Merge tag 'dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62 * Stripe cache
63 */
64
65 #define NR_STRIPES 256
66 #define STRIPE_SIZE PAGE_SIZE
67 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD 1
70 #define BYPASS_THRESHOLD 1
71 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81 * order without overlap. There may be several bio's per stripe+device, and
82 * a bio could span several devices.
83 * When walking this list for a particular stripe+device, we must never proceed
84 * beyond a bio that extends past this device, as the next bio might no longer
85 * be valid.
86 * This function is used to determine the 'next' bio in the list, given the sector
87 * of the current stripe+device
88 */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91 int sectors = bio->bi_size >> 9;
92 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 return bio->bi_next;
94 else
95 return NULL;
96 }
97
98 /*
99 * We maintain a biased count of active stripes in the bottom 16 bits of
100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 */
102 static inline int raid5_bi_phys_segments(struct bio *bio)
103 {
104 return bio->bi_phys_segments & 0xffff;
105 }
106
107 static inline int raid5_bi_hw_segments(struct bio *bio)
108 {
109 return (bio->bi_phys_segments >> 16) & 0xffff;
110 }
111
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 {
114 --bio->bi_phys_segments;
115 return raid5_bi_phys_segments(bio);
116 }
117
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 {
120 unsigned short val = raid5_bi_hw_segments(bio);
121
122 --val;
123 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 return val;
125 }
126
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 {
129 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 }
131
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
134 {
135 if (sh->ddf_layout)
136 /* ddf always start from first device */
137 return 0;
138 /* md starts just after Q block */
139 if (sh->qd_idx == sh->disks - 1)
140 return 0;
141 else
142 return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146 disk++;
147 return (disk < raid_disks) ? disk : 0;
148 }
149
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151 * We need to map each disk to a 'slot', where the data disks are slot
152 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153 * is raid_disks-1. This help does that mapping.
154 */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 int *count, int syndrome_disks)
157 {
158 int slot = *count;
159
160 if (sh->ddf_layout)
161 (*count)++;
162 if (idx == sh->pd_idx)
163 return syndrome_disks;
164 if (idx == sh->qd_idx)
165 return syndrome_disks + 1;
166 if (!sh->ddf_layout)
167 (*count)++;
168 return slot;
169 }
170
171 static void return_io(struct bio *return_bi)
172 {
173 struct bio *bi = return_bi;
174 while (bi) {
175
176 return_bi = bi->bi_next;
177 bi->bi_next = NULL;
178 bi->bi_size = 0;
179 bio_endio(bi, 0);
180 bi = return_bi;
181 }
182 }
183
184 static void print_raid5_conf (struct r5conf *conf);
185
186 static int stripe_operations_active(struct stripe_head *sh)
187 {
188 return sh->check_state || sh->reconstruct_state ||
189 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191 }
192
193 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194 {
195 if (atomic_dec_and_test(&sh->count)) {
196 BUG_ON(!list_empty(&sh->lru));
197 BUG_ON(atomic_read(&conf->active_stripes)==0);
198 if (test_bit(STRIPE_HANDLE, &sh->state)) {
199 if (test_bit(STRIPE_DELAYED, &sh->state))
200 list_add_tail(&sh->lru, &conf->delayed_list);
201 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202 sh->bm_seq - conf->seq_write > 0)
203 list_add_tail(&sh->lru, &conf->bitmap_list);
204 else {
205 clear_bit(STRIPE_BIT_DELAY, &sh->state);
206 list_add_tail(&sh->lru, &conf->handle_list);
207 }
208 md_wakeup_thread(conf->mddev->thread);
209 } else {
210 BUG_ON(stripe_operations_active(sh));
211 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
212 if (atomic_dec_return(&conf->preread_active_stripes)
213 < IO_THRESHOLD)
214 md_wakeup_thread(conf->mddev->thread);
215 atomic_dec(&conf->active_stripes);
216 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
217 list_add_tail(&sh->lru, &conf->inactive_list);
218 wake_up(&conf->wait_for_stripe);
219 if (conf->retry_read_aligned)
220 md_wakeup_thread(conf->mddev->thread);
221 }
222 }
223 }
224 }
225
226 static void release_stripe(struct stripe_head *sh)
227 {
228 struct r5conf *conf = sh->raid_conf;
229 unsigned long flags;
230
231 spin_lock_irqsave(&conf->device_lock, flags);
232 __release_stripe(conf, sh);
233 spin_unlock_irqrestore(&conf->device_lock, flags);
234 }
235
236 static inline void remove_hash(struct stripe_head *sh)
237 {
238 pr_debug("remove_hash(), stripe %llu\n",
239 (unsigned long long)sh->sector);
240
241 hlist_del_init(&sh->hash);
242 }
243
244 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
245 {
246 struct hlist_head *hp = stripe_hash(conf, sh->sector);
247
248 pr_debug("insert_hash(), stripe %llu\n",
249 (unsigned long long)sh->sector);
250
251 hlist_add_head(&sh->hash, hp);
252 }
253
254
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head *get_free_stripe(struct r5conf *conf)
257 {
258 struct stripe_head *sh = NULL;
259 struct list_head *first;
260
261 if (list_empty(&conf->inactive_list))
262 goto out;
263 first = conf->inactive_list.next;
264 sh = list_entry(first, struct stripe_head, lru);
265 list_del_init(first);
266 remove_hash(sh);
267 atomic_inc(&conf->active_stripes);
268 out:
269 return sh;
270 }
271
272 static void shrink_buffers(struct stripe_head *sh)
273 {
274 struct page *p;
275 int i;
276 int num = sh->raid_conf->pool_size;
277
278 for (i = 0; i < num ; i++) {
279 p = sh->dev[i].page;
280 if (!p)
281 continue;
282 sh->dev[i].page = NULL;
283 put_page(p);
284 }
285 }
286
287 static int grow_buffers(struct stripe_head *sh)
288 {
289 int i;
290 int num = sh->raid_conf->pool_size;
291
292 for (i = 0; i < num; i++) {
293 struct page *page;
294
295 if (!(page = alloc_page(GFP_KERNEL))) {
296 return 1;
297 }
298 sh->dev[i].page = page;
299 }
300 return 0;
301 }
302
303 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
304 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
305 struct stripe_head *sh);
306
307 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
308 {
309 struct r5conf *conf = sh->raid_conf;
310 int i;
311
312 BUG_ON(atomic_read(&sh->count) != 0);
313 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
314 BUG_ON(stripe_operations_active(sh));
315
316 pr_debug("init_stripe called, stripe %llu\n",
317 (unsigned long long)sh->sector);
318
319 remove_hash(sh);
320
321 sh->generation = conf->generation - previous;
322 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323 sh->sector = sector;
324 stripe_set_idx(sector, conf, previous, sh);
325 sh->state = 0;
326
327
328 for (i = sh->disks; i--; ) {
329 struct r5dev *dev = &sh->dev[i];
330
331 if (dev->toread || dev->read || dev->towrite || dev->written ||
332 test_bit(R5_LOCKED, &dev->flags)) {
333 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
334 (unsigned long long)sh->sector, i, dev->toread,
335 dev->read, dev->towrite, dev->written,
336 test_bit(R5_LOCKED, &dev->flags));
337 WARN_ON(1);
338 }
339 dev->flags = 0;
340 raid5_build_block(sh, i, previous);
341 }
342 insert_hash(conf, sh);
343 }
344
345 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
346 short generation)
347 {
348 struct stripe_head *sh;
349 struct hlist_node *hn;
350
351 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
352 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
353 if (sh->sector == sector && sh->generation == generation)
354 return sh;
355 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
356 return NULL;
357 }
358
359 /*
360 * Need to check if array has failed when deciding whether to:
361 * - start an array
362 * - remove non-faulty devices
363 * - add a spare
364 * - allow a reshape
365 * This determination is simple when no reshape is happening.
366 * However if there is a reshape, we need to carefully check
367 * both the before and after sections.
368 * This is because some failed devices may only affect one
369 * of the two sections, and some non-in_sync devices may
370 * be insync in the section most affected by failed devices.
371 */
372 static int calc_degraded(struct r5conf *conf)
373 {
374 int degraded, degraded2;
375 int i;
376
377 rcu_read_lock();
378 degraded = 0;
379 for (i = 0; i < conf->previous_raid_disks; i++) {
380 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
381 if (!rdev || test_bit(Faulty, &rdev->flags))
382 degraded++;
383 else if (test_bit(In_sync, &rdev->flags))
384 ;
385 else
386 /* not in-sync or faulty.
387 * If the reshape increases the number of devices,
388 * this is being recovered by the reshape, so
389 * this 'previous' section is not in_sync.
390 * If the number of devices is being reduced however,
391 * the device can only be part of the array if
392 * we are reverting a reshape, so this section will
393 * be in-sync.
394 */
395 if (conf->raid_disks >= conf->previous_raid_disks)
396 degraded++;
397 }
398 rcu_read_unlock();
399 if (conf->raid_disks == conf->previous_raid_disks)
400 return degraded;
401 rcu_read_lock();
402 degraded2 = 0;
403 for (i = 0; i < conf->raid_disks; i++) {
404 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
405 if (!rdev || test_bit(Faulty, &rdev->flags))
406 degraded2++;
407 else if (test_bit(In_sync, &rdev->flags))
408 ;
409 else
410 /* not in-sync or faulty.
411 * If reshape increases the number of devices, this
412 * section has already been recovered, else it
413 * almost certainly hasn't.
414 */
415 if (conf->raid_disks <= conf->previous_raid_disks)
416 degraded2++;
417 }
418 rcu_read_unlock();
419 if (degraded2 > degraded)
420 return degraded2;
421 return degraded;
422 }
423
424 static int has_failed(struct r5conf *conf)
425 {
426 int degraded;
427
428 if (conf->mddev->reshape_position == MaxSector)
429 return conf->mddev->degraded > conf->max_degraded;
430
431 degraded = calc_degraded(conf);
432 if (degraded > conf->max_degraded)
433 return 1;
434 return 0;
435 }
436
437 static struct stripe_head *
438 get_active_stripe(struct r5conf *conf, sector_t sector,
439 int previous, int noblock, int noquiesce)
440 {
441 struct stripe_head *sh;
442
443 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
444
445 spin_lock_irq(&conf->device_lock);
446
447 do {
448 wait_event_lock_irq(conf->wait_for_stripe,
449 conf->quiesce == 0 || noquiesce,
450 conf->device_lock, /* nothing */);
451 sh = __find_stripe(conf, sector, conf->generation - previous);
452 if (!sh) {
453 if (!conf->inactive_blocked)
454 sh = get_free_stripe(conf);
455 if (noblock && sh == NULL)
456 break;
457 if (!sh) {
458 conf->inactive_blocked = 1;
459 wait_event_lock_irq(conf->wait_for_stripe,
460 !list_empty(&conf->inactive_list) &&
461 (atomic_read(&conf->active_stripes)
462 < (conf->max_nr_stripes *3/4)
463 || !conf->inactive_blocked),
464 conf->device_lock,
465 );
466 conf->inactive_blocked = 0;
467 } else
468 init_stripe(sh, sector, previous);
469 } else {
470 if (atomic_read(&sh->count)) {
471 BUG_ON(!list_empty(&sh->lru)
472 && !test_bit(STRIPE_EXPANDING, &sh->state));
473 } else {
474 if (!test_bit(STRIPE_HANDLE, &sh->state))
475 atomic_inc(&conf->active_stripes);
476 if (list_empty(&sh->lru) &&
477 !test_bit(STRIPE_EXPANDING, &sh->state))
478 BUG();
479 list_del_init(&sh->lru);
480 }
481 }
482 } while (sh == NULL);
483
484 if (sh)
485 atomic_inc(&sh->count);
486
487 spin_unlock_irq(&conf->device_lock);
488 return sh;
489 }
490
491 static void
492 raid5_end_read_request(struct bio *bi, int error);
493 static void
494 raid5_end_write_request(struct bio *bi, int error);
495
496 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
497 {
498 struct r5conf *conf = sh->raid_conf;
499 int i, disks = sh->disks;
500
501 might_sleep();
502
503 for (i = disks; i--; ) {
504 int rw;
505 int replace_only = 0;
506 struct bio *bi, *rbi;
507 struct md_rdev *rdev, *rrdev = NULL;
508 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
509 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
510 rw = WRITE_FUA;
511 else
512 rw = WRITE;
513 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
514 rw = READ;
515 else if (test_and_clear_bit(R5_WantReplace,
516 &sh->dev[i].flags)) {
517 rw = WRITE;
518 replace_only = 1;
519 } else
520 continue;
521
522 bi = &sh->dev[i].req;
523 rbi = &sh->dev[i].rreq; /* For writing to replacement */
524
525 bi->bi_rw = rw;
526 rbi->bi_rw = rw;
527 if (rw & WRITE) {
528 bi->bi_end_io = raid5_end_write_request;
529 rbi->bi_end_io = raid5_end_write_request;
530 } else
531 bi->bi_end_io = raid5_end_read_request;
532
533 rcu_read_lock();
534 rrdev = rcu_dereference(conf->disks[i].replacement);
535 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
536 rdev = rcu_dereference(conf->disks[i].rdev);
537 if (!rdev) {
538 rdev = rrdev;
539 rrdev = NULL;
540 }
541 if (rw & WRITE) {
542 if (replace_only)
543 rdev = NULL;
544 if (rdev == rrdev)
545 /* We raced and saw duplicates */
546 rrdev = NULL;
547 } else {
548 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
549 rdev = rrdev;
550 rrdev = NULL;
551 }
552
553 if (rdev && test_bit(Faulty, &rdev->flags))
554 rdev = NULL;
555 if (rdev)
556 atomic_inc(&rdev->nr_pending);
557 if (rrdev && test_bit(Faulty, &rrdev->flags))
558 rrdev = NULL;
559 if (rrdev)
560 atomic_inc(&rrdev->nr_pending);
561 rcu_read_unlock();
562
563 /* We have already checked bad blocks for reads. Now
564 * need to check for writes. We never accept write errors
565 * on the replacement, so we don't to check rrdev.
566 */
567 while ((rw & WRITE) && rdev &&
568 test_bit(WriteErrorSeen, &rdev->flags)) {
569 sector_t first_bad;
570 int bad_sectors;
571 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
572 &first_bad, &bad_sectors);
573 if (!bad)
574 break;
575
576 if (bad < 0) {
577 set_bit(BlockedBadBlocks, &rdev->flags);
578 if (!conf->mddev->external &&
579 conf->mddev->flags) {
580 /* It is very unlikely, but we might
581 * still need to write out the
582 * bad block log - better give it
583 * a chance*/
584 md_check_recovery(conf->mddev);
585 }
586 md_wait_for_blocked_rdev(rdev, conf->mddev);
587 } else {
588 /* Acknowledged bad block - skip the write */
589 rdev_dec_pending(rdev, conf->mddev);
590 rdev = NULL;
591 }
592 }
593
594 if (rdev) {
595 if (s->syncing || s->expanding || s->expanded
596 || s->replacing)
597 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
598
599 set_bit(STRIPE_IO_STARTED, &sh->state);
600
601 bi->bi_bdev = rdev->bdev;
602 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
603 __func__, (unsigned long long)sh->sector,
604 bi->bi_rw, i);
605 atomic_inc(&sh->count);
606 bi->bi_sector = sh->sector + rdev->data_offset;
607 bi->bi_flags = 1 << BIO_UPTODATE;
608 bi->bi_idx = 0;
609 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
610 bi->bi_io_vec[0].bv_offset = 0;
611 bi->bi_size = STRIPE_SIZE;
612 bi->bi_next = NULL;
613 if (rrdev)
614 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
615 generic_make_request(bi);
616 }
617 if (rrdev) {
618 if (s->syncing || s->expanding || s->expanded
619 || s->replacing)
620 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
621
622 set_bit(STRIPE_IO_STARTED, &sh->state);
623
624 rbi->bi_bdev = rrdev->bdev;
625 pr_debug("%s: for %llu schedule op %ld on "
626 "replacement disc %d\n",
627 __func__, (unsigned long long)sh->sector,
628 rbi->bi_rw, i);
629 atomic_inc(&sh->count);
630 rbi->bi_sector = sh->sector + rrdev->data_offset;
631 rbi->bi_flags = 1 << BIO_UPTODATE;
632 rbi->bi_idx = 0;
633 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
634 rbi->bi_io_vec[0].bv_offset = 0;
635 rbi->bi_size = STRIPE_SIZE;
636 rbi->bi_next = NULL;
637 generic_make_request(rbi);
638 }
639 if (!rdev && !rrdev) {
640 if (rw & WRITE)
641 set_bit(STRIPE_DEGRADED, &sh->state);
642 pr_debug("skip op %ld on disc %d for sector %llu\n",
643 bi->bi_rw, i, (unsigned long long)sh->sector);
644 clear_bit(R5_LOCKED, &sh->dev[i].flags);
645 set_bit(STRIPE_HANDLE, &sh->state);
646 }
647 }
648 }
649
650 static struct dma_async_tx_descriptor *
651 async_copy_data(int frombio, struct bio *bio, struct page *page,
652 sector_t sector, struct dma_async_tx_descriptor *tx)
653 {
654 struct bio_vec *bvl;
655 struct page *bio_page;
656 int i;
657 int page_offset;
658 struct async_submit_ctl submit;
659 enum async_tx_flags flags = 0;
660
661 if (bio->bi_sector >= sector)
662 page_offset = (signed)(bio->bi_sector - sector) * 512;
663 else
664 page_offset = (signed)(sector - bio->bi_sector) * -512;
665
666 if (frombio)
667 flags |= ASYNC_TX_FENCE;
668 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
669
670 bio_for_each_segment(bvl, bio, i) {
671 int len = bvl->bv_len;
672 int clen;
673 int b_offset = 0;
674
675 if (page_offset < 0) {
676 b_offset = -page_offset;
677 page_offset += b_offset;
678 len -= b_offset;
679 }
680
681 if (len > 0 && page_offset + len > STRIPE_SIZE)
682 clen = STRIPE_SIZE - page_offset;
683 else
684 clen = len;
685
686 if (clen > 0) {
687 b_offset += bvl->bv_offset;
688 bio_page = bvl->bv_page;
689 if (frombio)
690 tx = async_memcpy(page, bio_page, page_offset,
691 b_offset, clen, &submit);
692 else
693 tx = async_memcpy(bio_page, page, b_offset,
694 page_offset, clen, &submit);
695 }
696 /* chain the operations */
697 submit.depend_tx = tx;
698
699 if (clen < len) /* hit end of page */
700 break;
701 page_offset += len;
702 }
703
704 return tx;
705 }
706
707 static void ops_complete_biofill(void *stripe_head_ref)
708 {
709 struct stripe_head *sh = stripe_head_ref;
710 struct bio *return_bi = NULL;
711 struct r5conf *conf = sh->raid_conf;
712 int i;
713
714 pr_debug("%s: stripe %llu\n", __func__,
715 (unsigned long long)sh->sector);
716
717 /* clear completed biofills */
718 spin_lock_irq(&conf->device_lock);
719 for (i = sh->disks; i--; ) {
720 struct r5dev *dev = &sh->dev[i];
721
722 /* acknowledge completion of a biofill operation */
723 /* and check if we need to reply to a read request,
724 * new R5_Wantfill requests are held off until
725 * !STRIPE_BIOFILL_RUN
726 */
727 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
728 struct bio *rbi, *rbi2;
729
730 BUG_ON(!dev->read);
731 rbi = dev->read;
732 dev->read = NULL;
733 while (rbi && rbi->bi_sector <
734 dev->sector + STRIPE_SECTORS) {
735 rbi2 = r5_next_bio(rbi, dev->sector);
736 if (!raid5_dec_bi_phys_segments(rbi)) {
737 rbi->bi_next = return_bi;
738 return_bi = rbi;
739 }
740 rbi = rbi2;
741 }
742 }
743 }
744 spin_unlock_irq(&conf->device_lock);
745 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
746
747 return_io(return_bi);
748
749 set_bit(STRIPE_HANDLE, &sh->state);
750 release_stripe(sh);
751 }
752
753 static void ops_run_biofill(struct stripe_head *sh)
754 {
755 struct dma_async_tx_descriptor *tx = NULL;
756 struct r5conf *conf = sh->raid_conf;
757 struct async_submit_ctl submit;
758 int i;
759
760 pr_debug("%s: stripe %llu\n", __func__,
761 (unsigned long long)sh->sector);
762
763 for (i = sh->disks; i--; ) {
764 struct r5dev *dev = &sh->dev[i];
765 if (test_bit(R5_Wantfill, &dev->flags)) {
766 struct bio *rbi;
767 spin_lock_irq(&conf->device_lock);
768 dev->read = rbi = dev->toread;
769 dev->toread = NULL;
770 spin_unlock_irq(&conf->device_lock);
771 while (rbi && rbi->bi_sector <
772 dev->sector + STRIPE_SECTORS) {
773 tx = async_copy_data(0, rbi, dev->page,
774 dev->sector, tx);
775 rbi = r5_next_bio(rbi, dev->sector);
776 }
777 }
778 }
779
780 atomic_inc(&sh->count);
781 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
782 async_trigger_callback(&submit);
783 }
784
785 static void mark_target_uptodate(struct stripe_head *sh, int target)
786 {
787 struct r5dev *tgt;
788
789 if (target < 0)
790 return;
791
792 tgt = &sh->dev[target];
793 set_bit(R5_UPTODATE, &tgt->flags);
794 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
795 clear_bit(R5_Wantcompute, &tgt->flags);
796 }
797
798 static void ops_complete_compute(void *stripe_head_ref)
799 {
800 struct stripe_head *sh = stripe_head_ref;
801
802 pr_debug("%s: stripe %llu\n", __func__,
803 (unsigned long long)sh->sector);
804
805 /* mark the computed target(s) as uptodate */
806 mark_target_uptodate(sh, sh->ops.target);
807 mark_target_uptodate(sh, sh->ops.target2);
808
809 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
810 if (sh->check_state == check_state_compute_run)
811 sh->check_state = check_state_compute_result;
812 set_bit(STRIPE_HANDLE, &sh->state);
813 release_stripe(sh);
814 }
815
816 /* return a pointer to the address conversion region of the scribble buffer */
817 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
818 struct raid5_percpu *percpu)
819 {
820 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
821 }
822
823 static struct dma_async_tx_descriptor *
824 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
825 {
826 int disks = sh->disks;
827 struct page **xor_srcs = percpu->scribble;
828 int target = sh->ops.target;
829 struct r5dev *tgt = &sh->dev[target];
830 struct page *xor_dest = tgt->page;
831 int count = 0;
832 struct dma_async_tx_descriptor *tx;
833 struct async_submit_ctl submit;
834 int i;
835
836 pr_debug("%s: stripe %llu block: %d\n",
837 __func__, (unsigned long long)sh->sector, target);
838 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
839
840 for (i = disks; i--; )
841 if (i != target)
842 xor_srcs[count++] = sh->dev[i].page;
843
844 atomic_inc(&sh->count);
845
846 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
847 ops_complete_compute, sh, to_addr_conv(sh, percpu));
848 if (unlikely(count == 1))
849 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
850 else
851 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
852
853 return tx;
854 }
855
856 /* set_syndrome_sources - populate source buffers for gen_syndrome
857 * @srcs - (struct page *) array of size sh->disks
858 * @sh - stripe_head to parse
859 *
860 * Populates srcs in proper layout order for the stripe and returns the
861 * 'count' of sources to be used in a call to async_gen_syndrome. The P
862 * destination buffer is recorded in srcs[count] and the Q destination
863 * is recorded in srcs[count+1]].
