we never do more than one
4333 * stripe, and as resync_max will always be on a chunk boundary,
4334 * if the check in md_do_sync didn't fire, there is no chance
4335 * of overstepping resync_max here
4336 */
4337
4338 /* if there is too many failed drives and we are trying
4339 * to resync, then assert that we are finished, because there is
4340 * nothing we can do.
4341 */
4342 if (mddev->degraded >= conf->max_degraded &&
4343 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4344 sector_t rv = mddev->dev_sectors - sector_nr;
4345 *skipped = 1;
4346 return rv;
4347 }
4348 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4349 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4350 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4351 /* we can skip this block, and probably more */
4352 sync_blocks /= STRIPE_SECTORS;
4353 *skipped = 1;
4354 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4355 }
4356
4357 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4358
4359 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4360 if (sh == NULL) {
4361 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4362 /* make sure we don't swamp the stripe cache if someone else
4363 * is trying to get access
4364 */
4365 schedule_timeout_uninterruptible(1);
4366 }
4367 /* Need to check if array will still be degraded after recovery/resync
4368 * We don't need to check the 'failed' flag as when that gets set,
4369 * recovery aborts.
4370 */
4371 for (i = 0; i < conf->raid_disks; i++)
4372 if (conf->disks[i].rdev == NULL)
4373 still_degraded = 1;
4374
4375 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4376
4377 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4378
4379 handle_stripe(sh);
4380 release_stripe(sh);
4381
4382 return STRIPE_SECTORS;
4383 }
4384
4385 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4386 {
4387 /* We may not be able to submit a whole bio at once as there
4388 * may not be enough stripe_heads available.
4389 * We cannot pre-allocate enough stripe_heads as we may need
4390 * more than exist in the cache (if we allow ever large chunks).
4391 * So we do one stripe head at a time and record in
4392 * ->bi_hw_segments how many have been done.
4393 *
4394 * We *know* that this entire raid_bio is in one chunk, so
4395 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4396 */
4397 struct stripe_head *sh;
4398 int dd_idx;
4399 sector_t sector, logical_sector, last_sector;
4400 int scnt = 0;
4401 int remaining;
4402 int handled = 0;
4403
4404 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4405 sector = raid5_compute_sector(conf, logical_sector,
4406 0, &dd_idx, NULL);
4407 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4408
4409 for (; logical_sector < last_sector;
4410 logical_sector += STRIPE_SECTORS,
4411 sector += STRIPE_SECTORS,
4412 scnt++) {
4413
4414 if (scnt < raid5_bi_hw_segments(raid_bio))
4415 /* already done this stripe */
4416 continue;
4417
4418 sh = get_active_stripe(conf, sector, 0, 1, 0);
4419
4420 if (!sh) {
4421 /* failed to get a stripe - must wait */
4422 raid5_set_bi_hw_segments(raid_bio, scnt);
4423 conf->retry_read_aligned = raid_bio;
4424 return handled;
4425 }
4426
4427 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4428 release_stripe(sh);
4429 raid5_set_bi_hw_segments(raid_bio, scnt);
4430 conf->retry_read_aligned = raid_bio;
4431 return handled;
4432 }
4433
4434 handle_stripe(sh);
4435 release_stripe(sh);
4436 handled++;
4437 }
4438 spin_lock_irq(&conf->device_lock);
4439 remaining = raid5_dec_bi_phys_segments(raid_bio);
4440 spin_unlock_irq(&conf->device_lock);
4441 if (remaining == 0)
4442 bio_endio(raid_bio, 0);
4443 if (atomic_dec_and_test(&conf->active_aligned_reads))
4444 wake_up(&conf->wait_for_stripe);
4445 return handled;
4446 }
4447
4448
4449 /*
4450 * This is our raid5 kernel thread.
4451 *
4452 * We scan the hash table for stripes which can be handled now.
4453 * During the scan, completed stripes are saved for us by the interrupt
4454 * handler, so that they will not have to wait for our next wakeup.
4455 */
4456 static void raid5d(struct mddev *mddev)
4457 {
4458 struct stripe_head *sh;
4459 struct r5conf *conf = mddev->private;
4460 int handled;
4461 struct blk_plug plug;
4462
4463 pr_debug("+++ raid5d active\n");
4464
4465 md_check_recovery(mddev);
4466
4467 blk_start_plug(&plug);
4468 handled = 0;
4469 spin_lock_irq(&conf->device_lock);
4470 while (1) {
4471 struct bio *bio;
4472
4473 if (atomic_read(&mddev->plug_cnt) == 0 &&
4474 !list_empty(&conf->bitmap_list)) {
4475 /* Now is a good time to flush some bitmap updates */
4476 conf->seq_flush++;
4477 spin_unlock_irq(&conf->device_lock);
4478 bitmap_unplug(mddev->bitmap);
4479 spin_lock_irq(&conf->device_lock);
4480 conf->seq_write = conf->seq_flush;
4481 activate_bit_delay(conf);
4482 }
4483 if (atomic_read(&mddev->plug_cnt) == 0)
4484 raid5_activate_delayed(conf);
4485
4486 while ((bio = remove_bio_from_retry(conf))) {
4487 int ok;
4488 spin_unlock_irq(&conf->device_lock);
4489 ok = retry_aligned_read(conf, bio);
4490 spin_lock_irq(&conf->device_lock);
4491 if (!ok)
4492 break;
4493 handled++;
4494 }
4495
4496 sh = __get_priority_stripe(conf);
4497
4498 if (!sh)
4499 break;
4500 spin_unlock_irq(&conf->device_lock);
4501
4502 handled++;
4503 handle_stripe(sh);
4504 release_stripe(sh);
4505 cond_resched();
4506
4507 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4508 md_check_recovery(mddev);
4509
4510 spin_lock_irq(&conf->device_lock);
4511 }
4512 pr_debug("%d stripes handled\n", handled);
4513
4514 spin_unlock_irq(&conf->device_lock);
4515
4516 async_tx_issue_pending_all();
4517 blk_finish_plug(&plug);
4518
4519 pr_debug("--- raid5d inactive\n");
4520 }
4521
4522 static ssize_t
4523 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4524 {
4525 struct r5conf *conf = mddev->private;
4526 if (conf)
4527 return sprintf(page, "%d\n", conf->max_nr_stripes);
4528 else
4529 return 0;
4530 }
4531
4532 int
4533 raid5_set_cache_size(struct mddev *mddev, int size)
4534 {
4535 struct r5conf *conf = mddev->private;
4536 int err;
4537
4538 if (size <= 16 || size > 32768)
4539 return -EINVAL;
4540 while (size < conf->max_nr_stripes) {
4541 if (drop_one_stripe(conf))
4542 conf->max_nr_stripes--;
4543 else
4544 break;
4545 }
4546 err = md_allow_write(mddev);
4547 if (err)
4548 return err;
4549 while (size > conf->max_nr_stripes) {
4550 if (grow_one_stripe(conf))
4551 conf->max_nr_stripes++;
