Merge tag 'sound-3.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 *
42 * The data to be stored is divided into chunks using chunksize.
43 * Each device is divided into far_copies sections.
44 * In each section, chunks are laid out in a style similar to raid0, but
45 * near_copies copies of each chunk is stored (each on a different drive).
46 * The starting device for each section is offset near_copies from the starting
47 * device of the previous section.
48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49 * drive.
50 * near_copies and far_copies must be at least one, and their product is at most
51 * raid_disks.
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of be very far apart
55 * on disk, there are adjacent stripes.
56 */
57
58 /*
59 * Number of guaranteed r10bios in case of extreme VM load:
60 */
61 #define NR_RAID10_BIOS 256
62
63 /* when we get a read error on a read-only array, we redirect to another
64 * device without failing the first device, or trying to over-write to
65 * correct the read error. To keep track of bad blocks on a per-bio
66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
67 */
68 #define IO_BLOCKED ((struct bio *)1)
69 /* When we successfully write to a known bad-block, we need to remove the
70 * bad-block marking which must be done from process context. So we record
71 * the success by setting devs[n].bio to IO_MADE_GOOD
72 */
73 #define IO_MADE_GOOD ((struct bio *)2)
74
75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
76
77 /* When there are this many requests queued to be written by
78 * the raid10 thread, we become 'congested' to provide back-pressure
79 * for writeback.
80 */
81 static int max_queued_requests = 1024;
82
83 static void allow_barrier(struct r10conf *conf);
84 static void lower_barrier(struct r10conf *conf);
85 static int enough(struct r10conf *conf, int ignore);
86 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
87 int *skipped);
88 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89 static void end_reshape_write(struct bio *bio, int error);
90 static void end_reshape(struct r10conf *conf);
91
92 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 struct r10conf *conf = data;
95 int size = offsetof(struct r10bio, devs[conf->copies]);
96
97 /* allocate a r10bio with room for raid_disks entries in the
98 * bios array */
99 return kzalloc(size, gfp_flags);
100 }
101
102 static void r10bio_pool_free(void *r10_bio, void *data)
103 {
104 kfree(r10_bio);
105 }
106
107 /* Maximum size of each resync request */
108 #define RESYNC_BLOCK_SIZE (64*1024)
109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
110 /* amount of memory to reserve for resync requests */
111 #define RESYNC_WINDOW (1024*1024)
112 /* maximum number of concurrent requests, memory permitting */
113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
114
115 /*
116 * When performing a resync, we need to read and compare, so
117 * we need as many pages are there are copies.
118 * When performing a recovery, we need 2 bios, one for read,
119 * one for write (we recover only one drive per r10buf)
120 *
121 */
122 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
123 {
124 struct r10conf *conf = data;
125 struct page *page;
126 struct r10bio *r10_bio;
127 struct bio *bio;
128 int i, j;
129 int nalloc;
130
131 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
132 if (!r10_bio)
133 return NULL;
134
135 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
137 nalloc = conf->copies; /* resync */
138 else
139 nalloc = 2; /* recovery */
140
141 /*
142 * Allocate bios.
143 */
144 for (j = nalloc ; j-- ; ) {
145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 if (!bio)
147 goto out_free_bio;
148 r10_bio->devs[j].bio = bio;
149 if (!conf->have_replacement)
150 continue;
151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152 if (!bio)
153 goto out_free_bio;
154 r10_bio->devs[j].repl_bio = bio;
155 }
156 /*
157 * Allocate RESYNC_PAGES data pages and attach them
158 * where needed.
159 */
160 for (j = 0 ; j < nalloc; j++) {
161 struct bio *rbio = r10_bio->devs[j].repl_bio;
162 bio = r10_bio->devs[j].bio;
163 for (i = 0; i < RESYNC_PAGES; i++) {
164 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165 &conf->mddev->recovery)) {
166 /* we can share bv_page's during recovery
167 * and reshape */
168 struct bio *rbio = r10_bio->devs[0].bio;
169 page = rbio->bi_io_vec[i].bv_page;
170 get_page(page);
171 } else
172 page = alloc_page(gfp_flags);
173 if (unlikely(!page))
174 goto out_free_pages;
175
176 bio->bi_io_vec[i].bv_page = page;
177 if (rbio)
178 rbio->bi_io_vec[i].bv_page = page;
179 }
180 }
181
182 return r10_bio;
183
184 out_free_pages:
185 for ( ; i > 0 ; i--)
186 safe_put_page(bio->bi_io_vec[i-1].bv_page);
187 while (j--)
188 for (i = 0; i < RESYNC_PAGES ; i++)
189 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
190 j = 0;
191 out_free_bio:
192 for ( ; j < nalloc; j++) {
193 if (r10_bio->devs[j].bio)
194 bio_put(r10_bio->devs[j].bio);
195 if (r10_bio->devs[j].repl_bio)
196 bio_put(r10_bio->devs[j].repl_bio);
197 }
198 r10bio_pool_free(r10_bio, conf);
199 return NULL;
200 }
201
202 static void r10buf_pool_free(void *__r10_bio, void *data)
203 {
204 int i;
205 struct r10conf *conf = data;
206 struct r10bio *r10bio = __r10_bio;
207 int j;
208
209 for (j=0; j < conf->copies; j++) {
210 struct bio *bio = r10bio->devs[j].bio;
211 if (bio) {
212 for (i = 0; i < RESYNC_PAGES; i++) {
213 safe_put_page(bio->bi_io_vec[i].bv_page);
214 bio->bi_io_vec[i].bv_page = NULL;
215 }
216 bio_put(bio);
217 }
218 bio = r10bio->devs[j].repl_bio;
219 if (bio)
220 bio_put(bio);
221 }
222 r10bio_pool_free(r10bio, conf);
223 }
224
225 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
226 {
227 int i;
228
229 for (i = 0; i < conf->copies; i++) {
230 struct bio **bio = & r10_bio->devs[i].bio;
231 if (!BIO_SPECIAL(*bio))
232 bio_put(*bio);
233 *bio = NULL;
234 bio = &r10_bio->devs[i].repl_bio;
235 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
236 bio_put(*bio);
237 *bio = NULL;
238 }
239 }
240
241 static void free_r10bio(struct r10bio *r10_bio)
242 {
243 struct r10conf *conf = r10_bio->mddev->private;
244
245 put_all_bios(conf, r10_bio);
246 mempool_free(r10_bio, conf->r10bio_pool);
247 }
248
249 static void put_buf(struct r10bio *r10_bio)
250 {
251 struct r10conf *conf = r10_bio->mddev->private;
252
253 mempool_free(r10_bio, conf->r10buf_pool);
254
255 lower_barrier(conf);
256 }
257
258 static void reschedule_retry(struct r10bio *r10_bio)
259 {
260 unsigned long flags;
261 struct mddev *mddev = r10_bio->mddev;
262 struct r10conf *conf = mddev->private;
263
264 spin_lock_irqsave(&conf->device_lock, flags);
265 list_add(&r10_bio->retry_list, &conf->retry_list);
266 conf->nr_queued ++;
267 spin_unlock_irqrestore(&conf->device_lock, flags);
268
269 /* wake up frozen array... */
270 wake_up(&conf->wait_barrier);
271
272 md_wakeup_thread(mddev->thread);
273 }
274
275 /*
276 * raid_end_bio_io() is called when we have finished servicing a mirrored
277 * operation and are ready to return a success/failure code to the buffer
278 * cache layer.
