Merge branch 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include <linux/ratelimit.h>
26 #include "md.h"
27 #include "raid10.h"
28 #include "raid0.h"
29 #include "bitmap.h"
30
31 /*
32 * RAID10 provides a combination of RAID0 and RAID1 functionality.
33 * The layout of data is defined by
34 * chunk_size
35 * raid_disks
36 * near_copies (stored in low byte of layout)
37 * far_copies (stored in second byte of layout)
38 * far_offset (stored in bit 16 of layout )
39 *
40 * The data to be stored is divided into chunks using chunksize.
41 * Each device is divided into far_copies sections.
42 * In each section, chunks are laid out in a style similar to raid0, but
43 * near_copies copies of each chunk is stored (each on a different drive).
44 * The starting device for each section is offset near_copies from the starting
45 * device of the previous section.
46 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
47 * drive.
48 * near_copies and far_copies must be at least one, and their product is at most
49 * raid_disks.
50 *
51 * If far_offset is true, then the far_copies are handled a bit differently.
52 * The copies are still in different stripes, but instead of be very far apart
53 * on disk, there are adjacent stripes.
54 */
55
56 /*
57 * Number of guaranteed r10bios in case of extreme VM load:
58 */
59 #define NR_RAID10_BIOS 256
60
61 /* When there are this many requests queue to be written by
62 * the raid10 thread, we become 'congested' to provide back-pressure
63 * for writeback.
64 */
65 static int max_queued_requests = 1024;
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69
70 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
71 {
72 struct r10conf *conf = data;
73 int size = offsetof(struct r10bio, devs[conf->copies]);
74
75 /* allocate a r10bio with room for raid_disks entries in the bios array */
76 return kzalloc(size, gfp_flags);
77 }
78
79 static void r10bio_pool_free(void *r10_bio, void *data)
80 {
81 kfree(r10_bio);
82 }
83
84 /* Maximum size of each resync request */
85 #define RESYNC_BLOCK_SIZE (64*1024)
86 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
87 /* amount of memory to reserve for resync requests */
88 #define RESYNC_WINDOW (1024*1024)
89 /* maximum number of concurrent requests, memory permitting */
90 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
91
92 /*
93 * When performing a resync, we need to read and compare, so
94 * we need as many pages are there are copies.
95 * When performing a recovery, we need 2 bios, one for read,
96 * one for write (we recover only one drive per r10buf)
97 *
98 */
99 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
100 {
101 struct r10conf *conf = data;
102 struct page *page;
103 struct r10bio *r10_bio;
104 struct bio *bio;
105 int i, j;
106 int nalloc;
107
108 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
109 if (!r10_bio)
110 return NULL;
111
112 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
113 nalloc = conf->copies; /* resync */
114 else
115 nalloc = 2; /* recovery */
116
117 /*
118 * Allocate bios.
119 */
120 for (j = nalloc ; j-- ; ) {
121 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
122 if (!bio)
123 goto out_free_bio;
124 r10_bio->devs[j].bio = bio;
125 }
126 /*
127 * Allocate RESYNC_PAGES data pages and attach them
128 * where needed.
129 */
130 for (j = 0 ; j < nalloc; j++) {
131 bio = r10_bio->devs[j].bio;
132 for (i = 0; i < RESYNC_PAGES; i++) {
133 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
134 &conf->mddev->recovery)) {
135 /* we can share bv_page's during recovery */
136 struct bio *rbio = r10_bio->devs[0].bio;
137 page = rbio->bi_io_vec[i].bv_page;
138 get_page(page);
139 } else
140 page = alloc_page(gfp_flags);
141 if (unlikely(!page))
142 goto out_free_pages;
143
144 bio->bi_io_vec[i].bv_page = page;
145 }
146 }
147
148 return r10_bio;
149
150 out_free_pages:
151 for ( ; i > 0 ; i--)
152 safe_put_page(bio->bi_io_vec[i-1].bv_page);
153 while (j--)
154 for (i = 0; i < RESYNC_PAGES ; i++)
155 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
156 j = -1;
157 out_free_bio:
158 while ( ++j < nalloc )
159 bio_put(r10_bio->devs[j].bio);
160 r10bio_pool_free(r10_bio, conf);
161 return NULL;
162 }
163
164 static void r10buf_pool_free(void *__r10_bio, void *data)
165 {
166 int i;
167 struct r10conf *conf = data;
168 struct r10bio *r10bio = __r10_bio;
169 int j;
170
171 for (j=0; j < conf->copies; j++) {
172 struct bio *bio = r10bio->devs[j].bio;
173 if (bio) {
174 for (i = 0; i < RESYNC_PAGES; i++) {
175 safe_put_page(bio->bi_io_vec[i].bv_page);
176 bio->bi_io_vec[i].bv_page = NULL;
177 }
178 bio_put(bio);
179 }
180 }
181 r10bio_pool_free(r10bio, conf);
182 }
183
184 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
185 {
186 int i;
187
188 for (i = 0; i < conf->copies; i++) {
189 struct bio **bio = & r10_bio->devs[i].bio;
190 if (!BIO_SPECIAL(*bio))
191 bio_put(*bio);
192 *bio = NULL;
193 }
194 }
195
196 static void free_r10bio(struct r10bio *r10_bio)
197 {
198 struct r10conf *conf = r10_bio->mddev->private;
199
200 put_all_bios(conf, r10_bio);
201 mempool_free(r10_bio, conf->r10bio_pool);
202 }
203
204 static void put_buf(struct r10bio *r10_bio)
205 {
206 struct r10conf *conf = r10_bio->mddev->private;
207
208 mempool_free(r10_bio, conf->r10buf_pool);
209
210 lower_barrier(conf);
211 }
212
213 static void reschedule_retry(struct r10bio *r10_bio)
214 {
215 unsigned long flags;
216 struct mddev *mddev = r10_bio->mddev;
217 struct r10conf *conf = mddev->private;
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r10_bio->retry_list, &conf->retry_list);
221 conf->nr_queued ++;
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
224 /* wake up frozen array... */
225 wake_up(&conf->wait_barrier);
226
227 md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
235 static void raid_end_bio_io(struct r10bio *r10_bio)
236 {
237 struct bio *bio = r10_bio->master_bio;
238 int done;
239 struct r10conf *conf = r10_bio->mddev->private;
240
241 if (bio->bi_phys_segments) {
242 unsigned long flags;
243 spin_lock_irqsave(&conf->device_lock, flags);
244 bio->bi_phys_segments--;
245 done = (bio->bi_phys_segments == 0);
246 spin_unlock_irqrestore(&conf->device_lock, flags);
247 } else
248 done = 1;
249 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
250 clear_bit(BIO_UPTODATE, &bio->bi_flags);
251 if (done) {
252 bio_endio(bio, 0);
253 /*
254 * Wake up any possible resync thread that waits for the device
255 * to go idle.
256 */
257 allow_barrier(conf);
258 }
259 free_r10bio(r10_bio);
260 }
261
262 /*
263 * Update disk head position estimator based on IRQ completion info.
264 */
265 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
266 {
267 struct r10conf *conf = r10_bio->mddev->private;
268
269 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
270 r10_bio->devs[slot].addr + (r10_bio->sectors);
271 }
272
273 /*
274 * Find the disk number which triggered given bio
275 */
276 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
277 struct bio *bio, int *slotp)
278 {
279 int slot;
280
281 for (slot = 0; slot < conf->copies; slot++)
282 if (r10_bio->devs[slot].bio == bio)
283 break;
284
285 BUG_ON(slot == conf->copies);
286 update_head_pos(slot, r10_bio);
287
288 if (slotp)
289 *slotp = slot;
290 return r10_bio->devs[slot].devnum;
291 }
292
293 static void raid10_end_read_request(struct bio *bio, int error)
294 {
295 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
296 struct r10bio *r10_bio = bio->bi_private;
297 int slot, dev;
298 struct r10conf *conf = r10_bio->mddev->private;
299
300
301 slot = r10_bio->read_slot;
302 dev = r10_bio->devs[slot].devnum;
303 /*
304 * this branch is our 'one mirror IO has finished' event handler:
305 */
306 update_head_pos(slot, r10_bio);
307
308 if (uptodate) {
309 /*
310 * Set R10BIO_Uptodate in our master bio, so that
311 * we will return a good error code to the higher
312 * levels even if IO on some other mirrored buffer fails.
313 *
314 * The 'master' represents the composite IO operation to
315 * user-side. So if something waits for IO, then it will
316 * wait for the 'master' bio.
317 */
318 set_bit(R10BIO_Uptodate, &r10_bio->state);
319 raid_end_bio_io(r10_bio);
320 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
321 } else {
322 /*
323 * oops, read error - keep the refcount on the rdev
324 */
325 char b[BDEVNAME_SIZE];
326 printk_ratelimited(KERN_ERR
327 "md/raid10:%s: %s: rescheduling sector %llu\n",
328 mdname(conf->mddev),
329 bdevname(conf->mirrors[dev].rdev->bdev, b),
330 (unsigned long long)r10_bio->sector);
331 set_bit(R10BIO_ReadError, &r10_bio->state);
332 reschedule_retry(r10_bio);
333 }
334 }
335
336 static void close_write(struct r10bio *r10_bio)
337 {
338 /* clear the bitmap if all writes complete successfully */
339 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
340 r10_bio->sectors,
341 !test_bit(R10BIO_Degraded, &r10_bio->state),
342 0);
343 md_write_end(r10_bio->mddev);
344 }
345
346 static void one_write_done(struct r10bio *r10_bio)
347 {
348 if (atomic_dec_and_test(&r10_bio->remaining)) {
349 if (test_bit(R10BIO_WriteError, &r10_bio->state))
350 reschedule_retry(r10_bio);
351 else {
352 close_write(r10_bio);
353 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
354 reschedule_retry(r10_bio);
355 else
356 raid_end_bio_io(r10_bio);
357 }
358 }
359 }
360
361 static void raid10_end_write_request(struct bio *bio, int error)
362 {
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 struct r10bio *r10_bio = bio->bi_private;
365 int dev;
366 int dec_rdev = 1;
367 struct r10conf *conf = r10_bio->mddev->private;
368 int slot;
369
370 dev = find_bio_disk(conf, r10_bio, bio, &slot);
371
372 /*
373 * this branch is our 'one mirror IO has finished' event handler:
374 */
375 if (!uptodate) {
376 set_bit(WriteErrorSeen, &conf->mirrors[dev].rdev->flags);
377 set_bit(R10BIO_WriteError, &r10_bio->state);
378 dec_rdev = 0;
379 } else {
380 /*
381 * Set R10BIO_Uptodate in our master bio, so that
382 * we will return a good error code for to the higher
383 * levels even if IO on some other mirrored buffer fails.
384 *
385 * The 'master' represents the composite IO operation to
386 * user-side. So if something waits for IO, then it will
387 * wait for the 'master' bio.
388 */
389 sector_t first_bad;
390 int bad_sectors;
391
392 set_bit(R10BIO_Uptodate, &r10_bio->state);
393
394 /* Maybe we can clear some bad blocks. */
395 if (is_badblock(conf->mirrors[dev].rdev,
396 r10_bio->devs[slot].addr,
397 r10_bio->sectors,
398 &first_bad, &bad_sectors)) {
399 bio_put(bio);
400 r10_bio->devs[slot].bio = IO_MADE_GOOD;
401 dec_rdev = 0;
402 set_bit(R10BIO_MadeGood, &r10_bio->state);
403 }
404 }
405
406 /*
407 *
408 * Let's see if all mirrored write operations have finished
409 * already.
410 */
411 one_write_done(r10_bio);
412 if (dec_rdev)
413 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
414 }
415
416
417 /*
418 * RAID10 layout manager
419 * As well as the chunksize and raid_disks count, there are two
420 * parameters: near_copies and far_copies.
421 * near_copies * far_copies must be <= raid_disks.
422 * Normally one of these will be 1.
423 * If both are 1, we get raid0.
424 * If near_copies == raid_disks, we get raid1.
425 *
426 * Chunks are laid out in raid0 style with near_copies copies of the
427 * first chunk, followed by near_copies copies of the next chunk and
428 * so on.
429 * If far_copies > 1, then after 1/far_copies of the array has been assigned
430 * as described above, we start again with a device offset of near_copies.
431 * So we effectively have another copy of the whole array further down all
432 * the drives, but with blocks on different drives.
433 * With this layout, and block is never stored twice on the one device.
434 *
435 * raid10_find_phys finds the sector offset of a given virtual sector
436 * on each device that it is on.