4552 else break;
4553 }
4554 return 0;
4555 }
4556 EXPORT_SYMBOL(raid5_set_cache_size);
4557
4558 static ssize_t
4559 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4560 {
4561 struct r5conf *conf = mddev->private;
4562 unsigned long new;
4563 int err;
4564
4565 if (len >= PAGE_SIZE)
4566 return -EINVAL;
4567 if (!conf)
4568 return -ENODEV;
4569
4570 if (strict_strtoul(page, 10, &new))
4571 return -EINVAL;
4572 err = raid5_set_cache_size(mddev, new);
4573 if (err)
4574 return err;
4575 return len;
4576 }
4577
4578 static struct md_sysfs_entry
4579 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4580 raid5_show_stripe_cache_size,
4581 raid5_store_stripe_cache_size);
4582
4583 static ssize_t
4584 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4585 {
4586 struct r5conf *conf = mddev->private;
4587 if (conf)
4588 return sprintf(page, "%d\n", conf->bypass_threshold);
4589 else
4590 return 0;
4591 }
4592
4593 static ssize_t
4594 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4595 {
4596 struct r5conf *conf = mddev->private;
4597 unsigned long new;
4598 if (len >= PAGE_SIZE)
4599 return -EINVAL;
4600 if (!conf)
4601 return -ENODEV;
4602
4603 if (strict_strtoul(page, 10, &new))
4604 return -EINVAL;
4605 if (new > conf->max_nr_stripes)
4606 return -EINVAL;
4607 conf->bypass_threshold = new;
4608 return len;
4609 }
4610
4611 static struct md_sysfs_entry
4612 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4613 S_IRUGO | S_IWUSR,
4614 raid5_show_preread_threshold,
4615 raid5_store_preread_threshold);
4616
4617 static ssize_t
4618 stripe_cache_active_show(struct mddev *mddev, char *page)
4619 {
4620 struct r5conf *conf = mddev->private;
4621 if (conf)
4622 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4623 else
4624 return 0;
4625 }
4626
4627 static struct md_sysfs_entry
4628 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4629
4630 static struct attribute *raid5_attrs[] = {
4631 &raid5_stripecache_size.attr,
4632 &raid5_stripecache_active.attr,
4633 &raid5_preread_bypass_threshold.attr,
4634 NULL,
4635 };
4636 static struct attribute_group raid5_attrs_group = {
4637 .name = NULL,
4638 .attrs = raid5_attrs,
4639 };
4640
4641 static sector_t
4642 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4643 {
4644 struct r5conf *conf = mddev->private;
4645
4646 if (!sectors)
4647 sectors = mddev->dev_sectors;
4648 if (!raid_disks)
4649 /* size is defined by the smallest of previous and new size */
4650 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4651
4652 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4653 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4654 return sectors * (raid_disks - conf->max_degraded);
4655 }
4656
4657 static void raid5_free_percpu(struct r5conf *conf)
4658 {
4659 struct raid5_percpu *percpu;
4660 unsigned long cpu;
4661
4662 if (!conf->percpu)
4663 return;
4664
4665 get_online_cpus();
4666 for_each_possible_cpu(cpu) {
4667 percpu = per_cpu_ptr(conf->percpu, cpu);
4668 safe_put_page(percpu->spare_page);
4669 kfree(percpu->scribble);
4670 }
4671 #ifdef CONFIG_HOTPLUG_CPU
4672 unregister_cpu_notifier(&conf->cpu_notify);
4673 #endif
4674 put_online_cpus();
4675
4676 free_percpu(conf->percpu);
4677 }
4678
4679 static void free_conf(struct r5conf *conf)
4680 {
4681 shrink_stripes(conf);
4682 raid5_free_percpu(conf);
4683 kfree(conf->disks);
4684 kfree(conf->stripe_hashtbl);
4685 kfree(conf);
4686 }
4687
4688 #ifdef CONFIG_HOTPLUG_CPU
4689 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4690 void *hcpu)
4691 {
4692 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4693 long cpu = (long)hcpu;
4694 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4695
4696 switch (action) {
4697 case CPU_UP_PREPARE:
4698 case CPU_UP_PREPARE_FROZEN:
4699 if (conf->level == 6 && !percpu->spare_page)
4700 percpu->spare_page = alloc_page(GFP_KERNEL);
4701 if (!percpu->scribble)
4702 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4703
4704 if (!percpu->scribble ||
4705 (conf->level == 6 && !percpu->spare_page)) {
4706 safe_put_page(percpu->spare_page);
4707 kfree(percpu->scribble);
4708 pr_err("%s: failed memory allocation for cpu%ld\n",
4709 __func__, cpu);
4710 return notifier_from_errno(-ENOMEM);
4711 }
4712 break;
4713 case CPU_DEAD:
4714 case CPU_DEAD_FROZEN:
4715 safe_put_page(percpu->spare_page);
4716 kfree(percpu->scribble);
4717 percpu->spare_page = NULL;
4718 percpu->scribble = NULL;
4719 break;
4720 default:
4721 break;
4722 }
4723 return NOTIFY_OK;
4724 }
4725 #endif
4726
4727 static int raid5_alloc_percpu(struct r5conf *conf)
4728 {
4729 unsigned long cpu;
4730 struct page *spare_page;
4731 struct raid5_percpu __percpu *allcpus;
4732 void *scribble;
4733 int err;
4734
4735 allcpus = alloc_percpu(struct raid5_percpu);
4736 if (!allcpus)
4737 return -ENOMEM;
4738 conf->percpu = allcpus;
4739
4740 get_online_cpus();
4741 err = 0;
4742 for_each_present_cpu(cpu) {
4743 if (conf->level == 6) {
4744 spare_page = alloc_page(GFP_KERNEL);
4745 if (!spare_page) {
4746 err = -ENOMEM;
4747 break;
4748 }
4749 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4750 }
4751 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4752 if (!scribble) {
4753 err = -ENOMEM;
4754 break;
4755 }
4756 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4757 }
4758 #ifdef CONFIG_HOTPLUG_CPU
4759 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4760 conf->cpu_notify.priority = 0;
4761 if (err == 0)
4762 err = register_cpu_notifier(&conf->cpu_notify);
4763 #endif
4764 put_online_cpus();
4765
4766 return err;
4767 }
4768
4769 static struct r5conf *setup_conf(struct mddev *mddev)
4770 {
4771 struct r5conf *conf;
4772 int raid_disk, memory, max_disks;
4773 struct md_rdev *rdev;
4774 struct disk_info *disk;
4775
4776 if (mddev->new_level != 5
4777 && mddev->new_level != 4
4778 && mddev->new_level != 6) {
4779 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4780 mdname(mddev), mddev->new_level);
4781 return ERR_PTR(-EIO);
4782 }
4783 if ((mddev->new_level == 5
4784 && !algorithm_valid_raid5(mddev->new_layout)) ||
4785 (mddev->new_level == 6
4786 && !algorithm_valid_raid6(mddev->new_layout))) {
4787 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4788 mdname(mddev), mddev->new_layout);
4789 return ERR_PTR(-EIO);
4790 }
4791 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4792 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4793 mdname(mddev), mddev->raid_disks);
4794 return ERR_PTR(-EINVAL);
