ALSA: usb-audio: support partially write-protected UAC2 controls
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58
59 /*
60 * Stripe cache
61 */
62
63 #define NR_STRIPES 256
64 #define STRIPE_SIZE PAGE_SIZE
65 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD 1
68 #define BYPASS_THRESHOLD 1
69 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK (NR_HASH - 1)
71
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75 * order without overlap. There may be several bio's per stripe+device, and
76 * a bio could span several devices.
77 * When walking this list for a particular stripe+device, we must never proceed
78 * beyond a bio that extends past this device, as the next bio might no longer
79 * be valid.
80 * This macro is used to determine the 'next' bio in the list, given the sector
81 * of the current stripe+device
82 */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85 * The following can be used to debug the driver
86 */
87 #define RAID5_PARANOIA 1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
101 /*
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107 return bio->bi_phys_segments & 0xffff;
108 }
109
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112 return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117 --bio->bi_phys_segments;
118 return raid5_bi_phys_segments(bio);
119 }
120
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123 unsigned short val = raid5_bi_hw_segments(bio);
124
125 --val;
126 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 return val;
128 }
129
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 }
134
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138 if (sh->ddf_layout)
139 /* ddf always start from first device */
140 return 0;
141 /* md starts just after Q block */
142 if (sh->qd_idx == sh->disks - 1)
143 return 0;
144 else
145 return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149 disk++;
150 return (disk < raid_disks) ? disk : 0;
151 }
152
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
157 */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 int *count, int syndrome_disks)
160 {
161 int slot = *count;
162
163 if (sh->ddf_layout)
164 (*count)++;
165 if (idx == sh->pd_idx)
166 return syndrome_disks;
167 if (idx == sh->qd_idx)
168 return syndrome_disks + 1;
169 if (!sh->ddf_layout)
170 (*count)++;
171 return slot;
172 }
173
174 static void return_io(struct bio *return_bi)
175 {
176 struct bio *bi = return_bi;
177 while (bi) {
178
179 return_bi = bi->bi_next;
180 bi->bi_next = NULL;
181 bi->bi_size = 0;
182 bio_endio(bi, 0);
183 bi = return_bi;
184 }
185 }
186
187 static void print_raid5_conf (raid5_conf_t *conf);
188
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191 return sh->check_state || sh->reconstruct_state ||
192 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198 if (atomic_dec_and_test(&sh->count)) {
199 BUG_ON(!list_empty(&sh->lru));
200 BUG_ON(atomic_read(&conf->active_stripes)==0);
201 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202 if (test_bit(STRIPE_DELAYED, &sh->state)) {
203 list_add_tail(&sh->lru, &conf->delayed_list);
204 blk_plug_device(conf->mddev->queue);
205 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206 sh->bm_seq - conf->seq_write > 0) {
207 list_add_tail(&sh->lru, &conf->bitmap_list);
208 blk_plug_device(conf->mddev->queue);
209 } else {
210 clear_bit(STRIPE_BIT_DELAY, &sh->state);
211 list_add_tail(&sh->lru, &conf->handle_list);
212 }
213 md_wakeup_thread(conf->mddev->thread);
214 } else {
215 BUG_ON(stripe_operations_active(sh));
216 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217 atomic_dec(&conf->preread_active_stripes);
218 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219 md_wakeup_thread(conf->mddev->thread);
220 }
221 atomic_dec(&conf->active_stripes);
222 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223 list_add_tail(&sh->lru, &conf->inactive_list);
224 wake_up(&conf->wait_for_stripe);
225 if (conf->retry_read_aligned)
226 md_wakeup_thread(conf->mddev->thread);
227 }
228 }
229 }
230 }
231
232 static void release_stripe(struct stripe_head *sh)
233 {
234 raid5_conf_t *conf = sh->raid_conf;
235 unsigned long flags;
236
237 spin_lock_irqsave(&conf->device_lock, flags);
238 __release_stripe(conf, sh);
239 spin_unlock_irqrestore(&conf->device_lock, flags);
240 }
241
242 static inline void remove_hash(struct stripe_head *sh)
243 {
244 pr_debug("remove_hash(), stripe %llu\n",
245 (unsigned long long)sh->sector);
246
247 hlist_del_init(&sh->hash);
248 }
249
250 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
251 {
252 struct hlist_head *hp = stripe_hash(conf, sh->sector);
253
254 pr_debug("insert_hash(), stripe %llu\n",
255 (unsigned long long)sh->sector);
256
257 CHECK_DEVLOCK();
258 hlist_add_head(&sh->hash, hp);
259 }
260
261
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
264 {
265 struct stripe_head *sh = NULL;
266 struct list_head *first;
267
268 CHECK_DEVLOCK();
269 if (list_empty(&conf->inactive_list))
270 goto out;
271 first = conf->inactive_list.next;
272 sh = list_entry(first, struct stripe_head, lru);
273 list_del_init(first);
274 remove_hash(sh);
275 atomic_inc(&conf->active_stripes);
276 out:
277 return sh;
278 }
279
280 static void shrink_buffers(struct stripe_head *sh, int num)
281 {
282 struct page *p;
283 int i;
284
285 for (i=0; i<num ; i++) {
286 p = sh->dev[i].page;
287 if (!p)
288 continue;
289 sh->dev[i].page = NULL;
290 put_page(p);
291 }
292 }
293
294 static int grow_buffers(struct stripe_head *sh, int num)
295 {
296 int i;
297
298 for (i=0; i<num; i++) {
299 struct page *page;
300
301 if (!(page = alloc_page(GFP_KERNEL))) {
302 return 1;
303 }
304 sh->dev[i].page = page;
305 }
306 return 0;
307 }
308
309 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
311 struct stripe_head *sh);
312
313 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
314 {
315 raid5_conf_t *conf = sh->raid_conf;
316 int i;
317
318 BUG_ON(atomic_read(&sh->count) != 0);
319 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320 BUG_ON(stripe_operations_active(sh));
321
322 CHECK_DEVLOCK();
323 pr_debug("init_stripe called, stripe %llu\n",
324 (unsigned long long)sh->sector);
325
326 remove_hash(sh);
327
328 sh->generation = conf->generation - previous;
329 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
330 sh->sector = sector;
331 stripe_set_idx(sector, conf, previous, sh);
332 sh->state = 0;
333
334
335 for (i = sh->disks; i--; ) {
336 struct r5dev *dev = &sh->dev[i];
337
338 if (dev->toread || dev->read || dev->towrite || dev->written ||
339 test_bit(R5_LOCKED, &dev->flags)) {
340 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
341 (unsigned long long)sh->sector, i, dev->toread,
342 dev->read, dev->towrite, dev->written,
343 test_bit(R5_LOCKED, &dev->flags));
344 BUG();
345 }
346 dev->flags = 0;
347 raid5_build_block(sh, i, previous);
348 }
349 insert_hash(conf, sh);
350 }
351
352 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
353 short generation)
354 {
355 struct stripe_head *sh;
356 struct hlist_node *hn;
357
358 CHECK_DEVLOCK();
359 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361 if (sh->sector == sector && sh->generation == generation)
362 return sh;
363 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
364 return NULL;
365 }
366
367 static void unplug_slaves(mddev_t *mddev);
368 static void raid5_unplug_device(struct request_queue *q);
369
370 static struct stripe_head *
371 get_active_stripe(raid5_conf_t *conf, sector_t sector,
372 int previous, int noblock, int noquiesce)
373 {
374 struct stripe_head *sh;
375
376 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
377
378 spin_lock_irq(&conf->device_lock);
379
380 do {
381 wait_event_lock_irq(conf->wait_for_stripe,
382 conf->quiesce == 0 || noquiesce,
383 conf->device_lock, /* nothing */);
384 sh = __find_stripe(conf, sector, conf->generation - previous);
385 if (!sh) {
386 if (!conf->inactive_blocked)
387 sh = get_free_stripe(conf);
388 if (noblock && sh == NULL)
389 break;
390 if (!sh) {
391 conf->inactive_blocked = 1;
392 wait_event_lock_irq(conf->wait_for_stripe,
393 !list_empty(&conf->inactive_list) &&
394 (atomic_read(&conf->active_stripes)
395 < (conf->max_nr_stripes *3/4)
396 || !conf->inactive_blocked),
397 conf->device_lock,
398 raid5_unplug_device(conf->mddev->queue)
399 );
400 conf->inactive_blocked = 0;
401 } else
402 init_stripe(sh, sector, previous);
403 } else {
404 if (atomic_read(&sh->count)) {
405 BUG_ON(!list_empty(&sh->lru)
406 && !test_bit(STRIPE_EXPANDING, &sh->state));
407 } else {
408 if (!test_bit(STRIPE_HANDLE, &sh->state))
409 atomic_inc(&conf->active_stripes);
410 if (list_empty(&sh->lru) &&
411 !test_bit(STRIPE_EXPANDING, &sh->state))
412 BUG();
413 list_del_init(&sh->lru);
414 }
415 }
416 } while (sh == NULL);
417
418 if (sh)
419 atomic_inc(&sh->count);
420
421 spin_unlock_irq(&conf->device_lock);
422 return sh;
423 }
424
425 static void
426 raid5_end_read_request(struct bio *bi, int error);
427 static void
428 raid5_end_write_request(struct bio *bi, int error);
429
430 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
431 {
432 raid5_conf_t *conf = sh->raid_conf;
433 int i, disks = sh->disks;
434
435 might_sleep();
436
437 for (i = disks; i--; ) {
438 int rw;
439 struct bio *bi;
440 mdk_rdev_t *rdev;
441 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
442 rw = WRITE;
443 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
444 rw = READ;
445 else
446 continue;
447
448 bi = &sh->dev[i].req;
449
450 bi->bi_rw = rw;
451 if (rw == WRITE)
452 bi->bi_end_io = raid5_end_write_request;
453 else
454 bi->bi_end_io = raid5_end_read_request;
455
456 rcu_read_lock();
457 rdev = rcu_dereference(conf->disks[i].rdev);
458 if (rdev && test_bit(Faulty, &rdev->flags))
459 rdev = NULL;
460 if (rdev)
461 atomic_inc(&rdev->nr_pending);
462 rcu_read_unlock();
463
464 if (rdev) {
465 if (s->syncing || s->expanding || s->expanded)
466 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
467
468 set_bit(STRIPE_IO_STARTED, &sh->state);
469
470 bi->bi_bdev = rdev->bdev;
471 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
472 __func__, (unsigned long long)sh->sector,
473 bi->bi_rw, i);
474 atomic_inc(&sh->count);
475 bi->bi_sector = sh->sector + rdev->data_offset;
476 bi->bi_flags = 1 << BIO_UPTODATE;
477 bi->bi_vcnt = 1;
478 bi->bi_max_vecs = 1;
479 bi->bi_idx = 0;
480 bi->bi_io_vec = &sh->dev[i].vec;
481 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
482 bi->bi_io_vec[0].bv_offset = 0;
483 bi->bi_size = STRIPE_SIZE;
484 bi->bi_next = NULL;
485 if (rw == WRITE &&
486 test_bit(R5_ReWrite, &sh->dev[i].flags))
487 atomic_add(STRIPE_SECTORS,
488 &rdev->corrected_errors);
489 generic_make_request(bi);
490 } else {
491 if (rw == WRITE)
492 set_bit(STRIPE_DEGRADED, &sh->state);
493 pr_debug("skip op %ld on disc %d for sector %llu\n",
494 bi->bi_rw, i, (unsigned long long)sh->sector);
495 clear_bit(R5_LOCKED, &sh->dev[i].flags);
496 set_bit(STRIPE_HANDLE, &sh->state);
497 }
498 }
499 }
500
501 static struct dma_async_tx_descriptor *
502 async_copy_data(int frombio, struct bio *bio, struct page *page,
503 sector_t sector, struct dma_async_tx_descriptor *tx)
504 {
505 struct bio_vec *bvl;
506 struct page *bio_page;
507 int i;
508 int page_offset;
509 struct async_submit_ctl submit;
510 enum async_tx_flags flags = 0;
511
512 if (bio->bi_sector >= sector)
513 page_offset = (signed)(bio->bi_sector - sector) * 512;
514 else
515 page_offset = (signed)(sector - bio->bi_sector) * -512;
516
517 if (frombio)
518 flags |= ASYNC_TX_FENCE;
519 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
520
521 bio_for_each_segment(bvl, bio, i) {
522 int len = bio_iovec_idx(bio, i)->bv_len;
523 int clen;
524 int b_offset = 0;
525
526 if (page_offset < 0) {
527 b_offset = -page_offset;
528 page_offset += b_offset;
529 len -= b_offset;
530 }
531
532 if (len > 0 && page_offset + len > STRIPE_SIZE)
533 clen = STRIPE_SIZE - page_offset;
534 else
535 clen = len;
536
537 if (clen > 0) {
538 b_offset += bio_iovec_idx(bio, i)->bv_offset;
539 bio_page = bio_iovec_idx(bio, i)->bv_page;
540 if (frombio)
541 tx = async_memcpy(page, bio_page, page_offset,
542 b_offset, clen, &submit);
543 else
544 tx = async_memcpy(bio_page, page, b_offset,
545 page_offset, clen, &submit);
546 }
547 /* chain the operations */
548 submit.depend_tx = tx;
549
550 if (clen < len) /* hit end of page */
551 break;
552 page_offset += len;
553 }
554
555 return tx;
556 }
557
558 static void ops_complete_biofill(void *stripe_head_ref)
559 {
560 struct stripe_head *sh = stripe_head_ref;
561 struct bio *return_bi = NULL;
562 raid5_conf_t *conf = sh->raid_conf;
563 int i;
564
565 pr_debug("%s: stripe %llu\n", __func__,
566 (unsigned long long)sh->sector);
567
568 /* clear completed biofills */
569 spin_lock_irq(&conf->device_lock);
570 for (i = sh->disks; i--; ) {
571 struct r5dev *dev = &sh->dev[i];
572
573 /* acknowledge completion of a biofill operation */
574 /* and check if we need to reply to a read request,
575 * new R5_Wantfill requests are held off until
576 * !STRIPE_BIOFILL_RUN
577 */
578 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
579 struct bio *rbi, *rbi2;
580
581 BUG_ON(!dev->read);
582 rbi = dev->read;
583 dev->read = NULL;
584 while (rbi && rbi->bi_sector <
585 dev->sector + STRIPE_SECTORS) {
586 rbi2 = r5_next_bio(rbi, dev->sector);
587 if (!raid5_dec_bi_phys_segments(rbi)) {
588 rbi->bi_next = return_bi;
589 return_bi = rbi;
590 }
591 rbi = rbi2;
592 }
593 }
594 }
595 spin_unlock_irq(&conf->device_lock);
596 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
597
598 return_io(return_bi);
599
600 set_bit(STRIPE_HANDLE, &sh->state);
601 release_stripe(sh);
602 }
603
604 static void ops_run_biofill(struct stripe_head *sh)
605 {
606 struct dma_async_tx_descriptor *tx = NULL;
607 raid5_conf_t *conf = sh->raid_conf;
608 struct async_submit_ctl submit;
609 int i;
610
611 pr_debug("%s: stripe %llu\n", __func__,
612 (unsigned long long)sh->sector);
613
614 for (i = sh->disks; i--; ) {
615 struct r5dev *dev = &sh->dev[i];
616 if (test_bit(R5_Wantfill, &dev->flags)) {
617 struct bio *rbi;
618 spin_lock_irq(&conf->device_lock);
619 dev->read = rbi = dev->toread;
620 dev->toread = NULL;
621 spin_unlock_irq(&conf->device_lock);
622 while (rbi && rbi->bi_sector <
623 dev->sector + STRIPE_SECTORS) {
624 tx = async_copy_data(0, rbi, dev->page,
625 dev->sector, tx);
626 rbi = r5_next_bio(rbi, dev->sector);
627 }
628 }
629 }
630
631 atomic_inc(&sh->count);
632 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
633 async_trigger_callback(&submit);
634 }
635
636 static void mark_target_uptodate(struct stripe_head *sh, int target)
637 {
638 struct r5dev *tgt;
639
640 if (target < 0)
641 return;
642
643 tgt = &sh->dev[target];
644 set_bit(R5_UPTODATE, &tgt->flags);
645 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
646 clear_bit(R5_Wantcompute, &tgt->flags);
647 }
648
649 static void ops_complete_compute(void *stripe_head_ref)
650 {
651 struct stripe_head *sh = stripe_head_ref;
652
653 pr_debug("%s: stripe %llu\n", __func__,
654 (unsigned long long)sh->sector);
655
656 /* mark the computed target(s) as uptodate */
657 mark_target_uptodate(sh, sh->ops.target);
658 mark_target_uptodate(sh, sh->ops.target2);
659
660 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
661 if (sh->check_state == check_state_compute_run)
662 sh->check_state = check_state_compute_result;
663 set_bit(STRIPE_HANDLE, &sh->state);
664 release_stripe(sh);
665 }
666
667 /* return a pointer to the address conversion region of the scribble buffer */
668 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
669 struct raid5_percpu *percpu)
670 {
671 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
672 }
673
674 static struct dma_async_tx_descriptor *
675 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
676 {
677 int disks = sh->disks;
678 struct page **xor_srcs = percpu->scribble;
679 int target = sh->ops.target;
680 struct r5dev *tgt = &sh->dev[target];
681 struct page *xor_dest = tgt->page;
682 int count = 0;
683 struct dma_async_tx_descriptor *tx;
684 struct async_submit_ctl submit;
685 int i;
686
687 pr_debug("%s: stripe %llu block: %d\n",
688 __func__, (unsigned long long)sh->sector, target);
689 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
690
691 for (i = disks; i--; )
692 if (i != target)
693 xor_srcs[count++] = sh->dev[i].page;
694
695 atomic_inc(&sh->count);
696
697 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
698 ops_complete_compute, sh, to_addr_conv(sh, percpu));
699 if (unlikely(count == 1))
700 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
701 else
702 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
703
704 return tx;
705 }
706
707 /* set_syndrome_sources - populate source buffers for gen_syndrome
708 * @srcs - (struct page *) array of size sh->disks
709 * @sh - stripe_head to parse
710 *
711 * Populates srcs in proper layout order for the stripe and returns the
712 * 'count' of sources to be used in a call to async_gen_syndrome. The P
713 * destination buffer is recorded in srcs[count] and the Q destination
714 * is recorded in srcs[count+1]].
