Input: sur40 - skip all blobs that are not touches
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / md / raid5-ppl.c
1 /*
2 * Partial Parity Log for closing the RAID5 write hole
3 * Copyright (c) 2017, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/crc32c.h>
19 #include <linux/flex_array.h>
20 #include <linux/async_tx.h>
21 #include <linux/raid/md_p.h>
22 #include "md.h"
23 #include "raid5.h"
24
25 /*
26 * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
27 * partial parity data. The header contains an array of entries
28 * (struct ppl_header_entry) which describe the logged write requests.
29 * Partial parity for the entries comes after the header, written in the same
30 * sequence as the entries:
31 *
32 * Header
33 * entry0
34 * ...
35 * entryN
36 * PP data
37 * PP for entry0
38 * ...
39 * PP for entryN
40 *
41 * An entry describes one or more consecutive stripe_heads, up to a full
42 * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
43 * number of stripe_heads in the entry and n is the number of modified data
44 * disks. Every stripe_head in the entry must write to the same data disks.
45 * An example of a valid case described by a single entry (writes to the first
46 * stripe of a 4 disk array, 16k chunk size):
47 *
48 * sh->sector dd0 dd1 dd2 ppl
49 * +-----+-----+-----+
50 * 0 | --- | --- | --- | +----+
51 * 8 | -W- | -W- | --- | | pp | data_sector = 8
52 * 16 | -W- | -W- | --- | | pp | data_size = 3 * 2 * 4k
53 * 24 | -W- | -W- | --- | | pp | pp_size = 3 * 4k
54 * +-----+-----+-----+ +----+
55 *
56 * data_sector is the first raid sector of the modified data, data_size is the
57 * total size of modified data and pp_size is the size of partial parity for
58 * this entry. Entries for full stripe writes contain no partial parity
59 * (pp_size = 0), they only mark the stripes for which parity should be
60 * recalculated after an unclean shutdown. Every entry holds a checksum of its
61 * partial parity, the header also has a checksum of the header itself.
62 *
63 * A write request is always logged to the PPL instance stored on the parity
64 * disk of the corresponding stripe. For each member disk there is one ppl_log
65 * used to handle logging for this disk, independently from others. They are
66 * grouped in child_logs array in struct ppl_conf, which is assigned to
67 * r5conf->log_private.
68 *
69 * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
70 * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
71 * can be appended to the last entry if it meets the conditions for a valid
72 * entry described above, otherwise a new entry is added. Checksums of entries
73 * are calculated incrementally as stripes containing partial parity are being
74 * added. ppl_submit_iounit() calculates the checksum of the header and submits
75 * a bio containing the header page and partial parity pages (sh->ppl_page) for
76 * all stripes of the io_unit. When the PPL write completes, the stripes
77 * associated with the io_unit are released and raid5d starts writing their data
78 * and parity. When all stripes are written, the io_unit is freed and the next
79 * can be submitted.
80 *
81 * An io_unit is used to gather stripes until it is submitted or becomes full
82 * (if the maximum number of entries or size of PPL is reached). Another io_unit
83 * can't be submitted until the previous has completed (PPL and stripe
84 * data+parity is written). The log->io_list tracks all io_units of a log
85 * (for a single member disk). New io_units are added to the end of the list
86 * and the first io_unit is submitted, if it is not submitted already.
87 * The current io_unit accepting new stripes is always at the end of the list.
88 */
89
90 struct ppl_conf {
91 struct mddev *mddev;
92
93 /* array of child logs, one for each raid disk */
94 struct ppl_log *child_logs;
95 int count;
96
97 int block_size; /* the logical block size used for data_sector
98 * in ppl_header_entry */
99 u32 signature; /* raid array identifier */
100 atomic64_t seq; /* current log write sequence number */
101
102 struct kmem_cache *io_kc;
103 mempool_t *io_pool;
104 struct bio_set *bs;
105
106 /* used only for recovery */
107 int recovered_entries;
108 int mismatch_count;
109
110 /* stripes to retry if failed to allocate io_unit */
111 struct list_head no_mem_stripes;
112 spinlock_t no_mem_stripes_lock;
113 };
114
115 struct ppl_log {
116 struct ppl_conf *ppl_conf; /* shared between all log instances */
117
118 struct md_rdev *rdev; /* array member disk associated with
119 * this log instance */
120 struct mutex io_mutex;
121 struct ppl_io_unit *current_io; /* current io_unit accepting new data
122 * always at the end of io_list */
123 spinlock_t io_list_lock;
124 struct list_head io_list; /* all io_units of this log */
125 };
126
127 #define PPL_IO_INLINE_BVECS 32
128
129 struct ppl_io_unit {
130 struct ppl_log *log;
131
132 struct page *header_page; /* for ppl_header */
133
134 unsigned int entries_count; /* number of entries in ppl_header */
135 unsigned int pp_size; /* total size current of partial parity */
136
137 u64 seq; /* sequence number of this log write */
138 struct list_head log_sibling; /* log->io_list */
139
140 struct list_head stripe_list; /* stripes added to the io_unit */
141 atomic_t pending_stripes; /* how many stripes not written to raid */
142
143 bool submitted; /* true if write to log started */
144
145 /* inline bio and its biovec for submitting the iounit */
146 struct bio bio;
147 struct bio_vec biovec[PPL_IO_INLINE_BVECS];
148 };
149
150 struct dma_async_tx_descriptor *
151 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
152 struct dma_async_tx_descriptor *tx)
153 {
154 int disks = sh->disks;
155 struct page **srcs = flex_array_get(percpu->scribble, 0);
156 int count = 0, pd_idx = sh->pd_idx, i;
157 struct async_submit_ctl submit;
158
159 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
160
161 /*
162 * Partial parity is the XOR of stripe data chunks that are not changed
163 * during the write request. Depending on available data
164 * (read-modify-write vs. reconstruct-write case) we calculate it
165 * differently.