864 */
865 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
866 {
867 int disks = sh->disks;
868 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
869 int d0_idx = raid6_d0(sh);
870 int count;
871 int i;
872
873 for (i = 0; i < disks; i++)
874 srcs[i] = NULL;
875
876 count = 0;
877 i = d0_idx;
878 do {
879 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
880
881 srcs[slot] = sh->dev[i].page;
882 i = raid6_next_disk(i, disks);
883 } while (i != d0_idx);
884
885 return syndrome_disks;
886 }
887
888 static struct dma_async_tx_descriptor *
889 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
890 {
891 int disks = sh->disks;
892 struct page **blocks = percpu->scribble;
893 int target;
894 int qd_idx = sh->qd_idx;
895 struct dma_async_tx_descriptor *tx;
896 struct async_submit_ctl submit;
897 struct r5dev *tgt;
898 struct page *dest;
899 int i;
900 int count;
901
902 if (sh->ops.target < 0)
903 target = sh->ops.target2;
904 else if (sh->ops.target2 < 0)
905 target = sh->ops.target;
906 else
907 /* we should only have one valid target */
908 BUG();
909 BUG_ON(target < 0);
910 pr_debug("%s: stripe %llu block: %d\n",
911 __func__, (unsigned long long)sh->sector, target);
912
913 tgt = &sh->dev[target];
914 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
915 dest = tgt->page;
916
917 atomic_inc(&sh->count);
918
919 if (target == qd_idx) {
920 count = set_syndrome_sources(blocks, sh);
921 blocks[count] = NULL; /* regenerating p is not necessary */
922 BUG_ON(blocks[count+1] != dest); /* q should already be set */
923 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
924 ops_complete_compute, sh,
925 to_addr_conv(sh, percpu));
926 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
927 } else {
928 /* Compute any data- or p-drive using XOR */
929 count = 0;
930 for (i = disks; i-- ; ) {
931 if (i == target || i == qd_idx)
932 continue;
933 blocks[count++] = sh->dev[i].page;
934 }
935
936 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
937 NULL, ops_complete_compute, sh,
938 to_addr_conv(sh, percpu));
939 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
940 }
941
942 return tx;
943 }
944
945 static struct dma_async_tx_descriptor *
946 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
947 {
948 int i, count, disks = sh->disks;
949 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
950 int d0_idx = raid6_d0(sh);
951 int faila = -1, failb = -1;
952 int target = sh->ops.target;
953 int target2 = sh->ops.target2;
954 struct r5dev *tgt = &sh->dev[target];
955 struct r5dev *tgt2 = &sh->dev[target2];
956 struct dma_async_tx_descriptor *tx;
957 struct page **blocks = percpu->scribble;
958 struct async_submit_ctl submit;
959
960 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
961 __func__, (unsigned long long)sh->sector, target, target2);
962 BUG_ON(target < 0 || target2 < 0);
963 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
964 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
965
966 /* we need to open-code set_syndrome_sources to handle the
967 * slot number conversion for 'faila' and 'failb'
968 */
969 for (i = 0; i < disks ; i++)
970 blocks[i] = NULL;
971 count = 0;
972 i = d0_idx;
973 do {
974 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
975
976 blocks[slot] = sh->dev[i].page;
977
978 if (i == target)
979 faila = slot;
980 if (i == target2)
981 failb = slot;
982 i = raid6_next_disk(i, disks);
983 } while (i != d0_idx);
984
985 BUG_ON(faila == failb);
986 if (failb < faila)
987 swap(faila, failb);
988 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
989 __func__, (unsigned long long)sh->sector, faila, failb);
990
991 atomic_inc(&sh->count);
992
993 if (failb == syndrome_disks+1) {
994 /* Q disk is one of the missing disks */
995 if (faila == syndrome_disks) {
996 /* Missing P+Q, just recompute */
997 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
998 ops_complete_compute, sh,
999 to_addr_conv(sh, percpu));
1000 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1001 STRIPE_SIZE, &submit);
1002 } else {
1003 struct page *dest;
1004 int data_target;
1005 int qd_idx = sh->qd_idx;
1006
1007 /* Missing D+Q: recompute D from P, then recompute Q */
1008 if (target == qd_idx)
1009 data_target = target2;
1010 else
1011 data_target = target;
1012
1013 count = 0;
1014 for (i = disks; i-- ; ) {
1015 if (i == data_target || i == qd_idx)
1016 continue;
1017 blocks[count++] = sh->dev[i].page;
1018 }
1019 dest = sh->dev[data_target].page;
1020 init_async_submit(&submit,
1021 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1022 NULL, NULL, NULL,
1023 to_addr_conv(sh, percpu));
1024 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1025 &submit);
1026
1027 count = set_syndrome_sources(blocks, sh);
1028 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1029 ops_complete_compute, sh,
1030 to_addr_conv(sh, percpu));
1031 return async_gen_syndrome(blocks, 0, count+2,
1032 STRIPE_SIZE, &submit);
1033 }
1034 } else {
1035 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1036 ops_complete_compute, sh,
1037 to_addr_conv(sh, percpu));
1038 if (failb == syndrome_disks) {
1039 /* We're missing D+P. */
1040 return async_raid6_datap_recov(syndrome_disks+2,
1041 STRIPE_SIZE, faila,
1042 blocks, &submit);
1043 } else {
1044 /* We're missing D+D. */
1045 return async_raid6_2data_recov(syndrome_disks+2,
1046 STRIPE_SIZE, faila, failb,
1047 blocks, &submit);
1048 }
1049 }
1050 }
1051
1052
1053 static void ops_complete_prexor(void *stripe_head_ref)
1054 {
1055 struct stripe_head *sh = stripe_head_ref;
1056
1057 pr_debug("%s: stripe %llu\n", __func__,
1058 (unsigned long long)sh->sector);
1059 }
1060
1061 static struct dma_async_tx_descriptor *
1062 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1063 struct dma_async_tx_descriptor *tx)
1064 {
1065 int disks = sh->disks;
1066 struct page **xor_srcs = percpu->scribble;
1067 int count = 0, pd_idx = sh->pd_idx, i;
1068 struct async_submit_ctl submit;
1069
1070 /* existing parity data subtracted */
1071 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1072
1073 pr_debug("%s: stripe %llu\n", __func__,
1074 (unsigned long long)sh->sector);
1075
1076 for (i = disks; i--; ) {
1077 struct r5dev *dev = &sh->dev[i];
1078 /* Only process blocks that are known to be uptodate */
1079 if (test_bit(R5_Wantdrain, &dev->flags))
1080 xor_srcs[count++] = dev->page;
1081 }
1082
1083 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1084 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1085 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1086
1087 return tx;
1088 }
1089
1090 static struct dma_async_tx_descriptor *
1091 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1092 {
1093 int disks = sh->disks;
1094 int i;
1095
1096 pr_debug("%s: stripe %llu\n", __func__,
1097 (unsigned long long)sh->sector);
1098
1099 for (i = disks; i--; ) {
1100 struct r5dev *dev = &sh->dev[i];
1101 struct bio *chosen;
1102
1103 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1104 struct bio *wbi;
1105
1106 spin_lock_irq(&sh->raid_conf->device_lock);
1107 chosen = dev->towrite;
1108 dev->towrite = NULL;
1109 BUG_ON(dev->written);
1110 wbi = dev->written = chosen;
1111 spin_unlock_irq(&sh->raid_conf->device_lock);
1112
1113 while (wbi && wbi->bi_sector <
1114 dev->sector + STRIPE_SECTORS) {
1115 if (wbi->bi_rw & REQ_FUA)
1116 set_bit(R5_WantFUA, &dev->flags);
1117 tx = async_copy_data(1, wbi, dev->page,
1118 dev->sector, tx);
1119 wbi = r5_next_bio(wbi, dev->sector);
1120 }
1121 }
1122 }
1123
1124 return tx;
1125 }
1126
1127 static void ops_complete_reconstruct(void *stripe_head_ref)
1128 {
1129 struct stripe_head *sh = stripe_head_ref;
1130 int disks = sh->disks;
1131 int pd_idx = sh->pd_idx;
1132 int qd_idx = sh->qd_idx;
1133 int i;
1134 bool fua = false;
1135
1136 pr_debug("%s: stripe %llu\n", __func__,
1137 (unsigned long long)sh->sector);
1138
1139 for (i = disks; i--; )
1140 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1141
1142 for (i = disks; i--; ) {
1143 struct r5dev *dev = &sh->dev[i];
1144
1145 if (dev->written || i == pd_idx || i == qd_idx) {
1146 set_bit(R5_UPTODATE, &dev->flags);
1147 if (fua)
1148 set_bit(R5_WantFUA, &dev->flags);
1149 }
1150 }
1151
1152 if (sh->reconstruct_state == reconstruct_state_drain_run)
1153 sh->reconstruct_state = reconstruct_state_drain_result;
1154 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1155 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1156 else {
1157 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1158 sh->reconstruct_state = reconstruct_state_result;
1159 }
1160
1161 set_bit(STRIPE_HANDLE, &sh->state);
1162 release_stripe(sh);
1163 }
1164
1165 static void
1166 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1167 struct dma_async_tx_descriptor *tx)
1168 {
1169 int disks = sh->disks;
1170 struct page **xor_srcs = percpu->scribble;
1171 struct async_submit_ctl submit;
1172 int count = 0, pd_idx = sh->pd_idx, i;
1173 struct page *xor_dest;
1174 int prexor = 0;
1175 unsigned long flags;
1176
1177 pr_debug("%s: stripe %llu\n", __func__,
1178 (unsigned long long)sh->sector);
1179
1180 /* check if prexor is active which means only process blocks
1181 * that are part of a read-modify-write (written)
1182 */
1183 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1184 prexor = 1;
1185 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1186 for (i = disks; i--; ) {
1187 struct r5dev *dev = &sh->dev[i];
1188 if (dev->written)
1189 xor_srcs[count++] = dev->page;
1190 }
1191 } else {
1192 xor_dest = sh->dev[pd_idx].page;
1193 for (i = disks; i--; ) {
1194 struct r5dev *dev = &sh->dev[i];
1195 if (i != pd_idx)
1196 xor_srcs[count++] = dev->page;
1197 }
1198 }
1199
1200 /* 1/ if we prexor'd then the dest is reused as a source
1201 * 2/ if we did not prexor then we are redoing the parity
1202 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1203 * for the synchronous xor case
1204 */
1205 flags = ASYNC_TX_ACK |
1206 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1207
1208 atomic_inc(&sh->count);
1209
1210 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1211 to_addr_conv(sh, percpu));
1212 if (unlikely(count == 1))
1213 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1214 else
1215 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1216 }
1217
1218 static void
1219 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1220 struct dma_async_tx_descriptor *tx)
1221 {
1222 struct async_submit_ctl submit;
1223 struct page **blocks = percpu->scribble;
1224 int count;
1225
1226 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1227
1228 count = set_syndrome_sources(blocks, sh);
1229
1230 atomic_inc(&sh->count);
1231
1232 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1233 sh, to_addr_conv(sh, percpu));
1234 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1235 }
1236
1237 static void ops_complete_check(void *stripe_head_ref)
1238 {
1239 struct stripe_head *sh = stripe_head_ref;
1240
1241 pr_debug("%s: stripe %llu\n", __func__,
1242 (unsigned long long)sh->sector);
1243
1244 sh->check_state = check_state_check_result;
1245 set_bit(STRIPE_HANDLE, &sh->state);
1246 release_stripe(sh);
1247 }
1248
1249 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1250 {
1251 int disks = sh->disks;
1252 int pd_idx = sh->pd_idx;
1253 int qd_idx = sh->qd_idx;
1254 struct page *xor_dest;
1255 struct page **xor_srcs = percpu->scribble;
1256 struct dma_async_tx_descriptor *tx;
1257 struct async_submit_ctl submit;
1258 int count;
1259 int i;
1260
1261 pr_debug("%s: stripe %llu\n", __func__,
1262 (unsigned long long)sh->sector);
1263
1264 count = 0;
1265 xor_dest = sh->dev[pd_idx].page;
1266 xor_srcs[count++] = xor_dest;
1267 for (i = disks; i--; ) {
1268 if (i == pd_idx || i == qd_idx)
1269 continue;
1270 xor_srcs[count++] = sh->dev[i].page;
1271 }
1272
1273 init_async_submit(&submit, 0, NULL, NULL, NULL,
1274 to_addr_conv(sh, percpu));
1275 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1276 &sh->ops.zero_sum_result, &submit);
1277
1278 atomic_inc(&sh->count);
1279 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1280 tx = async_trigger_callback(&submit);
1281 }
1282
1283 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1284 {
1285 struct page **srcs = percpu->scribble;
1286 struct async_submit_ctl submit;
1287 int count;
1288
1289 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1290 (unsigned long long)sh->sector, checkp);
1291
1292 count = set_syndrome_sources(srcs, sh);
1293 if (!checkp)
1294 srcs[count] = NULL;
1295
1296 atomic_inc(&sh->count);
1297 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1298 sh, to_addr_conv(sh, percpu));
1299 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1300 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1301 }
1302
1303 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1304 {
1305 int overlap_clear = 0, i, disks = sh->disks;
1306 struct dma_async_tx_descriptor *tx = NULL;
1307 struct r5conf *conf = sh->raid_conf;
1308 int level = conf->level;
1309 struct raid5_percpu *percpu;
1310 unsigned long cpu;
1311
1312 cpu = get_cpu();
1313 percpu = per_cpu_ptr(conf->percpu, cpu);
1314 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1315 ops_run_biofill(sh);
1316 overlap_clear++;
1317 }
1318
1319 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1320 if (level < 6)
1321 tx = ops_run_compute5(sh, percpu);
1322 else {
1323 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1324 tx = ops_run_compute6_1(sh, percpu);
1325 else
1326 tx = ops_run_compute6_2(sh, percpu);
1327 }
1328 /* terminate the chain if reconstruct is not set to be run */
1329 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1330 async_tx_ack(tx);
1331 }
1332
1333 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1334 tx = ops_run_prexor(sh, percpu, tx);
1335
1336 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1337 tx = ops_run_biodrain(sh, tx);
1338 overlap_clear++;
1339 }
1340
1341 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1342 if (level < 6)
1343 ops_run_reconstruct5(sh, percpu, tx);
1344 else
1345 ops_run_reconstruct6(sh, percpu, tx);
1346 }
1347
1348 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1349 if (sh->check_state == check_state_run)
1350 ops_run_check_p(sh, percpu);
1351 else if (sh->check_state == check_state_run_q)
1352 ops_run_check_pq(sh, percpu, 0);
1353 else if (sh->check_state == check_state_run_pq)
1354 ops_run_check_pq(sh, percpu, 1);
1355 else
1356 BUG();
1357 }
1358
1359 if (overlap_clear)
1360 for (i = disks; i--; ) {
1361 struct r5dev *dev = &sh->dev[i];
1362 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1363 wake_up(&sh->raid_conf->wait_for_overlap);
1364 }
1365 put_cpu();
1366 }
1367
1368 #ifdef CONFIG_MULTICORE_RAID456
1369 static void async_run_ops(void *param, async_cookie_t cookie)
1370 {
1371 struct stripe_head *sh = param;
1372 unsigned long ops_request = sh->ops.request;
1373
1374 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1375 wake_up(&sh->ops.wait_for_ops);
1376
1377 __raid_run_ops(sh, ops_request);
1378 release_stripe(sh);
1379 }
1380
1381 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1382 {
1383 /* since handle_stripe can be called outside of raid5d context
1384 * we need to ensure sh->ops.request is de-staged before another
1385 * request arrives
1386 */
1387 wait_event(sh->ops.wait_for_ops,
1388 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1389 sh->ops.request = ops_request;
1390
1391 atomic_inc(&sh->count);
1392 async_schedule(async_run_ops, sh);
1393 }
1394 #else
1395 #define raid_run_ops __raid_run_ops
1396 #endif
1397
1398 static int grow_one_stripe(struct r5conf *conf)
1399 {
1400 struct stripe_head *sh;
1401 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1402 if (!sh)
1403 return 0;
1404
1405 sh->raid_conf = conf;
1406 #ifdef CONFIG_MULTICORE_RAID456
1407 init_waitqueue_head(&sh->ops.wait_for_ops);
1408 #endif
1409
1410 if (grow_buffers(sh)) {
1411 shrink_buffers(sh);
1412 kmem_cache_free(conf->slab_cache, sh);
1413 return 0;
1414 }
1415 /* we just created an active stripe so... */
1416 atomic_set(&sh->count, 1);
1417 atomic_inc(&conf->active_stripes);
1418 INIT_LIST_HEAD(&sh->lru);
1419 release_stripe(sh);
1420 return 1;
1421 }
1422
1423 static int grow_stripes(struct r5conf *conf, int num)
1424 {
1425 struct kmem_cache *sc;
1426 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1427
1428 if (conf->mddev->gendisk)
1429 sprintf(conf->cache_name[0],
1430 "raid%d-%s", conf->level, mdname(conf->mddev));
1431 else
1432 sprintf(conf->cache_name[0],
1433 "raid%d-%p", conf->level, conf->mddev);
1434 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1435
1436 conf->active_name = 0;
1437 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1438 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1439 0, 0, NULL);
1440 if (!sc)
1441 return 1;
1442 conf->slab_cache = sc;
1443 conf->pool_size = devs;
1444 while (num--)
1445 if (!grow_one_stripe(conf))
1446 return 1;
1447 return 0;
1448 }
1449
1450 /**
1451 * scribble_len - return the required size of the scribble region
1452 * @num - total number of disks in the array
1453 *
1454 * The size must be enough to contain:
1455 * 1/ a struct page pointer for each device in the array +2
1456 * 2/ room to convert each entry in (1) to its corresponding dma
1457 * (dma_map_page()) or page (page_address()) address.
1458 *
1459 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1460 * calculate over all devices (not just the data blocks), using zeros in place
1461 * of the P and Q blocks.
1462 */
1463 static size_t scribble_len(int num)
1464 {
1465 size_t len;
1466
1467 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1468
1469 return len;
1470 }
1471
1472 static int resize_stripes(struct r5conf *conf, int newsize)
1473 {
1474 /* Make all the stripes able to hold 'newsize' devices.
1475 * New slots in each stripe get 'page' set to a new page.
1476 *
1477 * This happens in stages:
1478 * 1/ create a new kmem_cache and allocate the required number of
1479 * stripe_heads.
1480 * 2/ gather all the old stripe_heads and tranfer the pages across
1481 * to the new stripe_heads. This will have the side effect of
1482 * freezing the array as once all stripe_heads have been collected,
1483 * no IO will be possible. Old stripe heads are freed once their
1484 * pages have been transferred over, and the old kmem_cache is
1485 * freed when all stripes are done.
1486 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1487 * we simple return a failre status - no need to clean anything up.
1488 * 4/ allocate new pages for the new slots in the new stripe_heads.
1489 * If this fails, we don't bother trying the shrink the
1490 * stripe_heads down again, we just leave them as they are.
1491 * As each stripe_head is processed the new one is released into
1492 * active service.
1493 *
1494 * Once step2 is started, we cannot afford to wait for a write,
1495 * so we use GFP_NOIO allocations.
1496 */
1497 struct stripe_head *osh, *nsh;
1498 LIST_HEAD(newstripes);
1499 struct disk_info *ndisks;
1500 unsigned long cpu;
1501 int err;
1502 struct kmem_cache *sc;
1503 int i;
1504
1505 if (newsize <= conf->pool_size)
1506 return 0; /* never bother to shrink */
1507
1508 err = md_allow_write(conf->mddev);
1509 if (err)
1510 return err;
1511
1512 /* Step 1 */
1513 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1514 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1515 0, 0, NULL);
1516 if (!sc)
1517 return -ENOMEM;
1518
1519 for (i = conf->max_nr_stripes; i; i--) {
1520 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1521 if (!nsh)
1522 break;
1523
1524 nsh->raid_conf = conf;
1525 #ifdef CONFIG_MULTICORE_RAID456
1526 init_waitqueue_head(&nsh->ops.wait_for_ops);
1527 #endif
1528
1529 list_add(&nsh->lru, &newstripes);
1530 }
1531 if (i) {
1532 /* didn't get enough, give up */
1533 while (!list_empty(&newstripes)) {
1534 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1535 list_del(&nsh->lru);
1536 kmem_cache_free(sc, nsh);
1537 }
1538 kmem_cache_destroy(sc);
1539 return -ENOMEM;
1540 }
1541 /* Step 2 - Must use GFP_NOIO now.
1542 * OK, we have enough stripes, start collecting inactive
1543 * stripes and copying them over
1544 */
1545 list_for_each_entry(nsh, &newstripes, lru) {
1546 spin_lock_irq(&conf->device_lock);
1547 wait_event_lock_irq(conf->wait_for_stripe,
1548 !list_empty(&conf->inactive_list),
1549 conf->device_lock,
1550 );
1551 osh = get_free_stripe(conf);
1552 spin_unlock_irq(&conf->device_lock);
1553 atomic_set(&nsh->count, 1);
1554 for(i=0; i<conf->pool_size; i++)
1555 nsh->dev[i].page = osh->dev[i].page;
1556 for( ; i<newsize; i++)
1557 nsh->dev[i].page = NULL;
1558 kmem_cache_free(conf->slab_cache, osh);
1559 }
1560 kmem_cache_destroy(conf->slab_cache);
1561
1562 /* Step 3.
1563 * At this point, we are holding all the stripes so the array
1564 * is completely stalled, so now is a good time to resize
1565 * conf->disks and the scribble region
1566 */
1567 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1568 if (ndisks) {
1569 for (i=0; i<conf->raid_disks; i++)
1570 ndisks[i] = conf->disks[i];
1571 kfree(conf->disks);
1572 conf->disks = ndisks;
1573 } else
1574 err = -ENOMEM;
1575
1576 get_online_cpus();
1577 conf->scribble_len = scribble_len(newsize);
1578 for_each_present_cpu(cpu) {
1579 struct raid5_percpu *percpu;
1580 void *scribble;
1581
1582 percpu = per_cpu_ptr(conf->percpu, cpu);
1583 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1584
1585 if (scribble) {
1586 kfree(percpu->scribble);
1587 percpu->scribble = scribble;
1588 } else {
1589 err = -ENOMEM;
1590 break;
1591 }
1592 }
1593 put_online_cpus();
1594
1595 /* Step 4, return new stripes to service */
1596 while(!list_empty(&newstripes)) {
1597 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1598 list_del_init(&nsh->lru);
1599
1600 for (i=conf->raid_disks; i < newsize; i++)
1601 if (nsh->dev[i].page == NULL) {
1602 struct page *p = alloc_page(GFP_NOIO);
1603 nsh->dev[i].page = p;
1604 if (!p)
1605 err = -ENOMEM;
1606 }
1607 release_stripe(nsh);
1608 }
1609 /* critical section pass, GFP_NOIO no longer needed */
1610
1611 conf->slab_cache = sc;
1612 conf->active_name = 1-conf->active_name;
1613 conf->pool_size = newsize;
1614 return err;
1615 }
1616
1617 static int drop_one_stripe(struct r5conf *conf)
1618 {
1619 struct stripe_head *sh;
1620
1621 spin_lock_irq(&conf->device_lock);
1622 sh = get_free_stripe(conf);
1623 spin_unlock_irq(&conf->device_lock);
1624 if (!sh)
1625 return 0;
1626 BUG_ON(atomic_read(&sh->count));
1627 shrink_buffers(sh);
1628 kmem_cache_free(conf->slab_cache, sh);
1629 atomic_dec(&conf->active_stripes);
1630 return 1;
1631 }
1632
1633 static void shrink_stripes(struct r5conf *conf)
1634 {
1635 while (drop_one_stripe(conf))
1636 ;
1637
1638 if (conf->slab_cache)
1639 kmem_cache_destroy(conf->slab_cache);
1640 conf->slab_cache = NULL;
1641 }
1642
1643 static void raid5_end_read_request(struct bio * bi, int error)
1644 {
1645 struct stripe_head *sh = bi->bi_private;
1646 struct r5conf *conf = sh->raid_conf;
1647 int disks = sh->disks, i;
1648 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1649 char b[BDEVNAME_SIZE];
1650 struct md_rdev *rdev = NULL;
1651
1652
1653 for (i=0 ; i<disks; i++)
1654 if (bi == &sh->dev[i].req)
1655 break;
1656
1657 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1658 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1659 uptodate);
1660 if (i == disks) {
1661 BUG();
1662 return;
1663 }
1664 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1665 /* If replacement finished while this request was outstanding,
1666 * 'replacement' might be NULL already.
1667 * In that case it moved down to 'rdev'.
1668 * rdev is not removed until all requests are finished.