279 */
280 static void raid_end_bio_io(struct r10bio *r10_bio)
281 {
282 struct bio *bio = r10_bio->master_bio;
283 int done;
284 struct r10conf *conf = r10_bio->mddev->private;
285
286 if (bio->bi_phys_segments) {
287 unsigned long flags;
288 spin_lock_irqsave(&conf->device_lock, flags);
289 bio->bi_phys_segments--;
290 done = (bio->bi_phys_segments == 0);
291 spin_unlock_irqrestore(&conf->device_lock, flags);
292 } else
293 done = 1;
294 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295 clear_bit(BIO_UPTODATE, &bio->bi_flags);
296 if (done) {
297 bio_endio(bio, 0);
298 /*
299 * Wake up any possible resync thread that waits for the device
300 * to go idle.
301 */
302 allow_barrier(conf);
303 }
304 free_r10bio(r10_bio);
305 }
306
307 /*
308 * Update disk head position estimator based on IRQ completion info.
309 */
310 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
311 {
312 struct r10conf *conf = r10_bio->mddev->private;
313
314 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315 r10_bio->devs[slot].addr + (r10_bio->sectors);
316 }
317
318 /*
319 * Find the disk number which triggered given bio
320 */
321 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
322 struct bio *bio, int *slotp, int *replp)
323 {
324 int slot;
325 int repl = 0;
326
327 for (slot = 0; slot < conf->copies; slot++) {
328 if (r10_bio->devs[slot].bio == bio)
329 break;
330 if (r10_bio->devs[slot].repl_bio == bio) {
331 repl = 1;
332 break;
333 }
334 }
335
336 BUG_ON(slot == conf->copies);
337 update_head_pos(slot, r10_bio);
338
339 if (slotp)
340 *slotp = slot;
341 if (replp)
342 *replp = repl;
343 return r10_bio->devs[slot].devnum;
344 }
345
346 static void raid10_end_read_request(struct bio *bio, int error)
347 {
348 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
349 struct r10bio *r10_bio = bio->bi_private;
350 int slot, dev;
351 struct md_rdev *rdev;
352 struct r10conf *conf = r10_bio->mddev->private;
353
354
355 slot = r10_bio->read_slot;
356 dev = r10_bio->devs[slot].devnum;
357 rdev = r10_bio->devs[slot].rdev;
358 /*
359 * this branch is our 'one mirror IO has finished' event handler:
360 */
361 update_head_pos(slot, r10_bio);
362
363 if (uptodate) {
364 /*
365 * Set R10BIO_Uptodate in our master bio, so that
366 * we will return a good error code to the higher
367 * levels even if IO on some other mirrored buffer fails.
368 *
369 * The 'master' represents the composite IO operation to
370 * user-side. So if something waits for IO, then it will
371 * wait for the 'master' bio.
372 */
373 set_bit(R10BIO_Uptodate, &r10_bio->state);
374 } else {
375 /* If all other devices that store this block have
376 * failed, we want to return the error upwards rather
377 * than fail the last device. Here we redefine
378 * "uptodate" to mean "Don't want to retry"
379 */
380 unsigned long flags;
381 spin_lock_irqsave(&conf->device_lock, flags);
382 if (!enough(conf, rdev->raid_disk))
383 uptodate = 1;
384 spin_unlock_irqrestore(&conf->device_lock, flags);
385 }
386 if (uptodate) {
387 raid_end_bio_io(r10_bio);
388 rdev_dec_pending(rdev, conf->mddev);
389 } else {
390 /*
391 * oops, read error - keep the refcount on the rdev
392 */
393 char b[BDEVNAME_SIZE];
394 printk_ratelimited(KERN_ERR
395 "md/raid10:%s: %s: rescheduling sector %llu\n",
396 mdname(conf->mddev),
397 bdevname(rdev->bdev, b),
398 (unsigned long long)r10_bio->sector);
399 set_bit(R10BIO_ReadError, &r10_bio->state);
400 reschedule_retry(r10_bio);
401 }
402 }
403
404 static void close_write(struct r10bio *r10_bio)
405 {
406 /* clear the bitmap if all writes complete successfully */
407 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408 r10_bio->sectors,
409 !test_bit(R10BIO_Degraded, &r10_bio->state),
410 0);
411 md_write_end(r10_bio->mddev);
412 }
413
414 static void one_write_done(struct r10bio *r10_bio)
415 {
416 if (atomic_dec_and_test(&r10_bio->remaining)) {
417 if (test_bit(R10BIO_WriteError, &r10_bio->state))
418 reschedule_retry(r10_bio);
419 else {
420 close_write(r10_bio);
421 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422 reschedule_retry(r10_bio);
423 else
424 raid_end_bio_io(r10_bio);
425 }
426 }
427 }
428
429 static void raid10_end_write_request(struct bio *bio, int error)
430 {
431 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
432 struct r10bio *r10_bio = bio->bi_private;
433 int dev;
434 int dec_rdev = 1;
435 struct r10conf *conf = r10_bio->mddev->private;
436 int slot, repl;
437 struct md_rdev *rdev = NULL;
438
439 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
440
441 if (repl)
442 rdev = conf->mirrors[dev].replacement;
443 if (!rdev) {
444 smp_rmb();
445 repl = 0;
446 rdev = conf->mirrors[dev].rdev;
447 }
448 /*
449 * this branch is our 'one mirror IO has finished' event handler:
450 */
451 if (!uptodate) {
452 if (repl)
453 /* Never record new bad blocks to replacement,
454 * just fail it.
455 */
456 md_error(rdev->mddev, rdev);
457 else {
458 set_bit(WriteErrorSeen, &rdev->flags);
459 if (!test_and_set_bit(WantReplacement, &rdev->flags))
460 set_bit(MD_RECOVERY_NEEDED,
461 &rdev->mddev->recovery);
462 set_bit(R10BIO_WriteError, &r10_bio->state);
463 dec_rdev = 0;
464 }
465 } else {
466 /*
467 * Set R10BIO_Uptodate in our master bio, so that
468 * we will return a good error code for to the higher
469 * levels even if IO on some other mirrored buffer fails.
470 *
471 * The 'master' represents the composite IO operation to
472 * user-side. So if something waits for IO, then it will
473 * wait for the 'master' bio.
474 */
475 sector_t first_bad;
476 int bad_sectors;
477
478 set_bit(R10BIO_Uptodate, &r10_bio->state);
479
480 /* Maybe we can clear some bad blocks. */
481 if (is_badblock(rdev,
482 r10_bio->devs[slot].addr,
483 r10_bio->sectors,
484 &first_bad, &bad_sectors)) {
485 bio_put(bio);
486 if (repl)
487 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
488 else
489 r10_bio->devs[slot].bio = IO_MADE_GOOD;
490 dec_rdev = 0;
491 set_bit(R10BIO_MadeGood, &r10_bio->state);
492 }
493 }
494
495 /*
496 *
497 * Let's see if all mirrored write operations have finished
498 * already.
499 */
500 one_write_done(r10_bio);
501 if (dec_rdev)
502 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
503 }
504
505 /*
506 * RAID10 layout manager
507 * As well as the chunksize and raid_disks count, there are two
508 * parameters: near_copies and far_copies.
509 * near_copies * far_copies must be <= raid_disks.
510 * Normally one of these will be 1.
511 * If both are 1, we get raid0.
512 * If near_copies == raid_disks, we get raid1.
513 *
514 * Chunks are laid out in raid0 style with near_copies copies of the
515 * first chunk, followed by near_copies copies of the next chunk and
516 * so on.
517 * If far_copies > 1, then after 1/far_copies of the array has been assigned
518 * as described above, we start again with a device offset of near_copies.
519 * So we effectively have another copy of the whole array further down all
520 * the drives, but with blocks on different drives.
521 * With this layout, and block is never stored twice on the one device.
522 *
523 * raid10_find_phys finds the sector offset of a given virtual sector
524 * on each device that it is on.
