Input: sur40 - skip all blobs that are not touches
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / md / raid5-cache.c
1 /*
2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include <linux/types.h>
24 #include "md.h"
25 #include "raid5.h"
26 #include "bitmap.h"
27 #include "raid5-log.h"
28
29 /*
30 * metadata/data stored in disk with 4k size unit (a block) regardless
31 * underneath hardware sector size. only works with PAGE_SIZE == 4096
32 */
33 #define BLOCK_SECTORS (8)
34 #define BLOCK_SECTOR_SHIFT (3)
35
36 /*
37 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
38 *
39 * In write through mode, the reclaim runs every log->max_free_space.
40 * This can prevent the recovery scans for too long
41 */
42 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
43 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
44
45 /* wake up reclaim thread periodically */
46 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
47 /* start flush with these full stripes */
48 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
49 /* reclaim stripes in groups */
50 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
51
52 /*
53 * We only need 2 bios per I/O unit to make progress, but ensure we
54 * have a few more available to not get too tight.
55 */
56 #define R5L_POOL_SIZE 4
57
58 static char *r5c_journal_mode_str[] = {"write-through",
59 "write-back"};
60 /*
61 * raid5 cache state machine
62 *
63 * With the RAID cache, each stripe works in two phases:
64 * - caching phase
65 * - writing-out phase
66 *
67 * These two phases are controlled by bit STRIPE_R5C_CACHING:
68 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
69 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
70 *
71 * When there is no journal, or the journal is in write-through mode,
72 * the stripe is always in writing-out phase.
73 *
74 * For write-back journal, the stripe is sent to caching phase on write
75 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
76 * the write-out phase by clearing STRIPE_R5C_CACHING.
77 *
78 * Stripes in caching phase do not write the raid disks. Instead, all
79 * writes are committed from the log device. Therefore, a stripe in
80 * caching phase handles writes as:
81 * - write to log device
82 * - return IO
83 *
84 * Stripes in writing-out phase handle writes as:
85 * - calculate parity
86 * - write pending data and parity to journal
87 * - write data and parity to raid disks
88 * - return IO for pending writes
89 */
90
91 struct r5l_log {
92 struct md_rdev *rdev;
93
94 u32 uuid_checksum;
95
96 sector_t device_size; /* log device size, round to
97 * BLOCK_SECTORS */
98 sector_t max_free_space; /* reclaim run if free space is at
99 * this size */
100
101 sector_t last_checkpoint; /* log tail. where recovery scan
102 * starts from */
103 u64 last_cp_seq; /* log tail sequence */
104
105 sector_t log_start; /* log head. where new data appends */
106 u64 seq; /* log head sequence */
107
108 sector_t next_checkpoint;
109
110 struct mutex io_mutex;
111 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
112
113 spinlock_t io_list_lock;
114 struct list_head running_ios; /* io_units which are still running,
115 * and have not yet been completely
116 * written to the log */
117 struct list_head io_end_ios; /* io_units which have been completely
118 * written to the log but not yet written
119 * to the RAID */
120 struct list_head flushing_ios; /* io_units which are waiting for log
121 * cache flush */
122 struct list_head finished_ios; /* io_units which settle down in log disk */
123 struct bio flush_bio;
124
125 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
126
127 struct kmem_cache *io_kc;
128 mempool_t *io_pool;
129 struct bio_set *bs;
130 mempool_t *meta_pool;
131
132 struct md_thread *reclaim_thread;
133 unsigned long reclaim_target; /* number of space that need to be
134 * reclaimed. if it's 0, reclaim spaces
135 * used by io_units which are in
136 * IO_UNIT_STRIPE_END state (eg, reclaim
137 * dones't wait for specific io_unit
138 * switching to IO_UNIT_STRIPE_END
139 * state) */
140 wait_queue_head_t iounit_wait;
141
142 struct list_head no_space_stripes; /* pending stripes, log has no space */
143 spinlock_t no_space_stripes_lock;
144
145 bool need_cache_flush;
146
147 /* for r5c_cache */
148 enum r5c_journal_mode r5c_journal_mode;
149
150 /* all stripes in r5cache, in the order of seq at sh->log_start */
151 struct list_head stripe_in_journal_list;
152
153 spinlock_t stripe_in_journal_lock;
154 atomic_t stripe_in_journal_count;
155
156 /* to submit async io_units, to fulfill ordering of flush */
157 struct work_struct deferred_io_work;
158 /* to disable write back during in degraded mode */
159 struct work_struct disable_writeback_work;
160
161 /* to for chunk_aligned_read in writeback mode, details below */
162 spinlock_t tree_lock;
163 struct radix_tree_root big_stripe_tree;
164 };
165
166 /*
167 * Enable chunk_aligned_read() with write back cache.
168 *
169 * Each chunk may contain more than one stripe (for example, a 256kB
170 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
171 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
172 * For each big_stripe, we count how many stripes of this big_stripe
173 * are in the write back cache. These data are tracked in a radix tree
174 * (big_stripe_tree). We use radix_tree item pointer as the counter.
175 * r5c_tree_index() is used to calculate keys for the radix tree.
176 *
177 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
178 * big_stripe of each chunk in the tree. If this big_stripe is in the
179 * tree, chunk_aligned_read() aborts. This look up is protected by
180 * rcu_read_lock().
181 *
182 * It is necessary to remember whether a stripe is counted in
183 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
184 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
185 * two flags are set, the stripe is counted in big_stripe_tree. This
186 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
187 * r5c_try_caching_write(); and moving clear_bit of
188 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
189 * r5c_finish_stripe_write_out().
190 */
191
192 /*
193 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
194 * So it is necessary to left shift the counter by 2 bits before using it
195 * as data pointer of the tree.
196 */
197 #define R5C_RADIX_COUNT_SHIFT 2
198
199 /*
200 * calculate key for big_stripe_tree
201 *
202 * sect: align_bi->bi_iter.bi_sector or sh->sector
203 */
204 static inline sector_t r5c_tree_index(struct r5conf *conf,
205 sector_t sect)
206 {
207 sector_t offset;
208
209 offset = sector_div(sect, conf->chunk_sectors);
210 return sect;
211 }
212
213 /*
214 * an IO range starts from a meta data block and end at the next meta data
215 * block. The io unit's the meta data block tracks data/parity followed it. io
216 * unit is written to log disk with normal write, as we always flush log disk
217 * first and then start move data to raid disks, there is no requirement to
218 * write io unit with FLUSH/FUA
219 */
220 struct r5l_io_unit {
221 struct r5l_log *log;
222
223 struct page *meta_page; /* store meta block */
224 int meta_offset; /* current offset in meta_page */
225
226 struct bio *current_bio;/* current_bio accepting new data */
227
228 atomic_t pending_stripe;/* how many stripes not flushed to raid */
229 u64 seq; /* seq number of the metablock */
230 sector_t log_start; /* where the io_unit starts */
231 sector_t log_end; /* where the io_unit ends */
232 struct list_head log_sibling; /* log->running_ios */
233 struct list_head stripe_list; /* stripes added to the io_unit */
234
235 int state;
236 bool need_split_bio;
237 struct bio *split_bio;
238
239 unsigned int has_flush:1; /* include flush request */
240 unsigned int has_fua:1; /* include fua request */
241 unsigned int has_null_flush:1; /* include empty flush request */
242 /*
243 * io isn't sent yet, flush/fua request can only be submitted till it's
244 * the first IO in running_ios list
245 */
246 unsigned int io_deferred:1;
247
248 struct bio_list flush_barriers; /* size == 0 flush bios */
249 };
250
251 /* r5l_io_unit state */
252 enum r5l_io_unit_state {
253 IO_UNIT_RUNNING = 0, /* accepting new IO */
254 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
255 * don't accepting new bio */
256 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
257 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
258 };
259
260 bool r5c_is_writeback(struct r5l_log *log)
261 {
262 return (log != NULL &&
263 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
264 }
265
266 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
267 {
268 start += inc;
269 if (start >= log->device_size)
270 start = start - log->device_size;
271 return start;
272 }
273
274 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
275 sector_t end)
276 {
277 if (end >= start)
278 return end - start;
279 else
280 return end + log->device_size - start;
281 }
282
283 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
284 {
285 sector_t used_size;
286
287 used_size = r5l_ring_distance(log, log->last_checkpoint,
288 log->log_start);
289
290 return log->device_size > used_size + size;
291 }
292
293 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
294 enum r5l_io_unit_state state)
295 {
296 if (WARN_ON(io->state >= state))
297 return;
298 io->state = state;
299 }
300
301 static void
302 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
303 {
304 struct bio *wbi, *wbi2;
305
306 wbi = dev->written;
307 dev->written = NULL;
308 while (wbi && wbi->bi_iter.bi_sector <
309 dev->sector + STRIPE_SECTORS) {
310 wbi2 = r5_next_bio(wbi, dev->sector);
311 md_write_end(conf->mddev);
312 bio_endio(wbi);
313 wbi = wbi2;
314 }
315 }
316
317 void r5c_handle_cached_data_endio(struct r5conf *conf,
318 struct stripe_head *sh, int disks)
319 {
320 int i;
321
322 for (i = sh->disks; i--; ) {
323 if (sh->dev[i].written) {
324 set_bit(R5_UPTODATE, &sh->dev[i].flags);
325 r5c_return_dev_pending_writes(conf, &sh->dev[i]);
326 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
327 STRIPE_SECTORS,
328 !test_bit(STRIPE_DEGRADED, &sh->state),
329 0);
330 }
331 }
332 }
333
334 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
335
336 /* Check whether we should flush some stripes to free up stripe cache */
337 void r5c_check_stripe_cache_usage(struct r5conf *conf)
338 {
339 int total_cached;
340
341 if (!r5c_is_writeback(conf->log))
342 return;
343
344 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
345 atomic_read(&conf->r5c_cached_full_stripes);
346
347 /*
348 * The following condition is true for either of the following:
349 * - stripe cache pressure high:
350 * total_cached > 3/4 min_nr_stripes ||
351 * empty_inactive_list_nr > 0
352 * - stripe cache pressure moderate:
353 * total_cached > 1/2 min_nr_stripes
354 */
355 if (total_cached > conf->min_nr_stripes * 1 / 2 ||
356 atomic_read(&conf->empty_inactive_list_nr) > 0)
357 r5l_wake_reclaim(conf->log, 0);
358 }
359
360 /*
361 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
362 * stripes in the cache
363 */
364 void r5c_check_cached_full_stripe(struct r5conf *conf)
365 {
366 if (!r5c_is_writeback(conf->log))
367 return;
368
369 /*
370 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
371 * or a full stripe (chunk size / 4k stripes).
372 */
373 if (atomic_read(&conf->r5c_cached_full_stripes) >=
374 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
375 conf->chunk_sectors >> STRIPE_SHIFT))
376 r5l_wake_reclaim(conf->log, 0);
377 }
378
379 /*
380 * Total log space (in sectors) needed to flush all data in cache
381 *
382 * To avoid deadlock due to log space, it is necessary to reserve log
383 * space to flush critical stripes (stripes that occupying log space near
384 * last_checkpoint). This function helps check how much log space is
385 * required to flush all cached stripes.
386 *
387 * To reduce log space requirements, two mechanisms are used to give cache
388 * flush higher priorities:
389 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
390 * stripes ALREADY in journal can be flushed w/o pending writes;
391 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
392 * can be delayed (r5l_add_no_space_stripe).