1669 */
1670 rdev = conf->disks[i].replacement;
1671 if (!rdev)
1672 rdev = conf->disks[i].rdev;
1673
1674 if (uptodate) {
1675 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1676 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1677 /* Note that this cannot happen on a
1678 * replacement device. We just fail those on
1679 * any error
1680 */
1681 printk_ratelimited(
1682 KERN_INFO
1683 "md/raid:%s: read error corrected"
1684 " (%lu sectors at %llu on %s)\n",
1685 mdname(conf->mddev), STRIPE_SECTORS,
1686 (unsigned long long)(sh->sector
1687 + rdev->data_offset),
1688 bdevname(rdev->bdev, b));
1689 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1690 clear_bit(R5_ReadError, &sh->dev[i].flags);
1691 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1692 }
1693 if (atomic_read(&rdev->read_errors))
1694 atomic_set(&rdev->read_errors, 0);
1695 } else {
1696 const char *bdn = bdevname(rdev->bdev, b);
1697 int retry = 0;
1698
1699 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1700 atomic_inc(&rdev->read_errors);
1701 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1702 printk_ratelimited(
1703 KERN_WARNING
1704 "md/raid:%s: read error on replacement device "
1705 "(sector %llu on %s).\n",
1706 mdname(conf->mddev),
1707 (unsigned long long)(sh->sector
1708 + rdev->data_offset),
1709 bdn);
1710 else if (conf->mddev->degraded >= conf->max_degraded)
1711 printk_ratelimited(
1712 KERN_WARNING
1713 "md/raid:%s: read error not correctable "
1714 "(sector %llu on %s).\n",
1715 mdname(conf->mddev),
1716 (unsigned long long)(sh->sector
1717 + rdev->data_offset),
1718 bdn);
1719 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1720 /* Oh, no!!! */
1721 printk_ratelimited(
1722 KERN_WARNING
1723 "md/raid:%s: read error NOT corrected!! "
1724 "(sector %llu on %s).\n",
1725 mdname(conf->mddev),
1726 (unsigned long long)(sh->sector
1727 + rdev->data_offset),
1728 bdn);
1729 else if (atomic_read(&rdev->read_errors)
1730 > conf->max_nr_stripes)
1731 printk(KERN_WARNING
1732 "md/raid:%s: Too many read errors, failing device %s.\n",
1733 mdname(conf->mddev), bdn);
1734 else
1735 retry = 1;
1736 if (retry)
1737 set_bit(R5_ReadError, &sh->dev[i].flags);
1738 else {
1739 clear_bit(R5_ReadError, &sh->dev[i].flags);
1740 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1741 md_error(conf->mddev, rdev);
1742 }
1743 }
1744 rdev_dec_pending(rdev, conf->mddev);
1745 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1746 set_bit(STRIPE_HANDLE, &sh->state);
1747 release_stripe(sh);
1748 }
1749
1750 static void raid5_end_write_request(struct bio *bi, int error)
1751 {
1752 struct stripe_head *sh = bi->bi_private;
1753 struct r5conf *conf = sh->raid_conf;
1754 int disks = sh->disks, i;
1755 struct md_rdev *uninitialized_var(rdev);
1756 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1757 sector_t first_bad;
1758 int bad_sectors;
1759 int replacement = 0;
1760
1761 for (i = 0 ; i < disks; i++) {
1762 if (bi == &sh->dev[i].req) {
1763 rdev = conf->disks[i].rdev;
1764 break;
1765 }
1766 if (bi == &sh->dev[i].rreq) {
1767 rdev = conf->disks[i].replacement;
1768 if (rdev)
1769 replacement = 1;
1770 else
1771 /* rdev was removed and 'replacement'
1772 * replaced it. rdev is not removed
1773 * until all requests are finished.
1774 */
1775 rdev = conf->disks[i].rdev;
1776 break;
1777 }
1778 }
1779 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1780 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1781 uptodate);
1782 if (i == disks) {
1783 BUG();
1784 return;
1785 }
1786
1787 if (replacement) {
1788 if (!uptodate)
1789 md_error(conf->mddev, rdev);
1790 else if (is_badblock(rdev, sh->sector,
1791 STRIPE_SECTORS,
1792 &first_bad, &bad_sectors))
1793 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1794 } else {
1795 if (!uptodate) {
1796 set_bit(WriteErrorSeen, &rdev->flags);
1797 set_bit(R5_WriteError, &sh->dev[i].flags);
1798 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1799 set_bit(MD_RECOVERY_NEEDED,
1800 &rdev->mddev->recovery);
1801 } else if (is_badblock(rdev, sh->sector,
1802 STRIPE_SECTORS,
1803 &first_bad, &bad_sectors))
1804 set_bit(R5_MadeGood, &sh->dev[i].flags);
1805 }
1806 rdev_dec_pending(rdev, conf->mddev);
1807
1808 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1809 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1810 set_bit(STRIPE_HANDLE, &sh->state);
1811 release_stripe(sh);
1812 }
1813
1814 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1815
1816 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1817 {
1818 struct r5dev *dev = &sh->dev[i];
1819
1820 bio_init(&dev->req);
1821 dev->req.bi_io_vec = &dev->vec;
1822 dev->req.bi_vcnt++;
1823 dev->req.bi_max_vecs++;
1824 dev->req.bi_private = sh;
1825 dev->vec.bv_page = dev->page;
1826
1827 bio_init(&dev->rreq);
1828 dev->rreq.bi_io_vec = &dev->rvec;
1829 dev->rreq.bi_vcnt++;
1830 dev->rreq.bi_max_vecs++;
1831 dev->rreq.bi_private = sh;
1832 dev->rvec.bv_page = dev->page;
1833
1834 dev->flags = 0;
1835 dev->sector = compute_blocknr(sh, i, previous);
1836 }
1837
1838 static void error(struct mddev *mddev, struct md_rdev *rdev)
1839 {
1840 char b[BDEVNAME_SIZE];
1841 struct r5conf *conf = mddev->private;
1842 unsigned long flags;
1843 pr_debug("raid456: error called\n");
1844
1845 spin_lock_irqsave(&conf->device_lock, flags);
1846 clear_bit(In_sync, &rdev->flags);
1847 mddev->degraded = calc_degraded(conf);
1848 spin_unlock_irqrestore(&conf->device_lock, flags);
1849 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1850
1851 set_bit(Blocked, &rdev->flags);
1852 set_bit(Faulty, &rdev->flags);
1853 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1854 printk(KERN_ALERT
1855 "md/raid:%s: Disk failure on %s, disabling device.\n"
1856 "md/raid:%s: Operation continuing on %d devices.\n",
1857 mdname(mddev),
1858 bdevname(rdev->bdev, b),
1859 mdname(mddev),
1860 conf->raid_disks - mddev->degraded);
1861 }
1862
1863 /*
1864 * Input: a 'big' sector number,
1865 * Output: index of the data and parity disk, and the sector # in them.
1866 */
1867 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1868 int previous, int *dd_idx,
1869 struct stripe_head *sh)
1870 {
1871 sector_t stripe, stripe2;
1872 sector_t chunk_number;
1873 unsigned int chunk_offset;
1874 int pd_idx, qd_idx;
1875 int ddf_layout = 0;
1876 sector_t new_sector;
1877 int algorithm = previous ? conf->prev_algo
1878 : conf->algorithm;
1879 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1880 : conf->chunk_sectors;
1881 int raid_disks = previous ? conf->previous_raid_disks
1882 : conf->raid_disks;
1883 int data_disks = raid_disks - conf->max_degraded;
1884
1885 /* First compute the information on this sector */
1886
1887 /*
1888 * Compute the chunk number and the sector offset inside the chunk
1889 */
1890 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1891 chunk_number = r_sector;
1892
1893 /*
1894 * Compute the stripe number
1895 */
1896 stripe = chunk_number;
1897 *dd_idx = sector_div(stripe, data_disks);
1898 stripe2 = stripe;
1899 /*
1900 * Select the parity disk based on the user selected algorithm.
1901 */
1902 pd_idx = qd_idx = -1;
1903 switch(conf->level) {
1904 case 4:
1905 pd_idx = data_disks;
1906 break;
1907 case 5:
1908 switch (algorithm) {
1909 case ALGORITHM_LEFT_ASYMMETRIC:
1910 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1911 if (*dd_idx >= pd_idx)
1912 (*dd_idx)++;
1913 break;
1914 case ALGORITHM_RIGHT_ASYMMETRIC:
1915 pd_idx = sector_div(stripe2, raid_disks);
1916 if (*dd_idx >= pd_idx)
1917 (*dd_idx)++;
1918 break;
1919 case ALGORITHM_LEFT_SYMMETRIC:
1920 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1921 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1922 break;
1923 case ALGORITHM_RIGHT_SYMMETRIC:
1924 pd_idx = sector_div(stripe2, raid_disks);
1925 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1926 break;
1927 case ALGORITHM_PARITY_0:
1928 pd_idx = 0;
1929 (*dd_idx)++;
1930 break;
1931 case ALGORITHM_PARITY_N:
1932 pd_idx = data_disks;
1933 break;
1934 default:
1935 BUG();
1936 }
1937 break;
1938 case 6:
1939
1940 switch (algorithm) {
1941 case ALGORITHM_LEFT_ASYMMETRIC:
1942 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1943 qd_idx = pd_idx + 1;
1944 if (pd_idx == raid_disks-1) {
1945 (*dd_idx)++; /* Q D D D P */
1946 qd_idx = 0;
1947 } else if (*dd_idx >= pd_idx)
1948 (*dd_idx) += 2; /* D D P Q D */
1949 break;
1950 case ALGORITHM_RIGHT_ASYMMETRIC:
1951 pd_idx = sector_div(stripe2, raid_disks);
1952 qd_idx = pd_idx + 1;
1953 if (pd_idx == raid_disks-1) {
1954 (*dd_idx)++; /* Q D D D P */
1955 qd_idx = 0;
1956 } else if (*dd_idx >= pd_idx)
1957 (*dd_idx) += 2; /* D D P Q D */
1958 break;
1959 case ALGORITHM_LEFT_SYMMETRIC:
1960 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1961 qd_idx = (pd_idx + 1) % raid_disks;
1962 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1963 break;
1964 case ALGORITHM_RIGHT_SYMMETRIC:
1965 pd_idx = sector_div(stripe2, raid_disks);
1966 qd_idx = (pd_idx + 1) % raid_disks;
1967 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1968 break;
1969
1970 case ALGORITHM_PARITY_0:
1971 pd_idx = 0;
1972 qd_idx = 1;
1973 (*dd_idx) += 2;
1974 break;
1975 case ALGORITHM_PARITY_N:
1976 pd_idx = data_disks;
1977 qd_idx = data_disks + 1;
1978 break;
1979
1980 case ALGORITHM_ROTATING_ZERO_RESTART:
1981 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1982 * of blocks for computing Q is different.
1983 */
1984 pd_idx = sector_div(stripe2, raid_disks);
1985 qd_idx = pd_idx + 1;
1986 if (pd_idx == raid_disks-1) {
1987 (*dd_idx)++; /* Q D D D P */
1988 qd_idx = 0;
1989 } else if (*dd_idx >= pd_idx)
1990 (*dd_idx) += 2; /* D D P Q D */
1991 ddf_layout = 1;
1992 break;
1993
1994 case ALGORITHM_ROTATING_N_RESTART:
1995 /* Same a left_asymmetric, by first stripe is
1996 * D D D P Q rather than
1997 * Q D D D P
1998 */
1999 stripe2 += 1;
2000 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2001 qd_idx = pd_idx + 1;
2002 if (pd_idx == raid_disks-1) {
2003 (*dd_idx)++; /* Q D D D P */
2004 qd_idx = 0;
2005 } else if (*dd_idx >= pd_idx)
2006 (*dd_idx) += 2; /* D D P Q D */
2007 ddf_layout = 1;
2008 break;
2009
2010 case ALGORITHM_ROTATING_N_CONTINUE:
2011 /* Same as left_symmetric but Q is before P */
2012 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2013 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2014 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2015 ddf_layout = 1;
2016 break;
2017
2018 case ALGORITHM_LEFT_ASYMMETRIC_6:
2019 /* RAID5 left_asymmetric, with Q on last device */
2020 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2021 if (*dd_idx >= pd_idx)
2022 (*dd_idx)++;
2023 qd_idx = raid_disks - 1;
2024 break;
2025
2026 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2027 pd_idx = sector_div(stripe2, raid_disks-1);
2028 if (*dd_idx >= pd_idx)
2029 (*dd_idx)++;
2030 qd_idx = raid_disks - 1;
2031 break;
2032
2033 case ALGORITHM_LEFT_SYMMETRIC_6:
2034 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2035 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2036 qd_idx = raid_disks - 1;
2037 break;
2038
2039 case ALGORITHM_RIGHT_SYMMETRIC_6:
2040 pd_idx = sector_div(stripe2, raid_disks-1);
2041 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2042 qd_idx = raid_disks - 1;
2043 break;
2044
2045 case ALGORITHM_PARITY_0_6:
2046 pd_idx = 0;
2047 (*dd_idx)++;
2048 qd_idx = raid_disks - 1;
2049 break;
2050
2051 default:
2052 BUG();
2053 }
2054 break;
2055 }
2056
2057 if (sh) {
2058 sh->pd_idx = pd_idx;
2059 sh->qd_idx = qd_idx;
2060 sh->ddf_layout = ddf_layout;
2061 }
2062 /*
2063 * Finally, compute the new sector number
2064 */
2065 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2066 return new_sector;
2067 }
2068
2069
2070 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2071 {
2072 struct r5conf *conf = sh->raid_conf;
2073 int raid_disks = sh->disks;
2074 int data_disks = raid_disks - conf->max_degraded;
2075 sector_t new_sector = sh->sector, check;
2076 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2077 : conf->chunk_sectors;
2078 int algorithm = previous ? conf->prev_algo
2079 : conf->algorithm;
2080 sector_t stripe;
2081 int chunk_offset;
2082 sector_t chunk_number;
2083 int dummy1, dd_idx = i;
2084 sector_t r_sector;
2085 struct stripe_head sh2;
2086
2087
2088 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2089 stripe = new_sector;
2090
2091 if (i == sh->pd_idx)
2092 return 0;
2093 switch(conf->level) {
2094 case 4: break;
2095 case 5:
2096 switch (algorithm) {
2097 case ALGORITHM_LEFT_ASYMMETRIC:
2098 case ALGORITHM_RIGHT_ASYMMETRIC:
2099 if (i > sh->pd_idx)
2100 i--;
2101 break;
2102 case ALGORITHM_LEFT_SYMMETRIC:
2103 case ALGORITHM_RIGHT_SYMMETRIC:
2104 if (i < sh->pd_idx)
2105 i += raid_disks;
2106 i -= (sh->pd_idx + 1);
2107 break;
2108 case ALGORITHM_PARITY_0:
2109 i -= 1;
2110 break;
2111 case ALGORITHM_PARITY_N:
2112 break;
2113 default:
2114 BUG();
2115 }
2116 break;
2117 case 6:
2118 if (i == sh->qd_idx)
2119 return 0; /* It is the Q disk */
2120 switch (algorithm) {
2121 case ALGORITHM_LEFT_ASYMMETRIC:
2122 case ALGORITHM_RIGHT_ASYMMETRIC:
2123 case ALGORITHM_ROTATING_ZERO_RESTART:
2124 case ALGORITHM_ROTATING_N_RESTART:
2125 if (sh->pd_idx == raid_disks-1)
2126 i--; /* Q D D D P */
2127 else if (i > sh->pd_idx)
2128 i -= 2; /* D D P Q D */
2129 break;
2130 case ALGORITHM_LEFT_SYMMETRIC:
2131 case ALGORITHM_RIGHT_SYMMETRIC:
2132 if (sh->pd_idx == raid_disks-1)
2133 i--; /* Q D D D P */
2134 else {
2135 /* D D P Q D */
2136 if (i < sh->pd_idx)
2137 i += raid_disks;
2138 i -= (sh->pd_idx + 2);
2139 }
2140 break;
2141 case ALGORITHM_PARITY_0:
2142 i -= 2;
2143 break;
2144 case ALGORITHM_PARITY_N:
2145 break;
2146 case ALGORITHM_ROTATING_N_CONTINUE:
2147 /* Like left_symmetric, but P is before Q */
2148 if (sh->pd_idx == 0)
2149 i--; /* P D D D Q */
2150 else {
2151 /* D D Q P D */
2152 if (i < sh->pd_idx)
2153 i += raid_disks;
2154 i -= (sh->pd_idx + 1);
2155 }
2156 break;
2157 case ALGORITHM_LEFT_ASYMMETRIC_6:
2158 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2159 if (i > sh->pd_idx)
2160 i--;
2161 break;
2162 case ALGORITHM_LEFT_SYMMETRIC_6:
2163 case ALGORITHM_RIGHT_SYMMETRIC_6:
2164 if (i < sh->pd_idx)
2165 i += data_disks + 1;
2166 i -= (sh->pd_idx + 1);
2167 break;
2168 case ALGORITHM_PARITY_0_6:
2169 i -= 1;
2170 break;
2171 default:
2172 BUG();
2173 }
2174 break;
2175 }
2176
2177 chunk_number = stripe * data_disks + i;
2178 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2179
2180 check = raid5_compute_sector(conf, r_sector,
2181 previous, &dummy1, &sh2);
2182 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2183 || sh2.qd_idx != sh->qd_idx) {
2184 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2185 mdname(conf->mddev));
2186 return 0;
2187 }
2188 return r_sector;
2189 }
2190
2191
2192 static void
2193 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2194 int rcw, int expand)
2195 {
2196 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2197 struct r5conf *conf = sh->raid_conf;
2198 int level = conf->level;
2199
2200 if (rcw) {
2201 /* if we are not expanding this is a proper write request, and
2202 * there will be bios with new data to be drained into the
2203 * stripe cache
2204 */
2205 if (!expand) {
2206 sh->reconstruct_state = reconstruct_state_drain_run;
2207 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2208 } else
2209 sh->reconstruct_state = reconstruct_state_run;
2210
2211 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2212
2213 for (i = disks; i--; ) {
2214 struct r5dev *dev = &sh->dev[i];
2215
2216 if (dev->towrite) {
2217 set_bit(R5_LOCKED, &dev->flags);
2218 set_bit(R5_Wantdrain, &dev->flags);
2219 if (!expand)
2220 clear_bit(R5_UPTODATE, &dev->flags);
2221 s->locked++;
2222 }
2223 }
2224 if (s->locked + conf->max_degraded == disks)
2225 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2226 atomic_inc(&conf->pending_full_writes);
2227 } else {
2228 BUG_ON(level == 6);
2229 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2230 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2231
2232 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2233 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2234 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2235 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2236
2237 for (i = disks; i--; ) {
2238 struct r5dev *dev = &sh->dev[i];
2239 if (i == pd_idx)
2240 continue;
2241
2242 if (dev->towrite &&
2243 (test_bit(R5_UPTODATE, &dev->flags) ||
2244 test_bit(R5_Wantcompute, &dev->flags))) {
2245 set_bit(R5_Wantdrain, &dev->flags);
2246 set_bit(R5_LOCKED, &dev->flags);
2247 clear_bit(R5_UPTODATE, &dev->flags);
2248 s->locked++;
2249 }
2250 }
2251 }
2252
2253 /* keep the parity disk(s) locked while asynchronous operations
2254 * are in flight
2255 */
2256 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2257 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2258 s->locked++;
2259
2260 if (level == 6) {
2261 int qd_idx = sh->qd_idx;
2262 struct r5dev *dev = &sh->dev[qd_idx];
2263
2264 set_bit(R5_LOCKED, &dev->flags);
2265 clear_bit(R5_UPTODATE, &dev->flags);
2266 s->locked++;
2267 }
2268
2269 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2270 __func__, (unsigned long long)sh->sector,
2271 s->locked, s->ops_request);
2272 }
2273
2274 /*
2275 * Each stripe/dev can have one or more bion attached.
2276 * toread/towrite point to the first in a chain.
2277 * The bi_next chain must be in order.
2278 */
2279 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2280 {
2281 struct bio **bip;
2282 struct r5conf *conf = sh->raid_conf;
2283 int firstwrite=0;
2284
2285 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2286 (unsigned long long)bi->bi_sector,
2287 (unsigned long long)sh->sector);
2288
2289
2290 spin_lock_irq(&conf->device_lock);
2291 if (forwrite) {
2292 bip = &sh->dev[dd_idx].towrite;
2293 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2294 firstwrite = 1;
2295 } else
2296 bip = &sh->dev[dd_idx].toread;
2297 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2298 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2299 goto overlap;
2300 bip = & (*bip)->bi_next;
2301 }
2302 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2303 goto overlap;
2304
2305 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2306 if (*bip)
2307 bi->bi_next = *bip;
2308 *bip = bi;
2309 bi->bi_phys_segments++;
2310
2311 if (forwrite) {
2312 /* check if page is covered */
2313 sector_t sector = sh->dev[dd_idx].sector;
2314 for (bi=sh->dev[dd_idx].towrite;
2315 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2316 bi && bi->bi_sector <= sector;
2317 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2318 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2319 sector = bi->bi_sector + (bi->bi_size>>9);
2320 }
2321 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2322 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2323 }
2324 spin_unlock_irq(&conf->device_lock);
2325
2326 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2327 (unsigned long long)(*bip)->bi_sector,
2328 (unsigned long long)sh->sector, dd_idx);
2329
2330 if (conf->mddev->bitmap && firstwrite) {
2331 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2332 STRIPE_SECTORS, 0);
2333 sh->bm_seq = conf->seq_flush+1;
2334 set_bit(STRIPE_BIT_DELAY, &sh->state);
2335 }
2336 return 1;
2337
2338 overlap:
2339 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2340 spin_unlock_irq(&conf->device_lock);
2341 return 0;
2342 }
2343
2344 static void end_reshape(struct r5conf *conf);
2345
2346 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2347 struct stripe_head *sh)
2348 {
2349 int sectors_per_chunk =
2350 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2351 int dd_idx;
2352 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2353 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2354
2355 raid5_compute_sector(conf,
2356 stripe * (disks - conf->max_degraded)
2357 *sectors_per_chunk + chunk_offset,
2358 previous,
2359 &dd_idx, sh);
2360 }
2361
2362 static void
2363 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2364 struct stripe_head_state *s, int disks,
2365 struct bio **return_bi)
2366 {
2367 int i;
2368 for (i = disks; i--; ) {
2369 struct bio *bi;
2370 int bitmap_end = 0;
2371
2372 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2373 struct md_rdev *rdev;
2374 rcu_read_lock();
2375 rdev = rcu_dereference(conf->disks[i].rdev);
2376 if (rdev && test_bit(In_sync, &rdev->flags))
2377 atomic_inc(&rdev->nr_pending);
2378 else
2379 rdev = NULL;
2380 rcu_read_unlock();
2381 if (rdev) {
2382 if (!rdev_set_badblocks(
2383 rdev,
2384 sh->sector,
2385 STRIPE_SECTORS, 0))
2386 md_error(conf->mddev, rdev);
2387 rdev_dec_pending(rdev, conf->mddev);
2388 }
2389 }
2390 spin_lock_irq(&conf->device_lock);
2391 /* fail all writes first */
2392 bi = sh->dev[i].towrite;
2393 sh->dev[i].towrite = NULL;
2394 if (bi) {
2395 s->to_write--;
2396 bitmap_end = 1;
2397 }
2398
2399 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2400 wake_up(&conf->wait_for_overlap);
2401
2402 while (bi && bi->bi_sector <
2403 sh->dev[i].sector + STRIPE_SECTORS) {
2404 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2405 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2406 if (!raid5_dec_bi_phys_segments(bi)) {
2407 md_write_end(conf->mddev);
2408 bi->bi_next = *return_bi;
2409 *return_bi = bi;
2410 }
2411 bi = nextbi;
2412 }
2413 /* and fail all 'written' */
2414 bi = sh->dev[i].written;
2415 sh->dev[i].written = NULL;
2416 if (bi) bitmap_end = 1;
2417 while (bi && bi->bi_sector <
2418 sh->dev[i].sector + STRIPE_SECTORS) {
2419 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2420 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2421 if (!raid5_dec_bi_phys_segments(bi)) {
2422 md_write_end(conf->mddev);
2423 bi->bi_next = *return_bi;
2424 *return_bi = bi;
2425 }
2426 bi = bi2;
2427 }
2428
2429 /* fail any reads if this device is non-operational and
2430 * the data has not reached the cache yet.