166 */
167 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
168 /*
169 * rmw: xor old data and parity from updated disks
170 * This is calculated earlier by ops_run_prexor5() so just copy
171 * the parity dev page.
172 */
173 srcs[count++] = sh->dev[pd_idx].page;
174 } else if (sh->reconstruct_state == reconstruct_state_drain_run) {
175 /* rcw: xor data from all not updated disks */
176 for (i = disks; i--;) {
177 struct r5dev *dev = &sh->dev[i];
178 if (test_bit(R5_UPTODATE, &dev->flags))
179 srcs[count++] = dev->page;
180 }
181 } else {
182 return tx;
183 }
184
185 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
186 NULL, sh, flex_array_get(percpu->scribble, 0)
187 + sizeof(struct page *) * (sh->disks + 2));
188
189 if (count == 1)
190 tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE,
191 &submit);
192 else
193 tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE,
194 &submit);
195
196 return tx;
197 }
198
199 static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data)
200 {
201 struct kmem_cache *kc = pool_data;
202 struct ppl_io_unit *io;
203
204 io = kmem_cache_alloc(kc, gfp_mask);
205 if (!io)
206 return NULL;
207
208 io->header_page = alloc_page(gfp_mask);
209 if (!io->header_page) {
210 kmem_cache_free(kc, io);
211 return NULL;
212 }
213
214 return io;
215 }
216
217 static void ppl_io_pool_free(void *element, void *pool_data)
218 {
219 struct kmem_cache *kc = pool_data;
220 struct ppl_io_unit *io = element;
221
222 __free_page(io->header_page);
223 kmem_cache_free(kc, io);
224 }
225
226 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
227 struct stripe_head *sh)
228 {
229 struct ppl_conf *ppl_conf = log->ppl_conf;
230 struct ppl_io_unit *io;
231 struct ppl_header *pplhdr;
232 struct page *header_page;
233
234 io = mempool_alloc(ppl_conf->io_pool, GFP_NOWAIT);
235 if (!io)
236 return NULL;
237
238 header_page = io->header_page;
239 memset(io, 0, sizeof(*io));
240 io->header_page = header_page;
241
242 io->log = log;
243 INIT_LIST_HEAD(&io->log_sibling);
244 INIT_LIST_HEAD(&io->stripe_list);
245 atomic_set(&io->pending_stripes, 0);
246 bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS);
247
248 pplhdr = page_address(io->header_page);
249 clear_page(pplhdr);
250 memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
251 pplhdr->signature = cpu_to_le32(ppl_conf->signature);
252
253 io->seq = atomic64_add_return(1, &ppl_conf->seq);
254 pplhdr->generation = cpu_to_le64(io->seq);
255
256 return io;
257 }
258
259 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
260 {
261 struct ppl_io_unit *io = log->current_io;
262 struct ppl_header_entry *e = NULL;
263 struct ppl_header *pplhdr;
264 int i;
265 sector_t data_sector = 0;
266 int data_disks = 0;
267 unsigned int entry_space = (log->rdev->ppl.size << 9) - PPL_HEADER_SIZE;
268 struct r5conf *conf = sh->raid_conf;
269
270 pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
271
272 /* check if current io_unit is full */
273 if (io && (io->pp_size == entry_space ||
274 io->entries_count == PPL_HDR_MAX_ENTRIES)) {
275 pr_debug("%s: add io_unit blocked by seq: %llu\n",
276 __func__, io->seq);
277 io = NULL;
278 }
279
280 /* add a new unit if there is none or the current is full */
281 if (!io) {
282 io = ppl_new_iounit(log, sh);
283 if (!io)
284 return -ENOMEM;
285 spin_lock_irq(&log->io_list_lock);
286 list_add_tail(&io->log_sibling, &log->io_list);
287 spin_unlock_irq(&log->io_list_lock);
288
289 log->current_io = io;
290 }
291
292 for (i = 0; i < sh->disks; i++) {
293 struct r5dev *dev = &sh->dev[i];
294
295 if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
296 if (!data_disks || dev->sector < data_sector)
297 data_sector = dev->sector;
298 data_disks++;
299 }
300 }
301 BUG_ON(!data_disks);
302
303 pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
304 io->seq, (unsigned long long)data_sector, data_disks);
305
306 pplhdr = page_address(io->header_page);
307
308 if (io->entries_count > 0) {
309 struct ppl_header_entry *last =
310 &pplhdr->entries[io->entries_count - 1];
311 struct stripe_head *sh_last = list_last_entry(
312 &io->stripe_list, struct stripe_head, log_list);
313 u64 data_sector_last = le64_to_cpu(last->data_sector);
314 u32 data_size_last = le32_to_cpu(last->data_size);
315
316 /*
317 * Check if we can append the stripe to the last entry. It must
318 * be just after the last logged stripe and write to the same
319 * disks. Use bit shift and logarithm to avoid 64-bit division.