715 */
716 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
717 {
718 int disks = sh->disks;
719 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
720 int d0_idx = raid6_d0(sh);
721 int count;
722 int i;
723
724 for (i = 0; i < disks; i++)
725 srcs[i] = NULL;
726
727 count = 0;
728 i = d0_idx;
729 do {
730 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
731
732 srcs[slot] = sh->dev[i].page;
733 i = raid6_next_disk(i, disks);
734 } while (i != d0_idx);
735
736 return syndrome_disks;
737 }
738
739 static struct dma_async_tx_descriptor *
740 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
741 {
742 int disks = sh->disks;
743 struct page **blocks = percpu->scribble;
744 int target;
745 int qd_idx = sh->qd_idx;
746 struct dma_async_tx_descriptor *tx;
747 struct async_submit_ctl submit;
748 struct r5dev *tgt;
749 struct page *dest;
750 int i;
751 int count;
752
753 if (sh->ops.target < 0)
754 target = sh->ops.target2;
755 else if (sh->ops.target2 < 0)
756 target = sh->ops.target;
757 else
758 /* we should only have one valid target */
759 BUG();
760 BUG_ON(target < 0);
761 pr_debug("%s: stripe %llu block: %d\n",
762 __func__, (unsigned long long)sh->sector, target);
763
764 tgt = &sh->dev[target];
765 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
766 dest = tgt->page;
767
768 atomic_inc(&sh->count);
769
770 if (target == qd_idx) {
771 count = set_syndrome_sources(blocks, sh);
772 blocks[count] = NULL; /* regenerating p is not necessary */
773 BUG_ON(blocks[count+1] != dest); /* q should already be set */
774 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
775 ops_complete_compute, sh,
776 to_addr_conv(sh, percpu));
777 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
778 } else {
779 /* Compute any data- or p-drive using XOR */
780 count = 0;
781 for (i = disks; i-- ; ) {
782 if (i == target || i == qd_idx)
783 continue;
784 blocks[count++] = sh->dev[i].page;
785 }
786
787 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
788 NULL, ops_complete_compute, sh,
789 to_addr_conv(sh, percpu));
790 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
791 }
792
793 return tx;
794 }
795
796 static struct dma_async_tx_descriptor *
797 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
798 {
799 int i, count, disks = sh->disks;
800 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
801 int d0_idx = raid6_d0(sh);
802 int faila = -1, failb = -1;
803 int target = sh->ops.target;
804 int target2 = sh->ops.target2;
805 struct r5dev *tgt = &sh->dev[target];
806 struct r5dev *tgt2 = &sh->dev[target2];
807 struct dma_async_tx_descriptor *tx;
808 struct page **blocks = percpu->scribble;
809 struct async_submit_ctl submit;
810
811 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
812 __func__, (unsigned long long)sh->sector, target, target2);
813 BUG_ON(target < 0 || target2 < 0);
814 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
815 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
816
817 /* we need to open-code set_syndrome_sources to handle the
818 * slot number conversion for 'faila' and 'failb'
819 */
820 for (i = 0; i < disks ; i++)
821 blocks[i] = NULL;
822 count = 0;
823 i = d0_idx;
824 do {
825 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
826
827 blocks[slot] = sh->dev[i].page;
828
829 if (i == target)
830 faila = slot;
831 if (i == target2)
832 failb = slot;
833 i = raid6_next_disk(i, disks);
834 } while (i != d0_idx);
835
836 BUG_ON(faila == failb);
837 if (failb < faila)
838 swap(faila, failb);
839 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
840 __func__, (unsigned long long)sh->sector, faila, failb);
841
842 atomic_inc(&sh->count);
843
844 if (failb == syndrome_disks+1) {
845 /* Q disk is one of the missing disks */
846 if (faila == syndrome_disks) {
847 /* Missing P+Q, just recompute */
848 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
849 ops_complete_compute, sh,
850 to_addr_conv(sh, percpu));
851 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
852 STRIPE_SIZE, &submit);
853 } else {
854 struct page *dest;
855 int data_target;
856 int qd_idx = sh->qd_idx;
857
858 /* Missing D+Q: recompute D from P, then recompute Q */
859 if (target == qd_idx)
860 data_target = target2;
861 else
862 data_target = target;
863
864 count = 0;
865 for (i = disks; i-- ; ) {
866 if (i == data_target || i == qd_idx)
867 continue;
868 blocks[count++] = sh->dev[i].page;
869 }
870 dest = sh->dev[data_target].page;
871 init_async_submit(&submit,
872 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
873 NULL, NULL, NULL,
874 to_addr_conv(sh, percpu));
875 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
876 &submit);
877
878 count = set_syndrome_sources(blocks, sh);
879 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
880 ops_complete_compute, sh,
881 to_addr_conv(sh, percpu));
882 return async_gen_syndrome(blocks, 0, count+2,
883 STRIPE_SIZE, &submit);
884 }
885 } else {
886 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
887 ops_complete_compute, sh,
888 to_addr_conv(sh, percpu));
889 if (failb == syndrome_disks) {
890 /* We're missing D+P. */
891 return async_raid6_datap_recov(syndrome_disks+2,
892 STRIPE_SIZE, faila,
893 blocks, &submit);
894 } else {
895 /* We're missing D+D. */
896 return async_raid6_2data_recov(syndrome_disks+2,
897 STRIPE_SIZE, faila, failb,
898 blocks, &submit);
899 }
900 }
901 }
902
903
904 static void ops_complete_prexor(void *stripe_head_ref)
905 {
906 struct stripe_head *sh = stripe_head_ref;
907
908 pr_debug("%s: stripe %llu\n", __func__,
909 (unsigned long long)sh->sector);
910 }
911
912 static struct dma_async_tx_descriptor *
913 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
914 struct dma_async_tx_descriptor *tx)
915 {
916 int disks = sh->disks;
917 struct page **xor_srcs = percpu->scribble;
918 int count = 0, pd_idx = sh->pd_idx, i;
919 struct async_submit_ctl submit;
920
921 /* existing parity data subtracted */
922 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
923
924 pr_debug("%s: stripe %llu\n", __func__,
925 (unsigned long long)sh->sector);
926
927 for (i = disks; i--; ) {
928 struct r5dev *dev = &sh->dev[i];
929 /* Only process blocks that are known to be uptodate */
930 if (test_bit(R5_Wantdrain, &dev->flags))
931 xor_srcs[count++] = dev->page;
932 }
933
934 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
935 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
936 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
937
938 return tx;
939 }
940
941 static struct dma_async_tx_descriptor *
942 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
943 {
944 int disks = sh->disks;
945 int i;
946
947 pr_debug("%s: stripe %llu\n", __func__,
948 (unsigned long long)sh->sector);
949
950 for (i = disks; i--; ) {
951 struct r5dev *dev = &sh->dev[i];
952 struct bio *chosen;
953
954 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
955 struct bio *wbi;
956
957 spin_lock(&sh->lock);
958 chosen = dev->towrite;
959 dev->towrite = NULL;
960 BUG_ON(dev->written);
961 wbi = dev->written = chosen;
962 spin_unlock(&sh->lock);
963
964 while (wbi && wbi->bi_sector <
965 dev->sector + STRIPE_SECTORS) {
966 tx = async_copy_data(1, wbi, dev->page,
967 dev->sector, tx);
968 wbi = r5_next_bio(wbi, dev->sector);
969 }
970 }
971 }
972
973 return tx;
974 }
975
976 static void ops_complete_reconstruct(void *stripe_head_ref)
977 {
978 struct stripe_head *sh = stripe_head_ref;
979 int disks = sh->disks;
980 int pd_idx = sh->pd_idx;
981 int qd_idx = sh->qd_idx;
982 int i;
983
984 pr_debug("%s: stripe %llu\n", __func__,
985 (unsigned long long)sh->sector);
986
987 for (i = disks; i--; ) {
988 struct r5dev *dev = &sh->dev[i];
989
990 if (dev->written || i == pd_idx || i == qd_idx)
991 set_bit(R5_UPTODATE, &dev->flags);
992 }
993
994 if (sh->reconstruct_state == reconstruct_state_drain_run)
995 sh->reconstruct_state = reconstruct_state_drain_result;
996 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
997 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
998 else {
999 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1000 sh->reconstruct_state = reconstruct_state_result;
1001 }
1002
1003 set_bit(STRIPE_HANDLE, &sh->state);
1004 release_stripe(sh);
1005 }
1006
1007 static void
1008 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1009 struct dma_async_tx_descriptor *tx)
1010 {
1011 int disks = sh->disks;
1012 struct page **xor_srcs = percpu->scribble;
1013 struct async_submit_ctl submit;
1014 int count = 0, pd_idx = sh->pd_idx, i;
1015 struct page *xor_dest;
1016 int prexor = 0;
1017 unsigned long flags;
1018
1019 pr_debug("%s: stripe %llu\n", __func__,
1020 (unsigned long long)sh->sector);
1021
1022 /* check if prexor is active which means only process blocks
1023 * that are part of a read-modify-write (written)
1024 */
1025 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1026 prexor = 1;
1027 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1028 for (i = disks; i--; ) {
1029 struct r5dev *dev = &sh->dev[i];
1030 if (dev->written)
1031 xor_srcs[count++] = dev->page;
1032 }
1033 } else {
1034 xor_dest = sh->dev[pd_idx].page;
1035 for (i = disks; i--; ) {
1036 struct r5dev *dev = &sh->dev[i];
1037 if (i != pd_idx)
1038 xor_srcs[count++] = dev->page;
1039 }
1040 }
1041
1042 /* 1/ if we prexor'd then the dest is reused as a source
1043 * 2/ if we did not prexor then we are redoing the parity
1044 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1045 * for the synchronous xor case
1046 */
1047 flags = ASYNC_TX_ACK |
1048 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1049
1050 atomic_inc(&sh->count);
1051
1052 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1053 to_addr_conv(sh, percpu));
1054 if (unlikely(count == 1))
1055 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1056 else
1057 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1058 }
1059
1060 static void
1061 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1062 struct dma_async_tx_descriptor *tx)
1063 {
1064 struct async_submit_ctl submit;
1065 struct page **blocks = percpu->scribble;
1066 int count;
1067
1068 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1069
1070 count = set_syndrome_sources(blocks, sh);
1071
1072 atomic_inc(&sh->count);
1073
1074 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1075 sh, to_addr_conv(sh, percpu));
1076 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1077 }
1078
1079 static void ops_complete_check(void *stripe_head_ref)
1080 {
1081 struct stripe_head *sh = stripe_head_ref;
1082
1083 pr_debug("%s: stripe %llu\n", __func__,
1084 (unsigned long long)sh->sector);
1085
1086 sh->check_state = check_state_check_result;
1087 set_bit(STRIPE_HANDLE, &sh->state);
1088 release_stripe(sh);
1089 }
1090
1091 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1092 {
1093 int disks = sh->disks;
1094 int pd_idx = sh->pd_idx;
1095 int qd_idx = sh->qd_idx;
1096 struct page *xor_dest;
1097 struct page **xor_srcs = percpu->scribble;
1098 struct dma_async_tx_descriptor *tx;
1099 struct async_submit_ctl submit;
1100 int count;
1101 int i;
1102
1103 pr_debug("%s: stripe %llu\n", __func__,
1104 (unsigned long long)sh->sector);
1105
1106 count = 0;
1107 xor_dest = sh->dev[pd_idx].page;
1108 xor_srcs[count++] = xor_dest;
1109 for (i = disks; i--; ) {
1110 if (i == pd_idx || i == qd_idx)
1111 continue;
1112 xor_srcs[count++] = sh->dev[i].page;
1113 }
1114
1115 init_async_submit(&submit, 0, NULL, NULL, NULL,
1116 to_addr_conv(sh, percpu));
1117 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1118 &sh->ops.zero_sum_result, &submit);
1119
1120 atomic_inc(&sh->count);
1121 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1122 tx = async_trigger_callback(&submit);
1123 }
1124
1125 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1126 {
1127 struct page **srcs = percpu->scribble;
1128 struct async_submit_ctl submit;
1129 int count;
1130
1131 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1132 (unsigned long long)sh->sector, checkp);
1133
1134 count = set_syndrome_sources(srcs, sh);
1135 if (!checkp)
1136 srcs[count] = NULL;
1137
1138 atomic_inc(&sh->count);
1139 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1140 sh, to_addr_conv(sh, percpu));
1141 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1142 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1143 }
1144
1145 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1146 {
1147 int overlap_clear = 0, i, disks = sh->disks;
1148 struct dma_async_tx_descriptor *tx = NULL;
1149 raid5_conf_t *conf = sh->raid_conf;
1150 int level = conf->level;
1151 struct raid5_percpu *percpu;
1152 unsigned long cpu;
1153
1154 cpu = get_cpu();
1155 percpu = per_cpu_ptr(conf->percpu, cpu);
1156 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1157 ops_run_biofill(sh);
1158 overlap_clear++;
1159 }
1160
1161 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1162 if (level < 6)
1163 tx = ops_run_compute5(sh, percpu);
1164 else {
1165 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1166 tx = ops_run_compute6_1(sh, percpu);
1167 else
1168 tx = ops_run_compute6_2(sh, percpu);
1169 }
1170 /* terminate the chain if reconstruct is not set to be run */
1171 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1172 async_tx_ack(tx);
1173 }
1174
1175 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1176 tx = ops_run_prexor(sh, percpu, tx);
1177
1178 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1179 tx = ops_run_biodrain(sh, tx);
1180 overlap_clear++;
1181 }
1182
1183 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1184 if (level < 6)
1185 ops_run_reconstruct5(sh, percpu, tx);
1186 else
1187 ops_run_reconstruct6(sh, percpu, tx);
1188 }
1189
1190 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1191 if (sh->check_state == check_state_run)
1192 ops_run_check_p(sh, percpu);
1193 else if (sh->check_state == check_state_run_q)
1194 ops_run_check_pq(sh, percpu, 0);
1195 else if (sh->check_state == check_state_run_pq)
1196 ops_run_check_pq(sh, percpu, 1);
1197 else
1198 BUG();
1199 }
1200
1201 if (overlap_clear)
1202 for (i = disks; i--; ) {
1203 struct r5dev *dev = &sh->dev[i];
1204 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1205 wake_up(&sh->raid_conf->wait_for_overlap);
1206 }
1207 put_cpu();
1208 }
1209
1210 #ifdef CONFIG_MULTICORE_RAID456
1211 static void async_run_ops(void *param, async_cookie_t cookie)
1212 {
1213 struct stripe_head *sh = param;
1214 unsigned long ops_request = sh->ops.request;
1215
1216 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1217 wake_up(&sh->ops.wait_for_ops);
1218
1219 __raid_run_ops(sh, ops_request);
1220 release_stripe(sh);
1221 }
1222
1223 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1224 {
1225 /* since handle_stripe can be called outside of raid5d context
1226 * we need to ensure sh->ops.request is de-staged before another
1227 * request arrives
1228 */
1229 wait_event(sh->ops.wait_for_ops,
1230 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1231 sh->ops.request = ops_request;
1232
1233 atomic_inc(&sh->count);
1234 async_schedule(async_run_ops, sh);
1235 }
1236 #else
1237 #define raid_run_ops __raid_run_ops
1238 #endif
1239
1240 static int grow_one_stripe(raid5_conf_t *conf)
1241 {
1242 struct stripe_head *sh;
1243 int disks = max(conf->raid_disks, conf->previous_raid_disks);
1244 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1245 if (!sh)
1246 return 0;
1247 memset(sh, 0, sizeof(*sh) + (disks-1)*sizeof(struct r5dev));
1248 sh->raid_conf = conf;
1249 spin_lock_init(&sh->lock);
1250 #ifdef CONFIG_MULTICORE_RAID456
1251 init_waitqueue_head(&sh->ops.wait_for_ops);
1252 #endif
1253
1254 if (grow_buffers(sh, disks)) {
1255 shrink_buffers(sh, disks);
1256 kmem_cache_free(conf->slab_cache, sh);
1257 return 0;
1258 }
1259 /* we just created an active stripe so... */
1260 atomic_set(&sh->count, 1);
1261 atomic_inc(&conf->active_stripes);
1262 INIT_LIST_HEAD(&sh->lru);
1263 release_stripe(sh);
1264 return 1;
1265 }
1266
1267 static int grow_stripes(raid5_conf_t *conf, int num)
1268 {
1269 struct kmem_cache *sc;
1270 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1271
1272 sprintf(conf->cache_name[0],
1273 "raid%d-%s", conf->level, mdname(conf->mddev));
1274 sprintf(conf->cache_name[1],
1275 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
1276 conf->active_name = 0;
1277 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1278 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1279 0, 0, NULL);
1280 if (!sc)
1281 return 1;
1282 conf->slab_cache = sc;
1283 conf->pool_size = devs;
1284 while (num--)
1285 if (!grow_one_stripe(conf))
1286 return 1;
1287 return 0;
1288 }
1289
1290 /**
1291 * scribble_len - return the required size of the scribble region
1292 * @num - total number of disks in the array
1293 *
1294 * The size must be enough to contain:
1295 * 1/ a struct page pointer for each device in the array +2
1296 * 2/ room to convert each entry in (1) to its corresponding dma
1297 * (dma_map_page()) or page (page_address()) address.
1298 *
1299 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1300 * calculate over all devices (not just the data blocks), using zeros in place
1301 * of the P and Q blocks.
1302 */
1303 static size_t scribble_len(int num)
1304 {
1305 size_t len;
1306
1307 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1308
1309 return len;
1310 }
1311
1312 static int resize_stripes(raid5_conf_t *conf, int newsize)
1313 {
1314 /* Make all the stripes able to hold 'newsize' devices.
1315 * New slots in each stripe get 'page' set to a new page.
1316 *
1317 * This happens in stages:
1318 * 1/ create a new kmem_cache and allocate the required number of
1319 * stripe_heads.
1320 * 2/ gather all the old stripe_heads and tranfer the pages across
1321 * to the new stripe_heads. This will have the side effect of
1322 * freezing the array as once all stripe_heads have been collected,
1323 * no IO will be possible. Old stripe heads are freed once their
1324 * pages have been transferred over, and the old kmem_cache is
1325 * freed when all stripes are done.
1326 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1327 * we simple return a failre status - no need to clean anything up.
1328 * 4/ allocate new pages for the new slots in the new stripe_heads.
1329 * If this fails, we don't bother trying the shrink the
1330 * stripe_heads down again, we just leave them as they are.
1331 * As each stripe_head is processed the new one is released into
1332 * active service.
1333 *
1334 * Once step2 is started, we cannot afford to wait for a write,
1335 * so we use GFP_NOIO allocations.
1336 */
1337 struct stripe_head *osh, *nsh;
1338 LIST_HEAD(newstripes);
1339 struct disk_info *ndisks;
1340 unsigned long cpu;
1341 int err;
1342 struct kmem_cache *sc;
1343 int i;
1344
1345 if (newsize <= conf->pool_size)
1346 return 0; /* never bother to shrink */
1347
1348 err = md_allow_write(conf->mddev);
1349 if (err)
1350 return err;
1351
1352 /* Step 1 */
1353 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1354 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1355 0, 0, NULL);
1356 if (!sc)
1357 return -ENOMEM;
1358
1359 for (i = conf->max_nr_stripes; i; i--) {
1360 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1361 if (!nsh)
1362 break;
1363
1364 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1365
1366 nsh->raid_conf = conf;
1367 spin_lock_init(&nsh->lock);
1368 #ifdef CONFIG_MULTICORE_RAID456
1369 init_waitqueue_head(&nsh->ops.wait_for_ops);
1370 #endif
1371
1372 list_add(&nsh->lru, &newstripes);
1373 }
1374 if (i) {
1375 /* didn't get enough, give up */
1376 while (!list_empty(&newstripes)) {
1377 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1378 list_del(&nsh->lru);
1379 kmem_cache_free(sc, nsh);
1380 }
1381 kmem_cache_destroy(sc);
1382 return -ENOMEM;
1383 }
1384 /* Step 2 - Must use GFP_NOIO now.
1385 * OK, we have enough stripes, start collecting inactive
1386 * stripes and copying them over
1387 */
1388 list_for_each_entry(nsh, &newstripes, lru) {
1389 spin_lock_irq(&conf->device_lock);
1390 wait_event_lock_irq(conf->wait_for_stripe,
1391 !list_empty(&conf->inactive_list),
1392 conf->device_lock,
1393 unplug_slaves(conf->mddev)
1394 );
1395 osh = get_free_stripe(conf);
1396 spin_unlock_irq(&conf->device_lock);
1397 atomic_set(&nsh->count, 1);
1398 for(i=0; i<conf->pool_size; i++)
1399 nsh->dev[i].page = osh->dev[i].page;
1400 for( ; i<newsize; i++)
1401 nsh->dev[i].page = NULL;
1402 kmem_cache_free(conf->slab_cache, osh);
1403 }
1404 kmem_cache_destroy(conf->slab_cache);
1405
1406 /* Step 3.
1407 * At this point, we are holding all the stripes so the array
1408 * is completely stalled, so now is a good time to resize
1409 * conf->disks and the scribble region
1410 */
1411 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1412 if (ndisks) {
1413 for (i=0; i<conf->raid_disks; i++)
1414 ndisks[i] = conf->disks[i];
1415 kfree(conf->disks);
1416 conf->disks = ndisks;
1417 } else
1418 err = -ENOMEM;
1419
1420 get_online_cpus();
1421 conf->scribble_len = scribble_len(newsize);
1422 for_each_present_cpu(cpu) {
1423 struct raid5_percpu *percpu;
1424 void *scribble;
1425
1426 percpu = per_cpu_ptr(conf->percpu, cpu);
1427 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1428
1429 if (scribble) {
1430 kfree(percpu->scribble);
1431 percpu->scribble = scribble;
1432 } else {
1433 err = -ENOMEM;
1434 break;
1435 }
1436 }
1437 put_online_cpus();
1438
1439 /* Step 4, return new stripes to service */
1440 while(!list_empty(&newstripes)) {
1441 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1442 list_del_init(&nsh->lru);
1443
1444 for (i=conf->raid_disks; i < newsize; i++)
1445 if (nsh->dev[i].page == NULL) {
1446 struct page *p = alloc_page(GFP_NOIO);
1447 nsh->dev[i].page = p;
1448 if (!p)
1449 err = -ENOMEM;
1450 }
1451 release_stripe(nsh);
1452 }
1453 /* critical section pass, GFP_NOIO no longer needed */
1454
1455 conf->slab_cache = sc;
1456 conf->active_name = 1-conf->active_name;
1457 conf->pool_size = newsize;
1458 return err;
1459 }
1460
1461 static int drop_one_stripe(raid5_conf_t *conf)
1462 {
1463 struct stripe_head *sh;
1464
1465 spin_lock_irq(&conf->device_lock);
1466 sh = get_free_stripe(conf);
1467 spin_unlock_irq(&conf->device_lock);
1468 if (!sh)
1469 return 0;
1470 BUG_ON(atomic_read(&sh->count));
1471 shrink_buffers(sh, conf->pool_size);
1472 kmem_cache_free(conf->slab_cache, sh);
1473 atomic_dec(&conf->active_stripes);
1474 return 1;
1475 }
1476
1477 static void shrink_stripes(raid5_conf_t *conf)
1478 {
1479 while (drop_one_stripe(conf))
1480 ;
1481
1482 if (conf->slab_cache)
1483 kmem_cache_destroy(conf->slab_cache);
1484 conf->slab_cache = NULL;
1485 }
1486
1487 static void raid5_end_read_request(struct bio * bi, int error)
1488 {
1489 struct stripe_head *sh = bi->bi_private;
1490 raid5_conf_t *conf = sh->raid_conf;
1491 int disks = sh->disks, i;
1492 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1493 char b[BDEVNAME_SIZE];
1494 mdk_rdev_t *rdev;
1495
1496
1497 for (i=0 ; i<disks; i++)
1498 if (bi == &sh->dev[i].req)
1499 break;
1500
1501 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1502 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1503 uptodate);
1504 if (i == disks) {
1505 BUG();
1506 return;
1507 }
1508
1509 if (uptodate) {
1510 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1511 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1512 rdev = conf->disks[i].rdev;
1513 printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1514 " (%lu sectors at %llu on %s)\n",
1515 mdname(conf->mddev), STRIPE_SECTORS,
1516 (unsigned long long)(sh->sector
1517 + rdev->data_offset),
1518 bdevname(rdev->bdev, b));
1519 clear_bit(R5_ReadError, &sh->dev[i].flags);
1520 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1521 }
1522 if (atomic_read(&conf->disks[i].rdev->read_errors))
1523 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1524 } else {
1525 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1526 int retry = 0;
1527 rdev = conf->disks[i].rdev;
1528
1529 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1530 atomic_inc(&rdev->read_errors);
1531 if (conf->mddev->degraded >= conf->max_degraded)
1532 printk_rl(KERN_WARNING
1533 "md/raid:%s: read error not correctable "
1534 "(sector %llu on %s).\n",
1535 mdname(conf->mddev),
1536 (unsigned long long)(sh->sector
1537 + rdev->data_offset),
1538 bdn);
1539 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1540 /* Oh, no!!! */
1541 printk_rl(KERN_WARNING
1542 "md/raid:%s: read error NOT corrected!! "
1543 "(sector %llu on %s).\n",
1544 mdname(conf->mddev),
1545 (unsigned long long)(sh->sector
1546 + rdev->data_offset),
1547 bdn);
1548 else if (atomic_read(&rdev->read_errors)
1549 > conf->max_nr_stripes)
1550 printk(KERN_WARNING
1551 "md/raid:%s: Too many read errors, failing device %s.\n",
1552 mdname(conf->mddev), bdn);
1553 else
1554 retry = 1;
1555 if (retry)
1556 set_bit(R5_ReadError, &sh->dev[i].flags);
1557 else {
1558 clear_bit(R5_ReadError, &sh->dev[i].flags);
1559 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1560 md_error(conf->mddev, rdev);
1561 }
1562 }
1563 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1564 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1565 set_bit(STRIPE_HANDLE, &sh->state);
1566 release_stripe(sh);
1567 }
1568
1569 static void raid5_end_write_request(struct bio *bi, int error)
1570 {
1571 struct stripe_head *sh = bi->bi_private;
1572 raid5_conf_t *conf = sh->raid_conf;
1573 int disks = sh->disks, i;
1574 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1575
1576 for (i=0 ; i<disks; i++)
1577 if (bi == &sh->dev[i].req)
1578 break;
1579
1580 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1581 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1582 uptodate);
1583 if (i == disks) {
1584 BUG();
1585 return;
1586 }
1587
1588 if (!uptodate)
1589 md_error(conf->mddev, conf->disks[i].rdev);
1590
1591 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1592
1593 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1594 set_bit(STRIPE_HANDLE, &sh->state);
1595 release_stripe(sh);
1596 }
1597
1598
1599 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1600
1601 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1602 {
1603 struct r5dev *dev = &sh->dev[i];
1604
1605 bio_init(&dev->req);
1606 dev->req.bi_io_vec = &dev->vec;
1607 dev->req.bi_vcnt++;
1608 dev->req.bi_max_vecs++;
1609 dev->vec.bv_page = dev->page;
1610 dev->vec.bv_len = STRIPE_SIZE;
1611 dev->vec.bv_offset = 0;
1612
1613 dev->req.bi_sector = sh->sector;
1614 dev->req.bi_private = sh;
1615
1616 dev->flags = 0;
1617 dev->sector = compute_blocknr(sh, i, previous);
1618 }
1619
1620 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1621 {
1622 char b[BDEVNAME_SIZE];
1623 raid5_conf_t *conf = mddev->private;
1624 pr_debug("raid456: error called\n");
1625
1626 if (!test_bit(Faulty, &rdev->flags)) {
1627 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1628 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1629 unsigned long flags;
1630 spin_lock_irqsave(&conf->device_lock, flags);
1631 mddev->degraded++;
1632 spin_unlock_irqrestore(&conf->device_lock, flags);
1633 /*
1634 * if recovery was running, make sure it aborts.
1635 */
1636 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1637 }
1638 set_bit(Faulty, &rdev->flags);
1639 printk(KERN_ALERT
1640 "md/raid:%s: Disk failure on %s, disabling device.\n"
1641 KERN_ALERT
1642 "md/raid:%s: Operation continuing on %d devices.\n",
1643 mdname(mddev),
1644 bdevname(rdev->bdev, b),
1645 mdname(mddev),
1646 conf->raid_disks - mddev->degraded);
1647 }
1648 }
1649
1650 /*
1651 * Input: a 'big' sector number,
1652 * Output: index of the data and parity disk, and the sector # in them.