2431 */
2432 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2433 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2434 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2435 bi = sh->dev[i].toread;
2436 sh->dev[i].toread = NULL;
2437 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2438 wake_up(&conf->wait_for_overlap);
2439 if (bi) s->to_read--;
2440 while (bi && bi->bi_sector <
2441 sh->dev[i].sector + STRIPE_SECTORS) {
2442 struct bio *nextbi =
2443 r5_next_bio(bi, sh->dev[i].sector);
2444 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2445 if (!raid5_dec_bi_phys_segments(bi)) {
2446 bi->bi_next = *return_bi;
2447 *return_bi = bi;
2448 }
2449 bi = nextbi;
2450 }
2451 }
2452 spin_unlock_irq(&conf->device_lock);
2453 if (bitmap_end)
2454 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2455 STRIPE_SECTORS, 0, 0);
2456 /* If we were in the middle of a write the parity block might
2457 * still be locked - so just clear all R5_LOCKED flags
2458 */
2459 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2460 }
2461
2462 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2463 if (atomic_dec_and_test(&conf->pending_full_writes))
2464 md_wakeup_thread(conf->mddev->thread);
2465 }
2466
2467 static void
2468 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2469 struct stripe_head_state *s)
2470 {
2471 int abort = 0;
2472 int i;
2473
2474 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2475 clear_bit(STRIPE_SYNCING, &sh->state);
2476 s->syncing = 0;
2477 s->replacing = 0;
2478 /* There is nothing more to do for sync/check/repair.
2479 * For recover/replace we need to record a bad block on all
2480 * non-sync devices, or abort the recovery
2481 */
2482 if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2483 return;
2484 /* During recovery devices cannot be removed, so locking and
2485 * refcounting of rdevs is not needed
2486 */
2487 for (i = 0; i < conf->raid_disks; i++) {
2488 struct md_rdev *rdev = conf->disks[i].rdev;
2489 if (rdev
2490 && !test_bit(Faulty, &rdev->flags)
2491 && !test_bit(In_sync, &rdev->flags)
2492 && !rdev_set_badblocks(rdev, sh->sector,
2493 STRIPE_SECTORS, 0))
2494 abort = 1;
2495 rdev = conf->disks[i].replacement;
2496 if (rdev
2497 && !test_bit(Faulty, &rdev->flags)
2498 && !test_bit(In_sync, &rdev->flags)
2499 && !rdev_set_badblocks(rdev, sh->sector,
2500 STRIPE_SECTORS, 0))
2501 abort = 1;
2502 }
2503 if (abort) {
2504 conf->recovery_disabled = conf->mddev->recovery_disabled;
2505 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2506 }
2507 }
2508
2509 static int want_replace(struct stripe_head *sh, int disk_idx)
2510 {
2511 struct md_rdev *rdev;
2512 int rv = 0;
2513 /* Doing recovery so rcu locking not required */
2514 rdev = sh->raid_conf->disks[disk_idx].replacement;
2515 if (rdev
2516 && !test_bit(Faulty, &rdev->flags)
2517 && !test_bit(In_sync, &rdev->flags)
2518 && (rdev->recovery_offset <= sh->sector
2519 || rdev->mddev->recovery_cp <= sh->sector))
2520 rv = 1;
2521
2522 return rv;
2523 }
2524
2525 /* fetch_block - checks the given member device to see if its data needs
2526 * to be read or computed to satisfy a request.
2527 *
2528 * Returns 1 when no more member devices need to be checked, otherwise returns
2529 * 0 to tell the loop in handle_stripe_fill to continue
2530 */
2531 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2532 int disk_idx, int disks)
2533 {
2534 struct r5dev *dev = &sh->dev[disk_idx];
2535 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2536 &sh->dev[s->failed_num[1]] };
2537
2538 /* is the data in this block needed, and can we get it? */
2539 if (!test_bit(R5_LOCKED, &dev->flags) &&
2540 !test_bit(R5_UPTODATE, &dev->flags) &&
2541 (dev->toread ||
2542 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2543 s->syncing || s->expanding ||
2544 (s->replacing && want_replace(sh, disk_idx)) ||
2545 (s->failed >= 1 && fdev[0]->toread) ||
2546 (s->failed >= 2 && fdev[1]->toread) ||
2547 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2548 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2549 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2550 /* we would like to get this block, possibly by computing it,
2551 * otherwise read it if the backing disk is insync
2552 */
2553 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2554 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2555 if ((s->uptodate == disks - 1) &&
2556 (s->failed && (disk_idx == s->failed_num[0] ||
2557 disk_idx == s->failed_num[1]))) {
2558 /* have disk failed, and we're requested to fetch it;
2559 * do compute it
2560 */
2561 pr_debug("Computing stripe %llu block %d\n",
2562 (unsigned long long)sh->sector, disk_idx);
2563 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2564 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2565 set_bit(R5_Wantcompute, &dev->flags);
2566 sh->ops.target = disk_idx;
2567 sh->ops.target2 = -1; /* no 2nd target */
2568 s->req_compute = 1;
2569 /* Careful: from this point on 'uptodate' is in the eye
2570 * of raid_run_ops which services 'compute' operations
2571 * before writes. R5_Wantcompute flags a block that will
2572 * be R5_UPTODATE by the time it is needed for a
2573 * subsequent operation.
2574 */
2575 s->uptodate++;
2576 return 1;
2577 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2578 /* Computing 2-failure is *very* expensive; only
2579 * do it if failed >= 2
2580 */
2581 int other;
2582 for (other = disks; other--; ) {
2583 if (other == disk_idx)
2584 continue;
2585 if (!test_bit(R5_UPTODATE,
2586 &sh->dev[other].flags))
2587 break;
2588 }
2589 BUG_ON(other < 0);
2590 pr_debug("Computing stripe %llu blocks %d,%d\n",
2591 (unsigned long long)sh->sector,
2592 disk_idx, other);
2593 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2594 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2595 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2596 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2597 sh->ops.target = disk_idx;
2598 sh->ops.target2 = other;
2599 s->uptodate += 2;
2600 s->req_compute = 1;
2601 return 1;
2602 } else if (test_bit(R5_Insync, &dev->flags)) {
2603 set_bit(R5_LOCKED, &dev->flags);
2604 set_bit(R5_Wantread, &dev->flags);
2605 s->locked++;
2606 pr_debug("Reading block %d (sync=%d)\n",
2607 disk_idx, s->syncing);
2608 }
2609 }
2610
2611 return 0;
2612 }
2613
2614 /**
2615 * handle_stripe_fill - read or compute data to satisfy pending requests.
2616 */
2617 static void handle_stripe_fill(struct stripe_head *sh,
2618 struct stripe_head_state *s,
2619 int disks)
2620 {
2621 int i;
2622
2623 /* look for blocks to read/compute, skip this if a compute
2624 * is already in flight, or if the stripe contents are in the
2625 * midst of changing due to a write
2626 */
2627 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2628 !sh->reconstruct_state)
2629 for (i = disks; i--; )
2630 if (fetch_block(sh, s, i, disks))
2631 break;
2632 set_bit(STRIPE_HANDLE, &sh->state);
2633 }
2634
2635
2636 /* handle_stripe_clean_event
2637 * any written block on an uptodate or failed drive can be returned.
2638 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2639 * never LOCKED, so we don't need to test 'failed' directly.
2640 */
2641 static void handle_stripe_clean_event(struct r5conf *conf,
2642 struct stripe_head *sh, int disks, struct bio **return_bi)
2643 {
2644 int i;
2645 struct r5dev *dev;
2646
2647 for (i = disks; i--; )
2648 if (sh->dev[i].written) {
2649 dev = &sh->dev[i];
2650 if (!test_bit(R5_LOCKED, &dev->flags) &&
2651 test_bit(R5_UPTODATE, &dev->flags)) {
2652 /* We can return any write requests */
2653 struct bio *wbi, *wbi2;
2654 int bitmap_end = 0;
2655 pr_debug("Return write for disc %d\n", i);
2656 spin_lock_irq(&conf->device_lock);
2657 wbi = dev->written;
2658 dev->written = NULL;
2659 while (wbi && wbi->bi_sector <
2660 dev->sector + STRIPE_SECTORS) {
2661 wbi2 = r5_next_bio(wbi, dev->sector);
2662 if (!raid5_dec_bi_phys_segments(wbi)) {
2663 md_write_end(conf->mddev);
2664 wbi->bi_next = *return_bi;
2665 *return_bi = wbi;
2666 }
2667 wbi = wbi2;
2668 }
2669 if (dev->towrite == NULL)
2670 bitmap_end = 1;
2671 spin_unlock_irq(&conf->device_lock);
2672 if (bitmap_end)
2673 bitmap_endwrite(conf->mddev->bitmap,
2674 sh->sector,
2675 STRIPE_SECTORS,
2676 !test_bit(STRIPE_DEGRADED, &sh->state),
2677 0);
2678 }
2679 }
2680
2681 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2682 if (atomic_dec_and_test(&conf->pending_full_writes))
2683 md_wakeup_thread(conf->mddev->thread);
2684 }
2685
2686 static void handle_stripe_dirtying(struct r5conf *conf,
2687 struct stripe_head *sh,
2688 struct stripe_head_state *s,
2689 int disks)
2690 {
2691 int rmw = 0, rcw = 0, i;
2692 if (conf->max_degraded == 2) {
2693 /* RAID6 requires 'rcw' in current implementation
2694 * Calculate the real rcw later - for now fake it
2695 * look like rcw is cheaper
2696 */
2697 rcw = 1; rmw = 2;
2698 } else for (i = disks; i--; ) {
2699 /* would I have to read this buffer for read_modify_write */
2700 struct r5dev *dev = &sh->dev[i];
2701 if ((dev->towrite || i == sh->pd_idx) &&
2702 !test_bit(R5_LOCKED, &dev->flags) &&
2703 !(test_bit(R5_UPTODATE, &dev->flags) ||
2704 test_bit(R5_Wantcompute, &dev->flags))) {
2705 if (test_bit(R5_Insync, &dev->flags))
2706 rmw++;
2707 else
2708 rmw += 2*disks; /* cannot read it */
2709 }
2710 /* Would I have to read this buffer for reconstruct_write */
2711 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2712 !test_bit(R5_LOCKED, &dev->flags) &&
2713 !(test_bit(R5_UPTODATE, &dev->flags) ||
2714 test_bit(R5_Wantcompute, &dev->flags))) {
2715 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2716 else
2717 rcw += 2*disks;
2718 }
2719 }
2720 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2721 (unsigned long long)sh->sector, rmw, rcw);
2722 set_bit(STRIPE_HANDLE, &sh->state);
2723 if (rmw < rcw && rmw > 0)
2724 /* prefer read-modify-write, but need to get some data */
2725 for (i = disks; i--; ) {
2726 struct r5dev *dev = &sh->dev[i];
2727 if ((dev->towrite || i == sh->pd_idx) &&
2728 !test_bit(R5_LOCKED, &dev->flags) &&
2729 !(test_bit(R5_UPTODATE, &dev->flags) ||
2730 test_bit(R5_Wantcompute, &dev->flags)) &&
2731 test_bit(R5_Insync, &dev->flags)) {
2732 if (
2733 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2734 pr_debug("Read_old block "
2735 "%d for r-m-w\n", i);
2736 set_bit(R5_LOCKED, &dev->flags);
2737 set_bit(R5_Wantread, &dev->flags);
2738 s->locked++;
2739 } else {
2740 set_bit(STRIPE_DELAYED, &sh->state);
2741 set_bit(STRIPE_HANDLE, &sh->state);
2742 }
2743 }
2744 }
2745 if (rcw <= rmw && rcw > 0) {
2746 /* want reconstruct write, but need to get some data */
2747 rcw = 0;
2748 for (i = disks; i--; ) {
2749 struct r5dev *dev = &sh->dev[i];
2750 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2751 i != sh->pd_idx && i != sh->qd_idx &&
2752 !test_bit(R5_LOCKED, &dev->flags) &&
2753 !(test_bit(R5_UPTODATE, &dev->flags) ||
2754 test_bit(R5_Wantcompute, &dev->flags))) {
2755 rcw++;
2756 if (!test_bit(R5_Insync, &dev->flags))
2757 continue; /* it's a failed drive */
2758 if (
2759 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2760 pr_debug("Read_old block "
2761 "%d for Reconstruct\n", i);
2762 set_bit(R5_LOCKED, &dev->flags);
2763 set_bit(R5_Wantread, &dev->flags);
2764 s->locked++;
2765 } else {
2766 set_bit(STRIPE_DELAYED, &sh->state);
2767 set_bit(STRIPE_HANDLE, &sh->state);
2768 }
2769 }
2770 }
2771 }
2772 /* now if nothing is locked, and if we have enough data,
2773 * we can start a write request
2774 */
2775 /* since handle_stripe can be called at any time we need to handle the
2776 * case where a compute block operation has been submitted and then a
2777 * subsequent call wants to start a write request. raid_run_ops only
2778 * handles the case where compute block and reconstruct are requested
2779 * simultaneously. If this is not the case then new writes need to be
2780 * held off until the compute completes.
2781 */
2782 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2783 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2784 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2785 schedule_reconstruction(sh, s, rcw == 0, 0);
2786 }
2787
2788 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2789 struct stripe_head_state *s, int disks)
2790 {
2791 struct r5dev *dev = NULL;
2792
2793 set_bit(STRIPE_HANDLE, &sh->state);
2794
2795 switch (sh->check_state) {
2796 case check_state_idle:
2797 /* start a new check operation if there are no failures */
2798 if (s->failed == 0) {
2799 BUG_ON(s->uptodate != disks);
2800 sh->check_state = check_state_run;
2801 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2802 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2803 s->uptodate--;
2804 break;
2805 }
2806 dev = &sh->dev[s->failed_num[0]];
2807 /* fall through */
2808 case check_state_compute_result:
2809 sh->check_state = check_state_idle;
2810 if (!dev)
2811 dev = &sh->dev[sh->pd_idx];
2812
2813 /* check that a write has not made the stripe insync */
2814 if (test_bit(STRIPE_INSYNC, &sh->state))
2815 break;
2816
2817 /* either failed parity check, or recovery is happening */
2818 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2819 BUG_ON(s->uptodate != disks);
2820
2821 set_bit(R5_LOCKED, &dev->flags);
2822 s->locked++;
2823 set_bit(R5_Wantwrite, &dev->flags);
2824
2825 clear_bit(STRIPE_DEGRADED, &sh->state);
2826 set_bit(STRIPE_INSYNC, &sh->state);
2827 break;
2828 case check_state_run:
2829 break; /* we will be called again upon completion */
2830 case check_state_check_result:
2831 sh->check_state = check_state_idle;
2832
2833 /* if a failure occurred during the check operation, leave
2834 * STRIPE_INSYNC not set and let the stripe be handled again
2835 */
2836 if (s->failed)
2837 break;
2838
2839 /* handle a successful check operation, if parity is correct
2840 * we are done. Otherwise update the mismatch count and repair
2841 * parity if !MD_RECOVERY_CHECK
2842 */
2843 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2844 /* parity is correct (on disc,
2845 * not in buffer any more)
2846 */
2847 set_bit(STRIPE_INSYNC, &sh->state);
2848 else {
2849 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2850 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2851 /* don't try to repair!! */
2852 set_bit(STRIPE_INSYNC, &sh->state);
2853 else {
2854 sh->check_state = check_state_compute_run;
2855 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2856 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2857 set_bit(R5_Wantcompute,
2858 &sh->dev[sh->pd_idx].flags);
2859 sh->ops.target = sh->pd_idx;
2860 sh->ops.target2 = -1;
2861 s->uptodate++;
2862 }
2863 }
2864 break;
2865 case check_state_compute_run:
2866 break;
2867 default:
2868 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2869 __func__, sh->check_state,
2870 (unsigned long long) sh->sector);
2871 BUG();
2872 }
2873 }
2874
2875
2876 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2877 struct stripe_head_state *s,
2878 int disks)
2879 {
2880 int pd_idx = sh->pd_idx;
2881 int qd_idx = sh->qd_idx;
2882 struct r5dev *dev;
2883
2884 set_bit(STRIPE_HANDLE, &sh->state);
2885
2886 BUG_ON(s->failed > 2);
2887
2888 /* Want to check and possibly repair P and Q.
2889 * However there could be one 'failed' device, in which
2890 * case we can only check one of them, possibly using the
2891 * other to generate missing data
2892 */
2893
2894 switch (sh->check_state) {
2895 case check_state_idle:
2896 /* start a new check operation if there are < 2 failures */
2897 if (s->failed == s->q_failed) {
2898 /* The only possible failed device holds Q, so it
2899 * makes sense to check P (If anything else were failed,
2900 * we would have used P to recreate it).
2901 */
2902 sh->check_state = check_state_run;
2903 }
2904 if (!s->q_failed && s->failed < 2) {
2905 /* Q is not failed, and we didn't use it to generate
2906 * anything, so it makes sense to check it
2907 */
2908 if (sh->check_state == check_state_run)
2909 sh->check_state = check_state_run_pq;
2910 else
2911 sh->check_state = check_state_run_q;
2912 }
2913
2914 /* discard potentially stale zero_sum_result */
2915 sh->ops.zero_sum_result = 0;
2916
2917 if (sh->check_state == check_state_run) {
2918 /* async_xor_zero_sum destroys the contents of P */
2919 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2920 s->uptodate--;
2921 }
2922 if (sh->check_state >= check_state_run &&
2923 sh->check_state <= check_state_run_pq) {
2924 /* async_syndrome_zero_sum preserves P and Q, so
2925 * no need to mark them !uptodate here
2926 */
2927 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2928 break;
2929 }
2930
2931 /* we have 2-disk failure */
2932 BUG_ON(s->failed != 2);
2933 /* fall through */
2934 case check_state_compute_result:
2935 sh->check_state = check_state_idle;
2936
2937 /* check that a write has not made the stripe insync */
2938 if (test_bit(STRIPE_INSYNC, &sh->state))
2939 break;
2940
2941 /* now write out any block on a failed drive,
2942 * or P or Q if they were recomputed
2943 */
2944 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2945 if (s->failed == 2) {
2946 dev = &sh->dev[s->failed_num[1]];
2947 s->locked++;
2948 set_bit(R5_LOCKED, &dev->flags);
2949 set_bit(R5_Wantwrite, &dev->flags);
2950 }
2951 if (s->failed >= 1) {
2952 dev = &sh->dev[s->failed_num[0]];
2953 s->locked++;
2954 set_bit(R5_LOCKED, &dev->flags);
2955 set_bit(R5_Wantwrite, &dev->flags);
2956 }
2957 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2958 dev = &sh->dev[pd_idx];
2959 s->locked++;
2960 set_bit(R5_LOCKED, &dev->flags);
2961 set_bit(R5_Wantwrite, &dev->flags);
2962 }
2963 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2964 dev = &sh->dev[qd_idx];
2965 s->locked++;
2966 set_bit(R5_LOCKED, &dev->flags);
2967 set_bit(R5_Wantwrite, &dev->flags);
2968 }
2969 clear_bit(STRIPE_DEGRADED, &sh->state);
2970
2971 set_bit(STRIPE_INSYNC, &sh->state);
2972 break;
2973 case check_state_run:
2974 case check_state_run_q:
2975 case check_state_run_pq:
2976 break; /* we will be called again upon completion */
2977 case check_state_check_result:
2978 sh->check_state = check_state_idle;
2979
2980 /* handle a successful check operation, if parity is correct
2981 * we are done. Otherwise update the mismatch count and repair
2982 * parity if !MD_RECOVERY_CHECK
2983 */
2984 if (sh->ops.zero_sum_result == 0) {
2985 /* both parities are correct */
2986 if (!s->failed)
2987 set_bit(STRIPE_INSYNC, &sh->state);
2988 else {
2989 /* in contrast to the raid5 case we can validate
2990 * parity, but still have a failure to write
2991 * back
2992 */
2993 sh->check_state = check_state_compute_result;
2994 /* Returning at this point means that we may go
2995 * off and bring p and/or q uptodate again so
2996 * we make sure to check zero_sum_result again
2997 * to verify if p or q need writeback
2998 */
2999 }
3000 } else {
3001 conf->mddev->resync_mismatches += STRIPE_SECTORS;
3002 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3003 /* don't try to repair!! */
3004 set_bit(STRIPE_INSYNC, &sh->state);
3005 else {
3006 int *target = &sh->ops.target;
3007
3008 sh->ops.target = -1;
3009 sh->ops.target2 = -1;
3010 sh->check_state = check_state_compute_run;
3011 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3012 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3013 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3014 set_bit(R5_Wantcompute,
3015 &sh->dev[pd_idx].flags);
3016 *target = pd_idx;
3017 target = &sh->ops.target2;
3018 s->uptodate++;
3019 }
3020 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3021 set_bit(R5_Wantcompute,
3022 &sh->dev[qd_idx].flags);
3023 *target = qd_idx;
3024 s->uptodate++;
3025 }
3026 }
3027 }
3028 break;
3029 case check_state_compute_run:
3030 break;
3031 default:
3032 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3033 __func__, sh->check_state,
3034 (unsigned long long) sh->sector);
3035 BUG();
3036 }
3037 }
3038
3039 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3040 {
3041 int i;
3042
3043 /* We have read all the blocks in this stripe and now we need to
3044 * copy some of them into a target stripe for expand.
3045 */
3046 struct dma_async_tx_descriptor *tx = NULL;
3047 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3048 for (i = 0; i < sh->disks; i++)
3049 if (i != sh->pd_idx && i != sh->qd_idx) {
3050 int dd_idx, j;
3051 struct stripe_head *sh2;
3052 struct async_submit_ctl submit;
3053
3054 sector_t bn = compute_blocknr(sh, i, 1);
3055 sector_t s = raid5_compute_sector(conf, bn, 0,
3056 &dd_idx, NULL);
3057 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3058 if (sh2 == NULL)
3059 /* so far only the early blocks of this stripe
3060 * have been requested. When later blocks
3061 * get requested, we will try again
3062 */
3063 continue;
3064 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3065 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3066 /* must have already done this block */
3067 release_stripe(sh2);
3068 continue;
3069 }
3070
3071 /* place all the copies on one channel */
3072 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3073 tx = async_memcpy(sh2->dev[dd_idx].page,
3074 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3075 &submit);
3076
3077 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3078 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3079 for (j = 0; j < conf->raid_disks; j++)
3080 if (j != sh2->pd_idx &&
3081 j != sh2->qd_idx &&
3082 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3083 break;
3084 if (j == conf->raid_disks) {
3085 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3086 set_bit(STRIPE_HANDLE, &sh2->state);
3087 }
3088 release_stripe(sh2);
3089
3090 }
3091 /* done submitting copies, wait for them to complete */
3092 if (tx) {
3093 async_tx_ack(tx);
3094 dma_wait_for_async_tx(tx);
3095 }
3096 }
3097
3098 /*
3099 * handle_stripe - do things to a stripe.
3100 *
3101 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3102 * state of various bits to see what needs to be done.
3103 * Possible results:
3104 * return some read requests which now have data
3105 * return some write requests which are safely on storage
3106 * schedule a read on some buffers
3107 * schedule a write of some buffers
3108 * return confirmation of parity correctness
3109 *
3110 */
3111
3112 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3113 {
3114 struct r5conf *conf = sh->raid_conf;
3115 int disks = sh->disks;
3116 struct r5dev *dev;
3117 int i;
3118 int do_recovery = 0;
3119
3120 memset(s, 0, sizeof(*s));
3121
3122 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3123 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3124 s->failed_num[0] = -1;
3125 s->failed_num[1] = -1;
3126
3127 /* Now to look around and see what can be done */
3128 rcu_read_lock();
3129 spin_lock_irq(&conf->device_lock);
3130 for (i=disks; i--; ) {
3131 struct md_rdev *rdev;
3132 sector_t first_bad;
3133 int bad_sectors;
3134 int is_bad = 0;
3135
3136 dev = &sh->dev[i];
3137
3138 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3139 i, dev->flags,
3140 dev->toread, dev->towrite, dev->written);
3141 /* maybe we can reply to a read
3142 *
3143 * new wantfill requests are only permitted while
3144 * ops_complete_biofill is guaranteed to be inactive
3145 */
3146 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3147 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3148 set_bit(R5_Wantfill, &dev->flags);
3149
3150 /* now count some things */
3151 if (test_bit(R5_LOCKED, &dev->flags))
3152 s->locked++;
3153 if (test_bit(R5_UPTODATE, &dev->flags))
3154 s->uptodate++;
3155 if (test_bit(R5_Wantcompute, &dev->flags)) {
3156 s->compute++;
3157 BUG_ON(s->compute > 2);
3158 }
3159
3160 if (test_bit(R5_Wantfill, &dev->flags))
3161 s->to_fill++;
3162 else if (dev->toread)
3163 s->to_read++;
3164 if (dev->towrite) {
3165 s->to_write++;
3166 if (!test_bit(R5_OVERWRITE, &dev->flags))
3167 s->non_overwrite++;
3168 }
3169 if (dev->written)
3170 s->written++;
3171 /* Prefer to use the replacement for reads, but only
3172 * if it is recovered enough and has no bad blocks.