393 *
394 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
395 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
396 * pages of journal space. For stripes that has not passed 1, flushing it
397 * requires (conf->raid_disks + 1) pages of journal space. There are at
398 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
399 * required to flush all cached stripes (in pages) is:
400 *
401 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
402 * (group_cnt + 1) * (raid_disks + 1)
403 * or
404 * (stripe_in_journal_count) * (max_degraded + 1) +
405 * (group_cnt + 1) * (raid_disks - max_degraded)
406 */
407 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
408 {
409 struct r5l_log *log = conf->log;
410
411 if (!r5c_is_writeback(log))
412 return 0;
413
414 return BLOCK_SECTORS *
415 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
416 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
417 }
418
419 /*
420 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
421 *
422 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
423 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
424 * device is less than 2x of reclaim_required_space.
425 */
426 static inline void r5c_update_log_state(struct r5l_log *log)
427 {
428 struct r5conf *conf = log->rdev->mddev->private;
429 sector_t free_space;
430 sector_t reclaim_space;
431 bool wake_reclaim = false;
432
433 if (!r5c_is_writeback(log))
434 return;
435
436 free_space = r5l_ring_distance(log, log->log_start,
437 log->last_checkpoint);
438 reclaim_space = r5c_log_required_to_flush_cache(conf);
439 if (free_space < 2 * reclaim_space)
440 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
441 else {
442 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
443 wake_reclaim = true;
444 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
445 }
446 if (free_space < 3 * reclaim_space)
447 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
448 else
449 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
450
451 if (wake_reclaim)
452 r5l_wake_reclaim(log, 0);
453 }
454
455 /*
456 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
457 * This function should only be called in write-back mode.
458 */
459 void r5c_make_stripe_write_out(struct stripe_head *sh)
460 {
461 struct r5conf *conf = sh->raid_conf;
462 struct r5l_log *log = conf->log;
463
464 BUG_ON(!r5c_is_writeback(log));
465
466 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
467 clear_bit(STRIPE_R5C_CACHING, &sh->state);
468
469 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
470 atomic_inc(&conf->preread_active_stripes);
471 }
472
473 static void r5c_handle_data_cached(struct stripe_head *sh)
474 {
475 int i;
476
477 for (i = sh->disks; i--; )
478 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
479 set_bit(R5_InJournal, &sh->dev[i].flags);
480 clear_bit(R5_LOCKED, &sh->dev[i].flags);
481 }
482 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
483 }
484
485 /*
486 * this journal write must contain full parity,
487 * it may also contain some data pages
488 */
489 static void r5c_handle_parity_cached(struct stripe_head *sh)
490 {
491 int i;
492
493 for (i = sh->disks; i--; )
494 if (test_bit(R5_InJournal, &sh->dev[i].flags))
495 set_bit(R5_Wantwrite, &sh->dev[i].flags);
496 }
497
498 /*
499 * Setting proper flags after writing (or flushing) data and/or parity to the
500 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
501 */
502 static void r5c_finish_cache_stripe(struct stripe_head *sh)
503 {
504 struct r5l_log *log = sh->raid_conf->log;
505
506 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
507 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
508 /*
509 * Set R5_InJournal for parity dev[pd_idx]. This means
510 * all data AND parity in the journal. For RAID 6, it is
511 * NOT necessary to set the flag for dev[qd_idx], as the
512 * two parities are written out together.
513 */
514 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
515 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
516 r5c_handle_data_cached(sh);
517 } else {
518 r5c_handle_parity_cached(sh);
519 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
520 }
521 }
522
523 static void r5l_io_run_stripes(struct r5l_io_unit *io)
524 {
525 struct stripe_head *sh, *next;
526
527 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
528 list_del_init(&sh->log_list);
529
530 r5c_finish_cache_stripe(sh);
531
532 set_bit(STRIPE_HANDLE, &sh->state);
533 raid5_release_stripe(sh);
534 }
535 }
536
537 static void r5l_log_run_stripes(struct r5l_log *log)
538 {
539 struct r5l_io_unit *io, *next;
540
541 assert_spin_locked(&log->io_list_lock);
542
543 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
544 /* don't change list order */
545 if (io->state < IO_UNIT_IO_END)
546 break;
547
548 list_move_tail(&io->log_sibling, &log->finished_ios);
549 r5l_io_run_stripes(io);
550 }
551 }
552
553 static void r5l_move_to_end_ios(struct r5l_log *log)
554 {
555 struct r5l_io_unit *io, *next;
556
557 assert_spin_locked(&log->io_list_lock);
558
559 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
560 /* don't change list order */
561 if (io->state < IO_UNIT_IO_END)
562 break;
563 list_move_tail(&io->log_sibling, &log->io_end_ios);
564 }
565 }
566
567 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
568 static void r5l_log_endio(struct bio *bio)
569 {
570 struct r5l_io_unit *io = bio->bi_private;
571 struct r5l_io_unit *io_deferred;
572 struct r5l_log *log = io->log;
573 unsigned long flags;
574
575 if (bio->bi_error)
576 md_error(log->rdev->mddev, log->rdev);
577
578 bio_put(bio);
579 mempool_free(io->meta_page, log->meta_pool);
580
581 spin_lock_irqsave(&log->io_list_lock, flags);
582 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
583 if (log->need_cache_flush && !list_empty(&io->stripe_list))
584 r5l_move_to_end_ios(log);
585 else
586 r5l_log_run_stripes(log);
587 if (!list_empty(&log->running_ios)) {
588 /*
589 * FLUSH/FUA io_unit is deferred because of ordering, now we
590 * can dispatch it
591 */
592 io_deferred = list_first_entry(&log->running_ios,
593 struct r5l_io_unit, log_sibling);
594 if (io_deferred->io_deferred)
595 schedule_work(&log->deferred_io_work);
596 }
597
598 spin_unlock_irqrestore(&log->io_list_lock, flags);
599
600 if (log->need_cache_flush)
601 md_wakeup_thread(log->rdev->mddev->thread);
602
603 if (io->has_null_flush) {
604 struct bio *bi;
605
606 WARN_ON(bio_list_empty(&io->flush_barriers));
607 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
608 bio_endio(bi);
609 atomic_dec(&io->pending_stripe);
610 }
611 }
612
613 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
614 if (atomic_read(&io->pending_stripe) == 0)
615 __r5l_stripe_write_finished(io);
616 }
617
618 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
619 {
620 unsigned long flags;
621
622 spin_lock_irqsave(&log->io_list_lock, flags);
623 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
624 spin_unlock_irqrestore(&log->io_list_lock, flags);
625
626 /*
627 * In case of journal device failures, submit_bio will get error
628 * and calls endio, then active stripes will continue write
629 * process. Therefore, it is not necessary to check Faulty bit
630 * of journal device here.
631 *
632 * We can't check split_bio after current_bio is submitted. If
633 * io->split_bio is null, after current_bio is submitted, current_bio
634 * might already be completed and the io_unit is freed. We submit
635 * split_bio first to avoid the issue.
636 */
637 if (io->split_bio) {
638 if (io->has_flush)
639 io->split_bio->bi_opf |= REQ_PREFLUSH;
640 if (io->has_fua)
641 io->split_bio->bi_opf |= REQ_FUA;
642 submit_bio(io->split_bio);
643 }
644
645 if (io->has_flush)
646 io->current_bio->bi_opf |= REQ_PREFLUSH;
647 if (io->has_fua)
648 io->current_bio->bi_opf |= REQ_FUA;
649 submit_bio(io->current_bio);
650 }
651
652 /* deferred io_unit will be dispatched here */
653 static void r5l_submit_io_async(struct work_struct *work)
654 {
655 struct r5l_log *log = container_of(work, struct r5l_log,
656 deferred_io_work);
657 struct r5l_io_unit *io = NULL;
658 unsigned long flags;
659
660 spin_lock_irqsave(&log->io_list_lock, flags);
661 if (!list_empty(&log->running_ios)) {
662 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
663 log_sibling);
664 if (!io->io_deferred)
665 io = NULL;
666 else
667 io->io_deferred = 0;
668 }
669 spin_unlock_irqrestore(&log->io_list_lock, flags);
670 if (io)
671 r5l_do_submit_io(log, io);
672 }
673
674 static void r5c_disable_writeback_async(struct work_struct *work)
675 {
676 struct r5l_log *log = container_of(work, struct r5l_log,
677 disable_writeback_work);
678 struct mddev *mddev = log->rdev->mddev;
679
680 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
681 return;
682 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
683 mdname(mddev));
684
685 /* wait superblock change before suspend */
686 wait_event(mddev->sb_wait,
687 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
688
689 mddev_suspend(mddev);
690 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
691 mddev_resume(mddev);
692 }
693
694 static void r5l_submit_current_io(struct r5l_log *log)
695 {
696 struct r5l_io_unit *io = log->current_io;
697 struct bio *bio;
698 struct r5l_meta_block *block;
699 unsigned long flags;
700 u32 crc;
701 bool do_submit = true;
702
703 if (!io)
704 return;
705
706 block = page_address(io->meta_page);
707 block->meta_size = cpu_to_le32(io->meta_offset);
708 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
709 block->checksum = cpu_to_le32(crc);
710 bio = io->current_bio;
711
712 log->current_io = NULL;
713 spin_lock_irqsave(&log->io_list_lock, flags);
714 if (io->has_flush || io->has_fua) {
715 if (io != list_first_entry(&log->running_ios,
716 struct r5l_io_unit, log_sibling)) {
717 io->io_deferred = 1;
718 do_submit = false;
719 }
720 }
721 spin_unlock_irqrestore(&log->io_list_lock, flags);
722 if (do_submit)
723 r5l_do_submit_io(log, io);
724 }
725
726 static struct bio *r5l_bio_alloc(struct r5l_log *log)
727 {
728 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
729
730 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
731 bio->bi_bdev = log->rdev->bdev;
732 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
733
734 return bio;
735 }
736
737 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
738 {
739 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
740
741 r5c_update_log_state(log);
742 /*
743 * If we filled up the log device start from the beginning again,
744 * which will require a new bio.
745 *
746 * Note: for this to work properly the log size needs to me a multiple
747 * of BLOCK_SECTORS.
748 */
749 if (log->log_start == 0)
750 io->need_split_bio = true;
751
752 io->log_end = log->log_start;
753 }
754
755 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
756 {
757 struct r5l_io_unit *io;
758 struct r5l_meta_block *block;
759
760 io = mempool_alloc(log->io_pool, GFP_ATOMIC);
761 if (!io)
762 return NULL;
763 memset(io, 0, sizeof(*io));
764
765 io->log = log;
766 INIT_LIST_HEAD(&io->log_sibling);
767 INIT_LIST_HEAD(&io->stripe_list);
768 bio_list_init(&io->flush_barriers);
769 io->state = IO_UNIT_RUNNING;
770
771 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
772 block = page_address(io->meta_page);
773 clear_page(block);
774 block->magic = cpu_to_le32(R5LOG_MAGIC);
775 block->version = R5LOG_VERSION;
776 block->seq = cpu_to_le64(log->seq);
777 block->position = cpu_to_le64(log->log_start);
778
779 io->log_start = log->log_start;
780 io->meta_offset = sizeof(struct r5l_meta_block);
781 io->seq = log->seq++;
782
783 io->current_bio = r5l_bio_alloc(log);
784 io->current_bio->bi_end_io = r5l_log_endio;
785 io->current_bio->bi_private = io;
786 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
787
788 r5_reserve_log_entry(log, io);
789
790 spin_lock_irq(&log->io_list_lock);
791 list_add_tail(&io->log_sibling, &log->running_ios);
792 spin_unlock_irq(&log->io_list_lock);
793
794 return io;
795 }
796
797 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
798 {
799 if (log->current_io &&
800 log->current_io->meta_offset + payload_size > PAGE_SIZE)
801 r5l_submit_current_io(log);
802
803 if (!log->current_io) {
804 log->current_io = r5l_new_meta(log);
805 if (!log->current_io)
806 return -ENOMEM;
807 }
808
809 return 0;
810 }
811
812 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
813 sector_t location,
814 u32 checksum1, u32 checksum2,
815 bool checksum2_valid)
816 {
817 struct r5l_io_unit *io = log->current_io;
818 struct r5l_payload_data_parity *payload;
819
820 payload = page_address(io->meta_page) + io->meta_offset;
821 payload->header.type = cpu_to_le16(type);
822 payload->header.flags = cpu_to_le16(0);
823 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
824 (PAGE_SHIFT - 9));
825 payload->location = cpu_to_le64(location);
826 payload->checksum[0] = cpu_to_le32(checksum1);
827 if (checksum2_valid)
828 payload->checksum[1] = cpu_to_le32(checksum2);
829
830 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
831 sizeof(__le32) * (1 + !!checksum2_valid);
832 }
833
834 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
835 {
836 struct r5l_io_unit *io = log->current_io;
837
838 if (io->need_split_bio) {
839 BUG_ON(io->split_bio);
840 io->split_bio = io->current_bio;
841 io->current_bio = r5l_bio_alloc(log);
842 bio_chain(io->current_bio, io->split_bio);
843 io->need_split_bio = false;
844 }
845
846 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
847 BUG();
848
849 r5_reserve_log_entry(log, io);
850 }
851
852 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
853 {
854 struct mddev *mddev = log->rdev->mddev;
855 struct r5conf *conf = mddev->private;
856 struct r5l_io_unit *io;
857 struct r5l_payload_flush *payload;
858 int meta_size;
859
860 /*
861 * payload_flush requires extra writes to the journal.
