Merge branch 'for-2.6.34' of git://linux-nfs.org/~bfields/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/delay.h>
22 #include <linux/blkdev.h>
23 #include <linux/seq_file.h>
24 #include "md.h"
25 #include "raid10.h"
26 #include "bitmap.h"
27
28 /*
29 * RAID10 provides a combination of RAID0 and RAID1 functionality.
30 * The layout of data is defined by
31 * chunk_size
32 * raid_disks
33 * near_copies (stored in low byte of layout)
34 * far_copies (stored in second byte of layout)
35 * far_offset (stored in bit 16 of layout )
36 *
37 * The data to be stored is divided into chunks using chunksize.
38 * Each device is divided into far_copies sections.
39 * In each section, chunks are laid out in a style similar to raid0, but
40 * near_copies copies of each chunk is stored (each on a different drive).
41 * The starting device for each section is offset near_copies from the starting
42 * device of the previous section.
43 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
44 * drive.
45 * near_copies and far_copies must be at least one, and their product is at most
46 * raid_disks.
47 *
48 * If far_offset is true, then the far_copies are handled a bit differently.
49 * The copies are still in different stripes, but instead of be very far apart
50 * on disk, there are adjacent stripes.
51 */
52
53 /*
54 * Number of guaranteed r10bios in case of extreme VM load:
55 */
56 #define NR_RAID10_BIOS 256
57
58 static void unplug_slaves(mddev_t *mddev);
59
60 static void allow_barrier(conf_t *conf);
61 static void lower_barrier(conf_t *conf);
62
63 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
64 {
65 conf_t *conf = data;
66 r10bio_t *r10_bio;
67 int size = offsetof(struct r10bio_s, devs[conf->copies]);
68
69 /* allocate a r10bio with room for raid_disks entries in the bios array */
70 r10_bio = kzalloc(size, gfp_flags);
71 if (!r10_bio && conf->mddev)
72 unplug_slaves(conf->mddev);
73
74 return r10_bio;
75 }
76
77 static void r10bio_pool_free(void *r10_bio, void *data)
78 {
79 kfree(r10_bio);
80 }
81
82 /* Maximum size of each resync request */
83 #define RESYNC_BLOCK_SIZE (64*1024)
84 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
85 /* amount of memory to reserve for resync requests */
86 #define RESYNC_WINDOW (1024*1024)
87 /* maximum number of concurrent requests, memory permitting */
88 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
89
90 /*
91 * When performing a resync, we need to read and compare, so
92 * we need as many pages are there are copies.
93 * When performing a recovery, we need 2 bios, one for read,
94 * one for write (we recover only one drive per r10buf)
95 *
96 */
97 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99 conf_t *conf = data;
100 struct page *page;
101 r10bio_t *r10_bio;
102 struct bio *bio;
103 int i, j;
104 int nalloc;
105
106 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
107 if (!r10_bio) {
108 unplug_slaves(conf->mddev);
109 return NULL;
110 }
111
112 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
113 nalloc = conf->copies; /* resync */
114 else
115 nalloc = 2; /* recovery */
116
117 /*
118 * Allocate bios.
119 */
120 for (j = nalloc ; j-- ; ) {
121 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
122 if (!bio)
123 goto out_free_bio;
124 r10_bio->devs[j].bio = bio;
125 }
126 /*
127 * Allocate RESYNC_PAGES data pages and attach them
128 * where needed.
129 */
130 for (j = 0 ; j < nalloc; j++) {
131 bio = r10_bio->devs[j].bio;
132 for (i = 0; i < RESYNC_PAGES; i++) {
133 page = alloc_page(gfp_flags);
134 if (unlikely(!page))
135 goto out_free_pages;
136
137 bio->bi_io_vec[i].bv_page = page;
138 }
139 }
140
141 return r10_bio;
142
143 out_free_pages:
144 for ( ; i > 0 ; i--)
145 safe_put_page(bio->bi_io_vec[i-1].bv_page);
146 while (j--)
147 for (i = 0; i < RESYNC_PAGES ; i++)
148 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
149 j = -1;
150 out_free_bio:
151 while ( ++j < nalloc )
152 bio_put(r10_bio->devs[j].bio);
153 r10bio_pool_free(r10_bio, conf);
154 return NULL;
155 }
156
157 static void r10buf_pool_free(void *__r10_bio, void *data)
158 {
159 int i;
160 conf_t *conf = data;
161 r10bio_t *r10bio = __r10_bio;
162 int j;
163
164 for (j=0; j < conf->copies; j++) {
165 struct bio *bio = r10bio->devs[j].bio;
166 if (bio) {
167 for (i = 0; i < RESYNC_PAGES; i++) {
168 safe_put_page(bio->bi_io_vec[i].bv_page);
169 bio->bi_io_vec[i].bv_page = NULL;
170 }
171 bio_put(bio);
172 }
173 }
174 r10bio_pool_free(r10bio, conf);
175 }
176
177 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
178 {
179 int i;
180
181 for (i = 0; i < conf->copies; i++) {
182 struct bio **bio = & r10_bio->devs[i].bio;
183 if (*bio && *bio != IO_BLOCKED)
184 bio_put(*bio);
185 *bio = NULL;
186 }
187 }
188
189 static void free_r10bio(r10bio_t *r10_bio)
190 {
191 conf_t *conf = r10_bio->mddev->private;
192
193 /*
194 * Wake up any possible resync thread that waits for the device
195 * to go idle.
196 */
197 allow_barrier(conf);
198
199 put_all_bios(conf, r10_bio);
200 mempool_free(r10_bio, conf->r10bio_pool);
201 }
202
203 static void put_buf(r10bio_t *r10_bio)
204 {
205 conf_t *conf = r10_bio->mddev->private;
206
207 mempool_free(r10_bio, conf->r10buf_pool);
208
209 lower_barrier(conf);
210 }
211
212 static void reschedule_retry(r10bio_t *r10_bio)
213 {
214 unsigned long flags;
215 mddev_t *mddev = r10_bio->mddev;
216 conf_t *conf = mddev->private;
217
218 spin_lock_irqsave(&conf->device_lock, flags);
219 list_add(&r10_bio->retry_list, &conf->retry_list);
220 conf->nr_queued ++;
221 spin_unlock_irqrestore(&conf->device_lock, flags);
222
223 /* wake up frozen array... */
224 wake_up(&conf->wait_barrier);
225
226 md_wakeup_thread(mddev->thread);
227 }
228
229 /*
230 * raid_end_bio_io() is called when we have finished servicing a mirrored
231 * operation and are ready to return a success/failure code to the buffer
232 * cache layer.
233 */
234 static void raid_end_bio_io(r10bio_t *r10_bio)
235 {
236 struct bio *bio = r10_bio->master_bio;
237
238 bio_endio(bio,
239 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
240 free_r10bio(r10_bio);
241 }
242
243 /*
244 * Update disk head position estimator based on IRQ completion info.
245 */
246 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
247 {
248 conf_t *conf = r10_bio->mddev->private;
249
250 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
251 r10_bio->devs[slot].addr + (r10_bio->sectors);
252 }
253
254 static void raid10_end_read_request(struct bio *bio, int error)
255 {
256 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
257 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
258 int slot, dev;
259 conf_t *conf = r10_bio->mddev->private;
260
261
262 slot = r10_bio->read_slot;
263 dev = r10_bio->devs[slot].devnum;
264 /*
265 * this branch is our 'one mirror IO has finished' event handler:
266 */
267 update_head_pos(slot, r10_bio);
268
269 if (uptodate) {
270 /*
271 * Set R10BIO_Uptodate in our master bio, so that
272 * we will return a good error code to the higher
273 * levels even if IO on some other mirrored buffer fails.
274 *
275 * The 'master' represents the composite IO operation to
276 * user-side. So if something waits for IO, then it will
277 * wait for the 'master' bio.
278 */
279 set_bit(R10BIO_Uptodate, &r10_bio->state);
280 raid_end_bio_io(r10_bio);
281 } else {
282 /*
283 * oops, read error:
284 */
285 char b[BDEVNAME_SIZE];
286 if (printk_ratelimit())
287 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
288 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
289 reschedule_retry(r10_bio);
290 }
291
292 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
293 }
294
295 static void raid10_end_write_request(struct bio *bio, int error)
296 {
297 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
298 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
299 int slot, dev;
300 conf_t *conf = r10_bio->mddev->private;
301
302 for (slot = 0; slot < conf->copies; slot++)
303 if (r10_bio->devs[slot].bio == bio)
304 break;
305 dev = r10_bio->devs[slot].devnum;
306
307 /*
308 * this branch is our 'one mirror IO has finished' event handler:
309 */
310 if (!uptodate) {
311 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
312 /* an I/O failed, we can't clear the bitmap */
313 set_bit(R10BIO_Degraded, &r10_bio->state);
314 } else
315 /*
316 * Set R10BIO_Uptodate in our master bio, so that
317 * we will return a good error code for to the higher
318 * levels even if IO on some other mirrored buffer fails.
319 *
320 * The 'master' represents the composite IO operation to
321 * user-side. So if something waits for IO, then it will
322 * wait for the 'master' bio.
323 */
324 set_bit(R10BIO_Uptodate, &r10_bio->state);
325
326 update_head_pos(slot, r10_bio);
327
328 /*
329 *
330 * Let's see if all mirrored write operations have finished
331 * already.
332 */
333 if (atomic_dec_and_test(&r10_bio->remaining)) {
334 /* clear the bitmap if all writes complete successfully */
335 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
336 r10_bio->sectors,
337 !test_bit(R10BIO_Degraded, &r10_bio->state),
338 0);
339 md_write_end(r10_bio->mddev);
340 raid_end_bio_io(r10_bio);
341 }
342
343 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
344 }
345
346
347 /*
348 * RAID10 layout manager
349 * Aswell as the chunksize and raid_disks count, there are two
350 * parameters: near_copies and far_copies.