3173 */
3174 rdev = rcu_dereference(conf->disks[i].replacement);
3175 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3176 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3177 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3178 &first_bad, &bad_sectors))
3179 set_bit(R5_ReadRepl, &dev->flags);
3180 else {
3181 if (rdev)
3182 set_bit(R5_NeedReplace, &dev->flags);
3183 rdev = rcu_dereference(conf->disks[i].rdev);
3184 clear_bit(R5_ReadRepl, &dev->flags);
3185 }
3186 if (rdev && test_bit(Faulty, &rdev->flags))
3187 rdev = NULL;
3188 if (rdev) {
3189 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3190 &first_bad, &bad_sectors);
3191 if (s->blocked_rdev == NULL
3192 && (test_bit(Blocked, &rdev->flags)
3193 || is_bad < 0)) {
3194 if (is_bad < 0)
3195 set_bit(BlockedBadBlocks,
3196 &rdev->flags);
3197 s->blocked_rdev = rdev;
3198 atomic_inc(&rdev->nr_pending);
3199 }
3200 }
3201 clear_bit(R5_Insync, &dev->flags);
3202 if (!rdev)
3203 /* Not in-sync */;
3204 else if (is_bad) {
3205 /* also not in-sync */
3206 if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3207 /* treat as in-sync, but with a read error
3208 * which we can now try to correct
3209 */
3210 set_bit(R5_Insync, &dev->flags);
3211 set_bit(R5_ReadError, &dev->flags);
3212 }
3213 } else if (test_bit(In_sync, &rdev->flags))
3214 set_bit(R5_Insync, &dev->flags);
3215 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3216 /* in sync if before recovery_offset */
3217 set_bit(R5_Insync, &dev->flags);
3218 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3219 test_bit(R5_Expanded, &dev->flags))
3220 /* If we've reshaped into here, we assume it is Insync.
3221 * We will shortly update recovery_offset to make
3222 * it official.
3223 */
3224 set_bit(R5_Insync, &dev->flags);
3225
3226 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3227 /* This flag does not apply to '.replacement'
3228 * only to .rdev, so make sure to check that*/
3229 struct md_rdev *rdev2 = rcu_dereference(
3230 conf->disks[i].rdev);
3231 if (rdev2 == rdev)
3232 clear_bit(R5_Insync, &dev->flags);
3233 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3234 s->handle_bad_blocks = 1;
3235 atomic_inc(&rdev2->nr_pending);
3236 } else
3237 clear_bit(R5_WriteError, &dev->flags);
3238 }
3239 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3240 /* This flag does not apply to '.replacement'
3241 * only to .rdev, so make sure to check that*/
3242 struct md_rdev *rdev2 = rcu_dereference(
3243 conf->disks[i].rdev);
3244 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3245 s->handle_bad_blocks = 1;
3246 atomic_inc(&rdev2->nr_pending);
3247 } else
3248 clear_bit(R5_MadeGood, &dev->flags);
3249 }
3250 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3251 struct md_rdev *rdev2 = rcu_dereference(
3252 conf->disks[i].replacement);
3253 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3254 s->handle_bad_blocks = 1;
3255 atomic_inc(&rdev2->nr_pending);
3256 } else
3257 clear_bit(R5_MadeGoodRepl, &dev->flags);
3258 }
3259 if (!test_bit(R5_Insync, &dev->flags)) {
3260 /* The ReadError flag will just be confusing now */
3261 clear_bit(R5_ReadError, &dev->flags);
3262 clear_bit(R5_ReWrite, &dev->flags);
3263 }
3264 if (test_bit(R5_ReadError, &dev->flags))
3265 clear_bit(R5_Insync, &dev->flags);
3266 if (!test_bit(R5_Insync, &dev->flags)) {
3267 if (s->failed < 2)
3268 s->failed_num[s->failed] = i;
3269 s->failed++;
3270 if (rdev && !test_bit(Faulty, &rdev->flags))
3271 do_recovery = 1;
3272 }
3273 }
3274 spin_unlock_irq(&conf->device_lock);
3275 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3276 /* If there is a failed device being replaced,
3277 * we must be recovering.
3278 * else if we are after recovery_cp, we must be syncing
3279 * else we can only be replacing
3280 * sync and recovery both need to read all devices, and so
3281 * use the same flag.
3282 */
3283 if (do_recovery ||
3284 sh->sector >= conf->mddev->recovery_cp)
3285 s->syncing = 1;
3286 else
3287 s->replacing = 1;
3288 }
3289 rcu_read_unlock();
3290 }
3291
3292 static void handle_stripe(struct stripe_head *sh)
3293 {
3294 struct stripe_head_state s;
3295 struct r5conf *conf = sh->raid_conf;
3296 int i;
3297 int prexor;
3298 int disks = sh->disks;
3299 struct r5dev *pdev, *qdev;
3300
3301 clear_bit(STRIPE_HANDLE, &sh->state);
3302 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3303 /* already being handled, ensure it gets handled
3304 * again when current action finishes */
3305 set_bit(STRIPE_HANDLE, &sh->state);
3306 return;
3307 }
3308
3309 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3310 set_bit(STRIPE_SYNCING, &sh->state);
3311 clear_bit(STRIPE_INSYNC, &sh->state);
3312 }
3313 clear_bit(STRIPE_DELAYED, &sh->state);
3314
3315 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3316 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3317 (unsigned long long)sh->sector, sh->state,
3318 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3319 sh->check_state, sh->reconstruct_state);
3320
3321 analyse_stripe(sh, &s);
3322
3323 if (s.handle_bad_blocks) {
3324 set_bit(STRIPE_HANDLE, &sh->state);
3325 goto finish;
3326 }
3327
3328 if (unlikely(s.blocked_rdev)) {
3329 if (s.syncing || s.expanding || s.expanded ||
3330 s.replacing || s.to_write || s.written) {
3331 set_bit(STRIPE_HANDLE, &sh->state);
3332 goto finish;
3333 }
3334 /* There is nothing for the blocked_rdev to block */
3335 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3336 s.blocked_rdev = NULL;
3337 }
3338
3339 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3340 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3341 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3342 }
3343
3344 pr_debug("locked=%d uptodate=%d to_read=%d"
3345 " to_write=%d failed=%d failed_num=%d,%d\n",
3346 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3347 s.failed_num[0], s.failed_num[1]);
3348 /* check if the array has lost more than max_degraded devices and,
3349 * if so, some requests might need to be failed.
3350 */
3351 if (s.failed > conf->max_degraded) {
3352 sh->check_state = 0;
3353 sh->reconstruct_state = 0;
3354 if (s.to_read+s.to_write+s.written)
3355 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3356 if (s.syncing + s.replacing)
3357 handle_failed_sync(conf, sh, &s);
3358 }
3359
3360 /*
3361 * might be able to return some write requests if the parity blocks
3362 * are safe, or on a failed drive
3363 */
3364 pdev = &sh->dev[sh->pd_idx];
3365 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3366 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3367 qdev = &sh->dev[sh->qd_idx];
3368 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3369 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3370 || conf->level < 6;
3371
3372 if (s.written &&
3373 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3374 && !test_bit(R5_LOCKED, &pdev->flags)
3375 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3376 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3377 && !test_bit(R5_LOCKED, &qdev->flags)
3378 && test_bit(R5_UPTODATE, &qdev->flags)))))
3379 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3380
3381 /* Now we might consider reading some blocks, either to check/generate
3382 * parity, or to satisfy requests
3383 * or to load a block that is being partially written.
3384 */
3385 if (s.to_read || s.non_overwrite
3386 || (conf->level == 6 && s.to_write && s.failed)
3387 || (s.syncing && (s.uptodate + s.compute < disks))
3388 || s.replacing
3389 || s.expanding)
3390 handle_stripe_fill(sh, &s, disks);
3391
3392 /* Now we check to see if any write operations have recently
3393 * completed
3394 */
3395 prexor = 0;
3396 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3397 prexor = 1;
3398 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3399 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3400 sh->reconstruct_state = reconstruct_state_idle;
3401
3402 /* All the 'written' buffers and the parity block are ready to
3403 * be written back to disk
3404 */
3405 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3406 BUG_ON(sh->qd_idx >= 0 &&
3407 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3408 for (i = disks; i--; ) {
3409 struct r5dev *dev = &sh->dev[i];
3410 if (test_bit(R5_LOCKED, &dev->flags) &&
3411 (i == sh->pd_idx || i == sh->qd_idx ||
3412 dev->written)) {
3413 pr_debug("Writing block %d\n", i);
3414 set_bit(R5_Wantwrite, &dev->flags);
3415 if (prexor)
3416 continue;
3417 if (!test_bit(R5_Insync, &dev->flags) ||
3418 ((i == sh->pd_idx || i == sh->qd_idx) &&
3419 s.failed == 0))
3420 set_bit(STRIPE_INSYNC, &sh->state);
3421 }
3422 }
3423 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3424 s.dec_preread_active = 1;
3425 }
3426
3427 /* Now to consider new write requests and what else, if anything
3428 * should be read. We do not handle new writes when:
3429 * 1/ A 'write' operation (copy+xor) is already in flight.
3430 * 2/ A 'check' operation is in flight, as it may clobber the parity
3431 * block.
3432 */
3433 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3434 handle_stripe_dirtying(conf, sh, &s, disks);
3435
3436 /* maybe we need to check and possibly fix the parity for this stripe
3437 * Any reads will already have been scheduled, so we just see if enough
3438 * data is available. The parity check is held off while parity
3439 * dependent operations are in flight.
3440 */
3441 if (sh->check_state ||
3442 (s.syncing && s.locked == 0 &&
3443 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3444 !test_bit(STRIPE_INSYNC, &sh->state))) {
3445 if (conf->level == 6)
3446 handle_parity_checks6(conf, sh, &s, disks);
3447 else
3448 handle_parity_checks5(conf, sh, &s, disks);
3449 }
3450
3451 if (s.replacing && s.locked == 0
3452 && !test_bit(STRIPE_INSYNC, &sh->state)) {
3453 /* Write out to replacement devices where possible */
3454 for (i = 0; i < conf->raid_disks; i++)
3455 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3456 test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3457 set_bit(R5_WantReplace, &sh->dev[i].flags);
3458 set_bit(R5_LOCKED, &sh->dev[i].flags);
3459 s.locked++;
3460 }
3461 set_bit(STRIPE_INSYNC, &sh->state);
3462 }
3463 if ((s.syncing || s.replacing) && s.locked == 0 &&
3464 test_bit(STRIPE_INSYNC, &sh->state)) {
3465 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3466 clear_bit(STRIPE_SYNCING, &sh->state);
3467 }
3468
3469 /* If the failed drives are just a ReadError, then we might need
3470 * to progress the repair/check process
3471 */
3472 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3473 for (i = 0; i < s.failed; i++) {
3474 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3475 if (test_bit(R5_ReadError, &dev->flags)
3476 && !test_bit(R5_LOCKED, &dev->flags)
3477 && test_bit(R5_UPTODATE, &dev->flags)
3478 ) {
3479 if (!test_bit(R5_ReWrite, &dev->flags)) {
3480 set_bit(R5_Wantwrite, &dev->flags);
3481 set_bit(R5_ReWrite, &dev->flags);
3482 set_bit(R5_LOCKED, &dev->flags);
3483 s.locked++;
3484 } else {
3485 /* let's read it back */
3486 set_bit(R5_Wantread, &dev->flags);
3487 set_bit(R5_LOCKED, &dev->flags);
3488 s.locked++;
3489 }
3490 }
3491 }
3492
3493
3494 /* Finish reconstruct operations initiated by the expansion process */
3495 if (sh->reconstruct_state == reconstruct_state_result) {
3496 struct stripe_head *sh_src
3497 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3498 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3499 /* sh cannot be written until sh_src has been read.
3500 * so arrange for sh to be delayed a little
3501 */
3502 set_bit(STRIPE_DELAYED, &sh->state);
3503 set_bit(STRIPE_HANDLE, &sh->state);
3504 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3505 &sh_src->state))
3506 atomic_inc(&conf->preread_active_stripes);
3507 release_stripe(sh_src);
3508 goto finish;
3509 }
3510 if (sh_src)
3511 release_stripe(sh_src);
3512
3513 sh->reconstruct_state = reconstruct_state_idle;
3514 clear_bit(STRIPE_EXPANDING, &sh->state);
3515 for (i = conf->raid_disks; i--; ) {
3516 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3517 set_bit(R5_LOCKED, &sh->dev[i].flags);
3518 s.locked++;
3519 }
3520 }
3521
3522 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3523 !sh->reconstruct_state) {
3524 /* Need to write out all blocks after computing parity */
3525 sh->disks = conf->raid_disks;
3526 stripe_set_idx(sh->sector, conf, 0, sh);
3527 schedule_reconstruction(sh, &s, 1, 1);
3528 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3529 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3530 atomic_dec(&conf->reshape_stripes);
3531 wake_up(&conf->wait_for_overlap);
3532 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3533 }
3534
3535 if (s.expanding && s.locked == 0 &&
3536 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3537 handle_stripe_expansion(conf, sh);
3538
3539 finish:
3540 /* wait for this device to become unblocked */
3541 if (conf->mddev->external && unlikely(s.blocked_rdev))
3542 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3543
3544 if (s.handle_bad_blocks)
3545 for (i = disks; i--; ) {
3546 struct md_rdev *rdev;
3547 struct r5dev *dev = &sh->dev[i];
3548 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3549 /* We own a safe reference to the rdev */
3550 rdev = conf->disks[i].rdev;
3551 if (!rdev_set_badblocks(rdev, sh->sector,
3552 STRIPE_SECTORS, 0))
3553 md_error(conf->mddev, rdev);
3554 rdev_dec_pending(rdev, conf->mddev);
3555 }
3556 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3557 rdev = conf->disks[i].rdev;
3558 rdev_clear_badblocks(rdev, sh->sector,
3559 STRIPE_SECTORS);
3560 rdev_dec_pending(rdev, conf->mddev);
3561 }
3562 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3563 rdev = conf->disks[i].replacement;
3564 if (!rdev)
3565 /* rdev have been moved down */
3566 rdev = conf->disks[i].rdev;
3567 rdev_clear_badblocks(rdev, sh->sector,
3568 STRIPE_SECTORS);
3569 rdev_dec_pending(rdev, conf->mddev);
3570 }
3571 }
3572
3573 if (s.ops_request)
3574 raid_run_ops(sh, s.ops_request);
3575
3576 ops_run_io(sh, &s);
3577
3578 if (s.dec_preread_active) {
3579 /* We delay this until after ops_run_io so that if make_request
3580 * is waiting on a flush, it won't continue until the writes
3581 * have actually been submitted.
3582 */
3583 atomic_dec(&conf->preread_active_stripes);
3584 if (atomic_read(&conf->preread_active_stripes) <
3585 IO_THRESHOLD)
3586 md_wakeup_thread(conf->mddev->thread);
3587 }
3588
3589 return_io(s.return_bi);
3590
3591 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3592 }
3593
3594 static void raid5_activate_delayed(struct r5conf *conf)
3595 {
3596 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3597 while (!list_empty(&conf->delayed_list)) {
3598 struct list_head *l = conf->delayed_list.next;
3599 struct stripe_head *sh;
3600 sh = list_entry(l, struct stripe_head, lru);
3601 list_del_init(l);
3602 clear_bit(STRIPE_DELAYED, &sh->state);
3603 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3604 atomic_inc(&conf->preread_active_stripes);
3605 list_add_tail(&sh->lru, &conf->hold_list);
3606 }
3607 }
3608 }
3609
3610 static void activate_bit_delay(struct r5conf *conf)
3611 {
3612 /* device_lock is held */
3613 struct list_head head;
3614 list_add(&head, &conf->bitmap_list);
3615 list_del_init(&conf->bitmap_list);
3616 while (!list_empty(&head)) {
3617 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3618 list_del_init(&sh->lru);
3619 atomic_inc(&sh->count);
3620 __release_stripe(conf, sh);
3621 }
3622 }
3623
3624 int md_raid5_congested(struct mddev *mddev, int bits)
3625 {
3626 struct r5conf *conf = mddev->private;
3627
3628 /* No difference between reads and writes. Just check
3629 * how busy the stripe_cache is
3630 */
3631
3632 if (conf->inactive_blocked)
3633 return 1;
3634 if (conf->quiesce)
3635 return 1;
3636 if (list_empty_careful(&conf->inactive_list))
3637 return 1;
3638
3639 return 0;
3640 }
3641 EXPORT_SYMBOL_GPL(md_raid5_congested);
3642
3643 static int raid5_congested(void *data, int bits)
3644 {
3645 struct mddev *mddev = data;
3646
3647 return mddev_congested(mddev, bits) ||
3648 md_raid5_congested(mddev, bits);
3649 }
3650
3651 /* We want read requests to align with chunks where possible,
3652 * but write requests don't need to.
3653 */
3654 static int raid5_mergeable_bvec(struct request_queue *q,
3655 struct bvec_merge_data *bvm,
3656 struct bio_vec *biovec)
3657 {
3658 struct mddev *mddev = q->queuedata;
3659 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3660 int max;
3661 unsigned int chunk_sectors = mddev->chunk_sectors;
3662 unsigned int bio_sectors = bvm->bi_size >> 9;
3663
3664 if ((bvm->bi_rw & 1) == WRITE)
3665 return biovec->bv_len; /* always allow writes to be mergeable */
3666
3667 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3668 chunk_sectors = mddev->new_chunk_sectors;
3669 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3670 if (max < 0) max = 0;
3671 if (max <= biovec->bv_len && bio_sectors == 0)
3672 return biovec->bv_len;
3673 else
3674 return max;
3675 }
3676
3677
3678 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3679 {
3680 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3681 unsigned int chunk_sectors = mddev->chunk_sectors;
3682 unsigned int bio_sectors = bio->bi_size >> 9;
3683
3684 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3685 chunk_sectors = mddev->new_chunk_sectors;
3686 return chunk_sectors >=
3687 ((sector & (chunk_sectors - 1)) + bio_sectors);
3688 }
3689
3690 /*
3691 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3692 * later sampled by raid5d.
3693 */
3694 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3695 {
3696 unsigned long flags;
3697
3698 spin_lock_irqsave(&conf->device_lock, flags);
3699
3700 bi->bi_next = conf->retry_read_aligned_list;
3701 conf->retry_read_aligned_list = bi;
3702
3703 spin_unlock_irqrestore(&conf->device_lock, flags);
3704 md_wakeup_thread(conf->mddev->thread);
3705 }
3706
3707
3708 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3709 {
3710 struct bio *bi;
3711
3712 bi = conf->retry_read_aligned;
3713 if (bi) {
3714 conf->retry_read_aligned = NULL;
3715 return bi;
3716 }
3717 bi = conf->retry_read_aligned_list;
3718 if(bi) {
3719 conf->retry_read_aligned_list = bi->bi_next;
3720 bi->bi_next = NULL;
3721 /*
3722 * this sets the active strip count to 1 and the processed
3723 * strip count to zero (upper 8 bits)
3724 */
3725 bi->bi_phys_segments = 1; /* biased count of active stripes */
3726 }
3727
3728 return bi;
3729 }
3730
3731
3732 /*
3733 * The "raid5_align_endio" should check if the read succeeded and if it
3734 * did, call bio_endio on the original bio (having bio_put the new bio
3735 * first).
3736 * If the read failed..
3737 */
3738 static void raid5_align_endio(struct bio *bi, int error)
3739 {
3740 struct bio* raid_bi = bi->bi_private;
3741 struct mddev *mddev;
3742 struct r5conf *conf;
3743 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3744 struct md_rdev *rdev;
3745
3746 bio_put(bi);
3747
3748 rdev = (void*)raid_bi->bi_next;
3749 raid_bi->bi_next = NULL;
3750 mddev = rdev->mddev;
3751 conf = mddev->private;
3752
3753 rdev_dec_pending(rdev, conf->mddev);
3754
3755 if (!error && uptodate) {
3756 bio_endio(raid_bi, 0);
3757 if (atomic_dec_and_test(&conf->active_aligned_reads))
3758 wake_up(&conf->wait_for_stripe);
3759 return;
3760 }
3761
3762
3763 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3764
3765 add_bio_to_retry(raid_bi, conf);
3766 }
3767
3768 static int bio_fits_rdev(struct bio *bi)
3769 {
3770 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3771
3772 if ((bi->bi_size>>9) > queue_max_sectors(q))
3773 return 0;
3774 blk_recount_segments(q, bi);
3775 if (bi->bi_phys_segments > queue_max_segments(q))
3776 return 0;
3777
3778 if (q->merge_bvec_fn)
3779 /* it's too hard to apply the merge_bvec_fn at this stage,
3780 * just just give up
3781 */
3782 return 0;
3783
3784 return 1;
3785 }
3786
3787
3788 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3789 {
3790 struct r5conf *conf = mddev->private;
3791 int dd_idx;
3792 struct bio* align_bi;
3793 struct md_rdev *rdev;
3794 sector_t end_sector;
3795
3796 if (!in_chunk_boundary(mddev, raid_bio)) {
3797 pr_debug("chunk_aligned_read : non aligned\n");
3798 return 0;
3799 }
3800 /*
3801 * use bio_clone_mddev to make a copy of the bio
3802 */
3803 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3804 if (!align_bi)
3805 return 0;
3806 /*
3807 * set bi_end_io to a new function, and set bi_private to the
3808 * original bio.
3809 */
3810 align_bi->bi_end_io = raid5_align_endio;
3811 align_bi->bi_private = raid_bio;
3812 /*
3813 * compute position
3814 */
3815 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3816 0,
3817 &dd_idx, NULL);
3818
3819 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3820 rcu_read_lock();
3821 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3822 if (!rdev || test_bit(Faulty, &rdev->flags) ||
3823 rdev->recovery_offset < end_sector) {
3824 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3825 if (rdev &&
3826 (test_bit(Faulty, &rdev->flags) ||
3827 !(test_bit(In_sync, &rdev->flags) ||
3828 rdev->recovery_offset >= end_sector)))
3829 rdev = NULL;
3830 }
3831 if (rdev) {
3832 sector_t first_bad;
3833 int bad_sectors;
3834
3835 atomic_inc(&rdev->nr_pending);
3836 rcu_read_unlock();
3837 raid_bio->bi_next = (void*)rdev;
3838 align_bi->bi_bdev = rdev->bdev;
3839 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3840 align_bi->bi_sector += rdev->data_offset;
3841
3842 if (!bio_fits_rdev(align_bi) ||
3843 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3844 &first_bad, &bad_sectors)) {
3845 /* too big in some way, or has a known bad block */
3846 bio_put(align_bi);
3847 rdev_dec_pending(rdev, mddev);
3848 return 0;
3849 }
3850
3851 spin_lock_irq(&conf->device_lock);
3852 wait_event_lock_irq(conf->wait_for_stripe,
3853 conf->quiesce == 0,
3854 conf->device_lock, /* nothing */);
3855 atomic_inc(&conf->active_aligned_reads);
3856 spin_unlock_irq(&conf->device_lock);
3857
3858 generic_make_request(align_bi);
3859 return 1;
3860 } else {
3861 rcu_read_unlock();
3862 bio_put(align_bi);
3863 return 0;
3864 }
3865 }
3866
3867 /* __get_priority_stripe - get the next stripe to process
3868 *
3869 * Full stripe writes are allowed to pass preread active stripes up until
3870 * the bypass_threshold is exceeded. In general the bypass_count
3871 * increments when the handle_list is handled before the hold_list; however, it
3872 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3873 * stripe with in flight i/o. The bypass_count will be reset when the
3874 * head of the hold_list has changed, i.e. the head was promoted to the
3875 * handle_list.