4795 }
4796
4797 if (!mddev->new_chunk_sectors ||
4798 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4799 !is_power_of_2(mddev->new_chunk_sectors)) {
4800 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4801 mdname(mddev), mddev->new_chunk_sectors << 9);
4802 return ERR_PTR(-EINVAL);
4803 }
4804
4805 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4806 if (conf == NULL)
4807 goto abort;
4808 spin_lock_init(&conf->device_lock);
4809 init_waitqueue_head(&conf->wait_for_stripe);
4810 init_waitqueue_head(&conf->wait_for_overlap);
4811 INIT_LIST_HEAD(&conf->handle_list);
4812 INIT_LIST_HEAD(&conf->hold_list);
4813 INIT_LIST_HEAD(&conf->delayed_list);
4814 INIT_LIST_HEAD(&conf->bitmap_list);
4815 INIT_LIST_HEAD(&conf->inactive_list);
4816 atomic_set(&conf->active_stripes, 0);
4817 atomic_set(&conf->preread_active_stripes, 0);
4818 atomic_set(&conf->active_aligned_reads, 0);
4819 conf->bypass_threshold = BYPASS_THRESHOLD;
4820 conf->recovery_disabled = mddev->recovery_disabled - 1;
4821
4822 conf->raid_disks = mddev->raid_disks;
4823 if (mddev->reshape_position == MaxSector)
4824 conf->previous_raid_disks = mddev->raid_disks;
4825 else
4826 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4827 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4828 conf->scribble_len = scribble_len(max_disks);
4829
4830 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4831 GFP_KERNEL);
4832 if (!conf->disks)
4833 goto abort;
4834
4835 conf->mddev = mddev;
4836
4837 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4838 goto abort;
4839
4840 conf->level = mddev->new_level;
4841 if (raid5_alloc_percpu(conf) != 0)
4842 goto abort;
4843
4844 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4845
4846 list_for_each_entry(rdev, &mddev->disks, same_set) {
4847 raid_disk = rdev->raid_disk;
4848 if (raid_disk >= max_disks
4849 || raid_disk < 0)
4850 continue;
4851 disk = conf->disks + raid_disk;
4852
4853 if (test_bit(Replacement, &rdev->flags)) {
4854 if (disk->replacement)
4855 goto abort;
4856 disk->replacement = rdev;
4857 } else {
4858 if (disk->rdev)
4859 goto abort;
4860 disk->rdev = rdev;
4861 }
4862
4863 if (test_bit(In_sync, &rdev->flags)) {
4864 char b[BDEVNAME_SIZE];
4865 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4866 " disk %d\n",
4867 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4868 } else if (rdev->saved_raid_disk != raid_disk)
4869 /* Cannot rely on bitmap to complete recovery */
4870 conf->fullsync = 1;
4871 }
4872
4873 conf->chunk_sectors = mddev->new_chunk_sectors;
4874 conf->level = mddev->new_level;
4875 if (conf->level == 6)
4876 conf->max_degraded = 2;
4877 else
4878 conf->max_degraded = 1;
4879 conf->algorithm = mddev->new_layout;
4880 conf->max_nr_stripes = NR_STRIPES;
4881 conf->reshape_progress = mddev->reshape_position;
4882 if (conf->reshape_progress != MaxSector) {
4883 conf->prev_chunk_sectors = mddev->chunk_sectors;
4884 conf->prev_algo = mddev->layout;
4885 }
4886
4887 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4888 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4889 if (grow_stripes(conf, conf->max_nr_stripes)) {
4890 printk(KERN_ERR
4891 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4892 mdname(mddev), memory);
4893 goto abort;
4894 } else
4895 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4896 mdname(mddev), memory);
4897
4898 conf->thread = md_register_thread(raid5d, mddev, NULL);
4899 if (!conf->thread) {
4900 printk(KERN_ERR
4901 "md/raid:%s: couldn't allocate thread.\n",
4902 mdname(mddev));
4903 goto abort;
4904 }
4905
4906 return conf;
4907
4908 abort:
4909 if (conf) {
4910 free_conf(conf);
4911 return ERR_PTR(-EIO);
4912 } else
4913 return ERR_PTR(-ENOMEM);
4914 }
4915
4916
4917 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4918 {
4919 switch (algo) {
4920 case ALGORITHM_PARITY_0:
4921 if (raid_disk < max_degraded)
4922 return 1;
4923 break;
4924 case ALGORITHM_PARITY_N:
4925 if (raid_disk >= raid_disks - max_degraded)
4926 return 1;
4927 break;
4928 case ALGORITHM_PARITY_0_6:
4929 if (raid_disk == 0 ||
4930 raid_disk == raid_disks - 1)
4931 return 1;
4932 break;
4933 case ALGORITHM_LEFT_ASYMMETRIC_6:
4934 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4935 case ALGORITHM_LEFT_SYMMETRIC_6:
4936 case ALGORITHM_RIGHT_SYMMETRIC_6:
4937 if (raid_disk == raid_disks - 1)
4938 return 1;
4939 }
4940 return 0;
4941 }
4942
4943 static int run(struct mddev *mddev)
4944 {
4945 struct r5conf *conf;
4946 int working_disks = 0;
4947 int dirty_parity_disks = 0;
4948 struct md_rdev *rdev;
4949 sector_t reshape_offset = 0;
4950 int i;
4951
4952 if (mddev->recovery_cp != MaxSector)
4953 printk(KERN_NOTICE "md/raid:%s: not clean"
4954 " -- starting background reconstruction\n",
4955 mdname(mddev));
4956 if (mddev->reshape_position != MaxSector) {
4957 /* Check that we can continue the reshape.
4958 * Currently only disks can change, it must
4959 * increase, and we must be past the point where
4960 * a stripe over-writes itself
4961 */
4962 sector_t here_new, here_old;
4963 int old_disks;
4964 int max_degraded = (mddev->level == 6 ? 2 : 1);
4965
4966 if (mddev->new_level != mddev->level) {
4967 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4968 "required - aborting.\n",
4969 mdname(mddev));
4970 return -EINVAL;
4971 }
4972 old_disks = mddev->raid_disks - mddev->delta_disks;
4973 /* reshape_position must be on a new-stripe boundary, and one
4974 * further up in new geometry must map after here in old
4975 * geometry.
4976 */
4977 here_new = mddev->reshape_position;
4978 if (sector_div(here_new, mddev->new_chunk_sectors *
4979 (mddev->raid_disks - max_degraded))) {
4980 printk(KERN_ERR "md/raid:%s: reshape_position not "
4981 "on a stripe boundary\n", mdname(mddev));
4982 return -EINVAL;
4983 }
4984 reshape_offset = here_new * mddev->new_chunk_sectors;
4985 /* here_new is the stripe we will write to */
4986 here_old = mddev->reshape_position;
4987 sector_div(here_old, mddev->chunk_sectors *
4988 (old_disks-max_degraded));
4989 /* here_old is the first stripe that we might need to read
4990 * from */
4991 if (mddev->delta_disks == 0) {
4992 /* We cannot be sure it is safe to start an in-place
4993 * reshape. It is only safe if user-space if monitoring
4994 * and taking constant backups.
4995 * mdadm always starts a situation like this in
4996 * readonly mode so it can take control before
4997 * allowing any writes. So just check for that.