525 *
526 * raid10_find_virt does the reverse mapping, from a device and a
527 * sector offset to a virtual address
528 */
529
530 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
531 {
532 int n,f;
533 sector_t sector;
534 sector_t chunk;
535 sector_t stripe;
536 int dev;
537 int slot = 0;
538
539 /* now calculate first sector/dev */
540 chunk = r10bio->sector >> geo->chunk_shift;
541 sector = r10bio->sector & geo->chunk_mask;
542
543 chunk *= geo->near_copies;
544 stripe = chunk;
545 dev = sector_div(stripe, geo->raid_disks);
546 if (geo->far_offset)
547 stripe *= geo->far_copies;
548
549 sector += stripe << geo->chunk_shift;
550
551 /* and calculate all the others */
552 for (n = 0; n < geo->near_copies; n++) {
553 int d = dev;
554 sector_t s = sector;
555 r10bio->devs[slot].addr = sector;
556 r10bio->devs[slot].devnum = d;
557 slot++;
558
559 for (f = 1; f < geo->far_copies; f++) {
560 d += geo->near_copies;
561 if (d >= geo->raid_disks)
562 d -= geo->raid_disks;
563 s += geo->stride;
564 r10bio->devs[slot].devnum = d;
565 r10bio->devs[slot].addr = s;
566 slot++;
567 }
568 dev++;
569 if (dev >= geo->raid_disks) {
570 dev = 0;
571 sector += (geo->chunk_mask + 1);
572 }
573 }
574 }
575
576 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
577 {
578 struct geom *geo = &conf->geo;
579
580 if (conf->reshape_progress != MaxSector &&
581 ((r10bio->sector >= conf->reshape_progress) !=
582 conf->mddev->reshape_backwards)) {
583 set_bit(R10BIO_Previous, &r10bio->state);
584 geo = &conf->prev;
585 } else
586 clear_bit(R10BIO_Previous, &r10bio->state);
587
588 __raid10_find_phys(geo, r10bio);
589 }
590
591 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
592 {
593 sector_t offset, chunk, vchunk;
594 /* Never use conf->prev as this is only called during resync
595 * or recovery, so reshape isn't happening
596 */
597 struct geom *geo = &conf->geo;
598
599 offset = sector & geo->chunk_mask;
600 if (geo->far_offset) {
601 int fc;
602 chunk = sector >> geo->chunk_shift;
603 fc = sector_div(chunk, geo->far_copies);
604 dev -= fc * geo->near_copies;
605 if (dev < 0)
606 dev += geo->raid_disks;
607 } else {
608 while (sector >= geo->stride) {
609 sector -= geo->stride;
610 if (dev < geo->near_copies)
611 dev += geo->raid_disks - geo->near_copies;
612 else
613 dev -= geo->near_copies;
614 }
615 chunk = sector >> geo->chunk_shift;
616 }
617 vchunk = chunk * geo->raid_disks + dev;
618 sector_div(vchunk, geo->near_copies);
619 return (vchunk << geo->chunk_shift) + offset;
620 }
621
622 /**
623 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
624 * @q: request queue
625 * @bvm: properties of new bio
626 * @biovec: the request that could be merged to it.
627 *
628 * Return amount of bytes we can accept at this offset
629 * This requires checking for end-of-chunk if near_copies != raid_disks,
630 * and for subordinate merge_bvec_fns if merge_check_needed.
631 */
632 static int raid10_mergeable_bvec(struct request_queue *q,
633 struct bvec_merge_data *bvm,
634 struct bio_vec *biovec)
635 {
636 struct mddev *mddev = q->queuedata;
637 struct r10conf *conf = mddev->private;
638 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
639 int max;
640 unsigned int chunk_sectors;
641 unsigned int bio_sectors = bvm->bi_size >> 9;
642 struct geom *geo = &conf->geo;
643
644 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
645 if (conf->reshape_progress != MaxSector &&
646 ((sector >= conf->reshape_progress) !=
647 conf->mddev->reshape_backwards))
648 geo = &conf->prev;
649
650 if (geo->near_copies < geo->raid_disks) {
651 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652 + bio_sectors)) << 9;
653 if (max < 0)
654 /* bio_add cannot handle a negative return */
655 max = 0;
656 if (max <= biovec->bv_len && bio_sectors == 0)
657 return biovec->bv_len;
658 } else
659 max = biovec->bv_len;
660
661 if (mddev->merge_check_needed) {
662 struct r10bio r10_bio;
663 int s;
664 if (conf->reshape_progress != MaxSector) {
665 /* Cannot give any guidance during reshape */
666 if (max <= biovec->bv_len && bio_sectors == 0)
667 return biovec->bv_len;
668 return 0;
669 }
670 r10_bio.sector = sector;
671 raid10_find_phys(conf, &r10_bio);
672 rcu_read_lock();
673 for (s = 0; s < conf->copies; s++) {
674 int disk = r10_bio.devs[s].devnum;
675 struct md_rdev *rdev = rcu_dereference(
676 conf->mirrors[disk].rdev);
677 if (rdev && !test_bit(Faulty, &rdev->flags)) {
678 struct request_queue *q =
679 bdev_get_queue(rdev->bdev);
680 if (q->merge_bvec_fn) {
681 bvm->bi_sector = r10_bio.devs[s].addr
682 + rdev->data_offset;
683 bvm->bi_bdev = rdev->bdev;
684 max = min(max, q->merge_bvec_fn(
685 q, bvm, biovec));
686 }
687 }
688 rdev = rcu_dereference(conf->mirrors[disk].replacement);
689 if (rdev && !test_bit(Faulty, &rdev->flags)) {
690 struct request_queue *q =
691 bdev_get_queue(rdev->bdev);
692 if (q->merge_bvec_fn) {
693 bvm->bi_sector = r10_bio.devs[s].addr
694 + rdev->data_offset;
695 bvm->bi_bdev = rdev->bdev;
696 max = min(max, q->merge_bvec_fn(
697 q, bvm, biovec));
698 }
699 }
700 }
701 rcu_read_unlock();
702 }
703 return max;
704 }
705
706 /*
707 * This routine returns the disk from which the requested read should
708 * be done. There is a per-array 'next expected sequential IO' sector
709 * number - if this matches on the next IO then we use the last disk.
710 * There is also a per-disk 'last know head position' sector that is
711 * maintained from IRQ contexts, both the normal and the resync IO
712 * completion handlers update this position correctly. If there is no
713 * perfect sequential match then we pick the disk whose head is closest.
714 *
715 * If there are 2 mirrors in the same 2 devices, performance degrades
716 * because position is mirror, not device based.
717 *
718 * The rdev for the device selected will have nr_pending incremented.
719 */
720
721 /*
722 * FIXME: possibly should rethink readbalancing and do it differently
723 * depending on near_copies / far_copies geometry.
724 */
725 static struct md_rdev *read_balance(struct r10conf *conf,
726 struct r10bio *r10_bio,
727 int *max_sectors)
728 {
729 const sector_t this_sector = r10_bio->sector;
730 int disk, slot;
731 int sectors = r10_bio->sectors;
732 int best_good_sectors;
733 sector_t new_distance, best_dist;
734 struct md_rdev *best_rdev, *rdev = NULL;
735 int do_balance;
736 int best_slot;
737 struct geom *geo = &conf->geo;
738
739 raid10_find_phys(conf, r10_bio);
740 rcu_read_lock();
741 retry:
742 sectors = r10_bio->sectors;
743 best_slot = -1;
744 best_rdev = NULL;
745 best_dist = MaxSector;
746 best_good_sectors = 0;
747 do_balance = 1;
748 /*
749 * Check if we can balance. We can balance on the whole
750 * device if no resync is going on (recovery is ok), or below
751 * the resync window. We take the first readable disk when
752 * above the resync window.