3876 */
3877 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3878 {
3879 struct stripe_head *sh;
3880
3881 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3882 __func__,
3883 list_empty(&conf->handle_list) ? "empty" : "busy",
3884 list_empty(&conf->hold_list) ? "empty" : "busy",
3885 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3886
3887 if (!list_empty(&conf->handle_list)) {
3888 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3889
3890 if (list_empty(&conf->hold_list))
3891 conf->bypass_count = 0;
3892 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3893 if (conf->hold_list.next == conf->last_hold)
3894 conf->bypass_count++;
3895 else {
3896 conf->last_hold = conf->hold_list.next;
3897 conf->bypass_count -= conf->bypass_threshold;
3898 if (conf->bypass_count < 0)
3899 conf->bypass_count = 0;
3900 }
3901 }
3902 } else if (!list_empty(&conf->hold_list) &&
3903 ((conf->bypass_threshold &&
3904 conf->bypass_count > conf->bypass_threshold) ||
3905 atomic_read(&conf->pending_full_writes) == 0)) {
3906 sh = list_entry(conf->hold_list.next,
3907 typeof(*sh), lru);
3908 conf->bypass_count -= conf->bypass_threshold;
3909 if (conf->bypass_count < 0)
3910 conf->bypass_count = 0;
3911 } else
3912 return NULL;
3913
3914 list_del_init(&sh->lru);
3915 atomic_inc(&sh->count);
3916 BUG_ON(atomic_read(&sh->count) != 1);
3917 return sh;
3918 }
3919
3920 static void make_request(struct mddev *mddev, struct bio * bi)
3921 {
3922 struct r5conf *conf = mddev->private;
3923 int dd_idx;
3924 sector_t new_sector;
3925 sector_t logical_sector, last_sector;
3926 struct stripe_head *sh;
3927 const int rw = bio_data_dir(bi);
3928 int remaining;
3929 int plugged;
3930
3931 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3932 md_flush_request(mddev, bi);
3933 return;
3934 }
3935
3936 md_write_start(mddev, bi);
3937
3938 if (rw == READ &&
3939 mddev->reshape_position == MaxSector &&
3940 chunk_aligned_read(mddev,bi))
3941 return;
3942
3943 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3944 last_sector = bi->bi_sector + (bi->bi_size>>9);
3945 bi->bi_next = NULL;
3946 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3947
3948 plugged = mddev_check_plugged(mddev);
3949 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3950 DEFINE_WAIT(w);
3951 int disks, data_disks;
3952 int previous;
3953
3954 retry:
3955 previous = 0;
3956 disks = conf->raid_disks;
3957 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3958 if (unlikely(conf->reshape_progress != MaxSector)) {
3959 /* spinlock is needed as reshape_progress may be
3960 * 64bit on a 32bit platform, and so it might be
3961 * possible to see a half-updated value
3962 * Of course reshape_progress could change after
3963 * the lock is dropped, so once we get a reference
3964 * to the stripe that we think it is, we will have
3965 * to check again.
3966 */
3967 spin_lock_irq(&conf->device_lock);
3968 if (mddev->delta_disks < 0
3969 ? logical_sector < conf->reshape_progress
3970 : logical_sector >= conf->reshape_progress) {
3971 disks = conf->previous_raid_disks;
3972 previous = 1;
3973 } else {
3974 if (mddev->delta_disks < 0
3975 ? logical_sector < conf->reshape_safe
3976 : logical_sector >= conf->reshape_safe) {
3977 spin_unlock_irq(&conf->device_lock);
3978 schedule();
3979 goto retry;
3980 }
3981 }
3982 spin_unlock_irq(&conf->device_lock);
3983 }
3984 data_disks = disks - conf->max_degraded;
3985
3986 new_sector = raid5_compute_sector(conf, logical_sector,
3987 previous,
3988 &dd_idx, NULL);
3989 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3990 (unsigned long long)new_sector,
3991 (unsigned long long)logical_sector);
3992
3993 sh = get_active_stripe(conf, new_sector, previous,
3994 (bi->bi_rw&RWA_MASK), 0);
3995 if (sh) {
3996 if (unlikely(previous)) {
3997 /* expansion might have moved on while waiting for a
3998 * stripe, so we must do the range check again.
3999 * Expansion could still move past after this
4000 * test, but as we are holding a reference to
4001 * 'sh', we know that if that happens,
4002 * STRIPE_EXPANDING will get set and the expansion
4003 * won't proceed until we finish with the stripe.
4004 */
4005 int must_retry = 0;
4006 spin_lock_irq(&conf->device_lock);
4007 if (mddev->delta_disks < 0
4008 ? logical_sector >= conf->reshape_progress
4009 : logical_sector < conf->reshape_progress)
4010 /* mismatch, need to try again */
4011 must_retry = 1;
4012 spin_unlock_irq(&conf->device_lock);
4013 if (must_retry) {
4014 release_stripe(sh);
4015 schedule();
4016 goto retry;
4017 }
4018 }
4019
4020 if (rw == WRITE &&
4021 logical_sector >= mddev->suspend_lo &&
4022 logical_sector < mddev->suspend_hi) {
4023 release_stripe(sh);
4024 /* As the suspend_* range is controlled by
4025 * userspace, we want an interruptible
4026 * wait.
4027 */
4028 flush_signals(current);
4029 prepare_to_wait(&conf->wait_for_overlap,
4030 &w, TASK_INTERRUPTIBLE);
4031 if (logical_sector >= mddev->suspend_lo &&
4032 logical_sector < mddev->suspend_hi)
4033 schedule();
4034 goto retry;
4035 }
4036
4037 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4038 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4039 /* Stripe is busy expanding or
4040 * add failed due to overlap. Flush everything
4041 * and wait a while
4042 */
4043 md_wakeup_thread(mddev->thread);
4044 release_stripe(sh);
4045 schedule();
4046 goto retry;
4047 }
4048 finish_wait(&conf->wait_for_overlap, &w);
4049 set_bit(STRIPE_HANDLE, &sh->state);
4050 clear_bit(STRIPE_DELAYED, &sh->state);
4051 if ((bi->bi_rw & REQ_SYNC) &&
4052 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4053 atomic_inc(&conf->preread_active_stripes);
4054 release_stripe(sh);
4055 } else {
4056 /* cannot get stripe for read-ahead, just give-up */
4057 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4058 finish_wait(&conf->wait_for_overlap, &w);
4059 break;
4060 }
4061
4062 }
4063 if (!plugged)
4064 md_wakeup_thread(mddev->thread);
4065
4066 spin_lock_irq(&conf->device_lock);
4067 remaining = raid5_dec_bi_phys_segments(bi);
4068 spin_unlock_irq(&conf->device_lock);
4069 if (remaining == 0) {
4070
4071 if ( rw == WRITE )
4072 md_write_end(mddev);
4073
4074 bio_endio(bi, 0);
4075 }
4076 }
4077
4078 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4079
4080 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4081 {
4082 /* reshaping is quite different to recovery/resync so it is
4083 * handled quite separately ... here.
4084 *
4085 * On each call to sync_request, we gather one chunk worth of
4086 * destination stripes and flag them as expanding.
4087 * Then we find all the source stripes and request reads.
4088 * As the reads complete, handle_stripe will copy the data
4089 * into the destination stripe and release that stripe.
4090 */
4091 struct r5conf *conf = mddev->private;
4092 struct stripe_head *sh;
4093 sector_t first_sector, last_sector;
4094 int raid_disks = conf->previous_raid_disks;
4095 int data_disks = raid_disks - conf->max_degraded;
4096 int new_data_disks = conf->raid_disks - conf->max_degraded;
4097 int i;
4098 int dd_idx;
4099 sector_t writepos, readpos, safepos;
4100 sector_t stripe_addr;
4101 int reshape_sectors;
4102 struct list_head stripes;
4103
4104 if (sector_nr == 0) {
4105 /* If restarting in the middle, skip the initial sectors */
4106 if (mddev->delta_disks < 0 &&
4107 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4108 sector_nr = raid5_size(mddev, 0, 0)
4109 - conf->reshape_progress;
4110 } else if (mddev->delta_disks >= 0 &&
4111 conf->reshape_progress > 0)
4112 sector_nr = conf->reshape_progress;
4113 sector_div(sector_nr, new_data_disks);
4114 if (sector_nr) {
4115 mddev->curr_resync_completed = sector_nr;
4116 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4117 *skipped = 1;
4118 return sector_nr;
4119 }
4120 }
4121
4122 /* We need to process a full chunk at a time.
4123 * If old and new chunk sizes differ, we need to process the
4124 * largest of these
4125 */
4126 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4127 reshape_sectors = mddev->new_chunk_sectors;
4128 else
4129 reshape_sectors = mddev->chunk_sectors;
4130
4131 /* we update the metadata when there is more than 3Meg
4132 * in the block range (that is rather arbitrary, should
4133 * probably be time based) or when the data about to be
4134 * copied would over-write the source of the data at
4135 * the front of the range.
4136 * i.e. one new_stripe along from reshape_progress new_maps
4137 * to after where reshape_safe old_maps to
4138 */
4139 writepos = conf->reshape_progress;
4140 sector_div(writepos, new_data_disks);
4141 readpos = conf->reshape_progress;
4142 sector_div(readpos, data_disks);
4143 safepos = conf->reshape_safe;
4144 sector_div(safepos, data_disks);
4145 if (mddev->delta_disks < 0) {
4146 writepos -= min_t(sector_t, reshape_sectors, writepos);
4147 readpos += reshape_sectors;
4148 safepos += reshape_sectors;
4149 } else {
4150 writepos += reshape_sectors;
4151 readpos -= min_t(sector_t, reshape_sectors, readpos);
4152 safepos -= min_t(sector_t, reshape_sectors, safepos);
4153 }
4154
4155 /* 'writepos' is the most advanced device address we might write.
4156 * 'readpos' is the least advanced device address we might read.
4157 * 'safepos' is the least address recorded in the metadata as having
4158 * been reshaped.
4159 * If 'readpos' is behind 'writepos', then there is no way that we can
4160 * ensure safety in the face of a crash - that must be done by userspace
4161 * making a backup of the data. So in that case there is no particular
4162 * rush to update metadata.
4163 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4164 * update the metadata to advance 'safepos' to match 'readpos' so that
4165 * we can be safe in the event of a crash.
4166 * So we insist on updating metadata if safepos is behind writepos and
4167 * readpos is beyond writepos.
4168 * In any case, update the metadata every 10 seconds.
4169 * Maybe that number should be configurable, but I'm not sure it is
4170 * worth it.... maybe it could be a multiple of safemode_delay???
4171 */
4172 if ((mddev->delta_disks < 0
4173 ? (safepos > writepos && readpos < writepos)
4174 : (safepos < writepos && readpos > writepos)) ||
4175 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4176 /* Cannot proceed until we've updated the superblock... */
4177 wait_event(conf->wait_for_overlap,
4178 atomic_read(&conf->reshape_stripes)==0);
4179 mddev->reshape_position = conf->reshape_progress;
4180 mddev->curr_resync_completed = sector_nr;
4181 conf->reshape_checkpoint = jiffies;
4182 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4183 md_wakeup_thread(mddev->thread);
4184 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4185 kthread_should_stop());
4186 spin_lock_irq(&conf->device_lock);
4187 conf->reshape_safe = mddev->reshape_position;
4188 spin_unlock_irq(&conf->device_lock);
4189 wake_up(&conf->wait_for_overlap);
4190 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4191 }
4192
4193 if (mddev->delta_disks < 0) {
4194 BUG_ON(conf->reshape_progress == 0);
4195 stripe_addr = writepos;
4196 BUG_ON((mddev->dev_sectors &
4197 ~((sector_t)reshape_sectors - 1))
4198 - reshape_sectors - stripe_addr
4199 != sector_nr);
4200 } else {
4201 BUG_ON(writepos != sector_nr + reshape_sectors);
4202 stripe_addr = sector_nr;
4203 }
4204 INIT_LIST_HEAD(&stripes);
4205 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4206 int j;
4207 int skipped_disk = 0;
4208 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4209 set_bit(STRIPE_EXPANDING, &sh->state);
4210 atomic_inc(&conf->reshape_stripes);
4211 /* If any of this stripe is beyond the end of the old
4212 * array, then we need to zero those blocks
4213 */
4214 for (j=sh->disks; j--;) {
4215 sector_t s;
4216 if (j == sh->pd_idx)
4217 continue;
4218 if (conf->level == 6 &&
4219 j == sh->qd_idx)
4220 continue;
4221 s = compute_blocknr(sh, j, 0);
4222 if (s < raid5_size(mddev, 0, 0)) {
4223 skipped_disk = 1;
4224 continue;
4225 }
4226 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4227 set_bit(R5_Expanded, &sh->dev[j].flags);
4228 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4229 }
4230 if (!skipped_disk) {
4231 set_bit(STRIPE_EXPAND_READY, &sh->state);
4232 set_bit(STRIPE_HANDLE, &sh->state);
4233 }
4234 list_add(&sh->lru, &stripes);
4235 }
4236 spin_lock_irq(&conf->device_lock);
4237 if (mddev->delta_disks < 0)
4238 conf->reshape_progress -= reshape_sectors * new_data_disks;
4239 else
4240 conf->reshape_progress += reshape_sectors * new_data_disks;
4241 spin_unlock_irq(&conf->device_lock);
4242 /* Ok, those stripe are ready. We can start scheduling
4243 * reads on the source stripes.
4244 * The source stripes are determined by mapping the first and last
4245 * block on the destination stripes.
4246 */
4247 first_sector =
4248 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4249 1, &dd_idx, NULL);
4250 last_sector =
4251 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4252 * new_data_disks - 1),
4253 1, &dd_idx, NULL);
4254 if (last_sector >= mddev->dev_sectors)
4255 last_sector = mddev->dev_sectors - 1;
4256 while (first_sector <= last_sector) {
4257 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4258 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4259 set_bit(STRIPE_HANDLE, &sh->state);
4260 release_stripe(sh);
4261 first_sector += STRIPE_SECTORS;
4262 }
4263 /* Now that the sources are clearly marked, we can release
4264 * the destination stripes
4265 */
4266 while (!list_empty(&stripes)) {
4267 sh = list_entry(stripes.next, struct stripe_head, lru);
4268 list_del_init(&sh->lru);
4269 release_stripe(sh);
4270 }
4271 /* If this takes us to the resync_max point where we have to pause,
4272 * then we need to write out the superblock.
4273 */
4274 sector_nr += reshape_sectors;
4275 if ((sector_nr - mddev->curr_resync_completed) * 2
4276 >= mddev->resync_max - mddev->curr_resync_completed) {
4277 /* Cannot proceed until we've updated the superblock... */
4278 wait_event(conf->wait_for_overlap,
4279 atomic_read(&conf->reshape_stripes) == 0);
4280 mddev->reshape_position = conf->reshape_progress;
4281 mddev->curr_resync_completed = sector_nr;
4282 conf->reshape_checkpoint = jiffies;
4283 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4284 md_wakeup_thread(mddev->thread);
4285 wait_event(mddev->sb_wait,
4286 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4287 || kthread_should_stop());
4288 spin_lock_irq(&conf->device_lock);
4289 conf->reshape_safe = mddev->reshape_position;
4290 spin_unlock_irq(&conf->device_lock);
4291 wake_up(&conf->wait_for_overlap);
4292 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4293 }
4294 return reshape_sectors;
4295 }
4296
4297 /* FIXME go_faster isn't used */
4298 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4299 {
4300 struct r5conf *conf = mddev->private;
4301 struct stripe_head *sh;
4302 sector_t max_sector = mddev->dev_sectors;
4303 sector_t sync_blocks;
4304 int still_degraded = 0;
4305 int i;
4306
4307 if (sector_nr >= max_sector) {
4308 /* just being told to finish up .. nothing much to do */
4309
4310 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4311 end_reshape(conf);
4312 return 0;
4313 }
4314
4315 if (mddev->curr_resync < max_sector) /* aborted */
4316 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4317 &sync_blocks, 1);
4318 else /* completed sync */
4319 conf->fullsync = 0;
4320 bitmap_close_sync(mddev->bitmap);
4321
4322 return 0;
4323 }
4324
4325 /* Allow raid5_quiesce to complete */
4326 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4327
4328 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4329 return reshape_request(mddev, sector_nr, skipped);
4330
4331 /* No need to check resync_max as we never do more than one
4332 * stripe, and as resync_max will always be on a chunk boundary,
4333 * if the check in md_do_sync didn't fire, there is no chance
4334 * of overstepping resync_max here
4335 */
4336
4337 /* if there is too many failed drives and we are trying
4338 * to resync, then assert that we are finished, because there is
4339 * nothing we can do.
4340 */
4341 if (mddev->degraded >= conf->max_degraded &&
4342 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4343 sector_t rv = mddev->dev_sectors - sector_nr;
4344 *skipped = 1;
4345 return rv;
4346 }
4347 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4348 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4349 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4350 /* we can skip this block, and probably more */
4351 sync_blocks /= STRIPE_SECTORS;
4352 *skipped = 1;
4353 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4354 }
4355
4356 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4357
4358 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4359 if (sh == NULL) {
4360 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4361 /* make sure we don't swamp the stripe cache if someone else
4362 * is trying to get access
4363 */
4364 schedule_timeout_uninterruptible(1);
4365 }
4366 /* Need to check if array will still be degraded after recovery/resync
4367 * We don't need to check the 'failed' flag as when that gets set,
4368 * recovery aborts.
4369 */
4370 for (i = 0; i < conf->raid_disks; i++)
4371 if (conf->disks[i].rdev == NULL)
4372 still_degraded = 1;
4373
4374 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4375
4376 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4377
4378 handle_stripe(sh);
4379 release_stripe(sh);
4380
4381 return STRIPE_SECTORS;
4382 }
4383
4384 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4385 {
4386 /* We may not be able to submit a whole bio at once as there
4387 * may not be enough stripe_heads available.
4388 * We cannot pre-allocate enough stripe_heads as we may need
4389 * more than exist in the cache (if we allow ever large chunks).
4390 * So we do one stripe head at a time and record in
4391 * ->bi_hw_segments how many have been done.
4392 *
4393 * We *know* that this entire raid_bio is in one chunk, so
4394 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4395 */
4396 struct stripe_head *sh;
4397 int dd_idx;
4398 sector_t sector, logical_sector, last_sector;
4399 int scnt = 0;
4400 int remaining;
4401 int handled = 0;
4402
4403 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4404 sector = raid5_compute_sector(conf, logical_sector,
4405 0, &dd_idx, NULL);
4406 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4407
4408 for (; logical_sector < last_sector;
4409 logical_sector += STRIPE_SECTORS,
4410 sector += STRIPE_SECTORS,
4411 scnt++) {
4412
4413 if (scnt < raid5_bi_hw_segments(raid_bio))
4414 /* already done this stripe */
4415 continue;
4416
4417 sh = get_active_stripe(conf, sector, 0, 1, 0);
4418
4419 if (!sh) {
4420 /* failed to get a stripe - must wait */
4421 raid5_set_bi_hw_segments(raid_bio, scnt);
4422 conf->retry_read_aligned = raid_bio;
4423 return handled;
4424 }
4425
4426 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4427 release_stripe(sh);
4428 raid5_set_bi_hw_segments(raid_bio, scnt);
4429 conf->retry_read_aligned = raid_bio;
4430 return handled;
4431 }
4432
4433 handle_stripe(sh);
4434 release_stripe(sh);
4435 handled++;
4436 }
4437 spin_lock_irq(&conf->device_lock);
4438 remaining = raid5_dec_bi_phys_segments(raid_bio);
4439 spin_unlock_irq(&conf->device_lock);
4440 if (remaining == 0)
4441 bio_endio(raid_bio, 0);
4442 if (atomic_dec_and_test(&conf->active_aligned_reads))
4443 wake_up(&conf->wait_for_stripe);
4444 return handled;
4445 }
4446
4447
4448 /*
4449 * This is our raid5 kernel thread.
4450 *
4451 * We scan the hash table for stripes which can be handled now.
4452 * During the scan, completed stripes are saved for us by the interrupt
4453 * handler, so that they will not have to wait for our next wakeup.