4998 */
4999 if ((here_new * mddev->new_chunk_sectors !=
5000 here_old * mddev->chunk_sectors) ||
5001 mddev->ro == 0) {
5002 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5003 " in read-only mode - aborting\n",
5004 mdname(mddev));
5005 return -EINVAL;
5006 }
5007 } else if (mddev->delta_disks < 0
5008 ? (here_new * mddev->new_chunk_sectors <=
5009 here_old * mddev->chunk_sectors)
5010 : (here_new * mddev->new_chunk_sectors >=
5011 here_old * mddev->chunk_sectors)) {
5012 /* Reading from the same stripe as writing to - bad */
5013 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5014 "auto-recovery - aborting.\n",
5015 mdname(mddev));
5016 return -EINVAL;
5017 }
5018 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5019 mdname(mddev));
5020 /* OK, we should be able to continue; */
5021 } else {
5022 BUG_ON(mddev->level != mddev->new_level);
5023 BUG_ON(mddev->layout != mddev->new_layout);
5024 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5025 BUG_ON(mddev->delta_disks != 0);
5026 }
5027
5028 if (mddev->private == NULL)
5029 conf = setup_conf(mddev);
5030 else
5031 conf = mddev->private;
5032
5033 if (IS_ERR(conf))
5034 return PTR_ERR(conf);
5035
5036 mddev->thread = conf->thread;
5037 conf->thread = NULL;
5038 mddev->private = conf;
5039
5040 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5041 i++) {
5042 rdev = conf->disks[i].rdev;
5043 if (!rdev && conf->disks[i].replacement) {
5044 /* The replacement is all we have yet */
5045 rdev = conf->disks[i].replacement;
5046 conf->disks[i].replacement = NULL;
5047 clear_bit(Replacement, &rdev->flags);
5048 conf->disks[i].rdev = rdev;
5049 }
5050 if (!rdev)
5051 continue;
5052 if (conf->disks[i].replacement &&
5053 conf->reshape_progress != MaxSector) {
5054 /* replacements and reshape simply do not mix. */
5055 printk(KERN_ERR "md: cannot handle concurrent "
5056 "replacement and reshape.\n");
5057 goto abort;
5058 }
5059 if (test_bit(In_sync, &rdev->flags)) {
5060 working_disks++;
5061 continue;
5062 }
5063 /* This disc is not fully in-sync. However if it
5064 * just stored parity (beyond the recovery_offset),
5065 * when we don't need to be concerned about the
5066 * array being dirty.
5067 * When reshape goes 'backwards', we never have
5068 * partially completed devices, so we only need
5069 * to worry about reshape going forwards.
5070 */
5071 /* Hack because v0.91 doesn't store recovery_offset properly. */
5072 if (mddev->major_version == 0 &&
5073 mddev->minor_version > 90)
5074 rdev->recovery_offset = reshape_offset;
5075
5076 if (rdev->recovery_offset < reshape_offset) {
5077 /* We need to check old and new layout */
5078 if (!only_parity(rdev->raid_disk,
5079 conf->algorithm,
5080 conf->raid_disks,
5081 conf->max_degraded))
5082 continue;
5083 }
5084 if (!only_parity(rdev->raid_disk,
5085 conf->prev_algo,
5086 conf->previous_raid_disks,
5087 conf->max_degraded))
5088 continue;
5089 dirty_parity_disks++;
5090 }
5091
5092 /*
5093 * 0 for a fully functional array, 1 or 2 for a degraded array.
5094 */
5095 mddev->degraded = calc_degraded(conf);
5096
5097 if (has_failed(conf)) {
5098 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5099 " (%d/%d failed)\n",
5100 mdname(mddev), mddev->degraded, conf->raid_disks);
5101 goto abort;
5102 }
5103
5104 /* device size must be a multiple of chunk size */
5105 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5106 mddev->resync_max_sectors = mddev->dev_sectors;
5107
5108 if (mddev->degraded > dirty_parity_disks &&
5109 mddev->recovery_cp != MaxSector) {
5110 if (mddev->ok_start_degraded)
5111 printk(KERN_WARNING
5112 "md/raid:%s: starting dirty degraded array"
5113 " - data corruption possible.\n",
5114 mdname(mddev));
5115 else {
5116 printk(KERN_ERR
5117 "md/raid:%s: cannot start dirty degraded array.\n",
5118 mdname(mddev));
5119 goto abort;
5120 }
5121 }
5122
5123 if (mddev->degraded == 0)
5124 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5125 " devices, algorithm %d\n", mdname(mddev), conf->level,
5126 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5127 mddev->new_layout);
5128 else
5129 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5130 " out of %d devices, algorithm %d\n",
5131 mdname(mddev), conf->level,
5132 mddev->raid_disks - mddev->degraded,
5133 mddev->raid_disks, mddev->new_layout);
5134
5135 print_raid5_conf(conf);
5136
5137 if (conf->reshape_progress != MaxSector) {
5138 conf->reshape_safe = conf->reshape_progress;
5139 atomic_set(&conf->reshape_stripes, 0);
5140 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5141 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5142 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5143 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5144 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5145 "reshape");
5146 }
5147
5148
5149 /* Ok, everything is just fine now */
5150 if (mddev->to_remove == &raid5_attrs_group)
5151 mddev->to_remove = NULL;
5152 else if (mddev->kobj.sd &&
5153 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5154 printk(KERN_WARNING
5155 "raid5: failed to create sysfs attributes for %s\n",
5156 mdname(mddev));
5157 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5158
5159 if (mddev->queue) {
5160 int chunk_size;
5161 /* read-ahead size must cover two whole stripes, which
5162 * is 2 * (datadisks) * chunksize where 'n' is the
5163 * number of raid devices
5164 */
5165 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5166 int stripe = data_disks *
5167 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5168 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5169 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5170
5171 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5172
5173 mddev->queue->backing_dev_info.congested_data = mddev;
5174 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5175
5176 chunk_size = mddev->chunk_sectors << 9;
5177 blk_queue_io_min(mddev->queue, chunk_size);
5178 blk_queue_io_opt(mddev->queue, chunk_size *
5179 (conf->raid_disks - conf->max_degraded));
5180
5181 list_for_each_entry(rdev, &mddev->disks, same_set)
5182 disk_stack_limits(mddev->gendisk, rdev->bdev,
5183 rdev->data_offset << 9);
5184 }
5185
5186 return 0;
5187 abort:
5188 md_unregister_thread(&mddev->thread);
5189 print_raid5_conf(conf);
5190 free_conf(conf);
5191 mddev->private = NULL;
5192 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5193 return -EIO;
5194 }
5195
5196 static int stop(struct mddev *mddev)
5197 {
5198 struct r5conf *conf = mddev->private;
5199
5200 md_unregister_thread(&mddev->thread);
5201 if (mddev->queue)
5202 mddev->queue->backing_dev_info.congested_fn = NULL;
5203 free_conf(conf);
5204 mddev->private = NULL;
5205 mddev->to_remove = &raid5_attrs_group;
5206 return 0;
5207 }
5208
5209 static void status(struct seq_file *seq, struct mddev *mddev)
5210 {
5211 struct r5conf *conf = mddev->private;
5212 int i;
5213
5214 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5215 mddev->chunk_sectors / 2, mddev->layout);
5216 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5217 for (i = 0; i < conf->raid_disks; i++)
5218 seq_printf (seq, "%s",
5219 conf->disks[i].rdev &&
5220 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5221 seq_printf (seq, "]");
5222 }
5223
5224 static void print_raid5_conf (struct r5conf *conf)
5225 {
5226 int i;
5227 struct disk_info *tmp;
5228
5229 printk(KERN_DEBUG "RAID conf printout:\n");
5230 if (!conf) {
5231 printk("(conf==NULL)\n");
5232 return;
5233 }
5234 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5235 conf->raid_disks,
5236 conf->raid_disks - conf->mddev->degraded);
5237
5238 for (i = 0; i < conf->raid_disks; i++) {
5239 char b[BDEVNAME_SIZE];
5240 tmp = conf->disks + i;
5241 if (tmp->rdev)
5242 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5243 i, !test_bit(Faulty, &tmp->rdev->flags),
5244 bdevname(tmp->rdev->bdev, b));
5245 }
5246 }
5247
5248 static int raid5_spare_active(struct mddev *mddev)
5249 {
5250 int i;
5251 struct r5conf *conf = mddev->private;
5252 struct disk_info *tmp;
5253 int count = 0;
5254 unsigned long flags;
5255
5256 for (i = 0; i < conf->raid_disks; i++) {
5257 tmp = conf->disks + i;
5258 if (tmp->replacement
5259 && tmp->replacement->recovery_offset == MaxSector
5260 && !test_bit(Faulty, &tmp->replacement->flags)
5261 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5262 /* Replacement has just become active. */
5263 if (!tmp->rdev
5264 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5265 count++;
5266 if (tmp->rdev) {
5267 /* Replaced device not technically faulty,
5268 * but we need to be sure it gets removed
5269 * and never re-added.