1653 */
1654 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1655 int previous, int *dd_idx,
1656 struct stripe_head *sh)
1657 {
1658 sector_t stripe, stripe2;
1659 sector_t chunk_number;
1660 unsigned int chunk_offset;
1661 int pd_idx, qd_idx;
1662 int ddf_layout = 0;
1663 sector_t new_sector;
1664 int algorithm = previous ? conf->prev_algo
1665 : conf->algorithm;
1666 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1667 : conf->chunk_sectors;
1668 int raid_disks = previous ? conf->previous_raid_disks
1669 : conf->raid_disks;
1670 int data_disks = raid_disks - conf->max_degraded;
1671
1672 /* First compute the information on this sector */
1673
1674 /*
1675 * Compute the chunk number and the sector offset inside the chunk
1676 */
1677 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1678 chunk_number = r_sector;
1679
1680 /*
1681 * Compute the stripe number
1682 */
1683 stripe = chunk_number;
1684 *dd_idx = sector_div(stripe, data_disks);
1685 stripe2 = stripe;
1686 /*
1687 * Select the parity disk based on the user selected algorithm.
1688 */
1689 pd_idx = qd_idx = ~0;
1690 switch(conf->level) {
1691 case 4:
1692 pd_idx = data_disks;
1693 break;
1694 case 5:
1695 switch (algorithm) {
1696 case ALGORITHM_LEFT_ASYMMETRIC:
1697 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1698 if (*dd_idx >= pd_idx)
1699 (*dd_idx)++;
1700 break;
1701 case ALGORITHM_RIGHT_ASYMMETRIC:
1702 pd_idx = sector_div(stripe2, raid_disks);
1703 if (*dd_idx >= pd_idx)
1704 (*dd_idx)++;
1705 break;
1706 case ALGORITHM_LEFT_SYMMETRIC:
1707 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1708 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1709 break;
1710 case ALGORITHM_RIGHT_SYMMETRIC:
1711 pd_idx = sector_div(stripe2, raid_disks);
1712 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1713 break;
1714 case ALGORITHM_PARITY_0:
1715 pd_idx = 0;
1716 (*dd_idx)++;
1717 break;
1718 case ALGORITHM_PARITY_N:
1719 pd_idx = data_disks;
1720 break;
1721 default:
1722 BUG();
1723 }
1724 break;
1725 case 6:
1726
1727 switch (algorithm) {
1728 case ALGORITHM_LEFT_ASYMMETRIC:
1729 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1730 qd_idx = pd_idx + 1;
1731 if (pd_idx == raid_disks-1) {
1732 (*dd_idx)++; /* Q D D D P */
1733 qd_idx = 0;
1734 } else if (*dd_idx >= pd_idx)
1735 (*dd_idx) += 2; /* D D P Q D */
1736 break;
1737 case ALGORITHM_RIGHT_ASYMMETRIC:
1738 pd_idx = sector_div(stripe2, raid_disks);
1739 qd_idx = pd_idx + 1;
1740 if (pd_idx == raid_disks-1) {
1741 (*dd_idx)++; /* Q D D D P */
1742 qd_idx = 0;
1743 } else if (*dd_idx >= pd_idx)
1744 (*dd_idx) += 2; /* D D P Q D */
1745 break;
1746 case ALGORITHM_LEFT_SYMMETRIC:
1747 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1748 qd_idx = (pd_idx + 1) % raid_disks;
1749 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1750 break;
1751 case ALGORITHM_RIGHT_SYMMETRIC:
1752 pd_idx = sector_div(stripe2, raid_disks);
1753 qd_idx = (pd_idx + 1) % raid_disks;
1754 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1755 break;
1756
1757 case ALGORITHM_PARITY_0:
1758 pd_idx = 0;
1759 qd_idx = 1;
1760 (*dd_idx) += 2;
1761 break;
1762 case ALGORITHM_PARITY_N:
1763 pd_idx = data_disks;
1764 qd_idx = data_disks + 1;
1765 break;
1766
1767 case ALGORITHM_ROTATING_ZERO_RESTART:
1768 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1769 * of blocks for computing Q is different.
1770 */
1771 pd_idx = sector_div(stripe2, raid_disks);
1772 qd_idx = pd_idx + 1;
1773 if (pd_idx == raid_disks-1) {
1774 (*dd_idx)++; /* Q D D D P */
1775 qd_idx = 0;
1776 } else if (*dd_idx >= pd_idx)
1777 (*dd_idx) += 2; /* D D P Q D */
1778 ddf_layout = 1;
1779 break;
1780
1781 case ALGORITHM_ROTATING_N_RESTART:
1782 /* Same a left_asymmetric, by first stripe is
1783 * D D D P Q rather than
1784 * Q D D D P
1785 */
1786 stripe2 += 1;
1787 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1788 qd_idx = pd_idx + 1;
1789 if (pd_idx == raid_disks-1) {
1790 (*dd_idx)++; /* Q D D D P */
1791 qd_idx = 0;
1792 } else if (*dd_idx >= pd_idx)
1793 (*dd_idx) += 2; /* D D P Q D */
1794 ddf_layout = 1;
1795 break;
1796
1797 case ALGORITHM_ROTATING_N_CONTINUE:
1798 /* Same as left_symmetric but Q is before P */
1799 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1800 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1801 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1802 ddf_layout = 1;
1803 break;
1804
1805 case ALGORITHM_LEFT_ASYMMETRIC_6:
1806 /* RAID5 left_asymmetric, with Q on last device */
1807 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1808 if (*dd_idx >= pd_idx)
1809 (*dd_idx)++;
1810 qd_idx = raid_disks - 1;
1811 break;
1812
1813 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1814 pd_idx = sector_div(stripe2, raid_disks-1);
1815 if (*dd_idx >= pd_idx)
1816 (*dd_idx)++;
1817 qd_idx = raid_disks - 1;
1818 break;
1819
1820 case ALGORITHM_LEFT_SYMMETRIC_6:
1821 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1822 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1823 qd_idx = raid_disks - 1;
1824 break;
1825
1826 case ALGORITHM_RIGHT_SYMMETRIC_6:
1827 pd_idx = sector_div(stripe2, raid_disks-1);
1828 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1829 qd_idx = raid_disks - 1;
1830 break;
1831
1832 case ALGORITHM_PARITY_0_6:
1833 pd_idx = 0;
1834 (*dd_idx)++;
1835 qd_idx = raid_disks - 1;
1836 break;
1837
1838 default:
1839 BUG();
1840 }
1841 break;
1842 }
1843
1844 if (sh) {
1845 sh->pd_idx = pd_idx;
1846 sh->qd_idx = qd_idx;
1847 sh->ddf_layout = ddf_layout;
1848 }
1849 /*
1850 * Finally, compute the new sector number
1851 */
1852 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1853 return new_sector;
1854 }
1855
1856
1857 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1858 {
1859 raid5_conf_t *conf = sh->raid_conf;
1860 int raid_disks = sh->disks;
1861 int data_disks = raid_disks - conf->max_degraded;
1862 sector_t new_sector = sh->sector, check;
1863 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1864 : conf->chunk_sectors;
1865 int algorithm = previous ? conf->prev_algo
1866 : conf->algorithm;
1867 sector_t stripe;
1868 int chunk_offset;
1869 sector_t chunk_number;
1870 int dummy1, dd_idx = i;
1871 sector_t r_sector;
1872 struct stripe_head sh2;
1873
1874
1875 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1876 stripe = new_sector;
1877
1878 if (i == sh->pd_idx)
1879 return 0;
1880 switch(conf->level) {
1881 case 4: break;
1882 case 5:
1883 switch (algorithm) {
1884 case ALGORITHM_LEFT_ASYMMETRIC:
1885 case ALGORITHM_RIGHT_ASYMMETRIC:
1886 if (i > sh->pd_idx)
1887 i--;
1888 break;
1889 case ALGORITHM_LEFT_SYMMETRIC:
1890 case ALGORITHM_RIGHT_SYMMETRIC:
1891 if (i < sh->pd_idx)
1892 i += raid_disks;
1893 i -= (sh->pd_idx + 1);
1894 break;
1895 case ALGORITHM_PARITY_0:
1896 i -= 1;
1897 break;
1898 case ALGORITHM_PARITY_N:
1899 break;
1900 default:
1901 BUG();
1902 }
1903 break;
1904 case 6:
1905 if (i == sh->qd_idx)
1906 return 0; /* It is the Q disk */
1907 switch (algorithm) {
1908 case ALGORITHM_LEFT_ASYMMETRIC:
1909 case ALGORITHM_RIGHT_ASYMMETRIC:
1910 case ALGORITHM_ROTATING_ZERO_RESTART:
1911 case ALGORITHM_ROTATING_N_RESTART:
1912 if (sh->pd_idx == raid_disks-1)
1913 i--; /* Q D D D P */
1914 else if (i > sh->pd_idx)
1915 i -= 2; /* D D P Q D */
1916 break;
1917 case ALGORITHM_LEFT_SYMMETRIC:
1918 case ALGORITHM_RIGHT_SYMMETRIC:
1919 if (sh->pd_idx == raid_disks-1)
1920 i--; /* Q D D D P */
1921 else {
1922 /* D D P Q D */
1923 if (i < sh->pd_idx)
1924 i += raid_disks;
1925 i -= (sh->pd_idx + 2);
1926 }
1927 break;
1928 case ALGORITHM_PARITY_0:
1929 i -= 2;
1930 break;
1931 case ALGORITHM_PARITY_N:
1932 break;
1933 case ALGORITHM_ROTATING_N_CONTINUE:
1934 /* Like left_symmetric, but P is before Q */
1935 if (sh->pd_idx == 0)
1936 i--; /* P D D D Q */
1937 else {
1938 /* D D Q P D */
1939 if (i < sh->pd_idx)
1940 i += raid_disks;
1941 i -= (sh->pd_idx + 1);
1942 }
1943 break;
1944 case ALGORITHM_LEFT_ASYMMETRIC_6:
1945 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1946 if (i > sh->pd_idx)
1947 i--;
1948 break;
1949 case ALGORITHM_LEFT_SYMMETRIC_6:
1950 case ALGORITHM_RIGHT_SYMMETRIC_6:
1951 if (i < sh->pd_idx)
1952 i += data_disks + 1;
1953 i -= (sh->pd_idx + 1);
1954 break;
1955 case ALGORITHM_PARITY_0_6:
1956 i -= 1;
1957 break;
1958 default:
1959 BUG();
1960 }
1961 break;
1962 }
1963
1964 chunk_number = stripe * data_disks + i;
1965 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1966
1967 check = raid5_compute_sector(conf, r_sector,
1968 previous, &dummy1, &sh2);
1969 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1970 || sh2.qd_idx != sh->qd_idx) {
1971 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
1972 mdname(conf->mddev));
1973 return 0;
1974 }
1975 return r_sector;
1976 }
1977
1978
1979 static void
1980 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1981 int rcw, int expand)
1982 {
1983 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1984 raid5_conf_t *conf = sh->raid_conf;
1985 int level = conf->level;
1986
1987 if (rcw) {
1988 /* if we are not expanding this is a proper write request, and
1989 * there will be bios with new data to be drained into the
1990 * stripe cache
1991 */
1992 if (!expand) {
1993 sh->reconstruct_state = reconstruct_state_drain_run;
1994 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1995 } else
1996 sh->reconstruct_state = reconstruct_state_run;
1997
1998 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
1999
2000 for (i = disks; i--; ) {
2001 struct r5dev *dev = &sh->dev[i];
2002
2003 if (dev->towrite) {
2004 set_bit(R5_LOCKED, &dev->flags);
2005 set_bit(R5_Wantdrain, &dev->flags);
2006 if (!expand)
2007 clear_bit(R5_UPTODATE, &dev->flags);
2008 s->locked++;
2009 }
2010 }
2011 if (s->locked + conf->max_degraded == disks)
2012 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2013 atomic_inc(&conf->pending_full_writes);
2014 } else {
2015 BUG_ON(level == 6);
2016 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2017 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2018
2019 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2020 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2021 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2022 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2023
2024 for (i = disks; i--; ) {
2025 struct r5dev *dev = &sh->dev[i];
2026 if (i == pd_idx)
2027 continue;
2028
2029 if (dev->towrite &&
2030 (test_bit(R5_UPTODATE, &dev->flags) ||
2031 test_bit(R5_Wantcompute, &dev->flags))) {
2032 set_bit(R5_Wantdrain, &dev->flags);
2033 set_bit(R5_LOCKED, &dev->flags);
2034 clear_bit(R5_UPTODATE, &dev->flags);
2035 s->locked++;
2036 }
2037 }
2038 }
2039
2040 /* keep the parity disk(s) locked while asynchronous operations
2041 * are in flight
2042 */
2043 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2044 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2045 s->locked++;
2046
2047 if (level == 6) {
2048 int qd_idx = sh->qd_idx;
2049 struct r5dev *dev = &sh->dev[qd_idx];
2050
2051 set_bit(R5_LOCKED, &dev->flags);
2052 clear_bit(R5_UPTODATE, &dev->flags);
2053 s->locked++;
2054 }
2055
2056 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2057 __func__, (unsigned long long)sh->sector,
2058 s->locked, s->ops_request);
2059 }
2060
2061 /*
2062 * Each stripe/dev can have one or more bion attached.
2063 * toread/towrite point to the first in a chain.
2064 * The bi_next chain must be in order.
2065 */
2066 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2067 {
2068 struct bio **bip;
2069 raid5_conf_t *conf = sh->raid_conf;
2070 int firstwrite=0;
2071
2072 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2073 (unsigned long long)bi->bi_sector,
2074 (unsigned long long)sh->sector);
2075
2076
2077 spin_lock(&sh->lock);
2078 spin_lock_irq(&conf->device_lock);
2079 if (forwrite) {
2080 bip = &sh->dev[dd_idx].towrite;
2081 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2082 firstwrite = 1;
2083 } else
2084 bip = &sh->dev[dd_idx].toread;
2085 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2086 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2087 goto overlap;
2088 bip = & (*bip)->bi_next;
2089 }
2090 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2091 goto overlap;
2092
2093 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2094 if (*bip)
2095 bi->bi_next = *bip;
2096 *bip = bi;
2097 bi->bi_phys_segments++;
2098 spin_unlock_irq(&conf->device_lock);
2099 spin_unlock(&sh->lock);
2100
2101 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2102 (unsigned long long)bi->bi_sector,
2103 (unsigned long long)sh->sector, dd_idx);
2104
2105 if (conf->mddev->bitmap && firstwrite) {
2106 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2107 STRIPE_SECTORS, 0);
2108 sh->bm_seq = conf->seq_flush+1;
2109 set_bit(STRIPE_BIT_DELAY, &sh->state);
2110 }
2111
2112 if (forwrite) {
2113 /* check if page is covered */
2114 sector_t sector = sh->dev[dd_idx].sector;
2115 for (bi=sh->dev[dd_idx].towrite;
2116 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2117 bi && bi->bi_sector <= sector;
2118 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2119 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2120 sector = bi->bi_sector + (bi->bi_size>>9);
2121 }
2122 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2123 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2124 }
2125 return 1;
2126
2127 overlap:
2128 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2129 spin_unlock_irq(&conf->device_lock);
2130 spin_unlock(&sh->lock);
2131 return 0;
2132 }
2133
2134 static void end_reshape(raid5_conf_t *conf);
2135
2136 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2137 struct stripe_head *sh)
2138 {
2139 int sectors_per_chunk =
2140 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2141 int dd_idx;
2142 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2143 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2144
2145 raid5_compute_sector(conf,
2146 stripe * (disks - conf->max_degraded)
2147 *sectors_per_chunk + chunk_offset,
2148 previous,
2149 &dd_idx, sh);
2150 }
2151
2152 static void
2153 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2154 struct stripe_head_state *s, int disks,
2155 struct bio **return_bi)
2156 {
2157 int i;
2158 for (i = disks; i--; ) {
2159 struct bio *bi;
2160 int bitmap_end = 0;
2161
2162 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2163 mdk_rdev_t *rdev;
2164 rcu_read_lock();
2165 rdev = rcu_dereference(conf->disks[i].rdev);
2166 if (rdev && test_bit(In_sync, &rdev->flags))
2167 /* multiple read failures in one stripe */
2168 md_error(conf->mddev, rdev);
2169 rcu_read_unlock();
2170 }
2171 spin_lock_irq(&conf->device_lock);
2172 /* fail all writes first */
2173 bi = sh->dev[i].towrite;
2174 sh->dev[i].towrite = NULL;
2175 if (bi) {
2176 s->to_write--;
2177 bitmap_end = 1;
2178 }
2179
2180 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2181 wake_up(&conf->wait_for_overlap);
2182
2183 while (bi && bi->bi_sector <
2184 sh->dev[i].sector + STRIPE_SECTORS) {
2185 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2186 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2187 if (!raid5_dec_bi_phys_segments(bi)) {
2188 md_write_end(conf->mddev);
2189 bi->bi_next = *return_bi;
2190 *return_bi = bi;
2191 }
2192 bi = nextbi;
2193 }
2194 /* and fail all 'written' */
2195 bi = sh->dev[i].written;
2196 sh->dev[i].written = NULL;
2197 if (bi) bitmap_end = 1;
2198 while (bi && bi->bi_sector <
2199 sh->dev[i].sector + STRIPE_SECTORS) {
2200 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2201 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2202 if (!raid5_dec_bi_phys_segments(bi)) {
2203 md_write_end(conf->mddev);
2204 bi->bi_next = *return_bi;
2205 *return_bi = bi;
2206 }
2207 bi = bi2;
2208 }
2209
2210 /* fail any reads if this device is non-operational and
2211 * the data has not reached the cache yet.
2212 */
2213 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2214 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2215 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2216 bi = sh->dev[i].toread;
2217 sh->dev[i].toread = NULL;
2218 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2219 wake_up(&conf->wait_for_overlap);
2220 if (bi) s->to_read--;
2221 while (bi && bi->bi_sector <
2222 sh->dev[i].sector + STRIPE_SECTORS) {
2223 struct bio *nextbi =
2224 r5_next_bio(bi, sh->dev[i].sector);
2225 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2226 if (!raid5_dec_bi_phys_segments(bi)) {
2227 bi->bi_next = *return_bi;
2228 *return_bi = bi;
2229 }
2230 bi = nextbi;
2231 }
2232 }
2233 spin_unlock_irq(&conf->device_lock);
2234 if (bitmap_end)
2235 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2236 STRIPE_SECTORS, 0, 0);
2237 }
2238
2239 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2240 if (atomic_dec_and_test(&conf->pending_full_writes))
2241 md_wakeup_thread(conf->mddev->thread);
2242 }
2243
2244 /* fetch_block5 - checks the given member device to see if its data needs
2245 * to be read or computed to satisfy a request.
2246 *
2247 * Returns 1 when no more member devices need to be checked, otherwise returns
2248 * 0 to tell the loop in handle_stripe_fill5 to continue
2249 */
2250 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2251 int disk_idx, int disks)
2252 {
2253 struct r5dev *dev = &sh->dev[disk_idx];
2254 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2255
2256 /* is the data in this block needed, and can we get it? */
2257 if (!test_bit(R5_LOCKED, &dev->flags) &&
2258 !test_bit(R5_UPTODATE, &dev->flags) &&
2259 (dev->toread ||
2260 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2261 s->syncing || s->expanding ||
2262 (s->failed &&
2263 (failed_dev->toread ||
2264 (failed_dev->towrite &&
2265 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2266 /* We would like to get this block, possibly by computing it,
2267 * otherwise read it if the backing disk is insync
2268 */
2269 if ((s->uptodate == disks - 1) &&
2270 (s->failed && disk_idx == s->failed_num)) {
2271 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2272 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2273 set_bit(R5_Wantcompute, &dev->flags);
2274 sh->ops.target = disk_idx;
2275 sh->ops.target2 = -1;
2276 s->req_compute = 1;
2277 /* Careful: from this point on 'uptodate' is in the eye
2278 * of raid_run_ops which services 'compute' operations
2279 * before writes. R5_Wantcompute flags a block that will
2280 * be R5_UPTODATE by the time it is needed for a
2281 * subsequent operation.
2282 */
2283 s->uptodate++;
2284 return 1; /* uptodate + compute == disks */
2285 } else if (test_bit(R5_Insync, &dev->flags)) {
2286 set_bit(R5_LOCKED, &dev->flags);
2287 set_bit(R5_Wantread, &dev->flags);
2288 s->locked++;
2289 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2290 s->syncing);
2291 }
2292 }
2293
2294 return 0;
2295 }
2296
2297 /**
2298 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2299 */
2300 static void handle_stripe_fill5(struct stripe_head *sh,
2301 struct stripe_head_state *s, int disks)
2302 {
2303 int i;
2304
2305 /* look for blocks to read/compute, skip this if a compute
2306 * is already in flight, or if the stripe contents are in the
2307 * midst of changing due to a write
2308 */
2309 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2310 !sh->reconstruct_state)
2311 for (i = disks; i--; )
2312 if (fetch_block5(sh, s, i, disks))
2313 break;
2314 set_bit(STRIPE_HANDLE, &sh->state);
2315 }
2316
2317 /* fetch_block6 - checks the given member device to see if its data needs
2318 * to be read or computed to satisfy a request.
2319 *
2320 * Returns 1 when no more member devices need to be checked, otherwise returns
2321 * 0 to tell the loop in handle_stripe_fill6 to continue
2322 */
2323 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2324 struct r6_state *r6s, int disk_idx, int disks)
2325 {
2326 struct r5dev *dev = &sh->dev[disk_idx];
2327 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2328 &sh->dev[r6s->failed_num[1]] };
2329
2330 if (!test_bit(R5_LOCKED, &dev->flags) &&
2331 !test_bit(R5_UPTODATE, &dev->flags) &&
2332 (dev->toread ||
2333 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2334 s->syncing || s->expanding ||
2335 (s->failed >= 1 &&
2336 (fdev[0]->toread || s->to_write)) ||
2337 (s->failed >= 2 &&
2338 (fdev[1]->toread || s->to_write)))) {
2339 /* we would like to get this block, possibly by computing it,
2340 * otherwise read it if the backing disk is insync
2341 */
2342 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2343 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2344 if ((s->uptodate == disks - 1) &&
2345 (s->failed && (disk_idx == r6s->failed_num[0] ||
2346 disk_idx == r6s->failed_num[1]))) {
2347 /* have disk failed, and we're requested to fetch it;
2348 * do compute it
2349 */
2350 pr_debug("Computing stripe %llu block %d\n",
2351 (unsigned long long)sh->sector, disk_idx);
2352 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2353 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2354 set_bit(R5_Wantcompute, &dev->flags);
2355 sh->ops.target = disk_idx;
2356 sh->ops.target2 = -1; /* no 2nd target */
2357 s->req_compute = 1;
2358 s->uptodate++;
2359 return 1;
2360 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2361 /* Computing 2-failure is *very* expensive; only
2362 * do it if failed >= 2
2363 */
2364 int other;
2365 for (other = disks; other--; ) {
2366 if (other == disk_idx)
2367 continue;
2368 if (!test_bit(R5_UPTODATE,
2369 &sh->dev[other].flags))
2370 break;
2371 }
2372 BUG_ON(other < 0);
2373 pr_debug("Computing stripe %llu blocks %d,%d\n",
2374 (unsigned long long)sh->sector,
2375 disk_idx, other);
2376 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2377 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2378 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2379 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2380 sh->ops.target = disk_idx;
2381 sh->ops.target2 = other;
2382 s->uptodate += 2;
2383 s->req_compute = 1;
2384 return 1;
2385 } else if (test_bit(R5_Insync, &dev->flags)) {
2386 set_bit(R5_LOCKED, &dev->flags);
2387 set_bit(R5_Wantread, &dev->flags);
2388 s->locked++;
2389 pr_debug("Reading block %d (sync=%d)\n",
2390 disk_idx, s->syncing);
2391 }
2392 }
2393
2394 return 0;
2395 }
2396
2397 /**
2398 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2399 */
2400 static void handle_stripe_fill6(struct stripe_head *sh,
2401 struct stripe_head_state *s, struct r6_state *r6s,
2402 int disks)
2403 {
2404 int i;
2405
2406 /* look for blocks to read/compute, skip this if a compute
2407 * is already in flight, or if the stripe contents are in the
2408 * midst of changing due to a write
2409 */
2410 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2411 !sh->reconstruct_state)
2412 for (i = disks; i--; )
2413 if (fetch_block6(sh, s, r6s, i, disks))
2414 break;
2415 set_bit(STRIPE_HANDLE, &sh->state);
2416 }
2417
2418
2419 /* handle_stripe_clean_event
2420 * any written block on an uptodate or failed drive can be returned.