437 *
438 * raid10_find_virt does the reverse mapping, from a device and a
439 * sector offset to a virtual address
440 */
441
442 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
443 {
444 int n,f;
445 sector_t sector;
446 sector_t chunk;
447 sector_t stripe;
448 int dev;
449
450 int slot = 0;
451
452 /* now calculate first sector/dev */
453 chunk = r10bio->sector >> conf->chunk_shift;
454 sector = r10bio->sector & conf->chunk_mask;
455
456 chunk *= conf->near_copies;
457 stripe = chunk;
458 dev = sector_div(stripe, conf->raid_disks);
459 if (conf->far_offset)
460 stripe *= conf->far_copies;
461
462 sector += stripe << conf->chunk_shift;
463
464 /* and calculate all the others */
465 for (n=0; n < conf->near_copies; n++) {
466 int d = dev;
467 sector_t s = sector;
468 r10bio->devs[slot].addr = sector;
469 r10bio->devs[slot].devnum = d;
470 slot++;
471
472 for (f = 1; f < conf->far_copies; f++) {
473 d += conf->near_copies;
474 if (d >= conf->raid_disks)
475 d -= conf->raid_disks;
476 s += conf->stride;
477 r10bio->devs[slot].devnum = d;
478 r10bio->devs[slot].addr = s;
479 slot++;
480 }
481 dev++;
482 if (dev >= conf->raid_disks) {
483 dev = 0;
484 sector += (conf->chunk_mask + 1);
485 }
486 }
487 BUG_ON(slot != conf->copies);
488 }
489
490 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
491 {
492 sector_t offset, chunk, vchunk;
493
494 offset = sector & conf->chunk_mask;
495 if (conf->far_offset) {
496 int fc;
497 chunk = sector >> conf->chunk_shift;
498 fc = sector_div(chunk, conf->far_copies);
499 dev -= fc * conf->near_copies;
500 if (dev < 0)
501 dev += conf->raid_disks;
502 } else {
503 while (sector >= conf->stride) {
504 sector -= conf->stride;
505 if (dev < conf->near_copies)
506 dev += conf->raid_disks - conf->near_copies;
507 else
508 dev -= conf->near_copies;
509 }
510 chunk = sector >> conf->chunk_shift;
511 }
512 vchunk = chunk * conf->raid_disks + dev;
513 sector_div(vchunk, conf->near_copies);
514 return (vchunk << conf->chunk_shift) + offset;
515 }
516
517 /**
518 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
519 * @q: request queue
520 * @bvm: properties of new bio
521 * @biovec: the request that could be merged to it.
522 *
523 * Return amount of bytes we can accept at this offset
524 * If near_copies == raid_disk, there are no striping issues,
525 * but in that case, the function isn't called at all.
526 */
527 static int raid10_mergeable_bvec(struct request_queue *q,
528 struct bvec_merge_data *bvm,
529 struct bio_vec *biovec)
530 {
531 struct mddev *mddev = q->queuedata;
532 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
533 int max;
534 unsigned int chunk_sectors = mddev->chunk_sectors;
535 unsigned int bio_sectors = bvm->bi_size >> 9;
536
537 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
538 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
539 if (max <= biovec->bv_len && bio_sectors == 0)
540 return biovec->bv_len;
541 else
542 return max;
543 }
544
545 /*
546 * This routine returns the disk from which the requested read should
547 * be done. There is a per-array 'next expected sequential IO' sector
548 * number - if this matches on the next IO then we use the last disk.
549 * There is also a per-disk 'last know head position' sector that is
550 * maintained from IRQ contexts, both the normal and the resync IO
551 * completion handlers update this position correctly. If there is no
552 * perfect sequential match then we pick the disk whose head is closest.
553 *
554 * If there are 2 mirrors in the same 2 devices, performance degrades
555 * because position is mirror, not device based.
556 *
557 * The rdev for the device selected will have nr_pending incremented.
558 */
559
560 /*
561 * FIXME: possibly should rethink readbalancing and do it differently
562 * depending on near_copies / far_copies geometry.
563 */
564 static int read_balance(struct r10conf *conf, struct r10bio *r10_bio, int *max_sectors)
565 {
566 const sector_t this_sector = r10_bio->sector;
567 int disk, slot;
568 int sectors = r10_bio->sectors;
569 int best_good_sectors;
570 sector_t new_distance, best_dist;
571 struct md_rdev *rdev;
572 int do_balance;
573 int best_slot;
574
575 raid10_find_phys(conf, r10_bio);
576 rcu_read_lock();
577 retry:
578 sectors = r10_bio->sectors;
579 best_slot = -1;
580 best_dist = MaxSector;
581 best_good_sectors = 0;
582 do_balance = 1;
583 /*
584 * Check if we can balance. We can balance on the whole
585 * device if no resync is going on (recovery is ok), or below
586 * the resync window. We take the first readable disk when
587 * above the resync window.
588 */
589 if (conf->mddev->recovery_cp < MaxSector
590 && (this_sector + sectors >= conf->next_resync))
591 do_balance = 0;
592
593 for (slot = 0; slot < conf->copies ; slot++) {
594 sector_t first_bad;
595 int bad_sectors;
596 sector_t dev_sector;
597
598 if (r10_bio->devs[slot].bio == IO_BLOCKED)
599 continue;
600 disk = r10_bio->devs[slot].devnum;
601 rdev = rcu_dereference(conf->mirrors[disk].rdev);
602 if (rdev == NULL)
603 continue;
604 if (!test_bit(In_sync, &rdev->flags))
605 continue;
606
607 dev_sector = r10_bio->devs[slot].addr;
608 if (is_badblock(rdev, dev_sector, sectors,
609 &first_bad, &bad_sectors)) {
610 if (best_dist < MaxSector)
611 /* Already have a better slot */
612 continue;
613 if (first_bad <= dev_sector) {
614 /* Cannot read here. If this is the
615 * 'primary' device, then we must not read
616 * beyond 'bad_sectors' from another device.
617 */
618 bad_sectors -= (dev_sector - first_bad);
619 if (!do_balance && sectors > bad_sectors)
620 sectors = bad_sectors;
621 if (best_good_sectors > sectors)
622 best_good_sectors = sectors;
623 } else {
624 sector_t good_sectors =
625 first_bad - dev_sector;
626 if (good_sectors > best_good_sectors) {
627 best_good_sectors = good_sectors;
628 best_slot = slot;
629 }
630 if (!do_balance)
631 /* Must read from here */
632 break;
633 }
634 continue;
635 } else
636 best_good_sectors = sectors;
637
638 if (!do_balance)
639 break;
640
641 /* This optimisation is debatable, and completely destroys
642 * sequential read speed for 'far copies' arrays. So only
643 * keep it for 'near' arrays, and review those later.
644 */
645 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
646 break;
647
648 /* for far > 1 always use the lowest address */
649 if (conf->far_copies > 1)
650 new_distance = r10_bio->devs[slot].addr;
651 else
652 new_distance = abs(r10_bio->devs[slot].addr -
653 conf->mirrors[disk].head_position);
654 if (new_distance < best_dist) {
655 best_dist = new_distance;
656 best_slot = slot;
657 }
658 }
659 if (slot == conf->copies)
660 slot = best_slot;
661
662 if (slot >= 0) {
663 disk = r10_bio->devs[slot].devnum;
664 rdev = rcu_dereference(conf->mirrors[disk].rdev);
665 if (!rdev)
666 goto retry;
667 atomic_inc(&rdev->nr_pending);
668 if (test_bit(Faulty, &rdev->flags)) {
669 /* Cannot risk returning a device that failed
670 * before we inc'ed nr_pending
671 */
672 rdev_dec_pending(rdev, conf->mddev);
673 goto retry;
674 }
675 r10_bio->read_slot = slot;
676 } else
677 disk = -1;
678 rcu_read_unlock();
679 *max_sectors = best_good_sectors;
680
681 return disk;
682 }
683
684 static int raid10_congested(void *data, int bits)
685 {
686 struct mddev *mddev = data;
687 struct r10conf *conf = mddev->private;
688 int i, ret = 0;
689
690 if ((bits & (1 << BDI_async_congested)) &&
691 conf->pending_count >= max_queued_requests)
692 return 1;
693
694 if (mddev_congested(mddev, bits))
695 return 1;
696 rcu_read_lock();
697 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
698 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
699 if (rdev && !test_bit(Faulty, &rdev->flags)) {
700 struct request_queue *q = bdev_get_queue(rdev->bdev);
701
702 ret |= bdi_congested(&q->backing_dev_info, bits);
703 }
704 }
705 rcu_read_unlock();
706 return ret;
707 }
708
709 static void flush_pending_writes(struct r10conf *conf)
710 {
711 /* Any writes that have been queued but are awaiting
712 * bitmap updates get flushed here.
713 */
714 spin_lock_irq(&conf->device_lock);
715
716 if (conf->pending_bio_list.head) {
717 struct bio *bio;
718 bio = bio_list_get(&conf->pending_bio_list);
719 conf->pending_count = 0;
720 spin_unlock_irq(&conf->device_lock);
721 /* flush any pending bitmap writes to disk
722 * before proceeding w/ I/O */
723 bitmap_unplug(conf->mddev->bitmap);
724 wake_up(&conf->wait_barrier);
725
726 while (bio) { /* submit pending writes */
727 struct bio *next = bio->bi_next;
728 bio->bi_next = NULL;
729 generic_make_request(bio);
730 bio = next;
731 }
732 } else
733 spin_unlock_irq(&conf->device_lock);
734 }
735
736 /* Barriers....
737 * Sometimes we need to suspend IO while we do something else,
738 * either some resync/recovery, or reconfigure the array.
739 * To do this we raise a 'barrier'.
740 * The 'barrier' is a counter that can be raised multiple times
741 * to count how many activities are happening which preclude
742 * normal IO.
743 * We can only raise the barrier if there is no pending IO.
744 * i.e. if nr_pending == 0.
745 * We choose only to raise the barrier if no-one is waiting for the
746 * barrier to go down. This means that as soon as an IO request
747 * is ready, no other operations which require a barrier will start
748 * until the IO request has had a chance.
749 *
750 * So: regular IO calls 'wait_barrier'. When that returns there
751 * is no backgroup IO happening, It must arrange to call
752 * allow_barrier when it has finished its IO.
753 * backgroup IO calls must call raise_barrier. Once that returns
754 * there is no normal IO happeing. It must arrange to call
755 * lower_barrier when the particular background IO completes.
756 */
757
758 static void raise_barrier(struct r10conf *conf, int force)
759 {
760 BUG_ON(force && !conf->barrier);
761 spin_lock_irq(&conf->resync_lock);
762
763 /* Wait until no block IO is waiting (unless 'force') */
764 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
765 conf->resync_lock, );
766
767 /* block any new IO from starting */
768 conf->barrier++;
769
770 /* Now wait for all pending IO to complete */
771 wait_event_lock_irq(conf->wait_barrier,
772 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
773 conf->resync_lock, );
774
775 spin_unlock_irq(&conf->resync_lock);
776 }
777
778 static void lower_barrier(struct r10conf *conf)
779 {
780 unsigned long flags;
781 spin_lock_irqsave(&conf->resync_lock, flags);
782 conf->barrier--;
783 spin_unlock_irqrestore(&conf->resync_lock, flags);
784 wake_up(&conf->wait_barrier);
785 }
786
787 static void wait_barrier(struct r10conf *conf)
788 {
789 spin_lock_irq(&conf->resync_lock);
790 if (conf->barrier) {
791 conf->nr_waiting++;
792 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
793 conf->resync_lock,
794 );
795 conf->nr_waiting--;
796 }
797 conf->nr_pending++;
798 spin_unlock_irq(&conf->resync_lock);
799 }
800
801 static void allow_barrier(struct r10conf *conf)
802 {
803 unsigned long flags;
804 spin_lock_irqsave(&conf->resync_lock, flags);
805 conf->nr_pending--;
806 spin_unlock_irqrestore(&conf->resync_lock, flags);
807 wake_up(&conf->wait_barrier);
808 }
809
810 static void freeze_array(struct r10conf *conf)
811 {
812 /* stop syncio and normal IO and wait for everything to
813 * go quiet.
814 * We increment barrier and nr_waiting, and then
815 * wait until nr_pending match nr_queued+1
816 * This is called in the context of one normal IO request
817 * that has failed. Thus any sync request that might be pending
818 * will be blocked by nr_pending, and we need to wait for
819 * pending IO requests to complete or be queued for re-try.
820 * Thus the number queued (nr_queued) plus this request (1)
821 * must match the number of pending IOs (nr_pending) before
822 * we continue.