320 */
321 if ((sh->sector == sh_last->sector + STRIPE_SECTORS) &&
322 (data_sector >> ilog2(conf->chunk_sectors) ==
323 data_sector_last >> ilog2(conf->chunk_sectors)) &&
324 ((data_sector - data_sector_last) * data_disks ==
325 data_size_last >> 9))
326 e = last;
327 }
328
329 if (!e) {
330 e = &pplhdr->entries[io->entries_count++];
331 e->data_sector = cpu_to_le64(data_sector);
332 e->parity_disk = cpu_to_le32(sh->pd_idx);
333 e->checksum = cpu_to_le32(~0);
334 }
335
336 le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
337
338 /* don't write any PP if full stripe write */
339 if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
340 le32_add_cpu(&e->pp_size, PAGE_SIZE);
341 io->pp_size += PAGE_SIZE;
342 e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
343 page_address(sh->ppl_page),
344 PAGE_SIZE));
345 }
346
347 list_add_tail(&sh->log_list, &io->stripe_list);
348 atomic_inc(&io->pending_stripes);
349 sh->ppl_io = io;
350
351 return 0;
352 }
353
354 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
355 {
356 struct ppl_conf *ppl_conf = conf->log_private;
357 struct ppl_io_unit *io = sh->ppl_io;
358 struct ppl_log *log;
359
360 if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page ||
361 !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
362 !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
363 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
364 return -EAGAIN;
365 }
366
367 log = &ppl_conf->child_logs[sh->pd_idx];
368
369 mutex_lock(&log->io_mutex);
370
371 if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
372 mutex_unlock(&log->io_mutex);
373 return -EAGAIN;
374 }
375
376 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
377 clear_bit(STRIPE_DELAYED, &sh->state);
378 atomic_inc(&sh->count);
379
380 if (ppl_log_stripe(log, sh)) {
381 spin_lock_irq(&ppl_conf->no_mem_stripes_lock);
382 list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes);
383 spin_unlock_irq(&ppl_conf->no_mem_stripes_lock);
384 }
385
386 mutex_unlock(&log->io_mutex);
387
388 return 0;
389 }
390
391 static void ppl_log_endio(struct bio *bio)
392 {
393 struct ppl_io_unit *io = bio->bi_private;
394 struct ppl_log *log = io->log;
395 struct ppl_conf *ppl_conf = log->ppl_conf;
396 struct stripe_head *sh, *next;
397
398 pr_debug("%s: seq: %llu\n", __func__, io->seq);
399
400 if (bio->bi_error)
401 md_error(ppl_conf->mddev, log->rdev);
402
403 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
404 list_del_init(&sh->log_list);
405
406 set_bit(STRIPE_HANDLE, &sh->state);
407 raid5_release_stripe(sh);
408 }
409 }
410
411 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
412 {
413 char b[BDEVNAME_SIZE];
414
415 pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n",
416 __func__, io->seq, bio->bi_iter.bi_size,
417 (unsigned long long)bio->bi_iter.bi_sector,
418 bdevname(bio->bi_bdev, b));
419
420 submit_bio(bio);
421 }
422
423 static void ppl_submit_iounit(struct ppl_io_unit *io)
424 {
425 struct ppl_log *log = io->log;
426 struct ppl_conf *ppl_conf = log->ppl_conf;
427 struct ppl_header *pplhdr = page_address(io->header_page);
428 struct bio *bio = &io->bio;
429 struct stripe_head *sh;
430 int i;
431
432 bio->bi_private = io;
433
434 if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
435 ppl_log_endio(bio);
436 return;
437 }
438
439 for (i = 0; i < io->entries_count; i++) {
440 struct ppl_header_entry *e = &pplhdr->entries[i];
441
442 pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
443 __func__, io->seq, i, le64_to_cpu(e->data_sector),
444 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
445
446 e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
447 ilog2(ppl_conf->block_size >> 9));
448 e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
449 }
450
451 pplhdr->entries_count = cpu_to_le32(io->entries_count);
452 pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
453
454 bio->bi_end_io = ppl_log_endio;
455 bio->bi_opf = REQ_OP_WRITE | REQ_FUA;
456 bio->bi_bdev = log->rdev->bdev;
457 bio->bi_iter.bi_sector = log->rdev->ppl.sector;
458 bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
459
460 list_for_each_entry(sh, &io->stripe_list, log_list) {
461 /* entries for full stripe writes have no partial parity */
462 if (test_bit(STRIPE_FULL_WRITE, &sh->state))
463 continue;
464
465 if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
466 struct bio *prev = bio;
467
468 bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES,
469 ppl_conf->bs);
470 bio->bi_opf = prev->bi_opf;
471 bio->bi_bdev = prev->bi_bdev;
472 bio->bi_iter.bi_sector = bio_end_sector(prev);
473 bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
474
475 bio_chain(bio, prev);
476 ppl_submit_iounit_bio(io, prev);
477 }
478 }
479
480 ppl_submit_iounit_bio(io, bio);
481 }
482