5270 */
5271 set_bit(Faulty, &tmp->rdev->flags);
5272 sysfs_notify_dirent_safe(
5273 tmp->rdev->sysfs_state);
5274 }
5275 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5276 } else if (tmp->rdev
5277 && tmp->rdev->recovery_offset == MaxSector
5278 && !test_bit(Faulty, &tmp->rdev->flags)
5279 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5280 count++;
5281 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5282 }
5283 }
5284 spin_lock_irqsave(&conf->device_lock, flags);
5285 mddev->degraded = calc_degraded(conf);
5286 spin_unlock_irqrestore(&conf->device_lock, flags);
5287 print_raid5_conf(conf);
5288 return count;
5289 }
5290
5291 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5292 {
5293 struct r5conf *conf = mddev->private;
5294 int err = 0;
5295 int number = rdev->raid_disk;
5296 struct md_rdev **rdevp;
5297 struct disk_info *p = conf->disks + number;
5298
5299 print_raid5_conf(conf);
5300 if (rdev == p->rdev)
5301 rdevp = &p->rdev;
5302 else if (rdev == p->replacement)
5303 rdevp = &p->replacement;
5304 else
5305 return 0;
5306
5307 if (number >= conf->raid_disks &&
5308 conf->reshape_progress == MaxSector)
5309 clear_bit(In_sync, &rdev->flags);
5310
5311 if (test_bit(In_sync, &rdev->flags) ||
5312 atomic_read(&rdev->nr_pending)) {
5313 err = -EBUSY;
5314 goto abort;
5315 }
5316 /* Only remove non-faulty devices if recovery
5317 * isn't possible.
5318 */
5319 if (!test_bit(Faulty, &rdev->flags) &&
5320 mddev->recovery_disabled != conf->recovery_disabled &&
5321 !has_failed(conf) &&
5322 (!p->replacement || p->replacement == rdev) &&
5323 number < conf->raid_disks) {
5324 err = -EBUSY;
5325 goto abort;
5326 }
5327 *rdevp = NULL;
5328 synchronize_rcu();
5329 if (atomic_read(&rdev->nr_pending)) {
5330 /* lost the race, try later */
5331 err = -EBUSY;
5332 *rdevp = rdev;
5333 } else if (p->replacement) {
5334 /* We must have just cleared 'rdev' */
5335 p->rdev = p->replacement;
5336 clear_bit(Replacement, &p->replacement->flags);
5337 smp_mb(); /* Make sure other CPUs may see both as identical
5338 * but will never see neither - if they are careful
5339 */
5340 p->replacement = NULL;
5341 clear_bit(WantReplacement, &rdev->flags);
5342 } else
5343 /* We might have just removed the Replacement as faulty-
5344 * clear the bit just in case
5345 */
5346 clear_bit(WantReplacement, &rdev->flags);
5347 abort:
5348
5349 print_raid5_conf(conf);
5350 return err;
5351 }
5352
5353 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5354 {
5355 struct r5conf *conf = mddev->private;
5356 int err = -EEXIST;
5357 int disk;
5358 struct disk_info *p;
5359 int first = 0;
5360 int last = conf->raid_disks - 1;
5361
5362 if (mddev->recovery_disabled == conf->recovery_disabled)
5363 return -EBUSY;
5364
5365 if (has_failed(conf))
5366 /* no point adding a device */
5367 return -EINVAL;
5368
5369 if (rdev->raid_disk >= 0)
5370 first = last = rdev->raid_disk;
5371
5372 /*
5373 * find the disk ... but prefer rdev->saved_raid_disk
5374 * if possible.
5375 */
5376 if (rdev->saved_raid_disk >= 0 &&
5377 rdev->saved_raid_disk >= first &&
5378 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5379 disk = rdev->saved_raid_disk;
5380 else
5381 disk = first;
5382 for ( ; disk <= last ; disk++) {
5383 p = conf->disks + disk;
5384 if (p->rdev == NULL) {
5385 clear_bit(In_sync, &rdev->flags);
5386 rdev->raid_disk = disk;
5387 err = 0;
5388 if (rdev->saved_raid_disk != disk)
5389 conf->fullsync = 1;
5390 rcu_assign_pointer(p->rdev, rdev);
5391 break;
5392 }
5393 if (test_bit(WantReplacement, &p->rdev->flags) &&
5394 p->replacement == NULL) {
5395 clear_bit(In_sync, &rdev->flags);
5396 set_bit(Replacement, &rdev->flags);
5397 rdev->raid_disk = disk;
5398 err = 0;
5399 conf->fullsync = 1;
5400 rcu_assign_pointer(p->replacement, rdev);
5401 break;
5402 }
5403 }
5404 print_raid5_conf(conf);
5405 return err;
5406 }
5407
5408 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5409 {
5410 /* no resync is happening, and there is enough space
5411 * on all devices, so we can resize.
5412 * We need to make sure resync covers any new space.
5413 * If the array is shrinking we should possibly wait until
5414 * any io in the removed space completes, but it hardly seems
5415 * worth it.