2421 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2422 * never LOCKED, so we don't need to test 'failed' directly.
2423 */
2424 static void handle_stripe_clean_event(raid5_conf_t *conf,
2425 struct stripe_head *sh, int disks, struct bio **return_bi)
2426 {
2427 int i;
2428 struct r5dev *dev;
2429
2430 for (i = disks; i--; )
2431 if (sh->dev[i].written) {
2432 dev = &sh->dev[i];
2433 if (!test_bit(R5_LOCKED, &dev->flags) &&
2434 test_bit(R5_UPTODATE, &dev->flags)) {
2435 /* We can return any write requests */
2436 struct bio *wbi, *wbi2;
2437 int bitmap_end = 0;
2438 pr_debug("Return write for disc %d\n", i);
2439 spin_lock_irq(&conf->device_lock);
2440 wbi = dev->written;
2441 dev->written = NULL;
2442 while (wbi && wbi->bi_sector <
2443 dev->sector + STRIPE_SECTORS) {
2444 wbi2 = r5_next_bio(wbi, dev->sector);
2445 if (!raid5_dec_bi_phys_segments(wbi)) {
2446 md_write_end(conf->mddev);
2447 wbi->bi_next = *return_bi;
2448 *return_bi = wbi;
2449 }
2450 wbi = wbi2;
2451 }
2452 if (dev->towrite == NULL)
2453 bitmap_end = 1;
2454 spin_unlock_irq(&conf->device_lock);
2455 if (bitmap_end)
2456 bitmap_endwrite(conf->mddev->bitmap,
2457 sh->sector,
2458 STRIPE_SECTORS,
2459 !test_bit(STRIPE_DEGRADED, &sh->state),
2460 0);
2461 }
2462 }
2463
2464 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2465 if (atomic_dec_and_test(&conf->pending_full_writes))
2466 md_wakeup_thread(conf->mddev->thread);
2467 }
2468
2469 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2470 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2471 {
2472 int rmw = 0, rcw = 0, i;
2473 for (i = disks; i--; ) {
2474 /* would I have to read this buffer for read_modify_write */
2475 struct r5dev *dev = &sh->dev[i];
2476 if ((dev->towrite || i == sh->pd_idx) &&
2477 !test_bit(R5_LOCKED, &dev->flags) &&
2478 !(test_bit(R5_UPTODATE, &dev->flags) ||
2479 test_bit(R5_Wantcompute, &dev->flags))) {
2480 if (test_bit(R5_Insync, &dev->flags))
2481 rmw++;
2482 else
2483 rmw += 2*disks; /* cannot read it */
2484 }
2485 /* Would I have to read this buffer for reconstruct_write */
2486 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2487 !test_bit(R5_LOCKED, &dev->flags) &&
2488 !(test_bit(R5_UPTODATE, &dev->flags) ||
2489 test_bit(R5_Wantcompute, &dev->flags))) {
2490 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2491 else
2492 rcw += 2*disks;
2493 }
2494 }
2495 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2496 (unsigned long long)sh->sector, rmw, rcw);
2497 set_bit(STRIPE_HANDLE, &sh->state);
2498 if (rmw < rcw && rmw > 0)
2499 /* prefer read-modify-write, but need to get some data */
2500 for (i = disks; i--; ) {
2501 struct r5dev *dev = &sh->dev[i];
2502 if ((dev->towrite || i == sh->pd_idx) &&
2503 !test_bit(R5_LOCKED, &dev->flags) &&
2504 !(test_bit(R5_UPTODATE, &dev->flags) ||
2505 test_bit(R5_Wantcompute, &dev->flags)) &&
2506 test_bit(R5_Insync, &dev->flags)) {
2507 if (
2508 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2509 pr_debug("Read_old block "
2510 "%d for r-m-w\n", i);
2511 set_bit(R5_LOCKED, &dev->flags);
2512 set_bit(R5_Wantread, &dev->flags);
2513 s->locked++;
2514 } else {
2515 set_bit(STRIPE_DELAYED, &sh->state);
2516 set_bit(STRIPE_HANDLE, &sh->state);
2517 }
2518 }
2519 }
2520 if (rcw <= rmw && rcw > 0)
2521 /* want reconstruct write, but need to get some data */
2522 for (i = disks; i--; ) {
2523 struct r5dev *dev = &sh->dev[i];
2524 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2525 i != sh->pd_idx &&
2526 !test_bit(R5_LOCKED, &dev->flags) &&
2527 !(test_bit(R5_UPTODATE, &dev->flags) ||
2528 test_bit(R5_Wantcompute, &dev->flags)) &&
2529 test_bit(R5_Insync, &dev->flags)) {
2530 if (
2531 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2532 pr_debug("Read_old block "
2533 "%d for Reconstruct\n", i);
2534 set_bit(R5_LOCKED, &dev->flags);
2535 set_bit(R5_Wantread, &dev->flags);
2536 s->locked++;
2537 } else {
2538 set_bit(STRIPE_DELAYED, &sh->state);
2539 set_bit(STRIPE_HANDLE, &sh->state);
2540 }
2541 }
2542 }
2543 /* now if nothing is locked, and if we have enough data,
2544 * we can start a write request
2545 */
2546 /* since handle_stripe can be called at any time we need to handle the
2547 * case where a compute block operation has been submitted and then a
2548 * subsequent call wants to start a write request. raid_run_ops only
2549 * handles the case where compute block and reconstruct are requested
2550 * simultaneously. If this is not the case then new writes need to be
2551 * held off until the compute completes.
2552 */
2553 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2554 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2555 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2556 schedule_reconstruction(sh, s, rcw == 0, 0);
2557 }
2558
2559 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2560 struct stripe_head *sh, struct stripe_head_state *s,
2561 struct r6_state *r6s, int disks)
2562 {
2563 int rcw = 0, pd_idx = sh->pd_idx, i;
2564 int qd_idx = sh->qd_idx;
2565
2566 set_bit(STRIPE_HANDLE, &sh->state);
2567 for (i = disks; i--; ) {
2568 struct r5dev *dev = &sh->dev[i];
2569 /* check if we haven't enough data */
2570 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2571 i != pd_idx && i != qd_idx &&
2572 !test_bit(R5_LOCKED, &dev->flags) &&
2573 !(test_bit(R5_UPTODATE, &dev->flags) ||
2574 test_bit(R5_Wantcompute, &dev->flags))) {
2575 rcw++;
2576 if (!test_bit(R5_Insync, &dev->flags))
2577 continue; /* it's a failed drive */
2578
2579 if (
2580 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2581 pr_debug("Read_old stripe %llu "
2582 "block %d for Reconstruct\n",
2583 (unsigned long long)sh->sector, i);
2584 set_bit(R5_LOCKED, &dev->flags);
2585 set_bit(R5_Wantread, &dev->flags);
2586 s->locked++;
2587 } else {
2588 pr_debug("Request delayed stripe %llu "
2589 "block %d for Reconstruct\n",
2590 (unsigned long long)sh->sector, i);
2591 set_bit(STRIPE_DELAYED, &sh->state);
2592 set_bit(STRIPE_HANDLE, &sh->state);
2593 }
2594 }
2595 }
2596 /* now if nothing is locked, and if we have enough data, we can start a
2597 * write request
2598 */
2599 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2600 s->locked == 0 && rcw == 0 &&
2601 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2602 schedule_reconstruction(sh, s, 1, 0);
2603 }
2604 }
2605
2606 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2607 struct stripe_head_state *s, int disks)
2608 {
2609 struct r5dev *dev = NULL;
2610
2611 set_bit(STRIPE_HANDLE, &sh->state);
2612
2613 switch (sh->check_state) {
2614 case check_state_idle:
2615 /* start a new check operation if there are no failures */
2616 if (s->failed == 0) {
2617 BUG_ON(s->uptodate != disks);
2618 sh->check_state = check_state_run;
2619 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2620 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2621 s->uptodate--;
2622 break;
2623 }
2624 dev = &sh->dev[s->failed_num];
2625 /* fall through */
2626 case check_state_compute_result:
2627 sh->check_state = check_state_idle;
2628 if (!dev)
2629 dev = &sh->dev[sh->pd_idx];
2630
2631 /* check that a write has not made the stripe insync */
2632 if (test_bit(STRIPE_INSYNC, &sh->state))
2633 break;
2634
2635 /* either failed parity check, or recovery is happening */
2636 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2637 BUG_ON(s->uptodate != disks);
2638
2639 set_bit(R5_LOCKED, &dev->flags);
2640 s->locked++;
2641 set_bit(R5_Wantwrite, &dev->flags);
2642
2643 clear_bit(STRIPE_DEGRADED, &sh->state);
2644 set_bit(STRIPE_INSYNC, &sh->state);
2645 break;
2646 case check_state_run:
2647 break; /* we will be called again upon completion */
2648 case check_state_check_result:
2649 sh->check_state = check_state_idle;
2650
2651 /* if a failure occurred during the check operation, leave
2652 * STRIPE_INSYNC not set and let the stripe be handled again
2653 */
2654 if (s->failed)
2655 break;
2656
2657 /* handle a successful check operation, if parity is correct
2658 * we are done. Otherwise update the mismatch count and repair
2659 * parity if !MD_RECOVERY_CHECK
2660 */
2661 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2662 /* parity is correct (on disc,
2663 * not in buffer any more)
2664 */
2665 set_bit(STRIPE_INSYNC, &sh->state);
2666 else {
2667 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2668 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2669 /* don't try to repair!! */
2670 set_bit(STRIPE_INSYNC, &sh->state);
2671 else {
2672 sh->check_state = check_state_compute_run;
2673 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2674 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2675 set_bit(R5_Wantcompute,
2676 &sh->dev[sh->pd_idx].flags);
2677 sh->ops.target = sh->pd_idx;
2678 sh->ops.target2 = -1;
2679 s->uptodate++;
2680 }
2681 }
2682 break;
2683 case check_state_compute_run:
2684 break;
2685 default:
2686 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2687 __func__, sh->check_state,
2688 (unsigned long long) sh->sector);
2689 BUG();
2690 }
2691 }
2692
2693
2694 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2695 struct stripe_head_state *s,
2696 struct r6_state *r6s, int disks)
2697 {
2698 int pd_idx = sh->pd_idx;
2699 int qd_idx = sh->qd_idx;
2700 struct r5dev *dev;
2701
2702 set_bit(STRIPE_HANDLE, &sh->state);
2703
2704 BUG_ON(s->failed > 2);
2705
2706 /* Want to check and possibly repair P and Q.
2707 * However there could be one 'failed' device, in which
2708 * case we can only check one of them, possibly using the
2709 * other to generate missing data
2710 */
2711
2712 switch (sh->check_state) {
2713 case check_state_idle:
2714 /* start a new check operation if there are < 2 failures */
2715 if (s->failed == r6s->q_failed) {
2716 /* The only possible failed device holds Q, so it
2717 * makes sense to check P (If anything else were failed,
2718 * we would have used P to recreate it).
2719 */
2720 sh->check_state = check_state_run;
2721 }
2722 if (!r6s->q_failed && s->failed < 2) {
2723 /* Q is not failed, and we didn't use it to generate
2724 * anything, so it makes sense to check it
2725 */
2726 if (sh->check_state == check_state_run)
2727 sh->check_state = check_state_run_pq;
2728 else
2729 sh->check_state = check_state_run_q;
2730 }
2731
2732 /* discard potentially stale zero_sum_result */
2733 sh->ops.zero_sum_result = 0;
2734
2735 if (sh->check_state == check_state_run) {
2736 /* async_xor_zero_sum destroys the contents of P */
2737 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2738 s->uptodate--;
2739 }
2740 if (sh->check_state >= check_state_run &&
2741 sh->check_state <= check_state_run_pq) {
2742 /* async_syndrome_zero_sum preserves P and Q, so
2743 * no need to mark them !uptodate here
2744 */
2745 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2746 break;
2747 }
2748
2749 /* we have 2-disk failure */
2750 BUG_ON(s->failed != 2);
2751 /* fall through */
2752 case check_state_compute_result:
2753 sh->check_state = check_state_idle;
2754
2755 /* check that a write has not made the stripe insync */
2756 if (test_bit(STRIPE_INSYNC, &sh->state))
2757 break;
2758
2759 /* now write out any block on a failed drive,
2760 * or P or Q if they were recomputed
2761 */
2762 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2763 if (s->failed == 2) {
2764 dev = &sh->dev[r6s->failed_num[1]];
2765 s->locked++;
2766 set_bit(R5_LOCKED, &dev->flags);
2767 set_bit(R5_Wantwrite, &dev->flags);
2768 }
2769 if (s->failed >= 1) {
2770 dev = &sh->dev[r6s->failed_num[0]];
2771 s->locked++;
2772 set_bit(R5_LOCKED, &dev->flags);
2773 set_bit(R5_Wantwrite, &dev->flags);
2774 }
2775 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2776 dev = &sh->dev[pd_idx];
2777 s->locked++;
2778 set_bit(R5_LOCKED, &dev->flags);
2779 set_bit(R5_Wantwrite, &dev->flags);
2780 }
2781 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2782 dev = &sh->dev[qd_idx];
2783 s->locked++;
2784 set_bit(R5_LOCKED, &dev->flags);
2785 set_bit(R5_Wantwrite, &dev->flags);
2786 }
2787 clear_bit(STRIPE_DEGRADED, &sh->state);
2788
2789 set_bit(STRIPE_INSYNC, &sh->state);
2790 break;
2791 case check_state_run:
2792 case check_state_run_q:
2793 case check_state_run_pq:
2794 break; /* we will be called again upon completion */
2795 case check_state_check_result:
2796 sh->check_state = check_state_idle;
2797
2798 /* handle a successful check operation, if parity is correct
2799 * we are done. Otherwise update the mismatch count and repair
2800 * parity if !MD_RECOVERY_CHECK
2801 */
2802 if (sh->ops.zero_sum_result == 0) {
2803 /* both parities are correct */
2804 if (!s->failed)
2805 set_bit(STRIPE_INSYNC, &sh->state);
2806 else {
2807 /* in contrast to the raid5 case we can validate
2808 * parity, but still have a failure to write
2809 * back
2810 */
2811 sh->check_state = check_state_compute_result;
2812 /* Returning at this point means that we may go
2813 * off and bring p and/or q uptodate again so
2814 * we make sure to check zero_sum_result again
2815 * to verify if p or q need writeback
2816 */
2817 }
2818 } else {
2819 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2820 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2821 /* don't try to repair!! */
2822 set_bit(STRIPE_INSYNC, &sh->state);
2823 else {
2824 int *target = &sh->ops.target;
2825
2826 sh->ops.target = -1;
2827 sh->ops.target2 = -1;
2828 sh->check_state = check_state_compute_run;
2829 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2830 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2831 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2832 set_bit(R5_Wantcompute,
2833 &sh->dev[pd_idx].flags);
2834 *target = pd_idx;
2835 target = &sh->ops.target2;
2836 s->uptodate++;
2837 }
2838 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2839 set_bit(R5_Wantcompute,
2840 &sh->dev[qd_idx].flags);
2841 *target = qd_idx;
2842 s->uptodate++;
2843 }
2844 }
2845 }
2846 break;
2847 case check_state_compute_run:
2848 break;
2849 default:
2850 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2851 __func__, sh->check_state,
2852 (unsigned long long) sh->sector);
2853 BUG();
2854 }
2855 }
2856
2857 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2858 struct r6_state *r6s)
2859 {
2860 int i;
2861
2862 /* We have read all the blocks in this stripe and now we need to
2863 * copy some of them into a target stripe for expand.
2864 */
2865 struct dma_async_tx_descriptor *tx = NULL;
2866 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2867 for (i = 0; i < sh->disks; i++)
2868 if (i != sh->pd_idx && i != sh->qd_idx) {
2869 int dd_idx, j;
2870 struct stripe_head *sh2;
2871 struct async_submit_ctl submit;
2872
2873 sector_t bn = compute_blocknr(sh, i, 1);
2874 sector_t s = raid5_compute_sector(conf, bn, 0,
2875 &dd_idx, NULL);
2876 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2877 if (sh2 == NULL)
2878 /* so far only the early blocks of this stripe
2879 * have been requested. When later blocks
2880 * get requested, we will try again
2881 */
2882 continue;
2883 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2884 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2885 /* must have already done this block */
2886 release_stripe(sh2);
2887 continue;
2888 }
2889
2890 /* place all the copies on one channel */
2891 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2892 tx = async_memcpy(sh2->dev[dd_idx].page,
2893 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2894 &submit);
2895
2896 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2897 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2898 for (j = 0; j < conf->raid_disks; j++)
2899 if (j != sh2->pd_idx &&
2900 (!r6s || j != sh2->qd_idx) &&
2901 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2902 break;
2903 if (j == conf->raid_disks) {
2904 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2905 set_bit(STRIPE_HANDLE, &sh2->state);
2906 }
2907 release_stripe(sh2);
2908
2909 }
2910 /* done submitting copies, wait for them to complete */
2911 if (tx) {
2912 async_tx_ack(tx);
2913 dma_wait_for_async_tx(tx);
2914 }
2915 }
2916
2917
2918 /*
2919 * handle_stripe - do things to a stripe.
2920 *
2921 * We lock the stripe and then examine the state of various bits
2922 * to see what needs to be done.
2923 * Possible results:
2924 * return some read request which now have data
2925 * return some write requests which are safely on disc
2926 * schedule a read on some buffers
2927 * schedule a write of some buffers
2928 * return confirmation of parity correctness
2929 *
2930 * buffers are taken off read_list or write_list, and bh_cache buffers
2931 * get BH_Lock set before the stripe lock is released.
2932 *
2933 */
2934
2935 static void handle_stripe5(struct stripe_head *sh)
2936 {
2937 raid5_conf_t *conf = sh->raid_conf;
2938 int disks = sh->disks, i;
2939 struct bio *return_bi = NULL;
2940 struct stripe_head_state s;
2941 struct r5dev *dev;
2942 mdk_rdev_t *blocked_rdev = NULL;
2943 int prexor;
2944 int dec_preread_active = 0;
2945
2946 memset(&s, 0, sizeof(s));
2947 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2948 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2949 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2950 sh->reconstruct_state);
2951
2952 spin_lock(&sh->lock);
2953 clear_bit(STRIPE_HANDLE, &sh->state);
2954 clear_bit(STRIPE_DELAYED, &sh->state);
2955
2956 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2957 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2958 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2959
2960 /* Now to look around and see what can be done */
2961 rcu_read_lock();
2962 for (i=disks; i--; ) {
2963 mdk_rdev_t *rdev;
2964
2965 dev = &sh->dev[i];
2966 clear_bit(R5_Insync, &dev->flags);
2967
2968 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2969 "written %p\n", i, dev->flags, dev->toread, dev->read,
2970 dev->towrite, dev->written);
2971
2972 /* maybe we can request a biofill operation
2973 *
2974 * new wantfill requests are only permitted while
2975 * ops_complete_biofill is guaranteed to be inactive
2976 */
2977 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2978 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2979 set_bit(R5_Wantfill, &dev->flags);
2980
2981 /* now count some things */
2982 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2983 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2984 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2985
2986 if (test_bit(R5_Wantfill, &dev->flags))
2987 s.to_fill++;
2988 else if (dev->toread)
2989 s.to_read++;
2990 if (dev->towrite) {
2991 s.to_write++;
2992 if (!test_bit(R5_OVERWRITE, &dev->flags))
2993 s.non_overwrite++;
2994 }
2995 if (dev->written)
2996 s.written++;
2997 rdev = rcu_dereference(conf->disks[i].rdev);
2998 if (blocked_rdev == NULL &&
2999 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3000 blocked_rdev = rdev;
3001 atomic_inc(&rdev->nr_pending);
3002 }
3003 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3004 /* The ReadError flag will just be confusing now */
3005 clear_bit(R5_ReadError, &dev->flags);
3006 clear_bit(R5_ReWrite, &dev->flags);
3007 }
3008 if (!rdev || !test_bit(In_sync, &rdev->flags)
3009 || test_bit(R5_ReadError, &dev->flags)) {
3010 s.failed++;
3011 s.failed_num = i;
3012 } else
3013 set_bit(R5_Insync, &dev->flags);
3014 }
3015 rcu_read_unlock();
3016
3017 if (unlikely(blocked_rdev)) {
3018 if (s.syncing || s.expanding || s.expanded ||
3019 s.to_write || s.written) {
3020 set_bit(STRIPE_HANDLE, &sh->state);
3021 goto unlock;
3022 }
3023 /* There is nothing for the blocked_rdev to block */
3024 rdev_dec_pending(blocked_rdev, conf->mddev);
3025 blocked_rdev = NULL;
3026 }
3027
3028 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3029 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3030 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3031 }
3032
3033 pr_debug("locked=%d uptodate=%d to_read=%d"
3034 " to_write=%d failed=%d failed_num=%d\n",
3035 s.locked, s.uptodate, s.to_read, s.to_write,
3036 s.failed, s.failed_num);
3037 /* check if the array has lost two devices and, if so, some requests might
3038 * need to be failed
3039 */
3040 if (s.failed > 1 && s.to_read+s.to_write+s.written)
3041 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3042 if (s.failed > 1 && s.syncing) {
3043 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3044 clear_bit(STRIPE_SYNCING, &sh->state);
3045 s.syncing = 0;
3046 }
3047
3048 /* might be able to return some write requests if the parity block
3049 * is safe, or on a failed drive
3050 */
3051 dev = &sh->dev[sh->pd_idx];
3052 if ( s.written &&
3053 ((test_bit(R5_Insync, &dev->flags) &&
3054 !test_bit(R5_LOCKED, &dev->flags) &&
3055 test_bit(R5_UPTODATE, &dev->flags)) ||
3056 (s.failed == 1 && s.failed_num == sh->pd_idx)))
3057 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3058
3059 /* Now we might consider reading some blocks, either to check/generate
3060 * parity, or to satisfy requests
3061 * or to load a block that is being partially written.
3062 */
3063 if (s.to_read || s.non_overwrite ||
3064 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3065 handle_stripe_fill5(sh, &s, disks);
3066
3067 /* Now we check to see if any write operations have recently
3068 * completed
3069 */
3070 prexor = 0;
3071 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3072 prexor = 1;
3073 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3074 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3075 sh->reconstruct_state = reconstruct_state_idle;
3076
3077 /* All the 'written' buffers and the parity block are ready to
3078 * be written back to disk
3079 */
3080 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3081 for (i = disks; i--; ) {
3082 dev = &sh->dev[i];
3083 if (test_bit(R5_LOCKED, &dev->flags) &&
3084 (i == sh->pd_idx || dev->written)) {
3085 pr_debug("Writing block %d\n", i);
3086 set_bit(R5_Wantwrite, &dev->flags);
3087 if (prexor)
3088 continue;
3089 if (!test_bit(R5_Insync, &dev->flags) ||
3090 (i == sh->pd_idx && s.failed == 0))
3091 set_bit(STRIPE_INSYNC, &sh->state);
3092 }
3093 }
3094 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3095 dec_preread_active = 1;
3096 }
3097
3098 /* Now to consider new write requests and what else, if anything
3099 * should be read. We do not handle new writes when:
3100 * 1/ A 'write' operation (copy+xor) is already in flight.