483 static void ppl_submit_current_io(struct ppl_log *log)
484 {
485 struct ppl_io_unit *io;
486
487 spin_lock_irq(&log->io_list_lock);
488
489 io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
490 log_sibling);
491 if (io && io->submitted)
492 io = NULL;
493
494 spin_unlock_irq(&log->io_list_lock);
495
496 if (io) {
497 io->submitted = true;
498
499 if (io == log->current_io)
500 log->current_io = NULL;
501
502 ppl_submit_iounit(io);
503 }
504 }
505
506 void ppl_write_stripe_run(struct r5conf *conf)
507 {
508 struct ppl_conf *ppl_conf = conf->log_private;
509 struct ppl_log *log;
510 int i;
511
512 for (i = 0; i < ppl_conf->count; i++) {
513 log = &ppl_conf->child_logs[i];
514
515 mutex_lock(&log->io_mutex);
516 ppl_submit_current_io(log);
517 mutex_unlock(&log->io_mutex);
518 }
519 }
520
521 static void ppl_io_unit_finished(struct ppl_io_unit *io)
522 {
523 struct ppl_log *log = io->log;
524 struct ppl_conf *ppl_conf = log->ppl_conf;
525 unsigned long flags;
526
527 pr_debug("%s: seq: %llu\n", __func__, io->seq);
528
529 local_irq_save(flags);
530
531 spin_lock(&log->io_list_lock);
532 list_del(&io->log_sibling);
533 spin_unlock(&log->io_list_lock);
534
535 mempool_free(io, ppl_conf->io_pool);
536
537 spin_lock(&ppl_conf->no_mem_stripes_lock);
538 if (!list_empty(&ppl_conf->no_mem_stripes)) {
539 struct stripe_head *sh;
540
541 sh = list_first_entry(&ppl_conf->no_mem_stripes,
542 struct stripe_head, log_list);
543 list_del_init(&sh->log_list);
544 set_bit(STRIPE_HANDLE, &sh->state);
545 raid5_release_stripe(sh);
546 }
547 spin_unlock(&ppl_conf->no_mem_stripes_lock);
548
549 local_irq_restore(flags);
550 }
551
552 void ppl_stripe_write_finished(struct stripe_head *sh)
553 {
554 struct ppl_io_unit *io;
555
556 io = sh->ppl_io;
557 sh->ppl_io = NULL;
558
559 if (io && atomic_dec_and_test(&io->pending_stripes))
560 ppl_io_unit_finished(io);
561 }
562
563 static void ppl_xor(int size, struct page *page1, struct page *page2)
564 {
565 struct async_submit_ctl submit;
566 struct dma_async_tx_descriptor *tx;
567 struct page *xor_srcs[] = { page1, page2 };
568
569 init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
570 NULL, NULL, NULL, NULL);
571 tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
572
573 async_tx_quiesce(&tx);
574 }
575
576 /*
577 * PPL recovery strategy: xor partial parity and data from all modified data
578 * disks within a stripe and write the result as the new stripe parity. If all
579 * stripe data disks are modified (full stripe write), no partial parity is
580 * available, so just xor the data disks.
581 *
582 * Recovery of a PPL entry shall occur only if all modified data disks are
583 * available and read from all of them succeeds.
584 *
585 * A PPL entry applies to a stripe, partial parity size for an entry is at most
586 * the size of the chunk. Examples of possible cases for a single entry:
587 *
588 * case 0: single data disk write:
589 * data0 data1 data2 ppl parity
590 * +--------+--------+--------+ +--------------------+
591 * | ------ | ------ | ------ | +----+ | (no change) |
592 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp |
593 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp |
594 * | ------ | ------ | ------ | +----+ | (no change) |
595 * +--------+--------+--------+ +--------------------+
596 * pp_size = data_size
597 *
598 * case 1: more than one data disk write:
599 * data0 data1 data2 ppl parity
600 * +--------+--------+--------+ +--------------------+
601 * | ------ | ------ | ------ | +----+ | (no change) |
602 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
603 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
604 * | ------ | ------ | ------ | +----+ | (no change) |
605 * +--------+--------+--------+ +--------------------+
606 * pp_size = data_size / modified_data_disks
607 *
608 * case 2: write to all data disks (also full stripe write):
609 * data0 data1 data2 parity
610 * +--------+--------+--------+ +--------------------+
611 * | ------ | ------ | ------ | | (no change) |
612 * | -data- | -data- | -data- | --------> | xor all data |
613 * | ------ | ------ | ------ | --------> | (no change) |
614 * | ------ | ------ | ------ | | (no change) |
615 * +--------+--------+--------+ +--------------------+
616 * pp_size = 0
617 *
618 * The following cases are possible only in other implementations. The recovery
619 * code can handle them, but they are not generated at runtime because they can
620 * be reduced to cases 0, 1 and 2:
621 *
622 * case 3:
623 * data0 data1 data2 ppl parity
624 * +--------+--------+--------+ +----+ +--------------------+
625 * | ------ | -data- | -data- | | pp | | data1 ^ data2 ^ pp |
626 * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
627 * | -data- | -data- | -data- | | -- | -> | xor all data |