753 */
754 if (conf->mddev->recovery_cp < MaxSector
755 && (this_sector + sectors >= conf->next_resync))
756 do_balance = 0;
757
758 for (slot = 0; slot < conf->copies ; slot++) {
759 sector_t first_bad;
760 int bad_sectors;
761 sector_t dev_sector;
762
763 if (r10_bio->devs[slot].bio == IO_BLOCKED)
764 continue;
765 disk = r10_bio->devs[slot].devnum;
766 rdev = rcu_dereference(conf->mirrors[disk].replacement);
767 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
768 test_bit(Unmerged, &rdev->flags) ||
769 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
770 rdev = rcu_dereference(conf->mirrors[disk].rdev);
771 if (rdev == NULL ||
772 test_bit(Faulty, &rdev->flags) ||
773 test_bit(Unmerged, &rdev->flags))
774 continue;
775 if (!test_bit(In_sync, &rdev->flags) &&
776 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
777 continue;
778
779 dev_sector = r10_bio->devs[slot].addr;
780 if (is_badblock(rdev, dev_sector, sectors,
781 &first_bad, &bad_sectors)) {
782 if (best_dist < MaxSector)
783 /* Already have a better slot */
784 continue;
785 if (first_bad <= dev_sector) {
786 /* Cannot read here. If this is the
787 * 'primary' device, then we must not read
788 * beyond 'bad_sectors' from another device.
789 */
790 bad_sectors -= (dev_sector - first_bad);
791 if (!do_balance && sectors > bad_sectors)
792 sectors = bad_sectors;
793 if (best_good_sectors > sectors)
794 best_good_sectors = sectors;
795 } else {
796 sector_t good_sectors =
797 first_bad - dev_sector;
798 if (good_sectors > best_good_sectors) {
799 best_good_sectors = good_sectors;
800 best_slot = slot;
801 best_rdev = rdev;
802 }
803 if (!do_balance)
804 /* Must read from here */
805 break;
806 }
807 continue;
808 } else
809 best_good_sectors = sectors;
810
811 if (!do_balance)
812 break;
813
814 /* This optimisation is debatable, and completely destroys
815 * sequential read speed for 'far copies' arrays. So only
816 * keep it for 'near' arrays, and review those later.
817 */
818 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
819 break;
820
821 /* for far > 1 always use the lowest address */
822 if (geo->far_copies > 1)
823 new_distance = r10_bio->devs[slot].addr;
824 else
825 new_distance = abs(r10_bio->devs[slot].addr -
826 conf->mirrors[disk].head_position);
827 if (new_distance < best_dist) {
828 best_dist = new_distance;
829 best_slot = slot;
830 best_rdev = rdev;
831 }
832 }
833 if (slot >= conf->copies) {
834 slot = best_slot;
835 rdev = best_rdev;
836 }
837
838 if (slot >= 0) {
839 atomic_inc(&rdev->nr_pending);
840 if (test_bit(Faulty, &rdev->flags)) {
841 /* Cannot risk returning a device that failed
842 * before we inc'ed nr_pending
843 */
844 rdev_dec_pending(rdev, conf->mddev);
845 goto retry;
846 }
847 r10_bio->read_slot = slot;
848 } else
849 rdev = NULL;
850 rcu_read_unlock();
851 *max_sectors = best_good_sectors;
852
853 return rdev;
854 }
855
856 int md_raid10_congested(struct mddev *mddev, int bits)
857 {
858 struct r10conf *conf = mddev->private;
859 int i, ret = 0;
860
861 if ((bits & (1 << BDI_async_congested)) &&
862 conf->pending_count >= max_queued_requests)
863 return 1;
864
865 rcu_read_lock();
866 for (i = 0;
867 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
868 && ret == 0;
869 i++) {
870 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
871 if (rdev && !test_bit(Faulty, &rdev->flags)) {
872 struct request_queue *q = bdev_get_queue(rdev->bdev);
873
874 ret |= bdi_congested(&q->backing_dev_info, bits);
875 }
876 }
877 rcu_read_unlock();
878 return ret;
879 }
880 EXPORT_SYMBOL_GPL(md_raid10_congested);
881
882 static int raid10_congested(void *data, int bits)
883 {
884 struct mddev *mddev = data;
885
886 return mddev_congested(mddev, bits) ||
887 md_raid10_congested(mddev, bits);
888 }
889
890 static void flush_pending_writes(struct r10conf *conf)
891 {
892 /* Any writes that have been queued but are awaiting
893 * bitmap updates get flushed here.
894 */
895 spin_lock_irq(&conf->device_lock);
896
897 if (conf->pending_bio_list.head) {
898 struct bio *bio;
899 bio = bio_list_get(&conf->pending_bio_list);
900 conf->pending_count = 0;
901 spin_unlock_irq(&conf->device_lock);
902 /* flush any pending bitmap writes to disk
903 * before proceeding w/ I/O */
904 bitmap_unplug(conf->mddev->bitmap);
905 wake_up(&conf->wait_barrier);
906
907 while (bio) { /* submit pending writes */
908 struct bio *next = bio->bi_next;
909 bio->bi_next = NULL;
910 generic_make_request(bio);
911 bio = next;
912 }
913 } else
914 spin_unlock_irq(&conf->device_lock);
915 }
916
917 /* Barriers....
918 * Sometimes we need to suspend IO while we do something else,
919 * either some resync/recovery, or reconfigure the array.
920 * To do this we raise a 'barrier'.
921 * The 'barrier' is a counter that can be raised multiple times
922 * to count how many activities are happening which preclude
923 * normal IO.
924 * We can only raise the barrier if there is no pending IO.
925 * i.e. if nr_pending == 0.
926 * We choose only to raise the barrier if no-one is waiting for the
927 * barrier to go down. This means that as soon as an IO request
928 * is ready, no other operations which require a barrier will start
929 * until the IO request has had a chance.
930 *
931 * So: regular IO calls 'wait_barrier'. When that returns there
932 * is no backgroup IO happening, It must arrange to call
933 * allow_barrier when it has finished its IO.
934 * backgroup IO calls must call raise_barrier. Once that returns
935 * there is no normal IO happeing. It must arrange to call
936 * lower_barrier when the particular background IO completes.
937 */
938
939 static void raise_barrier(struct r10conf *conf, int force)
940 {
941 BUG_ON(force && !conf->barrier);
942 spin_lock_irq(&conf->resync_lock);
943
944 /* Wait until no block IO is waiting (unless 'force') */
945 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
946 conf->resync_lock, );
947
948 /* block any new IO from starting */
949 conf->barrier++;
950
951 /* Now wait for all pending IO to complete */
952 wait_event_lock_irq(conf->wait_barrier,
953 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
954 conf->resync_lock, );
955
956 spin_unlock_irq(&conf->resync_lock);
957 }
958
959 static void lower_barrier(struct r10conf *conf)
960 {
961 unsigned long flags;
962 spin_lock_irqsave(&conf->resync_lock, flags);
963 conf->barrier--;
964 spin_unlock_irqrestore(&conf->resync_lock, flags);
965 wake_up(&conf->wait_barrier);
966 }
967
968 static void wait_barrier(struct r10conf *conf)
969 {
970 spin_lock_irq(&conf->resync_lock);
971 if (conf->barrier) {
972 conf->nr_waiting++;
973 /* Wait for the barrier to drop.
974 * However if there are already pending
975 * requests (preventing the barrier from
976 * rising completely), and the
977 * pre-process bio queue isn't empty,
978 * then don't wait, as we need to empty
979 * that queue to get the nr_pending
980 * count down.