3101 * 2/ A 'check' operation is in flight, as it may clobber the parity
3102 * block.
3103 */
3104 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3105 handle_stripe_dirtying5(conf, sh, &s, disks);
3106
3107 /* maybe we need to check and possibly fix the parity for this stripe
3108 * Any reads will already have been scheduled, so we just see if enough
3109 * data is available. The parity check is held off while parity
3110 * dependent operations are in flight.
3111 */
3112 if (sh->check_state ||
3113 (s.syncing && s.locked == 0 &&
3114 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3115 !test_bit(STRIPE_INSYNC, &sh->state)))
3116 handle_parity_checks5(conf, sh, &s, disks);
3117
3118 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3119 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3120 clear_bit(STRIPE_SYNCING, &sh->state);
3121 }
3122
3123 /* If the failed drive is just a ReadError, then we might need to progress
3124 * the repair/check process
3125 */
3126 if (s.failed == 1 && !conf->mddev->ro &&
3127 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3128 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3129 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3130 ) {
3131 dev = &sh->dev[s.failed_num];
3132 if (!test_bit(R5_ReWrite, &dev->flags)) {
3133 set_bit(R5_Wantwrite, &dev->flags);
3134 set_bit(R5_ReWrite, &dev->flags);
3135 set_bit(R5_LOCKED, &dev->flags);
3136 s.locked++;
3137 } else {
3138 /* let's read it back */
3139 set_bit(R5_Wantread, &dev->flags);
3140 set_bit(R5_LOCKED, &dev->flags);
3141 s.locked++;
3142 }
3143 }
3144
3145 /* Finish reconstruct operations initiated by the expansion process */
3146 if (sh->reconstruct_state == reconstruct_state_result) {
3147 struct stripe_head *sh2
3148 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3149 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3150 /* sh cannot be written until sh2 has been read.
3151 * so arrange for sh to be delayed a little
3152 */
3153 set_bit(STRIPE_DELAYED, &sh->state);
3154 set_bit(STRIPE_HANDLE, &sh->state);
3155 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3156 &sh2->state))
3157 atomic_inc(&conf->preread_active_stripes);
3158 release_stripe(sh2);
3159 goto unlock;
3160 }
3161 if (sh2)
3162 release_stripe(sh2);
3163
3164 sh->reconstruct_state = reconstruct_state_idle;
3165 clear_bit(STRIPE_EXPANDING, &sh->state);
3166 for (i = conf->raid_disks; i--; ) {
3167 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3168 set_bit(R5_LOCKED, &sh->dev[i].flags);
3169 s.locked++;
3170 }
3171 }
3172
3173 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3174 !sh->reconstruct_state) {
3175 /* Need to write out all blocks after computing parity */
3176 sh->disks = conf->raid_disks;
3177 stripe_set_idx(sh->sector, conf, 0, sh);
3178 schedule_reconstruction(sh, &s, 1, 1);
3179 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3180 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3181 atomic_dec(&conf->reshape_stripes);
3182 wake_up(&conf->wait_for_overlap);
3183 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3184 }
3185
3186 if (s.expanding && s.locked == 0 &&
3187 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3188 handle_stripe_expansion(conf, sh, NULL);
3189
3190 unlock:
3191 spin_unlock(&sh->lock);
3192
3193 /* wait for this device to become unblocked */
3194 if (unlikely(blocked_rdev))
3195 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3196
3197 if (s.ops_request)
3198 raid_run_ops(sh, s.ops_request);
3199
3200 ops_run_io(sh, &s);
3201
3202 if (dec_preread_active) {
3203 /* We delay this until after ops_run_io so that if make_request
3204 * is waiting on a barrier, it won't continue until the writes
3205 * have actually been submitted.
3206 */
3207 atomic_dec(&conf->preread_active_stripes);
3208 if (atomic_read(&conf->preread_active_stripes) <
3209 IO_THRESHOLD)
3210 md_wakeup_thread(conf->mddev->thread);
3211 }
3212 return_io(return_bi);
3213 }
3214
3215 static void handle_stripe6(struct stripe_head *sh)
3216 {
3217 raid5_conf_t *conf = sh->raid_conf;
3218 int disks = sh->disks;
3219 struct bio *return_bi = NULL;
3220 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3221 struct stripe_head_state s;
3222 struct r6_state r6s;
3223 struct r5dev *dev, *pdev, *qdev;
3224 mdk_rdev_t *blocked_rdev = NULL;
3225 int dec_preread_active = 0;
3226
3227 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3228 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3229 (unsigned long long)sh->sector, sh->state,
3230 atomic_read(&sh->count), pd_idx, qd_idx,
3231 sh->check_state, sh->reconstruct_state);
3232 memset(&s, 0, sizeof(s));
3233
3234 spin_lock(&sh->lock);
3235 clear_bit(STRIPE_HANDLE, &sh->state);
3236 clear_bit(STRIPE_DELAYED, &sh->state);
3237
3238 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3239 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3240 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3241 /* Now to look around and see what can be done */
3242
3243 rcu_read_lock();
3244 for (i=disks; i--; ) {
3245 mdk_rdev_t *rdev;
3246 dev = &sh->dev[i];
3247 clear_bit(R5_Insync, &dev->flags);
3248
3249 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3250 i, dev->flags, dev->toread, dev->towrite, dev->written);
3251 /* maybe we can reply to a read
3252 *
3253 * new wantfill requests are only permitted while
3254 * ops_complete_biofill is guaranteed to be inactive
3255 */
3256 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3257 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3258 set_bit(R5_Wantfill, &dev->flags);
3259
3260 /* now count some things */
3261 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3262 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3263 if (test_bit(R5_Wantcompute, &dev->flags)) {
3264 s.compute++;
3265 BUG_ON(s.compute > 2);
3266 }
3267
3268 if (test_bit(R5_Wantfill, &dev->flags)) {
3269 s.to_fill++;
3270 } else if (dev->toread)
3271 s.to_read++;
3272 if (dev->towrite) {
3273 s.to_write++;
3274 if (!test_bit(R5_OVERWRITE, &dev->flags))
3275 s.non_overwrite++;
3276 }
3277 if (dev->written)
3278 s.written++;
3279 rdev = rcu_dereference(conf->disks[i].rdev);
3280 if (blocked_rdev == NULL &&
3281 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3282 blocked_rdev = rdev;
3283 atomic_inc(&rdev->nr_pending);
3284 }
3285 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3286 /* The ReadError flag will just be confusing now */
3287 clear_bit(R5_ReadError, &dev->flags);
3288 clear_bit(R5_ReWrite, &dev->flags);
3289 }
3290 if (!rdev || !test_bit(In_sync, &rdev->flags)
3291 || test_bit(R5_ReadError, &dev->flags)) {
3292 if (s.failed < 2)
3293 r6s.failed_num[s.failed] = i;
3294 s.failed++;
3295 } else
3296 set_bit(R5_Insync, &dev->flags);
3297 }
3298 rcu_read_unlock();
3299
3300 if (unlikely(blocked_rdev)) {
3301 if (s.syncing || s.expanding || s.expanded ||
3302 s.to_write || s.written) {
3303 set_bit(STRIPE_HANDLE, &sh->state);
3304 goto unlock;
3305 }
3306 /* There is nothing for the blocked_rdev to block */
3307 rdev_dec_pending(blocked_rdev, conf->mddev);
3308 blocked_rdev = NULL;
3309 }
3310
3311 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3312 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3313 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3314 }
3315
3316 pr_debug("locked=%d uptodate=%d to_read=%d"
3317 " to_write=%d failed=%d failed_num=%d,%d\n",
3318 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3319 r6s.failed_num[0], r6s.failed_num[1]);
3320 /* check if the array has lost >2 devices and, if so, some requests
3321 * might need to be failed
3322 */
3323 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3324 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3325 if (s.failed > 2 && s.syncing) {
3326 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3327 clear_bit(STRIPE_SYNCING, &sh->state);
3328 s.syncing = 0;
3329 }
3330
3331 /*
3332 * might be able to return some write requests if the parity blocks
3333 * are safe, or on a failed drive
3334 */
3335 pdev = &sh->dev[pd_idx];
3336 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3337 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3338 qdev = &sh->dev[qd_idx];
3339 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3340 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3341
3342 if ( s.written &&
3343 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3344 && !test_bit(R5_LOCKED, &pdev->flags)
3345 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3346 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3347 && !test_bit(R5_LOCKED, &qdev->flags)
3348 && test_bit(R5_UPTODATE, &qdev->flags)))))
3349 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3350
3351 /* Now we might consider reading some blocks, either to check/generate
3352 * parity, or to satisfy requests
3353 * or to load a block that is being partially written.
3354 */
3355 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3356 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3357 handle_stripe_fill6(sh, &s, &r6s, disks);
3358
3359 /* Now we check to see if any write operations have recently
3360 * completed
3361 */
3362 if (sh->reconstruct_state == reconstruct_state_drain_result) {
3363
3364 sh->reconstruct_state = reconstruct_state_idle;
3365 /* All the 'written' buffers and the parity blocks are ready to
3366 * be written back to disk
3367 */
3368 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3369 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3370 for (i = disks; i--; ) {
3371 dev = &sh->dev[i];
3372 if (test_bit(R5_LOCKED, &dev->flags) &&
3373 (i == sh->pd_idx || i == qd_idx ||
3374 dev->written)) {
3375 pr_debug("Writing block %d\n", i);
3376 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3377 set_bit(R5_Wantwrite, &dev->flags);
3378 if (!test_bit(R5_Insync, &dev->flags) ||
3379 ((i == sh->pd_idx || i == qd_idx) &&
3380 s.failed == 0))
3381 set_bit(STRIPE_INSYNC, &sh->state);
3382 }
3383 }
3384 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3385 dec_preread_active = 1;
3386 }
3387
3388 /* Now to consider new write requests and what else, if anything
3389 * should be read. We do not handle new writes when:
3390 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3391 * 2/ A 'check' operation is in flight, as it may clobber the parity
3392 * block.
3393 */
3394 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3395 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3396
3397 /* maybe we need to check and possibly fix the parity for this stripe
3398 * Any reads will already have been scheduled, so we just see if enough
3399 * data is available. The parity check is held off while parity
3400 * dependent operations are in flight.
3401 */
3402 if (sh->check_state ||
3403 (s.syncing && s.locked == 0 &&
3404 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3405 !test_bit(STRIPE_INSYNC, &sh->state)))
3406 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3407
3408 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3409 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3410 clear_bit(STRIPE_SYNCING, &sh->state);
3411 }
3412
3413 /* If the failed drives are just a ReadError, then we might need
3414 * to progress the repair/check process
3415 */
3416 if (s.failed <= 2 && !conf->mddev->ro)
3417 for (i = 0; i < s.failed; i++) {
3418 dev = &sh->dev[r6s.failed_num[i]];
3419 if (test_bit(R5_ReadError, &dev->flags)
3420 && !test_bit(R5_LOCKED, &dev->flags)
3421 && test_bit(R5_UPTODATE, &dev->flags)
3422 ) {
3423 if (!test_bit(R5_ReWrite, &dev->flags)) {
3424 set_bit(R5_Wantwrite, &dev->flags);
3425 set_bit(R5_ReWrite, &dev->flags);
3426 set_bit(R5_LOCKED, &dev->flags);
3427 s.locked++;
3428 } else {
3429 /* let's read it back */
3430 set_bit(R5_Wantread, &dev->flags);
3431 set_bit(R5_LOCKED, &dev->flags);
3432 s.locked++;
3433 }
3434 }
3435 }
3436
3437 /* Finish reconstruct operations initiated by the expansion process */
3438 if (sh->reconstruct_state == reconstruct_state_result) {
3439 sh->reconstruct_state = reconstruct_state_idle;
3440 clear_bit(STRIPE_EXPANDING, &sh->state);
3441 for (i = conf->raid_disks; i--; ) {
3442 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3443 set_bit(R5_LOCKED, &sh->dev[i].flags);
3444 s.locked++;
3445 }
3446 }
3447
3448 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3449 !sh->reconstruct_state) {
3450 struct stripe_head *sh2
3451 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3452 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3453 /* sh cannot be written until sh2 has been read.
3454 * so arrange for sh to be delayed a little
3455 */
3456 set_bit(STRIPE_DELAYED, &sh->state);
3457 set_bit(STRIPE_HANDLE, &sh->state);
3458 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3459 &sh2->state))
3460 atomic_inc(&conf->preread_active_stripes);
3461 release_stripe(sh2);
3462 goto unlock;
3463 }
3464 if (sh2)
3465 release_stripe(sh2);
3466
3467 /* Need to write out all blocks after computing P&Q */
3468 sh->disks = conf->raid_disks;
3469 stripe_set_idx(sh->sector, conf, 0, sh);
3470 schedule_reconstruction(sh, &s, 1, 1);
3471 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3472 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3473 atomic_dec(&conf->reshape_stripes);
3474 wake_up(&conf->wait_for_overlap);
3475 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3476 }
3477
3478 if (s.expanding && s.locked == 0 &&
3479 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3480 handle_stripe_expansion(conf, sh, &r6s);
3481
3482 unlock:
3483 spin_unlock(&sh->lock);
3484
3485 /* wait for this device to become unblocked */
3486 if (unlikely(blocked_rdev))
3487 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3488
3489 if (s.ops_request)
3490 raid_run_ops(sh, s.ops_request);
3491
3492 ops_run_io(sh, &s);
3493
3494
3495 if (dec_preread_active) {
3496 /* We delay this until after ops_run_io so that if make_request
3497 * is waiting on a barrier, it won't continue until the writes
3498 * have actually been submitted.
3499 */
3500 atomic_dec(&conf->preread_active_stripes);
3501 if (atomic_read(&conf->preread_active_stripes) <
3502 IO_THRESHOLD)
3503 md_wakeup_thread(conf->mddev->thread);
3504 }
3505
3506 return_io(return_bi);
3507 }
3508
3509 static void handle_stripe(struct stripe_head *sh)
3510 {
3511 if (sh->raid_conf->level == 6)
3512 handle_stripe6(sh);
3513 else
3514 handle_stripe5(sh);
3515 }
3516
3517 static void raid5_activate_delayed(raid5_conf_t *conf)
3518 {
3519 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3520 while (!list_empty(&conf->delayed_list)) {
3521 struct list_head *l = conf->delayed_list.next;
3522 struct stripe_head *sh;
3523 sh = list_entry(l, struct stripe_head, lru);
3524 list_del_init(l);
3525 clear_bit(STRIPE_DELAYED, &sh->state);
3526 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3527 atomic_inc(&conf->preread_active_stripes);
3528 list_add_tail(&sh->lru, &conf->hold_list);
3529 }
3530 } else
3531 blk_plug_device(conf->mddev->queue);
3532 }
3533
3534 static void activate_bit_delay(raid5_conf_t *conf)
3535 {
3536 /* device_lock is held */
3537 struct list_head head;
3538 list_add(&head, &conf->bitmap_list);
3539 list_del_init(&conf->bitmap_list);
3540 while (!list_empty(&head)) {
3541 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3542 list_del_init(&sh->lru);
3543 atomic_inc(&sh->count);
3544 __release_stripe(conf, sh);
3545 }
3546 }
3547
3548 static void unplug_slaves(mddev_t *mddev)
3549 {
3550 raid5_conf_t *conf = mddev->private;
3551 int i;
3552 int devs = max(conf->raid_disks, conf->previous_raid_disks);
3553
3554 rcu_read_lock();
3555 for (i = 0; i < devs; i++) {
3556 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3557 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3558 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3559
3560 atomic_inc(&rdev->nr_pending);
3561 rcu_read_unlock();
3562
3563 blk_unplug(r_queue);
3564
3565 rdev_dec_pending(rdev, mddev);
3566 rcu_read_lock();
3567 }
3568 }
3569 rcu_read_unlock();
3570 }
3571
3572 static void raid5_unplug_device(struct request_queue *q)
3573 {
3574 mddev_t *mddev = q->queuedata;
3575 raid5_conf_t *conf = mddev->private;
3576 unsigned long flags;
3577
3578 spin_lock_irqsave(&conf->device_lock, flags);
3579
3580 if (blk_remove_plug(q)) {
3581 conf->seq_flush++;
3582 raid5_activate_delayed(conf);
3583 }
3584 md_wakeup_thread(mddev->thread);
3585
3586 spin_unlock_irqrestore(&conf->device_lock, flags);
3587
3588 unplug_slaves(mddev);
3589 }
3590
3591 static int raid5_congested(void *data, int bits)
3592 {
3593 mddev_t *mddev = data;
3594 raid5_conf_t *conf = mddev->private;
3595
3596 /* No difference between reads and writes. Just check
3597 * how busy the stripe_cache is
3598 */
3599
3600 if (mddev_congested(mddev, bits))
3601 return 1;
3602 if (conf->inactive_blocked)
3603 return 1;
3604 if (conf->quiesce)
3605 return 1;
3606 if (list_empty_careful(&conf->inactive_list))
3607 return 1;
3608
3609 return 0;
3610 }
3611
3612 /* We want read requests to align with chunks where possible,
3613 * but write requests don't need to.
3614 */
3615 static int raid5_mergeable_bvec(struct request_queue *q,
3616 struct bvec_merge_data *bvm,
3617 struct bio_vec *biovec)
3618 {
3619 mddev_t *mddev = q->queuedata;
3620 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3621 int max;
3622 unsigned int chunk_sectors = mddev->chunk_sectors;
3623 unsigned int bio_sectors = bvm->bi_size >> 9;
3624
3625 if ((bvm->bi_rw & 1) == WRITE)
3626 return biovec->bv_len; /* always allow writes to be mergeable */
3627
3628 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3629 chunk_sectors = mddev->new_chunk_sectors;
3630 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3631 if (max < 0) max = 0;
3632 if (max <= biovec->bv_len && bio_sectors == 0)
3633 return biovec->bv_len;
3634 else
3635 return max;
3636 }
3637
3638
3639 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3640 {
3641 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3642 unsigned int chunk_sectors = mddev->chunk_sectors;
3643 unsigned int bio_sectors = bio->bi_size >> 9;
3644
3645 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3646 chunk_sectors = mddev->new_chunk_sectors;
3647 return chunk_sectors >=
3648 ((sector & (chunk_sectors - 1)) + bio_sectors);
3649 }
3650
3651 /*
3652 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3653 * later sampled by raid5d.
3654 */
3655 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3656 {
3657 unsigned long flags;
3658
3659 spin_lock_irqsave(&conf->device_lock, flags);
3660
3661 bi->bi_next = conf->retry_read_aligned_list;
3662 conf->retry_read_aligned_list = bi;
3663
3664 spin_unlock_irqrestore(&conf->device_lock, flags);
3665 md_wakeup_thread(conf->mddev->thread);
3666 }
3667
3668
3669 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3670 {
3671 struct bio *bi;
3672
3673 bi = conf->retry_read_aligned;
3674 if (bi) {
3675 conf->retry_read_aligned = NULL;
3676 return bi;
3677 }
3678 bi = conf->retry_read_aligned_list;
3679 if(bi) {
3680 conf->retry_read_aligned_list = bi->bi_next;
3681 bi->bi_next = NULL;
3682 /*
3683 * this sets the active strip count to 1 and the processed
3684 * strip count to zero (upper 8 bits)
3685 */
3686 bi->bi_phys_segments = 1; /* biased count of active stripes */
3687 }
3688
3689 return bi;
3690 }
3691
3692
3693 /*
3694 * The "raid5_align_endio" should check if the read succeeded and if it
3695 * did, call bio_endio on the original bio (having bio_put the new bio
3696 * first).
3697 * If the read failed..
3698 */
3699 static void raid5_align_endio(struct bio *bi, int error)
3700 {
3701 struct bio* raid_bi = bi->bi_private;
3702 mddev_t *mddev;
3703 raid5_conf_t *conf;
3704 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3705 mdk_rdev_t *rdev;
3706
3707 bio_put(bi);
3708
3709 rdev = (void*)raid_bi->bi_next;
3710 raid_bi->bi_next = NULL;
3711 mddev = rdev->mddev;
3712 conf = mddev->private;
3713
3714 rdev_dec_pending(rdev, conf->mddev);
3715
3716 if (!error && uptodate) {
3717 bio_endio(raid_bi, 0);
3718 if (atomic_dec_and_test(&conf->active_aligned_reads))
3719 wake_up(&conf->wait_for_stripe);
3720 return;
3721 }
3722
3723
3724 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3725
3726 add_bio_to_retry(raid_bi, conf);
3727 }
3728
3729 static int bio_fits_rdev(struct bio *bi)
3730 {
3731 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3732
3733 if ((bi->bi_size>>9) > queue_max_sectors(q))
3734 return 0;
3735 blk_recount_segments(q, bi);
3736 if (bi->bi_phys_segments > queue_max_segments(q))
3737 return 0;
3738
3739 if (q->merge_bvec_fn)
3740 /* it's too hard to apply the merge_bvec_fn at this stage,
3741 * just just give up
3742 */
3743 return 0;
3744
3745 return 1;
3746 }
3747
3748
3749 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3750 {
3751 raid5_conf_t *conf = mddev->private;
3752 int dd_idx;
3753 struct bio* align_bi;
3754 mdk_rdev_t *rdev;
3755
3756 if (!in_chunk_boundary(mddev, raid_bio)) {
3757 pr_debug("chunk_aligned_read : non aligned\n");
3758 return 0;
3759 }
3760 /*
3761 * use bio_clone to make a copy of the bio
3762 */
3763 align_bi = bio_clone(raid_bio, GFP_NOIO);
3764 if (!align_bi)
3765 return 0;
3766 /*
3767 * set bi_end_io to a new function, and set bi_private to the
3768 * original bio.
3769 */
3770 align_bi->bi_end_io = raid5_align_endio;
3771 align_bi->bi_private = raid_bio;
3772 /*
3773 * compute position
3774 */
3775 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3776 0,
3777 &dd_idx, NULL);
3778
3779 rcu_read_lock();
3780 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3781 if (rdev && test_bit(In_sync, &rdev->flags)) {
3782 atomic_inc(&rdev->nr_pending);
3783 rcu_read_unlock();
3784 raid_bio->bi_next = (void*)rdev;
3785 align_bi->bi_bdev = rdev->bdev;
3786 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3787 align_bi->bi_sector += rdev->data_offset;
3788
3789 if (!bio_fits_rdev(align_bi)) {
3790 /* too big in some way */
3791 bio_put(align_bi);
3792 rdev_dec_pending(rdev, mddev);
3793 return 0;
3794 }
3795
3796 spin_lock_irq(&conf->device_lock);
3797 wait_event_lock_irq(conf->wait_for_stripe,
3798 conf->quiesce == 0,
3799 conf->device_lock, /* nothing */);
3800 atomic_inc(&conf->active_aligned_reads);
3801 spin_unlock_irq(&conf->device_lock);
3802
3803 generic_make_request(align_bi);
3804 return 1;
3805 } else {
3806 rcu_read_unlock();
3807 bio_put(align_bi);
3808 return 0;
3809 }
3810 }
3811
3812 /* __get_priority_stripe - get the next stripe to process
3813 *
3814 * Full stripe writes are allowed to pass preread active stripes up until
3815 * the bypass_threshold is exceeded. In general the bypass_count
3816 * increments when the handle_list is handled before the hold_list; however, it
3817 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3818 * stripe with in flight i/o. The bypass_count will be reset when the
3819 * head of the hold_list has changed, i.e. the head was promoted to the
3820 * handle_list.