823 */
824 spin_lock_irq(&conf->resync_lock);
825 conf->barrier++;
826 conf->nr_waiting++;
827 wait_event_lock_irq(conf->wait_barrier,
828 conf->nr_pending == conf->nr_queued+1,
829 conf->resync_lock,
830 flush_pending_writes(conf));
831
832 spin_unlock_irq(&conf->resync_lock);
833 }
834
835 static void unfreeze_array(struct r10conf *conf)
836 {
837 /* reverse the effect of the freeze */
838 spin_lock_irq(&conf->resync_lock);
839 conf->barrier--;
840 conf->nr_waiting--;
841 wake_up(&conf->wait_barrier);
842 spin_unlock_irq(&conf->resync_lock);
843 }
844
845 static void make_request(struct mddev *mddev, struct bio * bio)
846 {
847 struct r10conf *conf = mddev->private;
848 struct mirror_info *mirror;
849 struct r10bio *r10_bio;
850 struct bio *read_bio;
851 int i;
852 int chunk_sects = conf->chunk_mask + 1;
853 const int rw = bio_data_dir(bio);
854 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
855 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
856 unsigned long flags;
857 struct md_rdev *blocked_rdev;
858 int plugged;
859 int sectors_handled;
860 int max_sectors;
861
862 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
863 md_flush_request(mddev, bio);
864 return;
865 }
866
867 /* If this request crosses a chunk boundary, we need to
868 * split it. This will only happen for 1 PAGE (or less) requests.
869 */
870 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
871 > chunk_sects &&
872 conf->near_copies < conf->raid_disks)) {
873 struct bio_pair *bp;
874 /* Sanity check -- queue functions should prevent this happening */
875 if (bio->bi_vcnt != 1 ||
876 bio->bi_idx != 0)
877 goto bad_map;
878 /* This is a one page bio that upper layers
879 * refuse to split for us, so we need to split it.
880 */
881 bp = bio_split(bio,
882 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
883
884 /* Each of these 'make_request' calls will call 'wait_barrier'.
885 * If the first succeeds but the second blocks due to the resync
886 * thread raising the barrier, we will deadlock because the
887 * IO to the underlying device will be queued in generic_make_request
888 * and will never complete, so will never reduce nr_pending.
889 * So increment nr_waiting here so no new raise_barriers will
890 * succeed, and so the second wait_barrier cannot block.
891 */
892 spin_lock_irq(&conf->resync_lock);
893 conf->nr_waiting++;
894 spin_unlock_irq(&conf->resync_lock);
895
896 make_request(mddev, &bp->bio1);
897 make_request(mddev, &bp->bio2);
898
899 spin_lock_irq(&conf->resync_lock);
900 conf->nr_waiting--;
901 wake_up(&conf->wait_barrier);
902 spin_unlock_irq(&conf->resync_lock);
903
904 bio_pair_release(bp);
905 return;
906 bad_map:
907 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
908 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
909 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
910
911 bio_io_error(bio);
912 return;
913 }
914
915 md_write_start(mddev, bio);
916
917 /*
918 * Register the new request and wait if the reconstruction
919 * thread has put up a bar for new requests.
920 * Continue immediately if no resync is active currently.
921 */
922 wait_barrier(conf);
923
924 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
925
926 r10_bio->master_bio = bio;
927 r10_bio->sectors = bio->bi_size >> 9;
928
929 r10_bio->mddev = mddev;
930 r10_bio->sector = bio->bi_sector;
931 r10_bio->state = 0;
932
933 /* We might need to issue multiple reads to different
934 * devices if there are bad blocks around, so we keep
935 * track of the number of reads in bio->bi_phys_segments.
936 * If this is 0, there is only one r10_bio and no locking
937 * will be needed when the request completes. If it is
938 * non-zero, then it is the number of not-completed requests.
939 */
940 bio->bi_phys_segments = 0;
941 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
942
943 if (rw == READ) {
944 /*
945 * read balancing logic:
946 */
947 int disk;
948 int slot;
949
950 read_again:
951 disk = read_balance(conf, r10_bio, &max_sectors);
952 slot = r10_bio->read_slot;
953 if (disk < 0) {
954 raid_end_bio_io(r10_bio);
955 return;
956 }
957 mirror = conf->mirrors + disk;
958
959 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
960 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
961 max_sectors);
962
963 r10_bio->devs[slot].bio = read_bio;
964
965 read_bio->bi_sector = r10_bio->devs[slot].addr +
966 mirror->rdev->data_offset;
967 read_bio->bi_bdev = mirror->rdev->bdev;
968 read_bio->bi_end_io = raid10_end_read_request;
969 read_bio->bi_rw = READ | do_sync;
970 read_bio->bi_private = r10_bio;
971
972 if (max_sectors < r10_bio->sectors) {
973 /* Could not read all from this device, so we will
974 * need another r10_bio.
975 */
976 sectors_handled = (r10_bio->sectors + max_sectors
977 - bio->bi_sector);
978 r10_bio->sectors = max_sectors;
979 spin_lock_irq(&conf->device_lock);
980 if (bio->bi_phys_segments == 0)
981 bio->bi_phys_segments = 2;
982 else
983 bio->bi_phys_segments++;
984 spin_unlock(&conf->device_lock);
985 /* Cannot call generic_make_request directly
986 * as that will be queued in __generic_make_request
987 * and subsequent mempool_alloc might block
988 * waiting for it. so hand bio over to raid10d.
989 */
990 reschedule_retry(r10_bio);
991
992 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
993
994 r10_bio->master_bio = bio;
995 r10_bio->sectors = ((bio->bi_size >> 9)
996 - sectors_handled);
997 r10_bio->state = 0;
998 r10_bio->mddev = mddev;
999 r10_bio->sector = bio->bi_sector + sectors_handled;
1000 goto read_again;
1001 } else
1002 generic_make_request(read_bio);
1003 return;
1004 }
1005
1006 /*
1007 * WRITE:
1008 */
1009 if (conf->pending_count >= max_queued_requests) {
1010 md_wakeup_thread(mddev->thread);
1011 wait_event(conf->wait_barrier,
1012 conf->pending_count < max_queued_requests);
1013 }
1014 /* first select target devices under rcu_lock and
1015 * inc refcount on their rdev. Record them by setting
1016 * bios[x] to bio
1017 * If there are known/acknowledged bad blocks on any device
1018 * on which we have seen a write error, we want to avoid
1019 * writing to those blocks. This potentially requires several
1020 * writes to write around the bad blocks. Each set of writes
1021 * gets its own r10_bio with a set of bios attached. The number
1022 * of r10_bios is recored in bio->bi_phys_segments just as with
1023 * the read case.
1024 */
1025 plugged = mddev_check_plugged(mddev);
1026
1027 raid10_find_phys(conf, r10_bio);
1028 retry_write:
1029 blocked_rdev = NULL;
1030 rcu_read_lock();
1031 max_sectors = r10_bio->sectors;
1032
1033 for (i = 0; i < conf->copies; i++) {
1034 int d = r10_bio->devs[i].devnum;
1035 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1036 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1037 atomic_inc(&rdev->nr_pending);
1038 blocked_rdev = rdev;
1039 break;
1040 }
1041 r10_bio->devs[i].bio = NULL;
1042 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1043 set_bit(R10BIO_Degraded, &r10_bio->state);
1044 continue;
1045 }
1046 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1047 sector_t first_bad;
1048 sector_t dev_sector = r10_bio->devs[i].addr;
1049 int bad_sectors;
1050 int is_bad;
1051
1052 is_bad = is_badblock(rdev, dev_sector,
1053 max_sectors,
1054 &first_bad, &bad_sectors);
1055 if (is_bad < 0) {
1056 /* Mustn't write here until the bad block
1057 * is acknowledged
1058 */
1059 atomic_inc(&rdev->nr_pending);
1060 set_bit(BlockedBadBlocks, &rdev->flags);
1061 blocked_rdev = rdev;
1062 break;
1063 }
1064 if (is_bad && first_bad <= dev_sector) {
1065 /* Cannot write here at all */
1066 bad_sectors -= (dev_sector - first_bad);
1067 if (bad_sectors < max_sectors)
1068 /* Mustn't write more than bad_sectors
1069 * to other devices yet
1070 */
1071 max_sectors = bad_sectors;
1072 /* We don't set R10BIO_Degraded as that
1073 * only applies if the disk is missing,
1074 * so it might be re-added, and we want to
1075 * know to recover this chunk.
1076 * In this case the device is here, and the
1077 * fact that this chunk is not in-sync is
1078 * recorded in the bad block log.
1079 */
1080 continue;
1081 }
1082 if (is_bad) {
1083 int good_sectors = first_bad - dev_sector;
1084 if (good_sectors < max_sectors)
1085 max_sectors = good_sectors;
1086 }
1087 }
1088 r10_bio->devs[i].bio = bio;
1089 atomic_inc(&rdev->nr_pending);
1090 }
1091 rcu_read_unlock();
1092
1093 if (unlikely(blocked_rdev)) {
1094 /* Have to wait for this device to get unblocked, then retry */
1095 int j;
1096 int d;
1097
1098 for (j = 0; j < i; j++)
1099 if (r10_bio->devs[j].bio) {
1100 d = r10_bio->devs[j].devnum;
1101 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1102 }
1103 allow_barrier(conf);
1104 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1105 wait_barrier(conf);
1106 goto retry_write;
1107 }
1108
1109 if (max_sectors < r10_bio->sectors) {
1110 /* We are splitting this into multiple parts, so
1111 * we need to prepare for allocating another r10_bio.
1112 */
1113 r10_bio->sectors = max_sectors;
1114 spin_lock_irq(&conf->device_lock);
1115 if (bio->bi_phys_segments == 0)
1116 bio->bi_phys_segments = 2;
1117 else
1118 bio->bi_phys_segments++;
1119 spin_unlock_irq(&conf->device_lock);
1120 }
1121 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1122
1123 atomic_set(&r10_bio->remaining, 1);
1124 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1125
1126 for (i = 0; i < conf->copies; i++) {
1127 struct bio *mbio;
1128 int d = r10_bio->devs[i].devnum;
1129 if (!r10_bio->devs[i].bio)
1130 continue;
1131
1132 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1133 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1134 max_sectors);
1135 r10_bio->devs[i].bio = mbio;
1136
1137 mbio->bi_sector = (r10_bio->devs[i].addr+
1138 conf->mirrors[d].rdev->data_offset);
1139 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1140 mbio->bi_end_io = raid10_end_write_request;
1141 mbio->bi_rw = WRITE | do_sync | do_fua;
1142 mbio->bi_private = r10_bio;
1143
1144 atomic_inc(&r10_bio->remaining);
1145 spin_lock_irqsave(&conf->device_lock, flags);
1146 bio_list_add(&conf->pending_bio_list, mbio);
1147 conf->pending_count++;
1148 spin_unlock_irqrestore(&conf->device_lock, flags);
1149 }
1150
1151 /* Don't remove the bias on 'remaining' (one_write_done) until
1152 * after checking if we need to go around again.
1153 */
1154
1155 if (sectors_handled < (bio->bi_size >> 9)) {
1156 one_write_done(r10_bio);
1157 /* We need another r10_bio. It has already been counted
1158 * in bio->bi_phys_segments.
1159 */
1160 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1161
1162 r10_bio->master_bio = bio;
1163 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1164
1165 r10_bio->mddev = mddev;
1166 r10_bio->sector = bio->bi_sector + sectors_handled;
1167 r10_bio->state = 0;
1168 goto retry_write;
1169 }
1170 one_write_done(r10_bio);
1171
1172 /* In case raid10d snuck in to freeze_array */
1173 wake_up(&conf->wait_barrier);
1174
1175 if (do_sync || !mddev->bitmap || !plugged)
1176 md_wakeup_thread(mddev->thread);
1177 }
1178
1179 static void status(struct seq_file *seq, struct mddev *mddev)
1180 {
1181 struct r10conf *conf = mddev->private;
1182 int i;
1183
1184 if (conf->near_copies < conf->raid_disks)
1185 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1186 if (conf->near_copies > 1)
1187 seq_printf(seq, " %d near-copies", conf->near_copies);
1188 if (conf->far_copies > 1) {
1189 if (conf->far_offset)
1190 seq_printf(seq, " %d offset-copies", conf->far_copies);
1191 else
1192 seq_printf(seq, " %d far-copies", conf->far_copies);
1193 }
1194 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1195 conf->raid_disks - mddev->degraded);
1196 for (i = 0; i < conf->raid_disks; i++)
1197 seq_printf(seq, "%s",
1198 conf->mirrors[i].rdev &&
1199 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1200 seq_printf(seq, "]");
1201 }
1202
1203 /* check if there are enough drives for
1204 * every block to appear on atleast one.
