Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/kaber/nf-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include "md.h"
26 #include "raid10.h"
27 #include "raid0.h"
28 #include "bitmap.h"
29
30 /*
31 * RAID10 provides a combination of RAID0 and RAID1 functionality.
32 * The layout of data is defined by
33 * chunk_size
34 * raid_disks
35 * near_copies (stored in low byte of layout)
36 * far_copies (stored in second byte of layout)
37 * far_offset (stored in bit 16 of layout )
38 *
39 * The data to be stored is divided into chunks using chunksize.
40 * Each device is divided into far_copies sections.
41 * In each section, chunks are laid out in a style similar to raid0, but
42 * near_copies copies of each chunk is stored (each on a different drive).
43 * The starting device for each section is offset near_copies from the starting
44 * device of the previous section.
45 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
46 * drive.
47 * near_copies and far_copies must be at least one, and their product is at most
48 * raid_disks.
49 *
50 * If far_offset is true, then the far_copies are handled a bit differently.
51 * The copies are still in different stripes, but instead of be very far apart
52 * on disk, there are adjacent stripes.
53 */
54
55 /*
56 * Number of guaranteed r10bios in case of extreme VM load:
57 */
58 #define NR_RAID10_BIOS 256
59
60 static void unplug_slaves(mddev_t *mddev);
61
62 static void allow_barrier(conf_t *conf);
63 static void lower_barrier(conf_t *conf);
64
65 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
66 {
67 conf_t *conf = data;
68 r10bio_t *r10_bio;
69 int size = offsetof(struct r10bio_s, devs[conf->copies]);
70
71 /* allocate a r10bio with room for raid_disks entries in the bios array */
72 r10_bio = kzalloc(size, gfp_flags);
73 if (!r10_bio && conf->mddev)
74 unplug_slaves(conf->mddev);
75
76 return r10_bio;
77 }
78
79 static void r10bio_pool_free(void *r10_bio, void *data)
80 {
81 kfree(r10_bio);
82 }
83
84 /* Maximum size of each resync request */
85 #define RESYNC_BLOCK_SIZE (64*1024)
86 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
87 /* amount of memory to reserve for resync requests */
88 #define RESYNC_WINDOW (1024*1024)
89 /* maximum number of concurrent requests, memory permitting */
90 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
91
92 /*
93 * When performing a resync, we need to read and compare, so
94 * we need as many pages are there are copies.
95 * When performing a recovery, we need 2 bios, one for read,
96 * one for write (we recover only one drive per r10buf)
97 *
98 */
99 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
100 {
101 conf_t *conf = data;
102 struct page *page;
103 r10bio_t *r10_bio;
104 struct bio *bio;
105 int i, j;
106 int nalloc;
107
108 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
109 if (!r10_bio) {
110 unplug_slaves(conf->mddev);
111 return NULL;
112 }
113
114 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
115 nalloc = conf->copies; /* resync */
116 else
117 nalloc = 2; /* recovery */
118
119 /*
120 * Allocate bios.
121 */
122 for (j = nalloc ; j-- ; ) {
123 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
124 if (!bio)
125 goto out_free_bio;
126 r10_bio->devs[j].bio = bio;
127 }
128 /*
129 * Allocate RESYNC_PAGES data pages and attach them
130 * where needed.
131 */
132 for (j = 0 ; j < nalloc; j++) {
133 bio = r10_bio->devs[j].bio;
134 for (i = 0; i < RESYNC_PAGES; i++) {
135 page = alloc_page(gfp_flags);
136 if (unlikely(!page))
137 goto out_free_pages;
138
139 bio->bi_io_vec[i].bv_page = page;
140 }
141 }
142
143 return r10_bio;
144
145 out_free_pages:
146 for ( ; i > 0 ; i--)
147 safe_put_page(bio->bi_io_vec[i-1].bv_page);
148 while (j--)
149 for (i = 0; i < RESYNC_PAGES ; i++)
150 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
151 j = -1;
152 out_free_bio:
153 while ( ++j < nalloc )
154 bio_put(r10_bio->devs[j].bio);
155 r10bio_pool_free(r10_bio, conf);
156 return NULL;
157 }
158
159 static void r10buf_pool_free(void *__r10_bio, void *data)
160 {
161 int i;
162 conf_t *conf = data;
163 r10bio_t *r10bio = __r10_bio;
164 int j;
165
166 for (j=0; j < conf->copies; j++) {
167 struct bio *bio = r10bio->devs[j].bio;
168 if (bio) {
169 for (i = 0; i < RESYNC_PAGES; i++) {
170 safe_put_page(bio->bi_io_vec[i].bv_page);
171 bio->bi_io_vec[i].bv_page = NULL;
172 }
173 bio_put(bio);
174 }
175 }
176 r10bio_pool_free(r10bio, conf);
177 }
178
179 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
180 {
181 int i;
182
183 for (i = 0; i < conf->copies; i++) {
184 struct bio **bio = & r10_bio->devs[i].bio;
185 if (*bio && *bio != IO_BLOCKED)
186 bio_put(*bio);
187 *bio = NULL;
188 }
189 }
190
191 static void free_r10bio(r10bio_t *r10_bio)
192 {
193 conf_t *conf = r10_bio->mddev->private;
194
195 /*
196 * Wake up any possible resync thread that waits for the device
197 * to go idle.
198 */
199 allow_barrier(conf);
200
201 put_all_bios(conf, r10_bio);
202 mempool_free(r10_bio, conf->r10bio_pool);
203 }
204
205 static void put_buf(r10bio_t *r10_bio)
206 {
207 conf_t *conf = r10_bio->mddev->private;
208
209 mempool_free(r10_bio, conf->r10buf_pool);
210
211 lower_barrier(conf);
212 }
213
214 static void reschedule_retry(r10bio_t *r10_bio)
215 {
216 unsigned long flags;
217 mddev_t *mddev = r10_bio->mddev;
218 conf_t *conf = mddev->private;
219
220 spin_lock_irqsave(&conf->device_lock, flags);
221 list_add(&r10_bio->retry_list, &conf->retry_list);
222 conf->nr_queued ++;
223 spin_unlock_irqrestore(&conf->device_lock, flags);
224
225 /* wake up frozen array... */
226 wake_up(&conf->wait_barrier);
227
228 md_wakeup_thread(mddev->thread);
229 }
230
231 /*
232 * raid_end_bio_io() is called when we have finished servicing a mirrored
233 * operation and are ready to return a success/failure code to the buffer
234 * cache layer.
235 */
236 static void raid_end_bio_io(r10bio_t *r10_bio)
237 {
238 struct bio *bio = r10_bio->master_bio;
239
240 bio_endio(bio,
241 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242 free_r10bio(r10_bio);
243 }
244
245 /*
246 * Update disk head position estimator based on IRQ completion info.
247 */
248 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249 {
250 conf_t *conf = r10_bio->mddev->private;
251
252 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253 r10_bio->devs[slot].addr + (r10_bio->sectors);
254 }
255
256 static void raid10_end_read_request(struct bio *bio, int error)
257 {
258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259 r10bio_t *r10_bio = bio->bi_private;
260 int slot, dev;
261 conf_t *conf = r10_bio->mddev->private;
262
263
264 slot = r10_bio->read_slot;
265 dev = r10_bio->devs[slot].devnum;
266 /*
267 * this branch is our 'one mirror IO has finished' event handler:
268 */
269 update_head_pos(slot, r10_bio);
270
271 if (uptodate) {
272 /*
273 * Set R10BIO_Uptodate in our master bio, so that
274 * we will return a good error code to the higher
275 * levels even if IO on some other mirrored buffer fails.
276 *
277 * The 'master' represents the composite IO operation to
278 * user-side. So if something waits for IO, then it will
279 * wait for the 'master' bio.
280 */
281 set_bit(R10BIO_Uptodate, &r10_bio->state);
282 raid_end_bio_io(r10_bio);
283 } else {
284 /*
285 * oops, read error:
286 */
287 char b[BDEVNAME_SIZE];
288 if (printk_ratelimit())
289 printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n",
290 mdname(conf->mddev),
291 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
292 reschedule_retry(r10_bio);
293 }
294
295 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
296 }
297
298 static void raid10_end_write_request(struct bio *bio, int error)
299 {
300 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
301 r10bio_t *r10_bio = bio->bi_private;
302 int slot, dev;
303 conf_t *conf = r10_bio->mddev->private;
304
305 for (slot = 0; slot < conf->copies; slot++)
306 if (r10_bio->devs[slot].bio == bio)
307 break;
308 dev = r10_bio->devs[slot].devnum;
309
310 /*
311 * this branch is our 'one mirror IO has finished' event handler:
312 */
313 if (!uptodate) {
314 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
315 /* an I/O failed, we can't clear the bitmap */
316 set_bit(R10BIO_Degraded, &r10_bio->state);
317 } else
318 /*
319 * Set R10BIO_Uptodate in our master bio, so that
320 * we will return a good error code for to the higher
321 * levels even if IO on some other mirrored buffer fails.
322 *
323 * The 'master' represents the composite IO operation to
324 * user-side. So if something waits for IO, then it will
325 * wait for the 'master' bio.
326 */
327 set_bit(R10BIO_Uptodate, &r10_bio->state);
328
329 update_head_pos(slot, r10_bio);
330
331 /*
332 *
333 * Let's see if all mirrored write operations have finished
334 * already.
335 */
336 if (atomic_dec_and_test(&r10_bio->remaining)) {
337 /* clear the bitmap if all writes complete successfully */
338 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
339 r10_bio->sectors,
340 !test_bit(R10BIO_Degraded, &r10_bio->state),
341 0);
342 md_write_end(r10_bio->mddev);
343 raid_end_bio_io(r10_bio);
344 }
345
346 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
347 }
348
349
350 /*
351 * RAID10 layout manager
352 * Aswell as the chunksize and raid_disks count, there are two
353 * parameters: near_copies and far_copies.
354 * near_copies * far_copies must be <= raid_disks.
355 * Normally one of these will be 1.
356 * If both are 1, we get raid0.
357 * If near_copies == raid_disks, we get raid1.