981 */
982 wait_event_lock_irq(conf->wait_barrier,
983 !conf->barrier ||
984 (conf->nr_pending &&
985 current->bio_list &&
986 !bio_list_empty(current->bio_list)),
987 conf->resync_lock,
988 );
989 conf->nr_waiting--;
990 }
991 conf->nr_pending++;
992 spin_unlock_irq(&conf->resync_lock);
993 }
994
995 static void allow_barrier(struct r10conf *conf)
996 {
997 unsigned long flags;
998 spin_lock_irqsave(&conf->resync_lock, flags);
999 conf->nr_pending--;
1000 spin_unlock_irqrestore(&conf->resync_lock, flags);
1001 wake_up(&conf->wait_barrier);
1002 }
1003
1004 static void freeze_array(struct r10conf *conf)
1005 {
1006 /* stop syncio and normal IO and wait for everything to
1007 * go quiet.
1008 * We increment barrier and nr_waiting, and then
1009 * wait until nr_pending match nr_queued+1
1010 * This is called in the context of one normal IO request
1011 * that has failed. Thus any sync request that might be pending
1012 * will be blocked by nr_pending, and we need to wait for
1013 * pending IO requests to complete or be queued for re-try.
1014 * Thus the number queued (nr_queued) plus this request (1)
1015 * must match the number of pending IOs (nr_pending) before
1016 * we continue.
1017 */
1018 spin_lock_irq(&conf->resync_lock);
1019 conf->barrier++;
1020 conf->nr_waiting++;
1021 wait_event_lock_irq(conf->wait_barrier,
1022 conf->nr_pending == conf->nr_queued+1,
1023 conf->resync_lock,
1024 flush_pending_writes(conf));
1025
1026 spin_unlock_irq(&conf->resync_lock);
1027 }
1028
1029 static void unfreeze_array(struct r10conf *conf)
1030 {
1031 /* reverse the effect of the freeze */
1032 spin_lock_irq(&conf->resync_lock);
1033 conf->barrier--;
1034 conf->nr_waiting--;
1035 wake_up(&conf->wait_barrier);
1036 spin_unlock_irq(&conf->resync_lock);
1037 }
1038
1039 static sector_t choose_data_offset(struct r10bio *r10_bio,
1040 struct md_rdev *rdev)
1041 {
1042 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1043 test_bit(R10BIO_Previous, &r10_bio->state))
1044 return rdev->data_offset;
1045 else
1046 return rdev->new_data_offset;
1047 }
1048
1049 static void make_request(struct mddev *mddev, struct bio * bio)
1050 {
1051 struct r10conf *conf = mddev->private;
1052 struct r10bio *r10_bio;
1053 struct bio *read_bio;
1054 int i;
1055 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1056 int chunk_sects = chunk_mask + 1;
1057 const int rw = bio_data_dir(bio);
1058 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1059 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1060 unsigned long flags;
1061 struct md_rdev *blocked_rdev;
1062 int sectors_handled;
1063 int max_sectors;
1064 int sectors;
1065
1066 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1067 md_flush_request(mddev, bio);
1068 return;
1069 }
1070
1071 /* If this request crosses a chunk boundary, we need to
1072 * split it. This will only happen for 1 PAGE (or less) requests.
1073 */
1074 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1075 > chunk_sects
1076 && (conf->geo.near_copies < conf->geo.raid_disks
1077 || conf->prev.near_copies < conf->prev.raid_disks))) {
1078 struct bio_pair *bp;
1079 /* Sanity check -- queue functions should prevent this happening */
1080 if (bio->bi_vcnt != 1 ||
1081 bio->bi_idx != 0)
1082 goto bad_map;
1083 /* This is a one page bio that upper layers
1084 * refuse to split for us, so we need to split it.
1085 */
1086 bp = bio_split(bio,
1087 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1088
1089 /* Each of these 'make_request' calls will call 'wait_barrier'.
1090 * If the first succeeds but the second blocks due to the resync
1091 * thread raising the barrier, we will deadlock because the
1092 * IO to the underlying device will be queued in generic_make_request
1093 * and will never complete, so will never reduce nr_pending.
1094 * So increment nr_waiting here so no new raise_barriers will
1095 * succeed, and so the second wait_barrier cannot block.
1096 */
1097 spin_lock_irq(&conf->resync_lock);
1098 conf->nr_waiting++;
1099 spin_unlock_irq(&conf->resync_lock);
1100
1101 make_request(mddev, &bp->bio1);
1102 make_request(mddev, &bp->bio2);
1103
1104 spin_lock_irq(&conf->resync_lock);
1105 conf->nr_waiting--;
1106 wake_up(&conf->wait_barrier);
1107 spin_unlock_irq(&conf->resync_lock);
1108
1109 bio_pair_release(bp);
1110 return;
1111 bad_map:
1112 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1113 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1114 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1115
1116 bio_io_error(bio);
1117 return;
1118 }
1119
1120 md_write_start(mddev, bio);
1121
1122 /*
1123 * Register the new request and wait if the reconstruction
1124 * thread has put up a bar for new requests.
1125 * Continue immediately if no resync is active currently.
1126 */
1127 wait_barrier(conf);
1128
1129 sectors = bio->bi_size >> 9;
1130 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1131 bio->bi_sector < conf->reshape_progress &&
1132 bio->bi_sector + sectors > conf->reshape_progress) {
1133 /* IO spans the reshape position. Need to wait for
1134 * reshape to pass
1135 */
1136 allow_barrier(conf);
1137 wait_event(conf->wait_barrier,
1138 conf->reshape_progress <= bio->bi_sector ||
1139 conf->reshape_progress >= bio->bi_sector + sectors);
1140 wait_barrier(conf);
1141 }
1142 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1143 bio_data_dir(bio) == WRITE &&
1144 (mddev->reshape_backwards
1145 ? (bio->bi_sector < conf->reshape_safe &&
1146 bio->bi_sector + sectors > conf->reshape_progress)
1147 : (bio->bi_sector + sectors > conf->reshape_safe &&
1148 bio->bi_sector < conf->reshape_progress))) {
1149 /* Need to update reshape_position in metadata */
1150 mddev->reshape_position = conf->reshape_progress;
1151 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1152 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1153 md_wakeup_thread(mddev->thread);
1154 wait_event(mddev->sb_wait,
1155 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1156
1157 conf->reshape_safe = mddev->reshape_position;
1158 }
1159
1160 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1161
1162 r10_bio->master_bio = bio;
1163 r10_bio->sectors = sectors;
1164
1165 r10_bio->mddev = mddev;
1166 r10_bio->sector = bio->bi_sector;
1167 r10_bio->state = 0;
1168
1169 /* We might need to issue multiple reads to different
1170 * devices if there are bad blocks around, so we keep
1171 * track of the number of reads in bio->bi_phys_segments.
1172 * If this is 0, there is only one r10_bio and no locking
1173 * will be needed when the request completes. If it is
1174 * non-zero, then it is the number of not-completed requests.
1175 */
1176 bio->bi_phys_segments = 0;
1177 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1178
1179 if (rw == READ) {
1180 /*
1181 * read balancing logic:
1182 */
1183 struct md_rdev *rdev;
1184 int slot;
1185
1186 read_again:
1187 rdev = read_balance(conf, r10_bio, &max_sectors);
1188 if (!rdev) {
1189 raid_end_bio_io(r10_bio);
1190 return;
1191 }
1192 slot = r10_bio->read_slot;
1193
1194 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1195 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1196 max_sectors);
1197
1198 r10_bio->devs[slot].bio = read_bio;
1199 r10_bio->devs[slot].rdev = rdev;
1200
1201 read_bio->bi_sector = r10_bio->devs[slot].addr +
1202 choose_data_offset(r10_bio, rdev);
1203 read_bio->bi_bdev = rdev->bdev;
1204 read_bio->bi_end_io = raid10_end_read_request;
1205 read_bio->bi_rw = READ | do_sync;
1206 read_bio->bi_private = r10_bio;
1207
1208 if (max_sectors < r10_bio->sectors) {
1209 /* Could not read all from this device, so we will
1210 * need another r10_bio.