1205 * Don't consider the device numbered 'ignore'
1206 * as we might be about to remove it.
1207 */
1208 static int enough(struct r10conf *conf, int ignore)
1209 {
1210 int first = 0;
1211
1212 do {
1213 int n = conf->copies;
1214 int cnt = 0;
1215 while (n--) {
1216 if (conf->mirrors[first].rdev &&
1217 first != ignore)
1218 cnt++;
1219 first = (first+1) % conf->raid_disks;
1220 }
1221 if (cnt == 0)
1222 return 0;
1223 } while (first != 0);
1224 return 1;
1225 }
1226
1227 static void error(struct mddev *mddev, struct md_rdev *rdev)
1228 {
1229 char b[BDEVNAME_SIZE];
1230 struct r10conf *conf = mddev->private;
1231
1232 /*
1233 * If it is not operational, then we have already marked it as dead
1234 * else if it is the last working disks, ignore the error, let the
1235 * next level up know.
1236 * else mark the drive as failed
1237 */
1238 if (test_bit(In_sync, &rdev->flags)
1239 && !enough(conf, rdev->raid_disk))
1240 /*
1241 * Don't fail the drive, just return an IO error.
1242 */
1243 return;
1244 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1245 unsigned long flags;
1246 spin_lock_irqsave(&conf->device_lock, flags);
1247 mddev->degraded++;
1248 spin_unlock_irqrestore(&conf->device_lock, flags);
1249 /*
1250 * if recovery is running, make sure it aborts.
1251 */
1252 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1253 }
1254 set_bit(Blocked, &rdev->flags);
1255 set_bit(Faulty, &rdev->flags);
1256 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1257 printk(KERN_ALERT
1258 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1259 "md/raid10:%s: Operation continuing on %d devices.\n",
1260 mdname(mddev), bdevname(rdev->bdev, b),
1261 mdname(mddev), conf->raid_disks - mddev->degraded);
1262 }
1263
1264 static void print_conf(struct r10conf *conf)
1265 {
1266 int i;
1267 struct mirror_info *tmp;
1268
1269 printk(KERN_DEBUG "RAID10 conf printout:\n");
1270 if (!conf) {
1271 printk(KERN_DEBUG "(!conf)\n");
1272 return;
1273 }
1274 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1275 conf->raid_disks);
1276
1277 for (i = 0; i < conf->raid_disks; i++) {
1278 char b[BDEVNAME_SIZE];
1279 tmp = conf->mirrors + i;
1280 if (tmp->rdev)
1281 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1282 i, !test_bit(In_sync, &tmp->rdev->flags),
1283 !test_bit(Faulty, &tmp->rdev->flags),
1284 bdevname(tmp->rdev->bdev,b));
1285 }
1286 }
1287
1288 static void close_sync(struct r10conf *conf)
1289 {
1290 wait_barrier(conf);
1291 allow_barrier(conf);
1292
1293 mempool_destroy(conf->r10buf_pool);
1294 conf->r10buf_pool = NULL;
1295 }
1296
1297 static int raid10_spare_active(struct mddev *mddev)
1298 {
1299 int i;
1300 struct r10conf *conf = mddev->private;
1301 struct mirror_info *tmp;
1302 int count = 0;
1303 unsigned long flags;
1304
1305 /*
1306 * Find all non-in_sync disks within the RAID10 configuration
1307 * and mark them in_sync
1308 */
1309 for (i = 0; i < conf->raid_disks; i++) {
1310 tmp = conf->mirrors + i;
1311 if (tmp->rdev
1312 && !test_bit(Faulty, &tmp->rdev->flags)
1313 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1314 count++;
1315 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1316 }
1317 }
1318 spin_lock_irqsave(&conf->device_lock, flags);
1319 mddev->degraded -= count;
1320 spin_unlock_irqrestore(&conf->device_lock, flags);
1321
1322 print_conf(conf);
1323 return count;
1324 }
1325
1326
1327 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1328 {
1329 struct r10conf *conf = mddev->private;
1330 int err = -EEXIST;
1331 int mirror;
1332 int first = 0;
1333 int last = conf->raid_disks - 1;
1334
1335 if (mddev->recovery_cp < MaxSector)
1336 /* only hot-add to in-sync arrays, as recovery is
1337 * very different from resync
1338 */
1339 return -EBUSY;
1340 if (!enough(conf, -1))
1341 return -EINVAL;
1342
1343 if (rdev->raid_disk >= 0)
1344 first = last = rdev->raid_disk;
1345
1346 if (rdev->saved_raid_disk >= first &&
1347 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1348 mirror = rdev->saved_raid_disk;
1349 else
1350 mirror = first;
1351 for ( ; mirror <= last ; mirror++) {
1352 struct mirror_info *p = &conf->mirrors[mirror];
1353 if (p->recovery_disabled == mddev->recovery_disabled)
1354 continue;
1355 if (p->rdev)
1356 continue;
1357
1358 disk_stack_limits(mddev->gendisk, rdev->bdev,
1359 rdev->data_offset << 9);
1360 /* as we don't honour merge_bvec_fn, we must
1361 * never risk violating it, so limit
1362 * ->max_segments to one lying with a single
1363 * page, as a one page request is never in
1364 * violation.
1365 */
1366 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1367 blk_queue_max_segments(mddev->queue, 1);
1368 blk_queue_segment_boundary(mddev->queue,
1369 PAGE_CACHE_SIZE - 1);
1370 }
1371
1372 p->head_position = 0;
1373 p->recovery_disabled = mddev->recovery_disabled - 1;
1374 rdev->raid_disk = mirror;
1375 err = 0;
1376 if (rdev->saved_raid_disk != mirror)
1377 conf->fullsync = 1;
1378 rcu_assign_pointer(p->rdev, rdev);
1379 break;
1380 }
1381
1382 md_integrity_add_rdev(rdev, mddev);
1383 print_conf(conf);
1384 return err;
1385 }
1386
1387 static int raid10_remove_disk(struct mddev *mddev, int number)
1388 {
1389 struct r10conf *conf = mddev->private;
1390 int err = 0;
1391 struct md_rdev *rdev;
1392 struct mirror_info *p = conf->mirrors+ number;
1393
1394 print_conf(conf);
1395 rdev = p->rdev;
1396 if (rdev) {
1397 if (test_bit(In_sync, &rdev->flags) ||
1398 atomic_read(&rdev->nr_pending)) {
1399 err = -EBUSY;
1400 goto abort;
1401 }
1402 /* Only remove faulty devices in recovery
1403 * is not possible.
1404 */
1405 if (!test_bit(Faulty, &rdev->flags) &&
1406 mddev->recovery_disabled != p->recovery_disabled &&
1407 enough(conf, -1)) {
1408 err = -EBUSY;
1409 goto abort;
1410 }
1411 p->rdev = NULL;
1412 synchronize_rcu();
1413 if (atomic_read(&rdev->nr_pending)) {
1414 /* lost the race, try later */
1415 err = -EBUSY;
1416 p->rdev = rdev;
1417 goto abort;
1418 }
1419 err = md_integrity_register(mddev);
1420 }
1421 abort:
1422
1423 print_conf(conf);
1424 return err;
1425 }
1426
1427
1428 static void end_sync_read(struct bio *bio, int error)
1429 {
1430 struct r10bio *r10_bio = bio->bi_private;
1431 struct r10conf *conf = r10_bio->mddev->private;
1432 int d;
1433
1434 d = find_bio_disk(conf, r10_bio, bio, NULL);
1435
1436 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1437 set_bit(R10BIO_Uptodate, &r10_bio->state);
1438 else
1439 /* The write handler will notice the lack of
1440 * R10BIO_Uptodate and record any errors etc
1441 */
1442 atomic_add(r10_bio->sectors,
1443 &conf->mirrors[d].rdev->corrected_errors);
1444
1445 /* for reconstruct, we always reschedule after a read.
1446 * for resync, only after all reads
1447 */
1448 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1449 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1450 atomic_dec_and_test(&r10_bio->remaining)) {
1451 /* we have read all the blocks,
1452 * do the comparison in process context in raid10d
1453 */
1454 reschedule_retry(r10_bio);
1455 }
1456 }
1457
1458 static void end_sync_request(struct r10bio *r10_bio)
1459 {
1460 struct mddev *mddev = r10_bio->mddev;
1461
1462 while (atomic_dec_and_test(&r10_bio->remaining)) {
1463 if (r10_bio->master_bio == NULL) {
1464 /* the primary of several recovery bios */
1465 sector_t s = r10_bio->sectors;
1466 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1467 test_bit(R10BIO_WriteError, &r10_bio->state))
1468 reschedule_retry(r10_bio);
1469 else
1470 put_buf(r10_bio);
1471 md_done_sync(mddev, s, 1);
1472 break;
1473 } else {
1474 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1475 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1476 test_bit(R10BIO_WriteError, &r10_bio->state))
1477 reschedule_retry(r10_bio);
1478 else
1479 put_buf(r10_bio);
1480 r10_bio = r10_bio2;
1481 }
1482 }
1483 }
1484
1485 static void end_sync_write(struct bio *bio, int error)
1486 {
1487 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1488 struct r10bio *r10_bio = bio->bi_private;
1489 struct mddev *mddev = r10_bio->mddev;
1490 struct r10conf *conf = mddev->private;
1491 int d;
1492 sector_t first_bad;
1493 int bad_sectors;
1494 int slot;
1495
1496 d = find_bio_disk(conf, r10_bio, bio, &slot);
1497
1498 if (!uptodate) {
1499 set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags);
1500 set_bit(R10BIO_WriteError, &r10_bio->state);
1501 } else if (is_badblock(conf->mirrors[d].rdev,
1502 r10_bio->devs[slot].addr,
1503 r10_bio->sectors,
1504 &first_bad, &bad_sectors))
1505 set_bit(R10BIO_MadeGood, &r10_bio->state);
1506
1507 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1508
1509 end_sync_request(r10_bio);
1510 }
1511
1512 /*
1513 * Note: sync and recover and handled very differently for raid10
1514 * This code is for resync.
1515 * For resync, we read through virtual addresses and read all blocks.
1516 * If there is any error, we schedule a write. The lowest numbered
1517 * drive is authoritative.
1518 * However requests come for physical address, so we need to map.
1519 * For every physical address there are raid_disks/copies virtual addresses,
1520 * which is always are least one, but is not necessarly an integer.
1521 * This means that a physical address can span multiple chunks, so we may
1522 * have to submit multiple io requests for a single sync request.
1523 */
1524 /*
1525 * We check if all blocks are in-sync and only write to blocks that
1526 * aren't in sync
1527 */
1528 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1529 {
1530 struct r10conf *conf = mddev->private;
1531 int i, first;
1532 struct bio *tbio, *fbio;
1533
1534 atomic_set(&r10_bio->remaining, 1);
1535
1536 /* find the first device with a block */
1537 for (i=0; i<conf->copies; i++)
1538 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1539 break;
1540
1541 if (i == conf->copies)
1542 goto done;
1543
1544 first = i;
1545 fbio = r10_bio->devs[i].bio;
1546
1547 /* now find blocks with errors */
1548 for (i=0 ; i < conf->copies ; i++) {
1549 int j, d;
1550 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1551
1552 tbio = r10_bio->devs[i].bio;
1553
1554 if (tbio->bi_end_io != end_sync_read)
1555 continue;
1556 if (i == first)
1557 continue;
1558 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1559 /* We know that the bi_io_vec layout is the same for
1560 * both 'first' and 'i', so we just compare them.
1561 * All vec entries are PAGE_SIZE;
1562 */
1563 for (j = 0; j < vcnt; j++)
1564 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1565 page_address(tbio->bi_io_vec[j].bv_page),
1566 PAGE_SIZE))
1567 break;
1568 if (j == vcnt)
1569 continue;
1570 mddev->resync_mismatches += r10_bio->sectors;
1571 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1572 /* Don't fix anything. */
1573 continue;
1574 }
1575 /* Ok, we need to write this bio, either to correct an
1576 * inconsistency or to correct an unreadable block.