862 * To avoid handling the extra IO in quiesce, just skip
863 * flush_payload
864 */
865 if (conf->quiesce)
866 return;
867
868 mutex_lock(&log->io_mutex);
869 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
870
871 if (r5l_get_meta(log, meta_size)) {
872 mutex_unlock(&log->io_mutex);
873 return;
874 }
875
876 /* current implementation is one stripe per flush payload */
877 io = log->current_io;
878 payload = page_address(io->meta_page) + io->meta_offset;
879 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
880 payload->header.flags = cpu_to_le16(0);
881 payload->size = cpu_to_le32(sizeof(__le64));
882 payload->flush_stripes[0] = cpu_to_le64(sect);
883 io->meta_offset += meta_size;
884 mutex_unlock(&log->io_mutex);
885 }
886
887 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
888 int data_pages, int parity_pages)
889 {
890 int i;
891 int meta_size;
892 int ret;
893 struct r5l_io_unit *io;
894
895 meta_size =
896 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
897 * data_pages) +
898 sizeof(struct r5l_payload_data_parity) +
899 sizeof(__le32) * parity_pages;
900
901 ret = r5l_get_meta(log, meta_size);
902 if (ret)
903 return ret;
904
905 io = log->current_io;
906
907 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
908 io->has_flush = 1;
909
910 for (i = 0; i < sh->disks; i++) {
911 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
912 test_bit(R5_InJournal, &sh->dev[i].flags))
913 continue;
914 if (i == sh->pd_idx || i == sh->qd_idx)
915 continue;
916 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
917 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
918 io->has_fua = 1;
919 /*
920 * we need to flush journal to make sure recovery can
921 * reach the data with fua flag
922 */
923 io->has_flush = 1;
924 }
925 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
926 raid5_compute_blocknr(sh, i, 0),
927 sh->dev[i].log_checksum, 0, false);
928 r5l_append_payload_page(log, sh->dev[i].page);
929 }
930
931 if (parity_pages == 2) {
932 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
933 sh->sector, sh->dev[sh->pd_idx].log_checksum,
934 sh->dev[sh->qd_idx].log_checksum, true);
935 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
936 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
937 } else if (parity_pages == 1) {
938 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
939 sh->sector, sh->dev[sh->pd_idx].log_checksum,
940 0, false);
941 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
942 } else /* Just writing data, not parity, in caching phase */
943 BUG_ON(parity_pages != 0);
944
945 list_add_tail(&sh->log_list, &io->stripe_list);
946 atomic_inc(&io->pending_stripe);
947 sh->log_io = io;
948
949 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
950 return 0;
951
952 if (sh->log_start == MaxSector) {
953 BUG_ON(!list_empty(&sh->r5c));
954 sh->log_start = io->log_start;
955 spin_lock_irq(&log->stripe_in_journal_lock);
956 list_add_tail(&sh->r5c,
957 &log->stripe_in_journal_list);
958 spin_unlock_irq(&log->stripe_in_journal_lock);
959 atomic_inc(&log->stripe_in_journal_count);
960 }
961 return 0;
962 }
963
964 /* add stripe to no_space_stripes, and then wake up reclaim */
965 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
966 struct stripe_head *sh)
967 {
968 spin_lock(&log->no_space_stripes_lock);
969 list_add_tail(&sh->log_list, &log->no_space_stripes);
970 spin_unlock(&log->no_space_stripes_lock);
971 }
972
973 /*
974 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
975 * data from log to raid disks), so we shouldn't wait for reclaim here
976 */
977 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
978 {
979 struct r5conf *conf = sh->raid_conf;
980 int write_disks = 0;
981 int data_pages, parity_pages;
982 int reserve;
983 int i;
984 int ret = 0;
985 bool wake_reclaim = false;
986
987 if (!log)
988 return -EAGAIN;
989 /* Don't support stripe batch */
990 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
991 test_bit(STRIPE_SYNCING, &sh->state)) {
992 /* the stripe is written to log, we start writing it to raid */
993 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
994 return -EAGAIN;
995 }
996
997 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
998
999 for (i = 0; i < sh->disks; i++) {
1000 void *addr;
1001
1002 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1003 test_bit(R5_InJournal, &sh->dev[i].flags))
1004 continue;
1005
1006 write_disks++;
1007 /* checksum is already calculated in last run */
1008 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1009 continue;
1010 addr = kmap_atomic(sh->dev[i].page);
1011 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1012 addr, PAGE_SIZE);
1013 kunmap_atomic(addr);
1014 }
1015 parity_pages = 1 + !!(sh->qd_idx >= 0);
1016 data_pages = write_disks - parity_pages;
1017
1018 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1019 /*
1020 * The stripe must enter state machine again to finish the write, so
1021 * don't delay.
1022 */
1023 clear_bit(STRIPE_DELAYED, &sh->state);
1024 atomic_inc(&sh->count);
1025
1026 mutex_lock(&log->io_mutex);
1027 /* meta + data */
1028 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1029
1030 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1031 if (!r5l_has_free_space(log, reserve)) {
1032 r5l_add_no_space_stripe(log, sh);
1033 wake_reclaim = true;
1034 } else {
1035 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1036 if (ret) {
1037 spin_lock_irq(&log->io_list_lock);
1038 list_add_tail(&sh->log_list,
1039 &log->no_mem_stripes);
1040 spin_unlock_irq(&log->io_list_lock);
1041 }
1042 }
1043 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1044 /*
1045 * log space critical, do not process stripes that are
1046 * not in cache yet (sh->log_start == MaxSector).
1047 */
1048 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1049 sh->log_start == MaxSector) {
1050 r5l_add_no_space_stripe(log, sh);
1051 wake_reclaim = true;
1052 reserve = 0;
1053 } else if (!r5l_has_free_space(log, reserve)) {
1054 if (sh->log_start == log->last_checkpoint)
1055 BUG();
1056 else
1057 r5l_add_no_space_stripe(log, sh);
1058 } else {
1059 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1060 if (ret) {
1061 spin_lock_irq(&log->io_list_lock);
1062 list_add_tail(&sh->log_list,
1063 &log->no_mem_stripes);
1064 spin_unlock_irq(&log->io_list_lock);
1065 }
1066 }
1067 }
1068
1069 mutex_unlock(&log->io_mutex);
1070 if (wake_reclaim)
1071 r5l_wake_reclaim(log, reserve);
1072 return 0;
1073 }
1074
1075 void r5l_write_stripe_run(struct r5l_log *log)
1076 {
1077 if (!log)
1078 return;
1079 mutex_lock(&log->io_mutex);
1080 r5l_submit_current_io(log);
1081 mutex_unlock(&log->io_mutex);
1082 }
1083
1084 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1085 {
1086 if (!log)
1087 return -ENODEV;
1088
1089 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1090 /*
1091 * in write through (journal only)
1092 * we flush log disk cache first, then write stripe data to
1093 * raid disks. So if bio is finished, the log disk cache is
1094 * flushed already. The recovery guarantees we can recovery
1095 * the bio from log disk, so we don't need to flush again
1096 */
1097 if (bio->bi_iter.bi_size == 0) {
1098 bio_endio(bio);
1099 return 0;
1100 }
1101 bio->bi_opf &= ~REQ_PREFLUSH;
1102 } else {
1103 /* write back (with cache) */
1104 if (bio->bi_iter.bi_size == 0) {
1105 mutex_lock(&log->io_mutex);
1106 r5l_get_meta(log, 0);
1107 bio_list_add(&log->current_io->flush_barriers, bio);
1108 log->current_io->has_flush = 1;
1109 log->current_io->has_null_flush = 1;
1110 atomic_inc(&log->current_io->pending_stripe);
1111 r5l_submit_current_io(log);
1112 mutex_unlock(&log->io_mutex);
1113 return 0;
1114 }
1115 }
1116 return -EAGAIN;
1117 }
1118
1119 /* This will run after log space is reclaimed */
1120 static void r5l_run_no_space_stripes(struct r5l_log *log)
1121 {
1122 struct stripe_head *sh;
1123
1124 spin_lock(&log->no_space_stripes_lock);
1125 while (!list_empty(&log->no_space_stripes)) {
1126 sh = list_first_entry(&log->no_space_stripes,
1127 struct stripe_head, log_list);
1128 list_del_init(&sh->log_list);
1129 set_bit(STRIPE_HANDLE, &sh->state);
1130 raid5_release_stripe(sh);
1131 }
1132 spin_unlock(&log->no_space_stripes_lock);
1133 }
1134
1135 /*
1136 * calculate new last_checkpoint
1137 * for write through mode, returns log->next_checkpoint
1138 * for write back, returns log_start of first sh in stripe_in_journal_list
1139 */
1140 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1141 {
1142 struct stripe_head *sh;
1143 struct r5l_log *log = conf->log;
1144 sector_t new_cp;
1145 unsigned long flags;
1146
1147 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1148 return log->next_checkpoint;
1149
1150 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1151 if (list_empty(&conf->log->stripe_in_journal_list)) {
1152 /* all stripes flushed */
1153 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1154 return log->next_checkpoint;
1155 }
1156 sh = list_first_entry(&conf->log->stripe_in_journal_list,
1157 struct stripe_head, r5c);
1158 new_cp = sh->log_start;
1159 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1160 return new_cp;
1161 }
1162
1163 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1164 {
1165 struct r5conf *conf = log->rdev->mddev->private;
1166
1167 return r5l_ring_distance(log, log->last_checkpoint,
1168 r5c_calculate_new_cp(conf));
1169 }
1170
1171 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1172 {
1173 struct stripe_head *sh;
1174
1175 assert_spin_locked(&log->io_list_lock);
1176
1177 if (!list_empty(&log->no_mem_stripes)) {
1178 sh = list_first_entry(&log->no_mem_stripes,
1179 struct stripe_head, log_list);
1180 list_del_init(&sh->log_list);
1181 set_bit(STRIPE_HANDLE, &sh->state);
1182 raid5_release_stripe(sh);
1183 }
1184 }
1185
1186 static bool r5l_complete_finished_ios(struct r5l_log *log)
1187 {
1188 struct r5l_io_unit *io, *next;
1189 bool found = false;
1190
1191 assert_spin_locked(&log->io_list_lock);
1192
1193 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1194 /* don't change list order */
1195 if (io->state < IO_UNIT_STRIPE_END)
1196 break;
1197
1198 log->next_checkpoint = io->log_start;
1199
1200 list_del(&io->log_sibling);
1201 mempool_free(io, log->io_pool);
1202 r5l_run_no_mem_stripe(log);
1203
1204 found = true;
1205 }
1206
1207 return found;
1208 }
1209
1210 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1211 {
1212 struct r5l_log *log = io->log;
1213 struct r5conf *conf = log->rdev->mddev->private;
1214 unsigned long flags;
1215
1216 spin_lock_irqsave(&log->io_list_lock, flags);
1217 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1218
1219 if (!r5l_complete_finished_ios(log)) {
1220 spin_unlock_irqrestore(&log->io_list_lock, flags);
1221 return;
1222 }
1223
1224 if (r5l_reclaimable_space(log) > log->max_free_space ||
1225 test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1226 r5l_wake_reclaim(log, 0);
1227
1228 spin_unlock_irqrestore(&log->io_list_lock, flags);
1229 wake_up(&log->iounit_wait);
1230 }
1231
1232 void r5l_stripe_write_finished(struct stripe_head *sh)
1233 {
1234 struct r5l_io_unit *io;
1235
1236 io = sh->log_io;
1237 sh->log_io = NULL;
1238
1239 if (io && atomic_dec_and_test(&io->pending_stripe))
1240 __r5l_stripe_write_finished(io);
1241 }
1242
1243 static void r5l_log_flush_endio(struct bio *bio)
1244 {
1245 struct r5l_log *log = container_of(bio, struct r5l_log,
1246 flush_bio);
1247 unsigned long flags;
1248 struct r5l_io_unit *io;
1249
1250 if (bio->bi_error)
1251 md_error(log->rdev->mddev, log->rdev);
1252
1253 spin_lock_irqsave(&log->io_list_lock, flags);
1254 list_for_each_entry(io, &log->flushing_ios, log_sibling)
1255 r5l_io_run_stripes(io);
1256 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1257 spin_unlock_irqrestore(&log->io_list_lock, flags);
1258 }
1259
1260 /*
1261 * Starting dispatch IO to raid.