1211 */
1212 sectors_handled = (r10_bio->sectors + max_sectors
1213 - bio->bi_sector);
1214 r10_bio->sectors = max_sectors;
1215 spin_lock_irq(&conf->device_lock);
1216 if (bio->bi_phys_segments == 0)
1217 bio->bi_phys_segments = 2;
1218 else
1219 bio->bi_phys_segments++;
1220 spin_unlock(&conf->device_lock);
1221 /* Cannot call generic_make_request directly
1222 * as that will be queued in __generic_make_request
1223 * and subsequent mempool_alloc might block
1224 * waiting for it. so hand bio over to raid10d.
1225 */
1226 reschedule_retry(r10_bio);
1227
1228 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1229
1230 r10_bio->master_bio = bio;
1231 r10_bio->sectors = ((bio->bi_size >> 9)
1232 - sectors_handled);
1233 r10_bio->state = 0;
1234 r10_bio->mddev = mddev;
1235 r10_bio->sector = bio->bi_sector + sectors_handled;
1236 goto read_again;
1237 } else
1238 generic_make_request(read_bio);
1239 return;
1240 }
1241
1242 /*
1243 * WRITE:
1244 */
1245 if (conf->pending_count >= max_queued_requests) {
1246 md_wakeup_thread(mddev->thread);
1247 wait_event(conf->wait_barrier,
1248 conf->pending_count < max_queued_requests);
1249 }
1250 /* first select target devices under rcu_lock and
1251 * inc refcount on their rdev. Record them by setting
1252 * bios[x] to bio
1253 * If there are known/acknowledged bad blocks on any device
1254 * on which we have seen a write error, we want to avoid
1255 * writing to those blocks. This potentially requires several
1256 * writes to write around the bad blocks. Each set of writes
1257 * gets its own r10_bio with a set of bios attached. The number
1258 * of r10_bios is recored in bio->bi_phys_segments just as with
1259 * the read case.
1260 */
1261
1262 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1263 raid10_find_phys(conf, r10_bio);
1264 retry_write:
1265 blocked_rdev = NULL;
1266 rcu_read_lock();
1267 max_sectors = r10_bio->sectors;
1268
1269 for (i = 0; i < conf->copies; i++) {
1270 int d = r10_bio->devs[i].devnum;
1271 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1272 struct md_rdev *rrdev = rcu_dereference(
1273 conf->mirrors[d].replacement);
1274 if (rdev == rrdev)
1275 rrdev = NULL;
1276 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1277 atomic_inc(&rdev->nr_pending);
1278 blocked_rdev = rdev;
1279 break;
1280 }
1281 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1282 atomic_inc(&rrdev->nr_pending);
1283 blocked_rdev = rrdev;
1284 break;
1285 }
1286 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1287 || test_bit(Unmerged, &rrdev->flags)))
1288 rrdev = NULL;
1289
1290 r10_bio->devs[i].bio = NULL;
1291 r10_bio->devs[i].repl_bio = NULL;
1292 if (!rdev || test_bit(Faulty, &rdev->flags) ||
1293 test_bit(Unmerged, &rdev->flags)) {
1294 set_bit(R10BIO_Degraded, &r10_bio->state);
1295 continue;
1296 }
1297 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1298 sector_t first_bad;
1299 sector_t dev_sector = r10_bio->devs[i].addr;
1300 int bad_sectors;
1301 int is_bad;
1302
1303 is_bad = is_badblock(rdev, dev_sector,
1304 max_sectors,
1305 &first_bad, &bad_sectors);
1306 if (is_bad < 0) {
1307 /* Mustn't write here until the bad block
1308 * is acknowledged
1309 */
1310 atomic_inc(&rdev->nr_pending);
1311 set_bit(BlockedBadBlocks, &rdev->flags);
1312 blocked_rdev = rdev;
1313 break;
1314 }
1315 if (is_bad && first_bad <= dev_sector) {
1316 /* Cannot write here at all */
1317 bad_sectors -= (dev_sector - first_bad);
1318 if (bad_sectors < max_sectors)
1319 /* Mustn't write more than bad_sectors
1320 * to other devices yet
1321 */
1322 max_sectors = bad_sectors;
1323 /* We don't set R10BIO_Degraded as that
1324 * only applies if the disk is missing,
1325 * so it might be re-added, and we want to
1326 * know to recover this chunk.
1327 * In this case the device is here, and the
1328 * fact that this chunk is not in-sync is
1329 * recorded in the bad block log.
1330 */
1331 continue;
1332 }
1333 if (is_bad) {
1334 int good_sectors = first_bad - dev_sector;
1335 if (good_sectors < max_sectors)
1336 max_sectors = good_sectors;
1337 }
1338 }
1339 r10_bio->devs[i].bio = bio;
1340 atomic_inc(&rdev->nr_pending);
1341 if (rrdev) {
1342 r10_bio->devs[i].repl_bio = bio;
1343 atomic_inc(&rrdev->nr_pending);
1344 }
1345 }
1346 rcu_read_unlock();
1347
1348 if (unlikely(blocked_rdev)) {
1349 /* Have to wait for this device to get unblocked, then retry */
1350 int j;
1351 int d;
1352
1353 for (j = 0; j < i; j++) {
1354 if (r10_bio->devs[j].bio) {
1355 d = r10_bio->devs[j].devnum;
1356 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1357 }
1358 if (r10_bio->devs[j].repl_bio) {
1359 struct md_rdev *rdev;
1360 d = r10_bio->devs[j].devnum;
1361 rdev = conf->mirrors[d].replacement;
1362 if (!rdev) {
1363 /* Race with remove_disk */
1364 smp_mb();
1365 rdev = conf->mirrors[d].rdev;
1366 }
1367 rdev_dec_pending(rdev, mddev);
1368 }
1369 }
1370 allow_barrier(conf);
1371 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1372 wait_barrier(conf);
1373 goto retry_write;
1374 }
1375
1376 if (max_sectors < r10_bio->sectors) {
1377 /* We are splitting this into multiple parts, so
1378 * we need to prepare for allocating another r10_bio.
1379 */
1380 r10_bio->sectors = max_sectors;
1381 spin_lock_irq(&conf->device_lock);
1382 if (bio->bi_phys_segments == 0)
1383 bio->bi_phys_segments = 2;
1384 else
1385 bio->bi_phys_segments++;
1386 spin_unlock_irq(&conf->device_lock);
1387 }
1388 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1389
1390 atomic_set(&r10_bio->remaining, 1);
1391 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1392
1393 for (i = 0; i < conf->copies; i++) {
1394 struct bio *mbio;
1395 int d = r10_bio->devs[i].devnum;
1396 if (!r10_bio->devs[i].bio)
1397 continue;
1398
1399 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1400 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1401 max_sectors);
1402 r10_bio->devs[i].bio = mbio;
1403
1404 mbio->bi_sector = (r10_bio->devs[i].addr+
1405 choose_data_offset(r10_bio,
1406 conf->mirrors[d].rdev));
1407 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1408 mbio->bi_end_io = raid10_end_write_request;
1409 mbio->bi_rw = WRITE | do_sync | do_fua;
1410 mbio->bi_private = r10_bio;
1411
1412 atomic_inc(&r10_bio->remaining);
1413 spin_lock_irqsave(&conf->device_lock, flags);
1414 bio_list_add(&conf->pending_bio_list, mbio);
1415 conf->pending_count++;
1416 spin_unlock_irqrestore(&conf->device_lock, flags);
1417 if (!mddev_check_plugged(mddev))
1418 md_wakeup_thread(mddev->thread);
1419
1420 if (!r10_bio->devs[i].repl_bio)
1421 continue;
1422
1423 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1424 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1425 max_sectors);
1426 r10_bio->devs[i].repl_bio = mbio;
1427
1428 /* We are actively writing to the original device
1429 * so it cannot disappear, so the replacement cannot
1430 * become NULL here
1431 */
1432 mbio->bi_sector = (r10_bio->devs[i].addr +
1433 choose_data_offset(
1434 r10_bio,
1435 conf->mirrors[d].replacement));
1436 mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1437 mbio->bi_end_io = raid10_end_write_request;
1438 mbio->bi_rw = WRITE | do_sync | do_fua;
1439 mbio->bi_private = r10_bio;
1440
1441 atomic_inc(&r10_bio->remaining);
1442 spin_lock_irqsave(&conf->device_lock, flags);
1443 bio_list_add(&conf->pending_bio_list, mbio);
1444 conf->pending_count++;
1445 spin_unlock_irqrestore(&conf->device_lock, flags);
1446 if (!mddev_check_plugged(mddev))
1447 md_wakeup_thread(mddev->thread);
1448 }
1449
1450 /* Don't remove the bias on 'remaining' (one_write_done) until
1451 * after checking if we need to go around again.