1577 * First we need to fixup bv_offset, bv_len and
1578 * bi_vecs, as the read request might have corrupted these
1579 */
1580 tbio->bi_vcnt = vcnt;
1581 tbio->bi_size = r10_bio->sectors << 9;
1582 tbio->bi_idx = 0;
1583 tbio->bi_phys_segments = 0;
1584 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1585 tbio->bi_flags |= 1 << BIO_UPTODATE;
1586 tbio->bi_next = NULL;
1587 tbio->bi_rw = WRITE;
1588 tbio->bi_private = r10_bio;
1589 tbio->bi_sector = r10_bio->devs[i].addr;
1590
1591 for (j=0; j < vcnt ; j++) {
1592 tbio->bi_io_vec[j].bv_offset = 0;
1593 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1594
1595 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1596 page_address(fbio->bi_io_vec[j].bv_page),
1597 PAGE_SIZE);
1598 }
1599 tbio->bi_end_io = end_sync_write;
1600
1601 d = r10_bio->devs[i].devnum;
1602 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1603 atomic_inc(&r10_bio->remaining);
1604 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1605
1606 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1607 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1608 generic_make_request(tbio);
1609 }
1610
1611 done:
1612 if (atomic_dec_and_test(&r10_bio->remaining)) {
1613 md_done_sync(mddev, r10_bio->sectors, 1);
1614 put_buf(r10_bio);
1615 }
1616 }
1617
1618 /*
1619 * Now for the recovery code.
1620 * Recovery happens across physical sectors.
1621 * We recover all non-is_sync drives by finding the virtual address of
1622 * each, and then choose a working drive that also has that virt address.
1623 * There is a separate r10_bio for each non-in_sync drive.
1624 * Only the first two slots are in use. The first for reading,
1625 * The second for writing.
1626 *
1627 */
1628 static void fix_recovery_read_error(struct r10bio *r10_bio)
1629 {
1630 /* We got a read error during recovery.
1631 * We repeat the read in smaller page-sized sections.
1632 * If a read succeeds, write it to the new device or record
1633 * a bad block if we cannot.
1634 * If a read fails, record a bad block on both old and
1635 * new devices.
1636 */
1637 struct mddev *mddev = r10_bio->mddev;
1638 struct r10conf *conf = mddev->private;
1639 struct bio *bio = r10_bio->devs[0].bio;
1640 sector_t sect = 0;
1641 int sectors = r10_bio->sectors;
1642 int idx = 0;
1643 int dr = r10_bio->devs[0].devnum;
1644 int dw = r10_bio->devs[1].devnum;
1645
1646 while (sectors) {
1647 int s = sectors;
1648 struct md_rdev *rdev;
1649 sector_t addr;
1650 int ok;
1651
1652 if (s > (PAGE_SIZE>>9))
1653 s = PAGE_SIZE >> 9;
1654
1655 rdev = conf->mirrors[dr].rdev;
1656 addr = r10_bio->devs[0].addr + sect,
1657 ok = sync_page_io(rdev,
1658 addr,
1659 s << 9,
1660 bio->bi_io_vec[idx].bv_page,
1661 READ, false);
1662 if (ok) {
1663 rdev = conf->mirrors[dw].rdev;
1664 addr = r10_bio->devs[1].addr + sect;
1665 ok = sync_page_io(rdev,
1666 addr,
1667 s << 9,
1668 bio->bi_io_vec[idx].bv_page,
1669 WRITE, false);
1670 if (!ok)
1671 set_bit(WriteErrorSeen, &rdev->flags);
1672 }
1673 if (!ok) {
1674 /* We don't worry if we cannot set a bad block -
1675 * it really is bad so there is no loss in not
1676 * recording it yet
1677 */
1678 rdev_set_badblocks(rdev, addr, s, 0);
1679
1680 if (rdev != conf->mirrors[dw].rdev) {
1681 /* need bad block on destination too */
1682 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
1683 addr = r10_bio->devs[1].addr + sect;
1684 ok = rdev_set_badblocks(rdev2, addr, s, 0);
1685 if (!ok) {
1686 /* just abort the recovery */
1687 printk(KERN_NOTICE
1688 "md/raid10:%s: recovery aborted"
1689 " due to read error\n",
1690 mdname(mddev));
1691
1692 conf->mirrors[dw].recovery_disabled
1693 = mddev->recovery_disabled;
1694 set_bit(MD_RECOVERY_INTR,
1695 &mddev->recovery);
1696 break;
1697 }
1698 }
1699 }
1700
1701 sectors -= s;
1702 sect += s;
1703 idx++;
1704 }
1705 }
1706
1707 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1708 {
1709 struct r10conf *conf = mddev->private;
1710 int d;
1711 struct bio *wbio;
1712
1713 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1714 fix_recovery_read_error(r10_bio);
1715 end_sync_request(r10_bio);
1716 return;
1717 }
1718
1719 /*
1720 * share the pages with the first bio
1721 * and submit the write request
1722 */
1723 wbio = r10_bio->devs[1].bio;
1724 d = r10_bio->devs[1].devnum;
1725
1726 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1727 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1728 generic_make_request(wbio);
1729 }
1730
1731
1732 /*
1733 * Used by fix_read_error() to decay the per rdev read_errors.
1734 * We halve the read error count for every hour that has elapsed
1735 * since the last recorded read error.
1736 *
1737 */
1738 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1739 {
1740 struct timespec cur_time_mon;
1741 unsigned long hours_since_last;
1742 unsigned int read_errors = atomic_read(&rdev->read_errors);
1743
1744 ktime_get_ts(&cur_time_mon);
1745
1746 if (rdev->last_read_error.tv_sec == 0 &&
1747 rdev->last_read_error.tv_nsec == 0) {
1748 /* first time we've seen a read error */
1749 rdev->last_read_error = cur_time_mon;
1750 return;
1751 }
1752
1753 hours_since_last = (cur_time_mon.tv_sec -
1754 rdev->last_read_error.tv_sec) / 3600;
1755
1756 rdev->last_read_error = cur_time_mon;
1757
1758 /*
1759 * if hours_since_last is > the number of bits in read_errors
1760 * just set read errors to 0. We do this to avoid
1761 * overflowing the shift of read_errors by hours_since_last.
1762 */
1763 if (hours_since_last >= 8 * sizeof(read_errors))
1764 atomic_set(&rdev->read_errors, 0);
1765 else
1766 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1767 }
1768
1769 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
1770 int sectors, struct page *page, int rw)
1771 {
1772 sector_t first_bad;
1773 int bad_sectors;
1774
1775 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
1776 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
1777 return -1;
1778 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1779 /* success */
1780 return 1;
1781 if (rw == WRITE)
1782 set_bit(WriteErrorSeen, &rdev->flags);
1783 /* need to record an error - either for the block or the device */
1784 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1785 md_error(rdev->mddev, rdev);
1786 return 0;
1787 }
1788
1789 /*
1790 * This is a kernel thread which:
1791 *
1792 * 1. Retries failed read operations on working mirrors.
1793 * 2. Updates the raid superblock when problems encounter.
1794 * 3. Performs writes following reads for array synchronising.
1795 */
1796
1797 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
1798 {
1799 int sect = 0; /* Offset from r10_bio->sector */
1800 int sectors = r10_bio->sectors;
1801 struct md_rdev*rdev;
1802 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1803 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1804
1805 /* still own a reference to this rdev, so it cannot
1806 * have been cleared recently.
1807 */
1808 rdev = conf->mirrors[d].rdev;
1809
1810 if (test_bit(Faulty, &rdev->flags))
1811 /* drive has already been failed, just ignore any
1812 more fix_read_error() attempts */
1813 return;
1814
1815 check_decay_read_errors(mddev, rdev);
1816 atomic_inc(&rdev->read_errors);
1817 if (atomic_read(&rdev->read_errors) > max_read_errors) {
1818 char b[BDEVNAME_SIZE];
1819 bdevname(rdev->bdev, b);
1820
1821 printk(KERN_NOTICE
1822 "md/raid10:%s: %s: Raid device exceeded "
1823 "read_error threshold [cur %d:max %d]\n",
1824 mdname(mddev), b,
1825 atomic_read(&rdev->read_errors), max_read_errors);
1826 printk(KERN_NOTICE
1827 "md/raid10:%s: %s: Failing raid device\n",
1828 mdname(mddev), b);
1829 md_error(mddev, conf->mirrors[d].rdev);
1830 return;
1831 }
1832
1833 while(sectors) {
1834 int s = sectors;
1835 int sl = r10_bio->read_slot;
1836 int success = 0;
1837 int start;
1838
1839 if (s > (PAGE_SIZE>>9))
1840 s = PAGE_SIZE >> 9;
1841
1842 rcu_read_lock();
1843 do {
1844 sector_t first_bad;
1845 int bad_sectors;
1846
1847 d = r10_bio->devs[sl].devnum;
1848 rdev = rcu_dereference(conf->mirrors[d].rdev);
1849 if (rdev &&
1850 test_bit(In_sync, &rdev->flags) &&
1851 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1852 &first_bad, &bad_sectors) == 0) {
1853 atomic_inc(&rdev->nr_pending);
1854 rcu_read_unlock();
1855 success = sync_page_io(rdev,
1856 r10_bio->devs[sl].addr +
1857 sect,
1858 s<<9,
1859 conf->tmppage, READ, false);
1860 rdev_dec_pending(rdev, mddev);
1861 rcu_read_lock();
1862 if (success)
1863 break;
1864 }
1865 sl++;
1866 if (sl == conf->copies)
1867 sl = 0;
1868 } while (!success && sl != r10_bio->read_slot);
1869 rcu_read_unlock();
1870
1871 if (!success) {
1872 /* Cannot read from anywhere, just mark the block
1873 * as bad on the first device to discourage future
1874 * reads.
1875 */
1876 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1877 rdev = conf->mirrors[dn].rdev;
1878
1879 if (!rdev_set_badblocks(
1880 rdev,
1881 r10_bio->devs[r10_bio->read_slot].addr
1882 + sect,
1883 s, 0))
1884 md_error(mddev, rdev);
1885 break;
1886 }
1887
1888 start = sl;
1889 /* write it back and re-read */
1890 rcu_read_lock();
1891 while (sl != r10_bio->read_slot) {
1892 char b[BDEVNAME_SIZE];
1893
1894 if (sl==0)
1895 sl = conf->copies;
1896 sl--;
1897 d = r10_bio->devs[sl].devnum;
1898 rdev = rcu_dereference(conf->mirrors[d].rdev);
1899 if (!rdev ||
1900 !test_bit(In_sync, &rdev->flags))
1901 continue;
1902
1903 atomic_inc(&rdev->nr_pending);
1904 rcu_read_unlock();
1905 if (r10_sync_page_io(rdev,
1906 r10_bio->devs[sl].addr +
1907 sect,
1908 s<<9, conf->tmppage, WRITE)
1909 == 0) {
1910 /* Well, this device is dead */
1911 printk(KERN_NOTICE
1912 "md/raid10:%s: read correction "
1913 "write failed"
1914 " (%d sectors at %llu on %s)\n",
1915 mdname(mddev), s,
1916 (unsigned long long)(
1917 sect + rdev->data_offset),
1918 bdevname(rdev->bdev, b));
1919 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1920 "drive\n",
1921 mdname(mddev),
1922 bdevname(rdev->bdev, b));
1923 }
1924 rdev_dec_pending(rdev, mddev);
1925 rcu_read_lock();
1926 }
1927 sl = start;
1928 while (sl != r10_bio->read_slot) {
1929 char b[BDEVNAME_SIZE];
1930
1931 if (sl==0)
1932 sl = conf->copies;
1933 sl--;
1934 d = r10_bio->devs[sl].devnum;
1935 rdev = rcu_dereference(conf->mirrors[d].rdev);
1936 if (!rdev ||
1937 !test_bit(In_sync, &rdev->flags))
1938 continue;
1939
1940 atomic_inc(&rdev->nr_pending);
1941 rcu_read_unlock();
1942 switch (r10_sync_page_io(rdev,
1943 r10_bio->devs[sl].addr +
1944 sect,
1945 s<<9, conf->tmppage,
1946 READ)) {
1947 case 0:
1948 /* Well, this device is dead */
1949 printk(KERN_NOTICE
1950 "md/raid10:%s: unable to read back "
1951 "corrected sectors"
1952 " (%d sectors at %llu on %s)\n",
1953 mdname(mddev), s,
1954 (unsigned long long)(
1955 sect + rdev->data_offset),
1956 bdevname(rdev->bdev, b));
1957 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1958 "drive\n",
1959 mdname(mddev),
1960 bdevname(rdev->bdev, b));
1961 break;
1962 case 1:
1963 printk(KERN_INFO
1964 "md/raid10:%s: read error corrected"
1965 " (%d sectors at %llu on %s)\n",
1966 mdname(mddev), s,
1967 (unsigned long long)(
1968 sect + rdev->data_offset),
1969 bdevname(rdev->bdev, b));
1970 atomic_add(s, &rdev->corrected_errors);
1971 }
1972
1973 rdev_dec_pending(rdev, mddev);
1974 rcu_read_lock();
1975 }
1976 rcu_read_unlock();
1977
1978 sectors -= s;
1979 sect += s;
1980 }
1981 }
1982
1983 static void bi_complete(struct bio *bio, int error)
1984 {
1985 complete((struct completion *)bio->bi_private);
1986 }
1987
1988 static int submit_bio_wait(int rw, struct bio *bio)
1989 {
1990 struct completion event;
1991 rw |= REQ_SYNC;
1992
1993 init_completion(&event);
1994 bio->bi_private = &event;
1995 bio->bi_end_io = bi_complete;
1996 submit_bio(rw, bio);
1997 wait_for_completion(&event);
1998
1999 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2000 }
2001
2002 static int narrow_write_error(struct r10bio *r10_bio, int i)
2003 {
2004 struct bio *bio = r10_bio->master_bio;
2005 struct mddev *mddev = r10_bio->mddev;
2006 struct r10conf *conf = mddev->private;
2007 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2008 /* bio has the data to be written to slot 'i' where
2009 * we just recently had a write error.