628 * | -data- | -data- | ------ | | pp | | data0 ^ data1 ^ pp |
629 * +--------+--------+--------+ +----+ +--------------------+
630 * pp_size = chunk_size
631 *
632 * case 4:
633 * data0 data1 data2 ppl parity
634 * +--------+--------+--------+ +----+ +--------------------+
635 * | ------ | -data- | ------ | | pp | | data1 ^ pp |
636 * | ------ | ------ | ------ | | -- | -> | (no change) |
637 * | ------ | ------ | ------ | | -- | -> | (no change) |
638 * | -data- | ------ | ------ | | pp | | data0 ^ pp |
639 * +--------+--------+--------+ +----+ +--------------------+
640 * pp_size = chunk_size
641 */
642 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
643 sector_t ppl_sector)
644 {
645 struct ppl_conf *ppl_conf = log->ppl_conf;
646 struct mddev *mddev = ppl_conf->mddev;
647 struct r5conf *conf = mddev->private;
648 int block_size = ppl_conf->block_size;
649 struct page *page1;
650 struct page *page2;
651 sector_t r_sector_first;
652 sector_t r_sector_last;
653 int strip_sectors;
654 int data_disks;
655 int i;
656 int ret = 0;
657 char b[BDEVNAME_SIZE];
658 unsigned int pp_size = le32_to_cpu(e->pp_size);
659 unsigned int data_size = le32_to_cpu(e->data_size);
660
661 page1 = alloc_page(GFP_KERNEL);
662 page2 = alloc_page(GFP_KERNEL);
663
664 if (!page1 || !page2) {
665 ret = -ENOMEM;
666 goto out;
667 }
668
669 r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
670
671 if ((pp_size >> 9) < conf->chunk_sectors) {
672 if (pp_size > 0) {
673 data_disks = data_size / pp_size;
674 strip_sectors = pp_size >> 9;
675 } else {
676 data_disks = conf->raid_disks - conf->max_degraded;
677 strip_sectors = (data_size >> 9) / data_disks;
678 }
679 r_sector_last = r_sector_first +
680 (data_disks - 1) * conf->chunk_sectors +
681 strip_sectors;
682 } else {
683 data_disks = conf->raid_disks - conf->max_degraded;
684 strip_sectors = conf->chunk_sectors;
685 r_sector_last = r_sector_first + (data_size >> 9);
686 }
687
688 pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
689 (unsigned long long)r_sector_first,
690 (unsigned long long)r_sector_last);
691
692 /* if start and end is 4k aligned, use a 4k block */
693 if (block_size == 512 &&
694 (r_sector_first & (STRIPE_SECTORS - 1)) == 0 &&
695 (r_sector_last & (STRIPE_SECTORS - 1)) == 0)
696 block_size = STRIPE_SIZE;
697
698 /* iterate through blocks in strip */
699 for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
700 bool update_parity = false;
701 sector_t parity_sector;
702 struct md_rdev *parity_rdev;
703 struct stripe_head sh;
704 int disk;
705 int indent = 0;
706
707 pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
708 indent += 2;
709
710 memset(page_address(page1), 0, PAGE_SIZE);
711
712 /* iterate through data member disks */
713 for (disk = 0; disk < data_disks; disk++) {
714 int dd_idx;
715 struct md_rdev *rdev;
716 sector_t sector;
717 sector_t r_sector = r_sector_first + i +
718 (disk * conf->chunk_sectors);
719
720 pr_debug("%s:%*s data member disk %d start\n",
721 __func__, indent, "", disk);
722 indent += 2;
723
724 if (r_sector >= r_sector_last) {
725 pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
726 __func__, indent, "",
727 (unsigned long long)r_sector);
728 indent -= 2;
729 continue;
730 }
731
732 update_parity = true;
733
734 /* map raid sector to member disk */
735 sector = raid5_compute_sector(conf, r_sector, 0,
736 &dd_idx, NULL);
737 pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
738 __func__, indent, "",
739 (unsigned long long)r_sector, dd_idx,
740 (unsigned long long)sector);
741
742 rdev = conf->disks[dd_idx].rdev;
743 if (!rdev) {
744 pr_debug("%s:%*s data member disk %d missing\n",
745 __func__, indent, "", dd_idx);
746 update_parity = false;
747 break;
748 }
749
750 pr_debug("%s:%*s reading data member disk %s sector %llu\n",
751 __func__, indent, "", bdevname(rdev->bdev, b),
752 (unsigned long long)sector);
753 if (!sync_page_io(rdev, sector, block_size, page2,
754 REQ_OP_READ, 0, false)) {
755 md_error(mddev, rdev);
756 pr_debug("%s:%*s read failed!\n", __func__,
757 indent, "");
758 ret = -EIO;
759 goto out;
760 }
761
762 ppl_xor(block_size, page1, page2);
763
764 indent -= 2;
765 }
766
767 if (!update_parity)
768 continue;
769
770 if (pp_size > 0) {
771 pr_debug("%s:%*s reading pp disk sector %llu\n",
772 __func__, indent, "",
773 (unsigned long long)(ppl_sector + i));
774 if (!sync_page_io(log->rdev,
775 ppl_sector - log->rdev->data_offset + i,
776 block_size, page2, REQ_OP_READ, 0,
777 false)) {
778 pr_debug("%s:%*s read failed!\n", __func__,
779 indent, "");
780 md_error(mddev, log->rdev);
781 ret = -EIO;
782 goto out;
783 }
784
785 ppl_xor(block_size, page1, page2);
786 }
787
788 /* map raid sector to parity disk */
789 parity_sector = raid5_compute_sector(conf, r_sector_first + i,