5416 */
5417 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5418 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5419 mddev->raid_disks));
5420 if (mddev->array_sectors >
5421 raid5_size(mddev, sectors, mddev->raid_disks))
5422 return -EINVAL;
5423 set_capacity(mddev->gendisk, mddev->array_sectors);
5424 revalidate_disk(mddev->gendisk);
5425 if (sectors > mddev->dev_sectors &&
5426 mddev->recovery_cp > mddev->dev_sectors) {
5427 mddev->recovery_cp = mddev->dev_sectors;
5428 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5429 }
5430 mddev->dev_sectors = sectors;
5431 mddev->resync_max_sectors = sectors;
5432 return 0;
5433 }
5434
5435 static int check_stripe_cache(struct mddev *mddev)
5436 {
5437 /* Can only proceed if there are plenty of stripe_heads.
5438 * We need a minimum of one full stripe,, and for sensible progress
5439 * it is best to have about 4 times that.
5440 * If we require 4 times, then the default 256 4K stripe_heads will
5441 * allow for chunk sizes up to 256K, which is probably OK.
5442 * If the chunk size is greater, user-space should request more
5443 * stripe_heads first.
5444 */
5445 struct r5conf *conf = mddev->private;
5446 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5447 > conf->max_nr_stripes ||
5448 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5449 > conf->max_nr_stripes) {
5450 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5451 mdname(mddev),
5452 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5453 / STRIPE_SIZE)*4);
5454 return 0;
5455 }
5456 return 1;
5457 }
5458
5459 static int check_reshape(struct mddev *mddev)
5460 {
5461 struct r5conf *conf = mddev->private;
5462
5463 if (mddev->delta_disks == 0 &&
5464 mddev->new_layout == mddev->layout &&
5465 mddev->new_chunk_sectors == mddev->chunk_sectors)
5466 return 0; /* nothing to do */
5467 if (mddev->bitmap)
5468 /* Cannot grow a bitmap yet */
5469 return -EBUSY;
5470 if (has_failed(conf))
5471 return -EINVAL;
5472 if (mddev->delta_disks < 0) {
5473 /* We might be able to shrink, but the devices must
5474 * be made bigger first.
5475 * For raid6, 4 is the minimum size.
5476 * Otherwise 2 is the minimum
5477 */
5478 int min = 2;
5479 if (mddev->level == 6)
5480 min = 4;
5481 if (mddev->raid_disks + mddev->delta_disks < min)
5482 return -EINVAL;
5483 }
5484
5485 if (!check_stripe_cache(mddev))
5486 return -ENOSPC;
5487
5488 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5489 }
5490
5491 static int raid5_start_reshape(struct mddev *mddev)
5492 {
5493 struct r5conf *conf = mddev->private;
5494 struct md_rdev *rdev;
5495 int spares = 0;
5496 unsigned long flags;
5497
5498 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5499 return -EBUSY;
5500
5501 if (!check_stripe_cache(mddev))
5502 return -ENOSPC;
5503
5504 list_for_each_entry(rdev, &mddev->disks, same_set)
5505 if (!test_bit(In_sync, &rdev->flags)
5506 && !test_bit(Faulty, &rdev->flags))
5507 spares++;
5508
5509 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5510 /* Not enough devices even to make a degraded array
5511 * of that size
5512 */
5513 return -EINVAL;
5514
5515 /* Refuse to reduce size of the array. Any reductions in
5516 * array size must be through explicit setting of array_size
5517 * attribute.
5518 */
5519 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5520 < mddev->array_sectors) {
5521 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5522 "before number of disks\n", mdname(mddev));
5523 return -EINVAL;
5524 }
5525
5526 atomic_set(&conf->reshape_stripes, 0);
5527 spin_lock_irq(&conf->device_lock);
5528 conf->previous_raid_disks = conf->raid_disks;
5529 conf->raid_disks += mddev->delta_disks;
5530 conf->prev_chunk_sectors = conf->chunk_sectors;
5531 conf->chunk_sectors = mddev->new_chunk_sectors;
5532 conf->prev_algo = conf->algorithm;
5533 conf->algorithm = mddev->new_layout;
5534 if (mddev->delta_disks < 0)
5535 conf->reshape_progress = raid5_size(mddev, 0, 0);
5536 else
5537 conf->reshape_progress = 0;
5538 conf->reshape_safe = conf->reshape_progress;
5539 conf->generation++;
5540 spin_unlock_irq(&conf->device_lock);
5541
5542 /* Add some new drives, as many as will fit.
5543 * We know there are enough to make the newly sized array work.
5544 * Don't add devices if we are reducing the number of
5545 * devices in the array. This is because it is not possible
5546 * to correctly record the "partially reconstructed" state of
5547 * such devices during the reshape and confusion could result.
5548 */
5549 if (mddev->delta_disks >= 0) {
5550 int added_devices = 0;
5551 list_for_each_entry(rdev, &mddev->disks, same_set)
5552 if (rdev->raid_disk < 0 &&
5553 !test_bit(Faulty, &rdev->flags)) {
5554 if (raid5_add_disk(mddev, rdev) == 0) {
5555 if (rdev->raid_disk
5556 >= conf->previous_raid_disks) {
5557 set_bit(In_sync, &rdev->flags);
5558 added_devices++;
5559 } else
5560 rdev->recovery_offset = 0;
5561
5562 if (sysfs_link_rdev(mddev, rdev))
5563 /* Failure here is OK */;
5564 }
5565 } else if (rdev->raid_disk >= conf->previous_raid_disks
5566 && !test_bit(Faulty, &rdev->flags)) {
5567 /* This is a spare that was manually added */
5568 set_bit(In_sync, &rdev->flags);
5569 added_devices++;
5570 }
5571
5572 /* When a reshape changes the number of devices,
5573 * ->degraded is measured against the larger of the
5574 * pre and post number of devices.
5575 */
5576 spin_lock_irqsave(&conf->device_lock, flags);
5577 mddev->degraded = calc_degraded(conf);
5578 spin_unlock_irqrestore(&conf->device_lock, flags);
5579 }
5580 mddev->raid_disks = conf->raid_disks;
5581 mddev->reshape_position = conf->reshape_progress;
5582 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5583
5584 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5585 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5586 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5587 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5588 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5589 "reshape");
5590 if (!mddev->sync_thread) {
5591 mddev->recovery = 0;
5592 spin_lock_irq(&conf->device_lock);
5593 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5594 conf->reshape_progress = MaxSector;
5595 spin_unlock_irq(&conf->device_lock);
5596 return -EAGAIN;
5597 }
5598 conf->reshape_checkpoint = jiffies;
5599 md_wakeup_thread(mddev->sync_thread);
5600 md_new_event(mddev);
5601 return 0;
5602 }
5603
5604 /* This is called from the reshape thread and should make any
5605 * changes needed in 'conf'
5606 */
5607 static void end_reshape(struct r5conf *conf)
5608 {
5609
5610 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5611
5612 spin_lock_irq(&conf->device_lock);
5613 conf->previous_raid_disks = conf->raid_disks;
5614 conf->reshape_progress = MaxSector;
5615 spin_unlock_irq(&conf->device_lock);
5616 wake_up(&conf->wait_for_overlap);
5617
5618 /* read-ahead size must cover two whole stripes, which is
5619 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5620 */
5621 if (conf->mddev->queue) {
5622 int data_disks = conf->raid_disks - conf->max_degraded;
5623 int stripe = data_disks * ((conf->chunk_sectors << 9)
5624 / PAGE_SIZE);
5625 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5626 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5627 }
5628 }
5629 }
5630
5631 /* This is called from the raid5d thread with mddev_lock held.