2010 * We repeatedly clone the bio and trim down to one block,
2011 * then try the write. Where the write fails we record
2012 * a bad block.
2013 * It is conceivable that the bio doesn't exactly align with
2014 * blocks. We must handle this.
2015 *
2016 * We currently own a reference to the rdev.
2017 */
2018
2019 int block_sectors;
2020 sector_t sector;
2021 int sectors;
2022 int sect_to_write = r10_bio->sectors;
2023 int ok = 1;
2024
2025 if (rdev->badblocks.shift < 0)
2026 return 0;
2027
2028 block_sectors = 1 << rdev->badblocks.shift;
2029 sector = r10_bio->sector;
2030 sectors = ((r10_bio->sector + block_sectors)
2031 & ~(sector_t)(block_sectors - 1))
2032 - sector;
2033
2034 while (sect_to_write) {
2035 struct bio *wbio;
2036 if (sectors > sect_to_write)
2037 sectors = sect_to_write;
2038 /* Write at 'sector' for 'sectors' */
2039 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2040 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2041 wbio->bi_sector = (r10_bio->devs[i].addr+
2042 rdev->data_offset+
2043 (sector - r10_bio->sector));
2044 wbio->bi_bdev = rdev->bdev;
2045 if (submit_bio_wait(WRITE, wbio) == 0)
2046 /* Failure! */
2047 ok = rdev_set_badblocks(rdev, sector,
2048 sectors, 0)
2049 && ok;
2050
2051 bio_put(wbio);
2052 sect_to_write -= sectors;
2053 sector += sectors;
2054 sectors = block_sectors;
2055 }
2056 return ok;
2057 }
2058
2059 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2060 {
2061 int slot = r10_bio->read_slot;
2062 int mirror = r10_bio->devs[slot].devnum;
2063 struct bio *bio;
2064 struct r10conf *conf = mddev->private;
2065 struct md_rdev *rdev;
2066 char b[BDEVNAME_SIZE];
2067 unsigned long do_sync;
2068 int max_sectors;
2069
2070 /* we got a read error. Maybe the drive is bad. Maybe just
2071 * the block and we can fix it.
2072 * We freeze all other IO, and try reading the block from
2073 * other devices. When we find one, we re-write
2074 * and check it that fixes the read error.
2075 * This is all done synchronously while the array is
2076 * frozen.
2077 */
2078 if (mddev->ro == 0) {
2079 freeze_array(conf);
2080 fix_read_error(conf, mddev, r10_bio);
2081 unfreeze_array(conf);
2082 }
2083 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
2084
2085 bio = r10_bio->devs[slot].bio;
2086 bdevname(bio->bi_bdev, b);
2087 r10_bio->devs[slot].bio =
2088 mddev->ro ? IO_BLOCKED : NULL;
2089 read_more:
2090 mirror = read_balance(conf, r10_bio, &max_sectors);
2091 if (mirror == -1) {
2092 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2093 " read error for block %llu\n",
2094 mdname(mddev), b,
2095 (unsigned long long)r10_bio->sector);
2096 raid_end_bio_io(r10_bio);
2097 bio_put(bio);
2098 return;
2099 }
2100
2101 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2102 if (bio)
2103 bio_put(bio);
2104 slot = r10_bio->read_slot;
2105 rdev = conf->mirrors[mirror].rdev;
2106 printk_ratelimited(
2107 KERN_ERR
2108 "md/raid10:%s: %s: redirecting"
2109 "sector %llu to another mirror\n",
2110 mdname(mddev),
2111 bdevname(rdev->bdev, b),
2112 (unsigned long long)r10_bio->sector);
2113 bio = bio_clone_mddev(r10_bio->master_bio,
2114 GFP_NOIO, mddev);
2115 md_trim_bio(bio,
2116 r10_bio->sector - bio->bi_sector,
2117 max_sectors);
2118 r10_bio->devs[slot].bio = bio;
2119 bio->bi_sector = r10_bio->devs[slot].addr
2120 + rdev->data_offset;
2121 bio->bi_bdev = rdev->bdev;
2122 bio->bi_rw = READ | do_sync;
2123 bio->bi_private = r10_bio;
2124 bio->bi_end_io = raid10_end_read_request;
2125 if (max_sectors < r10_bio->sectors) {
2126 /* Drat - have to split this up more */
2127 struct bio *mbio = r10_bio->master_bio;
2128 int sectors_handled =
2129 r10_bio->sector + max_sectors
2130 - mbio->bi_sector;
2131 r10_bio->sectors = max_sectors;
2132 spin_lock_irq(&conf->device_lock);
2133 if (mbio->bi_phys_segments == 0)
2134 mbio->bi_phys_segments = 2;
2135 else
2136 mbio->bi_phys_segments++;
2137 spin_unlock_irq(&conf->device_lock);
2138 generic_make_request(bio);
2139 bio = NULL;
2140
2141 r10_bio = mempool_alloc(conf->r10bio_pool,
2142 GFP_NOIO);
2143 r10_bio->master_bio = mbio;
2144 r10_bio->sectors = (mbio->bi_size >> 9)
2145 - sectors_handled;
2146 r10_bio->state = 0;
2147 set_bit(R10BIO_ReadError,
2148 &r10_bio->state);
2149 r10_bio->mddev = mddev;
2150 r10_bio->sector = mbio->bi_sector
2151 + sectors_handled;
2152
2153 goto read_more;
2154 } else
2155 generic_make_request(bio);
2156 }
2157
2158 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2159 {
2160 /* Some sort of write request has finished and it
2161 * succeeded in writing where we thought there was a
2162 * bad block. So forget the bad block.
2163 * Or possibly if failed and we need to record
2164 * a bad block.
2165 */
2166 int m;
2167 struct md_rdev *rdev;
2168
2169 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2170 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2171 for (m = 0; m < conf->copies; m++) {
2172 int dev = r10_bio->devs[m].devnum;
2173 rdev = conf->mirrors[dev].rdev;
2174 if (r10_bio->devs[m].bio == NULL)
2175 continue;
2176 if (test_bit(BIO_UPTODATE,
2177 &r10_bio->devs[m].bio->bi_flags)) {
2178 rdev_clear_badblocks(
2179 rdev,
2180 r10_bio->devs[m].addr,
2181 r10_bio->sectors);
2182 } else {
2183 if (!rdev_set_badblocks(
2184 rdev,
2185 r10_bio->devs[m].addr,
2186 r10_bio->sectors, 0))
2187 md_error(conf->mddev, rdev);
2188 }
2189 }
2190 put_buf(r10_bio);
2191 } else {
2192 for (m = 0; m < conf->copies; m++) {
2193 int dev = r10_bio->devs[m].devnum;
2194 struct bio *bio = r10_bio->devs[m].bio;
2195 rdev = conf->mirrors[dev].rdev;
2196 if (bio == IO_MADE_GOOD) {
2197 rdev_clear_badblocks(
2198 rdev,
2199 r10_bio->devs[m].addr,
2200 r10_bio->sectors);
2201 rdev_dec_pending(rdev, conf->mddev);
2202 } else if (bio != NULL &&
2203 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2204 if (!narrow_write_error(r10_bio, m)) {
2205 md_error(conf->mddev, rdev);
2206 set_bit(R10BIO_Degraded,
2207 &r10_bio->state);
2208 }
2209 rdev_dec_pending(rdev, conf->mddev);
2210 }
2211 }
2212 if (test_bit(R10BIO_WriteError,
2213 &r10_bio->state))
2214 close_write(r10_bio);
2215 raid_end_bio_io(r10_bio);
2216 }
2217 }
2218
2219 static void raid10d(struct mddev *mddev)
2220 {
2221 struct r10bio *r10_bio;
2222 unsigned long flags;
2223 struct r10conf *conf = mddev->private;
2224 struct list_head *head = &conf->retry_list;
2225 struct blk_plug plug;
2226
2227 md_check_recovery(mddev);
2228
2229 blk_start_plug(&plug);
2230 for (;;) {
2231
2232 flush_pending_writes(conf);
2233
2234 spin_lock_irqsave(&conf->device_lock, flags);
2235 if (list_empty(head)) {
2236 spin_unlock_irqrestore(&conf->device_lock, flags);
2237 break;
2238 }
2239 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2240 list_del(head->prev);
2241 conf->nr_queued--;
2242 spin_unlock_irqrestore(&conf->device_lock, flags);
2243
2244 mddev = r10_bio->mddev;
2245 conf = mddev->private;
2246 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2247 test_bit(R10BIO_WriteError, &r10_bio->state))
2248 handle_write_completed(conf, r10_bio);
2249 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2250 sync_request_write(mddev, r10_bio);
2251 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2252 recovery_request_write(mddev, r10_bio);
2253 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2254 handle_read_error(mddev, r10_bio);
2255 else {
2256 /* just a partial read to be scheduled from a
2257 * separate context
2258 */
2259 int slot = r10_bio->read_slot;
2260 generic_make_request(r10_bio->devs[slot].bio);
2261 }
2262
2263 cond_resched();
2264 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2265 md_check_recovery(mddev);
2266 }
2267 blk_finish_plug(&plug);
2268 }
2269
2270
2271 static int init_resync(struct r10conf *conf)
2272 {
2273 int buffs;
2274
2275 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2276 BUG_ON(conf->r10buf_pool);
2277 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2278 if (!conf->r10buf_pool)
2279 return -ENOMEM;
2280 conf->next_resync = 0;
2281 return 0;
2282 }
2283
2284 /*
2285 * perform a "sync" on one "block"
2286 *
2287 * We need to make sure that no normal I/O request - particularly write
2288 * requests - conflict with active sync requests.
2289 *
2290 * This is achieved by tracking pending requests and a 'barrier' concept
2291 * that can be installed to exclude normal IO requests.
2292 *
2293 * Resync and recovery are handled very differently.
2294 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2295 *
2296 * For resync, we iterate over virtual addresses, read all copies,
2297 * and update if there are differences. If only one copy is live,
2298 * skip it.
2299 * For recovery, we iterate over physical addresses, read a good
2300 * value for each non-in_sync drive, and over-write.
2301 *
2302 * So, for recovery we may have several outstanding complex requests for a
2303 * given address, one for each out-of-sync device. We model this by allocating
2304 * a number of r10_bio structures, one for each out-of-sync device.
2305 * As we setup these structures, we collect all bio's together into a list
2306 * which we then process collectively to add pages, and then process again
2307 * to pass to generic_make_request.
2308 *
2309 * The r10_bio structures are linked using a borrowed master_bio pointer.
2310 * This link is counted in ->remaining. When the r10_bio that points to NULL
2311 * has its remaining count decremented to 0, the whole complex operation
2312 * is complete.
2313 *
2314 */
2315
2316 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2317 int *skipped, int go_faster)
2318 {
2319 struct r10conf *conf = mddev->private;
2320 struct r10bio *r10_bio;
2321 struct bio *biolist = NULL, *bio;
2322 sector_t max_sector, nr_sectors;
2323 int i;
2324 int max_sync;
2325 sector_t sync_blocks;
2326 sector_t sectors_skipped = 0;
2327 int chunks_skipped = 0;
2328
2329 if (!conf->r10buf_pool)
2330 if (init_resync(conf))
2331 return 0;
2332
2333 skipped:
2334 max_sector = mddev->dev_sectors;
2335 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2336 max_sector = mddev->resync_max_sectors;
2337 if (sector_nr >= max_sector) {
2338 /* If we aborted, we need to abort the
2339 * sync on the 'current' bitmap chucks (there can
2340 * be several when recovering multiple devices).