790 0, &disk, &sh);
791 BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
792 parity_rdev = conf->disks[sh.pd_idx].rdev;
793
794 BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
795 pr_debug("%s:%*s write parity at sector %llu, disk %s\n",
796 __func__, indent, "",
797 (unsigned long long)parity_sector,
798 bdevname(parity_rdev->bdev, b));
799 if (!sync_page_io(parity_rdev, parity_sector, block_size,
800 page1, REQ_OP_WRITE, 0, false)) {
801 pr_debug("%s:%*s parity write error!\n", __func__,
802 indent, "");
803 md_error(mddev, parity_rdev);
804 ret = -EIO;
805 goto out;
806 }
807 }
808 out:
809 if (page1)
810 __free_page(page1);
811 if (page2)
812 __free_page(page2);
813 return ret;
814 }
815
816 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr)
817 {
818 struct ppl_conf *ppl_conf = log->ppl_conf;
819 struct md_rdev *rdev = log->rdev;
820 struct mddev *mddev = rdev->mddev;
821 sector_t ppl_sector = rdev->ppl.sector + (PPL_HEADER_SIZE >> 9);
822 struct page *page;
823 int i;
824 int ret = 0;
825
826 page = alloc_page(GFP_KERNEL);
827 if (!page)
828 return -ENOMEM;
829
830 /* iterate through all PPL entries saved */
831 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
832 struct ppl_header_entry *e = &pplhdr->entries[i];
833 u32 pp_size = le32_to_cpu(e->pp_size);
834 sector_t sector = ppl_sector;
835 int ppl_entry_sectors = pp_size >> 9;
836 u32 crc, crc_stored;
837
838 pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
839 __func__, rdev->raid_disk, i,
840 (unsigned long long)ppl_sector, pp_size);
841
842 crc = ~0;
843 crc_stored = le32_to_cpu(e->checksum);
844
845 /* read parial parity for this entry and calculate its checksum */
846 while (pp_size) {
847 int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
848
849 if (!sync_page_io(rdev, sector - rdev->data_offset,
850 s, page, REQ_OP_READ, 0, false)) {
851 md_error(mddev, rdev);
852 ret = -EIO;
853 goto out;
854 }
855
856 crc = crc32c_le(crc, page_address(page), s);
857
858 pp_size -= s;
859 sector += s >> 9;
860 }
861
862 crc = ~crc;
863
864 if (crc != crc_stored) {
865 /*
866 * Don't recover this entry if the checksum does not
867 * match, but keep going and try to recover other
868 * entries.
869 */
870 pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
871 __func__, crc_stored, crc);
872 ppl_conf->mismatch_count++;
873 } else {
874 ret = ppl_recover_entry(log, e, ppl_sector);
875 if (ret)
876 goto out;
877 ppl_conf->recovered_entries++;
878 }
879
880 ppl_sector += ppl_entry_sectors;
881 }
882
883 /* flush the disk cache after recovery if necessary */
884 ret = blkdev_issue_flush(rdev->bdev, GFP_KERNEL, NULL);
885 out:
886 __free_page(page);
887 return ret;
888 }
889
890 static int ppl_write_empty_header(struct ppl_log *log)
891 {
892 struct page *page;
893 struct ppl_header *pplhdr;
894 struct md_rdev *rdev = log->rdev;
895 int ret = 0;
896
897 pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
898 rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
899
900 page = alloc_page(GFP_NOIO | __GFP_ZERO);
901 if (!page)
902 return -ENOMEM;
903
904 pplhdr = page_address(page);
905 memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
906 pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
907 pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
908
909 if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
910 PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_FUA, 0,
911 false)) {
912 md_error(rdev->mddev, rdev);
913 ret = -EIO;
914 }
915
916 __free_page(page);
917 return ret;
918 }
919
920 static int ppl_load_distributed(struct ppl_log *log)
921 {
922 struct ppl_conf *ppl_conf = log->ppl_conf;
923 struct md_rdev *rdev = log->rdev;
924 struct mddev *mddev = rdev->mddev;
925 struct page *page;
926 struct ppl_header *pplhdr;
927 u32 crc, crc_stored;
928 u32 signature;
929 int ret = 0;
930
931 pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
932
933 /* read PPL header */
934 page = alloc_page(GFP_KERNEL);
935 if (!page)
936 return -ENOMEM;
937
938 if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
939 PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
940 md_error(mddev, rdev);
941 ret = -EIO;
942 goto out;
943 }
944 pplhdr = page_address(page);
945
946 /* check header validity */
947 crc_stored = le32_to_cpu(pplhdr->checksum);
948 pplhdr->checksum = 0;
949 crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
950
951 if (crc_stored != crc) {
952 pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x\n",
953 __func__, crc_stored, crc);
954 ppl_conf->mismatch_count++;
955 goto out;
956 }
957
958 signature = le32_to_cpu(pplhdr->signature);
959
960 if (mddev->external) {
961 /*
962 * For external metadata the header signature is set and
963 * validated in userspace.