1262 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1263 * broken meta in the middle of a log causes recovery can't find meta at the
1264 * head of log. If operations require meta at the head persistent in log, we
1265 * must make sure meta before it persistent in log too. A case is:
1266 *
1267 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1268 * data/parity must be persistent in log before we do the write to raid disks.
1269 *
1270 * The solution is we restrictly maintain io_unit list order. In this case, we
1271 * only write stripes of an io_unit to raid disks till the io_unit is the first
1272 * one whose data/parity is in log.
1273 */
1274 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1275 {
1276 bool do_flush;
1277
1278 if (!log || !log->need_cache_flush)
1279 return;
1280
1281 spin_lock_irq(&log->io_list_lock);
1282 /* flush bio is running */
1283 if (!list_empty(&log->flushing_ios)) {
1284 spin_unlock_irq(&log->io_list_lock);
1285 return;
1286 }
1287 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1288 do_flush = !list_empty(&log->flushing_ios);
1289 spin_unlock_irq(&log->io_list_lock);
1290
1291 if (!do_flush)
1292 return;
1293 bio_reset(&log->flush_bio);
1294 log->flush_bio.bi_bdev = log->rdev->bdev;
1295 log->flush_bio.bi_end_io = r5l_log_flush_endio;
1296 log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1297 submit_bio(&log->flush_bio);
1298 }
1299
1300 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1301 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1302 sector_t end)
1303 {
1304 struct block_device *bdev = log->rdev->bdev;
1305 struct mddev *mddev;
1306
1307 r5l_write_super(log, end);
1308
1309 if (!blk_queue_discard(bdev_get_queue(bdev)))
1310 return;
1311
1312 mddev = log->rdev->mddev;
1313 /*
1314 * Discard could zero data, so before discard we must make sure
1315 * superblock is updated to new log tail. Updating superblock (either
1316 * directly call md_update_sb() or depend on md thread) must hold
1317 * reconfig mutex. On the other hand, raid5_quiesce is called with
1318 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1319 * for all IO finish, hence waitting for reclaim thread, while reclaim
1320 * thread is calling this function and waitting for reconfig mutex. So
1321 * there is a deadlock. We workaround this issue with a trylock.
1322 * FIXME: we could miss discard if we can't take reconfig mutex
1323 */
1324 set_mask_bits(&mddev->sb_flags, 0,
1325 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1326 if (!mddev_trylock(mddev))
1327 return;
1328 md_update_sb(mddev, 1);
1329 mddev_unlock(mddev);
1330
1331 /* discard IO error really doesn't matter, ignore it */
1332 if (log->last_checkpoint < end) {
1333 blkdev_issue_discard(bdev,
1334 log->last_checkpoint + log->rdev->data_offset,
1335 end - log->last_checkpoint, GFP_NOIO, 0);
1336 } else {
1337 blkdev_issue_discard(bdev,
1338 log->last_checkpoint + log->rdev->data_offset,
1339 log->device_size - log->last_checkpoint,
1340 GFP_NOIO, 0);
1341 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1342 GFP_NOIO, 0);
1343 }
1344 }
1345
1346 /*
1347 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1348 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1349 *
1350 * must hold conf->device_lock
1351 */
1352 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1353 {
1354 BUG_ON(list_empty(&sh->lru));
1355 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1356 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1357
1358 /*
1359 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1360 * raid5_release_stripe() while holding conf->device_lock
1361 */
1362 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1363 assert_spin_locked(&conf->device_lock);
1364
1365 list_del_init(&sh->lru);
1366 atomic_inc(&sh->count);
1367
1368 set_bit(STRIPE_HANDLE, &sh->state);
1369 atomic_inc(&conf->active_stripes);
1370 r5c_make_stripe_write_out(sh);
1371
1372 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1373 atomic_inc(&conf->r5c_flushing_partial_stripes);
1374 else
1375 atomic_inc(&conf->r5c_flushing_full_stripes);
1376 raid5_release_stripe(sh);
1377 }
1378
1379 /*
1380 * if num == 0, flush all full stripes
1381 * if num > 0, flush all full stripes. If less than num full stripes are
1382 * flushed, flush some partial stripes until totally num stripes are
1383 * flushed or there is no more cached stripes.
1384 */
1385 void r5c_flush_cache(struct r5conf *conf, int num)
1386 {
1387 int count;
1388 struct stripe_head *sh, *next;
1389
1390 assert_spin_locked(&conf->device_lock);
1391 if (!conf->log)
1392 return;
1393
1394 count = 0;
1395 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1396 r5c_flush_stripe(conf, sh);
1397 count++;
1398 }
1399
1400 if (count >= num)
1401 return;
1402 list_for_each_entry_safe(sh, next,
1403 &conf->r5c_partial_stripe_list, lru) {
1404 r5c_flush_stripe(conf, sh);
1405 if (++count >= num)
1406 break;
1407 }
1408 }
1409
1410 static void r5c_do_reclaim(struct r5conf *conf)
1411 {
1412 struct r5l_log *log = conf->log;
1413 struct stripe_head *sh;
1414 int count = 0;
1415 unsigned long flags;
1416 int total_cached;
1417 int stripes_to_flush;
1418 int flushing_partial, flushing_full;
1419
1420 if (!r5c_is_writeback(log))
1421 return;
1422
1423 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1424 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1425 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1426 atomic_read(&conf->r5c_cached_full_stripes) -
1427 flushing_full - flushing_partial;
1428
1429 if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1430 atomic_read(&conf->empty_inactive_list_nr) > 0)
1431 /*
1432 * if stripe cache pressure high, flush all full stripes and
1433 * some partial stripes
1434 */
1435 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1436 else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1437 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1438 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1439 /*
1440 * if stripe cache pressure moderate, or if there is many full
1441 * stripes,flush all full stripes
1442 */
1443 stripes_to_flush = 0;
1444 else
1445 /* no need to flush */
1446 stripes_to_flush = -1;
1447
1448 if (stripes_to_flush >= 0) {
1449 spin_lock_irqsave(&conf->device_lock, flags);
1450 r5c_flush_cache(conf, stripes_to_flush);
1451 spin_unlock_irqrestore(&conf->device_lock, flags);
1452 }
1453
1454 /* if log space is tight, flush stripes on stripe_in_journal_list */
1455 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1456 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1457 spin_lock(&conf->device_lock);
1458 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1459 /*
1460 * stripes on stripe_in_journal_list could be in any
1461 * state of the stripe_cache state machine. In this
1462 * case, we only want to flush stripe on
1463 * r5c_cached_full/partial_stripes. The following
1464 * condition makes sure the stripe is on one of the
1465 * two lists.
1466 */
1467 if (!list_empty(&sh->lru) &&
1468 !test_bit(STRIPE_HANDLE, &sh->state) &&
1469 atomic_read(&sh->count) == 0) {
1470 r5c_flush_stripe(conf, sh);
1471 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1472 break;
1473 }
1474 }
1475 spin_unlock(&conf->device_lock);
1476 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1477 }
1478
1479 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1480 r5l_run_no_space_stripes(log);
1481
1482 md_wakeup_thread(conf->mddev->thread);
1483 }
1484
1485 static void r5l_do_reclaim(struct r5l_log *log)
1486 {
1487 struct r5conf *conf = log->rdev->mddev->private;
1488 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1489 sector_t reclaimable;
1490 sector_t next_checkpoint;
1491 bool write_super;
1492
1493 spin_lock_irq(&log->io_list_lock);
1494 write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1495 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1496 /*
1497 * move proper io_unit to reclaim list. We should not change the order.
1498 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1499 * shouldn't reuse space of an unreclaimable io_unit
1500 */
1501 while (1) {
1502 reclaimable = r5l_reclaimable_space(log);
1503 if (reclaimable >= reclaim_target ||
1504 (list_empty(&log->running_ios) &&
1505 list_empty(&log->io_end_ios) &&
1506 list_empty(&log->flushing_ios) &&
1507 list_empty(&log->finished_ios)))
1508 break;
1509
1510 md_wakeup_thread(log->rdev->mddev->thread);
1511 wait_event_lock_irq(log->iounit_wait,
1512 r5l_reclaimable_space(log) > reclaimable,
1513 log->io_list_lock);
1514 }
1515
1516 next_checkpoint = r5c_calculate_new_cp(conf);
1517 spin_unlock_irq(&log->io_list_lock);
1518
1519 if (reclaimable == 0 || !write_super)
1520 return;
1521
1522 /*
1523 * write_super will flush cache of each raid disk. We must write super
1524 * here, because the log area might be reused soon and we don't want to
1525 * confuse recovery
1526 */
1527 r5l_write_super_and_discard_space(log, next_checkpoint);
1528
1529 mutex_lock(&log->io_mutex);
1530 log->last_checkpoint = next_checkpoint;
1531 r5c_update_log_state(log);
1532 mutex_unlock(&log->io_mutex);
1533
1534 r5l_run_no_space_stripes(log);
1535 }
1536
1537 static void r5l_reclaim_thread(struct md_thread *thread)
1538 {
1539 struct mddev *mddev = thread->mddev;
1540 struct r5conf *conf = mddev->private;
1541 struct r5l_log *log = conf->log;
1542
1543 if (!log)
1544 return;
1545 r5c_do_reclaim(conf);
1546 r5l_do_reclaim(log);
1547 }
1548
1549 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1550 {
1551 unsigned long target;
1552 unsigned long new = (unsigned long)space; /* overflow in theory */
1553
1554 if (!log)
1555 return;
1556 do {
1557 target = log->reclaim_target;
1558 if (new < target)
1559 return;
1560 } while (cmpxchg(&log->reclaim_target, target, new) != target);
1561 md_wakeup_thread(log->reclaim_thread);
1562 }
1563
1564 void r5l_quiesce(struct r5l_log *log, int state)
1565 {
1566 struct mddev *mddev;
1567 if (!log || state == 2)
1568 return;
1569 if (state == 0)
1570 kthread_unpark(log->reclaim_thread->tsk);
1571 else if (state == 1) {
1572 /* make sure r5l_write_super_and_discard_space exits */
1573 mddev = log->rdev->mddev;
1574 wake_up(&mddev->sb_wait);
1575 kthread_park(log->reclaim_thread->tsk);
1576 r5l_wake_reclaim(log, MaxSector);
1577 r5l_do_reclaim(log);
1578 }
1579 }
1580
1581 bool r5l_log_disk_error(struct r5conf *conf)
1582 {
1583 struct r5l_log *log;
1584 bool ret;
1585 /* don't allow write if journal disk is missing */
1586 rcu_read_lock();
1587 log = rcu_dereference(conf->log);
1588
1589 if (!log)
1590 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1591 else
1592 ret = test_bit(Faulty, &log->rdev->flags);
1593 rcu_read_unlock();
1594 return ret;
1595 }
1596
1597 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1598
1599 struct r5l_recovery_ctx {
1600 struct page *meta_page; /* current meta */
1601 sector_t meta_total_blocks; /* total size of current meta and data */
1602 sector_t pos; /* recovery position */
1603 u64 seq; /* recovery position seq */
1604 int data_parity_stripes; /* number of data_parity stripes */
1605 int data_only_stripes; /* number of data_only stripes */
1606 struct list_head cached_list;
1607
1608 /*
1609 * read ahead page pool (ra_pool)
1610 * in recovery, log is read sequentially. It is not efficient to
1611 * read every page with sync_page_io(). The read ahead page pool
1612 * reads multiple pages with one IO, so further log read can
1613 * just copy data from the pool.