4454 */
4455 static void raid5d(struct mddev *mddev)
4456 {
4457 struct stripe_head *sh;
4458 struct r5conf *conf = mddev->private;
4459 int handled;
4460 struct blk_plug plug;
4461
4462 pr_debug("+++ raid5d active\n");
4463
4464 md_check_recovery(mddev);
4465
4466 blk_start_plug(&plug);
4467 handled = 0;
4468 spin_lock_irq(&conf->device_lock);
4469 while (1) {
4470 struct bio *bio;
4471
4472 if (atomic_read(&mddev->plug_cnt) == 0 &&
4473 !list_empty(&conf->bitmap_list)) {
4474 /* Now is a good time to flush some bitmap updates */
4475 conf->seq_flush++;
4476 spin_unlock_irq(&conf->device_lock);
4477 bitmap_unplug(mddev->bitmap);
4478 spin_lock_irq(&conf->device_lock);
4479 conf->seq_write = conf->seq_flush;
4480 activate_bit_delay(conf);
4481 }
4482 if (atomic_read(&mddev->plug_cnt) == 0)
4483 raid5_activate_delayed(conf);
4484
4485 while ((bio = remove_bio_from_retry(conf))) {
4486 int ok;
4487 spin_unlock_irq(&conf->device_lock);
4488 ok = retry_aligned_read(conf, bio);
4489 spin_lock_irq(&conf->device_lock);
4490 if (!ok)
4491 break;
4492 handled++;
4493 }
4494
4495 sh = __get_priority_stripe(conf);
4496
4497 if (!sh)
4498 break;
4499 spin_unlock_irq(&conf->device_lock);
4500
4501 handled++;
4502 handle_stripe(sh);
4503 release_stripe(sh);
4504 cond_resched();
4505
4506 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4507 md_check_recovery(mddev);
4508
4509 spin_lock_irq(&conf->device_lock);
4510 }
4511 pr_debug("%d stripes handled\n", handled);
4512
4513 spin_unlock_irq(&conf->device_lock);
4514
4515 async_tx_issue_pending_all();
4516 blk_finish_plug(&plug);
4517
4518 pr_debug("--- raid5d inactive\n");
4519 }
4520
4521 static ssize_t
4522 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4523 {
4524 struct r5conf *conf = mddev->private;
4525 if (conf)
4526 return sprintf(page, "%d\n", conf->max_nr_stripes);
4527 else
4528 return 0;
4529 }
4530
4531 int
4532 raid5_set_cache_size(struct mddev *mddev, int size)
4533 {
4534 struct r5conf *conf = mddev->private;
4535 int err;
4536
4537 if (size <= 16 || size > 32768)
4538 return -EINVAL;
4539 while (size < conf->max_nr_stripes) {
4540 if (drop_one_stripe(conf))
4541 conf->max_nr_stripes--;
4542 else
4543 break;
4544 }
4545 err = md_allow_write(mddev);
4546 if (err)
4547 return err;
4548 while (size > conf->max_nr_stripes) {
4549 if (grow_one_stripe(conf))
4550 conf->max_nr_stripes++;
4551 else break;
4552 }
4553 return 0;
4554 }
4555 EXPORT_SYMBOL(raid5_set_cache_size);
4556
4557 static ssize_t
4558 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4559 {
4560 struct r5conf *conf = mddev->private;
4561 unsigned long new;
4562 int err;
4563
4564 if (len >= PAGE_SIZE)
4565 return -EINVAL;
4566 if (!conf)
4567 return -ENODEV;
4568
4569 if (strict_strtoul(page, 10, &new))
4570 return -EINVAL;
4571 err = raid5_set_cache_size(mddev, new);
4572 if (err)
4573 return err;
4574 return len;
4575 }
4576
4577 static struct md_sysfs_entry
4578 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4579 raid5_show_stripe_cache_size,
4580 raid5_store_stripe_cache_size);
4581
4582 static ssize_t
4583 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4584 {
4585 struct r5conf *conf = mddev->private;
4586 if (conf)
4587 return sprintf(page, "%d\n", conf->bypass_threshold);
4588 else
4589 return 0;
4590 }
4591
4592 static ssize_t
4593 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4594 {
4595 struct r5conf *conf = mddev->private;
4596 unsigned long new;
4597 if (len >= PAGE_SIZE)
4598 return -EINVAL;
4599 if (!conf)
4600 return -ENODEV;
4601
4602 if (strict_strtoul(page, 10, &new))
4603 return -EINVAL;
4604 if (new > conf->max_nr_stripes)
4605 return -EINVAL;
4606 conf->bypass_threshold = new;
4607 return len;
4608 }
4609
4610 static struct md_sysfs_entry
4611 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4612 S_IRUGO | S_IWUSR,
4613 raid5_show_preread_threshold,
4614 raid5_store_preread_threshold);
4615
4616 static ssize_t
4617 stripe_cache_active_show(struct mddev *mddev, char *page)
4618 {
4619 struct r5conf *conf = mddev->private;
4620 if (conf)
4621 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4622 else
4623 return 0;
4624 }
4625
4626 static struct md_sysfs_entry
4627 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4628
4629 static struct attribute *raid5_attrs[] = {
4630 &raid5_stripecache_size.attr,
4631 &raid5_stripecache_active.attr,
4632 &raid5_preread_bypass_threshold.attr,
4633 NULL,
4634 };
4635 static struct attribute_group raid5_attrs_group = {
4636 .name = NULL,
4637 .attrs = raid5_attrs,
4638 };
4639
4640 static sector_t
4641 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4642 {
4643 struct r5conf *conf = mddev->private;
4644
4645 if (!sectors)
4646 sectors = mddev->dev_sectors;
4647 if (!raid_disks)
4648 /* size is defined by the smallest of previous and new size */
4649 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4650
4651 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4652 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4653 return sectors * (raid_disks - conf->max_degraded);
4654 }
4655
4656 static void raid5_free_percpu(struct r5conf *conf)
4657 {
4658 struct raid5_percpu *percpu;
4659 unsigned long cpu;
4660
4661 if (!conf->percpu)
4662 return;
4663
4664 get_online_cpus();
4665 for_each_possible_cpu(cpu) {
4666 percpu = per_cpu_ptr(conf->percpu, cpu);
4667 safe_put_page(percpu->spare_page);
4668 kfree(percpu->scribble);
4669 }
4670 #ifdef CONFIG_HOTPLUG_CPU
4671 unregister_cpu_notifier(&conf->cpu_notify);
4672 #endif
4673 put_online_cpus();
4674
4675 free_percpu(conf->percpu);
4676 }
4677
4678 static void free_conf(struct r5conf *conf)
4679 {
4680 shrink_stripes(conf);
4681 raid5_free_percpu(conf);
4682 kfree(conf->disks);
4683 kfree(conf->stripe_hashtbl);
4684 kfree(conf);
4685 }
4686
4687 #ifdef CONFIG_HOTPLUG_CPU
4688 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4689 void *hcpu)
4690 {
4691 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4692 long cpu = (long)hcpu;
4693 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4694
4695 switch (action) {
4696 case CPU_UP_PREPARE:
4697 case CPU_UP_PREPARE_FROZEN:
4698 if (conf->level == 6 && !percpu->spare_page)
4699 percpu->spare_page = alloc_page(GFP_KERNEL);
4700 if (!percpu->scribble)
4701 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4702
4703 if (!percpu->scribble ||
4704 (conf->level == 6 && !percpu->spare_page)) {
4705 safe_put_page(percpu->spare_page);
4706 kfree(percpu->scribble);
4707 pr_err("%s: failed memory allocation for cpu%ld\n",
4708 __func__, cpu);
4709 return notifier_from_errno(-ENOMEM);
4710 }
4711 break;
4712 case CPU_DEAD:
4713 case CPU_DEAD_FROZEN:
4714 safe_put_page(percpu->spare_page);
4715 kfree(percpu->scribble);
4716 percpu->spare_page = NULL;
4717 percpu->scribble = NULL;
4718 break;
4719 default:
4720 break;
4721 }
4722 return NOTIFY_OK;
4723 }
4724 #endif
4725
4726 static int raid5_alloc_percpu(struct r5conf *conf)
4727 {
4728 unsigned long cpu;
4729 struct page *spare_page;
4730 struct raid5_percpu __percpu *allcpus;
4731 void *scribble;
4732 int err;
4733
4734 allcpus = alloc_percpu(struct raid5_percpu);
4735 if (!allcpus)
4736 return -ENOMEM;
4737 conf->percpu = allcpus;
4738
4739 get_online_cpus();
4740 err = 0;
4741 for_each_present_cpu(cpu) {
4742 if (conf->level == 6) {
4743 spare_page = alloc_page(GFP_KERNEL);
4744 if (!spare_page) {
4745 err = -ENOMEM;
4746 break;
4747 }
4748 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4749 }
4750 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4751 if (!scribble) {
4752 err = -ENOMEM;
4753 break;
4754 }
4755 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4756 }
4757 #ifdef CONFIG_HOTPLUG_CPU
4758 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4759 conf->cpu_notify.priority = 0;
4760 if (err == 0)
4761 err = register_cpu_notifier(&conf->cpu_notify);
4762 #endif
4763 put_online_cpus();
4764
4765 return err;
4766 }
4767
4768 static struct r5conf *setup_conf(struct mddev *mddev)
4769 {
4770 struct r5conf *conf;
4771 int raid_disk, memory, max_disks;
4772 struct md_rdev *rdev;
4773 struct disk_info *disk;
4774
4775 if (mddev->new_level != 5
4776 && mddev->new_level != 4
4777 && mddev->new_level != 6) {
4778 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4779 mdname(mddev), mddev->new_level);
4780 return ERR_PTR(-EIO);
4781 }
4782 if ((mddev->new_level == 5
4783 && !algorithm_valid_raid5(mddev->new_layout)) ||
4784 (mddev->new_level == 6
4785 && !algorithm_valid_raid6(mddev->new_layout))) {
4786 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4787 mdname(mddev), mddev->new_layout);
4788 return ERR_PTR(-EIO);
4789 }
4790 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4791 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4792 mdname(mddev), mddev->raid_disks);
4793 return ERR_PTR(-EINVAL);
4794 }
4795
4796 if (!mddev->new_chunk_sectors ||
4797 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4798 !is_power_of_2(mddev->new_chunk_sectors)) {
4799 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4800 mdname(mddev), mddev->new_chunk_sectors << 9);
4801 return ERR_PTR(-EINVAL);
4802 }
4803
4804 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4805 if (conf == NULL)
4806 goto abort;
4807 spin_lock_init(&conf->device_lock);
4808 init_waitqueue_head(&conf->wait_for_stripe);
4809 init_waitqueue_head(&conf->wait_for_overlap);
4810 INIT_LIST_HEAD(&conf->handle_list);
4811 INIT_LIST_HEAD(&conf->hold_list);
4812 INIT_LIST_HEAD(&conf->delayed_list);
4813 INIT_LIST_HEAD(&conf->bitmap_list);
4814 INIT_LIST_HEAD(&conf->inactive_list);
4815 atomic_set(&conf->active_stripes, 0);
4816 atomic_set(&conf->preread_active_stripes, 0);
4817 atomic_set(&conf->active_aligned_reads, 0);
4818 conf->bypass_threshold = BYPASS_THRESHOLD;
4819 conf->recovery_disabled = mddev->recovery_disabled - 1;
4820
4821 conf->raid_disks = mddev->raid_disks;
4822 if (mddev->reshape_position == MaxSector)
4823 conf->previous_raid_disks = mddev->raid_disks;
4824 else
4825 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4826 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4827 conf->scribble_len = scribble_len(max_disks);
4828
4829 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4830 GFP_KERNEL);
4831 if (!conf->disks)
4832 goto abort;
4833
4834 conf->mddev = mddev;
4835
4836 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4837 goto abort;
4838
4839 conf->level = mddev->new_level;
4840 if (raid5_alloc_percpu(conf) != 0)
4841 goto abort;
4842
4843 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4844
4845 rdev_for_each(rdev, mddev) {
4846 raid_disk = rdev->raid_disk;
4847 if (raid_disk >= max_disks
4848 || raid_disk < 0)
4849 continue;
4850 disk = conf->disks + raid_disk;
4851
4852 if (test_bit(Replacement, &rdev->flags)) {
4853 if (disk->replacement)
4854 goto abort;
4855 disk->replacement = rdev;
4856 } else {
4857 if (disk->rdev)
4858 goto abort;
4859 disk->rdev = rdev;
4860 }
4861
4862 if (test_bit(In_sync, &rdev->flags)) {
4863 char b[BDEVNAME_SIZE];
4864 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4865 " disk %d\n",
4866 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4867 } else if (rdev->saved_raid_disk != raid_disk)
4868 /* Cannot rely on bitmap to complete recovery */
4869 conf->fullsync = 1;
4870 }
4871
4872 conf->chunk_sectors = mddev->new_chunk_sectors;
4873 conf->level = mddev->new_level;
4874 if (conf->level == 6)
4875 conf->max_degraded = 2;
4876 else
4877 conf->max_degraded = 1;
4878 conf->algorithm = mddev->new_layout;
4879 conf->max_nr_stripes = NR_STRIPES;
4880 conf->reshape_progress = mddev->reshape_position;
4881 if (conf->reshape_progress != MaxSector) {
4882 conf->prev_chunk_sectors = mddev->chunk_sectors;
4883 conf->prev_algo = mddev->layout;
4884 }
4885
4886 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4887 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4888 if (grow_stripes(conf, conf->max_nr_stripes)) {
4889 printk(KERN_ERR
4890 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4891 mdname(mddev), memory);
4892 goto abort;
4893 } else
4894 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4895 mdname(mddev), memory);
4896
4897 conf->thread = md_register_thread(raid5d, mddev, NULL);
4898 if (!conf->thread) {
4899 printk(KERN_ERR
4900 "md/raid:%s: couldn't allocate thread.\n",
4901 mdname(mddev));
4902 goto abort;
4903 }
4904
4905 return conf;
4906
4907 abort:
4908 if (conf) {
4909 free_conf(conf);
4910 return ERR_PTR(-EIO);
4911 } else
4912 return ERR_PTR(-ENOMEM);
4913 }
4914
4915
4916 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4917 {
4918 switch (algo) {
4919 case ALGORITHM_PARITY_0:
4920 if (raid_disk < max_degraded)
4921 return 1;
4922 break;
4923 case ALGORITHM_PARITY_N:
4924 if (raid_disk >= raid_disks - max_degraded)
4925 return 1;
4926 break;
4927 case ALGORITHM_PARITY_0_6:
4928 if (raid_disk == 0 ||
4929 raid_disk == raid_disks - 1)
4930 return 1;
4931 break;
4932 case ALGORITHM_LEFT_ASYMMETRIC_6:
4933 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4934 case ALGORITHM_LEFT_SYMMETRIC_6:
4935 case ALGORITHM_RIGHT_SYMMETRIC_6:
4936 if (raid_disk == raid_disks - 1)
4937 return 1;
4938 }
4939 return 0;
4940 }
4941
4942 static int run(struct mddev *mddev)
4943 {
4944 struct r5conf *conf;
4945 int working_disks = 0;
4946 int dirty_parity_disks = 0;
4947 struct md_rdev *rdev;
4948 sector_t reshape_offset = 0;
4949 int i;
4950
4951 if (mddev->recovery_cp != MaxSector)
4952 printk(KERN_NOTICE "md/raid:%s: not clean"
4953 " -- starting background reconstruction\n",
4954 mdname(mddev));
4955 if (mddev->reshape_position != MaxSector) {
4956 /* Check that we can continue the reshape.
4957 * Currently only disks can change, it must
4958 * increase, and we must be past the point where
4959 * a stripe over-writes itself
4960 */
4961 sector_t here_new, here_old;
4962 int old_disks;
4963 int max_degraded = (mddev->level == 6 ? 2 : 1);
4964
4965 if (mddev->new_level != mddev->level) {
4966 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4967 "required - aborting.\n",
4968 mdname(mddev));
4969 return -EINVAL;
4970 }
4971 old_disks = mddev->raid_disks - mddev->delta_disks;
4972 /* reshape_position must be on a new-stripe boundary, and one
4973 * further up in new geometry must map after here in old
4974 * geometry.
4975 */
4976 here_new = mddev->reshape_position;
4977 if (sector_div(here_new, mddev->new_chunk_sectors *
4978 (mddev->raid_disks - max_degraded))) {
4979 printk(KERN_ERR "md/raid:%s: reshape_position not "
4980 "on a stripe boundary\n", mdname(mddev));
4981 return -EINVAL;
4982 }
4983 reshape_offset = here_new * mddev->new_chunk_sectors;
4984 /* here_new is the stripe we will write to */
4985 here_old = mddev->reshape_position;
4986 sector_div(here_old, mddev->chunk_sectors *
4987 (old_disks-max_degraded));
4988 /* here_old is the first stripe that we might need to read
4989 * from */
4990 if (mddev->delta_disks == 0) {
4991 /* We cannot be sure it is safe to start an in-place
4992 * reshape. It is only safe if user-space if monitoring
4993 * and taking constant backups.
4994 * mdadm always starts a situation like this in
4995 * readonly mode so it can take control before
4996 * allowing any writes. So just check for that.
4997 */
4998 if ((here_new * mddev->new_chunk_sectors !=
4999 here_old * mddev->chunk_sectors) ||
5000 mddev->ro == 0) {
5001 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5002 " in read-only mode - aborting\n",
5003 mdname(mddev));
5004 return -EINVAL;
5005 }
5006 } else if (mddev->delta_disks < 0
5007 ? (here_new * mddev->new_chunk_sectors <=
5008 here_old * mddev->chunk_sectors)
5009 : (here_new * mddev->new_chunk_sectors >=
5010 here_old * mddev->chunk_sectors)) {
5011 /* Reading from the same stripe as writing to - bad */
5012 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5013 "auto-recovery - aborting.\n",
5014 mdname(mddev));
5015 return -EINVAL;
5016 }
5017 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5018 mdname(mddev));
5019 /* OK, we should be able to continue; */
5020 } else {
5021 BUG_ON(mddev->level != mddev->new_level);
5022 BUG_ON(mddev->layout != mddev->new_layout);
5023 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5024 BUG_ON(mddev->delta_disks != 0);
5025 }
5026
5027 if (mddev->private == NULL)
5028 conf = setup_conf(mddev);
5029 else
5030 conf = mddev->private;
5031
5032 if (IS_ERR(conf))
5033 return PTR_ERR(conf);
5034
5035 mddev->thread = conf->thread;
5036 conf->thread = NULL;
5037 mddev->private = conf;
5038
5039 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5040 i++) {
5041 rdev = conf->disks[i].rdev;
5042 if (!rdev && conf->disks[i].replacement) {
5043 /* The replacement is all we have yet */
5044 rdev = conf->disks[i].replacement;
5045 conf->disks[i].replacement = NULL;
5046 clear_bit(Replacement, &rdev->flags);
5047 conf->disks[i].rdev = rdev;
5048 }
5049 if (!rdev)
5050 continue;
5051 if (conf->disks[i].replacement &&
5052 conf->reshape_progress != MaxSector) {
5053 /* replacements and reshape simply do not mix. */
5054 printk(KERN_ERR "md: cannot handle concurrent "
5055 "replacement and reshape.\n");
5056 goto abort;
5057 }
5058 if (test_bit(In_sync, &rdev->flags)) {
5059 working_disks++;
5060 continue;
5061 }
5062 /* This disc is not fully in-sync. However if it
5063 * just stored parity (beyond the recovery_offset),
5064 * when we don't need to be concerned about the
5065 * array being dirty.
5066 * When reshape goes 'backwards', we never have
5067 * partially completed devices, so we only need
5068 * to worry about reshape going forwards.
5069 */
5070 /* Hack because v0.91 doesn't store recovery_offset properly. */
5071 if (mddev->major_version == 0 &&
5072 mddev->minor_version > 90)
5073 rdev->recovery_offset = reshape_offset;
5074
5075 if (rdev->recovery_offset < reshape_offset) {
5076 /* We need to check old and new layout */
5077 if (!only_parity(rdev->raid_disk,
5078 conf->algorithm,
5079 conf->raid_disks,
5080 conf->max_degraded))
5081 continue;
5082 }
5083 if (!only_parity(rdev->raid_disk,
5084 conf->prev_algo,
5085 conf->previous_raid_disks,
5086 conf->max_degraded))
5087 continue;
5088 dirty_parity_disks++;
5089 }
5090
5091 /*
5092 * 0 for a fully functional array, 1 or 2 for a degraded array.
5093 */
5094 mddev->degraded = calc_degraded(conf);
5095
5096 if (has_failed(conf)) {
5097 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5098 " (%d/%d failed)\n",
5099 mdname(mddev), mddev->degraded, conf->raid_disks);
5100 goto abort;
5101 }
5102
5103 /* device size must be a multiple of chunk size */
5104 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5105 mddev->resync_max_sectors = mddev->dev_sectors;
5106
5107 if (mddev->degraded > dirty_parity_disks &&
5108 mddev->recovery_cp != MaxSector) {
5109 if (mddev->ok_start_degraded)
5110 printk(KERN_WARNING
5111 "md/raid:%s: starting dirty degraded array"
5112 " - data corruption possible.\n",
5113 mdname(mddev));
5114 else {
5115 printk(KERN_ERR
5116 "md/raid:%s: cannot start dirty degraded array.\n",
5117 mdname(mddev));
5118 goto abort;
5119 }
5120 }
5121
5122 if (mddev->degraded == 0)
5123 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5124 " devices, algorithm %d\n", mdname(mddev), conf->level,
5125 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5126 mddev->new_layout);
5127 else
5128 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5129 " out of %d devices, algorithm %d\n",
5130 mdname(mddev), conf->level,
5131 mddev->raid_disks - mddev->degraded,
5132 mddev->raid_disks, mddev->new_layout);
5133
5134 print_raid5_conf(conf);
5135
5136 if (conf->reshape_progress != MaxSector) {
5137 conf->reshape_safe = conf->reshape_progress;
5138 atomic_set(&conf->reshape_stripes, 0);
5139 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5140 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5141 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5142 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5143 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5144 "reshape");
5145 }
5146
5147
5148 /* Ok, everything is just fine now */
5149 if (mddev->to_remove == &raid5_attrs_group)
5150 mddev->to_remove = NULL;
5151 else if (mddev->kobj.sd &&
5152 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5153 printk(KERN_WARNING
5154 "raid5: failed to create sysfs attributes for %s\n",
5155 mdname(mddev));
5156 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5157
5158 if (mddev->queue) {
5159 int chunk_size;
5160 /* read-ahead size must cover two whole stripes, which
5161 * is 2 * (datadisks) * chunksize where 'n' is the
5162 * number of raid devices
5163 */
5164 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5165 int stripe = data_disks *
5166 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5167 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5168 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5169
5170 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5171
5172 mddev->queue->backing_dev_info.congested_data = mddev;
5173 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5174
5175 chunk_size = mddev->chunk_sectors << 9;
5176 blk_queue_io_min(mddev->queue, chunk_size);
5177 blk_queue_io_opt(mddev->queue, chunk_size *
5178 (conf->raid_disks - conf->max_degraded));
5179
5180 rdev_for_each(rdev, mddev)
5181 disk_stack_limits(mddev->gendisk, rdev->bdev,
5182 rdev->data_offset << 9);
5183 }
5184
5185 return 0;
5186 abort:
5187 md_unregister_thread(&mddev->thread);
5188 print_raid5_conf(conf);
5189 free_conf(conf);
5190 mddev->private = NULL;
5191 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5192 return -EIO;
5193 }
5194
5195 static int stop(struct mddev *mddev)
5196 {
5197 struct r5conf *conf = mddev->private;
5198
5199 md_unregister_thread(&mddev->thread);
5200 if (mddev->queue)
5201 mddev->queue->backing_dev_info.congested_fn = NULL;
5202 free_conf(conf);
5203 mddev->private = NULL;
5204 mddev->to_remove = &raid5_attrs_group;
5205 return 0;
5206 }
5207
5208 static void status(struct seq_file *seq, struct mddev *mddev)
5209 {
5210 struct r5conf *conf = mddev->private;
5211 int i;
5212
5213 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5214 mddev->chunk_sectors / 2, mddev->layout);
5215 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5216 for (i = 0; i < conf->raid_disks; i++)
5217 seq_printf (seq, "%s",
5218 conf->disks[i].rdev &&
5219 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5220 seq_printf (seq, "]");
5221 }
5222
5223 static void print_raid5_conf (struct r5conf *conf)
5224 {
5225 int i;
5226 struct disk_info *tmp;
5227
5228 printk(KERN_DEBUG "RAID conf printout:\n");
5229 if (!conf) {
5230 printk("(conf==NULL)\n");
5231 return;
5232 }
5233 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5234 conf->raid_disks,
5235 conf->raid_disks - conf->mddev->degraded);
5236
5237 for (i = 0; i < conf->raid_disks; i++) {
5238 char b[BDEVNAME_SIZE];
5239 tmp = conf->disks + i;
5240 if (tmp->rdev)
5241 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5242 i, !test_bit(Faulty, &tmp->rdev->flags),
5243 bdevname(tmp->rdev->bdev, b));
5244 }
5245 }
5246
5247 static int raid5_spare_active(struct mddev *mddev)
5248 {
5249 int i;
5250 struct r5conf *conf = mddev->private;
5251 struct disk_info *tmp;
5252 int count = 0;
5253 unsigned long flags;
5254
5255 for (i = 0; i < conf->raid_disks; i++) {
5256 tmp = conf->disks + i;
5257 if (tmp->replacement
5258 && tmp->replacement->recovery_offset == MaxSector
5259 && !test_bit(Faulty, &tmp->replacement->flags)
5260 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5261 /* Replacement has just become active. */
5262 if (!tmp->rdev
5263 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5264 count++;
5265 if (tmp->rdev) {
5266 /* Replaced device not technically faulty,
5267 * but we need to be sure it gets removed
5268 * and never re-added.
5269 */
5270 set_bit(Faulty, &tmp->rdev->flags);
5271 sysfs_notify_dirent_safe(
5272 tmp->rdev->sysfs_state);
5273 }
5274 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5275 } else if (tmp->rdev
5276 && tmp->rdev->recovery_offset == MaxSector
5277 && !test_bit(Faulty, &tmp->rdev->flags)
5278 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5279 count++;
5280 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5281 }
5282 }
5283 spin_lock_irqsave(&conf->device_lock, flags);
5284 mddev->degraded = calc_degraded(conf);
5285 spin_unlock_irqrestore(&conf->device_lock, flags);
5286 print_raid5_conf(conf);
5287 return count;
5288 }
5289
5290 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5291 {
5292 struct r5conf *conf = mddev->private;
5293 int err = 0;
5294 int number = rdev->raid_disk;
5295 struct md_rdev **rdevp;
5296 struct disk_info *p = conf->disks + number;
5297
5298 print_raid5_conf(conf);
5299 if (rdev == p->rdev)
5300 rdevp = &p->rdev;
5301 else if (rdev == p->replacement)
5302 rdevp = &p->replacement;
5303 else
5304 return 0;
5305
5306 if (number >= conf->raid_disks &&
5307 conf->reshape_progress == MaxSector)
5308 clear_bit(In_sync, &rdev->flags);
5309
5310 if (test_bit(In_sync, &rdev->flags) ||
5311 atomic_read(&rdev->nr_pending)) {
5312 err = -EBUSY;
5313 goto abort;
5314 }
5315 /* Only remove non-faulty devices if recovery
5316 * isn't possible.