3821 */
3822 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3823 {
3824 struct stripe_head *sh;
3825
3826 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3827 __func__,
3828 list_empty(&conf->handle_list) ? "empty" : "busy",
3829 list_empty(&conf->hold_list) ? "empty" : "busy",
3830 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3831
3832 if (!list_empty(&conf->handle_list)) {
3833 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3834
3835 if (list_empty(&conf->hold_list))
3836 conf->bypass_count = 0;
3837 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3838 if (conf->hold_list.next == conf->last_hold)
3839 conf->bypass_count++;
3840 else {
3841 conf->last_hold = conf->hold_list.next;
3842 conf->bypass_count -= conf->bypass_threshold;
3843 if (conf->bypass_count < 0)
3844 conf->bypass_count = 0;
3845 }
3846 }
3847 } else if (!list_empty(&conf->hold_list) &&
3848 ((conf->bypass_threshold &&
3849 conf->bypass_count > conf->bypass_threshold) ||
3850 atomic_read(&conf->pending_full_writes) == 0)) {
3851 sh = list_entry(conf->hold_list.next,
3852 typeof(*sh), lru);
3853 conf->bypass_count -= conf->bypass_threshold;
3854 if (conf->bypass_count < 0)
3855 conf->bypass_count = 0;
3856 } else
3857 return NULL;
3858
3859 list_del_init(&sh->lru);
3860 atomic_inc(&sh->count);
3861 BUG_ON(atomic_read(&sh->count) != 1);
3862 return sh;
3863 }
3864
3865 static int make_request(mddev_t *mddev, struct bio * bi)
3866 {
3867 raid5_conf_t *conf = mddev->private;
3868 int dd_idx;
3869 sector_t new_sector;
3870 sector_t logical_sector, last_sector;
3871 struct stripe_head *sh;
3872 const int rw = bio_data_dir(bi);
3873 int remaining;
3874
3875 if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3876 /* Drain all pending writes. We only really need
3877 * to ensure they have been submitted, but this is
3878 * easier.
3879 */
3880 mddev->pers->quiesce(mddev, 1);
3881 mddev->pers->quiesce(mddev, 0);
3882 md_barrier_request(mddev, bi);
3883 return 0;
3884 }
3885
3886 md_write_start(mddev, bi);
3887
3888 if (rw == READ &&
3889 mddev->reshape_position == MaxSector &&
3890 chunk_aligned_read(mddev,bi))
3891 return 0;
3892
3893 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3894 last_sector = bi->bi_sector + (bi->bi_size>>9);
3895 bi->bi_next = NULL;
3896 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3897
3898 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3899 DEFINE_WAIT(w);
3900 int disks, data_disks;
3901 int previous;
3902
3903 retry:
3904 previous = 0;
3905 disks = conf->raid_disks;
3906 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3907 if (unlikely(conf->reshape_progress != MaxSector)) {
3908 /* spinlock is needed as reshape_progress may be
3909 * 64bit on a 32bit platform, and so it might be
3910 * possible to see a half-updated value
3911 * Ofcourse reshape_progress could change after
3912 * the lock is dropped, so once we get a reference
3913 * to the stripe that we think it is, we will have
3914 * to check again.
3915 */
3916 spin_lock_irq(&conf->device_lock);
3917 if (mddev->delta_disks < 0
3918 ? logical_sector < conf->reshape_progress
3919 : logical_sector >= conf->reshape_progress) {
3920 disks = conf->previous_raid_disks;
3921 previous = 1;
3922 } else {
3923 if (mddev->delta_disks < 0
3924 ? logical_sector < conf->reshape_safe
3925 : logical_sector >= conf->reshape_safe) {
3926 spin_unlock_irq(&conf->device_lock);
3927 schedule();
3928 goto retry;
3929 }
3930 }
3931 spin_unlock_irq(&conf->device_lock);
3932 }
3933 data_disks = disks - conf->max_degraded;
3934
3935 new_sector = raid5_compute_sector(conf, logical_sector,
3936 previous,
3937 &dd_idx, NULL);
3938 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3939 (unsigned long long)new_sector,
3940 (unsigned long long)logical_sector);
3941
3942 sh = get_active_stripe(conf, new_sector, previous,
3943 (bi->bi_rw&RWA_MASK), 0);
3944 if (sh) {
3945 if (unlikely(previous)) {
3946 /* expansion might have moved on while waiting for a
3947 * stripe, so we must do the range check again.
3948 * Expansion could still move past after this
3949 * test, but as we are holding a reference to
3950 * 'sh', we know that if that happens,
3951 * STRIPE_EXPANDING will get set and the expansion
3952 * won't proceed until we finish with the stripe.
3953 */
3954 int must_retry = 0;
3955 spin_lock_irq(&conf->device_lock);
3956 if (mddev->delta_disks < 0
3957 ? logical_sector >= conf->reshape_progress
3958 : logical_sector < conf->reshape_progress)
3959 /* mismatch, need to try again */
3960 must_retry = 1;
3961 spin_unlock_irq(&conf->device_lock);
3962 if (must_retry) {
3963 release_stripe(sh);
3964 schedule();
3965 goto retry;
3966 }
3967 }
3968
3969 if (bio_data_dir(bi) == WRITE &&
3970 logical_sector >= mddev->suspend_lo &&
3971 logical_sector < mddev->suspend_hi) {
3972 release_stripe(sh);
3973 /* As the suspend_* range is controlled by
3974 * userspace, we want an interruptible
3975 * wait.
3976 */
3977 flush_signals(current);
3978 prepare_to_wait(&conf->wait_for_overlap,
3979 &w, TASK_INTERRUPTIBLE);
3980 if (logical_sector >= mddev->suspend_lo &&
3981 logical_sector < mddev->suspend_hi)
3982 schedule();
3983 goto retry;
3984 }
3985
3986 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3987 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3988 /* Stripe is busy expanding or
3989 * add failed due to overlap. Flush everything
3990 * and wait a while
3991 */
3992 raid5_unplug_device(mddev->queue);
3993 release_stripe(sh);
3994 schedule();
3995 goto retry;
3996 }
3997 finish_wait(&conf->wait_for_overlap, &w);
3998 set_bit(STRIPE_HANDLE, &sh->state);
3999 clear_bit(STRIPE_DELAYED, &sh->state);
4000 if (mddev->barrier &&
4001 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4002 atomic_inc(&conf->preread_active_stripes);
4003 release_stripe(sh);
4004 } else {
4005 /* cannot get stripe for read-ahead, just give-up */
4006 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4007 finish_wait(&conf->wait_for_overlap, &w);
4008 break;
4009 }
4010
4011 }
4012 spin_lock_irq(&conf->device_lock);
4013 remaining = raid5_dec_bi_phys_segments(bi);
4014 spin_unlock_irq(&conf->device_lock);
4015 if (remaining == 0) {
4016
4017 if ( rw == WRITE )
4018 md_write_end(mddev);
4019
4020 bio_endio(bi, 0);
4021 }
4022
4023 if (mddev->barrier) {
4024 /* We need to wait for the stripes to all be handled.
4025 * So: wait for preread_active_stripes to drop to 0.
4026 */
4027 wait_event(mddev->thread->wqueue,
4028 atomic_read(&conf->preread_active_stripes) == 0);
4029 }
4030 return 0;
4031 }
4032
4033 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4034
4035 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4036 {
4037 /* reshaping is quite different to recovery/resync so it is
4038 * handled quite separately ... here.
4039 *
4040 * On each call to sync_request, we gather one chunk worth of
4041 * destination stripes and flag them as expanding.
4042 * Then we find all the source stripes and request reads.
4043 * As the reads complete, handle_stripe will copy the data
4044 * into the destination stripe and release that stripe.
4045 */
4046 raid5_conf_t *conf = mddev->private;
4047 struct stripe_head *sh;
4048 sector_t first_sector, last_sector;
4049 int raid_disks = conf->previous_raid_disks;
4050 int data_disks = raid_disks - conf->max_degraded;
4051 int new_data_disks = conf->raid_disks - conf->max_degraded;
4052 int i;
4053 int dd_idx;
4054 sector_t writepos, readpos, safepos;
4055 sector_t stripe_addr;
4056 int reshape_sectors;
4057 struct list_head stripes;
4058
4059 if (sector_nr == 0) {
4060 /* If restarting in the middle, skip the initial sectors */
4061 if (mddev->delta_disks < 0 &&
4062 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4063 sector_nr = raid5_size(mddev, 0, 0)
4064 - conf->reshape_progress;
4065 } else if (mddev->delta_disks >= 0 &&
4066 conf->reshape_progress > 0)
4067 sector_nr = conf->reshape_progress;
4068 sector_div(sector_nr, new_data_disks);
4069 if (sector_nr) {
4070 mddev->curr_resync_completed = sector_nr;
4071 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4072 *skipped = 1;
4073 return sector_nr;
4074 }
4075 }
4076
4077 /* We need to process a full chunk at a time.
4078 * If old and new chunk sizes differ, we need to process the
4079 * largest of these
4080 */
4081 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4082 reshape_sectors = mddev->new_chunk_sectors;
4083 else
4084 reshape_sectors = mddev->chunk_sectors;
4085
4086 /* we update the metadata when there is more than 3Meg
4087 * in the block range (that is rather arbitrary, should
4088 * probably be time based) or when the data about to be
4089 * copied would over-write the source of the data at
4090 * the front of the range.
4091 * i.e. one new_stripe along from reshape_progress new_maps
4092 * to after where reshape_safe old_maps to
4093 */
4094 writepos = conf->reshape_progress;
4095 sector_div(writepos, new_data_disks);
4096 readpos = conf->reshape_progress;
4097 sector_div(readpos, data_disks);
4098 safepos = conf->reshape_safe;
4099 sector_div(safepos, data_disks);
4100 if (mddev->delta_disks < 0) {
4101 writepos -= min_t(sector_t, reshape_sectors, writepos);
4102 readpos += reshape_sectors;
4103 safepos += reshape_sectors;
4104 } else {
4105 writepos += reshape_sectors;
4106 readpos -= min_t(sector_t, reshape_sectors, readpos);
4107 safepos -= min_t(sector_t, reshape_sectors, safepos);
4108 }
4109
4110 /* 'writepos' is the most advanced device address we might write.
4111 * 'readpos' is the least advanced device address we might read.
4112 * 'safepos' is the least address recorded in the metadata as having
4113 * been reshaped.
4114 * If 'readpos' is behind 'writepos', then there is no way that we can
4115 * ensure safety in the face of a crash - that must be done by userspace
4116 * making a backup of the data. So in that case there is no particular
4117 * rush to update metadata.
4118 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4119 * update the metadata to advance 'safepos' to match 'readpos' so that
4120 * we can be safe in the event of a crash.
4121 * So we insist on updating metadata if safepos is behind writepos and
4122 * readpos is beyond writepos.
4123 * In any case, update the metadata every 10 seconds.
4124 * Maybe that number should be configurable, but I'm not sure it is
4125 * worth it.... maybe it could be a multiple of safemode_delay???
4126 */
4127 if ((mddev->delta_disks < 0
4128 ? (safepos > writepos && readpos < writepos)
4129 : (safepos < writepos && readpos > writepos)) ||
4130 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4131 /* Cannot proceed until we've updated the superblock... */
4132 wait_event(conf->wait_for_overlap,
4133 atomic_read(&conf->reshape_stripes)==0);
4134 mddev->reshape_position = conf->reshape_progress;
4135 mddev->curr_resync_completed = mddev->curr_resync;
4136 conf->reshape_checkpoint = jiffies;
4137 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4138 md_wakeup_thread(mddev->thread);
4139 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4140 kthread_should_stop());
4141 spin_lock_irq(&conf->device_lock);
4142 conf->reshape_safe = mddev->reshape_position;
4143 spin_unlock_irq(&conf->device_lock);
4144 wake_up(&conf->wait_for_overlap);
4145 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4146 }
4147
4148 if (mddev->delta_disks < 0) {
4149 BUG_ON(conf->reshape_progress == 0);
4150 stripe_addr = writepos;
4151 BUG_ON((mddev->dev_sectors &
4152 ~((sector_t)reshape_sectors - 1))
4153 - reshape_sectors - stripe_addr
4154 != sector_nr);
4155 } else {
4156 BUG_ON(writepos != sector_nr + reshape_sectors);
4157 stripe_addr = sector_nr;
4158 }
4159 INIT_LIST_HEAD(&stripes);
4160 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4161 int j;
4162 int skipped_disk = 0;
4163 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4164 set_bit(STRIPE_EXPANDING, &sh->state);
4165 atomic_inc(&conf->reshape_stripes);
4166 /* If any of this stripe is beyond the end of the old
4167 * array, then we need to zero those blocks
4168 */
4169 for (j=sh->disks; j--;) {
4170 sector_t s;
4171 if (j == sh->pd_idx)
4172 continue;
4173 if (conf->level == 6 &&
4174 j == sh->qd_idx)
4175 continue;
4176 s = compute_blocknr(sh, j, 0);
4177 if (s < raid5_size(mddev, 0, 0)) {
4178 skipped_disk = 1;
4179 continue;
4180 }
4181 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4182 set_bit(R5_Expanded, &sh->dev[j].flags);
4183 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4184 }
4185 if (!skipped_disk) {
4186 set_bit(STRIPE_EXPAND_READY, &sh->state);
4187 set_bit(STRIPE_HANDLE, &sh->state);
4188 }
4189 list_add(&sh->lru, &stripes);
4190 }
4191 spin_lock_irq(&conf->device_lock);
4192 if (mddev->delta_disks < 0)
4193 conf->reshape_progress -= reshape_sectors * new_data_disks;
4194 else
4195 conf->reshape_progress += reshape_sectors * new_data_disks;
4196 spin_unlock_irq(&conf->device_lock);
4197 /* Ok, those stripe are ready. We can start scheduling
4198 * reads on the source stripes.
4199 * The source stripes are determined by mapping the first and last
4200 * block on the destination stripes.
4201 */
4202 first_sector =
4203 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4204 1, &dd_idx, NULL);
4205 last_sector =
4206 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4207 * new_data_disks - 1),
4208 1, &dd_idx, NULL);
4209 if (last_sector >= mddev->dev_sectors)
4210 last_sector = mddev->dev_sectors - 1;
4211 while (first_sector <= last_sector) {
4212 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4213 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4214 set_bit(STRIPE_HANDLE, &sh->state);
4215 release_stripe(sh);
4216 first_sector += STRIPE_SECTORS;
4217 }
4218 /* Now that the sources are clearly marked, we can release
4219 * the destination stripes
4220 */
4221 while (!list_empty(&stripes)) {
4222 sh = list_entry(stripes.next, struct stripe_head, lru);
4223 list_del_init(&sh->lru);
4224 release_stripe(sh);
4225 }
4226 /* If this takes us to the resync_max point where we have to pause,
4227 * then we need to write out the superblock.
4228 */
4229 sector_nr += reshape_sectors;
4230 if ((sector_nr - mddev->curr_resync_completed) * 2
4231 >= mddev->resync_max - mddev->curr_resync_completed) {
4232 /* Cannot proceed until we've updated the superblock... */
4233 wait_event(conf->wait_for_overlap,
4234 atomic_read(&conf->reshape_stripes) == 0);
4235 mddev->reshape_position = conf->reshape_progress;
4236 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4237 conf->reshape_checkpoint = jiffies;
4238 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4239 md_wakeup_thread(mddev->thread);
4240 wait_event(mddev->sb_wait,
4241 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4242 || kthread_should_stop());
4243 spin_lock_irq(&conf->device_lock);
4244 conf->reshape_safe = mddev->reshape_position;
4245 spin_unlock_irq(&conf->device_lock);
4246 wake_up(&conf->wait_for_overlap);
4247 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4248 }
4249 return reshape_sectors;
4250 }
4251
4252 /* FIXME go_faster isn't used */
4253 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4254 {
4255 raid5_conf_t *conf = mddev->private;
4256 struct stripe_head *sh;
4257 sector_t max_sector = mddev->dev_sectors;
4258 int sync_blocks;
4259 int still_degraded = 0;
4260 int i;
4261
4262 if (sector_nr >= max_sector) {
4263 /* just being told to finish up .. nothing much to do */
4264 unplug_slaves(mddev);
4265
4266 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4267 end_reshape(conf);
4268 return 0;
4269 }
4270
4271 if (mddev->curr_resync < max_sector) /* aborted */
4272 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4273 &sync_blocks, 1);
4274 else /* completed sync */
4275 conf->fullsync = 0;
4276 bitmap_close_sync(mddev->bitmap);
4277
4278 return 0;
4279 }
4280
4281 /* Allow raid5_quiesce to complete */
4282 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4283
4284 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4285 return reshape_request(mddev, sector_nr, skipped);
4286
4287 /* No need to check resync_max as we never do more than one
4288 * stripe, and as resync_max will always be on a chunk boundary,
4289 * if the check in md_do_sync didn't fire, there is no chance
4290 * of overstepping resync_max here
4291 */
4292
4293 /* if there is too many failed drives and we are trying
4294 * to resync, then assert that we are finished, because there is
4295 * nothing we can do.
4296 */
4297 if (mddev->degraded >= conf->max_degraded &&
4298 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4299 sector_t rv = mddev->dev_sectors - sector_nr;
4300 *skipped = 1;
4301 return rv;
4302 }
4303 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4304 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4305 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4306 /* we can skip this block, and probably more */
4307 sync_blocks /= STRIPE_SECTORS;
4308 *skipped = 1;
4309 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4310 }
4311
4312
4313 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4314
4315 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4316 if (sh == NULL) {
4317 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4318 /* make sure we don't swamp the stripe cache if someone else
4319 * is trying to get access
4320 */
4321 schedule_timeout_uninterruptible(1);
4322 }
4323 /* Need to check if array will still be degraded after recovery/resync
4324 * We don't need to check the 'failed' flag as when that gets set,
4325 * recovery aborts.
4326 */
4327 for (i = 0; i < conf->raid_disks; i++)
4328 if (conf->disks[i].rdev == NULL)
4329 still_degraded = 1;
4330
4331 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4332
4333 spin_lock(&sh->lock);
4334 set_bit(STRIPE_SYNCING, &sh->state);
4335 clear_bit(STRIPE_INSYNC, &sh->state);
4336 spin_unlock(&sh->lock);
4337
4338 handle_stripe(sh);
4339 release_stripe(sh);
4340
4341 return STRIPE_SECTORS;
4342 }
4343
4344 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4345 {
4346 /* We may not be able to submit a whole bio at once as there
4347 * may not be enough stripe_heads available.
4348 * We cannot pre-allocate enough stripe_heads as we may need
4349 * more than exist in the cache (if we allow ever large chunks).
4350 * So we do one stripe head at a time and record in
4351 * ->bi_hw_segments how many have been done.
4352 *
4353 * We *know* that this entire raid_bio is in one chunk, so
4354 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4355 */
4356 struct stripe_head *sh;
4357 int dd_idx;
4358 sector_t sector, logical_sector, last_sector;
4359 int scnt = 0;
4360 int remaining;
4361 int handled = 0;
4362
4363 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4364 sector = raid5_compute_sector(conf, logical_sector,
4365 0, &dd_idx, NULL);
4366 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4367
4368 for (; logical_sector < last_sector;
4369 logical_sector += STRIPE_SECTORS,
4370 sector += STRIPE_SECTORS,
4371 scnt++) {
4372
4373 if (scnt < raid5_bi_hw_segments(raid_bio))
4374 /* already done this stripe */
4375 continue;
4376
4377 sh = get_active_stripe(conf, sector, 0, 1, 0);
4378
4379 if (!sh) {
4380 /* failed to get a stripe - must wait */
4381 raid5_set_bi_hw_segments(raid_bio, scnt);
4382 conf->retry_read_aligned = raid_bio;
4383 return handled;
4384 }
4385
4386 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4387 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4388 release_stripe(sh);
4389 raid5_set_bi_hw_segments(raid_bio, scnt);
4390 conf->retry_read_aligned = raid_bio;
4391 return handled;
4392 }
4393
4394 handle_stripe(sh);
4395 release_stripe(sh);
4396 handled++;
4397 }
4398 spin_lock_irq(&conf->device_lock);
4399 remaining = raid5_dec_bi_phys_segments(raid_bio);
4400 spin_unlock_irq(&conf->device_lock);
4401 if (remaining == 0)
4402 bio_endio(raid_bio, 0);
4403 if (atomic_dec_and_test(&conf->active_aligned_reads))
4404 wake_up(&conf->wait_for_stripe);
4405 return handled;
4406 }
4407
4408
4409 /*
4410 * This is our raid5 kernel thread.
4411 *
4412 * We scan the hash table for stripes which can be handled now.
4413 * During the scan, completed stripes are saved for us by the interrupt
4414 * handler, so that they will not have to wait for our next wakeup.