5632 * It makes config changes to the device.
5633 */
5634 static void raid5_finish_reshape(struct mddev *mddev)
5635 {
5636 struct r5conf *conf = mddev->private;
5637
5638 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5639
5640 if (mddev->delta_disks > 0) {
5641 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5642 set_capacity(mddev->gendisk, mddev->array_sectors);
5643 revalidate_disk(mddev->gendisk);
5644 } else {
5645 int d;
5646 spin_lock_irq(&conf->device_lock);
5647 mddev->degraded = calc_degraded(conf);
5648 spin_unlock_irq(&conf->device_lock);
5649 for (d = conf->raid_disks ;
5650 d < conf->raid_disks - mddev->delta_disks;
5651 d++) {
5652 struct md_rdev *rdev = conf->disks[d].rdev;
5653 if (rdev &&
5654 raid5_remove_disk(mddev, rdev) == 0) {
5655 sysfs_unlink_rdev(mddev, rdev);
5656 rdev->raid_disk = -1;
5657 }
5658 }
5659 }
5660 mddev->layout = conf->algorithm;
5661 mddev->chunk_sectors = conf->chunk_sectors;
5662 mddev->reshape_position = MaxSector;
5663 mddev->delta_disks = 0;
5664 }
5665 }
5666
5667 static void raid5_quiesce(struct mddev *mddev, int state)
5668 {
5669 struct r5conf *conf = mddev->private;
5670
5671 switch(state) {
5672 case 2: /* resume for a suspend */
5673 wake_up(&conf->wait_for_overlap);
5674 break;
5675
5676 case 1: /* stop all writes */
5677 spin_lock_irq(&conf->device_lock);
5678 /* '2' tells resync/reshape to pause so that all
5679 * active stripes can drain
5680 */
5681 conf->quiesce = 2;
5682 wait_event_lock_irq(conf->wait_for_stripe,
5683 atomic_read(&conf->active_stripes) == 0 &&
5684 atomic_read(&conf->active_aligned_reads) == 0,
5685 conf->device_lock, /* nothing */);
5686 conf->quiesce = 1;
5687 spin_unlock_irq(&conf->device_lock);
5688 /* allow reshape to continue */
5689 wake_up(&conf->wait_for_overlap);
5690 break;
5691
5692 case 0: /* re-enable writes */
5693 spin_lock_irq(&conf->device_lock);
5694 conf->quiesce = 0;
5695 wake_up(&conf->wait_for_stripe);
5696 wake_up(&conf->wait_for_overlap);
5697 spin_unlock_irq(&conf->device_lock);
5698 break;
5699 }
5700 }
5701
5702
5703 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5704 {
5705 struct r0conf *raid0_conf = mddev->private;
5706 sector_t sectors;
5707
5708 /* for raid0 takeover only one zone is supported */
5709 if (raid0_conf->nr_strip_zones > 1) {
5710 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5711 mdname(mddev));
5712 return ERR_PTR(-EINVAL);
5713 }
5714
5715 sectors = raid0_conf->strip_zone[0].zone_end;
5716 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5717 mddev->dev_sectors = sectors;
5718 mddev->new_level = level;
5719 mddev->new_layout = ALGORITHM_PARITY_N;
5720 mddev->new_chunk_sectors = mddev->chunk_sectors;
5721 mddev->raid_disks += 1;
5722 mddev->delta_disks = 1;
5723 /* make sure it will be not marked as dirty */
5724 mddev->recovery_cp = MaxSector;
5725
5726 return setup_conf(mddev);
5727 }
5728
5729
5730 static void *raid5_takeover_raid1(struct mddev *mddev)
5731 {
5732 int chunksect;
5733
5734 if (mddev->raid_disks != 2 ||
5735 mddev->degraded > 1)
5736 return ERR_PTR(-EINVAL);
5737
5738 /* Should check if there are write-behind devices? */
5739
5740 chunksect = 64*2; /* 64K by default */
5741
5742 /* The array must be an exact multiple of chunksize */
5743 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5744 chunksect >>= 1;
5745
5746 if ((chunksect<<9) < STRIPE_SIZE)
5747 /* array size does not allow a suitable chunk size */
5748 return ERR_PTR(-EINVAL);
5749
5750 mddev->new_level = 5;
5751 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5752 mddev->new_chunk_sectors = chunksect;
5753
5754 return setup_conf(mddev);
5755 }
5756
5757 static void *raid5_takeover_raid6(struct mddev *mddev)
5758 {
5759 int new_layout;
5760
5761 switch (mddev->layout) {
5762 case ALGORITHM_LEFT_ASYMMETRIC_6:
5763 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5764 break;
5765 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5766 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5767 break;
5768 case ALGORITHM_LEFT_SYMMETRIC_6:
5769 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5770 break;
5771 case ALGORITHM_RIGHT_SYMMETRIC_6:
5772 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5773 break;
5774 case ALGORITHM_PARITY_0_6:
5775 new_layout = ALGORITHM_PARITY_0;
5776 break;
5777 case ALGORITHM_PARITY_N:
5778 new_layout = ALGORITHM_PARITY_N;
5779 break;
5780 default:
5781 return ERR_PTR(-EINVAL);
5782 }
5783 mddev->new_level = 5;
5784 mddev->new_layout = new_layout;
5785 mddev->delta_disks = -1;
5786 mddev->raid_disks -= 1;
5787 return setup_conf(mddev);
5788 }
5789
5790
5791 static int raid5_check_reshape(struct mddev *mddev)
5792 {
5793 /* For a 2-drive array, the layout and chunk size can be changed
5794 * immediately as not restriping is needed.
5795 * For larger arrays we record the new value - after validation
5796 * to be used by a reshape pass.
5797 */
5798 struct r5conf *conf = mddev->private;
5799 int new_chunk = mddev->new_chunk_sectors;
5800
5801 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5802 return -EINVAL;
5803 if (new_chunk > 0) {
5804 if (!is_power_of_2(new_chunk))
5805 return -EINVAL;
5806 if (new_chunk < (PAGE_SIZE>>9))
5807 return -EINVAL;
5808 if (mddev->array_sectors & (new_chunk-1))
5809 /* not factor of array size */
5810 return -EINVAL;
5811 }
5812
5813 /* They look valid */
5814
5815 if (mddev->raid_disks == 2) {
5816 /* can make the change immediately */
5817 if (mddev->new_layout >= 0) {
5818 conf->algorithm = mddev->new_layout;
5819 mddev->layout = mddev->new_layout;
5820 }
5821 if (new_chunk > 0) {
5822 conf->chunk_sectors = new_chunk ;
5823 mddev->chunk_sectors = new_chunk;
5824 }
5825 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5826 md_wakeup_thread(mddev->thread);
5827 }
5828 return check_reshape(mddev);
5829 }
5830
5831 static int raid6_check_reshape(struct mddev *mddev)
5832 {
5833 int new_chunk = mddev->new_chunk_sectors;
5834
5835 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5836 return -EINVAL;
5837 if (new_chunk > 0) {
5838 if (!is_power_of_2(new_chunk))
5839 return -EINVAL;
5840 if (new_chunk < (PAGE_SIZE >> 9))
5841 return -EINVAL;
5842 if (mddev->array_sectors & (new_chunk-1))
5843 /* not factor of array size */
5844 return -EINVAL;
5845 }
5846
5847 /* They look valid */
5848 return check_reshape(mddev);
5849 }
5850
5851 static void *raid5_takeover(struct mddev *mddev)
5852 {
5853 /* raid5 can take over:
5854 * raid0 - if there is only one strip zone - make it a raid4 layout
5855 * raid1 - if there are two drives. We need to know the chunk size
5856 * raid4 - trivial - just use a raid4 layout.