351 * near_copies * far_copies must be <= raid_disks.
352 * Normally one of these will be 1.
353 * If both are 1, we get raid0.
354 * If near_copies == raid_disks, we get raid1.
355 *
356 * Chunks are layed out in raid0 style with near_copies copies of the
357 * first chunk, followed by near_copies copies of the next chunk and
358 * so on.
359 * If far_copies > 1, then after 1/far_copies of the array has been assigned
360 * as described above, we start again with a device offset of near_copies.
361 * So we effectively have another copy of the whole array further down all
362 * the drives, but with blocks on different drives.
363 * With this layout, and block is never stored twice on the one device.
364 *
365 * raid10_find_phys finds the sector offset of a given virtual sector
366 * on each device that it is on.
367 *
368 * raid10_find_virt does the reverse mapping, from a device and a
369 * sector offset to a virtual address
370 */
371
372 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
373 {
374 int n,f;
375 sector_t sector;
376 sector_t chunk;
377 sector_t stripe;
378 int dev;
379
380 int slot = 0;
381
382 /* now calculate first sector/dev */
383 chunk = r10bio->sector >> conf->chunk_shift;
384 sector = r10bio->sector & conf->chunk_mask;
385
386 chunk *= conf->near_copies;
387 stripe = chunk;
388 dev = sector_div(stripe, conf->raid_disks);
389 if (conf->far_offset)
390 stripe *= conf->far_copies;
391
392 sector += stripe << conf->chunk_shift;
393
394 /* and calculate all the others */
395 for (n=0; n < conf->near_copies; n++) {
396 int d = dev;
397 sector_t s = sector;
398 r10bio->devs[slot].addr = sector;
399 r10bio->devs[slot].devnum = d;
400 slot++;
401
402 for (f = 1; f < conf->far_copies; f++) {
403 d += conf->near_copies;
404 if (d >= conf->raid_disks)
405 d -= conf->raid_disks;
406 s += conf->stride;
407 r10bio->devs[slot].devnum = d;
408 r10bio->devs[slot].addr = s;
409 slot++;
410 }
411 dev++;
412 if (dev >= conf->raid_disks) {
413 dev = 0;
414 sector += (conf->chunk_mask + 1);
415 }
416 }
417 BUG_ON(slot != conf->copies);
418 }
419
420 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
421 {
422 sector_t offset, chunk, vchunk;
423
424 offset = sector & conf->chunk_mask;
425 if (conf->far_offset) {
426 int fc;
427 chunk = sector >> conf->chunk_shift;
428 fc = sector_div(chunk, conf->far_copies);
429 dev -= fc * conf->near_copies;
430 if (dev < 0)
431 dev += conf->raid_disks;
432 } else {
433 while (sector >= conf->stride) {
434 sector -= conf->stride;
435 if (dev < conf->near_copies)
436 dev += conf->raid_disks - conf->near_copies;
437 else
438 dev -= conf->near_copies;
439 }
440 chunk = sector >> conf->chunk_shift;
441 }
442 vchunk = chunk * conf->raid_disks + dev;
443 sector_div(vchunk, conf->near_copies);
444 return (vchunk << conf->chunk_shift) + offset;
445 }
446
447 /**
448 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449 * @q: request queue
450 * @bvm: properties of new bio
451 * @biovec: the request that could be merged to it.
452 *
453 * Return amount of bytes we can accept at this offset
454 * If near_copies == raid_disk, there are no striping issues,
455 * but in that case, the function isn't called at all.
456 */
457 static int raid10_mergeable_bvec(struct request_queue *q,
458 struct bvec_merge_data *bvm,
459 struct bio_vec *biovec)
460 {
461 mddev_t *mddev = q->queuedata;
462 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
463 int max;
464 unsigned int chunk_sectors = mddev->chunk_sectors;
465 unsigned int bio_sectors = bvm->bi_size >> 9;
466
467 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
468 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
469 if (max <= biovec->bv_len && bio_sectors == 0)
470 return biovec->bv_len;
471 else
472 return max;
473 }
474
475 /*
476 * This routine returns the disk from which the requested read should
477 * be done. There is a per-array 'next expected sequential IO' sector
478 * number - if this matches on the next IO then we use the last disk.
479 * There is also a per-disk 'last know head position' sector that is
480 * maintained from IRQ contexts, both the normal and the resync IO
481 * completion handlers update this position correctly. If there is no
482 * perfect sequential match then we pick the disk whose head is closest.
483 *
484 * If there are 2 mirrors in the same 2 devices, performance degrades
485 * because position is mirror, not device based.
486 *
487 * The rdev for the device selected will have nr_pending incremented.
488 */
489
490 /*
491 * FIXME: possibly should rethink readbalancing and do it differently
492 * depending on near_copies / far_copies geometry.
493 */
494 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
495 {
496 const unsigned long this_sector = r10_bio->sector;
497 int disk, slot, nslot;
498 const int sectors = r10_bio->sectors;
499 sector_t new_distance, current_distance;
500 mdk_rdev_t *rdev;
501
502 raid10_find_phys(conf, r10_bio);
503 rcu_read_lock();
504 /*
505 * Check if we can balance. We can balance on the whole
506 * device if no resync is going on (recovery is ok), or below
507 * the resync window. We take the first readable disk when
508 * above the resync window.
509 */
510 if (conf->mddev->recovery_cp < MaxSector
511 && (this_sector + sectors >= conf->next_resync)) {
512 /* make sure that disk is operational */
513 slot = 0;
514 disk = r10_bio->devs[slot].devnum;
515
516 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
517 r10_bio->devs[slot].bio == IO_BLOCKED ||
518 !test_bit(In_sync, &rdev->flags)) {
519 slot++;
520 if (slot == conf->copies) {
521 slot = 0;
522 disk = -1;
523 break;
524 }
525 disk = r10_bio->devs[slot].devnum;
526 }
527 goto rb_out;
528 }
529
530
531 /* make sure the disk is operational */
532 slot = 0;
533 disk = r10_bio->devs[slot].devnum;
534 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
535 r10_bio->devs[slot].bio == IO_BLOCKED ||
536 !test_bit(In_sync, &rdev->flags)) {
537 slot ++;
538 if (slot == conf->copies) {
539 disk = -1;
540 goto rb_out;
541 }
542 disk = r10_bio->devs[slot].devnum;
543 }
544
545
546 current_distance = abs(r10_bio->devs[slot].addr -
547 conf->mirrors[disk].head_position);
548
549 /* Find the disk whose head is closest,
550 * or - for far > 1 - find the closest to partition beginning */
551
552 for (nslot = slot; nslot < conf->copies; nslot++) {
553 int ndisk = r10_bio->devs[nslot].devnum;
554
555
556 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
557 r10_bio->devs[nslot].bio == IO_BLOCKED ||
558 !test_bit(In_sync, &rdev->flags))
559 continue;
560
561 /* This optimisation is debatable, and completely destroys
562 * sequential read speed for 'far copies' arrays. So only
563 * keep it for 'near' arrays, and review those later.
564 */
565 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
566 disk = ndisk;
567 slot = nslot;
568 break;
569 }
570
571 /* for far > 1 always use the lowest address */
572 if (conf->far_copies > 1)
573 new_distance = r10_bio->devs[nslot].addr;
574 else
575 new_distance = abs(r10_bio->devs[nslot].addr -
576 conf->mirrors[ndisk].head_position);
577 if (new_distance < current_distance) {
578 current_distance = new_distance;
579 disk = ndisk;
580 slot = nslot;
581 }
582 }
583
584 rb_out:
585 r10_bio->read_slot = slot;
586 /* conf->next_seq_sect = this_sector + sectors;*/
587
588 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
589 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
590 else
591 disk = -1;
592 rcu_read_unlock();
593
594 return disk;
595 }
596
597 static void unplug_slaves(mddev_t *mddev)
598 {
599 conf_t *conf = mddev->private;
600 int i;
601
602 rcu_read_lock();
603 for (i=0; i<mddev->raid_disks; i++) {
604 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
605 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
606 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
607
608 atomic_inc(&rdev->nr_pending);
609 rcu_read_unlock();
610
611 blk_unplug(r_queue);
612
613 rdev_dec_pending(rdev, mddev);
614 rcu_read_lock();
615 }
616 }
617 rcu_read_unlock();
618 }
619
620 static void raid10_unplug(struct request_queue *q)
621 {
622 mddev_t *mddev = q->queuedata;
623
624 unplug_slaves(q->queuedata);
625 md_wakeup_thread(mddev->thread);
626 }
627
628 static int raid10_congested(void *data, int bits)
629 {
630 mddev_t *mddev = data;
631 conf_t *conf = mddev->private;
632 int i, ret = 0;
633
634 if (mddev_congested(mddev, bits))
635 return 1;
636 rcu_read_lock();
637 for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
638 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
639 if (rdev && !test_bit(Faulty, &rdev->flags)) {
640 struct request_queue *q = bdev_get_queue(rdev->bdev);
641
642 ret |= bdi_congested(&q->backing_dev_info, bits);
643 }
644 }
645 rcu_read_unlock();
646 return ret;
647 }
648
649 static int flush_pending_writes(conf_t *conf)
650 {
651 /* Any writes that have been queued but are awaiting
652 * bitmap updates get flushed here.
653 * We return 1 if any requests were actually submitted.