4415 */
4416 static void raid5d(mddev_t *mddev)
4417 {
4418 struct stripe_head *sh;
4419 raid5_conf_t *conf = mddev->private;
4420 int handled;
4421
4422 pr_debug("+++ raid5d active\n");
4423
4424 md_check_recovery(mddev);
4425
4426 handled = 0;
4427 spin_lock_irq(&conf->device_lock);
4428 while (1) {
4429 struct bio *bio;
4430
4431 if (conf->seq_flush != conf->seq_write) {
4432 int seq = conf->seq_flush;
4433 spin_unlock_irq(&conf->device_lock);
4434 bitmap_unplug(mddev->bitmap);
4435 spin_lock_irq(&conf->device_lock);
4436 conf->seq_write = seq;
4437 activate_bit_delay(conf);
4438 }
4439
4440 while ((bio = remove_bio_from_retry(conf))) {
4441 int ok;
4442 spin_unlock_irq(&conf->device_lock);
4443 ok = retry_aligned_read(conf, bio);
4444 spin_lock_irq(&conf->device_lock);
4445 if (!ok)
4446 break;
4447 handled++;
4448 }
4449
4450 sh = __get_priority_stripe(conf);
4451
4452 if (!sh)
4453 break;
4454 spin_unlock_irq(&conf->device_lock);
4455
4456 handled++;
4457 handle_stripe(sh);
4458 release_stripe(sh);
4459 cond_resched();
4460
4461 spin_lock_irq(&conf->device_lock);
4462 }
4463 pr_debug("%d stripes handled\n", handled);
4464
4465 spin_unlock_irq(&conf->device_lock);
4466
4467 async_tx_issue_pending_all();
4468 unplug_slaves(mddev);
4469
4470 pr_debug("--- raid5d inactive\n");
4471 }
4472
4473 static ssize_t
4474 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4475 {
4476 raid5_conf_t *conf = mddev->private;
4477 if (conf)
4478 return sprintf(page, "%d\n", conf->max_nr_stripes);
4479 else
4480 return 0;
4481 }
4482
4483 static ssize_t
4484 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4485 {
4486 raid5_conf_t *conf = mddev->private;
4487 unsigned long new;
4488 int err;
4489
4490 if (len >= PAGE_SIZE)
4491 return -EINVAL;
4492 if (!conf)
4493 return -ENODEV;
4494
4495 if (strict_strtoul(page, 10, &new))
4496 return -EINVAL;
4497 if (new <= 16 || new > 32768)
4498 return -EINVAL;
4499 while (new < conf->max_nr_stripes) {
4500 if (drop_one_stripe(conf))
4501 conf->max_nr_stripes--;
4502 else
4503 break;
4504 }
4505 err = md_allow_write(mddev);
4506 if (err)
4507 return err;
4508 while (new > conf->max_nr_stripes) {
4509 if (grow_one_stripe(conf))
4510 conf->max_nr_stripes++;
4511 else break;
4512 }
4513 return len;
4514 }
4515
4516 static struct md_sysfs_entry
4517 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4518 raid5_show_stripe_cache_size,
4519 raid5_store_stripe_cache_size);
4520
4521 static ssize_t
4522 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4523 {
4524 raid5_conf_t *conf = mddev->private;
4525 if (conf)
4526 return sprintf(page, "%d\n", conf->bypass_threshold);
4527 else
4528 return 0;
4529 }
4530
4531 static ssize_t
4532 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4533 {
4534 raid5_conf_t *conf = mddev->private;
4535 unsigned long new;
4536 if (len >= PAGE_SIZE)
4537 return -EINVAL;
4538 if (!conf)
4539 return -ENODEV;
4540
4541 if (strict_strtoul(page, 10, &new))
4542 return -EINVAL;
4543 if (new > conf->max_nr_stripes)
4544 return -EINVAL;
4545 conf->bypass_threshold = new;
4546 return len;
4547 }
4548
4549 static struct md_sysfs_entry
4550 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4551 S_IRUGO | S_IWUSR,
4552 raid5_show_preread_threshold,
4553 raid5_store_preread_threshold);
4554
4555 static ssize_t
4556 stripe_cache_active_show(mddev_t *mddev, char *page)
4557 {
4558 raid5_conf_t *conf = mddev->private;
4559 if (conf)
4560 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4561 else
4562 return 0;
4563 }
4564
4565 static struct md_sysfs_entry
4566 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4567
4568 static struct attribute *raid5_attrs[] = {
4569 &raid5_stripecache_size.attr,
4570 &raid5_stripecache_active.attr,
4571 &raid5_preread_bypass_threshold.attr,
4572 NULL,
4573 };
4574 static struct attribute_group raid5_attrs_group = {
4575 .name = NULL,
4576 .attrs = raid5_attrs,
4577 };
4578
4579 static sector_t
4580 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4581 {
4582 raid5_conf_t *conf = mddev->private;
4583
4584 if (!sectors)
4585 sectors = mddev->dev_sectors;
4586 if (!raid_disks)
4587 /* size is defined by the smallest of previous and new size */
4588 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4589
4590 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4591 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4592 return sectors * (raid_disks - conf->max_degraded);
4593 }
4594
4595 static void raid5_free_percpu(raid5_conf_t *conf)
4596 {
4597 struct raid5_percpu *percpu;
4598 unsigned long cpu;
4599
4600 if (!conf->percpu)
4601 return;
4602
4603 get_online_cpus();
4604 for_each_possible_cpu(cpu) {
4605 percpu = per_cpu_ptr(conf->percpu, cpu);
4606 safe_put_page(percpu->spare_page);
4607 kfree(percpu->scribble);
4608 }
4609 #ifdef CONFIG_HOTPLUG_CPU
4610 unregister_cpu_notifier(&conf->cpu_notify);
4611 #endif
4612 put_online_cpus();
4613
4614 free_percpu(conf->percpu);
4615 }
4616
4617 static void free_conf(raid5_conf_t *conf)
4618 {
4619 shrink_stripes(conf);
4620 raid5_free_percpu(conf);
4621 kfree(conf->disks);
4622 kfree(conf->stripe_hashtbl);
4623 kfree(conf);
4624 }
4625
4626 #ifdef CONFIG_HOTPLUG_CPU
4627 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4628 void *hcpu)
4629 {
4630 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4631 long cpu = (long)hcpu;
4632 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4633
4634 switch (action) {
4635 case CPU_UP_PREPARE:
4636 case CPU_UP_PREPARE_FROZEN:
4637 if (conf->level == 6 && !percpu->spare_page)
4638 percpu->spare_page = alloc_page(GFP_KERNEL);
4639 if (!percpu->scribble)
4640 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4641
4642 if (!percpu->scribble ||
4643 (conf->level == 6 && !percpu->spare_page)) {
4644 safe_put_page(percpu->spare_page);
4645 kfree(percpu->scribble);
4646 pr_err("%s: failed memory allocation for cpu%ld\n",
4647 __func__, cpu);
4648 return notifier_from_errno(-ENOMEM);
4649 }
4650 break;
4651 case CPU_DEAD:
4652 case CPU_DEAD_FROZEN:
4653 safe_put_page(percpu->spare_page);
4654 kfree(percpu->scribble);
4655 percpu->spare_page = NULL;
4656 percpu->scribble = NULL;
4657 break;
4658 default:
4659 break;
4660 }
4661 return NOTIFY_OK;
4662 }
4663 #endif
4664
4665 static int raid5_alloc_percpu(raid5_conf_t *conf)
4666 {
4667 unsigned long cpu;
4668 struct page *spare_page;
4669 struct raid5_percpu __percpu *allcpus;
4670 void *scribble;
4671 int err;
4672
4673 allcpus = alloc_percpu(struct raid5_percpu);
4674 if (!allcpus)
4675 return -ENOMEM;
4676 conf->percpu = allcpus;
4677
4678 get_online_cpus();
4679 err = 0;
4680 for_each_present_cpu(cpu) {
4681 if (conf->level == 6) {
4682 spare_page = alloc_page(GFP_KERNEL);
4683 if (!spare_page) {
4684 err = -ENOMEM;
4685 break;
4686 }
4687 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4688 }
4689 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4690 if (!scribble) {
4691 err = -ENOMEM;
4692 break;
4693 }
4694 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4695 }
4696 #ifdef CONFIG_HOTPLUG_CPU
4697 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4698 conf->cpu_notify.priority = 0;
4699 if (err == 0)
4700 err = register_cpu_notifier(&conf->cpu_notify);
4701 #endif
4702 put_online_cpus();
4703
4704 return err;
4705 }
4706
4707 static raid5_conf_t *setup_conf(mddev_t *mddev)
4708 {
4709 raid5_conf_t *conf;
4710 int raid_disk, memory, max_disks;
4711 mdk_rdev_t *rdev;
4712 struct disk_info *disk;
4713
4714 if (mddev->new_level != 5
4715 && mddev->new_level != 4
4716 && mddev->new_level != 6) {
4717 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4718 mdname(mddev), mddev->new_level);
4719 return ERR_PTR(-EIO);
4720 }
4721 if ((mddev->new_level == 5
4722 && !algorithm_valid_raid5(mddev->new_layout)) ||
4723 (mddev->new_level == 6
4724 && !algorithm_valid_raid6(mddev->new_layout))) {
4725 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4726 mdname(mddev), mddev->new_layout);
4727 return ERR_PTR(-EIO);
4728 }
4729 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4730 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4731 mdname(mddev), mddev->raid_disks);
4732 return ERR_PTR(-EINVAL);
4733 }
4734
4735 if (!mddev->new_chunk_sectors ||
4736 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4737 !is_power_of_2(mddev->new_chunk_sectors)) {
4738 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4739 mdname(mddev), mddev->new_chunk_sectors << 9);
4740 return ERR_PTR(-EINVAL);
4741 }
4742
4743 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4744 if (conf == NULL)
4745 goto abort;
4746 spin_lock_init(&conf->device_lock);
4747 init_waitqueue_head(&conf->wait_for_stripe);
4748 init_waitqueue_head(&conf->wait_for_overlap);
4749 INIT_LIST_HEAD(&conf->handle_list);
4750 INIT_LIST_HEAD(&conf->hold_list);
4751 INIT_LIST_HEAD(&conf->delayed_list);
4752 INIT_LIST_HEAD(&conf->bitmap_list);
4753 INIT_LIST_HEAD(&conf->inactive_list);
4754 atomic_set(&conf->active_stripes, 0);
4755 atomic_set(&conf->preread_active_stripes, 0);
4756 atomic_set(&conf->active_aligned_reads, 0);
4757 conf->bypass_threshold = BYPASS_THRESHOLD;
4758
4759 conf->raid_disks = mddev->raid_disks;
4760 if (mddev->reshape_position == MaxSector)
4761 conf->previous_raid_disks = mddev->raid_disks;
4762 else
4763 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4764 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4765 conf->scribble_len = scribble_len(max_disks);
4766
4767 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4768 GFP_KERNEL);
4769 if (!conf->disks)
4770 goto abort;
4771
4772 conf->mddev = mddev;
4773
4774 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4775 goto abort;
4776
4777 conf->level = mddev->new_level;
4778 if (raid5_alloc_percpu(conf) != 0)
4779 goto abort;
4780
4781 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4782
4783 list_for_each_entry(rdev, &mddev->disks, same_set) {
4784 raid_disk = rdev->raid_disk;
4785 if (raid_disk >= max_disks
4786 || raid_disk < 0)
4787 continue;
4788 disk = conf->disks + raid_disk;
4789
4790 disk->rdev = rdev;
4791
4792 if (test_bit(In_sync, &rdev->flags)) {
4793 char b[BDEVNAME_SIZE];
4794 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4795 " disk %d\n",
4796 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4797 } else
4798 /* Cannot rely on bitmap to complete recovery */
4799 conf->fullsync = 1;
4800 }
4801
4802 conf->chunk_sectors = mddev->new_chunk_sectors;
4803 conf->level = mddev->new_level;
4804 if (conf->level == 6)
4805 conf->max_degraded = 2;
4806 else
4807 conf->max_degraded = 1;
4808 conf->algorithm = mddev->new_layout;
4809 conf->max_nr_stripes = NR_STRIPES;
4810 conf->reshape_progress = mddev->reshape_position;
4811 if (conf->reshape_progress != MaxSector) {
4812 conf->prev_chunk_sectors = mddev->chunk_sectors;
4813 conf->prev_algo = mddev->layout;
4814 }
4815
4816 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4817 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4818 if (grow_stripes(conf, conf->max_nr_stripes)) {
4819 printk(KERN_ERR
4820 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4821 mdname(mddev), memory);
4822 goto abort;
4823 } else
4824 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4825 mdname(mddev), memory);
4826
4827 conf->thread = md_register_thread(raid5d, mddev, NULL);
4828 if (!conf->thread) {
4829 printk(KERN_ERR
4830 "md/raid:%s: couldn't allocate thread.\n",
4831 mdname(mddev));
4832 goto abort;
4833 }
4834
4835 return conf;
4836
4837 abort:
4838 if (conf) {
4839 free_conf(conf);
4840 return ERR_PTR(-EIO);
4841 } else
4842 return ERR_PTR(-ENOMEM);
4843 }
4844
4845
4846 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4847 {
4848 switch (algo) {
4849 case ALGORITHM_PARITY_0:
4850 if (raid_disk < max_degraded)
4851 return 1;
4852 break;
4853 case ALGORITHM_PARITY_N:
4854 if (raid_disk >= raid_disks - max_degraded)
4855 return 1;
4856 break;
4857 case ALGORITHM_PARITY_0_6:
4858 if (raid_disk == 0 ||
4859 raid_disk == raid_disks - 1)
4860 return 1;
4861 break;
4862 case ALGORITHM_LEFT_ASYMMETRIC_6:
4863 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4864 case ALGORITHM_LEFT_SYMMETRIC_6:
4865 case ALGORITHM_RIGHT_SYMMETRIC_6:
4866 if (raid_disk == raid_disks - 1)
4867 return 1;
4868 }
4869 return 0;
4870 }
4871
4872 static int run(mddev_t *mddev)
4873 {
4874 raid5_conf_t *conf;
4875 int working_disks = 0, chunk_size;
4876 int dirty_parity_disks = 0;
4877 mdk_rdev_t *rdev;
4878 sector_t reshape_offset = 0;
4879
4880 if (mddev->recovery_cp != MaxSector)
4881 printk(KERN_NOTICE "md/raid:%s: not clean"
4882 " -- starting background reconstruction\n",
4883 mdname(mddev));
4884 if (mddev->reshape_position != MaxSector) {
4885 /* Check that we can continue the reshape.
4886 * Currently only disks can change, it must
4887 * increase, and we must be past the point where
4888 * a stripe over-writes itself
4889 */
4890 sector_t here_new, here_old;
4891 int old_disks;
4892 int max_degraded = (mddev->level == 6 ? 2 : 1);
4893
4894 if (mddev->new_level != mddev->level) {
4895 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4896 "required - aborting.\n",
4897 mdname(mddev));
4898 return -EINVAL;
4899 }
4900 old_disks = mddev->raid_disks - mddev->delta_disks;
4901 /* reshape_position must be on a new-stripe boundary, and one
4902 * further up in new geometry must map after here in old
4903 * geometry.
4904 */
4905 here_new = mddev->reshape_position;
4906 if (sector_div(here_new, mddev->new_chunk_sectors *
4907 (mddev->raid_disks - max_degraded))) {
4908 printk(KERN_ERR "md/raid:%s: reshape_position not "
4909 "on a stripe boundary\n", mdname(mddev));
4910 return -EINVAL;
4911 }
4912 reshape_offset = here_new * mddev->new_chunk_sectors;
4913 /* here_new is the stripe we will write to */
4914 here_old = mddev->reshape_position;
4915 sector_div(here_old, mddev->chunk_sectors *
4916 (old_disks-max_degraded));
4917 /* here_old is the first stripe that we might need to read
4918 * from */
4919 if (mddev->delta_disks == 0) {
4920 /* We cannot be sure it is safe to start an in-place
4921 * reshape. It is only safe if user-space if monitoring
4922 * and taking constant backups.
4923 * mdadm always starts a situation like this in
4924 * readonly mode so it can take control before
4925 * allowing any writes. So just check for that.
4926 */
4927 if ((here_new * mddev->new_chunk_sectors !=
4928 here_old * mddev->chunk_sectors) ||
4929 mddev->ro == 0) {
4930 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4931 " in read-only mode - aborting\n",
4932 mdname(mddev));
4933 return -EINVAL;
4934 }
4935 } else if (mddev->delta_disks < 0
4936 ? (here_new * mddev->new_chunk_sectors <=
4937 here_old * mddev->chunk_sectors)
4938 : (here_new * mddev->new_chunk_sectors >=
4939 here_old * mddev->chunk_sectors)) {
4940 /* Reading from the same stripe as writing to - bad */
4941 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4942 "auto-recovery - aborting.\n",
4943 mdname(mddev));
4944 return -EINVAL;
4945 }
4946 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4947 mdname(mddev));
4948 /* OK, we should be able to continue; */
4949 } else {
4950 BUG_ON(mddev->level != mddev->new_level);
4951 BUG_ON(mddev->layout != mddev->new_layout);
4952 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4953 BUG_ON(mddev->delta_disks != 0);
4954 }
4955
4956 if (mddev->private == NULL)
4957 conf = setup_conf(mddev);
4958 else
4959 conf = mddev->private;
4960
4961 if (IS_ERR(conf))
4962 return PTR_ERR(conf);
4963
4964 mddev->thread = conf->thread;
4965 conf->thread = NULL;
4966 mddev->private = conf;
4967
4968 /*
4969 * 0 for a fully functional array, 1 or 2 for a degraded array.
4970 */
4971 list_for_each_entry(rdev, &mddev->disks, same_set) {
4972 if (rdev->raid_disk < 0)
4973 continue;
4974 if (test_bit(In_sync, &rdev->flags))
4975 working_disks++;
4976 /* This disc is not fully in-sync. However if it
4977 * just stored parity (beyond the recovery_offset),
4978 * when we don't need to be concerned about the
4979 * array being dirty.
4980 * When reshape goes 'backwards', we never have
4981 * partially completed devices, so we only need
4982 * to worry about reshape going forwards.
4983 */
4984 /* Hack because v0.91 doesn't store recovery_offset properly. */
4985 if (mddev->major_version == 0 &&
4986 mddev->minor_version > 90)
4987 rdev->recovery_offset = reshape_offset;
4988
4989 if (rdev->recovery_offset < reshape_offset) {
4990 /* We need to check old and new layout */
4991 if (!only_parity(rdev->raid_disk,
4992 conf->algorithm,
4993 conf->raid_disks,
4994 conf->max_degraded))
4995 continue;
4996 }
4997 if (!only_parity(rdev->raid_disk,
4998 conf->prev_algo,
4999 conf->previous_raid_disks,
5000 conf->max_degraded))
5001 continue;
5002 dirty_parity_disks++;
5003 }
5004
5005 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5006 - working_disks);
5007
5008 if (mddev->degraded > conf->max_degraded) {
5009 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5010 " (%d/%d failed)\n",
5011 mdname(mddev), mddev->degraded, conf->raid_disks);
5012 goto abort;
5013 }
5014
5015 /* device size must be a multiple of chunk size */
5016 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5017 mddev->resync_max_sectors = mddev->dev_sectors;
5018
5019 if (mddev->degraded > dirty_parity_disks &&
5020 mddev->recovery_cp != MaxSector) {
5021 if (mddev->ok_start_degraded)
5022 printk(KERN_WARNING
5023 "md/raid:%s: starting dirty degraded array"
5024 " - data corruption possible.\n",
5025 mdname(mddev));
5026 else {
5027 printk(KERN_ERR
5028 "md/raid:%s: cannot start dirty degraded array.\n",
5029 mdname(mddev));
5030 goto abort;
5031 }
5032 }
5033
5034 if (mddev->degraded == 0)
5035 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5036 " devices, algorithm %d\n", mdname(mddev), conf->level,
5037 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5038 mddev->new_layout);
5039 else
5040 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5041 " out of %d devices, algorithm %d\n",
5042 mdname(mddev), conf->level,
5043 mddev->raid_disks - mddev->degraded,
5044 mddev->raid_disks, mddev->new_layout);
5045
5046 print_raid5_conf(conf);
5047
5048 if (conf->reshape_progress != MaxSector) {
5049 conf->reshape_safe = conf->reshape_progress;
5050 atomic_set(&conf->reshape_stripes, 0);
5051 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5052 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5053 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5054 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5055 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5056 "reshape");
5057 }
5058
5059 /* read-ahead size must cover two whole stripes, which is
5060 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5061 */
5062 {
5063 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5064 int stripe = data_disks *
5065 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5066 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5067 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5068 }
5069
5070 /* Ok, everything is just fine now */
5071 if (mddev->to_remove == &raid5_attrs_group)
5072 mddev->to_remove = NULL;
5073 else if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5074 printk(KERN_WARNING
5075 "md/raid:%s: failed to create sysfs attributes.\n",
5076 mdname(mddev));
5077
5078 mddev->queue->queue_lock = &conf->device_lock;
5079
5080 mddev->queue->unplug_fn = raid5_unplug_device;
5081 mddev->queue->backing_dev_info.congested_data = mddev;
5082 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5083
5084 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5085
5086 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5087 chunk_size = mddev->chunk_sectors << 9;
5088 blk_queue_io_min(mddev->queue, chunk_size);
5089 blk_queue_io_opt(mddev->queue, chunk_size *
5090 (conf->raid_disks - conf->max_degraded));
5091
5092 list_for_each_entry(rdev, &mddev->disks, same_set)
5093 disk_stack_limits(mddev->gendisk, rdev->bdev,
5094 rdev->data_offset << 9);
5095
5096 return 0;
5097 abort:
5098 md_unregister_thread(mddev->thread);
5099 mddev->thread = NULL;
5100 if (conf) {
5101 print_raid5_conf(conf);
5102 free_conf(conf);
5103 }
5104 mddev->private = NULL;
5105 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5106 return -EIO;
5107 }
5108
5109 static int stop(mddev_t *mddev)
5110 {
5111 raid5_conf_t *conf = mddev->private;
5112
5113 md_unregister_thread(mddev->thread);
5114 mddev->thread = NULL;
5115 mddev->queue->backing_dev_info.congested_fn = NULL;
5116 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5117 free_conf(conf);
5118 mddev->private = NULL;
5119 mddev->to_remove = &raid5_attrs_group;
5120 return 0;
5121 }
5122
5123 #ifdef DEBUG
5124 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5125 {
5126 int i;
5127
5128 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5129 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5130 seq_printf(seq, "sh %llu, count %d.\n",
5131 (unsigned long long)sh->sector, atomic_read(&sh->count));
5132 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5133 for (i = 0; i < sh->disks; i++) {
5134 seq_printf(seq, "(cache%d: %p %ld) ",
5135 i, sh->dev[i].page, sh->dev[i].flags);
5136 }
5137 seq_printf(seq, "\n");
5138 }
5139
5140 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5141 {
5142 struct stripe_head *sh;
5143 struct hlist_node *hn;
5144 int i;
5145
5146 spin_lock_irq(&conf->device_lock);
5147 for (i = 0; i < NR_HASH; i++) {
5148 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5149 if (sh->raid_conf != conf)
5150 continue;
5151 print_sh(seq, sh);
5152 }
5153 }
5154 spin_unlock_irq(&conf->device_lock);
5155 }
5156 #endif
5157
5158 static void status(struct seq_file *seq, mddev_t *mddev)
5159 {
5160 raid5_conf_t *conf = mddev->private;
5161 int i;
5162
5163 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5164 mddev->chunk_sectors / 2, mddev->layout);
5165 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5166 for (i = 0; i < conf->raid_disks; i++)
5167 seq_printf (seq, "%s",
5168 conf->disks[i].rdev &&
5169 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5170 seq_printf (seq, "]");
5171 #ifdef DEBUG
5172 seq_printf (seq, "\n");
5173 printall(seq, conf);
5174 #endif
5175 }
5176
5177 static void print_raid5_conf (raid5_conf_t *conf)
5178 {
5179 int i;
5180 struct disk_info *tmp;
5181
5182 printk(KERN_DEBUG "RAID conf printout:\n");
5183 if (!conf) {
5184 printk("(conf==NULL)\n");
5185 return;
5186 }
5187 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5188 conf->raid_disks,
5189 conf->raid_disks - conf->mddev->degraded);
5190
5191 for (i = 0; i < conf->raid_disks; i++) {
5192 char b[BDEVNAME_SIZE];
5193 tmp = conf->disks + i;
5194 if (tmp->rdev)
5195 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5196 i, !test_bit(Faulty, &tmp->rdev->flags),
5197 bdevname(tmp->rdev->bdev, b));
5198 }
5199 }
5200
5201 static int raid5_spare_active(mddev_t *mddev)
5202 {
5203 int i;
5204 raid5_conf_t *conf = mddev->private;
5205 struct disk_info *tmp;
5206
5207 for (i = 0; i < conf->raid_disks; i++) {
5208 tmp = conf->disks + i;
5209 if (tmp->rdev
5210 && !test_bit(Faulty, &tmp->rdev->flags)
5211 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5212 unsigned long flags;
5213 spin_lock_irqsave(&conf->device_lock, flags);
5214 mddev->degraded--;
5215 spin_unlock_irqrestore(&conf->device_lock, flags);
5216 }
5217 }
5218 print_raid5_conf(conf);
5219 return 0;
5220 }
5221
5222 static int raid5_remove_disk(mddev_t *mddev, int number)
5223 {
5224 raid5_conf_t *conf = mddev->private;
5225 int err = 0;
5226 mdk_rdev_t *rdev;
5227 struct disk_info *p = conf->disks + number;
5228
5229 print_raid5_conf(conf);
5230 rdev = p->rdev;
5231 if (rdev) {
5232 if (number >= conf->raid_disks &&
5233 conf->reshape_progress == MaxSector)
5234 clear_bit(In_sync, &rdev->flags);
5235
5236 if (test_bit(In_sync, &rdev->flags) ||
5237 atomic_read(&rdev->nr_pending)) {
5238 err = -EBUSY;
5239 goto abort;
5240 }
5241 /* Only remove non-faulty devices if recovery
5242 * isn't possible.