5317 */
5318 if (!test_bit(Faulty, &rdev->flags) &&
5319 mddev->recovery_disabled != conf->recovery_disabled &&
5320 !has_failed(conf) &&
5321 (!p->replacement || p->replacement == rdev) &&
5322 number < conf->raid_disks) {
5323 err = -EBUSY;
5324 goto abort;
5325 }
5326 *rdevp = NULL;
5327 synchronize_rcu();
5328 if (atomic_read(&rdev->nr_pending)) {
5329 /* lost the race, try later */
5330 err = -EBUSY;
5331 *rdevp = rdev;
5332 } else if (p->replacement) {
5333 /* We must have just cleared 'rdev' */
5334 p->rdev = p->replacement;
5335 clear_bit(Replacement, &p->replacement->flags);
5336 smp_mb(); /* Make sure other CPUs may see both as identical
5337 * but will never see neither - if they are careful
5338 */
5339 p->replacement = NULL;
5340 clear_bit(WantReplacement, &rdev->flags);
5341 } else
5342 /* We might have just removed the Replacement as faulty-
5343 * clear the bit just in case
5344 */
5345 clear_bit(WantReplacement, &rdev->flags);
5346 abort:
5347
5348 print_raid5_conf(conf);
5349 return err;
5350 }
5351
5352 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5353 {
5354 struct r5conf *conf = mddev->private;
5355 int err = -EEXIST;
5356 int disk;
5357 struct disk_info *p;
5358 int first = 0;
5359 int last = conf->raid_disks - 1;
5360
5361 if (mddev->recovery_disabled == conf->recovery_disabled)
5362 return -EBUSY;
5363
5364 if (rdev->saved_raid_disk < 0 && has_failed(conf))
5365 /* no point adding a device */
5366 return -EINVAL;
5367
5368 if (rdev->raid_disk >= 0)
5369 first = last = rdev->raid_disk;
5370
5371 /*
5372 * find the disk ... but prefer rdev->saved_raid_disk
5373 * if possible.
5374 */
5375 if (rdev->saved_raid_disk >= 0 &&
5376 rdev->saved_raid_disk >= first &&
5377 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5378 disk = rdev->saved_raid_disk;
5379 else
5380 disk = first;
5381 for ( ; disk <= last ; disk++) {
5382 p = conf->disks + disk;
5383 if (p->rdev == NULL) {
5384 clear_bit(In_sync, &rdev->flags);
5385 rdev->raid_disk = disk;
5386 err = 0;
5387 if (rdev->saved_raid_disk != disk)
5388 conf->fullsync = 1;
5389 rcu_assign_pointer(p->rdev, rdev);
5390 break;
5391 }
5392 if (test_bit(WantReplacement, &p->rdev->flags) &&
5393 p->replacement == NULL) {
5394 clear_bit(In_sync, &rdev->flags);
5395 set_bit(Replacement, &rdev->flags);
5396 rdev->raid_disk = disk;
5397 err = 0;
5398 conf->fullsync = 1;
5399 rcu_assign_pointer(p->replacement, rdev);
5400 break;
5401 }
5402 }
5403 print_raid5_conf(conf);
5404 return err;
5405 }
5406
5407 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5408 {
5409 /* no resync is happening, and there is enough space
5410 * on all devices, so we can resize.
5411 * We need to make sure resync covers any new space.
5412 * If the array is shrinking we should possibly wait until
5413 * any io in the removed space completes, but it hardly seems
5414 * worth it.
5415 */
5416 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5417 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5418 mddev->raid_disks));
5419 if (mddev->array_sectors >
5420 raid5_size(mddev, sectors, mddev->raid_disks))
5421 return -EINVAL;
5422 set_capacity(mddev->gendisk, mddev->array_sectors);
5423 revalidate_disk(mddev->gendisk);
5424 if (sectors > mddev->dev_sectors &&
5425 mddev->recovery_cp > mddev->dev_sectors) {
5426 mddev->recovery_cp = mddev->dev_sectors;
5427 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5428 }
5429 mddev->dev_sectors = sectors;
5430 mddev->resync_max_sectors = sectors;
5431 return 0;
5432 }
5433
5434 static int check_stripe_cache(struct mddev *mddev)
5435 {
5436 /* Can only proceed if there are plenty of stripe_heads.
5437 * We need a minimum of one full stripe,, and for sensible progress
5438 * it is best to have about 4 times that.
5439 * If we require 4 times, then the default 256 4K stripe_heads will
5440 * allow for chunk sizes up to 256K, which is probably OK.
5441 * If the chunk size is greater, user-space should request more
5442 * stripe_heads first.
5443 */
5444 struct r5conf *conf = mddev->private;
5445 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5446 > conf->max_nr_stripes ||
5447 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5448 > conf->max_nr_stripes) {
5449 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5450 mdname(mddev),
5451 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5452 / STRIPE_SIZE)*4);
5453 return 0;
5454 }
5455 return 1;
5456 }
5457
5458 static int check_reshape(struct mddev *mddev)
5459 {
5460 struct r5conf *conf = mddev->private;
5461
5462 if (mddev->delta_disks == 0 &&
5463 mddev->new_layout == mddev->layout &&
5464 mddev->new_chunk_sectors == mddev->chunk_sectors)
5465 return 0; /* nothing to do */
5466 if (mddev->bitmap)
5467 /* Cannot grow a bitmap yet */
5468 return -EBUSY;
5469 if (has_failed(conf))
5470 return -EINVAL;
5471 if (mddev->delta_disks < 0) {
5472 /* We might be able to shrink, but the devices must
5473 * be made bigger first.
5474 * For raid6, 4 is the minimum size.
5475 * Otherwise 2 is the minimum
5476 */
5477 int min = 2;
5478 if (mddev->level == 6)
5479 min = 4;
5480 if (mddev->raid_disks + mddev->delta_disks < min)
5481 return -EINVAL;
5482 }
5483
5484 if (!check_stripe_cache(mddev))
5485 return -ENOSPC;
5486
5487 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5488 }
5489
5490 static int raid5_start_reshape(struct mddev *mddev)
5491 {
5492 struct r5conf *conf = mddev->private;
5493 struct md_rdev *rdev;
5494 int spares = 0;
5495 unsigned long flags;
5496
5497 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5498 return -EBUSY;
5499
5500 if (!check_stripe_cache(mddev))
5501 return -ENOSPC;
5502
5503 rdev_for_each(rdev, mddev)
5504 if (!test_bit(In_sync, &rdev->flags)
5505 && !test_bit(Faulty, &rdev->flags))
5506 spares++;
5507
5508 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5509 /* Not enough devices even to make a degraded array
5510 * of that size
5511 */
5512 return -EINVAL;
5513
5514 /* Refuse to reduce size of the array. Any reductions in
5515 * array size must be through explicit setting of array_size
5516 * attribute.
5517 */
5518 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5519 < mddev->array_sectors) {
5520 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5521 "before number of disks\n", mdname(mddev));
5522 return -EINVAL;
5523 }
5524
5525 atomic_set(&conf->reshape_stripes, 0);
5526 spin_lock_irq(&conf->device_lock);
5527 conf->previous_raid_disks = conf->raid_disks;
5528 conf->raid_disks += mddev->delta_disks;
5529 conf->prev_chunk_sectors = conf->chunk_sectors;
5530 conf->chunk_sectors = mddev->new_chunk_sectors;
5531 conf->prev_algo = conf->algorithm;
5532 conf->algorithm = mddev->new_layout;
5533 if (mddev->delta_disks < 0)
5534 conf->reshape_progress = raid5_size(mddev, 0, 0);
5535 else
5536 conf->reshape_progress = 0;
5537 conf->reshape_safe = conf->reshape_progress;
5538 conf->generation++;
5539 spin_unlock_irq(&conf->device_lock);
5540
5541 /* Add some new drives, as many as will fit.
5542 * We know there are enough to make the newly sized array work.
5543 * Don't add devices if we are reducing the number of
5544 * devices in the array. This is because it is not possible
5545 * to correctly record the "partially reconstructed" state of
5546 * such devices during the reshape and confusion could result.
5547 */
5548 if (mddev->delta_disks >= 0) {
5549 rdev_for_each(rdev, mddev)
5550 if (rdev->raid_disk < 0 &&
5551 !test_bit(Faulty, &rdev->flags)) {
5552 if (raid5_add_disk(mddev, rdev) == 0) {
5553 if (rdev->raid_disk
5554 >= conf->previous_raid_disks)
5555 set_bit(In_sync, &rdev->flags);
5556 else
5557 rdev->recovery_offset = 0;
5558
5559 if (sysfs_link_rdev(mddev, rdev))
5560 /* Failure here is OK */;
5561 }
5562 } else if (rdev->raid_disk >= conf->previous_raid_disks
5563 && !test_bit(Faulty, &rdev->flags)) {
5564 /* This is a spare that was manually added */
5565 set_bit(In_sync, &rdev->flags);
5566 }
5567
5568 /* When a reshape changes the number of devices,
5569 * ->degraded is measured against the larger of the
5570 * pre and post number of devices.
5571 */
5572 spin_lock_irqsave(&conf->device_lock, flags);
5573 mddev->degraded = calc_degraded(conf);
5574 spin_unlock_irqrestore(&conf->device_lock, flags);
5575 }
5576 mddev->raid_disks = conf->raid_disks;
5577 mddev->reshape_position = conf->reshape_progress;
5578 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5579
5580 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5581 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5582 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5583 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5584 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5585 "reshape");
5586 if (!mddev->sync_thread) {
5587 mddev->recovery = 0;
5588 spin_lock_irq(&conf->device_lock);
5589 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5590 conf->reshape_progress = MaxSector;
5591 mddev->reshape_position = MaxSector;
5592 spin_unlock_irq(&conf->device_lock);
5593 return -EAGAIN;
5594 }
5595 conf->reshape_checkpoint = jiffies;
5596 md_wakeup_thread(mddev->sync_thread);
5597 md_new_event(mddev);
5598 return 0;
5599 }
5600
5601 /* This is called from the reshape thread and should make any
5602 * changes needed in 'conf'
5603 */
5604 static void end_reshape(struct r5conf *conf)
5605 {
5606
5607 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5608
5609 spin_lock_irq(&conf->device_lock);
5610 conf->previous_raid_disks = conf->raid_disks;
5611 conf->reshape_progress = MaxSector;
5612 spin_unlock_irq(&conf->device_lock);
5613 wake_up(&conf->wait_for_overlap);
5614
5615 /* read-ahead size must cover two whole stripes, which is
5616 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5617 */
5618 if (conf->mddev->queue) {
5619 int data_disks = conf->raid_disks - conf->max_degraded;
5620 int stripe = data_disks * ((conf->chunk_sectors << 9)
5621 / PAGE_SIZE);
5622 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5623 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5624 }
5625 }
5626 }
5627
5628 /* This is called from the raid5d thread with mddev_lock held.
5629 * It makes config changes to the device.
5630 */
5631 static void raid5_finish_reshape(struct mddev *mddev)
5632 {
5633 struct r5conf *conf = mddev->private;
5634
5635 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5636
5637 if (mddev->delta_disks > 0) {
5638 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5639 set_capacity(mddev->gendisk, mddev->array_sectors);
5640 revalidate_disk(mddev->gendisk);
5641 } else {
5642 int d;
5643 spin_lock_irq(&conf->device_lock);
5644 mddev->degraded = calc_degraded(conf);
5645 spin_unlock_irq(&conf->device_lock);
5646 for (d = conf->raid_disks ;
5647 d < conf->raid_disks - mddev->delta_disks;
5648 d++) {
5649 struct md_rdev *rdev = conf->disks[d].rdev;
5650 if (rdev &&
5651 raid5_remove_disk(mddev, rdev) == 0) {
5652 sysfs_unlink_rdev(mddev, rdev);
5653 rdev->raid_disk = -1;
5654 }
5655 }
5656 }
5657 mddev->layout = conf->algorithm;
5658 mddev->chunk_sectors = conf->chunk_sectors;
5659 mddev->reshape_position = MaxSector;
5660 mddev->delta_disks = 0;
5661 }
5662 }
5663
5664 static void raid5_quiesce(struct mddev *mddev, int state)
5665 {
5666 struct r5conf *conf = mddev->private;
5667
5668 switch(state) {
5669 case 2: /* resume for a suspend */
5670 wake_up(&conf->wait_for_overlap);
5671 break;
5672
5673 case 1: /* stop all writes */
5674 spin_lock_irq(&conf->device_lock);
5675 /* '2' tells resync/reshape to pause so that all
5676 * active stripes can drain
5677 */
5678 conf->quiesce = 2;
5679 wait_event_lock_irq(conf->wait_for_stripe,
5680 atomic_read(&conf->active_stripes) == 0 &&
5681 atomic_read(&conf->active_aligned_reads) == 0,
5682 conf->device_lock, /* nothing */);
5683 conf->quiesce = 1;
5684 spin_unlock_irq(&conf->device_lock);
5685 /* allow reshape to continue */
5686 wake_up(&conf->wait_for_overlap);
5687 break;
5688
5689 case 0: /* re-enable writes */
5690 spin_lock_irq(&conf->device_lock);
5691 conf->quiesce = 0;
5692 wake_up(&conf->wait_for_stripe);
5693 wake_up(&conf->wait_for_overlap);
5694 spin_unlock_irq(&conf->device_lock);
5695 break;
5696 }
5697 }
5698
5699
5700 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5701 {
5702 struct r0conf *raid0_conf = mddev->private;
5703 sector_t sectors;
5704
5705 /* for raid0 takeover only one zone is supported */
5706 if (raid0_conf->nr_strip_zones > 1) {
5707 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5708 mdname(mddev));
5709 return ERR_PTR(-EINVAL);
5710 }
5711
5712 sectors = raid0_conf->strip_zone[0].zone_end;
5713 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5714 mddev->dev_sectors = sectors;
5715 mddev->new_level = level;
5716 mddev->new_layout = ALGORITHM_PARITY_N;
5717 mddev->new_chunk_sectors = mddev->chunk_sectors;
5718 mddev->raid_disks += 1;
5719 mddev->delta_disks = 1;
5720 /* make sure it will be not marked as dirty */
5721 mddev->recovery_cp = MaxSector;
5722
5723 return setup_conf(mddev);
5724 }
5725
5726
5727 static void *raid5_takeover_raid1(struct mddev *mddev)
5728 {
5729 int chunksect;
5730
5731 if (mddev->raid_disks != 2 ||
5732 mddev->degraded > 1)
5733 return ERR_PTR(-EINVAL);
5734
5735 /* Should check if there are write-behind devices? */
5736
5737 chunksect = 64*2; /* 64K by default */
5738
5739 /* The array must be an exact multiple of chunksize */
5740 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5741 chunksect >>= 1;
5742
5743 if ((chunksect<<9) < STRIPE_SIZE)
5744 /* array size does not allow a suitable chunk size */
5745 return ERR_PTR(-EINVAL);
5746
5747 mddev->new_level = 5;
5748 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5749 mddev->new_chunk_sectors = chunksect;
5750
5751 return setup_conf(mddev);
5752 }
5753
5754 static void *raid5_takeover_raid6(struct mddev *mddev)
5755 {
5756 int new_layout;
5757
5758 switch (mddev->layout) {
5759 case ALGORITHM_LEFT_ASYMMETRIC_6:
5760 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5761 break;
5762 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5763 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5764 break;
5765 case ALGORITHM_LEFT_SYMMETRIC_6:
5766 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5767 break;
5768 case ALGORITHM_RIGHT_SYMMETRIC_6:
5769 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5770 break;
5771 case ALGORITHM_PARITY_0_6:
5772 new_layout = ALGORITHM_PARITY_0;
5773 break;
5774 case ALGORITHM_PARITY_N:
5775 new_layout = ALGORITHM_PARITY_N;
5776 break;
5777 default:
5778 return ERR_PTR(-EINVAL);
5779 }
5780 mddev->new_level = 5;
5781 mddev->new_layout = new_layout;
5782 mddev->delta_disks = -1;
5783 mddev->raid_disks -= 1;
5784 return setup_conf(mddev);
5785 }
5786
5787
5788 static int raid5_check_reshape(struct mddev *mddev)
5789 {
5790 /* For a 2-drive array, the layout and chunk size can be changed
5791 * immediately as not restriping is needed.
5792 * For larger arrays we record the new value - after validation
5793 * to be used by a reshape pass.
5794 */
5795 struct r5conf *conf = mddev->private;
5796 int new_chunk = mddev->new_chunk_sectors;
5797
5798 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5799 return -EINVAL;
5800 if (new_chunk > 0) {
5801 if (!is_power_of_2(new_chunk))
5802 return -EINVAL;
5803 if (new_chunk < (PAGE_SIZE>>9))
5804 return -EINVAL;
5805 if (mddev->array_sectors & (new_chunk-1))
5806 /* not factor of array size */
5807 return -EINVAL;
5808 }
5809
5810 /* They look valid */
5811
5812 if (mddev->raid_disks == 2) {
5813 /* can make the change immediately */
5814 if (mddev->new_layout >= 0) {
5815 conf->algorithm = mddev->new_layout;
5816 mddev->layout = mddev->new_layout;
5817 }
5818 if (new_chunk > 0) {
5819 conf->chunk_sectors = new_chunk ;
5820 mddev->chunk_sectors = new_chunk;
5821 }
5822 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5823 md_wakeup_thread(mddev->thread);
5824 }
5825 return check_reshape(mddev);
5826 }
5827
5828 static int raid6_check_reshape(struct mddev *mddev)
5829 {
5830 int new_chunk = mddev->new_chunk_sectors;
5831
5832 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5833 return -EINVAL;
5834 if (new_chunk > 0) {
5835 if (!is_power_of_2(new_chunk))
5836 return -EINVAL;
5837 if (new_chunk < (PAGE_SIZE >> 9))
5838 return -EINVAL;
5839 if (mddev->array_sectors & (new_chunk-1))
5840 /* not factor of array size */
5841 return -EINVAL;
5842 }
5843
5844 /* They look valid */
5845 return check_reshape(mddev);
5846 }
5847
5848 static void *raid5_takeover(struct mddev *mddev)
5849 {
5850 /* raid5 can take over:
5851 * raid0 - if there is only one strip zone - make it a raid4 layout
5852 * raid1 - if there are two drives. We need to know the chunk size
5853 * raid4 - trivial - just use a raid4 layout.
5854 * raid6 - Providing it is a *_6 layout
5855 */
5856 if (mddev->level == 0)
5857 return raid45_takeover_raid0(mddev, 5);
5858 if (mddev->level == 1)
5859 return raid5_takeover_raid1(mddev);
5860 if (mddev->level == 4) {
5861 mddev->new_layout = ALGORITHM_PARITY_N;
5862 mddev->new_level = 5;
5863 return setup_conf(mddev);
5864 }
5865 if (mddev->level == 6)
5866 return raid5_takeover_raid6(mddev);
5867
5868 return ERR_PTR(-EINVAL);
5869 }
5870
5871 static void *raid4_takeover(struct mddev *mddev)
5872 {
5873 /* raid4 can take over:
5874 * raid0 - if there is only one strip zone
5875 * raid5 - if layout is right
5876 */
5877 if (mddev->level == 0)
5878 return raid45_takeover_raid0(mddev, 4);
5879 if (mddev->level == 5 &&
5880 mddev->layout == ALGORITHM_PARITY_N) {
5881 mddev->new_layout = 0;
5882 mddev->new_level = 4;
5883 return setup_conf(mddev);
5884 }
5885 return ERR_PTR(-EINVAL);
5886 }
5887
5888 static struct md_personality raid5_personality;
5889
5890 static void *raid6_takeover(struct mddev *mddev)
5891 {
5892 /* Currently can only take over a raid5. We map the
5893 * personality to an equivalent raid6 personality
5894 * with the Q block at the end.
5895 */
5896 int new_layout;
5897
5898 if (mddev->pers != &raid5_personality)
5899 return ERR_PTR(-EINVAL);
5900 if (mddev->degraded > 1)
5901 return ERR_PTR(-EINVAL);
5902 if (mddev->raid_disks > 253)
5903 return ERR_PTR(-EINVAL);
5904 if (mddev->raid_disks < 3)
5905 return ERR_PTR(-EINVAL);
5906
5907 switch (mddev->layout) {
5908 case ALGORITHM_LEFT_ASYMMETRIC:
5909 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5910 break;
5911 case ALGORITHM_RIGHT_ASYMMETRIC:
5912 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5913 break;
5914 case ALGORITHM_LEFT_SYMMETRIC:
5915 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5916 break;
5917 case ALGORITHM_RIGHT_SYMMETRIC:
5918 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5919 break;
5920 case ALGORITHM_PARITY_0:
5921 new_layout = ALGORITHM_PARITY_0_6;
5922 break;
5923 case ALGORITHM_PARITY_N:
5924 new_layout = ALGORITHM_PARITY_N;
5925 break;
5926 default:
5927 return ERR_PTR(-EINVAL);
5928 }
5929 mddev->new_level = 6;
5930 mddev->new_layout = new_layout;
5931 mddev->delta_disks = 1;
5932 mddev->raid_disks += 1;
5933 return setup_conf(mddev);
5934 }
5935
5936
5937 static struct md_personality raid6_personality =
5938 {
5939 .name = "raid6",
5940 .level = 6,
5941 .owner = THIS_MODULE,
5942 .make_request = make_request,
5943 .run = run,
5944 .stop = stop,
5945 .status = status,
5946 .error_handler = error,
5947 .hot_add_disk = raid5_add_disk,
5948 .hot_remove_disk= raid5_remove_disk,
5949 .spare_active = raid5_spare_active,
5950 .sync_request = sync_request,
5951 .resize = raid5_resize,
5952 .size = raid5_size,
5953 .check_reshape = raid6_check_reshape,
5954 .start_reshape = raid5_start_reshape,
5955 .finish_reshape = raid5_finish_reshape,
5956 .quiesce = raid5_quiesce,
5957 .takeover = raid6_takeover,
5958 };
5959 static struct md_personality raid5_personality =
5960 {
5961 .name = "raid5",
5962 .level = 5,
5963 .owner = THIS_MODULE,
5964 .make_request = make_request,
5965 .run = run,
5966 .stop = stop,
5967 .status = status,
5968 .error_handler = error,
5969 .hot_add_disk = raid5_add_disk,
5970 .hot_remove_disk= raid5_remove_disk,
5971 .spare_active = raid5_spare_active,
5972 .sync_request = sync_request,
5973 .resize = raid5_resize,
5974 .size = raid5_size,
5975 .check_reshape = raid5_check_reshape,
5976 .start_reshape = raid5_start_reshape,
5977 .finish_reshape = raid5_finish_reshape,
5978 .quiesce = raid5_quiesce,
5979 .takeover = raid5_takeover,
5980 };
5981
5982 static struct md_personality raid4_personality =
5983 {
5984 .name = "raid4",
5985 .level = 4,
5986 .owner = THIS_MODULE,
5987 .make_request = make_request,
5988 .run = run,
5989 .stop = stop,
5990 .status = status,
5991 .error_handler = error,
5992 .hot_add_disk = raid5_add_disk,
5993 .hot_remove_disk= raid5_remove_disk,
5994 .spare_active = raid5_spare_active,
5995 .sync_request = sync_request,
5996 .resize = raid5_resize,
5997 .size = raid5_size,
5998 .check_reshape = raid5_check_reshape,
5999 .start_reshape = raid5_start_reshape,
6000 .finish_reshape = raid5_finish_reshape,
6001 .quiesce = raid5_quiesce,
6002 .takeover = raid4_takeover,
6003 };
6004
6005 static int __init raid5_init(void)
6006 {
6007 register_md_personality(&raid6_personality);
6008 register_md_personality(&raid5_personality);
6009 register_md_personality(&raid4_personality);
6010 return 0;
6011 }
6012
6013 static void raid5_exit(void)
6014 {
6015 unregister_md_personality(&raid6_personality);
6016 unregister_md_personality(&raid5_personality);
6017 unregister_md_personality(&raid4_personality);
6018 }
6019
6020 module_init(raid5_init);
6021 module_exit(raid5_exit);
6022 MODULE_LICENSE("GPL");
6023 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6024 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6025 MODULE_ALIAS("md-raid5");
6026 MODULE_ALIAS("md-raid4");
6027 MODULE_ALIAS("md-level-5");
6028 MODULE_ALIAS("md-level-4");
6029 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6030 MODULE_ALIAS("md-raid6");
6031 MODULE_ALIAS("md-level-6");
6032
6033 /* This used to be two separate modules, they were: */
6034 MODULE_ALIAS("raid5");
6035 MODULE_ALIAS("raid6");