2341 * as we may have started syncing it but not finished.
2342 * We can find the current address in
2343 * mddev->curr_resync, but for recovery,
2344 * we need to convert that to several
2345 * virtual addresses.
2346 */
2347 if (mddev->curr_resync < max_sector) { /* aborted */
2348 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2349 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2350 &sync_blocks, 1);
2351 else for (i=0; i<conf->raid_disks; i++) {
2352 sector_t sect =
2353 raid10_find_virt(conf, mddev->curr_resync, i);
2354 bitmap_end_sync(mddev->bitmap, sect,
2355 &sync_blocks, 1);
2356 }
2357 } else /* completed sync */
2358 conf->fullsync = 0;
2359
2360 bitmap_close_sync(mddev->bitmap);
2361 close_sync(conf);
2362 *skipped = 1;
2363 return sectors_skipped;
2364 }
2365 if (chunks_skipped >= conf->raid_disks) {
2366 /* if there has been nothing to do on any drive,
2367 * then there is nothing to do at all..
2368 */
2369 *skipped = 1;
2370 return (max_sector - sector_nr) + sectors_skipped;
2371 }
2372
2373 if (max_sector > mddev->resync_max)
2374 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2375
2376 /* make sure whole request will fit in a chunk - if chunks
2377 * are meaningful
2378 */
2379 if (conf->near_copies < conf->raid_disks &&
2380 max_sector > (sector_nr | conf->chunk_mask))
2381 max_sector = (sector_nr | conf->chunk_mask) + 1;
2382 /*
2383 * If there is non-resync activity waiting for us then
2384 * put in a delay to throttle resync.
2385 */
2386 if (!go_faster && conf->nr_waiting)
2387 msleep_interruptible(1000);
2388
2389 /* Again, very different code for resync and recovery.
2390 * Both must result in an r10bio with a list of bios that
2391 * have bi_end_io, bi_sector, bi_bdev set,
2392 * and bi_private set to the r10bio.
2393 * For recovery, we may actually create several r10bios
2394 * with 2 bios in each, that correspond to the bios in the main one.
2395 * In this case, the subordinate r10bios link back through a
2396 * borrowed master_bio pointer, and the counter in the master
2397 * includes a ref from each subordinate.
2398 */
2399 /* First, we decide what to do and set ->bi_end_io
2400 * To end_sync_read if we want to read, and
2401 * end_sync_write if we will want to write.
2402 */
2403
2404 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2405 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2406 /* recovery... the complicated one */
2407 int j;
2408 r10_bio = NULL;
2409
2410 for (i=0 ; i<conf->raid_disks; i++) {
2411 int still_degraded;
2412 struct r10bio *rb2;
2413 sector_t sect;
2414 int must_sync;
2415 int any_working;
2416
2417 if (conf->mirrors[i].rdev == NULL ||
2418 test_bit(In_sync, &conf->mirrors[i].rdev->flags))
2419 continue;
2420
2421 still_degraded = 0;
2422 /* want to reconstruct this device */
2423 rb2 = r10_bio;
2424 sect = raid10_find_virt(conf, sector_nr, i);
2425 /* Unless we are doing a full sync, we only need
2426 * to recover the block if it is set in the bitmap
2427 */
2428 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2429 &sync_blocks, 1);
2430 if (sync_blocks < max_sync)
2431 max_sync = sync_blocks;
2432 if (!must_sync &&
2433 !conf->fullsync) {
2434 /* yep, skip the sync_blocks here, but don't assume
2435 * that there will never be anything to do here
2436 */
2437 chunks_skipped = -1;
2438 continue;
2439 }
2440
2441 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2442 raise_barrier(conf, rb2 != NULL);
2443 atomic_set(&r10_bio->remaining, 0);
2444
2445 r10_bio->master_bio = (struct bio*)rb2;
2446 if (rb2)
2447 atomic_inc(&rb2->remaining);
2448 r10_bio->mddev = mddev;
2449 set_bit(R10BIO_IsRecover, &r10_bio->state);
2450 r10_bio->sector = sect;
2451
2452 raid10_find_phys(conf, r10_bio);
2453
2454 /* Need to check if the array will still be
2455 * degraded
2456 */
2457 for (j=0; j<conf->raid_disks; j++)
2458 if (conf->mirrors[j].rdev == NULL ||
2459 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2460 still_degraded = 1;
2461 break;
2462 }
2463
2464 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2465 &sync_blocks, still_degraded);
2466
2467 any_working = 0;
2468 for (j=0; j<conf->copies;j++) {
2469 int k;
2470 int d = r10_bio->devs[j].devnum;
2471 sector_t from_addr, to_addr;
2472 struct md_rdev *rdev;
2473 sector_t sector, first_bad;
2474 int bad_sectors;
2475 if (!conf->mirrors[d].rdev ||
2476 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2477 continue;
2478 /* This is where we read from */
2479 any_working = 1;
2480 rdev = conf->mirrors[d].rdev;
2481 sector = r10_bio->devs[j].addr;
2482
2483 if (is_badblock(rdev, sector, max_sync,
2484 &first_bad, &bad_sectors)) {
2485 if (first_bad > sector)
2486 max_sync = first_bad - sector;
2487 else {
2488 bad_sectors -= (sector
2489 - first_bad);
2490 if (max_sync > bad_sectors)
2491 max_sync = bad_sectors;
2492 continue;
2493 }
2494 }
2495 bio = r10_bio->devs[0].bio;
2496 bio->bi_next = biolist;
2497 biolist = bio;
2498 bio->bi_private = r10_bio;
2499 bio->bi_end_io = end_sync_read;
2500 bio->bi_rw = READ;
2501 from_addr = r10_bio->devs[j].addr;
2502 bio->bi_sector = from_addr +
2503 conf->mirrors[d].rdev->data_offset;
2504 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2505 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2506 atomic_inc(&r10_bio->remaining);
2507 /* and we write to 'i' */
2508
2509 for (k=0; k<conf->copies; k++)
2510 if (r10_bio->devs[k].devnum == i)
2511 break;
2512 BUG_ON(k == conf->copies);
2513 bio = r10_bio->devs[1].bio;
2514 bio->bi_next = biolist;
2515 biolist = bio;
2516 bio->bi_private = r10_bio;
2517 bio->bi_end_io = end_sync_write;
2518 bio->bi_rw = WRITE;
2519 to_addr = r10_bio->devs[k].addr;
2520 bio->bi_sector = to_addr +
2521 conf->mirrors[i].rdev->data_offset;
2522 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2523
2524 r10_bio->devs[0].devnum = d;
2525 r10_bio->devs[0].addr = from_addr;
2526 r10_bio->devs[1].devnum = i;
2527 r10_bio->devs[1].addr = to_addr;
2528
2529 break;
2530 }
2531 if (j == conf->copies) {
2532 /* Cannot recover, so abort the recovery or
2533 * record a bad block */
2534 put_buf(r10_bio);
2535 if (rb2)
2536 atomic_dec(&rb2->remaining);
2537 r10_bio = rb2;
2538 if (any_working) {
2539 /* problem is that there are bad blocks
2540 * on other device(s)
2541 */
2542 int k;
2543 for (k = 0; k < conf->copies; k++)
2544 if (r10_bio->devs[k].devnum == i)
2545 break;
2546 if (!rdev_set_badblocks(
2547 conf->mirrors[i].rdev,
2548 r10_bio->devs[k].addr,
2549 max_sync, 0))
2550 any_working = 0;
2551 }
2552 if (!any_working) {
2553 if (!test_and_set_bit(MD_RECOVERY_INTR,
2554 &mddev->recovery))
2555 printk(KERN_INFO "md/raid10:%s: insufficient "
2556 "working devices for recovery.\n",
2557 mdname(mddev));
2558 conf->mirrors[i].recovery_disabled
2559 = mddev->recovery_disabled;
2560 }
2561 break;
2562 }
2563 }
2564 if (biolist == NULL) {
2565 while (r10_bio) {
2566 struct r10bio *rb2 = r10_bio;
2567 r10_bio = (struct r10bio*) rb2->master_bio;
2568 rb2->master_bio = NULL;
2569 put_buf(rb2);
2570 }
2571 goto giveup;
2572 }
2573 } else {
2574 /* resync. Schedule a read for every block at this virt offset */
2575 int count = 0;
2576
2577 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2578
2579 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2580 &sync_blocks, mddev->degraded) &&
2581 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2582 &mddev->recovery)) {
2583 /* We can skip this block */
2584 *skipped = 1;
2585 return sync_blocks + sectors_skipped;
2586 }
2587 if (sync_blocks < max_sync)
2588 max_sync = sync_blocks;
2589 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2590
2591 r10_bio->mddev = mddev;
2592 atomic_set(&r10_bio->remaining, 0);
2593 raise_barrier(conf, 0);
2594 conf->next_resync = sector_nr;
2595
2596 r10_bio->master_bio = NULL;
2597 r10_bio->sector = sector_nr;
2598 set_bit(R10BIO_IsSync, &r10_bio->state);
2599 raid10_find_phys(conf, r10_bio);
2600 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2601
2602 for (i=0; i<conf->copies; i++) {
2603 int d = r10_bio->devs[i].devnum;
2604 sector_t first_bad, sector;
2605 int bad_sectors;
2606
2607 bio = r10_bio->devs[i].bio;
2608 bio->bi_end_io = NULL;
2609 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2610 if (conf->mirrors[d].rdev == NULL ||
2611 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2612 continue;
2613 sector = r10_bio->devs[i].addr;
2614 if (is_badblock(conf->mirrors[d].rdev,
2615 sector, max_sync,
2616 &first_bad, &bad_sectors)) {
2617 if (first_bad > sector)
2618 max_sync = first_bad - sector;
2619 else {
2620 bad_sectors -= (sector - first_bad);
2621 if (max_sync > bad_sectors)
2622 max_sync = max_sync;
2623 continue;
2624 }
2625 }
2626 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2627 atomic_inc(&r10_bio->remaining);
2628 bio->bi_next = biolist;
2629 biolist = bio;
2630 bio->bi_private = r10_bio;
2631 bio->bi_end_io = end_sync_read;
2632 bio->bi_rw = READ;
2633 bio->bi_sector = sector +
2634 conf->mirrors[d].rdev->data_offset;
2635 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2636 count++;
2637 }
2638
2639 if (count < 2) {
2640 for (i=0; i<conf->copies; i++) {
2641 int d = r10_bio->devs[i].devnum;
2642 if (r10_bio->devs[i].bio->bi_end_io)
2643 rdev_dec_pending(conf->mirrors[d].rdev,
2644 mddev);
2645 }
2646 put_buf(r10_bio);
2647 biolist = NULL;
2648 goto giveup;
2649 }
2650 }
2651
2652 for (bio = biolist; bio ; bio=bio->bi_next) {
2653
2654 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2655 if (bio->bi_end_io)
2656 bio->bi_flags |= 1 << BIO_UPTODATE;
2657 bio->bi_vcnt = 0;
2658 bio->bi_idx = 0;
2659 bio->bi_phys_segments = 0;
2660 bio->bi_size = 0;
2661 }
2662
2663 nr_sectors = 0;
2664 if (sector_nr + max_sync < max_sector)
2665 max_sector = sector_nr + max_sync;
2666 do {
2667 struct page *page;
2668 int len = PAGE_SIZE;
2669 if (sector_nr + (len>>9) > max_sector)
2670 len = (max_sector - sector_nr) << 9;
2671 if (len == 0)
2672 break;
2673 for (bio= biolist ; bio ; bio=bio->bi_next) {
2674 struct bio *bio2;
2675 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2676 if (bio_add_page(bio, page, len, 0))
2677 continue;
2678
2679 /* stop here */
2680 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2681 for (bio2 = biolist;
2682 bio2 && bio2 != bio;
2683 bio2 = bio2->bi_next) {
2684 /* remove last page from this bio */
2685 bio2->bi_vcnt--;
2686 bio2->bi_size -= len;
2687 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2688 }
2689 goto bio_full;
2690 }
2691 nr_sectors += len>>9;
2692 sector_nr += len>>9;
2693 } while (biolist->bi_vcnt < RESYNC_PAGES);
2694 bio_full:
2695 r10_bio->sectors = nr_sectors;
2696
2697 while (biolist) {
2698 bio = biolist;
2699 biolist = biolist->bi_next;
2700
2701 bio->bi_next = NULL;
2702 r10_bio = bio->bi_private;
2703 r10_bio->sectors = nr_sectors;
2704
2705 if (bio->bi_end_io == end_sync_read) {
2706 md_sync_acct(bio->bi_bdev, nr_sectors);
2707 generic_make_request(bio);
2708 }
2709 }
2710
2711 if (sectors_skipped)
2712 /* pretend they weren't skipped, it makes
2713 * no important difference in this case
2714 */
2715 md_done_sync(mddev, sectors_skipped, 1);
2716
2717 return sectors_skipped + nr_sectors;
2718 giveup:
2719 /* There is nowhere to write, so all non-sync
2720 * drives must be failed or in resync, all drives
2721 * have a bad block, so try the next chunk...