358 *
359 * Chunks are layed out in raid0 style with near_copies copies of the
360 * first chunk, followed by near_copies copies of the next chunk and
361 * so on.
362 * If far_copies > 1, then after 1/far_copies of the array has been assigned
363 * as described above, we start again with a device offset of near_copies.
364 * So we effectively have another copy of the whole array further down all
365 * the drives, but with blocks on different drives.
366 * With this layout, and block is never stored twice on the one device.
367 *
368 * raid10_find_phys finds the sector offset of a given virtual sector
369 * on each device that it is on.
370 *
371 * raid10_find_virt does the reverse mapping, from a device and a
372 * sector offset to a virtual address
373 */
374
375 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
376 {
377 int n,f;
378 sector_t sector;
379 sector_t chunk;
380 sector_t stripe;
381 int dev;
382
383 int slot = 0;
384
385 /* now calculate first sector/dev */
386 chunk = r10bio->sector >> conf->chunk_shift;
387 sector = r10bio->sector & conf->chunk_mask;
388
389 chunk *= conf->near_copies;
390 stripe = chunk;
391 dev = sector_div(stripe, conf->raid_disks);
392 if (conf->far_offset)
393 stripe *= conf->far_copies;
394
395 sector += stripe << conf->chunk_shift;
396
397 /* and calculate all the others */
398 for (n=0; n < conf->near_copies; n++) {
399 int d = dev;
400 sector_t s = sector;
401 r10bio->devs[slot].addr = sector;
402 r10bio->devs[slot].devnum = d;
403 slot++;
404
405 for (f = 1; f < conf->far_copies; f++) {
406 d += conf->near_copies;
407 if (d >= conf->raid_disks)
408 d -= conf->raid_disks;
409 s += conf->stride;
410 r10bio->devs[slot].devnum = d;
411 r10bio->devs[slot].addr = s;
412 slot++;
413 }
414 dev++;
415 if (dev >= conf->raid_disks) {
416 dev = 0;
417 sector += (conf->chunk_mask + 1);
418 }
419 }
420 BUG_ON(slot != conf->copies);
421 }
422
423 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
424 {
425 sector_t offset, chunk, vchunk;
426
427 offset = sector & conf->chunk_mask;
428 if (conf->far_offset) {
429 int fc;
430 chunk = sector >> conf->chunk_shift;
431 fc = sector_div(chunk, conf->far_copies);
432 dev -= fc * conf->near_copies;
433 if (dev < 0)
434 dev += conf->raid_disks;
435 } else {
436 while (sector >= conf->stride) {
437 sector -= conf->stride;
438 if (dev < conf->near_copies)
439 dev += conf->raid_disks - conf->near_copies;
440 else
441 dev -= conf->near_copies;
442 }
443 chunk = sector >> conf->chunk_shift;
444 }
445 vchunk = chunk * conf->raid_disks + dev;
446 sector_div(vchunk, conf->near_copies);
447 return (vchunk << conf->chunk_shift) + offset;
448 }
449
450 /**
451 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
452 * @q: request queue
453 * @bvm: properties of new bio
454 * @biovec: the request that could be merged to it.
455 *
456 * Return amount of bytes we can accept at this offset
457 * If near_copies == raid_disk, there are no striping issues,
458 * but in that case, the function isn't called at all.
459 */
460 static int raid10_mergeable_bvec(struct request_queue *q,
461 struct bvec_merge_data *bvm,
462 struct bio_vec *biovec)
463 {
464 mddev_t *mddev = q->queuedata;
465 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
466 int max;
467 unsigned int chunk_sectors = mddev->chunk_sectors;
468 unsigned int bio_sectors = bvm->bi_size >> 9;
469
470 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
471 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
472 if (max <= biovec->bv_len && bio_sectors == 0)
473 return biovec->bv_len;
474 else
475 return max;
476 }
477
478 /*
479 * This routine returns the disk from which the requested read should
480 * be done. There is a per-array 'next expected sequential IO' sector
481 * number - if this matches on the next IO then we use the last disk.
482 * There is also a per-disk 'last know head position' sector that is
483 * maintained from IRQ contexts, both the normal and the resync IO
484 * completion handlers update this position correctly. If there is no
485 * perfect sequential match then we pick the disk whose head is closest.
486 *
487 * If there are 2 mirrors in the same 2 devices, performance degrades
488 * because position is mirror, not device based.
489 *
490 * The rdev for the device selected will have nr_pending incremented.
491 */
492
493 /*
494 * FIXME: possibly should rethink readbalancing and do it differently
495 * depending on near_copies / far_copies geometry.
496 */
497 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
498 {
499 const sector_t this_sector = r10_bio->sector;
500 int disk, slot, nslot;
501 const int sectors = r10_bio->sectors;
502 sector_t new_distance, current_distance;
503 mdk_rdev_t *rdev;
504
505 raid10_find_phys(conf, r10_bio);
506 rcu_read_lock();
507 /*
508 * Check if we can balance. We can balance on the whole
509 * device if no resync is going on (recovery is ok), or below
510 * the resync window. We take the first readable disk when
511 * above the resync window.
512 */
513 if (conf->mddev->recovery_cp < MaxSector
514 && (this_sector + sectors >= conf->next_resync)) {
515 /* make sure that disk is operational */
516 slot = 0;
517 disk = r10_bio->devs[slot].devnum;
518
519 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
520 r10_bio->devs[slot].bio == IO_BLOCKED ||
521 !test_bit(In_sync, &rdev->flags)) {
522 slot++;
523 if (slot == conf->copies) {
524 slot = 0;
525 disk = -1;
526 break;
527 }
528 disk = r10_bio->devs[slot].devnum;
529 }
530 goto rb_out;
531 }
532
533
534 /* make sure the disk is operational */
535 slot = 0;
536 disk = r10_bio->devs[slot].devnum;
537 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
538 r10_bio->devs[slot].bio == IO_BLOCKED ||
539 !test_bit(In_sync, &rdev->flags)) {
540 slot ++;
541 if (slot == conf->copies) {
542 disk = -1;
543 goto rb_out;
544 }
545 disk = r10_bio->devs[slot].devnum;
546 }
547
548
549 current_distance = abs(r10_bio->devs[slot].addr -
550 conf->mirrors[disk].head_position);
551
552 /* Find the disk whose head is closest,
553 * or - for far > 1 - find the closest to partition beginning */
554
555 for (nslot = slot; nslot < conf->copies; nslot++) {
556 int ndisk = r10_bio->devs[nslot].devnum;
557
558
559 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
560 r10_bio->devs[nslot].bio == IO_BLOCKED ||
561 !test_bit(In_sync, &rdev->flags))
562 continue;
563
564 /* This optimisation is debatable, and completely destroys
565 * sequential read speed for 'far copies' arrays. So only
566 * keep it for 'near' arrays, and review those later.
567 */
568 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
569 disk = ndisk;
570 slot = nslot;
571 break;
572 }
573
574 /* for far > 1 always use the lowest address */
575 if (conf->far_copies > 1)
576 new_distance = r10_bio->devs[nslot].addr;
577 else
578 new_distance = abs(r10_bio->devs[nslot].addr -
579 conf->mirrors[ndisk].head_position);
580 if (new_distance < current_distance) {
581 current_distance = new_distance;
582 disk = ndisk;
583 slot = nslot;
584 }
585 }
586
587 rb_out:
588 r10_bio->read_slot = slot;
589 /* conf->next_seq_sect = this_sector + sectors;*/
590
591 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
592 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
593 else
594 disk = -1;
595 rcu_read_unlock();
596
597 return disk;
598 }
599
600 static void unplug_slaves(mddev_t *mddev)
601 {
602 conf_t *conf = mddev->private;
603 int i;
604
605 rcu_read_lock();
606 for (i=0; i < conf->raid_disks; i++) {
607 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
608 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
609 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
610
611 atomic_inc(&rdev->nr_pending);
612 rcu_read_unlock();
613
614 blk_unplug(r_queue);
615
616 rdev_dec_pending(rdev, mddev);
617 rcu_read_lock();
618 }
619 }
620 rcu_read_unlock();
621 }
622
623 static void raid10_unplug(struct request_queue *q)
624 {
625 mddev_t *mddev = q->queuedata;
626
627 unplug_slaves(q->queuedata);
628 md_wakeup_thread(mddev->thread);
629 }
630
631 static int raid10_congested(void *data, int bits)
632 {
633 mddev_t *mddev = data;
634 conf_t *conf = mddev->private;
635 int i, ret = 0;
636
637 if (mddev_congested(mddev, bits))
638 return 1;
639 rcu_read_lock();
640 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
641 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
642 if (rdev && !test_bit(Faulty, &rdev->flags)) {
643 struct request_queue *q = bdev_get_queue(rdev->bdev);
644
645 ret |= bdi_congested(&q->backing_dev_info, bits);
646 }
647 }
648 rcu_read_unlock();
649 return ret;
650 }
651
652 static int flush_pending_writes(conf_t *conf)
653 {
654 /* Any writes that have been queued but are awaiting
655 * bitmap updates get flushed here.
656 * We return 1 if any requests were actually submitted.
657 */
658 int rv = 0;
659
660 spin_lock_irq(&conf->device_lock);
661
662 if (conf->pending_bio_list.head) {
663 struct bio *bio;
664 bio = bio_list_get(&conf->pending_bio_list);
665 blk_remove_plug(conf->mddev->queue);
666 spin_unlock_irq(&conf->device_lock);
667 /* flush any pending bitmap writes to disk
668 * before proceeding w/ I/O */
669 bitmap_unplug(conf->mddev->bitmap);
670
671 while (bio) { /* submit pending writes */
672 struct bio *next = bio->bi_next;
673 bio->bi_next = NULL;
674 generic_make_request(bio);
675 bio = next;
676 }
677 rv = 1;
678 } else
679 spin_unlock_irq(&conf->device_lock);
680 return rv;
681 }
682 /* Barriers....
683 * Sometimes we need to suspend IO while we do something else,
684 * either some resync/recovery, or reconfigure the array.
685 * To do this we raise a 'barrier'.
686 * The 'barrier' is a counter that can be raised multiple times
687 * to count how many activities are happening which preclude
688 * normal IO.