1614 */
1615 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1616 sector_t pool_offset; /* offset of first page in the pool */
1617 int total_pages; /* total allocated pages */
1618 int valid_pages; /* pages with valid data */
1619 struct bio *ra_bio; /* bio to do the read ahead */
1620 };
1621
1622 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1623 struct r5l_recovery_ctx *ctx)
1624 {
1625 struct page *page;
1626
1627 ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs);
1628 if (!ctx->ra_bio)
1629 return -ENOMEM;
1630
1631 ctx->valid_pages = 0;
1632 ctx->total_pages = 0;
1633 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1634 page = alloc_page(GFP_KERNEL);
1635
1636 if (!page)
1637 break;
1638 ctx->ra_pool[ctx->total_pages] = page;
1639 ctx->total_pages += 1;
1640 }
1641
1642 if (ctx->total_pages == 0) {
1643 bio_put(ctx->ra_bio);
1644 return -ENOMEM;
1645 }
1646
1647 ctx->pool_offset = 0;
1648 return 0;
1649 }
1650
1651 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1652 struct r5l_recovery_ctx *ctx)
1653 {
1654 int i;
1655
1656 for (i = 0; i < ctx->total_pages; ++i)
1657 put_page(ctx->ra_pool[i]);
1658 bio_put(ctx->ra_bio);
1659 }
1660
1661 /*
1662 * fetch ctx->valid_pages pages from offset
1663 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1664 * However, if the offset is close to the end of the journal device,
1665 * ctx->valid_pages could be smaller than ctx->total_pages
1666 */
1667 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1668 struct r5l_recovery_ctx *ctx,
1669 sector_t offset)
1670 {
1671 bio_reset(ctx->ra_bio);
1672 ctx->ra_bio->bi_bdev = log->rdev->bdev;
1673 bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1674 ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1675
1676 ctx->valid_pages = 0;
1677 ctx->pool_offset = offset;
1678
1679 while (ctx->valid_pages < ctx->total_pages) {
1680 bio_add_page(ctx->ra_bio,
1681 ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1682 ctx->valid_pages += 1;
1683
1684 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1685
1686 if (offset == 0) /* reached end of the device */
1687 break;
1688 }
1689
1690 return submit_bio_wait(ctx->ra_bio);
1691 }
1692
1693 /*
1694 * try read a page from the read ahead page pool, if the page is not in the
1695 * pool, call r5l_recovery_fetch_ra_pool
1696 */
1697 static int r5l_recovery_read_page(struct r5l_log *log,
1698 struct r5l_recovery_ctx *ctx,
1699 struct page *page,
1700 sector_t offset)
1701 {
1702 int ret;
1703
1704 if (offset < ctx->pool_offset ||
1705 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1706 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1707 if (ret)
1708 return ret;
1709 }
1710
1711 BUG_ON(offset < ctx->pool_offset ||
1712 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1713
1714 memcpy(page_address(page),
1715 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1716 BLOCK_SECTOR_SHIFT]),
1717 PAGE_SIZE);
1718 return 0;
1719 }
1720
1721 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1722 struct r5l_recovery_ctx *ctx)
1723 {
1724 struct page *page = ctx->meta_page;
1725 struct r5l_meta_block *mb;
1726 u32 crc, stored_crc;
1727 int ret;
1728
1729 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1730 if (ret != 0)
1731 return ret;
1732
1733 mb = page_address(page);
1734 stored_crc = le32_to_cpu(mb->checksum);
1735 mb->checksum = 0;
1736
1737 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1738 le64_to_cpu(mb->seq) != ctx->seq ||
1739 mb->version != R5LOG_VERSION ||
1740 le64_to_cpu(mb->position) != ctx->pos)
1741 return -EINVAL;
1742
1743 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1744 if (stored_crc != crc)
1745 return -EINVAL;
1746
1747 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1748 return -EINVAL;
1749
1750 ctx->meta_total_blocks = BLOCK_SECTORS;
1751
1752 return 0;
1753 }
1754
1755 static void
1756 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1757 struct page *page,
1758 sector_t pos, u64 seq)
1759 {
1760 struct r5l_meta_block *mb;
1761
1762 mb = page_address(page);
1763 clear_page(mb);
1764 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1765 mb->version = R5LOG_VERSION;
1766 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1767 mb->seq = cpu_to_le64(seq);
1768 mb->position = cpu_to_le64(pos);
1769 }
1770
1771 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1772 u64 seq)
1773 {
1774 struct page *page;
1775 struct r5l_meta_block *mb;
1776
1777 page = alloc_page(GFP_KERNEL);
1778 if (!page)
1779 return -ENOMEM;
1780 r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1781 mb = page_address(page);
1782 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1783 mb, PAGE_SIZE));
1784 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1785 REQ_FUA, false)) {
1786 __free_page(page);
1787 return -EIO;
1788 }
1789 __free_page(page);
1790 return 0;
1791 }
1792
1793 /*
1794 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1795 * to mark valid (potentially not flushed) data in the journal.
1796 *
1797 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1798 * so there should not be any mismatch here.
1799 */
1800 static void r5l_recovery_load_data(struct r5l_log *log,
1801 struct stripe_head *sh,
1802 struct r5l_recovery_ctx *ctx,
1803 struct r5l_payload_data_parity *payload,
1804 sector_t log_offset)
1805 {
1806 struct mddev *mddev = log->rdev->mddev;
1807 struct r5conf *conf = mddev->private;
1808 int dd_idx;
1809
1810 raid5_compute_sector(conf,
1811 le64_to_cpu(payload->location), 0,
1812 &dd_idx, sh);
1813 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1814 sh->dev[dd_idx].log_checksum =
1815 le32_to_cpu(payload->checksum[0]);
1816 ctx->meta_total_blocks += BLOCK_SECTORS;
1817
1818 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1819 set_bit(STRIPE_R5C_CACHING, &sh->state);
1820 }
1821
1822 static void r5l_recovery_load_parity(struct r5l_log *log,
1823 struct stripe_head *sh,
1824 struct r5l_recovery_ctx *ctx,
1825 struct r5l_payload_data_parity *payload,
1826 sector_t log_offset)
1827 {
1828 struct mddev *mddev = log->rdev->mddev;
1829 struct r5conf *conf = mddev->private;
1830
1831 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1832 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1833 sh->dev[sh->pd_idx].log_checksum =
1834 le32_to_cpu(payload->checksum[0]);
1835 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1836
1837 if (sh->qd_idx >= 0) {
1838 r5l_recovery_read_page(
1839 log, ctx, sh->dev[sh->qd_idx].page,
1840 r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1841 sh->dev[sh->qd_idx].log_checksum =
1842 le32_to_cpu(payload->checksum[1]);
1843 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1844 }
1845 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1846 }
1847
1848 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1849 {
1850 int i;
1851
1852 sh->state = 0;
1853 sh->log_start = MaxSector;
1854 for (i = sh->disks; i--; )
1855 sh->dev[i].flags = 0;
1856 }
1857
1858 static void
1859 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1860 struct stripe_head *sh,
1861 struct r5l_recovery_ctx *ctx)
1862 {
1863 struct md_rdev *rdev, *rrdev;
1864 int disk_index;
1865 int data_count = 0;
1866
1867 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1868 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1869 continue;
1870 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1871 continue;
1872 data_count++;
1873 }
1874
1875 /*
1876 * stripes that only have parity must have been flushed
1877 * before the crash that we are now recovering from, so
1878 * there is nothing more to recovery.