654 */
655 int rv = 0;
656
657 spin_lock_irq(&conf->device_lock);
658
659 if (conf->pending_bio_list.head) {
660 struct bio *bio;
661 bio = bio_list_get(&conf->pending_bio_list);
662 blk_remove_plug(conf->mddev->queue);
663 spin_unlock_irq(&conf->device_lock);
664 /* flush any pending bitmap writes to disk
665 * before proceeding w/ I/O */
666 bitmap_unplug(conf->mddev->bitmap);
667
668 while (bio) { /* submit pending writes */
669 struct bio *next = bio->bi_next;
670 bio->bi_next = NULL;
671 generic_make_request(bio);
672 bio = next;
673 }
674 rv = 1;
675 } else
676 spin_unlock_irq(&conf->device_lock);
677 return rv;
678 }
679 /* Barriers....
680 * Sometimes we need to suspend IO while we do something else,
681 * either some resync/recovery, or reconfigure the array.
682 * To do this we raise a 'barrier'.
683 * The 'barrier' is a counter that can be raised multiple times
684 * to count how many activities are happening which preclude
685 * normal IO.
686 * We can only raise the barrier if there is no pending IO.
687 * i.e. if nr_pending == 0.
688 * We choose only to raise the barrier if no-one is waiting for the
689 * barrier to go down. This means that as soon as an IO request
690 * is ready, no other operations which require a barrier will start
691 * until the IO request has had a chance.
692 *
693 * So: regular IO calls 'wait_barrier'. When that returns there
694 * is no backgroup IO happening, It must arrange to call
695 * allow_barrier when it has finished its IO.
696 * backgroup IO calls must call raise_barrier. Once that returns
697 * there is no normal IO happeing. It must arrange to call
698 * lower_barrier when the particular background IO completes.
699 */
700
701 static void raise_barrier(conf_t *conf, int force)
702 {
703 BUG_ON(force && !conf->barrier);
704 spin_lock_irq(&conf->resync_lock);
705
706 /* Wait until no block IO is waiting (unless 'force') */
707 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
708 conf->resync_lock,
709 raid10_unplug(conf->mddev->queue));
710
711 /* block any new IO from starting */
712 conf->barrier++;
713
714 /* No wait for all pending IO to complete */
715 wait_event_lock_irq(conf->wait_barrier,
716 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
717 conf->resync_lock,
718 raid10_unplug(conf->mddev->queue));
719
720 spin_unlock_irq(&conf->resync_lock);
721 }
722
723 static void lower_barrier(conf_t *conf)
724 {
725 unsigned long flags;
726 spin_lock_irqsave(&conf->resync_lock, flags);
727 conf->barrier--;
728 spin_unlock_irqrestore(&conf->resync_lock, flags);
729 wake_up(&conf->wait_barrier);
730 }
731
732 static void wait_barrier(conf_t *conf)
733 {
734 spin_lock_irq(&conf->resync_lock);
735 if (conf->barrier) {
736 conf->nr_waiting++;
737 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
738 conf->resync_lock,
739 raid10_unplug(conf->mddev->queue));
740 conf->nr_waiting--;
741 }
742 conf->nr_pending++;
743 spin_unlock_irq(&conf->resync_lock);
744 }
745
746 static void allow_barrier(conf_t *conf)
747 {
748 unsigned long flags;
749 spin_lock_irqsave(&conf->resync_lock, flags);
750 conf->nr_pending--;
751 spin_unlock_irqrestore(&conf->resync_lock, flags);
752 wake_up(&conf->wait_barrier);
753 }
754
755 static void freeze_array(conf_t *conf)
756 {
757 /* stop syncio and normal IO and wait for everything to
758 * go quiet.
759 * We increment barrier and nr_waiting, and then
760 * wait until nr_pending match nr_queued+1
761 * This is called in the context of one normal IO request
762 * that has failed. Thus any sync request that might be pending
763 * will be blocked by nr_pending, and we need to wait for
764 * pending IO requests to complete or be queued for re-try.
765 * Thus the number queued (nr_queued) plus this request (1)
766 * must match the number of pending IOs (nr_pending) before
767 * we continue.
768 */
769 spin_lock_irq(&conf->resync_lock);
770 conf->barrier++;
771 conf->nr_waiting++;
772 wait_event_lock_irq(conf->wait_barrier,
773 conf->nr_pending == conf->nr_queued+1,
774 conf->resync_lock,
775 ({ flush_pending_writes(conf);
776 raid10_unplug(conf->mddev->queue); }));
777 spin_unlock_irq(&conf->resync_lock);
778 }
779
780 static void unfreeze_array(conf_t *conf)
781 {
782 /* reverse the effect of the freeze */
783 spin_lock_irq(&conf->resync_lock);
784 conf->barrier--;
785 conf->nr_waiting--;
786 wake_up(&conf->wait_barrier);
787 spin_unlock_irq(&conf->resync_lock);
788 }
789
790 static int make_request(struct request_queue *q, struct bio * bio)
791 {
792 mddev_t *mddev = q->queuedata;
793 conf_t *conf = mddev->private;
794 mirror_info_t *mirror;
795 r10bio_t *r10_bio;
796 struct bio *read_bio;
797 int cpu;
798 int i;
799 int chunk_sects = conf->chunk_mask + 1;
800 const int rw = bio_data_dir(bio);
801 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
802 struct bio_list bl;
803 unsigned long flags;
804 mdk_rdev_t *blocked_rdev;
805
806 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
807 md_barrier_request(mddev, bio);
808 return 0;
809 }
810
811 /* If this request crosses a chunk boundary, we need to
812 * split it. This will only happen for 1 PAGE (or less) requests.
813 */
814 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
815 > chunk_sects &&
816 conf->near_copies < conf->raid_disks)) {
817 struct bio_pair *bp;
818 /* Sanity check -- queue functions should prevent this happening */
819 if (bio->bi_vcnt != 1 ||
820 bio->bi_idx != 0)
821 goto bad_map;
822 /* This is a one page bio that upper layers
823 * refuse to split for us, so we need to split it.
824 */
825 bp = bio_split(bio,
826 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
827 if (make_request(q, &bp->bio1))
828 generic_make_request(&bp->bio1);
829 if (make_request(q, &bp->bio2))
830 generic_make_request(&bp->bio2);
831
832 bio_pair_release(bp);
833 return 0;
834 bad_map:
835 printk("raid10_make_request bug: can't convert block across chunks"
836 " or bigger than %dk %llu %d\n", chunk_sects/2,
837 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
838
839 bio_io_error(bio);
840 return 0;
841 }
842
843 md_write_start(mddev, bio);
844
845 /*
846 * Register the new request and wait if the reconstruction
847 * thread has put up a bar for new requests.
848 * Continue immediately if no resync is active currently.
849 */
850 wait_barrier(conf);
851
852 cpu = part_stat_lock();
853 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
854 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
855 bio_sectors(bio));
856 part_stat_unlock();
857
858 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
859
860 r10_bio->master_bio = bio;
861 r10_bio->sectors = bio->bi_size >> 9;
862
863 r10_bio->mddev = mddev;
864 r10_bio->sector = bio->bi_sector;
865 r10_bio->state = 0;
866
867 if (rw == READ) {
868 /*
869 * read balancing logic:
870 */
871 int disk = read_balance(conf, r10_bio);
872 int slot = r10_bio->read_slot;
873 if (disk < 0) {
874 raid_end_bio_io(r10_bio);
875 return 0;
876 }
877 mirror = conf->mirrors + disk;
878
879 read_bio = bio_clone(bio, GFP_NOIO);
880
881 r10_bio->devs[slot].bio = read_bio;
882
883 read_bio->bi_sector = r10_bio->devs[slot].addr +
884 mirror->rdev->data_offset;
885 read_bio->bi_bdev = mirror->rdev->bdev;
886 read_bio->bi_end_io = raid10_end_read_request;
887 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
888 read_bio->bi_private = r10_bio;
889
890 generic_make_request(read_bio);
891 return 0;
892 }
893
894 /*
895 * WRITE:
896 */
897 /* first select target devices under rcu_lock and
898 * inc refcount on their rdev. Record them by setting
899 * bios[x] to bio
900 */
901 raid10_find_phys(conf, r10_bio);
902 retry_write:
903 blocked_rdev = NULL;
904 rcu_read_lock();
905 for (i = 0; i < conf->copies; i++) {
906 int d = r10_bio->devs[i].devnum;
907 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
908 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
909 atomic_inc(&rdev->nr_pending);
910 blocked_rdev = rdev;
911 break;
912 }
913 if (rdev && !test_bit(Faulty, &rdev->flags)) {
914 atomic_inc(&rdev->nr_pending);
915 r10_bio->devs[i].bio = bio;
916 } else {
917 r10_bio->devs[i].bio = NULL;
918 set_bit(R10BIO_Degraded, &r10_bio->state);
919 }
920 }
921 rcu_read_unlock();
922
923 if (unlikely(blocked_rdev)) {
924 /* Have to wait for this device to get unblocked, then retry */
925 int j;
926 int d;
927
928 for (j = 0; j < i; j++)
929 if (r10_bio->devs[j].bio) {
930 d = r10_bio->devs[j].devnum;
931 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
932 }
933 allow_barrier(conf);
934 md_wait_for_blocked_rdev(blocked_rdev, mddev);
935 wait_barrier(conf);
936 goto retry_write;
937 }
938
939 atomic_set(&r10_bio->remaining, 0);
940
941 bio_list_init(&bl);
942 for (i = 0; i < conf->copies; i++) {
943 struct bio *mbio;
944 int d = r10_bio->devs[i].devnum;
945 if (!r10_bio->devs[i].bio)
946 continue;
947
948 mbio = bio_clone(bio, GFP_NOIO);
949 r10_bio->devs[i].bio = mbio;
950
951 mbio->bi_sector = r10_bio->devs[i].addr+
952 conf->mirrors[d].rdev->data_offset;
953 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
954 mbio->bi_end_io = raid10_end_write_request;
955 mbio->bi_rw = WRITE | (do_sync << BIO_RW_SYNCIO);
956 mbio->bi_private = r10_bio;
957
958 atomic_inc(&r10_bio->remaining);
959 bio_list_add(&bl, mbio);
960 }
961
962 if (unlikely(!atomic_read(&r10_bio->remaining))) {
963 /* the array is dead */
964 md_write_end(mddev);
965 raid_end_bio_io(r10_bio);
966 return 0;
967 }
968
969 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
970 spin_lock_irqsave(&conf->device_lock, flags);
971 bio_list_merge(&conf->pending_bio_list, &bl);
972 blk_plug_device(mddev->queue);
973 spin_unlock_irqrestore(&conf->device_lock, flags);
974
975 /* In case raid10d snuck in to freeze_array */
976 wake_up(&conf->wait_barrier);
977
978 if (do_sync)
979 md_wakeup_thread(mddev->thread);
980
981 return 0;
982 }
983
984 static void status(struct seq_file *seq, mddev_t *mddev)
985 {
986 conf_t *conf = mddev->private;
987 int i;
988
989 if (conf->near_copies < conf->raid_disks)
990 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
991 if (conf->near_copies > 1)
992 seq_printf(seq, " %d near-copies", conf->near_copies);
993 if (conf->far_copies > 1) {
994 if (conf->far_offset)
995 seq_printf(seq, " %d offset-copies", conf->far_copies);
996 else
997 seq_printf(seq, " %d far-copies", conf->far_copies);
998 }
999 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1000 conf->raid_disks - mddev->degraded);
1001 for (i = 0; i < conf->raid_disks; i++)
1002 seq_printf(seq, "%s",
1003 conf->mirrors[i].rdev &&
1004 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1005 seq_printf(seq, "]");
1006 }
1007
1008 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1009 {
1010 char b[BDEVNAME_SIZE];
1011 conf_t *conf = mddev->private;
1012
1013 /*
1014 * If it is not operational, then we have already marked it as dead
1015 * else if it is the last working disks, ignore the error, let the
1016 * next level up know.