689 * We can only raise the barrier if there is no pending IO.
690 * i.e. if nr_pending == 0.
691 * We choose only to raise the barrier if no-one is waiting for the
692 * barrier to go down. This means that as soon as an IO request
693 * is ready, no other operations which require a barrier will start
694 * until the IO request has had a chance.
695 *
696 * So: regular IO calls 'wait_barrier'. When that returns there
697 * is no backgroup IO happening, It must arrange to call
698 * allow_barrier when it has finished its IO.
699 * backgroup IO calls must call raise_barrier. Once that returns
700 * there is no normal IO happeing. It must arrange to call
701 * lower_barrier when the particular background IO completes.
702 */
703
704 static void raise_barrier(conf_t *conf, int force)
705 {
706 BUG_ON(force && !conf->barrier);
707 spin_lock_irq(&conf->resync_lock);
708
709 /* Wait until no block IO is waiting (unless 'force') */
710 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
711 conf->resync_lock,
712 raid10_unplug(conf->mddev->queue));
713
714 /* block any new IO from starting */
715 conf->barrier++;
716
717 /* No wait for all pending IO to complete */
718 wait_event_lock_irq(conf->wait_barrier,
719 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
720 conf->resync_lock,
721 raid10_unplug(conf->mddev->queue));
722
723 spin_unlock_irq(&conf->resync_lock);
724 }
725
726 static void lower_barrier(conf_t *conf)
727 {
728 unsigned long flags;
729 spin_lock_irqsave(&conf->resync_lock, flags);
730 conf->barrier--;
731 spin_unlock_irqrestore(&conf->resync_lock, flags);
732 wake_up(&conf->wait_barrier);
733 }
734
735 static void wait_barrier(conf_t *conf)
736 {
737 spin_lock_irq(&conf->resync_lock);
738 if (conf->barrier) {
739 conf->nr_waiting++;
740 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
741 conf->resync_lock,
742 raid10_unplug(conf->mddev->queue));
743 conf->nr_waiting--;
744 }
745 conf->nr_pending++;
746 spin_unlock_irq(&conf->resync_lock);
747 }
748
749 static void allow_barrier(conf_t *conf)
750 {
751 unsigned long flags;
752 spin_lock_irqsave(&conf->resync_lock, flags);
753 conf->nr_pending--;
754 spin_unlock_irqrestore(&conf->resync_lock, flags);
755 wake_up(&conf->wait_barrier);
756 }
757
758 static void freeze_array(conf_t *conf)
759 {
760 /* stop syncio and normal IO and wait for everything to
761 * go quiet.
762 * We increment barrier and nr_waiting, and then
763 * wait until nr_pending match nr_queued+1
764 * This is called in the context of one normal IO request
765 * that has failed. Thus any sync request that might be pending
766 * will be blocked by nr_pending, and we need to wait for
767 * pending IO requests to complete or be queued for re-try.
768 * Thus the number queued (nr_queued) plus this request (1)
769 * must match the number of pending IOs (nr_pending) before
770 * we continue.
771 */
772 spin_lock_irq(&conf->resync_lock);
773 conf->barrier++;
774 conf->nr_waiting++;
775 wait_event_lock_irq(conf->wait_barrier,
776 conf->nr_pending == conf->nr_queued+1,
777 conf->resync_lock,
778 ({ flush_pending_writes(conf);
779 raid10_unplug(conf->mddev->queue); }));
780 spin_unlock_irq(&conf->resync_lock);
781 }
782
783 static void unfreeze_array(conf_t *conf)
784 {
785 /* reverse the effect of the freeze */
786 spin_lock_irq(&conf->resync_lock);
787 conf->barrier--;
788 conf->nr_waiting--;
789 wake_up(&conf->wait_barrier);
790 spin_unlock_irq(&conf->resync_lock);
791 }
792
793 static int make_request(mddev_t *mddev, struct bio * bio)
794 {
795 conf_t *conf = mddev->private;
796 mirror_info_t *mirror;
797 r10bio_t *r10_bio;
798 struct bio *read_bio;
799 int i;
800 int chunk_sects = conf->chunk_mask + 1;
801 const int rw = bio_data_dir(bio);
802 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
803 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
804 unsigned long flags;
805 mdk_rdev_t *blocked_rdev;
806
807 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
808 md_flush_request(mddev, bio);
809 return 0;
810 }
811
812 /* If this request crosses a chunk boundary, we need to
813 * split it. This will only happen for 1 PAGE (or less) requests.
814 */
815 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
816 > chunk_sects &&
817 conf->near_copies < conf->raid_disks)) {
818 struct bio_pair *bp;
819 /* Sanity check -- queue functions should prevent this happening */
820 if (bio->bi_vcnt != 1 ||
821 bio->bi_idx != 0)
822 goto bad_map;
823 /* This is a one page bio that upper layers
824 * refuse to split for us, so we need to split it.
825 */
826 bp = bio_split(bio,
827 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
828
829 /* Each of these 'make_request' calls will call 'wait_barrier'.
830 * If the first succeeds but the second blocks due to the resync
831 * thread raising the barrier, we will deadlock because the
832 * IO to the underlying device will be queued in generic_make_request
833 * and will never complete, so will never reduce nr_pending.
834 * So increment nr_waiting here so no new raise_barriers will
835 * succeed, and so the second wait_barrier cannot block.
836 */
837 spin_lock_irq(&conf->resync_lock);
838 conf->nr_waiting++;
839 spin_unlock_irq(&conf->resync_lock);
840
841 if (make_request(mddev, &bp->bio1))
842 generic_make_request(&bp->bio1);
843 if (make_request(mddev, &bp->bio2))
844 generic_make_request(&bp->bio2);
845
846 spin_lock_irq(&conf->resync_lock);
847 conf->nr_waiting--;
848 wake_up(&conf->wait_barrier);
849 spin_unlock_irq(&conf->resync_lock);
850
851 bio_pair_release(bp);
852 return 0;
853 bad_map:
854 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
855 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
856 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
857
858 bio_io_error(bio);
859 return 0;
860 }
861
862 md_write_start(mddev, bio);
863
864 /*
865 * Register the new request and wait if the reconstruction
866 * thread has put up a bar for new requests.
867 * Continue immediately if no resync is active currently.
868 */
869 wait_barrier(conf);
870
871 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
872
873 r10_bio->master_bio = bio;
874 r10_bio->sectors = bio->bi_size >> 9;
875
876 r10_bio->mddev = mddev;
877 r10_bio->sector = bio->bi_sector;
878 r10_bio->state = 0;
879
880 if (rw == READ) {
881 /*
882 * read balancing logic:
883 */
884 int disk = read_balance(conf, r10_bio);
885 int slot = r10_bio->read_slot;
886 if (disk < 0) {
887 raid_end_bio_io(r10_bio);
888 return 0;
889 }
890 mirror = conf->mirrors + disk;
891
892 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
893
894 r10_bio->devs[slot].bio = read_bio;
895
896 read_bio->bi_sector = r10_bio->devs[slot].addr +
897 mirror->rdev->data_offset;
898 read_bio->bi_bdev = mirror->rdev->bdev;
899 read_bio->bi_end_io = raid10_end_read_request;
900 read_bio->bi_rw = READ | do_sync;
901 read_bio->bi_private = r10_bio;
902
903 generic_make_request(read_bio);
904 return 0;
905 }
906
907 /*
908 * WRITE:
909 */
910 /* first select target devices under rcu_lock and
911 * inc refcount on their rdev. Record them by setting
912 * bios[x] to bio
913 */
914 raid10_find_phys(conf, r10_bio);
915 retry_write:
916 blocked_rdev = NULL;
917 rcu_read_lock();
918 for (i = 0; i < conf->copies; i++) {
919 int d = r10_bio->devs[i].devnum;
920 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
921 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
922 atomic_inc(&rdev->nr_pending);
923 blocked_rdev = rdev;
924 break;
925 }
926 if (rdev && !test_bit(Faulty, &rdev->flags)) {
927 atomic_inc(&rdev->nr_pending);
928 r10_bio->devs[i].bio = bio;
929 } else {
930 r10_bio->devs[i].bio = NULL;
931 set_bit(R10BIO_Degraded, &r10_bio->state);
932 }
933 }
934 rcu_read_unlock();
935
936 if (unlikely(blocked_rdev)) {
937 /* Have to wait for this device to get unblocked, then retry */
938 int j;
939 int d;
940
941 for (j = 0; j < i; j++)
942 if (r10_bio->devs[j].bio) {
943 d = r10_bio->devs[j].devnum;
944 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
945 }
946 allow_barrier(conf);
947 md_wait_for_blocked_rdev(blocked_rdev, mddev);
948 wait_barrier(conf);
949 goto retry_write;
950 }
951
952 atomic_set(&r10_bio->remaining, 1);
953 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
954
955 for (i = 0; i < conf->copies; i++) {
956 struct bio *mbio;
957 int d = r10_bio->devs[i].devnum;
958 if (!r10_bio->devs[i].bio)
959 continue;
960
961 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
962 r10_bio->devs[i].bio = mbio;
963
964 mbio->bi_sector = r10_bio->devs[i].addr+
965 conf->mirrors[d].rdev->data_offset;
966 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
967 mbio->bi_end_io = raid10_end_write_request;
968 mbio->bi_rw = WRITE | do_sync | do_fua;
969 mbio->bi_private = r10_bio;
970
971 atomic_inc(&r10_bio->remaining);
972 spin_lock_irqsave(&conf->device_lock, flags);
973 bio_list_add(&conf->pending_bio_list, mbio);
974 blk_plug_device(mddev->queue);
975 spin_unlock_irqrestore(&conf->device_lock, flags);
976 }
977
978 if (atomic_dec_and_test(&r10_bio->remaining)) {
979 /* This matches the end of raid10_end_write_request() */
980 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
981 r10_bio->sectors,
982 !test_bit(R10BIO_Degraded, &r10_bio->state),
983 0);
984 md_write_end(mddev);
985 raid_end_bio_io(r10_bio);
986 }
987
988 /* In case raid10d snuck in to freeze_array */
989 wake_up(&conf->wait_barrier);
990
991 if (do_sync)
992 md_wakeup_thread(mddev->thread);
993
994 return 0;
995 }
996
997 static void status(struct seq_file *seq, mddev_t *mddev)
998 {
999 conf_t *conf = mddev->private;
1000 int i;
1001
1002 if (conf->near_copies < conf->raid_disks)
1003 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1004 if (conf->near_copies > 1)
1005 seq_printf(seq, " %d near-copies", conf->near_copies);
1006 if (conf->far_copies > 1) {
1007 if (conf->far_offset)
1008 seq_printf(seq, " %d offset-copies", conf->far_copies);
1009 else
1010 seq_printf(seq, " %d far-copies", conf->far_copies);
1011 }
1012 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1013 conf->raid_disks - mddev->degraded);
1014 for (i = 0; i < conf->raid_disks; i++)
1015 seq_printf(seq, "%s",
1016 conf->mirrors[i].rdev &&
1017 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1018 seq_printf(seq, "]");
1019 }
1020
1021 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1022 {
1023 char b[BDEVNAME_SIZE];
1024 conf_t *conf = mddev->private;
1025
1026 /*
1027 * If it is not operational, then we have already marked it as dead
1028 * else if it is the last working disks, ignore the error, let the
1029 * next level up know.