1879 */
1880 if (data_count == 0)
1881 goto out;
1882
1883 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1884 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1885 continue;
1886
1887 /* in case device is broken */
1888 rcu_read_lock();
1889 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1890 if (rdev) {
1891 atomic_inc(&rdev->nr_pending);
1892 rcu_read_unlock();
1893 sync_page_io(rdev, sh->sector, PAGE_SIZE,
1894 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1895 false);
1896 rdev_dec_pending(rdev, rdev->mddev);
1897 rcu_read_lock();
1898 }
1899 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1900 if (rrdev) {
1901 atomic_inc(&rrdev->nr_pending);
1902 rcu_read_unlock();
1903 sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1904 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1905 false);
1906 rdev_dec_pending(rrdev, rrdev->mddev);
1907 rcu_read_lock();
1908 }
1909 rcu_read_unlock();
1910 }
1911 ctx->data_parity_stripes++;
1912 out:
1913 r5l_recovery_reset_stripe(sh);
1914 }
1915
1916 static struct stripe_head *
1917 r5c_recovery_alloc_stripe(struct r5conf *conf,
1918 sector_t stripe_sect)
1919 {
1920 struct stripe_head *sh;
1921
1922 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1923 if (!sh)
1924 return NULL; /* no more stripe available */
1925
1926 r5l_recovery_reset_stripe(sh);
1927
1928 return sh;
1929 }
1930
1931 static struct stripe_head *
1932 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1933 {
1934 struct stripe_head *sh;
1935
1936 list_for_each_entry(sh, list, lru)
1937 if (sh->sector == sect)
1938 return sh;
1939 return NULL;
1940 }
1941
1942 static void
1943 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1944 struct r5l_recovery_ctx *ctx)
1945 {
1946 struct stripe_head *sh, *next;
1947
1948 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1949 r5l_recovery_reset_stripe(sh);
1950 list_del_init(&sh->lru);
1951 raid5_release_stripe(sh);
1952 }
1953 }
1954
1955 static void
1956 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1957 struct r5l_recovery_ctx *ctx)
1958 {
1959 struct stripe_head *sh, *next;
1960
1961 list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1962 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1963 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1964 list_del_init(&sh->lru);
1965 raid5_release_stripe(sh);
1966 }
1967 }
1968
1969 /* if matches return 0; otherwise return -EINVAL */
1970 static int
1971 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1972 struct r5l_recovery_ctx *ctx,
1973 struct page *page,
1974 sector_t log_offset, __le32 log_checksum)
1975 {
1976 void *addr;
1977 u32 checksum;
1978
1979 r5l_recovery_read_page(log, ctx, page, log_offset);
1980 addr = kmap_atomic(page);
1981 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1982 kunmap_atomic(addr);
1983 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1984 }
1985
1986 /*
1987 * before loading data to stripe cache, we need verify checksum for all data,
1988 * if there is mismatch for any data page, we drop all data in the mata block
1989 */
1990 static int
1991 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1992 struct r5l_recovery_ctx *ctx)
1993 {
1994 struct mddev *mddev = log->rdev->mddev;
1995 struct r5conf *conf = mddev->private;
1996 struct r5l_meta_block *mb = page_address(ctx->meta_page);
1997 sector_t mb_offset = sizeof(struct r5l_meta_block);
1998 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1999 struct page *page;
2000 struct r5l_payload_data_parity *payload;
2001 struct r5l_payload_flush *payload_flush;
2002
2003 page = alloc_page(GFP_KERNEL);
2004 if (!page)
2005 return -ENOMEM;
2006
2007 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2008 payload = (void *)mb + mb_offset;
2009 payload_flush = (void *)mb + mb_offset;
2010
2011 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2012 if (r5l_recovery_verify_data_checksum(
2013 log, ctx, page, log_offset,
2014 payload->checksum[0]) < 0)
2015 goto mismatch;
2016 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2017 if (r5l_recovery_verify_data_checksum(
2018 log, ctx, page, log_offset,
2019 payload->checksum[0]) < 0)
2020 goto mismatch;
2021 if (conf->max_degraded == 2 && /* q for RAID 6 */
2022 r5l_recovery_verify_data_checksum(
2023 log, ctx, page,
2024 r5l_ring_add(log, log_offset,
2025 BLOCK_SECTORS),
2026 payload->checksum[1]) < 0)
2027 goto mismatch;
2028 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2029 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2030 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2031 goto mismatch;
2032
2033 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2034 mb_offset += sizeof(struct r5l_payload_flush) +
2035 le32_to_cpu(payload_flush->size);
2036 } else {
2037 /* DATA or PARITY payload */
2038 log_offset = r5l_ring_add(log, log_offset,
2039 le32_to_cpu(payload->size));
2040 mb_offset += sizeof(struct r5l_payload_data_parity) +
2041 sizeof(__le32) *
2042 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2043 }
2044
2045 }
2046
2047 put_page(page);
2048 return 0;
2049
2050 mismatch:
2051 put_page(page);
2052 return -EINVAL;
2053 }
2054
2055 /*
2056 * Analyze all data/parity pages in one meta block
2057 * Returns:
2058 * 0 for success
2059 * -EINVAL for unknown playload type
2060 * -EAGAIN for checksum mismatch of data page
2061 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2062 */
2063 static int
2064 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2065 struct r5l_recovery_ctx *ctx,
2066 struct list_head *cached_stripe_list)
2067 {
2068 struct mddev *mddev = log->rdev->mddev;
2069 struct r5conf *conf = mddev->private;
2070 struct r5l_meta_block *mb;
2071 struct r5l_payload_data_parity *payload;
2072 struct r5l_payload_flush *payload_flush;
2073 int mb_offset;
2074 sector_t log_offset;
2075 sector_t stripe_sect;
2076 struct stripe_head *sh;
2077 int ret;
2078
2079 /*
2080 * for mismatch in data blocks, we will drop all data in this mb, but
2081 * we will still read next mb for other data with FLUSH flag, as
2082 * io_unit could finish out of order.
2083 */
2084 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2085 if (ret == -EINVAL)
2086 return -EAGAIN;
2087 else if (ret)
2088 return ret; /* -ENOMEM duo to alloc_page() failed */
2089
2090 mb = page_address(ctx->meta_page);
2091 mb_offset = sizeof(struct r5l_meta_block);
2092 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2093
2094 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2095 int dd;
2096
2097 payload = (void *)mb + mb_offset;
2098 payload_flush = (void *)mb + mb_offset;
2099
2100 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2101 int i, count;
2102
2103 count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2104 for (i = 0; i < count; ++i) {
2105 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2106 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2107 stripe_sect);
2108 if (sh) {
2109 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2110 r5l_recovery_reset_stripe(sh);
2111 list_del_init(&sh->lru);
2112 raid5_release_stripe(sh);
2113 }
2114 }
2115
2116 mb_offset += sizeof(struct r5l_payload_flush) +
2117 le32_to_cpu(payload_flush->size);
2118 continue;
2119 }
2120
2121 /* DATA or PARITY payload */
2122 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2123 raid5_compute_sector(
2124 conf, le64_to_cpu(payload->location), 0, &dd,
2125 NULL)
2126 : le64_to_cpu(payload->location);
2127
2128 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2129 stripe_sect);
2130
2131 if (!sh) {
2132 sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
2133 /*
2134 * cannot get stripe from raid5_get_active_stripe
2135 * try replay some stripes
2136 */
2137 if (!sh) {
2138 r5c_recovery_replay_stripes(
2139 cached_stripe_list, ctx);
2140 sh = r5c_recovery_alloc_stripe(
2141 conf, stripe_sect);
2142 }
2143 if (!sh) {
2144 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2145 mdname(mddev),
2146 conf->min_nr_stripes * 2);
2147 raid5_set_cache_size(mddev,
2148 conf->min_nr_stripes * 2);
2149 sh = r5c_recovery_alloc_stripe(conf,
2150 stripe_sect);
2151 }
2152 if (!sh) {
2153 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2154 mdname(mddev));
2155 return -ENOMEM;
2156 }
2157 list_add_tail(&sh->lru, cached_stripe_list);
2158 }
2159
2160 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2161 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2162 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2163 r5l_recovery_replay_one_stripe(conf, sh, ctx);
2164 list_move_tail(&sh->lru, cached_stripe_list);
2165 }
2166 r5l_recovery_load_data(log, sh, ctx, payload,
2167 log_offset);
2168 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2169 r5l_recovery_load_parity(log, sh, ctx, payload,
2170 log_offset);
2171 else
2172 return -EINVAL;
2173
2174 log_offset = r5l_ring_add(log, log_offset,
2175 le32_to_cpu(payload->size));
2176
2177 mb_offset += sizeof(struct r5l_payload_data_parity) +
2178 sizeof(__le32) *
2179 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2180 }
2181
2182 return 0;
2183 }
2184
2185 /*
2186 * Load the stripe into cache. The stripe will be written out later by
2187 * the stripe cache state machine.
2188 */
2189 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2190 struct stripe_head *sh)
2191 {
2192 struct r5dev *dev;
2193 int i;
2194
2195 for (i = sh->disks; i--; ) {
2196 dev = sh->dev + i;
2197 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2198 set_bit(R5_InJournal, &dev->flags);
2199 set_bit(R5_UPTODATE, &dev->flags);
2200 }
2201 }
2202 }
2203
2204 /*
2205 * Scan through the log for all to-be-flushed data
2206 *
2207 * For stripes with data and parity, namely Data-Parity stripe
2208 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2209 *
2210 * For stripes with only data, namely Data-Only stripe
2211 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2212 *
2213 * For a stripe, if we see data after parity, we should discard all previous
2214 * data and parity for this stripe, as these data are already flushed to
2215 * the array.
2216 *
2217 * At the end of the scan, we return the new journal_tail, which points to
2218 * first data-only stripe on the journal device, or next invalid meta block.
2219 */
2220 static int r5c_recovery_flush_log(struct r5l_log *log,
2221 struct r5l_recovery_ctx *ctx)
2222 {
2223 struct stripe_head *sh;
2224 int ret = 0;
2225
2226 /* scan through the log */
2227 while (1) {
2228 if (r5l_recovery_read_meta_block(log, ctx))
2229 break;
2230
2231 ret = r5c_recovery_analyze_meta_block(log, ctx,
2232 &ctx->cached_list);
2233 /*
2234 * -EAGAIN means mismatch in data block, in this case, we still
2235 * try scan the next metablock
2236 */
2237 if (ret && ret != -EAGAIN)
2238 break; /* ret == -EINVAL or -ENOMEM */
2239 ctx->seq++;
2240 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2241 }
2242
2243 if (ret == -ENOMEM) {
2244 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2245 return ret;
2246 }
2247
2248 /* replay data-parity stripes */
2249 r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2250
2251 /* load data-only stripes to stripe cache */
2252 list_for_each_entry(sh, &ctx->cached_list, lru) {
2253 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2254 r5c_recovery_load_one_stripe(log, sh);
2255 ctx->data_only_stripes++;
2256 }
2257
2258 return 0;
2259 }
2260
2261 /*
2262 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2263 * log will start here. but we can't let superblock point to last valid
2264 * meta block. The log might looks like:
2265 * | meta 1| meta 2| meta 3|
2266 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2267 * superblock points to meta 1, we write a new valid meta 2n. if crash
2268 * happens again, new recovery will start from meta 1. Since meta 2n is
2269 * valid now, recovery will think meta 3 is valid, which is wrong.
2270 * The solution is we create a new meta in meta2 with its seq == meta
2271 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2272 * will not think meta 3 is a valid meta, because its seq doesn't match
2273 */
2274
2275 /*
2276 * Before recovery, the log looks like the following
2277 *
2278 * ---------------------------------------------
2279 * | valid log | invalid log |
2280 * ---------------------------------------------
2281 * ^
2282 * |- log->last_checkpoint
2283 * |- log->last_cp_seq
2284 *
2285 * Now we scan through the log until we see invalid entry
2286 *
2287 * ---------------------------------------------
2288 * | valid log | invalid log |
2289 * ---------------------------------------------
2290 * ^ ^
2291 * |- log->last_checkpoint |- ctx->pos
2292 * |- log->last_cp_seq |- ctx->seq
2293 *
2294 * From this point, we need to increase seq number by 10 to avoid
2295 * confusing next recovery.
2296 *
2297 * ---------------------------------------------
2298 * | valid log | invalid log |
2299 * ---------------------------------------------
2300 * ^ ^
2301 * |- log->last_checkpoint |- ctx->pos+1
2302 * |- log->last_cp_seq |- ctx->seq+10001
2303 *
2304 * However, it is not safe to start the state machine yet, because data only
2305 * parities are not yet secured in RAID. To save these data only parities, we
2306 * rewrite them from seq+11.
2307 *
2308 * -----------------------------------------------------------------
2309 * | valid log | data only stripes | invalid log |
2310 * -----------------------------------------------------------------
2311 * ^ ^
2312 * |- log->last_checkpoint |- ctx->pos+n
2313 * |- log->last_cp_seq |- ctx->seq+10000+n
2314 *
2315 * If failure happens again during this process, the recovery can safe start
2316 * again from log->last_checkpoint.
2317 *
2318 * Once data only stripes are rewritten to journal, we move log_tail
2319 *
2320 * -----------------------------------------------------------------
2321 * | old log | data only stripes | invalid log |
2322 * -----------------------------------------------------------------
2323 * ^ ^
2324 * |- log->last_checkpoint |- ctx->pos+n
2325 * |- log->last_cp_seq |- ctx->seq+10000+n
2326 *
2327 * Then we can safely start the state machine. If failure happens from this
2328 * point on, the recovery will start from new log->last_checkpoint.