1452 */
1453
1454 if (sectors_handled < (bio->bi_size >> 9)) {
1455 one_write_done(r10_bio);
1456 /* We need another r10_bio. It has already been counted
1457 * in bio->bi_phys_segments.
1458 */
1459 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1460
1461 r10_bio->master_bio = bio;
1462 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1463
1464 r10_bio->mddev = mddev;
1465 r10_bio->sector = bio->bi_sector + sectors_handled;
1466 r10_bio->state = 0;
1467 goto retry_write;
1468 }
1469 one_write_done(r10_bio);
1470
1471 /* In case raid10d snuck in to freeze_array */
1472 wake_up(&conf->wait_barrier);
1473 }
1474
1475 static void status(struct seq_file *seq, struct mddev *mddev)
1476 {
1477 struct r10conf *conf = mddev->private;
1478 int i;
1479
1480 if (conf->geo.near_copies < conf->geo.raid_disks)
1481 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1482 if (conf->geo.near_copies > 1)
1483 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1484 if (conf->geo.far_copies > 1) {
1485 if (conf->geo.far_offset)
1486 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1487 else
1488 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1489 }
1490 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1491 conf->geo.raid_disks - mddev->degraded);
1492 for (i = 0; i < conf->geo.raid_disks; i++)
1493 seq_printf(seq, "%s",
1494 conf->mirrors[i].rdev &&
1495 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1496 seq_printf(seq, "]");
1497 }
1498
1499 /* check if there are enough drives for
1500 * every block to appear on atleast one.
1501 * Don't consider the device numbered 'ignore'
1502 * as we might be about to remove it.
1503 */
1504 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1505 {
1506 int first = 0;
1507
1508 do {
1509 int n = conf->copies;
1510 int cnt = 0;
1511 while (n--) {
1512 if (conf->mirrors[first].rdev &&
1513 first != ignore)
1514 cnt++;
1515 first = (first+1) % geo->raid_disks;
1516 }
1517 if (cnt == 0)
1518 return 0;
1519 } while (first != 0);
1520 return 1;
1521 }
1522
1523 static int enough(struct r10conf *conf, int ignore)
1524 {
1525 return _enough(conf, &conf->geo, ignore) &&
1526 _enough(conf, &conf->prev, ignore);
1527 }
1528
1529 static void error(struct mddev *mddev, struct md_rdev *rdev)
1530 {
1531 char b[BDEVNAME_SIZE];
1532 struct r10conf *conf = mddev->private;
1533
1534 /*
1535 * If it is not operational, then we have already marked it as dead
1536 * else if it is the last working disks, ignore the error, let the
1537 * next level up know.
1538 * else mark the drive as failed
1539 */
1540 if (test_bit(In_sync, &rdev->flags)
1541 && !enough(conf, rdev->raid_disk))
1542 /*
1543 * Don't fail the drive, just return an IO error.
1544 */
1545 return;
1546 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1547 unsigned long flags;
1548 spin_lock_irqsave(&conf->device_lock, flags);
1549 mddev->degraded++;
1550 spin_unlock_irqrestore(&conf->device_lock, flags);
1551 /*
1552 * if recovery is running, make sure it aborts.
1553 */
1554 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1555 }
1556 set_bit(Blocked, &rdev->flags);
1557 set_bit(Faulty, &rdev->flags);
1558 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1559 printk(KERN_ALERT
1560 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1561 "md/raid10:%s: Operation continuing on %d devices.\n",
1562 mdname(mddev), bdevname(rdev->bdev, b),
1563 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1564 }
1565
1566 static void print_conf(struct r10conf *conf)
1567 {
1568 int i;
1569 struct raid10_info *tmp;
1570
1571 printk(KERN_DEBUG "RAID10 conf printout:\n");
1572 if (!conf) {
1573 printk(KERN_DEBUG "(!conf)\n");
1574 return;
1575 }
1576 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1577 conf->geo.raid_disks);
1578
1579 for (i = 0; i < conf->geo.raid_disks; i++) {
1580 char b[BDEVNAME_SIZE];
1581 tmp = conf->mirrors + i;
1582 if (tmp->rdev)
1583 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1584 i, !test_bit(In_sync, &tmp->rdev->flags),
1585 !test_bit(Faulty, &tmp->rdev->flags),
1586 bdevname(tmp->rdev->bdev,b));
1587 }
1588 }
1589
1590 static void close_sync(struct r10conf *conf)
1591 {
1592 wait_barrier(conf);
1593 allow_barrier(conf);
1594
1595 mempool_destroy(conf->r10buf_pool);
1596 conf->r10buf_pool = NULL;
1597 }
1598
1599 static int raid10_spare_active(struct mddev *mddev)
1600 {
1601 int i;
1602 struct r10conf *conf = mddev->private;
1603 struct raid10_info *tmp;
1604 int count = 0;
1605 unsigned long flags;
1606
1607 /*
1608 * Find all non-in_sync disks within the RAID10 configuration
1609 * and mark them in_sync
1610 */
1611 for (i = 0; i < conf->geo.raid_disks; i++) {
1612 tmp = conf->mirrors + i;
1613 if (tmp->replacement
1614 && tmp->replacement->recovery_offset == MaxSector
1615 && !test_bit(Faulty, &tmp->replacement->flags)
1616 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1617 /* Replacement has just become active */
1618 if (!tmp->rdev
1619 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1620 count++;
1621 if (tmp->rdev) {
1622 /* Replaced device not technically faulty,
1623 * but we need to be sure it gets removed
1624 * and never re-added.