1030 * else mark the drive as failed
1031 */
1032 if (test_bit(In_sync, &rdev->flags)
1033 && conf->raid_disks-mddev->degraded == 1)
1034 /*
1035 * Don't fail the drive, just return an IO error.
1036 * The test should really be more sophisticated than
1037 * "working_disks == 1", but it isn't critical, and
1038 * can wait until we do more sophisticated "is the drive
1039 * really dead" tests...
1040 */
1041 return;
1042 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1043 unsigned long flags;
1044 spin_lock_irqsave(&conf->device_lock, flags);
1045 mddev->degraded++;
1046 spin_unlock_irqrestore(&conf->device_lock, flags);
1047 /*
1048 * if recovery is running, make sure it aborts.
1049 */
1050 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1051 }
1052 set_bit(Faulty, &rdev->flags);
1053 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1054 printk(KERN_ALERT
1055 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1056 "md/raid10:%s: Operation continuing on %d devices.\n",
1057 mdname(mddev), bdevname(rdev->bdev, b),
1058 mdname(mddev), conf->raid_disks - mddev->degraded);
1059 }
1060
1061 static void print_conf(conf_t *conf)
1062 {
1063 int i;
1064 mirror_info_t *tmp;
1065
1066 printk(KERN_DEBUG "RAID10 conf printout:\n");
1067 if (!conf) {
1068 printk(KERN_DEBUG "(!conf)\n");
1069 return;
1070 }
1071 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1072 conf->raid_disks);
1073
1074 for (i = 0; i < conf->raid_disks; i++) {
1075 char b[BDEVNAME_SIZE];
1076 tmp = conf->mirrors + i;
1077 if (tmp->rdev)
1078 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1079 i, !test_bit(In_sync, &tmp->rdev->flags),
1080 !test_bit(Faulty, &tmp->rdev->flags),
1081 bdevname(tmp->rdev->bdev,b));
1082 }
1083 }
1084
1085 static void close_sync(conf_t *conf)
1086 {
1087 wait_barrier(conf);
1088 allow_barrier(conf);
1089
1090 mempool_destroy(conf->r10buf_pool);
1091 conf->r10buf_pool = NULL;
1092 }
1093
1094 /* check if there are enough drives for
1095 * every block to appear on atleast one
1096 */
1097 static int enough(conf_t *conf)
1098 {
1099 int first = 0;
1100
1101 do {
1102 int n = conf->copies;
1103 int cnt = 0;
1104 while (n--) {
1105 if (conf->mirrors[first].rdev)
1106 cnt++;
1107 first = (first+1) % conf->raid_disks;
1108 }
1109 if (cnt == 0)
1110 return 0;
1111 } while (first != 0);
1112 return 1;
1113 }
1114
1115 static int raid10_spare_active(mddev_t *mddev)
1116 {
1117 int i;
1118 conf_t *conf = mddev->private;
1119 mirror_info_t *tmp;
1120 int count = 0;
1121 unsigned long flags;
1122
1123 /*
1124 * Find all non-in_sync disks within the RAID10 configuration
1125 * and mark them in_sync
1126 */
1127 for (i = 0; i < conf->raid_disks; i++) {
1128 tmp = conf->mirrors + i;
1129 if (tmp->rdev
1130 && !test_bit(Faulty, &tmp->rdev->flags)
1131 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1132 count++;
1133 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1134 }
1135 }
1136 spin_lock_irqsave(&conf->device_lock, flags);
1137 mddev->degraded -= count;
1138 spin_unlock_irqrestore(&conf->device_lock, flags);
1139
1140 print_conf(conf);
1141 return count;
1142 }
1143
1144
1145 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1146 {
1147 conf_t *conf = mddev->private;
1148 int err = -EEXIST;
1149 int mirror;
1150 mirror_info_t *p;
1151 int first = 0;
1152 int last = conf->raid_disks - 1;
1153
1154 if (mddev->recovery_cp < MaxSector)
1155 /* only hot-add to in-sync arrays, as recovery is
1156 * very different from resync
1157 */
1158 return -EBUSY;
1159 if (!enough(conf))
1160 return -EINVAL;
1161
1162 if (rdev->raid_disk >= 0)
1163 first = last = rdev->raid_disk;
1164
1165 if (rdev->saved_raid_disk >= 0 &&
1166 rdev->saved_raid_disk >= first &&
1167 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1168 mirror = rdev->saved_raid_disk;
1169 else
1170 mirror = first;
1171 for ( ; mirror <= last ; mirror++)
1172 if ( !(p=conf->mirrors+mirror)->rdev) {
1173
1174 disk_stack_limits(mddev->gendisk, rdev->bdev,
1175 rdev->data_offset << 9);
1176 /* as we don't honour merge_bvec_fn, we must
1177 * never risk violating it, so limit
1178 * ->max_segments to one lying with a single
1179 * page, as a one page request is never in
1180 * violation.
1181 */
1182 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1183 blk_queue_max_segments(mddev->queue, 1);
1184 blk_queue_segment_boundary(mddev->queue,
1185 PAGE_CACHE_SIZE - 1);
1186 }
1187
1188 p->head_position = 0;
1189 rdev->raid_disk = mirror;
1190 err = 0;
1191 if (rdev->saved_raid_disk != mirror)
1192 conf->fullsync = 1;
1193 rcu_assign_pointer(p->rdev, rdev);
1194 break;
1195 }
1196
1197 md_integrity_add_rdev(rdev, mddev);
1198 print_conf(conf);
1199 return err;
1200 }
1201
1202 static int raid10_remove_disk(mddev_t *mddev, int number)
1203 {
1204 conf_t *conf = mddev->private;
1205 int err = 0;
1206 mdk_rdev_t *rdev;
1207 mirror_info_t *p = conf->mirrors+ number;
1208
1209 print_conf(conf);
1210 rdev = p->rdev;
1211 if (rdev) {
1212 if (test_bit(In_sync, &rdev->flags) ||
1213 atomic_read(&rdev->nr_pending)) {
1214 err = -EBUSY;
1215 goto abort;
1216 }
1217 /* Only remove faulty devices in recovery
1218 * is not possible.
1219 */
1220 if (!test_bit(Faulty, &rdev->flags) &&
1221 enough(conf)) {
1222 err = -EBUSY;
1223 goto abort;
1224 }
1225 p->rdev = NULL;
1226 synchronize_rcu();
1227 if (atomic_read(&rdev->nr_pending)) {
1228 /* lost the race, try later */
1229 err = -EBUSY;
1230 p->rdev = rdev;
1231 goto abort;
1232 }
1233 md_integrity_register(mddev);
1234 }
1235 abort:
1236
1237 print_conf(conf);
1238 return err;
1239 }
1240
1241
1242 static void end_sync_read(struct bio *bio, int error)
1243 {
1244 r10bio_t *r10_bio = bio->bi_private;
1245 conf_t *conf = r10_bio->mddev->private;
1246 int i,d;
1247
1248 for (i=0; i<conf->copies; i++)
1249 if (r10_bio->devs[i].bio == bio)
1250 break;
1251 BUG_ON(i == conf->copies);
1252 update_head_pos(i, r10_bio);
1253 d = r10_bio->devs[i].devnum;
1254
1255 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1256 set_bit(R10BIO_Uptodate, &r10_bio->state);
1257 else {
1258 atomic_add(r10_bio->sectors,
1259 &conf->mirrors[d].rdev->corrected_errors);
1260 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1261 md_error(r10_bio->mddev,
1262 conf->mirrors[d].rdev);
1263 }
1264
1265 /* for reconstruct, we always reschedule after a read.
1266 * for resync, only after all reads
1267 */
1268 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1269 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1270 atomic_dec_and_test(&r10_bio->remaining)) {
1271 /* we have read all the blocks,
1272 * do the comparison in process context in raid10d
1273 */
1274 reschedule_retry(r10_bio);
1275 }
1276 }
1277
1278 static void end_sync_write(struct bio *bio, int error)
1279 {
1280 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1281 r10bio_t *r10_bio = bio->bi_private;
1282 mddev_t *mddev = r10_bio->mddev;
1283 conf_t *conf = mddev->private;
1284 int i,d;
1285
1286 for (i = 0; i < conf->copies; i++)
1287 if (r10_bio->devs[i].bio == bio)
1288 break;
1289 d = r10_bio->devs[i].devnum;
1290
1291 if (!uptodate)
1292 md_error(mddev, conf->mirrors[d].rdev);
1293
1294 update_head_pos(i, r10_bio);
1295
1296 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1297 while (atomic_dec_and_test(&r10_bio->remaining)) {
1298 if (r10_bio->master_bio == NULL) {
1299 /* the primary of several recovery bios */
1300 sector_t s = r10_bio->sectors;
1301 put_buf(r10_bio);
1302 md_done_sync(mddev, s, 1);
1303 break;
1304 } else {
1305 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1306 put_buf(r10_bio);
1307 r10_bio = r10_bio2;
1308 }
1309 }
1310 }
1311
1312 /*
1313 * Note: sync and recover and handled very differently for raid10
1314 * This code is for resync.