5243 */
5244 if (!test_bit(Faulty, &rdev->flags) &&
5245 mddev->degraded <= conf->max_degraded &&
5246 number < conf->raid_disks) {
5247 err = -EBUSY;
5248 goto abort;
5249 }
5250 p->rdev = NULL;
5251 synchronize_rcu();
5252 if (atomic_read(&rdev->nr_pending)) {
5253 /* lost the race, try later */
5254 err = -EBUSY;
5255 p->rdev = rdev;
5256 }
5257 }
5258 abort:
5259
5260 print_raid5_conf(conf);
5261 return err;
5262 }
5263
5264 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5265 {
5266 raid5_conf_t *conf = mddev->private;
5267 int err = -EEXIST;
5268 int disk;
5269 struct disk_info *p;
5270 int first = 0;
5271 int last = conf->raid_disks - 1;
5272
5273 if (mddev->degraded > conf->max_degraded)
5274 /* no point adding a device */
5275 return -EINVAL;
5276
5277 if (rdev->raid_disk >= 0)
5278 first = last = rdev->raid_disk;
5279
5280 /*
5281 * find the disk ... but prefer rdev->saved_raid_disk
5282 * if possible.
5283 */
5284 if (rdev->saved_raid_disk >= 0 &&
5285 rdev->saved_raid_disk >= first &&
5286 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5287 disk = rdev->saved_raid_disk;
5288 else
5289 disk = first;
5290 for ( ; disk <= last ; disk++)
5291 if ((p=conf->disks + disk)->rdev == NULL) {
5292 clear_bit(In_sync, &rdev->flags);
5293 rdev->raid_disk = disk;
5294 err = 0;
5295 if (rdev->saved_raid_disk != disk)
5296 conf->fullsync = 1;
5297 rcu_assign_pointer(p->rdev, rdev);
5298 break;
5299 }
5300 print_raid5_conf(conf);
5301 return err;
5302 }
5303
5304 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5305 {
5306 /* no resync is happening, and there is enough space
5307 * on all devices, so we can resize.
5308 * We need to make sure resync covers any new space.
5309 * If the array is shrinking we should possibly wait until
5310 * any io in the removed space completes, but it hardly seems
5311 * worth it.
5312 */
5313 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5314 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5315 mddev->raid_disks));
5316 if (mddev->array_sectors >
5317 raid5_size(mddev, sectors, mddev->raid_disks))
5318 return -EINVAL;
5319 set_capacity(mddev->gendisk, mddev->array_sectors);
5320 revalidate_disk(mddev->gendisk);
5321 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5322 mddev->recovery_cp = mddev->dev_sectors;
5323 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5324 }
5325 mddev->dev_sectors = sectors;
5326 mddev->resync_max_sectors = sectors;
5327 return 0;
5328 }
5329
5330 static int check_stripe_cache(mddev_t *mddev)
5331 {
5332 /* Can only proceed if there are plenty of stripe_heads.
5333 * We need a minimum of one full stripe,, and for sensible progress
5334 * it is best to have about 4 times that.
5335 * If we require 4 times, then the default 256 4K stripe_heads will
5336 * allow for chunk sizes up to 256K, which is probably OK.
5337 * If the chunk size is greater, user-space should request more
5338 * stripe_heads first.
5339 */
5340 raid5_conf_t *conf = mddev->private;
5341 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5342 > conf->max_nr_stripes ||
5343 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5344 > conf->max_nr_stripes) {
5345 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5346 mdname(mddev),
5347 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5348 / STRIPE_SIZE)*4);
5349 return 0;
5350 }
5351 return 1;
5352 }
5353
5354 static int check_reshape(mddev_t *mddev)
5355 {
5356 raid5_conf_t *conf = mddev->private;
5357
5358 if (mddev->delta_disks == 0 &&
5359 mddev->new_layout == mddev->layout &&
5360 mddev->new_chunk_sectors == mddev->chunk_sectors)
5361 return 0; /* nothing to do */
5362 if (mddev->bitmap)
5363 /* Cannot grow a bitmap yet */
5364 return -EBUSY;
5365 if (mddev->degraded > conf->max_degraded)
5366 return -EINVAL;
5367 if (mddev->delta_disks < 0) {
5368 /* We might be able to shrink, but the devices must
5369 * be made bigger first.
5370 * For raid6, 4 is the minimum size.
5371 * Otherwise 2 is the minimum
5372 */
5373 int min = 2;
5374 if (mddev->level == 6)
5375 min = 4;
5376 if (mddev->raid_disks + mddev->delta_disks < min)
5377 return -EINVAL;
5378 }
5379
5380 if (!check_stripe_cache(mddev))
5381 return -ENOSPC;
5382
5383 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5384 }
5385
5386 static int raid5_start_reshape(mddev_t *mddev)
5387 {
5388 raid5_conf_t *conf = mddev->private;
5389 mdk_rdev_t *rdev;
5390 int spares = 0;
5391 int added_devices = 0;
5392 unsigned long flags;
5393
5394 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5395 return -EBUSY;
5396
5397 if (!check_stripe_cache(mddev))
5398 return -ENOSPC;
5399
5400 list_for_each_entry(rdev, &mddev->disks, same_set)
5401 if (rdev->raid_disk < 0 &&
5402 !test_bit(Faulty, &rdev->flags))
5403 spares++;
5404
5405 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5406 /* Not enough devices even to make a degraded array
5407 * of that size
5408 */
5409 return -EINVAL;
5410
5411 /* Refuse to reduce size of the array. Any reductions in
5412 * array size must be through explicit setting of array_size
5413 * attribute.
5414 */
5415 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5416 < mddev->array_sectors) {
5417 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5418 "before number of disks\n", mdname(mddev));
5419 return -EINVAL;
5420 }
5421
5422 atomic_set(&conf->reshape_stripes, 0);
5423 spin_lock_irq(&conf->device_lock);
5424 conf->previous_raid_disks = conf->raid_disks;
5425 conf->raid_disks += mddev->delta_disks;
5426 conf->prev_chunk_sectors = conf->chunk_sectors;
5427 conf->chunk_sectors = mddev->new_chunk_sectors;
5428 conf->prev_algo = conf->algorithm;
5429 conf->algorithm = mddev->new_layout;
5430 if (mddev->delta_disks < 0)
5431 conf->reshape_progress = raid5_size(mddev, 0, 0);
5432 else
5433 conf->reshape_progress = 0;
5434 conf->reshape_safe = conf->reshape_progress;
5435 conf->generation++;
5436 spin_unlock_irq(&conf->device_lock);
5437
5438 /* Add some new drives, as many as will fit.
5439 * We know there are enough to make the newly sized array work.
5440 */
5441 list_for_each_entry(rdev, &mddev->disks, same_set)
5442 if (rdev->raid_disk < 0 &&
5443 !test_bit(Faulty, &rdev->flags)) {
5444 if (raid5_add_disk(mddev, rdev) == 0) {
5445 char nm[20];
5446 if (rdev->raid_disk >= conf->previous_raid_disks) {
5447 set_bit(In_sync, &rdev->flags);
5448 added_devices++;
5449 } else
5450 rdev->recovery_offset = 0;
5451 sprintf(nm, "rd%d", rdev->raid_disk);
5452 if (sysfs_create_link(&mddev->kobj,
5453 &rdev->kobj, nm))
5454 printk(KERN_WARNING
5455 "md/raid:%s: failed to create "
5456 " link %s\n",
5457 mdname(mddev), nm);
5458 } else
5459 break;
5460 }
5461
5462 /* When a reshape changes the number of devices, ->degraded
5463 * is measured against the large of the pre and post number of
5464 * devices.*/
5465 if (mddev->delta_disks > 0) {
5466 spin_lock_irqsave(&conf->device_lock, flags);
5467 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5468 - added_devices;
5469 spin_unlock_irqrestore(&conf->device_lock, flags);
5470 }
5471 mddev->raid_disks = conf->raid_disks;
5472 mddev->reshape_position = conf->reshape_progress;
5473 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5474
5475 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5476 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5477 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5478 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5479 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5480 "reshape");
5481 if (!mddev->sync_thread) {
5482 mddev->recovery = 0;
5483 spin_lock_irq(&conf->device_lock);
5484 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5485 conf->reshape_progress = MaxSector;
5486 spin_unlock_irq(&conf->device_lock);
5487 return -EAGAIN;
5488 }
5489 conf->reshape_checkpoint = jiffies;
5490 md_wakeup_thread(mddev->sync_thread);
5491 md_new_event(mddev);
5492 return 0;
5493 }
5494
5495 /* This is called from the reshape thread and should make any
5496 * changes needed in 'conf'
5497 */
5498 static void end_reshape(raid5_conf_t *conf)
5499 {
5500
5501 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5502
5503 spin_lock_irq(&conf->device_lock);
5504 conf->previous_raid_disks = conf->raid_disks;
5505 conf->reshape_progress = MaxSector;
5506 spin_unlock_irq(&conf->device_lock);
5507 wake_up(&conf->wait_for_overlap);
5508
5509 /* read-ahead size must cover two whole stripes, which is
5510 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5511 */
5512 {
5513 int data_disks = conf->raid_disks - conf->max_degraded;
5514 int stripe = data_disks * ((conf->chunk_sectors << 9)
5515 / PAGE_SIZE);
5516 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5517 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5518 }
5519 }
5520 }
5521
5522 /* This is called from the raid5d thread with mddev_lock held.
5523 * It makes config changes to the device.
5524 */
5525 static void raid5_finish_reshape(mddev_t *mddev)
5526 {
5527 raid5_conf_t *conf = mddev->private;
5528
5529 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5530
5531 if (mddev->delta_disks > 0) {
5532 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5533 set_capacity(mddev->gendisk, mddev->array_sectors);
5534 revalidate_disk(mddev->gendisk);
5535 } else {
5536 int d;
5537 mddev->degraded = conf->raid_disks;
5538 for (d = 0; d < conf->raid_disks ; d++)
5539 if (conf->disks[d].rdev &&
5540 test_bit(In_sync,
5541 &conf->disks[d].rdev->flags))
5542 mddev->degraded--;
5543 for (d = conf->raid_disks ;
5544 d < conf->raid_disks - mddev->delta_disks;
5545 d++) {
5546 mdk_rdev_t *rdev = conf->disks[d].rdev;
5547 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5548 char nm[20];
5549 sprintf(nm, "rd%d", rdev->raid_disk);
5550 sysfs_remove_link(&mddev->kobj, nm);
5551 rdev->raid_disk = -1;
5552 }
5553 }
5554 }
5555 mddev->layout = conf->algorithm;
5556 mddev->chunk_sectors = conf->chunk_sectors;
5557 mddev->reshape_position = MaxSector;
5558 mddev->delta_disks = 0;
5559 }
5560 }
5561
5562 static void raid5_quiesce(mddev_t *mddev, int state)
5563 {
5564 raid5_conf_t *conf = mddev->private;
5565
5566 switch(state) {
5567 case 2: /* resume for a suspend */
5568 wake_up(&conf->wait_for_overlap);
5569 break;
5570
5571 case 1: /* stop all writes */
5572 spin_lock_irq(&conf->device_lock);
5573 /* '2' tells resync/reshape to pause so that all
5574 * active stripes can drain
5575 */
5576 conf->quiesce = 2;
5577 wait_event_lock_irq(conf->wait_for_stripe,
5578 atomic_read(&conf->active_stripes) == 0 &&
5579 atomic_read(&conf->active_aligned_reads) == 0,
5580 conf->device_lock, /* nothing */);
5581 conf->quiesce = 1;
5582 spin_unlock_irq(&conf->device_lock);
5583 /* allow reshape to continue */
5584 wake_up(&conf->wait_for_overlap);
5585 break;
5586
5587 case 0: /* re-enable writes */
5588 spin_lock_irq(&conf->device_lock);
5589 conf->quiesce = 0;
5590 wake_up(&conf->wait_for_stripe);
5591 wake_up(&conf->wait_for_overlap);
5592 spin_unlock_irq(&conf->device_lock);
5593 break;
5594 }
5595 }
5596
5597
5598 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5599 {
5600 struct raid0_private_data *raid0_priv = mddev->private;
5601
5602 /* for raid0 takeover only one zone is supported */
5603 if (raid0_priv->nr_strip_zones > 1) {
5604 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5605 mdname(mddev));
5606 return ERR_PTR(-EINVAL);
5607 }
5608
5609 mddev->new_level = level;
5610 mddev->new_layout = ALGORITHM_PARITY_N;
5611 mddev->new_chunk_sectors = mddev->chunk_sectors;
5612 mddev->raid_disks += 1;
5613 mddev->delta_disks = 1;
5614 /* make sure it will be not marked as dirty */
5615 mddev->recovery_cp = MaxSector;
5616
5617 return setup_conf(mddev);
5618 }
5619
5620
5621 static void *raid5_takeover_raid1(mddev_t *mddev)
5622 {
5623 int chunksect;
5624
5625 if (mddev->raid_disks != 2 ||
5626 mddev->degraded > 1)
5627 return ERR_PTR(-EINVAL);
5628
5629 /* Should check if there are write-behind devices? */
5630
5631 chunksect = 64*2; /* 64K by default */
5632
5633 /* The array must be an exact multiple of chunksize */
5634 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5635 chunksect >>= 1;
5636
5637 if ((chunksect<<9) < STRIPE_SIZE)
5638 /* array size does not allow a suitable chunk size */
5639 return ERR_PTR(-EINVAL);
5640
5641 mddev->new_level = 5;
5642 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5643 mddev->new_chunk_sectors = chunksect;
5644
5645 return setup_conf(mddev);
5646 }
5647
5648 static void *raid5_takeover_raid6(mddev_t *mddev)
5649 {
5650 int new_layout;
5651
5652 switch (mddev->layout) {
5653 case ALGORITHM_LEFT_ASYMMETRIC_6:
5654 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5655 break;
5656 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5657 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5658 break;
5659 case ALGORITHM_LEFT_SYMMETRIC_6:
5660 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5661 break;
5662 case ALGORITHM_RIGHT_SYMMETRIC_6:
5663 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5664 break;
5665 case ALGORITHM_PARITY_0_6:
5666 new_layout = ALGORITHM_PARITY_0;
5667 break;
5668 case ALGORITHM_PARITY_N:
5669 new_layout = ALGORITHM_PARITY_N;
5670 break;
5671 default:
5672 return ERR_PTR(-EINVAL);
5673 }
5674 mddev->new_level = 5;
5675 mddev->new_layout = new_layout;
5676 mddev->delta_disks = -1;
5677 mddev->raid_disks -= 1;
5678 return setup_conf(mddev);
5679 }
5680
5681
5682 static int raid5_check_reshape(mddev_t *mddev)
5683 {
5684 /* For a 2-drive array, the layout and chunk size can be changed
5685 * immediately as not restriping is needed.
5686 * For larger arrays we record the new value - after validation
5687 * to be used by a reshape pass.
5688 */
5689 raid5_conf_t *conf = mddev->private;
5690 int new_chunk = mddev->new_chunk_sectors;
5691
5692 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5693 return -EINVAL;
5694 if (new_chunk > 0) {
5695 if (!is_power_of_2(new_chunk))
5696 return -EINVAL;
5697 if (new_chunk < (PAGE_SIZE>>9))
5698 return -EINVAL;
5699 if (mddev->array_sectors & (new_chunk-1))
5700 /* not factor of array size */
5701 return -EINVAL;
5702 }
5703
5704 /* They look valid */
5705
5706 if (mddev->raid_disks == 2) {
5707 /* can make the change immediately */
5708 if (mddev->new_layout >= 0) {
5709 conf->algorithm = mddev->new_layout;
5710 mddev->layout = mddev->new_layout;
5711 }
5712 if (new_chunk > 0) {
5713 conf->chunk_sectors = new_chunk ;
5714 mddev->chunk_sectors = new_chunk;
5715 }
5716 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5717 md_wakeup_thread(mddev->thread);
5718 }
5719 return check_reshape(mddev);
5720 }
5721
5722 static int raid6_check_reshape(mddev_t *mddev)
5723 {
5724 int new_chunk = mddev->new_chunk_sectors;
5725
5726 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5727 return -EINVAL;
5728 if (new_chunk > 0) {
5729 if (!is_power_of_2(new_chunk))
5730 return -EINVAL;
5731 if (new_chunk < (PAGE_SIZE >> 9))
5732 return -EINVAL;
5733 if (mddev->array_sectors & (new_chunk-1))
5734 /* not factor of array size */
5735 return -EINVAL;
5736 }
5737
5738 /* They look valid */
5739 return check_reshape(mddev);
5740 }
5741
5742 static void *raid5_takeover(mddev_t *mddev)
5743 {
5744 /* raid5 can take over:
5745 * raid0 - if there is only one strip zone - make it a raid4 layout
5746 * raid1 - if there are two drives. We need to know the chunk size
5747 * raid4 - trivial - just use a raid4 layout.
5748 * raid6 - Providing it is a *_6 layout
5749 */
5750 if (mddev->level == 0)
5751 return raid45_takeover_raid0(mddev, 5);
5752 if (mddev->level == 1)
5753 return raid5_takeover_raid1(mddev);
5754 if (mddev->level == 4) {
5755 mddev->new_layout = ALGORITHM_PARITY_N;
5756 mddev->new_level = 5;
5757 return setup_conf(mddev);
5758 }
5759 if (mddev->level == 6)
5760 return raid5_takeover_raid6(mddev);
5761
5762 return ERR_PTR(-EINVAL);
5763 }
5764
5765 static void *raid4_takeover(mddev_t *mddev)
5766 {
5767 /* raid4 can take over:
5768 * raid0 - if there is only one strip zone
5769 * raid5 - if layout is right
5770 */
5771 if (mddev->level == 0)
5772 return raid45_takeover_raid0(mddev, 4);
5773 if (mddev->level == 5 &&
5774 mddev->layout == ALGORITHM_PARITY_N) {
5775 mddev->new_layout = 0;
5776 mddev->new_level = 4;
5777 return setup_conf(mddev);
5778 }
5779 return ERR_PTR(-EINVAL);
5780 }
5781
5782 static struct mdk_personality raid5_personality;
5783
5784 static void *raid6_takeover(mddev_t *mddev)
5785 {
5786 /* Currently can only take over a raid5. We map the
5787 * personality to an equivalent raid6 personality
5788 * with the Q block at the end.
5789 */
5790 int new_layout;
5791
5792 if (mddev->pers != &raid5_personality)
5793 return ERR_PTR(-EINVAL);
5794 if (mddev->degraded > 1)
5795 return ERR_PTR(-EINVAL);
5796 if (mddev->raid_disks > 253)
5797 return ERR_PTR(-EINVAL);
5798 if (mddev->raid_disks < 3)
5799 return ERR_PTR(-EINVAL);
5800
5801 switch (mddev->layout) {
5802 case ALGORITHM_LEFT_ASYMMETRIC:
5803 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5804 break;
5805 case ALGORITHM_RIGHT_ASYMMETRIC:
5806 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5807 break;
5808 case ALGORITHM_LEFT_SYMMETRIC:
5809 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5810 break;
5811 case ALGORITHM_RIGHT_SYMMETRIC:
5812 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5813 break;
5814 case ALGORITHM_PARITY_0:
5815 new_layout = ALGORITHM_PARITY_0_6;
5816 break;
5817 case ALGORITHM_PARITY_N:
5818 new_layout = ALGORITHM_PARITY_N;
5819 break;
5820 default:
5821 return ERR_PTR(-EINVAL);
5822 }
5823 mddev->new_level = 6;
5824 mddev->new_layout = new_layout;
5825 mddev->delta_disks = 1;
5826 mddev->raid_disks += 1;
5827 return setup_conf(mddev);
5828 }
5829
5830
5831 static struct mdk_personality raid6_personality =
5832 {
5833 .name = "raid6",
5834 .level = 6,
5835 .owner = THIS_MODULE,
5836 .make_request = make_request,
5837 .run = run,
5838 .stop = stop,
5839 .status = status,
5840 .error_handler = error,
5841 .hot_add_disk = raid5_add_disk,
5842 .hot_remove_disk= raid5_remove_disk,
5843 .spare_active = raid5_spare_active,
5844 .sync_request = sync_request,
5845 .resize = raid5_resize,
5846 .size = raid5_size,
5847 .check_reshape = raid6_check_reshape,
5848 .start_reshape = raid5_start_reshape,
5849 .finish_reshape = raid5_finish_reshape,
5850 .quiesce = raid5_quiesce,
5851 .takeover = raid6_takeover,
5852 };
5853 static struct mdk_personality raid5_personality =
5854 {
5855 .name = "raid5",
5856 .level = 5,
5857 .owner = THIS_MODULE,
5858 .make_request = make_request,
5859 .run = run,
5860 .stop = stop,
5861 .status = status,
5862 .error_handler = error,
5863 .hot_add_disk = raid5_add_disk,
5864 .hot_remove_disk= raid5_remove_disk,
5865 .spare_active = raid5_spare_active,
5866 .sync_request = sync_request,
5867 .resize = raid5_resize,
5868 .size = raid5_size,
5869 .check_reshape = raid5_check_reshape,
5870 .start_reshape = raid5_start_reshape,
5871 .finish_reshape = raid5_finish_reshape,
5872 .quiesce = raid5_quiesce,
5873 .takeover = raid5_takeover,
5874 };
5875
5876 static struct mdk_personality raid4_personality =
5877 {
5878 .name = "raid4",
5879 .level = 4,
5880 .owner = THIS_MODULE,
5881 .make_request = make_request,
5882 .run = run,
5883 .stop = stop,
5884 .status = status,
5885 .error_handler = error,
5886 .hot_add_disk = raid5_add_disk,
5887 .hot_remove_disk= raid5_remove_disk,
5888 .spare_active = raid5_spare_active,
5889 .sync_request = sync_request,
5890 .resize = raid5_resize,
5891 .size = raid5_size,
5892 .check_reshape = raid5_check_reshape,
5893 .start_reshape = raid5_start_reshape,
5894 .finish_reshape = raid5_finish_reshape,
5895 .quiesce = raid5_quiesce,
5896 .takeover = raid4_takeover,
5897 };
5898
5899 static int __init raid5_init(void)
5900 {
5901 register_md_personality(&raid6_personality);
5902 register_md_personality(&raid5_personality);
5903 register_md_personality(&raid4_personality);
5904 return 0;
5905 }
5906
5907 static void raid5_exit(void)
5908 {
5909 unregister_md_personality(&raid6_personality);
5910 unregister_md_personality(&raid5_personality);
5911 unregister_md_personality(&raid4_personality);
5912 }
5913
5914 module_init(raid5_init);
5915 module_exit(raid5_exit);
5916 MODULE_LICENSE("GPL");
5917 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5918 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5919 MODULE_ALIAS("md-raid5");
5920 MODULE_ALIAS("md-raid4");
5921 MODULE_ALIAS("md-level-5");
5922 MODULE_ALIAS("md-level-4");
5923 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5924 MODULE_ALIAS("md-raid6");
5925 MODULE_ALIAS("md-level-6");
5926
5927 /* This used to be two separate modules, they were: */
5928 MODULE_ALIAS("raid5");
5929 MODULE_ALIAS("raid6");