2722 */
2723 if (sector_nr + max_sync < max_sector)
2724 max_sector = sector_nr + max_sync;
2725
2726 sectors_skipped += (max_sector - sector_nr);
2727 chunks_skipped ++;
2728 sector_nr = max_sector;
2729 goto skipped;
2730 }
2731
2732 static sector_t
2733 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2734 {
2735 sector_t size;
2736 struct r10conf *conf = mddev->private;
2737
2738 if (!raid_disks)
2739 raid_disks = conf->raid_disks;
2740 if (!sectors)
2741 sectors = conf->dev_sectors;
2742
2743 size = sectors >> conf->chunk_shift;
2744 sector_div(size, conf->far_copies);
2745 size = size * raid_disks;
2746 sector_div(size, conf->near_copies);
2747
2748 return size << conf->chunk_shift;
2749 }
2750
2751
2752 static struct r10conf *setup_conf(struct mddev *mddev)
2753 {
2754 struct r10conf *conf = NULL;
2755 int nc, fc, fo;
2756 sector_t stride, size;
2757 int err = -EINVAL;
2758
2759 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2760 !is_power_of_2(mddev->new_chunk_sectors)) {
2761 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2762 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2763 mdname(mddev), PAGE_SIZE);
2764 goto out;
2765 }
2766
2767 nc = mddev->new_layout & 255;
2768 fc = (mddev->new_layout >> 8) & 255;
2769 fo = mddev->new_layout & (1<<16);
2770
2771 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2772 (mddev->new_layout >> 17)) {
2773 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2774 mdname(mddev), mddev->new_layout);
2775 goto out;
2776 }
2777
2778 err = -ENOMEM;
2779 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
2780 if (!conf)
2781 goto out;
2782
2783 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2784 GFP_KERNEL);
2785 if (!conf->mirrors)
2786 goto out;
2787
2788 conf->tmppage = alloc_page(GFP_KERNEL);
2789 if (!conf->tmppage)
2790 goto out;
2791
2792
2793 conf->raid_disks = mddev->raid_disks;
2794 conf->near_copies = nc;
2795 conf->far_copies = fc;
2796 conf->copies = nc*fc;
2797 conf->far_offset = fo;
2798 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2799 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2800
2801 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2802 r10bio_pool_free, conf);
2803 if (!conf->r10bio_pool)
2804 goto out;
2805
2806 size = mddev->dev_sectors >> conf->chunk_shift;
2807 sector_div(size, fc);
2808 size = size * conf->raid_disks;
2809 sector_div(size, nc);
2810 /* 'size' is now the number of chunks in the array */
2811 /* calculate "used chunks per device" in 'stride' */
2812 stride = size * conf->copies;
2813
2814 /* We need to round up when dividing by raid_disks to
2815 * get the stride size.
2816 */
2817 stride += conf->raid_disks - 1;
2818 sector_div(stride, conf->raid_disks);
2819
2820 conf->dev_sectors = stride << conf->chunk_shift;
2821
2822 if (fo)
2823 stride = 1;
2824 else
2825 sector_div(stride, fc);
2826 conf->stride = stride << conf->chunk_shift;
2827
2828
2829 spin_lock_init(&conf->device_lock);
2830 INIT_LIST_HEAD(&conf->retry_list);
2831
2832 spin_lock_init(&conf->resync_lock);
2833 init_waitqueue_head(&conf->wait_barrier);
2834
2835 conf->thread = md_register_thread(raid10d, mddev, NULL);
2836 if (!conf->thread)
2837 goto out;
2838
2839 conf->mddev = mddev;
2840 return conf;
2841
2842 out:
2843 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2844 mdname(mddev));
2845 if (conf) {
2846 if (conf->r10bio_pool)
2847 mempool_destroy(conf->r10bio_pool);
2848 kfree(conf->mirrors);
2849 safe_put_page(conf->tmppage);
2850 kfree(conf);
2851 }
2852 return ERR_PTR(err);
2853 }
2854
2855 static int run(struct mddev *mddev)
2856 {
2857 struct r10conf *conf;
2858 int i, disk_idx, chunk_size;
2859 struct mirror_info *disk;
2860 struct md_rdev *rdev;
2861 sector_t size;
2862
2863 /*
2864 * copy the already verified devices into our private RAID10
2865 * bookkeeping area. [whatever we allocate in run(),
2866 * should be freed in stop()]
2867 */
2868
2869 if (mddev->private == NULL) {
2870 conf = setup_conf(mddev);
2871 if (IS_ERR(conf))
2872 return PTR_ERR(conf);
2873 mddev->private = conf;
2874 }
2875 conf = mddev->private;
2876 if (!conf)
2877 goto out;
2878
2879 mddev->thread = conf->thread;
2880 conf->thread = NULL;
2881
2882 chunk_size = mddev->chunk_sectors << 9;
2883 blk_queue_io_min(mddev->queue, chunk_size);
2884 if (conf->raid_disks % conf->near_copies)
2885 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2886 else
2887 blk_queue_io_opt(mddev->queue, chunk_size *
2888 (conf->raid_disks / conf->near_copies));
2889
2890 list_for_each_entry(rdev, &mddev->disks, same_set) {
2891
2892 disk_idx = rdev->raid_disk;
2893 if (disk_idx >= conf->raid_disks
2894 || disk_idx < 0)
2895 continue;
2896 disk = conf->mirrors + disk_idx;
2897
2898 disk->rdev = rdev;
2899 disk_stack_limits(mddev->gendisk, rdev->bdev,
2900 rdev->data_offset << 9);
2901 /* as we don't honour merge_bvec_fn, we must never risk
2902 * violating it, so limit max_segments to 1 lying
2903 * within a single page.
2904 */
2905 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2906 blk_queue_max_segments(mddev->queue, 1);
2907 blk_queue_segment_boundary(mddev->queue,
2908 PAGE_CACHE_SIZE - 1);
2909 }
2910
2911 disk->head_position = 0;
2912 }
2913 /* need to check that every block has at least one working mirror */
2914 if (!enough(conf, -1)) {
2915 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2916 mdname(mddev));
2917 goto out_free_conf;
2918 }
2919
2920 mddev->degraded = 0;
2921 for (i = 0; i < conf->raid_disks; i++) {
2922
2923 disk = conf->mirrors + i;
2924
2925 if (!disk->rdev ||
2926 !test_bit(In_sync, &disk->rdev->flags)) {
2927 disk->head_position = 0;
2928 mddev->degraded++;
2929 if (disk->rdev)
2930 conf->fullsync = 1;
2931 }
2932 disk->recovery_disabled = mddev->recovery_disabled - 1;
2933 }
2934
2935 if (mddev->recovery_cp != MaxSector)
2936 printk(KERN_NOTICE "md/raid10:%s: not clean"
2937 " -- starting background reconstruction\n",
2938 mdname(mddev));
2939 printk(KERN_INFO
2940 "md/raid10:%s: active with %d out of %d devices\n",
2941 mdname(mddev), conf->raid_disks - mddev->degraded,
2942 conf->raid_disks);
2943 /*
2944 * Ok, everything is just fine now
2945 */
2946 mddev->dev_sectors = conf->dev_sectors;
2947 size = raid10_size(mddev, 0, 0);
2948 md_set_array_sectors(mddev, size);
2949 mddev->resync_max_sectors = size;
2950
2951 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2952 mddev->queue->backing_dev_info.congested_data = mddev;
2953
2954 /* Calculate max read-ahead size.
2955 * We need to readahead at least twice a whole stripe....
2956 * maybe...
2957 */
2958 {
2959 int stripe = conf->raid_disks *
2960 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2961 stripe /= conf->near_copies;
2962 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2963 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2964 }
2965
2966 if (conf->near_copies < conf->raid_disks)
2967 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2968
2969 if (md_integrity_register(mddev))
2970 goto out_free_conf;
2971
2972 return 0;
2973
2974 out_free_conf:
2975 md_unregister_thread(&mddev->thread);
2976 if (conf->r10bio_pool)
2977 mempool_destroy(conf->r10bio_pool);
2978 safe_put_page(conf->tmppage);
2979 kfree(conf->mirrors);
2980 kfree(conf);
2981 mddev->private = NULL;
2982 out:
2983 return -EIO;
2984 }
2985
2986 static int stop(struct mddev *mddev)
2987 {
2988 struct r10conf *conf = mddev->private;
2989
2990 raise_barrier(conf, 0);
2991 lower_barrier(conf);
2992
2993 md_unregister_thread(&mddev->thread);
2994 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2995 if (conf->r10bio_pool)
2996 mempool_destroy(conf->r10bio_pool);
2997 kfree(conf->mirrors);
2998 kfree(conf);
2999 mddev->private = NULL;
3000 return 0;
3001 }
3002
3003 static void raid10_quiesce(struct mddev *mddev, int state)
3004 {
3005 struct r10conf *conf = mddev->private;
3006
3007 switch(state) {
3008 case 1:
3009 raise_barrier(conf, 0);
3010 break;
3011 case 0:
3012 lower_barrier(conf);
3013 break;
3014 }
3015 }
3016
3017 static void *raid10_takeover_raid0(struct mddev *mddev)
3018 {
3019 struct md_rdev *rdev;
3020 struct r10conf *conf;
3021
3022 if (mddev->degraded > 0) {
3023 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3024 mdname(mddev));
3025 return ERR_PTR(-EINVAL);
3026 }
3027
3028 /* Set new parameters */
3029 mddev->new_level = 10;
3030 /* new layout: far_copies = 1, near_copies = 2 */
3031 mddev->new_layout = (1<<8) + 2;
3032 mddev->new_chunk_sectors = mddev->chunk_sectors;
3033 mddev->delta_disks = mddev->raid_disks;
3034 mddev->raid_disks *= 2;
3035 /* make sure it will be not marked as dirty */
3036 mddev->recovery_cp = MaxSector;
3037
3038 conf = setup_conf(mddev);
3039 if (!IS_ERR(conf)) {
3040 list_for_each_entry(rdev, &mddev->disks, same_set)
3041 if (rdev->raid_disk >= 0)
3042 rdev->new_raid_disk = rdev->raid_disk * 2;
3043 conf->barrier = 1;
3044 }
3045
3046 return conf;
3047 }
3048
3049 static void *raid10_takeover(struct mddev *mddev)
3050 {
3051 struct r0conf *raid0_conf;
3052
3053 /* raid10 can take over:
3054 * raid0 - providing it has only two drives
3055 */
3056 if (mddev->level == 0) {
3057 /* for raid0 takeover only one zone is supported */
3058 raid0_conf = mddev->private;
3059 if (raid0_conf->nr_strip_zones > 1) {
3060 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3061 " with more than one zone.\n",
3062 mdname(mddev));
3063 return ERR_PTR(-EINVAL);
3064 }
3065 return raid10_takeover_raid0(mddev);
3066 }
3067 return ERR_PTR(-EINVAL);
3068 }
3069
3070 static struct md_personality raid10_personality =
3071 {
3072 .name = "raid10",
3073 .level = 10,
3074 .owner = THIS_MODULE,
3075 .make_request = make_request,
3076 .run = run,
3077 .stop = stop,
3078 .status = status,
3079 .error_handler = error,
3080 .hot_add_disk = raid10_add_disk,
3081 .hot_remove_disk= raid10_remove_disk,
3082 .spare_active = raid10_spare_active,
3083 .sync_request = sync_request,
3084 .quiesce = raid10_quiesce,
3085 .size = raid10_size,
3086 .takeover = raid10_takeover,
3087 };
3088
3089 static int __init raid_init(void)
3090 {
3091 return register_md_personality(&raid10_personality);
3092 }
3093
3094 static void raid_exit(void)
3095 {
3096 unregister_md_personality(&raid10_personality);
3097 }
3098
3099 module_init(raid_init);
3100 module_exit(raid_exit);
3101 MODULE_LICENSE("GPL");
3102 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3103 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3104 MODULE_ALIAS("md-raid10");
3105 MODULE_ALIAS("md-level-10");
3106
3107 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);