1315 * For resync, we read through virtual addresses and read all blocks.
1316 * If there is any error, we schedule a write. The lowest numbered
1317 * drive is authoritative.
1318 * However requests come for physical address, so we need to map.
1319 * For every physical address there are raid_disks/copies virtual addresses,
1320 * which is always are least one, but is not necessarly an integer.
1321 * This means that a physical address can span multiple chunks, so we may
1322 * have to submit multiple io requests for a single sync request.
1323 */
1324 /*
1325 * We check if all blocks are in-sync and only write to blocks that
1326 * aren't in sync
1327 */
1328 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1329 {
1330 conf_t *conf = mddev->private;
1331 int i, first;
1332 struct bio *tbio, *fbio;
1333
1334 atomic_set(&r10_bio->remaining, 1);
1335
1336 /* find the first device with a block */
1337 for (i=0; i<conf->copies; i++)
1338 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1339 break;
1340
1341 if (i == conf->copies)
1342 goto done;
1343
1344 first = i;
1345 fbio = r10_bio->devs[i].bio;
1346
1347 /* now find blocks with errors */
1348 for (i=0 ; i < conf->copies ; i++) {
1349 int j, d;
1350 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1351
1352 tbio = r10_bio->devs[i].bio;
1353
1354 if (tbio->bi_end_io != end_sync_read)
1355 continue;
1356 if (i == first)
1357 continue;
1358 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1359 /* We know that the bi_io_vec layout is the same for
1360 * both 'first' and 'i', so we just compare them.
1361 * All vec entries are PAGE_SIZE;
1362 */
1363 for (j = 0; j < vcnt; j++)
1364 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1365 page_address(tbio->bi_io_vec[j].bv_page),
1366 PAGE_SIZE))
1367 break;
1368 if (j == vcnt)
1369 continue;
1370 mddev->resync_mismatches += r10_bio->sectors;
1371 }
1372 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1373 /* Don't fix anything. */
1374 continue;
1375 /* Ok, we need to write this bio
1376 * First we need to fixup bv_offset, bv_len and
1377 * bi_vecs, as the read request might have corrupted these
1378 */
1379 tbio->bi_vcnt = vcnt;
1380 tbio->bi_size = r10_bio->sectors << 9;
1381 tbio->bi_idx = 0;
1382 tbio->bi_phys_segments = 0;
1383 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1384 tbio->bi_flags |= 1 << BIO_UPTODATE;
1385 tbio->bi_next = NULL;
1386 tbio->bi_rw = WRITE;
1387 tbio->bi_private = r10_bio;
1388 tbio->bi_sector = r10_bio->devs[i].addr;
1389
1390 for (j=0; j < vcnt ; j++) {
1391 tbio->bi_io_vec[j].bv_offset = 0;
1392 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1393
1394 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1395 page_address(fbio->bi_io_vec[j].bv_page),
1396 PAGE_SIZE);
1397 }
1398 tbio->bi_end_io = end_sync_write;
1399
1400 d = r10_bio->devs[i].devnum;
1401 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1402 atomic_inc(&r10_bio->remaining);
1403 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1404
1405 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1406 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1407 generic_make_request(tbio);
1408 }
1409
1410 done:
1411 if (atomic_dec_and_test(&r10_bio->remaining)) {
1412 md_done_sync(mddev, r10_bio->sectors, 1);
1413 put_buf(r10_bio);
1414 }
1415 }
1416
1417 /*
1418 * Now for the recovery code.
1419 * Recovery happens across physical sectors.
1420 * We recover all non-is_sync drives by finding the virtual address of
1421 * each, and then choose a working drive that also has that virt address.
1422 * There is a separate r10_bio for each non-in_sync drive.
1423 * Only the first two slots are in use. The first for reading,
1424 * The second for writing.
1425 *
1426 */
1427
1428 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1429 {
1430 conf_t *conf = mddev->private;
1431 int i, d;
1432 struct bio *bio, *wbio;
1433
1434
1435 /* move the pages across to the second bio
1436 * and submit the write request
1437 */
1438 bio = r10_bio->devs[0].bio;
1439 wbio = r10_bio->devs[1].bio;
1440 for (i=0; i < wbio->bi_vcnt; i++) {
1441 struct page *p = bio->bi_io_vec[i].bv_page;
1442 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1443 wbio->bi_io_vec[i].bv_page = p;
1444 }
1445 d = r10_bio->devs[1].devnum;
1446
1447 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1448 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1449 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1450 generic_make_request(wbio);
1451 else
1452 bio_endio(wbio, -EIO);
1453 }
1454
1455
1456 /*
1457 * Used by fix_read_error() to decay the per rdev read_errors.
1458 * We halve the read error count for every hour that has elapsed
1459 * since the last recorded read error.
1460 *
1461 */
1462 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1463 {
1464 struct timespec cur_time_mon;
1465 unsigned long hours_since_last;
1466 unsigned int read_errors = atomic_read(&rdev->read_errors);
1467
1468 ktime_get_ts(&cur_time_mon);
1469
1470 if (rdev->last_read_error.tv_sec == 0 &&
1471 rdev->last_read_error.tv_nsec == 0) {
1472 /* first time we've seen a read error */
1473 rdev->last_read_error = cur_time_mon;
1474 return;
1475 }
1476
1477 hours_since_last = (cur_time_mon.tv_sec -
1478 rdev->last_read_error.tv_sec) / 3600;
1479
1480 rdev->last_read_error = cur_time_mon;
1481
1482 /*
1483 * if hours_since_last is > the number of bits in read_errors
1484 * just set read errors to 0. We do this to avoid
1485 * overflowing the shift of read_errors by hours_since_last.
1486 */
1487 if (hours_since_last >= 8 * sizeof(read_errors))
1488 atomic_set(&rdev->read_errors, 0);
1489 else
1490 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1491 }
1492
1493 /*
1494 * This is a kernel thread which:
1495 *
1496 * 1. Retries failed read operations on working mirrors.
1497 * 2. Updates the raid superblock when problems encounter.
1498 * 3. Performs writes following reads for array synchronising.
1499 */
1500
1501 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1502 {
1503 int sect = 0; /* Offset from r10_bio->sector */
1504 int sectors = r10_bio->sectors;
1505 mdk_rdev_t*rdev;
1506 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1507 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1508
1509 rcu_read_lock();
1510 rdev = rcu_dereference(conf->mirrors[d].rdev);
1511 if (rdev) { /* If rdev is not NULL */
1512 char b[BDEVNAME_SIZE];
1513 int cur_read_error_count = 0;
1514
1515 bdevname(rdev->bdev, b);
1516
1517 if (test_bit(Faulty, &rdev->flags)) {
1518 rcu_read_unlock();
1519 /* drive has already been failed, just ignore any
1520 more fix_read_error() attempts */
1521 return;
1522 }
1523
1524 check_decay_read_errors(mddev, rdev);
1525 atomic_inc(&rdev->read_errors);
1526 cur_read_error_count = atomic_read(&rdev->read_errors);
1527 if (cur_read_error_count > max_read_errors) {
1528 rcu_read_unlock();
1529 printk(KERN_NOTICE
1530 "md/raid10:%s: %s: Raid device exceeded "
1531 "read_error threshold "
1532 "[cur %d:max %d]\n",
1533 mdname(mddev),
1534 b, cur_read_error_count, max_read_errors);
1535 printk(KERN_NOTICE
1536 "md/raid10:%s: %s: Failing raid "
1537 "device\n", mdname(mddev), b);
1538 md_error(mddev, conf->mirrors[d].rdev);
1539 return;
1540 }
1541 }
1542 rcu_read_unlock();
1543
1544 while(sectors) {
1545 int s = sectors;
1546 int sl = r10_bio->read_slot;
1547 int success = 0;
1548 int start;
1549
1550 if (s > (PAGE_SIZE>>9))
1551 s = PAGE_SIZE >> 9;
1552
1553 rcu_read_lock();
1554 do {
1555 d = r10_bio->devs[sl].devnum;
1556 rdev = rcu_dereference(conf->mirrors[d].rdev);
1557 if (rdev &&
1558 test_bit(In_sync, &rdev->flags)) {
1559 atomic_inc(&rdev->nr_pending);
1560 rcu_read_unlock();
1561 success = sync_page_io(rdev,
1562 r10_bio->devs[sl].addr +
1563 sect,
1564 s<<9,
1565 conf->tmppage, READ, false);
1566 rdev_dec_pending(rdev, mddev);
1567 rcu_read_lock();
1568 if (success)
1569 break;
1570 }
1571 sl++;
1572 if (sl == conf->copies)
1573 sl = 0;
1574 } while (!success && sl != r10_bio->read_slot);
1575 rcu_read_unlock();
1576
1577 if (!success) {
1578 /* Cannot read from anywhere -- bye bye array */
1579 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1580 md_error(mddev, conf->mirrors[dn].rdev);
1581 break;
1582 }
1583
1584 start = sl;
1585 /* write it back and re-read */
1586 rcu_read_lock();
1587 while (sl != r10_bio->read_slot) {
1588 char b[BDEVNAME_SIZE];
1589
1590 if (sl==0)
1591 sl = conf->copies;
1592 sl--;
1593 d = r10_bio->devs[sl].devnum;
1594 rdev = rcu_dereference(conf->mirrors[d].rdev);
1595 if (rdev &&
1596 test_bit(In_sync, &rdev->flags)) {
1597 atomic_inc(&rdev->nr_pending);
1598 rcu_read_unlock();
1599 atomic_add(s, &rdev->corrected_errors);
1600 if (sync_page_io(rdev,
1601 r10_bio->devs[sl].addr +
1602 sect,
1603 s<<9, conf->tmppage, WRITE, false)
1604 == 0) {
1605 /* Well, this device is dead */
1606 printk(KERN_NOTICE
1607 "md/raid10:%s: read correction "
1608 "write failed"
1609 " (%d sectors at %llu on %s)\n",
1610 mdname(mddev), s,
1611 (unsigned long long)(sect+
1612 rdev->data_offset),
1613 bdevname(rdev->bdev, b));