1017 * else mark the drive as failed
1018 */
1019 if (test_bit(In_sync, &rdev->flags)
1020 && conf->raid_disks-mddev->degraded == 1)
1021 /*
1022 * Don't fail the drive, just return an IO error.
1023 * The test should really be more sophisticated than
1024 * "working_disks == 1", but it isn't critical, and
1025 * can wait until we do more sophisticated "is the drive
1026 * really dead" tests...
1027 */
1028 return;
1029 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1030 unsigned long flags;
1031 spin_lock_irqsave(&conf->device_lock, flags);
1032 mddev->degraded++;
1033 spin_unlock_irqrestore(&conf->device_lock, flags);
1034 /*
1035 * if recovery is running, make sure it aborts.
1036 */
1037 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1038 }
1039 set_bit(Faulty, &rdev->flags);
1040 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1041 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1042 "raid10: Operation continuing on %d devices.\n",
1043 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1044 }
1045
1046 static void print_conf(conf_t *conf)
1047 {
1048 int i;
1049 mirror_info_t *tmp;
1050
1051 printk("RAID10 conf printout:\n");
1052 if (!conf) {
1053 printk("(!conf)\n");
1054 return;
1055 }
1056 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1057 conf->raid_disks);
1058
1059 for (i = 0; i < conf->raid_disks; i++) {
1060 char b[BDEVNAME_SIZE];
1061 tmp = conf->mirrors + i;
1062 if (tmp->rdev)
1063 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1064 i, !test_bit(In_sync, &tmp->rdev->flags),
1065 !test_bit(Faulty, &tmp->rdev->flags),
1066 bdevname(tmp->rdev->bdev,b));
1067 }
1068 }
1069
1070 static void close_sync(conf_t *conf)
1071 {
1072 wait_barrier(conf);
1073 allow_barrier(conf);
1074
1075 mempool_destroy(conf->r10buf_pool);
1076 conf->r10buf_pool = NULL;
1077 }
1078
1079 /* check if there are enough drives for
1080 * every block to appear on atleast one
1081 */
1082 static int enough(conf_t *conf)
1083 {
1084 int first = 0;
1085
1086 do {
1087 int n = conf->copies;
1088 int cnt = 0;
1089 while (n--) {
1090 if (conf->mirrors[first].rdev)
1091 cnt++;
1092 first = (first+1) % conf->raid_disks;
1093 }
1094 if (cnt == 0)
1095 return 0;
1096 } while (first != 0);
1097 return 1;
1098 }
1099
1100 static int raid10_spare_active(mddev_t *mddev)
1101 {
1102 int i;
1103 conf_t *conf = mddev->private;
1104 mirror_info_t *tmp;
1105
1106 /*
1107 * Find all non-in_sync disks within the RAID10 configuration
1108 * and mark them in_sync
1109 */
1110 for (i = 0; i < conf->raid_disks; i++) {
1111 tmp = conf->mirrors + i;
1112 if (tmp->rdev
1113 && !test_bit(Faulty, &tmp->rdev->flags)
1114 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1115 unsigned long flags;
1116 spin_lock_irqsave(&conf->device_lock, flags);
1117 mddev->degraded--;
1118 spin_unlock_irqrestore(&conf->device_lock, flags);
1119 }
1120 }
1121
1122 print_conf(conf);
1123 return 0;
1124 }
1125
1126
1127 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1128 {
1129 conf_t *conf = mddev->private;
1130 int err = -EEXIST;
1131 int mirror;
1132 mirror_info_t *p;
1133 int first = 0;
1134 int last = mddev->raid_disks - 1;
1135
1136 if (mddev->recovery_cp < MaxSector)
1137 /* only hot-add to in-sync arrays, as recovery is
1138 * very different from resync
1139 */
1140 return -EBUSY;
1141 if (!enough(conf))
1142 return -EINVAL;
1143
1144 if (rdev->raid_disk >= 0)
1145 first = last = rdev->raid_disk;
1146
1147 if (rdev->saved_raid_disk >= 0 &&
1148 rdev->saved_raid_disk >= first &&
1149 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1150 mirror = rdev->saved_raid_disk;
1151 else
1152 mirror = first;
1153 for ( ; mirror <= last ; mirror++)
1154 if ( !(p=conf->mirrors+mirror)->rdev) {
1155
1156 disk_stack_limits(mddev->gendisk, rdev->bdev,
1157 rdev->data_offset << 9);
1158 /* as we don't honour merge_bvec_fn, we must never risk
1159 * violating it, so limit ->max_sector to one PAGE, as
1160 * a one page request is never in violation.
1161 */
1162 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1163 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
1164 blk_queue_max_hw_sectors(mddev->queue, PAGE_SIZE>>9);
1165
1166 p->head_position = 0;
1167 rdev->raid_disk = mirror;
1168 err = 0;
1169 if (rdev->saved_raid_disk != mirror)
1170 conf->fullsync = 1;
1171 rcu_assign_pointer(p->rdev, rdev);
1172 break;
1173 }
1174
1175 md_integrity_add_rdev(rdev, mddev);
1176 print_conf(conf);
1177 return err;
1178 }
1179
1180 static int raid10_remove_disk(mddev_t *mddev, int number)
1181 {
1182 conf_t *conf = mddev->private;
1183 int err = 0;
1184 mdk_rdev_t *rdev;
1185 mirror_info_t *p = conf->mirrors+ number;
1186
1187 print_conf(conf);
1188 rdev = p->rdev;
1189 if (rdev) {
1190 if (test_bit(In_sync, &rdev->flags) ||
1191 atomic_read(&rdev->nr_pending)) {
1192 err = -EBUSY;
1193 goto abort;
1194 }
1195 /* Only remove faulty devices in recovery
1196 * is not possible.
1197 */
1198 if (!test_bit(Faulty, &rdev->flags) &&
1199 enough(conf)) {
1200 err = -EBUSY;
1201 goto abort;
1202 }
1203 p->rdev = NULL;
1204 synchronize_rcu();
1205 if (atomic_read(&rdev->nr_pending)) {
1206 /* lost the race, try later */
1207 err = -EBUSY;
1208 p->rdev = rdev;
1209 goto abort;
1210 }
1211 md_integrity_register(mddev);
1212 }
1213 abort:
1214
1215 print_conf(conf);
1216 return err;
1217 }
1218
1219
1220 static void end_sync_read(struct bio *bio, int error)
1221 {
1222 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1223 conf_t *conf = r10_bio->mddev->private;
1224 int i,d;
1225
1226 for (i=0; i<conf->copies; i++)
1227 if (r10_bio->devs[i].bio == bio)
1228 break;
1229 BUG_ON(i == conf->copies);
1230 update_head_pos(i, r10_bio);
1231 d = r10_bio->devs[i].devnum;
1232
1233 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1234 set_bit(R10BIO_Uptodate, &r10_bio->state);
1235 else {
1236 atomic_add(r10_bio->sectors,
1237 &conf->mirrors[d].rdev->corrected_errors);
1238 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1239 md_error(r10_bio->mddev,
1240 conf->mirrors[d].rdev);
1241 }
1242
1243 /* for reconstruct, we always reschedule after a read.