964 */
965 ppl_conf->signature = signature;
966 } else if (ppl_conf->signature != signature) {
967 pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x\n",
968 __func__, signature, ppl_conf->signature);
969 ppl_conf->mismatch_count++;
970 goto out;
971 }
972
973 /* attempt to recover from log if we are starting a dirty array */
974 if (!mddev->pers && mddev->recovery_cp != MaxSector)
975 ret = ppl_recover(log, pplhdr);
976 out:
977 /* write empty header if we are starting the array */
978 if (!ret && !mddev->pers)
979 ret = ppl_write_empty_header(log);
980
981 __free_page(page);
982
983 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
984 __func__, ret, ppl_conf->mismatch_count,
985 ppl_conf->recovered_entries);
986 return ret;
987 }
988
989 static int ppl_load(struct ppl_conf *ppl_conf)
990 {
991 int ret = 0;
992 u32 signature = 0;
993 bool signature_set = false;
994 int i;
995
996 for (i = 0; i < ppl_conf->count; i++) {
997 struct ppl_log *log = &ppl_conf->child_logs[i];
998
999 /* skip missing drive */
1000 if (!log->rdev)
1001 continue;
1002
1003 ret = ppl_load_distributed(log);
1004 if (ret)
1005 break;
1006
1007 /*
1008 * For external metadata we can't check if the signature is
1009 * correct on a single drive, but we can check if it is the same
1010 * on all drives.
1011 */
1012 if (ppl_conf->mddev->external) {
1013 if (!signature_set) {
1014 signature = ppl_conf->signature;
1015 signature_set = true;
1016 } else if (signature != ppl_conf->signature) {
1017 pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
1018 mdname(ppl_conf->mddev));
1019 ret = -EINVAL;
1020 break;
1021 }
1022 }
1023 }
1024
1025 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1026 __func__, ret, ppl_conf->mismatch_count,
1027 ppl_conf->recovered_entries);
1028 return ret;
1029 }
1030
1031 static void __ppl_exit_log(struct ppl_conf *ppl_conf)
1032 {
1033 clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1034
1035 kfree(ppl_conf->child_logs);
1036
1037 if (ppl_conf->bs)
1038 bioset_free(ppl_conf->bs);
1039 mempool_destroy(ppl_conf->io_pool);
1040 kmem_cache_destroy(ppl_conf->io_kc);
1041
1042 kfree(ppl_conf);
1043 }
1044
1045 void ppl_exit_log(struct r5conf *conf)
1046 {
1047 struct ppl_conf *ppl_conf = conf->log_private;
1048
1049 if (ppl_conf) {
1050 __ppl_exit_log(ppl_conf);
1051 conf->log_private = NULL;
1052 }
1053 }
1054
1055 static int ppl_validate_rdev(struct md_rdev *rdev)
1056 {
1057 char b[BDEVNAME_SIZE];
1058 int ppl_data_sectors;
1059 int ppl_size_new;
1060
1061 /*
1062 * The configured PPL size must be enough to store
1063 * the header and (at the very least) partial parity
1064 * for one stripe. Round it down to ensure the data
1065 * space is cleanly divisible by stripe size.