1614 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1615 "drive\n",
1616 mdname(mddev),
1617 bdevname(rdev->bdev, b));
1618 md_error(mddev, rdev);
1619 }
1620 rdev_dec_pending(rdev, mddev);
1621 rcu_read_lock();
1622 }
1623 }
1624 sl = start;
1625 while (sl != r10_bio->read_slot) {
1626
1627 if (sl==0)
1628 sl = conf->copies;
1629 sl--;
1630 d = r10_bio->devs[sl].devnum;
1631 rdev = rcu_dereference(conf->mirrors[d].rdev);
1632 if (rdev &&
1633 test_bit(In_sync, &rdev->flags)) {
1634 char b[BDEVNAME_SIZE];
1635 atomic_inc(&rdev->nr_pending);
1636 rcu_read_unlock();
1637 if (sync_page_io(rdev,
1638 r10_bio->devs[sl].addr +
1639 sect,
1640 s<<9, conf->tmppage,
1641 READ, false) == 0) {
1642 /* Well, this device is dead */
1643 printk(KERN_NOTICE
1644 "md/raid10:%s: unable to read back "
1645 "corrected sectors"
1646 " (%d sectors at %llu on %s)\n",
1647 mdname(mddev), s,
1648 (unsigned long long)(sect+
1649 rdev->data_offset),
1650 bdevname(rdev->bdev, b));
1651 printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n",
1652 mdname(mddev),
1653 bdevname(rdev->bdev, b));
1654
1655 md_error(mddev, rdev);
1656 } else {
1657 printk(KERN_INFO
1658 "md/raid10:%s: read error corrected"
1659 " (%d sectors at %llu on %s)\n",
1660 mdname(mddev), s,
1661 (unsigned long long)(sect+
1662 rdev->data_offset),
1663 bdevname(rdev->bdev, b));
1664 }
1665
1666 rdev_dec_pending(rdev, mddev);
1667 rcu_read_lock();
1668 }
1669 }
1670 rcu_read_unlock();
1671
1672 sectors -= s;
1673 sect += s;
1674 }
1675 }
1676
1677 static void raid10d(mddev_t *mddev)
1678 {
1679 r10bio_t *r10_bio;
1680 struct bio *bio;
1681 unsigned long flags;
1682 conf_t *conf = mddev->private;
1683 struct list_head *head = &conf->retry_list;
1684 int unplug=0;
1685 mdk_rdev_t *rdev;
1686
1687 md_check_recovery(mddev);
1688
1689 for (;;) {
1690 char b[BDEVNAME_SIZE];
1691
1692 unplug += flush_pending_writes(conf);
1693
1694 spin_lock_irqsave(&conf->device_lock, flags);
1695 if (list_empty(head)) {
1696 spin_unlock_irqrestore(&conf->device_lock, flags);
1697 break;
1698 }
1699 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1700 list_del(head->prev);
1701 conf->nr_queued--;
1702 spin_unlock_irqrestore(&conf->device_lock, flags);
1703
1704 mddev = r10_bio->mddev;
1705 conf = mddev->private;
1706 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1707 sync_request_write(mddev, r10_bio);
1708 unplug = 1;
1709 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1710 recovery_request_write(mddev, r10_bio);
1711 unplug = 1;
1712 } else {
1713 int mirror;
1714 /* we got a read error. Maybe the drive is bad. Maybe just
1715 * the block and we can fix it.
1716 * We freeze all other IO, and try reading the block from
1717 * other devices. When we find one, we re-write
1718 * and check it that fixes the read error.
1719 * This is all done synchronously while the array is
1720 * frozen.
1721 */
1722 if (mddev->ro == 0) {
1723 freeze_array(conf);
1724 fix_read_error(conf, mddev, r10_bio);
1725 unfreeze_array(conf);
1726 }
1727
1728 bio = r10_bio->devs[r10_bio->read_slot].bio;
1729 r10_bio->devs[r10_bio->read_slot].bio =
1730 mddev->ro ? IO_BLOCKED : NULL;
1731 mirror = read_balance(conf, r10_bio);
1732 if (mirror == -1) {
1733 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1734 " read error for block %llu\n",
1735 mdname(mddev),
1736 bdevname(bio->bi_bdev,b),
1737 (unsigned long long)r10_bio->sector);
1738 raid_end_bio_io(r10_bio);
1739 bio_put(bio);
1740 } else {
1741 const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
1742 bio_put(bio);
1743 rdev = conf->mirrors[mirror].rdev;
1744 if (printk_ratelimit())
1745 printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to"
1746 " another mirror\n",
1747 mdname(mddev),
1748 bdevname(rdev->bdev,b),
1749 (unsigned long long)r10_bio->sector);
1750 bio = bio_clone_mddev(r10_bio->master_bio,
1751 GFP_NOIO, mddev);
1752 r10_bio->devs[r10_bio->read_slot].bio = bio;
1753 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1754 + rdev->data_offset;
1755 bio->bi_bdev = rdev->bdev;
1756 bio->bi_rw = READ | do_sync;
1757 bio->bi_private = r10_bio;
1758 bio->bi_end_io = raid10_end_read_request;
1759 unplug = 1;
1760 generic_make_request(bio);
1761 }
1762 }
1763 cond_resched();
1764 }
1765 if (unplug)
1766 unplug_slaves(mddev);
1767 }
1768
1769
1770 static int init_resync(conf_t *conf)
1771 {
1772 int buffs;
1773
1774 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1775 BUG_ON(conf->r10buf_pool);
1776 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1777 if (!conf->r10buf_pool)
1778 return -ENOMEM;
1779 conf->next_resync = 0;
1780 return 0;
1781 }
1782
1783 /*
1784 * perform a "sync" on one "block"
1785 *
1786 * We need to make sure that no normal I/O request - particularly write
1787 * requests - conflict with active sync requests.
1788 *
1789 * This is achieved by tracking pending requests and a 'barrier' concept
1790 * that can be installed to exclude normal IO requests.
1791 *
1792 * Resync and recovery are handled very differently.
1793 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1794 *
1795 * For resync, we iterate over virtual addresses, read all copies,
1796 * and update if there are differences. If only one copy is live,
1797 * skip it.
1798 * For recovery, we iterate over physical addresses, read a good
1799 * value for each non-in_sync drive, and over-write.
1800 *
1801 * So, for recovery we may have several outstanding complex requests for a
1802 * given address, one for each out-of-sync device. We model this by allocating
1803 * a number of r10_bio structures, one for each out-of-sync device.
1804 * As we setup these structures, we collect all bio's together into a list
1805 * which we then process collectively to add pages, and then process again
1806 * to pass to generic_make_request.
1807 *
1808 * The r10_bio structures are linked using a borrowed master_bio pointer.
1809 * This link is counted in ->remaining. When the r10_bio that points to NULL
1810 * has its remaining count decremented to 0, the whole complex operation
1811 * is complete.
1812 *
1813 */
1814
1815 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1816 {
1817 conf_t *conf = mddev->private;
1818 r10bio_t *r10_bio;
1819 struct bio *biolist = NULL, *bio;
1820 sector_t max_sector, nr_sectors;
1821 int disk;
1822 int i;
1823 int max_sync;
1824 sector_t sync_blocks;
1825
1826 sector_t sectors_skipped = 0;
1827 int chunks_skipped = 0;
1828
1829 if (!conf->r10buf_pool)
1830 if (init_resync(conf))
1831 return 0;
1832
1833 skipped:
1834 max_sector = mddev->dev_sectors;
1835 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1836 max_sector = mddev->resync_max_sectors;
1837 if (sector_nr >= max_sector) {
1838 /* If we aborted, we need to abort the
1839 * sync on the 'current' bitmap chucks (there can
1840 * be several when recovering multiple devices).
1841 * as we may have started syncing it but not finished.
1842 * We can find the current address in
1843 * mddev->curr_resync, but for recovery,
1844 * we need to convert that to several
1845 * virtual addresses.
1846 */
1847 if (mddev->curr_resync < max_sector) { /* aborted */
1848 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1849 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1850 &sync_blocks, 1);
1851 else for (i=0; i<conf->raid_disks; i++) {
1852 sector_t sect =
1853 raid10_find_virt(conf, mddev->curr_resync, i);
1854 bitmap_end_sync(mddev->bitmap, sect,
1855 &sync_blocks, 1);
1856 }
1857 } else /* completed sync */
1858 conf->fullsync = 0;
1859
1860 bitmap_close_sync(mddev->bitmap);
1861 close_sync(conf);
1862 *skipped = 1;
1863 return sectors_skipped;
1864 }
1865 if (chunks_skipped >= conf->raid_disks) {
1866 /* if there has been nothing to do on any drive,
1867 * then there is nothing to do at all..
1868 */
1869 *skipped = 1;
1870 return (max_sector - sector_nr) + sectors_skipped;
1871 }
1872
1873 if (max_sector > mddev->resync_max)
1874 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1875
1876 /* make sure whole request will fit in a chunk - if chunks
1877 * are meaningful
1878 */
1879 if (conf->near_copies < conf->raid_disks &&
1880 max_sector > (sector_nr | conf->chunk_mask))
1881 max_sector = (sector_nr | conf->chunk_mask) + 1;
1882 /*
1883 * If there is non-resync activity waiting for us then
1884 * put in a delay to throttle resync.
1885 */
1886 if (!go_faster && conf->nr_waiting)
1887 msleep_interruptible(1000);
1888
1889 /* Again, very different code for resync and recovery.
1890 * Both must result in an r10bio with a list of bios that
1891 * have bi_end_io, bi_sector, bi_bdev set,
1892 * and bi_private set to the r10bio.
1893 * For recovery, we may actually create several r10bios
1894 * with 2 bios in each, that correspond to the bios in the main one.
1895 * In this case, the subordinate r10bios link back through a
1896 * borrowed master_bio pointer, and the counter in the master
1897 * includes a ref from each subordinate.
1898 */
1899 /* First, we decide what to do and set ->bi_end_io
1900 * To end_sync_read if we want to read, and
1901 * end_sync_write if we will want to write.