1244 * for resync, only after all reads
1245 */
1246 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1247 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1248 atomic_dec_and_test(&r10_bio->remaining)) {
1249 /* we have read all the blocks,
1250 * do the comparison in process context in raid10d
1251 */
1252 reschedule_retry(r10_bio);
1253 }
1254 }
1255
1256 static void end_sync_write(struct bio *bio, int error)
1257 {
1258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1259 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1260 mddev_t *mddev = r10_bio->mddev;
1261 conf_t *conf = mddev->private;
1262 int i,d;
1263
1264 for (i = 0; i < conf->copies; i++)
1265 if (r10_bio->devs[i].bio == bio)
1266 break;
1267 d = r10_bio->devs[i].devnum;
1268
1269 if (!uptodate)
1270 md_error(mddev, conf->mirrors[d].rdev);
1271
1272 update_head_pos(i, r10_bio);
1273
1274 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1275 while (atomic_dec_and_test(&r10_bio->remaining)) {
1276 if (r10_bio->master_bio == NULL) {
1277 /* the primary of several recovery bios */
1278 sector_t s = r10_bio->sectors;
1279 put_buf(r10_bio);
1280 md_done_sync(mddev, s, 1);
1281 break;
1282 } else {
1283 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1284 put_buf(r10_bio);
1285 r10_bio = r10_bio2;
1286 }
1287 }
1288 }
1289
1290 /*
1291 * Note: sync and recover and handled very differently for raid10
1292 * This code is for resync.
1293 * For resync, we read through virtual addresses and read all blocks.
1294 * If there is any error, we schedule a write. The lowest numbered
1295 * drive is authoritative.
1296 * However requests come for physical address, so we need to map.
1297 * For every physical address there are raid_disks/copies virtual addresses,
1298 * which is always are least one, but is not necessarly an integer.
1299 * This means that a physical address can span multiple chunks, so we may
1300 * have to submit multiple io requests for a single sync request.
1301 */
1302 /*
1303 * We check if all blocks are in-sync and only write to blocks that
1304 * aren't in sync
1305 */
1306 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1307 {
1308 conf_t *conf = mddev->private;
1309 int i, first;
1310 struct bio *tbio, *fbio;
1311
1312 atomic_set(&r10_bio->remaining, 1);
1313
1314 /* find the first device with a block */
1315 for (i=0; i<conf->copies; i++)
1316 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1317 break;
1318
1319 if (i == conf->copies)
1320 goto done;
1321
1322 first = i;
1323 fbio = r10_bio->devs[i].bio;
1324
1325 /* now find blocks with errors */
1326 for (i=0 ; i < conf->copies ; i++) {
1327 int j, d;
1328 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1329
1330 tbio = r10_bio->devs[i].bio;
1331
1332 if (tbio->bi_end_io != end_sync_read)
1333 continue;
1334 if (i == first)
1335 continue;
1336 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1337 /* We know that the bi_io_vec layout is the same for
1338 * both 'first' and 'i', so we just compare them.
1339 * All vec entries are PAGE_SIZE;
1340 */
1341 for (j = 0; j < vcnt; j++)
1342 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1343 page_address(tbio->bi_io_vec[j].bv_page),
1344 PAGE_SIZE))
1345 break;
1346 if (j == vcnt)
1347 continue;
1348 mddev->resync_mismatches += r10_bio->sectors;
1349 }
1350 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1351 /* Don't fix anything. */
1352 continue;
1353 /* Ok, we need to write this bio
1354 * First we need to fixup bv_offset, bv_len and
1355 * bi_vecs, as the read request might have corrupted these
1356 */
1357 tbio->bi_vcnt = vcnt;
1358 tbio->bi_size = r10_bio->sectors << 9;
1359 tbio->bi_idx = 0;
1360 tbio->bi_phys_segments = 0;
1361 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1362 tbio->bi_flags |= 1 << BIO_UPTODATE;
1363 tbio->bi_next = NULL;
1364 tbio->bi_rw = WRITE;
1365 tbio->bi_private = r10_bio;
1366 tbio->bi_sector = r10_bio->devs[i].addr;
1367
1368 for (j=0; j < vcnt ; j++) {
1369 tbio->bi_io_vec[j].bv_offset = 0;
1370 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1371
1372 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1373 page_address(fbio->bi_io_vec[j].bv_page),
1374 PAGE_SIZE);
1375 }
1376 tbio->bi_end_io = end_sync_write;
1377
1378 d = r10_bio->devs[i].devnum;
1379 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1380 atomic_inc(&r10_bio->remaining);
1381 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1382
1383 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1384 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1385 generic_make_request(tbio);
1386 }
1387
1388 done:
1389 if (atomic_dec_and_test(&r10_bio->remaining)) {
1390 md_done_sync(mddev, r10_bio->sectors, 1);
1391 put_buf(r10_bio);
1392 }
1393 }
1394
1395 /*
1396 * Now for the recovery code.
1397 * Recovery happens across physical sectors.
1398 * We recover all non-is_sync drives by finding the virtual address of
1399 * each, and then choose a working drive that also has that virt address.
1400 * There is a separate r10_bio for each non-in_sync drive.
1401 * Only the first two slots are in use. The first for reading,
1402 * The second for writing.
1403 *
1404 */
1405
1406 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1407 {
1408 conf_t *conf = mddev->private;
1409 int i, d;
1410 struct bio *bio, *wbio;
1411
1412
1413 /* move the pages across to the second bio
1414 * and submit the write request
1415 */
1416 bio = r10_bio->devs[0].bio;
1417 wbio = r10_bio->devs[1].bio;
1418 for (i=0; i < wbio->bi_vcnt; i++) {
1419 struct page *p = bio->bi_io_vec[i].bv_page;
1420 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1421 wbio->bi_io_vec[i].bv_page = p;
1422 }
1423 d = r10_bio->devs[1].devnum;
1424
1425 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1426 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1427 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1428 generic_make_request(wbio);
1429 else
1430 bio_endio(wbio, -EIO);
1431 }
1432
1433
1434 /*
1435 * Used by fix_read_error() to decay the per rdev read_errors.
1436 * We halve the read error count for every hour that has elapsed
1437 * since the last recorded read error.
1438 *
1439 */
1440 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1441 {
1442 struct timespec cur_time_mon;
1443 unsigned long hours_since_last;
1444 unsigned int read_errors = atomic_read(&rdev->read_errors);
1445
1446 ktime_get_ts(&cur_time_mon);
1447
1448 if (rdev->last_read_error.tv_sec == 0 &&
1449 rdev->last_read_error.tv_nsec == 0) {
1450 /* first time we've seen a read error */
1451 rdev->last_read_error = cur_time_mon;
1452 return;
1453 }
1454
1455 hours_since_last = (cur_time_mon.tv_sec -
1456 rdev->last_read_error.tv_sec) / 3600;
1457
1458 rdev->last_read_error = cur_time_mon;
1459
1460 /*
1461 * if hours_since_last is > the number of bits in read_errors
1462 * just set read errors to 0. We do this to avoid
1463 * overflowing the shift of read_errors by hours_since_last.
1464 */
1465 if (hours_since_last >= 8 * sizeof(read_errors))
1466 atomic_set(&rdev->read_errors, 0);
1467 else
1468 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1469 }
1470
1471 /*
1472 * This is a kernel thread which:
1473 *
1474 * 1. Retries failed read operations on working mirrors.
1475 * 2. Updates the raid superblock when problems encounter.
1476 * 3. Performs writes following reads for array synchronising.