5857 * raid6 - Providing it is a *_6 layout
5858 */
5859 if (mddev->level == 0)
5860 return raid45_takeover_raid0(mddev, 5);
5861 if (mddev->level == 1)
5862 return raid5_takeover_raid1(mddev);
5863 if (mddev->level == 4) {
5864 mddev->new_layout = ALGORITHM_PARITY_N;
5865 mddev->new_level = 5;
5866 return setup_conf(mddev);
5867 }
5868 if (mddev->level == 6)
5869 return raid5_takeover_raid6(mddev);
5870
5871 return ERR_PTR(-EINVAL);
5872 }
5873
5874 static void *raid4_takeover(struct mddev *mddev)
5875 {
5876 /* raid4 can take over:
5877 * raid0 - if there is only one strip zone
5878 * raid5 - if layout is right
5879 */
5880 if (mddev->level == 0)
5881 return raid45_takeover_raid0(mddev, 4);
5882 if (mddev->level == 5 &&
5883 mddev->layout == ALGORITHM_PARITY_N) {
5884 mddev->new_layout = 0;
5885 mddev->new_level = 4;
5886 return setup_conf(mddev);
5887 }
5888 return ERR_PTR(-EINVAL);
5889 }
5890
5891 static struct md_personality raid5_personality;
5892
5893 static void *raid6_takeover(struct mddev *mddev)
5894 {
5895 /* Currently can only take over a raid5. We map the
5896 * personality to an equivalent raid6 personality
5897 * with the Q block at the end.
5898 */
5899 int new_layout;
5900
5901 if (mddev->pers != &raid5_personality)
5902 return ERR_PTR(-EINVAL);
5903 if (mddev->degraded > 1)
5904 return ERR_PTR(-EINVAL);
5905 if (mddev->raid_disks > 253)
5906 return ERR_PTR(-EINVAL);
5907 if (mddev->raid_disks < 3)
5908 return ERR_PTR(-EINVAL);
5909
5910 switch (mddev->layout) {
5911 case ALGORITHM_LEFT_ASYMMETRIC:
5912 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5913 break;
5914 case ALGORITHM_RIGHT_ASYMMETRIC:
5915 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5916 break;
5917 case ALGORITHM_LEFT_SYMMETRIC:
5918 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5919 break;
5920 case ALGORITHM_RIGHT_SYMMETRIC:
5921 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5922 break;
5923 case ALGORITHM_PARITY_0:
5924 new_layout = ALGORITHM_PARITY_0_6;
5925 break;
5926 case ALGORITHM_PARITY_N:
5927 new_layout = ALGORITHM_PARITY_N;
5928 break;
5929 default:
5930 return ERR_PTR(-EINVAL);
5931 }
5932 mddev->new_level = 6;
5933 mddev->new_layout = new_layout;
5934 mddev->delta_disks = 1;
5935 mddev->raid_disks += 1;
5936 return setup_conf(mddev);
5937 }
5938
5939
5940 static struct md_personality raid6_personality =
5941 {
5942 .name = "raid6",
5943 .level = 6,
5944 .owner = THIS_MODULE,
5945 .make_request = make_request,
5946 .run = run,
5947 .stop = stop,
5948 .status = status,
5949 .error_handler = error,
5950 .hot_add_disk = raid5_add_disk,
5951 .hot_remove_disk= raid5_remove_disk,
5952 .spare_active = raid5_spare_active,
5953 .sync_request = sync_request,
5954 .resize = raid5_resize,
5955 .size = raid5_size,
5956 .check_reshape = raid6_check_reshape,
5957 .start_reshape = raid5_start_reshape,
5958 .finish_reshape = raid5_finish_reshape,
5959 .quiesce = raid5_quiesce,
5960 .takeover = raid6_takeover,
5961 };
5962 static struct md_personality raid5_personality =
5963 {
5964 .name = "raid5",
5965 .level = 5,
5966 .owner = THIS_MODULE,
5967 .make_request = make_request,
5968 .run = run,
5969 .stop = stop,
5970 .status = status,
5971 .error_handler = error,
5972 .hot_add_disk = raid5_add_disk,
5973 .hot_remove_disk= raid5_remove_disk,
5974 .spare_active = raid5_spare_active,
5975 .sync_request = sync_request,
5976 .resize = raid5_resize,
5977 .size = raid5_size,
5978 .check_reshape = raid5_check_reshape,
5979 .start_reshape = raid5_start_reshape,
5980 .finish_reshape = raid5_finish_reshape,
5981 .quiesce = raid5_quiesce,
5982 .takeover = raid5_takeover,
5983 };
5984
5985 static struct md_personality raid4_personality =
5986 {
5987 .name = "raid4",
5988 .level = 4,
5989 .owner = THIS_MODULE,
5990 .make_request = make_request,
5991 .run = run,
5992 .stop = stop,
5993 .status = status,
5994 .error_handler = error,
5995 .hot_add_disk = raid5_add_disk,
5996 .hot_remove_disk= raid5_remove_disk,
5997 .spare_active = raid5_spare_active,
5998 .sync_request = sync_request,
5999 .resize = raid5_resize,
6000 .size = raid5_size,
6001 .check_reshape = raid5_check_reshape,
6002 .start_reshape = raid5_start_reshape,
6003 .finish_reshape = raid5_finish_reshape,
6004 .quiesce = raid5_quiesce,
6005 .takeover = raid4_takeover,
6006 };
6007
6008 static int __init raid5_init(void)
6009 {
6010 register_md_personality(&raid6_personality);
6011 register_md_personality(&raid5_personality);
6012 register_md_personality(&raid4_personality);
6013 return 0;
6014 }
6015
6016 static void raid5_exit(void)
6017 {
6018 unregister_md_personality(&raid6_personality);
6019 unregister_md_personality(&raid5_personality);
6020 unregister_md_personality(&raid4_personality);
6021 }
6022
6023 module_init(raid5_init);
6024 module_exit(raid5_exit);
6025 MODULE_LICENSE("GPL");
6026 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6027 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6028 MODULE_ALIAS("md-raid5");
6029 MODULE_ALIAS("md-raid4");
6030 MODULE_ALIAS("md-level-5");
6031 MODULE_ALIAS("md-level-4");
6032 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6033 MODULE_ALIAS("md-raid6");
6034 MODULE_ALIAS("md-level-6");
6035
6036 /* This used to be two separate modules, they were: */
6037 MODULE_ALIAS("raid5");
6038 MODULE_ALIAS("raid6");