1902 */
1903
1904 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1905 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1906 /* recovery... the complicated one */
1907 int j, k;
1908 r10_bio = NULL;
1909
1910 for (i=0 ; i<conf->raid_disks; i++)
1911 if (conf->mirrors[i].rdev &&
1912 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1913 int still_degraded = 0;
1914 /* want to reconstruct this device */
1915 r10bio_t *rb2 = r10_bio;
1916 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1917 int must_sync;
1918 /* Unless we are doing a full sync, we only need
1919 * to recover the block if it is set in the bitmap
1920 */
1921 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1922 &sync_blocks, 1);
1923 if (sync_blocks < max_sync)
1924 max_sync = sync_blocks;
1925 if (!must_sync &&
1926 !conf->fullsync) {
1927 /* yep, skip the sync_blocks here, but don't assume
1928 * that there will never be anything to do here
1929 */
1930 chunks_skipped = -1;
1931 continue;
1932 }
1933
1934 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1935 raise_barrier(conf, rb2 != NULL);
1936 atomic_set(&r10_bio->remaining, 0);
1937
1938 r10_bio->master_bio = (struct bio*)rb2;
1939 if (rb2)
1940 atomic_inc(&rb2->remaining);
1941 r10_bio->mddev = mddev;
1942 set_bit(R10BIO_IsRecover, &r10_bio->state);
1943 r10_bio->sector = sect;
1944
1945 raid10_find_phys(conf, r10_bio);
1946
1947 /* Need to check if the array will still be
1948 * degraded
1949 */
1950 for (j=0; j<conf->raid_disks; j++)
1951 if (conf->mirrors[j].rdev == NULL ||
1952 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1953 still_degraded = 1;
1954 break;
1955 }
1956
1957 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1958 &sync_blocks, still_degraded);
1959
1960 for (j=0; j<conf->copies;j++) {
1961 int d = r10_bio->devs[j].devnum;
1962 if (conf->mirrors[d].rdev &&
1963 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1964 /* This is where we read from */
1965 bio = r10_bio->devs[0].bio;
1966 bio->bi_next = biolist;
1967 biolist = bio;
1968 bio->bi_private = r10_bio;
1969 bio->bi_end_io = end_sync_read;
1970 bio->bi_rw = READ;
1971 bio->bi_sector = r10_bio->devs[j].addr +
1972 conf->mirrors[d].rdev->data_offset;
1973 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1974 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1975 atomic_inc(&r10_bio->remaining);
1976 /* and we write to 'i' */
1977
1978 for (k=0; k<conf->copies; k++)
1979 if (r10_bio->devs[k].devnum == i)
1980 break;
1981 BUG_ON(k == conf->copies);
1982 bio = r10_bio->devs[1].bio;
1983 bio->bi_next = biolist;
1984 biolist = bio;
1985 bio->bi_private = r10_bio;
1986 bio->bi_end_io = end_sync_write;
1987 bio->bi_rw = WRITE;
1988 bio->bi_sector = r10_bio->devs[k].addr +
1989 conf->mirrors[i].rdev->data_offset;
1990 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1991
1992 r10_bio->devs[0].devnum = d;
1993 r10_bio->devs[1].devnum = i;
1994
1995 break;
1996 }
1997 }
1998 if (j == conf->copies) {
1999 /* Cannot recover, so abort the recovery */
2000 put_buf(r10_bio);
2001 if (rb2)
2002 atomic_dec(&rb2->remaining);
2003 r10_bio = rb2;
2004 if (!test_and_set_bit(MD_RECOVERY_INTR,
2005 &mddev->recovery))
2006 printk(KERN_INFO "md/raid10:%s: insufficient "
2007 "working devices for recovery.\n",
2008 mdname(mddev));
2009 break;
2010 }
2011 }
2012 if (biolist == NULL) {
2013 while (r10_bio) {
2014 r10bio_t *rb2 = r10_bio;
2015 r10_bio = (r10bio_t*) rb2->master_bio;
2016 rb2->master_bio = NULL;
2017 put_buf(rb2);
2018 }
2019 goto giveup;
2020 }
2021 } else {
2022 /* resync. Schedule a read for every block at this virt offset */
2023 int count = 0;
2024
2025 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2026
2027 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2028 &sync_blocks, mddev->degraded) &&
2029 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2030 /* We can skip this block */
2031 *skipped = 1;
2032 return sync_blocks + sectors_skipped;
2033 }
2034 if (sync_blocks < max_sync)
2035 max_sync = sync_blocks;
2036 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2037
2038 r10_bio->mddev = mddev;
2039 atomic_set(&r10_bio->remaining, 0);
2040 raise_barrier(conf, 0);
2041 conf->next_resync = sector_nr;
2042
2043 r10_bio->master_bio = NULL;
2044 r10_bio->sector = sector_nr;
2045 set_bit(R10BIO_IsSync, &r10_bio->state);
2046 raid10_find_phys(conf, r10_bio);
2047 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2048
2049 for (i=0; i<conf->copies; i++) {
2050 int d = r10_bio->devs[i].devnum;
2051 bio = r10_bio->devs[i].bio;
2052 bio->bi_end_io = NULL;
2053 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2054 if (conf->mirrors[d].rdev == NULL ||
2055 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2056 continue;
2057 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2058 atomic_inc(&r10_bio->remaining);
2059 bio->bi_next = biolist;
2060 biolist = bio;
2061 bio->bi_private = r10_bio;
2062 bio->bi_end_io = end_sync_read;
2063 bio->bi_rw = READ;
2064 bio->bi_sector = r10_bio->devs[i].addr +
2065 conf->mirrors[d].rdev->data_offset;
2066 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2067 count++;
2068 }
2069
2070 if (count < 2) {
2071 for (i=0; i<conf->copies; i++) {
2072 int d = r10_bio->devs[i].devnum;
2073 if (r10_bio->devs[i].bio->bi_end_io)
2074 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
2075 }
2076 put_buf(r10_bio);
2077 biolist = NULL;
2078 goto giveup;
2079 }
2080 }
2081
2082 for (bio = biolist; bio ; bio=bio->bi_next) {
2083
2084 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2085 if (bio->bi_end_io)
2086 bio->bi_flags |= 1 << BIO_UPTODATE;
2087 bio->bi_vcnt = 0;
2088 bio->bi_idx = 0;
2089 bio->bi_phys_segments = 0;
2090 bio->bi_size = 0;
2091 }
2092
2093 nr_sectors = 0;
2094 if (sector_nr + max_sync < max_sector)
2095 max_sector = sector_nr + max_sync;
2096 do {
2097 struct page *page;
2098 int len = PAGE_SIZE;
2099 disk = 0;
2100 if (sector_nr + (len>>9) > max_sector)
2101 len = (max_sector - sector_nr) << 9;
2102 if (len == 0)
2103 break;
2104 for (bio= biolist ; bio ; bio=bio->bi_next) {
2105 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2106 if (bio_add_page(bio, page, len, 0) == 0) {
2107 /* stop here */
2108 struct bio *bio2;
2109 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2110 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
2111 /* remove last page from this bio */
2112 bio2->bi_vcnt--;
2113 bio2->bi_size -= len;
2114 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2115 }
2116 goto bio_full;
2117 }
2118 disk = i;
2119 }
2120 nr_sectors += len>>9;
2121 sector_nr += len>>9;
2122 } while (biolist->bi_vcnt < RESYNC_PAGES);
2123 bio_full:
2124 r10_bio->sectors = nr_sectors;
2125
2126 while (biolist) {
2127 bio = biolist;
2128 biolist = biolist->bi_next;
2129
2130 bio->bi_next = NULL;
2131 r10_bio = bio->bi_private;
2132 r10_bio->sectors = nr_sectors;
2133
2134 if (bio->bi_end_io == end_sync_read) {
2135 md_sync_acct(bio->bi_bdev, nr_sectors);
2136 generic_make_request(bio);
2137 }
2138 }
2139
2140 if (sectors_skipped)
2141 /* pretend they weren't skipped, it makes
2142 * no important difference in this case
2143 */
2144 md_done_sync(mddev, sectors_skipped, 1);
2145
2146 return sectors_skipped + nr_sectors;
2147 giveup:
2148 /* There is nowhere to write, so all non-sync
2149 * drives must be failed, so try the next chunk...
2150 */
2151 if (sector_nr + max_sync < max_sector)
2152 max_sector = sector_nr + max_sync;
2153
2154 sectors_skipped += (max_sector - sector_nr);
2155 chunks_skipped ++;
2156 sector_nr = max_sector;
2157 goto skipped;
2158 }
2159
2160 static sector_t
2161 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2162 {
2163 sector_t size;
2164 conf_t *conf = mddev->private;
2165
2166 if (!raid_disks)
2167 raid_disks = conf->raid_disks;
2168 if (!sectors)
2169 sectors = conf->dev_sectors;
2170
2171 size = sectors >> conf->chunk_shift;
2172 sector_div(size, conf->far_copies);
2173 size = size * raid_disks;
2174 sector_div(size, conf->near_copies);
2175
2176 return size << conf->chunk_shift;
2177 }
2178
2179
2180 static conf_t *setup_conf(mddev_t *mddev)
2181 {
2182 conf_t *conf = NULL;
2183 int nc, fc, fo;
2184 sector_t stride, size;
2185 int err = -EINVAL;
2186
2187 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2188 !is_power_of_2(mddev->new_chunk_sectors)) {
2189 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2190 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2191 mdname(mddev), PAGE_SIZE);
2192 goto out;
2193 }
2194
2195 nc = mddev->new_layout & 255;
2196 fc = (mddev->new_layout >> 8) & 255;
2197 fo = mddev->new_layout & (1<<16);
2198
2199 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2200 (mddev->new_layout >> 17)) {
2201 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2202 mdname(mddev), mddev->new_layout);
2203 goto out;
2204 }
2205
2206 err = -ENOMEM;
2207 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2208 if (!conf)
2209 goto out;
2210
2211 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2212 GFP_KERNEL);
2213 if (!conf->mirrors)
2214 goto out;
2215
2216 conf->tmppage = alloc_page(GFP_KERNEL);
2217 if (!conf->tmppage)
2218 goto out;
2219
2220
2221 conf->raid_disks = mddev->raid_disks;
2222 conf->near_copies = nc;
2223 conf->far_copies = fc;
2224 conf->copies = nc*fc;
2225 conf->far_offset = fo;
2226 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2227 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2228
2229 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2230 r10bio_pool_free, conf);
2231 if (!conf->r10bio_pool)
2232 goto out;
2233
2234 size = mddev->dev_sectors >> conf->chunk_shift;
2235 sector_div(size, fc);
2236 size = size * conf->raid_disks;
2237 sector_div(size, nc);
2238 /* 'size' is now the number of chunks in the array */
2239 /* calculate "used chunks per device" in 'stride' */
2240 stride = size * conf->copies;
2241
2242 /* We need to round up when dividing by raid_disks to
2243 * get the stride size.