1066 */
1067 ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
1068
1069 if (ppl_data_sectors > 0)
1070 ppl_data_sectors = rounddown(ppl_data_sectors, STRIPE_SECTORS);
1071
1072 if (ppl_data_sectors <= 0) {
1073 pr_warn("md/raid:%s: PPL space too small on %s\n",
1074 mdname(rdev->mddev), bdevname(rdev->bdev, b));
1075 return -ENOSPC;
1076 }
1077
1078 ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
1079
1080 if ((rdev->ppl.sector < rdev->data_offset &&
1081 rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
1082 (rdev->ppl.sector >= rdev->data_offset &&
1083 rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
1084 pr_warn("md/raid:%s: PPL space overlaps with data on %s\n",
1085 mdname(rdev->mddev), bdevname(rdev->bdev, b));
1086 return -EINVAL;
1087 }
1088
1089 if (!rdev->mddev->external &&
1090 ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
1091 (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
1092 pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n",
1093 mdname(rdev->mddev), bdevname(rdev->bdev, b));
1094 return -EINVAL;
1095 }
1096
1097 rdev->ppl.size = ppl_size_new;
1098
1099 return 0;
1100 }
1101
1102 int ppl_init_log(struct r5conf *conf)
1103 {
1104 struct ppl_conf *ppl_conf;
1105 struct mddev *mddev = conf->mddev;
1106 int ret = 0;
1107 int i;
1108 bool need_cache_flush = false;
1109
1110 pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1111 mdname(conf->mddev));
1112
1113 if (PAGE_SIZE != 4096)
1114 return -EINVAL;
1115
1116 if (mddev->level != 5) {
1117 pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1118 mdname(mddev), mddev->level);
1119 return -EINVAL;
1120 }
1121
1122 if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
1123 pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1124 mdname(mddev));
1125 return -EINVAL;
1126 }
1127
1128 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
1129 pr_warn("md/raid:%s PPL is not compatible with journal\n",
1130 mdname(mddev));
1131 return -EINVAL;
1132 }
1133
1134 ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
1135 if (!ppl_conf)
1136 return -ENOMEM;
1137
1138 ppl_conf->mddev = mddev;
1139
1140 ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
1141 if (!ppl_conf->io_kc) {
1142 ret = -ENOMEM;
1143 goto err;
1144 }
1145
1146 ppl_conf->io_pool = mempool_create(conf->raid_disks, ppl_io_pool_alloc,
1147 ppl_io_pool_free, ppl_conf->io_kc);
1148 if (!ppl_conf->io_pool) {
1149 ret = -ENOMEM;
1150 goto err;
1151 }
1152
1153 ppl_conf->bs = bioset_create(conf->raid_disks, 0);
1154 if (!ppl_conf->bs) {
1155 ret = -ENOMEM;
1156 goto err;
1157 }
1158
1159 ppl_conf->count = conf->raid_disks;
1160 ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
1161 GFP_KERNEL);
1162 if (!ppl_conf->child_logs) {
1163 ret = -ENOMEM;
1164 goto err;
1165 }
1166
1167 atomic64_set(&ppl_conf->seq, 0);
1168 INIT_LIST_HEAD(&ppl_conf->no_mem_stripes);
1169 spin_lock_init(&ppl_conf->no_mem_stripes_lock);
1170
1171 if (!mddev->external) {
1172 ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
1173 ppl_conf->block_size = 512;
1174 } else {
1175 ppl_conf->block_size = queue_logical_block_size(mddev->queue);
1176 }
1177
1178 for (i = 0; i < ppl_conf->count; i++) {
1179 struct ppl_log *log = &ppl_conf->child_logs[i];
1180 struct md_rdev *rdev = conf->disks[i].rdev;
1181
1182 mutex_init(&log->io_mutex);
1183 spin_lock_init(&log->io_list_lock);
1184 INIT_LIST_HEAD(&log->io_list);
1185
1186 log->ppl_conf = ppl_conf;
1187 log->rdev = rdev;
1188
1189 if (rdev) {
1190 struct request_queue *q;
1191
1192 ret = ppl_validate_rdev(rdev);
1193 if (ret)
1194 goto err;
1195
1196 q = bdev_get_queue(rdev->bdev);
1197 if (test_bit(QUEUE_FLAG_WC, &q->queue_flags))
1198 need_cache_flush = true;
1199 }
1200 }
1201
1202 if (need_cache_flush)
1203 pr_warn("md/raid:%s: Volatile write-back cache should be disabled on all member drives when using PPL!\n",
1204 mdname(mddev));
1205
1206 /* load and possibly recover the logs from the member disks */
1207 ret = ppl_load(ppl_conf);
1208
1209 if (ret) {
1210 goto err;
1211 } else if (!mddev->pers &&
1212 mddev->recovery_cp == 0 && !mddev->degraded &&
1213 ppl_conf->recovered_entries > 0 &&
1214 ppl_conf->mismatch_count == 0) {
1215 /*
1216 * If we are starting a dirty array and the recovery succeeds
1217 * without any issues, set the array as clean.
1218 */
1219 mddev->recovery_cp = MaxSector;
1220 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
1221 } else if (mddev->pers && ppl_conf->mismatch_count > 0) {
1222 /* no mismatch allowed when enabling PPL for a running array */
1223 ret = -EINVAL;
1224 goto err;
1225 }
1226
1227 conf->log_private = ppl_conf;
1228 set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1229
1230 return 0;
1231 err:
1232 __ppl_exit_log(ppl_conf);
1233 return ret;
1234 }
1235
1236 int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
1237 {
1238 struct ppl_conf *ppl_conf = conf->log_private;
1239 struct ppl_log *log;
1240 int ret = 0;
1241 char b[BDEVNAME_SIZE];
1242
1243 if (!rdev)
1244 return -EINVAL;
1245
1246 pr_debug("%s: disk: %d operation: %s dev: %s\n",
1247 __func__, rdev->raid_disk, add ? "add" : "remove",
1248 bdevname(rdev->bdev, b));
1249
1250 if (rdev->raid_disk < 0)
1251 return 0;
1252
1253 if (rdev->raid_disk >= ppl_conf->count)
1254 return -ENODEV;
1255
1256 log = &ppl_conf->child_logs[rdev->raid_disk];
1257
1258 mutex_lock(&log->io_mutex);
1259 if (add) {
1260 ret = ppl_validate_rdev(rdev);
1261 if (!ret) {
1262 log->rdev = rdev;
1263 ret = ppl_write_empty_header(log);
1264 }
1265 } else {
1266 log->rdev = NULL;
1267 }
1268 mutex_unlock(&log->io_mutex);
1269
1270 return ret;
1271 }