1477 */
1478
1479 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1480 {
1481 int sect = 0; /* Offset from r10_bio->sector */
1482 int sectors = r10_bio->sectors;
1483 mdk_rdev_t*rdev;
1484 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1485
1486 rcu_read_lock();
1487 {
1488 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1489 char b[BDEVNAME_SIZE];
1490 int cur_read_error_count = 0;
1491
1492 rdev = rcu_dereference(conf->mirrors[d].rdev);
1493 bdevname(rdev->bdev, b);
1494
1495 if (test_bit(Faulty, &rdev->flags)) {
1496 rcu_read_unlock();
1497 /* drive has already been failed, just ignore any
1498 more fix_read_error() attempts */
1499 return;
1500 }
1501
1502 check_decay_read_errors(mddev, rdev);
1503 atomic_inc(&rdev->read_errors);
1504 cur_read_error_count = atomic_read(&rdev->read_errors);
1505 if (cur_read_error_count > max_read_errors) {
1506 rcu_read_unlock();
1507 printk(KERN_NOTICE
1508 "raid10: %s: Raid device exceeded "
1509 "read_error threshold "
1510 "[cur %d:max %d]\n",
1511 b, cur_read_error_count, max_read_errors);
1512 printk(KERN_NOTICE
1513 "raid10: %s: Failing raid "
1514 "device\n", b);
1515 md_error(mddev, conf->mirrors[d].rdev);
1516 return;
1517 }
1518 }
1519 rcu_read_unlock();
1520
1521 while(sectors) {
1522 int s = sectors;
1523 int sl = r10_bio->read_slot;
1524 int success = 0;
1525 int start;
1526
1527 if (s > (PAGE_SIZE>>9))
1528 s = PAGE_SIZE >> 9;
1529
1530 rcu_read_lock();
1531 do {
1532 int d = r10_bio->devs[sl].devnum;
1533 rdev = rcu_dereference(conf->mirrors[d].rdev);
1534 if (rdev &&
1535 test_bit(In_sync, &rdev->flags)) {
1536 atomic_inc(&rdev->nr_pending);
1537 rcu_read_unlock();
1538 success = sync_page_io(rdev->bdev,
1539 r10_bio->devs[sl].addr +
1540 sect + rdev->data_offset,
1541 s<<9,
1542 conf->tmppage, READ);
1543 rdev_dec_pending(rdev, mddev);
1544 rcu_read_lock();
1545 if (success)
1546 break;
1547 }
1548 sl++;
1549 if (sl == conf->copies)
1550 sl = 0;
1551 } while (!success && sl != r10_bio->read_slot);
1552 rcu_read_unlock();
1553
1554 if (!success) {
1555 /* Cannot read from anywhere -- bye bye array */
1556 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1557 md_error(mddev, conf->mirrors[dn].rdev);
1558 break;
1559 }
1560
1561 start = sl;
1562 /* write it back and re-read */
1563 rcu_read_lock();
1564 while (sl != r10_bio->read_slot) {
1565 char b[BDEVNAME_SIZE];
1566 int d;
1567 if (sl==0)
1568 sl = conf->copies;
1569 sl--;
1570 d = r10_bio->devs[sl].devnum;
1571 rdev = rcu_dereference(conf->mirrors[d].rdev);
1572 if (rdev &&
1573 test_bit(In_sync, &rdev->flags)) {
1574 atomic_inc(&rdev->nr_pending);
1575 rcu_read_unlock();
1576 atomic_add(s, &rdev->corrected_errors);
1577 if (sync_page_io(rdev->bdev,
1578 r10_bio->devs[sl].addr +
1579 sect + rdev->data_offset,
1580 s<<9, conf->tmppage, WRITE)
1581 == 0) {
1582 /* Well, this device is dead */
1583 printk(KERN_NOTICE
1584 "raid10:%s: read correction "
1585 "write failed"
1586 " (%d sectors at %llu on %s)\n",
1587 mdname(mddev), s,
1588 (unsigned long long)(sect+
1589 rdev->data_offset),
1590 bdevname(rdev->bdev, b));
1591 printk(KERN_NOTICE "raid10:%s: failing "
1592 "drive\n",
1593 bdevname(rdev->bdev, b));
1594 md_error(mddev, rdev);
1595 }
1596 rdev_dec_pending(rdev, mddev);
1597 rcu_read_lock();
1598 }
1599 }
1600 sl = start;
1601 while (sl != r10_bio->read_slot) {
1602 int d;
1603 if (sl==0)
1604 sl = conf->copies;
1605 sl--;
1606 d = r10_bio->devs[sl].devnum;
1607 rdev = rcu_dereference(conf->mirrors[d].rdev);
1608 if (rdev &&
1609 test_bit(In_sync, &rdev->flags)) {
1610 char b[BDEVNAME_SIZE];
1611 atomic_inc(&rdev->nr_pending);
1612 rcu_read_unlock();
1613 if (sync_page_io(rdev->bdev,
1614 r10_bio->devs[sl].addr +
1615 sect + rdev->data_offset,
1616 s<<9, conf->tmppage,
1617 READ) == 0) {
1618 /* Well, this device is dead */
1619 printk(KERN_NOTICE
1620 "raid10:%s: unable to read back "
1621 "corrected sectors"
1622 " (%d sectors at %llu on %s)\n",
1623 mdname(mddev), s,
1624 (unsigned long long)(sect+
1625 rdev->data_offset),
1626 bdevname(rdev->bdev, b));
1627 printk(KERN_NOTICE "raid10:%s: failing drive\n",
1628 bdevname(rdev->bdev, b));
1629
1630 md_error(mddev, rdev);
1631 } else {
1632 printk(KERN_INFO
1633 "raid10:%s: read error corrected"
1634 " (%d sectors at %llu on %s)\n",
1635 mdname(mddev), s,
1636 (unsigned long long)(sect+
1637 rdev->data_offset),
1638 bdevname(rdev->bdev, b));
1639 }
1640
1641 rdev_dec_pending(rdev, mddev);
1642 rcu_read_lock();
1643 }
1644 }
1645 rcu_read_unlock();
1646
1647 sectors -= s;
1648 sect += s;
1649 }
1650 }
1651
1652 static void raid10d(mddev_t *mddev)
1653 {
1654 r10bio_t *r10_bio;
1655 struct bio *bio;
1656 unsigned long flags;
1657 conf_t *conf = mddev->private;
1658 struct list_head *head = &conf->retry_list;
1659 int unplug=0;
1660 mdk_rdev_t *rdev;
1661
1662 md_check_recovery(mddev);
1663
1664 for (;;) {
1665 char b[BDEVNAME_SIZE];
1666
1667 unplug += flush_pending_writes(conf);
1668
1669 spin_lock_irqsave(&conf->device_lock, flags);
1670 if (list_empty(head)) {
1671 spin_unlock_irqrestore(&conf->device_lock, flags);
1672 break;
1673 }
1674 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1675 list_del(head->prev);
1676 conf->nr_queued--;
1677 spin_unlock_irqrestore(&conf->device_lock, flags);
1678
1679 mddev = r10_bio->mddev;
1680 conf = mddev->private;
1681 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1682 sync_request_write(mddev, r10_bio);
1683 unplug = 1;
1684 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1685 recovery_request_write(mddev, r10_bio);
1686 unplug = 1;
1687 } else {
1688 int mirror;
1689 /* we got a read error. Maybe the drive is bad. Maybe just
1690 * the block and we can fix it.
1691 * We freeze all other IO, and try reading the block from
1692 * other devices. When we find one, we re-write
1693 * and check it that fixes the read error.
1694 * This is all done synchronously while the array is
1695 * frozen.
1696 */
1697 if (mddev->ro == 0) {
1698 freeze_array(conf);
1699 fix_read_error(conf, mddev, r10_bio);
1700 unfreeze_array(conf);
1701 }
1702
1703 bio = r10_bio->devs[r10_bio->read_slot].bio;
1704 r10_bio->devs[r10_bio->read_slot].bio =
1705 mddev->ro ? IO_BLOCKED : NULL;
1706 mirror = read_balance(conf, r10_bio);
1707 if (mirror == -1) {
1708 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1709 " read error for block %llu\n",
1710 bdevname(bio->bi_bdev,b),
1711 (unsigned long long)r10_bio->sector);
1712 raid_end_bio_io(r10_bio);
1713 bio_put(bio);
1714 } else {
1715 const bool do_sync = bio_rw_flagged(r10_bio->master_bio, BIO_RW_SYNCIO);
1716 bio_put(bio);
1717 rdev = conf->mirrors[mirror].rdev;
1718 if (printk_ratelimit())
1719 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1720 " another mirror\n",
1721 bdevname(rdev->bdev,b),
1722 (unsigned long long)r10_bio->sector);
1723 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1724 r10_bio->devs[r10_bio->read_slot].bio = bio;
1725 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1726 + rdev->data_offset;
1727 bio->bi_bdev = rdev->bdev;
1728 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1729 bio->bi_private = r10_bio;
1730 bio->bi_end_io = raid10_end_read_request;
1731 unplug = 1;
1732 generic_make_request(bio);
1733 }
1734 }
1735 cond_resched();
1736 }
1737 if (unplug)
1738 unplug_slaves(mddev);
1739 }
1740
1741
1742 static int init_resync(conf_t *conf)
1743 {
1744 int buffs;
1745
1746 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1747 BUG_ON(conf->r10buf_pool);
1748 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1749 if (!conf->r10buf_pool)
1750 return -ENOMEM;
1751 conf->next_resync = 0;
1752 return 0;
1753 }
1754
1755 /*
1756 * perform a "sync" on one "block"
1757 *
1758 * We need to make sure that no normal I/O request - particularly write
1759 * requests - conflict with active sync requests.
1760 *
1761 * This is achieved by tracking pending requests and a 'barrier' concept
1762 * that can be installed to exclude normal IO requests.
1763 *
1764 * Resync and recovery are handled very differently.
1765 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1766 *
1767 * For resync, we iterate over virtual addresses, read all copies,
1768 * and update if there are differences. If only one copy is live,
1769 * skip it.
1770 * For recovery, we iterate over physical addresses, read a good
1771 * value for each non-in_sync drive, and over-write.
1772 *
1773 * So, for recovery we may have several outstanding complex requests for a
1774 * given address, one for each out-of-sync device. We model this by allocating
1775 * a number of r10_bio structures, one for each out-of-sync device.
1776 * As we setup these structures, we collect all bio's together into a list
1777 * which we then process collectively to add pages, and then process again
1778 * to pass to generic_make_request.
1779 *
1780 * The r10_bio structures are linked using a borrowed master_bio pointer.
1781 * This link is counted in ->remaining. When the r10_bio that points to NULL
1782 * has its remaining count decremented to 0, the whole complex operation
1783 * is complete.
1784 *
1785 */
1786
1787 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1788 {
1789 conf_t *conf = mddev->private;
1790 r10bio_t *r10_bio;
1791 struct bio *biolist = NULL, *bio;
1792 sector_t max_sector, nr_sectors;
1793 int disk;
1794 int i;
1795 int max_sync;
1796 int sync_blocks;
1797
1798 sector_t sectors_skipped = 0;
1799 int chunks_skipped = 0;
1800
1801 if (!conf->r10buf_pool)
1802 if (init_resync(conf))
1803 return 0;
1804
1805 skipped:
1806 max_sector = mddev->dev_sectors;
1807 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1808 max_sector = mddev->resync_max_sectors;
1809 if (sector_nr >= max_sector) {
1810 /* If we aborted, we need to abort the
1811 * sync on the 'current' bitmap chucks (there can
1812 * be several when recovering multiple devices).
1813 * as we may have started syncing it but not finished.
1814 * We can find the current address in
1815 * mddev->curr_resync, but for recovery,
1816 * we need to convert that to several
1817 * virtual addresses.
1818 */
1819 if (mddev->curr_resync < max_sector) { /* aborted */
1820 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1821 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1822 &sync_blocks, 1);
1823 else for (i=0; i<conf->raid_disks; i++) {
1824 sector_t sect =
1825 raid10_find_virt(conf, mddev->curr_resync, i);
1826 bitmap_end_sync(mddev->bitmap, sect,
1827 &sync_blocks, 1);
1828 }
1829 } else /* completed sync */
1830 conf->fullsync = 0;
1831
1832 bitmap_close_sync(mddev->bitmap);
1833 close_sync(conf);
1834 *skipped = 1;
1835 return sectors_skipped;
1836 }
1837 if (chunks_skipped >= conf->raid_disks) {
1838 /* if there has been nothing to do on any drive,
1839 * then there is nothing to do at all..