2244 */
2245 stride += conf->raid_disks - 1;
2246 sector_div(stride, conf->raid_disks);
2247
2248 conf->dev_sectors = stride << conf->chunk_shift;
2249
2250 if (fo)
2251 stride = 1;
2252 else
2253 sector_div(stride, fc);
2254 conf->stride = stride << conf->chunk_shift;
2255
2256
2257 spin_lock_init(&conf->device_lock);
2258 INIT_LIST_HEAD(&conf->retry_list);
2259
2260 spin_lock_init(&conf->resync_lock);
2261 init_waitqueue_head(&conf->wait_barrier);
2262
2263 conf->thread = md_register_thread(raid10d, mddev, NULL);
2264 if (!conf->thread)
2265 goto out;
2266
2267 conf->mddev = mddev;
2268 return conf;
2269
2270 out:
2271 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2272 mdname(mddev));
2273 if (conf) {
2274 if (conf->r10bio_pool)
2275 mempool_destroy(conf->r10bio_pool);
2276 kfree(conf->mirrors);
2277 safe_put_page(conf->tmppage);
2278 kfree(conf);
2279 }
2280 return ERR_PTR(err);
2281 }
2282
2283 static int run(mddev_t *mddev)
2284 {
2285 conf_t *conf;
2286 int i, disk_idx, chunk_size;
2287 mirror_info_t *disk;
2288 mdk_rdev_t *rdev;
2289 sector_t size;
2290
2291 /*
2292 * copy the already verified devices into our private RAID10
2293 * bookkeeping area. [whatever we allocate in run(),
2294 * should be freed in stop()]
2295 */
2296
2297 if (mddev->private == NULL) {
2298 conf = setup_conf(mddev);
2299 if (IS_ERR(conf))
2300 return PTR_ERR(conf);
2301 mddev->private = conf;
2302 }
2303 conf = mddev->private;
2304 if (!conf)
2305 goto out;
2306
2307 mddev->queue->queue_lock = &conf->device_lock;
2308
2309 mddev->thread = conf->thread;
2310 conf->thread = NULL;
2311
2312 chunk_size = mddev->chunk_sectors << 9;
2313 blk_queue_io_min(mddev->queue, chunk_size);
2314 if (conf->raid_disks % conf->near_copies)
2315 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2316 else
2317 blk_queue_io_opt(mddev->queue, chunk_size *
2318 (conf->raid_disks / conf->near_copies));
2319
2320 list_for_each_entry(rdev, &mddev->disks, same_set) {
2321 disk_idx = rdev->raid_disk;
2322 if (disk_idx >= conf->raid_disks
2323 || disk_idx < 0)
2324 continue;
2325 disk = conf->mirrors + disk_idx;
2326
2327 disk->rdev = rdev;
2328 disk_stack_limits(mddev->gendisk, rdev->bdev,
2329 rdev->data_offset << 9);
2330 /* as we don't honour merge_bvec_fn, we must never risk
2331 * violating it, so limit max_segments to 1 lying
2332 * within a single page.
2333 */
2334 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2335 blk_queue_max_segments(mddev->queue, 1);
2336 blk_queue_segment_boundary(mddev->queue,
2337 PAGE_CACHE_SIZE - 1);
2338 }
2339
2340 disk->head_position = 0;
2341 }
2342 /* need to check that every block has at least one working mirror */
2343 if (!enough(conf)) {
2344 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2345 mdname(mddev));
2346 goto out_free_conf;
2347 }
2348
2349 mddev->degraded = 0;
2350 for (i = 0; i < conf->raid_disks; i++) {
2351
2352 disk = conf->mirrors + i;
2353
2354 if (!disk->rdev ||
2355 !test_bit(In_sync, &disk->rdev->flags)) {
2356 disk->head_position = 0;
2357 mddev->degraded++;
2358 if (disk->rdev)
2359 conf->fullsync = 1;
2360 }
2361 }
2362
2363 if (mddev->recovery_cp != MaxSector)
2364 printk(KERN_NOTICE "md/raid10:%s: not clean"
2365 " -- starting background reconstruction\n",
2366 mdname(mddev));
2367 printk(KERN_INFO
2368 "md/raid10:%s: active with %d out of %d devices\n",
2369 mdname(mddev), conf->raid_disks - mddev->degraded,
2370 conf->raid_disks);
2371 /*
2372 * Ok, everything is just fine now
2373 */
2374 mddev->dev_sectors = conf->dev_sectors;
2375 size = raid10_size(mddev, 0, 0);
2376 md_set_array_sectors(mddev, size);
2377 mddev->resync_max_sectors = size;
2378
2379 mddev->queue->unplug_fn = raid10_unplug;
2380 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2381 mddev->queue->backing_dev_info.congested_data = mddev;
2382
2383 /* Calculate max read-ahead size.
2384 * We need to readahead at least twice a whole stripe....
2385 * maybe...
2386 */
2387 {
2388 int stripe = conf->raid_disks *
2389 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2390 stripe /= conf->near_copies;
2391 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2392 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2393 }
2394
2395 if (conf->near_copies < conf->raid_disks)
2396 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2397 md_integrity_register(mddev);
2398 return 0;
2399
2400 out_free_conf:
2401 md_unregister_thread(mddev->thread);
2402 if (conf->r10bio_pool)
2403 mempool_destroy(conf->r10bio_pool);
2404 safe_put_page(conf->tmppage);
2405 kfree(conf->mirrors);
2406 kfree(conf);
2407 mddev->private = NULL;
2408 out:
2409 return -EIO;
2410 }
2411
2412 static int stop(mddev_t *mddev)
2413 {
2414 conf_t *conf = mddev->private;
2415
2416 raise_barrier(conf, 0);
2417 lower_barrier(conf);
2418
2419 md_unregister_thread(mddev->thread);
2420 mddev->thread = NULL;
2421 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2422 if (conf->r10bio_pool)
2423 mempool_destroy(conf->r10bio_pool);
2424 kfree(conf->mirrors);
2425 kfree(conf);
2426 mddev->private = NULL;
2427 return 0;
2428 }
2429
2430 static void raid10_quiesce(mddev_t *mddev, int state)
2431 {
2432 conf_t *conf = mddev->private;
2433
2434 switch(state) {
2435 case 1:
2436 raise_barrier(conf, 0);
2437 break;
2438 case 0:
2439 lower_barrier(conf);
2440 break;
2441 }
2442 }
2443
2444 static void *raid10_takeover_raid0(mddev_t *mddev)
2445 {
2446 mdk_rdev_t *rdev;
2447 conf_t *conf;
2448
2449 if (mddev->degraded > 0) {
2450 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2451 mdname(mddev));
2452 return ERR_PTR(-EINVAL);
2453 }
2454
2455 /* Set new parameters */
2456 mddev->new_level = 10;
2457 /* new layout: far_copies = 1, near_copies = 2 */
2458 mddev->new_layout = (1<<8) + 2;
2459 mddev->new_chunk_sectors = mddev->chunk_sectors;
2460 mddev->delta_disks = mddev->raid_disks;
2461 mddev->raid_disks *= 2;
2462 /* make sure it will be not marked as dirty */
2463 mddev->recovery_cp = MaxSector;
2464
2465 conf = setup_conf(mddev);
2466 if (!IS_ERR(conf)) {
2467 list_for_each_entry(rdev, &mddev->disks, same_set)
2468 if (rdev->raid_disk >= 0)
2469 rdev->new_raid_disk = rdev->raid_disk * 2;
2470 conf->barrier = 1;
2471 }
2472
2473 return conf;
2474 }
2475
2476 static void *raid10_takeover(mddev_t *mddev)
2477 {
2478 struct raid0_private_data *raid0_priv;
2479
2480 /* raid10 can take over:
2481 * raid0 - providing it has only two drives
2482 */
2483 if (mddev->level == 0) {
2484 /* for raid0 takeover only one zone is supported */
2485 raid0_priv = mddev->private;
2486 if (raid0_priv->nr_strip_zones > 1) {
2487 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2488 " with more than one zone.\n",
2489 mdname(mddev));
2490 return ERR_PTR(-EINVAL);
2491 }
2492 return raid10_takeover_raid0(mddev);
2493 }
2494 return ERR_PTR(-EINVAL);
2495 }
2496
2497 static struct mdk_personality raid10_personality =
2498 {
2499 .name = "raid10",
2500 .level = 10,
2501 .owner = THIS_MODULE,
2502 .make_request = make_request,
2503 .run = run,
2504 .stop = stop,
2505 .status = status,
2506 .error_handler = error,
2507 .hot_add_disk = raid10_add_disk,
2508 .hot_remove_disk= raid10_remove_disk,
2509 .spare_active = raid10_spare_active,
2510 .sync_request = sync_request,
2511 .quiesce = raid10_quiesce,
2512 .size = raid10_size,
2513 .takeover = raid10_takeover,
2514 };
2515
2516 static int __init raid_init(void)
2517 {
2518 return register_md_personality(&raid10_personality);
2519 }
2520
2521 static void raid_exit(void)
2522 {
2523 unregister_md_personality(&raid10_personality);
2524 }
2525
2526 module_init(raid_init);
2527 module_exit(raid_exit);
2528 MODULE_LICENSE("GPL");
2529 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2530 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2531 MODULE_ALIAS("md-raid10");
2532 MODULE_ALIAS("md-level-10");