2329 */
2330 static int
2331 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2332 struct r5l_recovery_ctx *ctx)
2333 {
2334 struct stripe_head *sh;
2335 struct mddev *mddev = log->rdev->mddev;
2336 struct page *page;
2337 sector_t next_checkpoint = MaxSector;
2338
2339 page = alloc_page(GFP_KERNEL);
2340 if (!page) {
2341 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2342 mdname(mddev));
2343 return -ENOMEM;
2344 }
2345
2346 WARN_ON(list_empty(&ctx->cached_list));
2347
2348 list_for_each_entry(sh, &ctx->cached_list, lru) {
2349 struct r5l_meta_block *mb;
2350 int i;
2351 int offset;
2352 sector_t write_pos;
2353
2354 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2355 r5l_recovery_create_empty_meta_block(log, page,
2356 ctx->pos, ctx->seq);
2357 mb = page_address(page);
2358 offset = le32_to_cpu(mb->meta_size);
2359 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2360
2361 for (i = sh->disks; i--; ) {
2362 struct r5dev *dev = &sh->dev[i];
2363 struct r5l_payload_data_parity *payload;
2364 void *addr;
2365
2366 if (test_bit(R5_InJournal, &dev->flags)) {
2367 payload = (void *)mb + offset;
2368 payload->header.type = cpu_to_le16(
2369 R5LOG_PAYLOAD_DATA);
2370 payload->size = cpu_to_le32(BLOCK_SECTORS);
2371 payload->location = cpu_to_le64(
2372 raid5_compute_blocknr(sh, i, 0));
2373 addr = kmap_atomic(dev->page);
2374 payload->checksum[0] = cpu_to_le32(
2375 crc32c_le(log->uuid_checksum, addr,
2376 PAGE_SIZE));
2377 kunmap_atomic(addr);
2378 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2379 dev->page, REQ_OP_WRITE, 0, false);
2380 write_pos = r5l_ring_add(log, write_pos,
2381 BLOCK_SECTORS);
2382 offset += sizeof(__le32) +
2383 sizeof(struct r5l_payload_data_parity);
2384
2385 }
2386 }
2387 mb->meta_size = cpu_to_le32(offset);
2388 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2389 mb, PAGE_SIZE));
2390 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2391 REQ_OP_WRITE, REQ_FUA, false);
2392 sh->log_start = ctx->pos;
2393 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2394 atomic_inc(&log->stripe_in_journal_count);
2395 ctx->pos = write_pos;
2396 ctx->seq += 1;
2397 next_checkpoint = sh->log_start;
2398 }
2399 log->next_checkpoint = next_checkpoint;
2400 __free_page(page);
2401 return 0;
2402 }
2403
2404 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2405 struct r5l_recovery_ctx *ctx)
2406 {
2407 struct mddev *mddev = log->rdev->mddev;
2408 struct r5conf *conf = mddev->private;
2409 struct stripe_head *sh, *next;
2410
2411 if (ctx->data_only_stripes == 0)
2412 return;
2413
2414 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2415
2416 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2417 r5c_make_stripe_write_out(sh);
2418 set_bit(STRIPE_HANDLE, &sh->state);
2419 list_del_init(&sh->lru);
2420 raid5_release_stripe(sh);
2421 }
2422
2423 md_wakeup_thread(conf->mddev->thread);
2424 /* reuse conf->wait_for_quiescent in recovery */
2425 wait_event(conf->wait_for_quiescent,
2426 atomic_read(&conf->active_stripes) == 0);
2427
2428 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2429 }
2430
2431 static int r5l_recovery_log(struct r5l_log *log)
2432 {
2433 struct mddev *mddev = log->rdev->mddev;
2434 struct r5l_recovery_ctx *ctx;
2435 int ret;
2436 sector_t pos;
2437
2438 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2439 if (!ctx)
2440 return -ENOMEM;
2441
2442 ctx->pos = log->last_checkpoint;
2443 ctx->seq = log->last_cp_seq;
2444 INIT_LIST_HEAD(&ctx->cached_list);
2445 ctx->meta_page = alloc_page(GFP_KERNEL);
2446
2447 if (!ctx->meta_page) {
2448 ret = -ENOMEM;
2449 goto meta_page;
2450 }
2451
2452 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2453 ret = -ENOMEM;
2454 goto ra_pool;
2455 }
2456
2457 ret = r5c_recovery_flush_log(log, ctx);
2458
2459 if (ret)
2460 goto error;
2461
2462 pos = ctx->pos;
2463 ctx->seq += 10000;
2464
2465 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2466 pr_debug("md/raid:%s: starting from clean shutdown\n",
2467 mdname(mddev));
2468 else
2469 pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2470 mdname(mddev), ctx->data_only_stripes,
2471 ctx->data_parity_stripes);
2472
2473 if (ctx->data_only_stripes == 0) {
2474 log->next_checkpoint = ctx->pos;
2475 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2476 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2477 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2478 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2479 mdname(mddev));
2480 ret = -EIO;
2481 goto error;
2482 }
2483
2484 log->log_start = ctx->pos;
2485 log->seq = ctx->seq;
2486 log->last_checkpoint = pos;
2487 r5l_write_super(log, pos);
2488
2489 r5c_recovery_flush_data_only_stripes(log, ctx);
2490 ret = 0;
2491 error:
2492 r5l_recovery_free_ra_pool(log, ctx);
2493 ra_pool:
2494 __free_page(ctx->meta_page);
2495 meta_page:
2496 kfree(ctx);
2497 return ret;
2498 }
2499
2500 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2501 {
2502 struct mddev *mddev = log->rdev->mddev;
2503
2504 log->rdev->journal_tail = cp;
2505 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2506 }
2507
2508 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2509 {
2510 struct r5conf *conf = mddev->private;
2511 int ret;
2512
2513 if (!conf->log)
2514 return 0;
2515
2516 switch (conf->log->r5c_journal_mode) {
2517 case R5C_JOURNAL_MODE_WRITE_THROUGH:
2518 ret = snprintf(
2519 page, PAGE_SIZE, "[%s] %s\n",
2520 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2521 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2522 break;
2523 case R5C_JOURNAL_MODE_WRITE_BACK:
2524 ret = snprintf(
2525 page, PAGE_SIZE, "%s [%s]\n",
2526 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2527 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2528 break;
2529 default:
2530 ret = 0;
2531 }
2532 return ret;
2533 }
2534
2535 /*
2536 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2537 *
2538 * @mode as defined in 'enum r5c_journal_mode'.
2539 *
2540 */
2541 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2542 {
2543 struct r5conf *conf = mddev->private;
2544 struct r5l_log *log = conf->log;
2545
2546 if (!log)
2547 return -ENODEV;
2548
2549 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2550 mode > R5C_JOURNAL_MODE_WRITE_BACK)
2551 return -EINVAL;
2552
2553 if (raid5_calc_degraded(conf) > 0 &&
2554 mode == R5C_JOURNAL_MODE_WRITE_BACK)
2555 return -EINVAL;
2556
2557 mddev_suspend(mddev);
2558 conf->log->r5c_journal_mode = mode;
2559 mddev_resume(mddev);
2560
2561 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2562 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2563 return 0;
2564 }
2565 EXPORT_SYMBOL(r5c_journal_mode_set);
2566
2567 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2568 const char *page, size_t length)
2569 {
2570 int mode = ARRAY_SIZE(r5c_journal_mode_str);
2571 size_t len = length;
2572
2573 if (len < 2)
2574 return -EINVAL;
2575
2576 if (page[len - 1] == '\n')
2577 len--;
2578
2579 while (mode--)
2580 if (strlen(r5c_journal_mode_str[mode]) == len &&
2581 !strncmp(page, r5c_journal_mode_str[mode], len))
2582 break;
2583
2584 return r5c_journal_mode_set(mddev, mode) ?: length;
2585 }
2586
2587 struct md_sysfs_entry
2588 r5c_journal_mode = __ATTR(journal_mode, 0644,
2589 r5c_journal_mode_show, r5c_journal_mode_store);
2590
2591 /*
2592 * Try handle write operation in caching phase. This function should only
2593 * be called in write-back mode.
2594 *
2595 * If all outstanding writes can be handled in caching phase, returns 0
2596 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2597 * and returns -EAGAIN
2598 */
2599 int r5c_try_caching_write(struct r5conf *conf,
2600 struct stripe_head *sh,
2601 struct stripe_head_state *s,
2602 int disks)
2603 {
2604 struct r5l_log *log = conf->log;
2605 int i;
2606 struct r5dev *dev;
2607 int to_cache = 0;
2608 void **pslot;
2609 sector_t tree_index;
2610 int ret;
2611 uintptr_t refcount;
2612
2613 BUG_ON(!r5c_is_writeback(log));
2614
2615 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2616 /*
2617 * There are two different scenarios here:
2618 * 1. The stripe has some data cached, and it is sent to
2619 * write-out phase for reclaim
2620 * 2. The stripe is clean, and this is the first write
2621 *
2622 * For 1, return -EAGAIN, so we continue with
2623 * handle_stripe_dirtying().
2624 *
2625 * For 2, set STRIPE_R5C_CACHING and continue with caching
2626 * write.
2627 */
2628
2629 /* case 1: anything injournal or anything in written */
2630 if (s->injournal > 0 || s->written > 0)
2631 return -EAGAIN;
2632 /* case 2 */
2633 set_bit(STRIPE_R5C_CACHING, &sh->state);
2634 }
2635
2636 /*
2637 * When run in degraded mode, array is set to write-through mode.
2638 * This check helps drain pending write safely in the transition to
2639 * write-through mode.
2640 *
2641 * When a stripe is syncing, the write is also handled in write
2642 * through mode.
2643 */
2644 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2645 r5c_make_stripe_write_out(sh);
2646 return -EAGAIN;
2647 }
2648
2649 for (i = disks; i--; ) {
2650 dev = &sh->dev[i];
2651 /* if non-overwrite, use writing-out phase */
2652 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2653 !test_bit(R5_InJournal, &dev->flags)) {
2654 r5c_make_stripe_write_out(sh);
2655 return -EAGAIN;
2656 }
2657 }
2658
2659 /* if the stripe is not counted in big_stripe_tree, add it now */
2660 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2661 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2662 tree_index = r5c_tree_index(conf, sh->sector);
2663 spin_lock(&log->tree_lock);
2664 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2665 tree_index);
2666 if (pslot) {
2667 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2668 pslot, &log->tree_lock) >>
2669 R5C_RADIX_COUNT_SHIFT;
2670 radix_tree_replace_slot(
2671 &log->big_stripe_tree, pslot,
2672 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2673 } else {
2674 /*
2675 * this radix_tree_insert can fail safely, so no
2676 * need to call radix_tree_preload()
2677 */
2678 ret = radix_tree_insert(
2679 &log->big_stripe_tree, tree_index,
2680 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2681 if (ret) {
2682 spin_unlock(&log->tree_lock);
2683 r5c_make_stripe_write_out(sh);
2684 return -EAGAIN;
2685 }
2686 }
2687 spin_unlock(&log->tree_lock);
2688
2689 /*
2690 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2691 * counted in the radix tree
2692 */
2693 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2694 atomic_inc(&conf->r5c_cached_partial_stripes);
2695 }
2696
2697 for (i = disks; i--; ) {
2698 dev = &sh->dev[i];
2699 if (dev->towrite) {
2700 set_bit(R5_Wantwrite, &dev->flags);
2701 set_bit(R5_Wantdrain, &dev->flags);
2702 set_bit(R5_LOCKED, &dev->flags);
2703 to_cache++;
2704 }
2705 }
2706
2707 if (to_cache) {
2708 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2709 /*
2710 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2711 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2712 * r5c_handle_data_cached()
2713 */
2714 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2715 }
2716
2717 return 0;
2718 }
2719
2720 /*
2721 * free extra pages (orig_page) we allocated for prexor
2722 */
2723 void r5c_release_extra_page(struct stripe_head *sh)
2724 {
2725 struct r5conf *conf = sh->raid_conf;
2726 int i;
2727 bool using_disk_info_extra_page;
2728
2729 using_disk_info_extra_page =
2730 sh->dev[0].orig_page == conf->disks[0].extra_page;
2731
2732 for (i = sh->disks; i--; )
2733 if (sh->dev[i].page != sh->dev[i].orig_page) {
2734 struct page *p = sh->dev[i].orig_page;
2735
2736 sh->dev[i].orig_page = sh->dev[i].page;
2737 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2738
2739 if (!using_disk_info_extra_page)
2740 put_page(p);
2741 }
2742
2743 if (using_disk_info_extra_page) {
2744 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2745 md_wakeup_thread(conf->mddev->thread);
2746 }
2747 }
2748
2749 void r5c_use_extra_page(struct stripe_head *sh)
2750 {
2751 struct r5conf *conf = sh->raid_conf;
2752 int i;
2753 struct r5dev *dev;
2754
2755 for (i = sh->disks; i--; ) {
2756 dev = &sh->dev[i];
2757 if (dev->orig_page != dev->page)
2758 put_page(dev->orig_page);
2759 dev->orig_page = conf->disks[i].extra_page;
2760 }
2761 }
2762
2763 /*
2764 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2765 * stripe is committed to RAID disks.