1840 */
1841 *skipped = 1;
1842 return (max_sector - sector_nr) + sectors_skipped;
1843 }
1844
1845 if (max_sector > mddev->resync_max)
1846 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1847
1848 /* make sure whole request will fit in a chunk - if chunks
1849 * are meaningful
1850 */
1851 if (conf->near_copies < conf->raid_disks &&
1852 max_sector > (sector_nr | conf->chunk_mask))
1853 max_sector = (sector_nr | conf->chunk_mask) + 1;
1854 /*
1855 * If there is non-resync activity waiting for us then
1856 * put in a delay to throttle resync.
1857 */
1858 if (!go_faster && conf->nr_waiting)
1859 msleep_interruptible(1000);
1860
1861 /* Again, very different code for resync and recovery.
1862 * Both must result in an r10bio with a list of bios that
1863 * have bi_end_io, bi_sector, bi_bdev set,
1864 * and bi_private set to the r10bio.
1865 * For recovery, we may actually create several r10bios
1866 * with 2 bios in each, that correspond to the bios in the main one.
1867 * In this case, the subordinate r10bios link back through a
1868 * borrowed master_bio pointer, and the counter in the master
1869 * includes a ref from each subordinate.
1870 */
1871 /* First, we decide what to do and set ->bi_end_io
1872 * To end_sync_read if we want to read, and
1873 * end_sync_write if we will want to write.
1874 */
1875
1876 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1877 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1878 /* recovery... the complicated one */
1879 int j, k;
1880 r10_bio = NULL;
1881
1882 for (i=0 ; i<conf->raid_disks; i++)
1883 if (conf->mirrors[i].rdev &&
1884 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1885 int still_degraded = 0;
1886 /* want to reconstruct this device */
1887 r10bio_t *rb2 = r10_bio;
1888 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1889 int must_sync;
1890 /* Unless we are doing a full sync, we only need
1891 * to recover the block if it is set in the bitmap
1892 */
1893 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1894 &sync_blocks, 1);
1895 if (sync_blocks < max_sync)
1896 max_sync = sync_blocks;
1897 if (!must_sync &&
1898 !conf->fullsync) {
1899 /* yep, skip the sync_blocks here, but don't assume
1900 * that there will never be anything to do here
1901 */
1902 chunks_skipped = -1;
1903 continue;
1904 }
1905
1906 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1907 raise_barrier(conf, rb2 != NULL);
1908 atomic_set(&r10_bio->remaining, 0);
1909
1910 r10_bio->master_bio = (struct bio*)rb2;
1911 if (rb2)
1912 atomic_inc(&rb2->remaining);
1913 r10_bio->mddev = mddev;
1914 set_bit(R10BIO_IsRecover, &r10_bio->state);
1915 r10_bio->sector = sect;
1916
1917 raid10_find_phys(conf, r10_bio);
1918
1919 /* Need to check if the array will still be
1920 * degraded
1921 */
1922 for (j=0; j<conf->raid_disks; j++)
1923 if (conf->mirrors[j].rdev == NULL ||
1924 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1925 still_degraded = 1;
1926 break;
1927 }
1928
1929 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1930 &sync_blocks, still_degraded);
1931
1932 for (j=0; j<conf->copies;j++) {
1933 int d = r10_bio->devs[j].devnum;
1934 if (conf->mirrors[d].rdev &&
1935 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1936 /* This is where we read from */
1937 bio = r10_bio->devs[0].bio;
1938 bio->bi_next = biolist;
1939 biolist = bio;
1940 bio->bi_private = r10_bio;
1941 bio->bi_end_io = end_sync_read;
1942 bio->bi_rw = READ;
1943 bio->bi_sector = r10_bio->devs[j].addr +
1944 conf->mirrors[d].rdev->data_offset;
1945 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1946 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1947 atomic_inc(&r10_bio->remaining);
1948 /* and we write to 'i' */
1949
1950 for (k=0; k<conf->copies; k++)
1951 if (r10_bio->devs[k].devnum == i)
1952 break;
1953 BUG_ON(k == conf->copies);
1954 bio = r10_bio->devs[1].bio;
1955 bio->bi_next = biolist;
1956 biolist = bio;
1957 bio->bi_private = r10_bio;
1958 bio->bi_end_io = end_sync_write;
1959 bio->bi_rw = WRITE;
1960 bio->bi_sector = r10_bio->devs[k].addr +
1961 conf->mirrors[i].rdev->data_offset;
1962 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1963
1964 r10_bio->devs[0].devnum = d;
1965 r10_bio->devs[1].devnum = i;
1966
1967 break;
1968 }
1969 }
1970 if (j == conf->copies) {
1971 /* Cannot recover, so abort the recovery */
1972 put_buf(r10_bio);
1973 if (rb2)
1974 atomic_dec(&rb2->remaining);
1975 r10_bio = rb2;
1976 if (!test_and_set_bit(MD_RECOVERY_INTR,
1977 &mddev->recovery))
1978 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1979 mdname(mddev));
1980 break;
1981 }
1982 }
1983 if (biolist == NULL) {
1984 while (r10_bio) {
1985 r10bio_t *rb2 = r10_bio;
1986 r10_bio = (r10bio_t*) rb2->master_bio;
1987 rb2->master_bio = NULL;
1988 put_buf(rb2);
1989 }
1990 goto giveup;
1991 }
1992 } else {
1993 /* resync. Schedule a read for every block at this virt offset */
1994 int count = 0;
1995
1996 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1997
1998 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1999 &sync_blocks, mddev->degraded) &&
2000 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2001 /* We can skip this block */
2002 *skipped = 1;
2003 return sync_blocks + sectors_skipped;
2004 }
2005 if (sync_blocks < max_sync)
2006 max_sync = sync_blocks;
2007 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2008
2009 r10_bio->mddev = mddev;
2010 atomic_set(&r10_bio->remaining, 0);
2011 raise_barrier(conf, 0);
2012 conf->next_resync = sector_nr;
2013
2014 r10_bio->master_bio = NULL;
2015 r10_bio->sector = sector_nr;
2016 set_bit(R10BIO_IsSync, &r10_bio->state);
2017 raid10_find_phys(conf, r10_bio);
2018 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2019
2020 for (i=0; i<conf->copies; i++) {
2021 int d = r10_bio->devs[i].devnum;
2022 bio = r10_bio->devs[i].bio;
2023 bio->bi_end_io = NULL;
2024 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2025 if (conf->mirrors[d].rdev == NULL ||
2026 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2027 continue;
2028 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2029 atomic_inc(&r10_bio->remaining);
2030 bio->bi_next = biolist;
2031 biolist = bio;
2032 bio->bi_private = r10_bio;
2033 bio->bi_end_io = end_sync_read;
2034 bio->bi_rw = READ;
2035 bio->bi_sector = r10_bio->devs[i].addr +
2036 conf->mirrors[d].rdev->data_offset;
2037 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2038 count++;
2039 }
2040
2041 if (count < 2) {
2042 for (i=0; i<conf->copies; i++) {
2043 int d = r10_bio->devs[i].devnum;
2044 if (r10_bio->devs[i].bio->bi_end_io)
2045 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
2046 }
2047 put_buf(r10_bio);
2048 biolist = NULL;
2049 goto giveup;
2050 }
2051 }
2052
2053 for (bio = biolist; bio ; bio=bio->bi_next) {
2054
2055 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2056 if (bio->bi_end_io)
2057 bio->bi_flags |= 1 << BIO_UPTODATE;
2058 bio->bi_vcnt = 0;
2059 bio->bi_idx = 0;
2060 bio->bi_phys_segments = 0;
2061 bio->bi_size = 0;
2062 }
2063
2064 nr_sectors = 0;
2065 if (sector_nr + max_sync < max_sector)
2066 max_sector = sector_nr + max_sync;
2067 do {
2068 struct page *page;
2069 int len = PAGE_SIZE;
2070 disk = 0;
2071 if (sector_nr + (len>>9) > max_sector)
2072 len = (max_sector - sector_nr) << 9;
2073 if (len == 0)
2074 break;
2075 for (bio= biolist ; bio ; bio=bio->bi_next) {
2076 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2077 if (bio_add_page(bio, page, len, 0) == 0) {
2078 /* stop here */
2079 struct bio *bio2;
2080 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2081 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
2082 /* remove last page from this bio */
2083 bio2->bi_vcnt--;
2084 bio2->bi_size -= len;
2085 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2086 }
2087 goto bio_full;
2088 }
2089 disk = i;
2090 }
2091 nr_sectors += len>>9;
2092 sector_nr += len>>9;
2093 } while (biolist->bi_vcnt < RESYNC_PAGES);
2094 bio_full:
2095 r10_bio->sectors = nr_sectors;
2096
2097 while (biolist) {
2098 bio = biolist;
2099 biolist = biolist->bi_next;
2100
2101 bio->bi_next = NULL;
2102 r10_bio = bio->bi_private;
2103 r10_bio->sectors = nr_sectors;
2104
2105 if (bio->bi_end_io == end_sync_read) {
2106 md_sync_acct(bio->bi_bdev, nr_sectors);
2107 generic_make_request(bio);
2108 }
2109 }
2110
2111 if (sectors_skipped)
2112 /* pretend they weren't skipped, it makes
2113 * no important difference in this case
2114 */
2115 md_done_sync(mddev, sectors_skipped, 1);
2116
2117 return sectors_skipped + nr_sectors;
2118 giveup:
2119 /* There is nowhere to write, so all non-sync
2120 * drives must be failed, so try the next chunk...