2766 */
2767 void r5c_finish_stripe_write_out(struct r5conf *conf,
2768 struct stripe_head *sh,
2769 struct stripe_head_state *s)
2770 {
2771 struct r5l_log *log = conf->log;
2772 int i;
2773 int do_wakeup = 0;
2774 sector_t tree_index;
2775 void **pslot;
2776 uintptr_t refcount;
2777
2778 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2779 return;
2780
2781 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2782 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2783
2784 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2785 return;
2786
2787 for (i = sh->disks; i--; ) {
2788 clear_bit(R5_InJournal, &sh->dev[i].flags);
2789 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2790 do_wakeup = 1;
2791 }
2792
2793 /*
2794 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2795 * We updated R5_InJournal, so we also update s->injournal.
2796 */
2797 s->injournal = 0;
2798
2799 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2800 if (atomic_dec_and_test(&conf->pending_full_writes))
2801 md_wakeup_thread(conf->mddev->thread);
2802
2803 if (do_wakeup)
2804 wake_up(&conf->wait_for_overlap);
2805
2806 spin_lock_irq(&log->stripe_in_journal_lock);
2807 list_del_init(&sh->r5c);
2808 spin_unlock_irq(&log->stripe_in_journal_lock);
2809 sh->log_start = MaxSector;
2810
2811 atomic_dec(&log->stripe_in_journal_count);
2812 r5c_update_log_state(log);
2813
2814 /* stop counting this stripe in big_stripe_tree */
2815 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2816 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2817 tree_index = r5c_tree_index(conf, sh->sector);
2818 spin_lock(&log->tree_lock);
2819 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2820 tree_index);
2821 BUG_ON(pslot == NULL);
2822 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2823 pslot, &log->tree_lock) >>
2824 R5C_RADIX_COUNT_SHIFT;
2825 if (refcount == 1)
2826 radix_tree_delete(&log->big_stripe_tree, tree_index);
2827 else
2828 radix_tree_replace_slot(
2829 &log->big_stripe_tree, pslot,
2830 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2831 spin_unlock(&log->tree_lock);
2832 }
2833
2834 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2835 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2836 atomic_dec(&conf->r5c_flushing_partial_stripes);
2837 atomic_dec(&conf->r5c_cached_partial_stripes);
2838 }
2839
2840 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2841 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2842 atomic_dec(&conf->r5c_flushing_full_stripes);
2843 atomic_dec(&conf->r5c_cached_full_stripes);
2844 }
2845
2846 r5l_append_flush_payload(log, sh->sector);
2847 /* stripe is flused to raid disks, we can do resync now */
2848 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2849 set_bit(STRIPE_HANDLE, &sh->state);
2850 }
2851
2852 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2853 {
2854 struct r5conf *conf = sh->raid_conf;
2855 int pages = 0;
2856 int reserve;
2857 int i;
2858 int ret = 0;
2859
2860 BUG_ON(!log);
2861
2862 for (i = 0; i < sh->disks; i++) {
2863 void *addr;
2864
2865 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2866 continue;
2867 addr = kmap_atomic(sh->dev[i].page);
2868 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2869 addr, PAGE_SIZE);
2870 kunmap_atomic(addr);
2871 pages++;
2872 }
2873 WARN_ON(pages == 0);
2874
2875 /*
2876 * The stripe must enter state machine again to call endio, so
2877 * don't delay.
2878 */
2879 clear_bit(STRIPE_DELAYED, &sh->state);
2880 atomic_inc(&sh->count);
2881
2882 mutex_lock(&log->io_mutex);
2883 /* meta + data */
2884 reserve = (1 + pages) << (PAGE_SHIFT - 9);
2885
2886 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2887 sh->log_start == MaxSector)
2888 r5l_add_no_space_stripe(log, sh);
2889 else if (!r5l_has_free_space(log, reserve)) {
2890 if (sh->log_start == log->last_checkpoint)
2891 BUG();
2892 else
2893 r5l_add_no_space_stripe(log, sh);
2894 } else {
2895 ret = r5l_log_stripe(log, sh, pages, 0);
2896 if (ret) {
2897 spin_lock_irq(&log->io_list_lock);
2898 list_add_tail(&sh->log_list, &log->no_mem_stripes);
2899 spin_unlock_irq(&log->io_list_lock);
2900 }
2901 }
2902
2903 mutex_unlock(&log->io_mutex);
2904 return 0;
2905 }
2906
2907 /* check whether this big stripe is in write back cache. */
2908 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2909 {
2910 struct r5l_log *log = conf->log;
2911 sector_t tree_index;
2912 void *slot;
2913
2914 if (!log)
2915 return false;
2916
2917 WARN_ON_ONCE(!rcu_read_lock_held());
2918 tree_index = r5c_tree_index(conf, sect);
2919 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2920 return slot != NULL;
2921 }
2922
2923 static int r5l_load_log(struct r5l_log *log)
2924 {
2925 struct md_rdev *rdev = log->rdev;
2926 struct page *page;
2927 struct r5l_meta_block *mb;
2928 sector_t cp = log->rdev->journal_tail;
2929 u32 stored_crc, expected_crc;
2930 bool create_super = false;
2931 int ret = 0;
2932
2933 /* Make sure it's valid */
2934 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2935 cp = 0;
2936 page = alloc_page(GFP_KERNEL);
2937 if (!page)
2938 return -ENOMEM;
2939
2940 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2941 ret = -EIO;
2942 goto ioerr;
2943 }
2944 mb = page_address(page);
2945
2946 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2947 mb->version != R5LOG_VERSION) {
2948 create_super = true;
2949 goto create;
2950 }
2951 stored_crc = le32_to_cpu(mb->checksum);
2952 mb->checksum = 0;
2953 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2954 if (stored_crc != expected_crc) {
2955 create_super = true;
2956 goto create;
2957 }
2958 if (le64_to_cpu(mb->position) != cp) {
2959 create_super = true;
2960 goto create;
2961 }
2962 create:
2963 if (create_super) {
2964 log->last_cp_seq = prandom_u32();
2965 cp = 0;
2966 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2967 /*
2968 * Make sure super points to correct address. Log might have
2969 * data very soon. If super hasn't correct log tail address,
2970 * recovery can't find the log
2971 */
2972 r5l_write_super(log, cp);
2973 } else
2974 log->last_cp_seq = le64_to_cpu(mb->seq);
2975
2976 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
2977 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2978 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2979 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
2980 log->last_checkpoint = cp;
2981
2982 __free_page(page);
2983
2984 if (create_super) {
2985 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
2986 log->seq = log->last_cp_seq + 1;
2987 log->next_checkpoint = cp;
2988 } else
2989 ret = r5l_recovery_log(log);
2990
2991 r5c_update_log_state(log);
2992 return ret;
2993 ioerr:
2994 __free_page(page);
2995 return ret;
2996 }
2997
2998 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
2999 {
3000 struct r5conf *conf = mddev->private;
3001 struct r5l_log *log = conf->log;
3002
3003 if (!log)
3004 return;
3005
3006 if ((raid5_calc_degraded(conf) > 0 ||
3007 test_bit(Journal, &rdev->flags)) &&
3008 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3009 schedule_work(&log->disable_writeback_work);
3010 }
3011
3012 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3013 {
3014 struct request_queue *q = bdev_get_queue(rdev->bdev);
3015 struct r5l_log *log;
3016 char b[BDEVNAME_SIZE];
3017
3018 pr_debug("md/raid:%s: using device %s as journal\n",
3019 mdname(conf->mddev), bdevname(rdev->bdev, b));
3020
3021 if (PAGE_SIZE != 4096)
3022 return -EINVAL;
3023
3024 /*
3025 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3026 * raid_disks r5l_payload_data_parity.
3027 *
3028 * Write journal and cache does not work for very big array
3029 * (raid_disks > 203)
3030 */
3031 if (sizeof(struct r5l_meta_block) +
3032 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3033 conf->raid_disks) > PAGE_SIZE) {
3034 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3035 mdname(conf->mddev), conf->raid_disks);
3036 return -EINVAL;
3037 }
3038
3039 log = kzalloc(sizeof(*log), GFP_KERNEL);
3040 if (!log)
3041 return -ENOMEM;
3042 log->rdev = rdev;
3043
3044 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3045
3046 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3047 sizeof(rdev->mddev->uuid));
3048
3049 mutex_init(&log->io_mutex);
3050
3051 spin_lock_init(&log->io_list_lock);
3052 INIT_LIST_HEAD(&log->running_ios);
3053 INIT_LIST_HEAD(&log->io_end_ios);
3054 INIT_LIST_HEAD(&log->flushing_ios);
3055 INIT_LIST_HEAD(&log->finished_ios);
3056 bio_init(&log->flush_bio, NULL, 0);
3057
3058 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3059 if (!log->io_kc)
3060 goto io_kc;
3061
3062 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
3063 if (!log->io_pool)
3064 goto io_pool;
3065
3066 log->bs = bioset_create(R5L_POOL_SIZE, 0);
3067 if (!log->bs)
3068 goto io_bs;
3069
3070 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
3071 if (!log->meta_pool)
3072 goto out_mempool;
3073
3074 spin_lock_init(&log->tree_lock);
3075 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3076
3077 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3078 log->rdev->mddev, "reclaim");
3079 if (!log->reclaim_thread)
3080 goto reclaim_thread;
3081 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3082
3083 init_waitqueue_head(&log->iounit_wait);
3084
3085 INIT_LIST_HEAD(&log->no_mem_stripes);
3086
3087 INIT_LIST_HEAD(&log->no_space_stripes);
3088 spin_lock_init(&log->no_space_stripes_lock);
3089
3090 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3091 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3092
3093 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3094 INIT_LIST_HEAD(&log->stripe_in_journal_list);
3095 spin_lock_init(&log->stripe_in_journal_lock);
3096 atomic_set(&log->stripe_in_journal_count, 0);
3097
3098 rcu_assign_pointer(conf->log, log);
3099
3100 if (r5l_load_log(log))
3101 goto error;
3102
3103 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3104 return 0;
3105
3106 error:
3107 rcu_assign_pointer(conf->log, NULL);
3108 md_unregister_thread(&log->reclaim_thread);
3109 reclaim_thread:
3110 mempool_destroy(log->meta_pool);
3111 out_mempool:
3112 bioset_free(log->bs);
3113 io_bs:
3114 mempool_destroy(log->io_pool);
3115 io_pool:
3116 kmem_cache_destroy(log->io_kc);
3117 io_kc:
3118 kfree(log);
3119 return -EINVAL;
3120 }
3121
3122 void r5l_exit_log(struct r5conf *conf)
3123 {
3124 struct r5l_log *log = conf->log;
3125
3126 conf->log = NULL;
3127 synchronize_rcu();
3128
3129 flush_work(&log->disable_writeback_work);
3130 md_unregister_thread(&log->reclaim_thread);
3131 mempool_destroy(log->meta_pool);
3132 bioset_free(log->bs);
3133 mempool_destroy(log->io_pool);
3134 kmem_cache_destroy(log->io_kc);
3135 kfree(log);
3136 }