2121 */
2122 if (sector_nr + max_sync < max_sector)
2123 max_sector = sector_nr + max_sync;
2124
2125 sectors_skipped += (max_sector - sector_nr);
2126 chunks_skipped ++;
2127 sector_nr = max_sector;
2128 goto skipped;
2129 }
2130
2131 static sector_t
2132 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2133 {
2134 sector_t size;
2135 conf_t *conf = mddev->private;
2136
2137 if (!raid_disks)
2138 raid_disks = mddev->raid_disks;
2139 if (!sectors)
2140 sectors = mddev->dev_sectors;
2141
2142 size = sectors >> conf->chunk_shift;
2143 sector_div(size, conf->far_copies);
2144 size = size * raid_disks;
2145 sector_div(size, conf->near_copies);
2146
2147 return size << conf->chunk_shift;
2148 }
2149
2150 static int run(mddev_t *mddev)
2151 {
2152 conf_t *conf;
2153 int i, disk_idx, chunk_size;
2154 mirror_info_t *disk;
2155 mdk_rdev_t *rdev;
2156 int nc, fc, fo;
2157 sector_t stride, size;
2158
2159 if (mddev->chunk_sectors < (PAGE_SIZE >> 9) ||
2160 !is_power_of_2(mddev->chunk_sectors)) {
2161 printk(KERN_ERR "md/raid10: chunk size must be "
2162 "at least PAGE_SIZE(%ld) and be a power of 2.\n", PAGE_SIZE);
2163 return -EINVAL;
2164 }
2165
2166 nc = mddev->layout & 255;
2167 fc = (mddev->layout >> 8) & 255;
2168 fo = mddev->layout & (1<<16);
2169 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2170 (mddev->layout >> 17)) {
2171 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2172 mdname(mddev), mddev->layout);
2173 goto out;
2174 }
2175 /*
2176 * copy the already verified devices into our private RAID10
2177 * bookkeeping area. [whatever we allocate in run(),
2178 * should be freed in stop()]
2179 */
2180 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2181 mddev->private = conf;
2182 if (!conf) {
2183 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2184 mdname(mddev));
2185 goto out;
2186 }
2187 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2188 GFP_KERNEL);
2189 if (!conf->mirrors) {
2190 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2191 mdname(mddev));
2192 goto out_free_conf;
2193 }
2194
2195 conf->tmppage = alloc_page(GFP_KERNEL);
2196 if (!conf->tmppage)
2197 goto out_free_conf;
2198
2199 conf->raid_disks = mddev->raid_disks;
2200 conf->near_copies = nc;
2201 conf->far_copies = fc;
2202 conf->copies = nc*fc;
2203 conf->far_offset = fo;
2204 conf->chunk_mask = mddev->chunk_sectors - 1;
2205 conf->chunk_shift = ffz(~mddev->chunk_sectors);
2206 size = mddev->dev_sectors >> conf->chunk_shift;
2207 sector_div(size, fc);
2208 size = size * conf->raid_disks;
2209 sector_div(size, nc);
2210 /* 'size' is now the number of chunks in the array */
2211 /* calculate "used chunks per device" in 'stride' */
2212 stride = size * conf->copies;
2213
2214 /* We need to round up when dividing by raid_disks to
2215 * get the stride size.
2216 */
2217 stride += conf->raid_disks - 1;
2218 sector_div(stride, conf->raid_disks);
2219 mddev->dev_sectors = stride << conf->chunk_shift;
2220
2221 if (fo)
2222 stride = 1;
2223 else
2224 sector_div(stride, fc);
2225 conf->stride = stride << conf->chunk_shift;
2226
2227 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2228 r10bio_pool_free, conf);
2229 if (!conf->r10bio_pool) {
2230 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2231 mdname(mddev));
2232 goto out_free_conf;
2233 }
2234
2235 conf->mddev = mddev;
2236 spin_lock_init(&conf->device_lock);
2237 mddev->queue->queue_lock = &conf->device_lock;
2238
2239 chunk_size = mddev->chunk_sectors << 9;
2240 blk_queue_io_min(mddev->queue, chunk_size);
2241 if (conf->raid_disks % conf->near_copies)
2242 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2243 else
2244 blk_queue_io_opt(mddev->queue, chunk_size *
2245 (conf->raid_disks / conf->near_copies));
2246
2247 list_for_each_entry(rdev, &mddev->disks, same_set) {
2248 disk_idx = rdev->raid_disk;
2249 if (disk_idx >= mddev->raid_disks
2250 || disk_idx < 0)
2251 continue;
2252 disk = conf->mirrors + disk_idx;
2253
2254 disk->rdev = rdev;
2255 disk_stack_limits(mddev->gendisk, rdev->bdev,
2256 rdev->data_offset << 9);
2257 /* as we don't honour merge_bvec_fn, we must never risk
2258 * violating it, so limit ->max_sector to one PAGE, as
2259 * a one page request is never in violation.
2260 */
2261 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2262 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
2263 blk_queue_max_hw_sectors(mddev->queue, PAGE_SIZE>>9);
2264
2265 disk->head_position = 0;
2266 }
2267 INIT_LIST_HEAD(&conf->retry_list);
2268
2269 spin_lock_init(&conf->resync_lock);
2270 init_waitqueue_head(&conf->wait_barrier);
2271
2272 /* need to check that every block has at least one working mirror */
2273 if (!enough(conf)) {
2274 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2275 mdname(mddev));
2276 goto out_free_conf;
2277 }
2278
2279 mddev->degraded = 0;
2280 for (i = 0; i < conf->raid_disks; i++) {
2281
2282 disk = conf->mirrors + i;
2283
2284 if (!disk->rdev ||
2285 !test_bit(In_sync, &disk->rdev->flags)) {
2286 disk->head_position = 0;
2287 mddev->degraded++;
2288 if (disk->rdev)
2289 conf->fullsync = 1;
2290 }
2291 }
2292
2293
2294 mddev->thread = md_register_thread(raid10d, mddev, NULL);
2295 if (!mddev->thread) {
2296 printk(KERN_ERR
2297 "raid10: couldn't allocate thread for %s\n",
2298 mdname(mddev));
2299 goto out_free_conf;
2300 }
2301
2302 if (mddev->recovery_cp != MaxSector)
2303 printk(KERN_NOTICE "raid10: %s is not clean"
2304 " -- starting background reconstruction\n",
2305 mdname(mddev));
2306 printk(KERN_INFO
2307 "raid10: raid set %s active with %d out of %d devices\n",
2308 mdname(mddev), mddev->raid_disks - mddev->degraded,
2309 mddev->raid_disks);
2310 /*
2311 * Ok, everything is just fine now
2312 */
2313 md_set_array_sectors(mddev, raid10_size(mddev, 0, 0));
2314 mddev->resync_max_sectors = raid10_size(mddev, 0, 0);
2315
2316 mddev->queue->unplug_fn = raid10_unplug;
2317 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2318 mddev->queue->backing_dev_info.congested_data = mddev;
2319
2320 /* Calculate max read-ahead size.
2321 * We need to readahead at least twice a whole stripe....
2322 * maybe...
2323 */
2324 {
2325 int stripe = conf->raid_disks *
2326 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2327 stripe /= conf->near_copies;
2328 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2329 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2330 }
2331
2332 if (conf->near_copies < mddev->raid_disks)
2333 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2334 md_integrity_register(mddev);
2335 return 0;
2336
2337 out_free_conf:
2338 if (conf->r10bio_pool)
2339 mempool_destroy(conf->r10bio_pool);
2340 safe_put_page(conf->tmppage);
2341 kfree(conf->mirrors);
2342 kfree(conf);
2343 mddev->private = NULL;
2344 out:
2345 return -EIO;
2346 }
2347
2348 static int stop(mddev_t *mddev)
2349 {
2350 conf_t *conf = mddev->private;
2351
2352 raise_barrier(conf, 0);
2353 lower_barrier(conf);
2354
2355 md_unregister_thread(mddev->thread);
2356 mddev->thread = NULL;
2357 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2358 if (conf->r10bio_pool)
2359 mempool_destroy(conf->r10bio_pool);
2360 kfree(conf->mirrors);
2361 kfree(conf);
2362 mddev->private = NULL;
2363 return 0;
2364 }
2365
2366 static void raid10_quiesce(mddev_t *mddev, int state)
2367 {
2368 conf_t *conf = mddev->private;
2369
2370 switch(state) {
2371 case 1:
2372 raise_barrier(conf, 0);
2373 break;
2374 case 0:
2375 lower_barrier(conf);
2376 break;
2377 }
2378 }
2379
2380 static struct mdk_personality raid10_personality =
2381 {
2382 .name = "raid10",
2383 .level = 10,
2384 .owner = THIS_MODULE,
2385 .make_request = make_request,
2386 .run = run,
2387 .stop = stop,
2388 .status = status,
2389 .error_handler = error,
2390 .hot_add_disk = raid10_add_disk,
2391 .hot_remove_disk= raid10_remove_disk,
2392 .spare_active = raid10_spare_active,
2393 .sync_request = sync_request,
2394 .quiesce = raid10_quiesce,
2395 .size = raid10_size,
2396 };
2397
2398 static int __init raid_init(void)
2399 {
2400 return register_md_personality(&raid10_personality);
2401 }
2402
2403 static void raid_exit(void)
2404 {
2405 unregister_md_personality(&raid10_personality);
2406 }
2407
2408 module_init(raid_init);
2409 module_exit(raid_exit);
2410 MODULE_LICENSE("GPL");
2411 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2412 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2413 MODULE_ALIAS("md-raid10");
2414 MODULE_ALIAS("md-level-10");