1625 */
1626 set_bit(Faulty, &tmp->rdev->flags);
1627 sysfs_notify_dirent_safe(
1628 tmp->rdev->sysfs_state);
1629 }
1630 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1631 } else if (tmp->rdev
1632 && !test_bit(Faulty, &tmp->rdev->flags)
1633 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1634 count++;
1635 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1636 }
1637 }
1638 spin_lock_irqsave(&conf->device_lock, flags);
1639 mddev->degraded -= count;
1640 spin_unlock_irqrestore(&conf->device_lock, flags);
1641
1642 print_conf(conf);
1643 return count;
1644 }
1645
1646
1647 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1648 {
1649 struct r10conf *conf = mddev->private;
1650 int err = -EEXIST;
1651 int mirror;
1652 int first = 0;
1653 int last = conf->geo.raid_disks - 1;
1654 struct request_queue *q = bdev_get_queue(rdev->bdev);
1655
1656 if (mddev->recovery_cp < MaxSector)
1657 /* only hot-add to in-sync arrays, as recovery is
1658 * very different from resync
1659 */
1660 return -EBUSY;
1661 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1662 return -EINVAL;
1663
1664 if (rdev->raid_disk >= 0)
1665 first = last = rdev->raid_disk;
1666
1667 if (q->merge_bvec_fn) {
1668 set_bit(Unmerged, &rdev->flags);
1669 mddev->merge_check_needed = 1;
1670 }
1671
1672 if (rdev->saved_raid_disk >= first &&
1673 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1674 mirror = rdev->saved_raid_disk;
1675 else
1676 mirror = first;
1677 for ( ; mirror <= last ; mirror++) {
1678 struct raid10_info *p = &conf->mirrors[mirror];
1679 if (p->recovery_disabled == mddev->recovery_disabled)
1680 continue;
1681 if (p->rdev) {
1682 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1683 p->replacement != NULL)
1684 continue;
1685 clear_bit(In_sync, &rdev->flags);
1686 set_bit(Replacement, &rdev->flags);
1687 rdev->raid_disk = mirror;
1688 err = 0;
1689 disk_stack_limits(mddev->gendisk, rdev->bdev,
1690 rdev->data_offset << 9);
1691 conf->fullsync = 1;
1692 rcu_assign_pointer(p->replacement, rdev);
1693 break;
1694 }
1695
1696 disk_stack_limits(mddev->gendisk, rdev->bdev,
1697 rdev->data_offset << 9);
1698
1699 p->head_position = 0;
1700 p->recovery_disabled = mddev->recovery_disabled - 1;
1701 rdev->raid_disk = mirror;
1702 err = 0;
1703 if (rdev->saved_raid_disk != mirror)
1704 conf->fullsync = 1;
1705 rcu_assign_pointer(p->rdev, rdev);
1706 break;
1707 }
1708 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1709 /* Some requests might not have seen this new
1710 * merge_bvec_fn. We must wait for them to complete
1711 * before merging the device fully.
1712 * First we make sure any code which has tested
1713 * our function has submitted the request, then
1714 * we wait for all outstanding requests to complete.
1715 */
1716 synchronize_sched();
1717 raise_barrier(conf, 0);
1718 lower_barrier(conf);
1719 clear_bit(Unmerged, &rdev->flags);
1720 }
1721 md_integrity_add_rdev(rdev, mddev);
1722 print_conf(conf);
1723 return err;
1724 }
1725
1726 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1727 {
1728 struct r10conf *conf = mddev->private;
1729 int err = 0;
1730 int number = rdev->raid_disk;
1731 struct md_rdev **rdevp;
1732 struct raid10_info *p = conf->mirrors + number;
1733
1734 print_conf(conf);
1735 if (rdev == p->rdev)
1736 rdevp = &p->rdev;
1737 else if (rdev == p->replacement)
1738 rdevp = &p->replacement;
1739 else
1740 return 0;
1741
1742 if (test_bit(In_sync, &rdev->flags) ||
1743 atomic_read(&rdev->nr_pending)) {
1744 err = -EBUSY;
1745 goto abort;
1746 }
1747 /* Only remove faulty devices if recovery
1748 * is not possible.
1749 */
1750 if (!test_bit(Faulty, &rdev->flags) &&
1751 mddev->recovery_disabled != p->recovery_disabled &&
1752 (!p->replacement || p->replacement == rdev) &&
1753 number < conf->geo.raid_disks &&
1754 enough(conf, -1)) {
1755 err = -EBUSY;
1756 goto abort;
1757 }
1758 *rdevp = NULL;
1759 synchronize_rcu();
1760 if (atomic_read(&rdev->nr_pending)) {
1761 /* lost the race, try later */
1762 err = -EBUSY;
1763 *rdevp = rdev;
1764 goto abort;
1765 } else if (p->replacement) {
1766 /* We must have just cleared 'rdev' */
1767 p->rdev = p->replacement;
1768 clear_bit(Replacement, &p->replacement->flags);
1769 smp_mb(); /* Make sure other CPUs may see both as identical
1770 * but will never see neither -- if they are careful.
1771 */
1772 p->replacement = NULL;
1773 clear_bit(WantReplacement, &rdev->flags);
1774 } else
1775 /* We might have just remove the Replacement as faulty
1776 * Clear the flag just in case
1777 */
1778 clear_bit(WantReplacement, &rdev->flags);
1779
1780 err = md_integrity_register(mddev);
1781
1782 abort:
1783
1784 print_conf(conf);
1785 return err;
1786 }
1787
1788
1789 static void end_sync_read(struct bio *bio, int error)
1790 {
1791 struct r10bio *r10_bio = bio->bi_private;
1792 struct r10conf *conf = r10_bio->mddev->private;
1793 int d;
1794
1795 if (bio == r10_bio->master_bio) {
1796 /* this is a reshape read */
1797 d = r10_bio->read_slot; /* really the read dev */
1798 } else
1799 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1800
1801 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1802 set_bit(R10BIO_Uptodate, &r10_bio->state);
1803 else
1804 /* The write handler will notice the lack of
1805 * R10BIO_Uptodate and record any errors etc
1806 */
1807 atomic_add(r10_bio->sectors,
1808 &conf->mirrors[d].rdev->corrected_errors);
1809
1810 /* for reconstruct, we always reschedule after a read.
1811 * for resync, only after all reads
1812 */
1813 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1814 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1815 atomic_dec_and_test(&r10_bio->remaining)) {
1816 /* we have read all the blocks,
1817 * do the comparison in process context in raid10d
1818 */
1819 reschedule_retry(r10_bio);
1820 }
1821 }
1822
1823 static void end_sync_request(struct r10bio *r10_bio)
1824 {
1825 struct mddev *mddev = r10_bio->mddev;
1826
1827 while (atomic_dec_and_test(&r10_bio->remaining)) {
1828 if (r10_bio->master_bio == NULL) {
1829 /* the primary of several recovery bios */
1830 sector_t s = r10_bio->sectors;
1831 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1832 test_bit(R10BIO_WriteError, &r10_bio->state))
1833 reschedule_retry(r10_bio);
1834 else
1835 put_buf(r10_bio);
1836 md_done_sync(mddev, s, 1);
1837 break;
1838 } else {
1839 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1840 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1841 test_bit(R10BIO_WriteError, &r10_bio->state))
1842 reschedule_retry(r10_bio);
1843 else
1844 put_buf(r10_bio);
1845 r10_bio = r10_bio2;
1846 }
1847 }
1848 }
1849
1850 static void end_sync_write(struct bio *bio, int error)
1851 {
1852 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1853 struct r10bio *r10_bio = bio->bi_private;
1854 struct mddev *mddev = r10_bio->mddev;
1855 struct r10conf *conf = mddev->private;
1856 int d;
1857 sector_t first_bad;
1858 int bad_sectors;
1859 int slot;
1860 int repl;
1861 struct md_rdev *rdev = NULL;
1862
1863 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1864 if (repl)
1865 rdev = conf->mirrors[d].replacement;
1866 else
1867 rdev = conf->mirrors[d].rdev;
1868
1869 if (!uptodate) {
1870 if (repl)
1871 md_error(mddev, rdev);
1872 else {
1873 set_bit(WriteErrorSeen, &rdev->flags);
1874 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1875 set_bit(MD_RECOVERY_NEEDED,
1876 &rdev->mddev->recovery);
1877 set_bit(R10BIO_WriteError, &r10_bio->state);
1878 }
1879 } else if (is_badblock(rdev,
1880 r10_bio->devs[slot].addr,
1881 r10_bio->sectors,
1882 &first_bad, &bad_sectors))
1883 set_bit(R10BIO_MadeGood, &r10_bio->state);
1884
1885 rdev_dec_pending(rdev, mddev);
1886
1887 end_sync_request(r10_bio);
1888 }
1889
1890 /*
1891 * Note: sync and recover and handled very differently for raid10
1892 * This code is for resync.
1893 * For resync, we read through virtual addresses and read all blocks.
1894 * If there is any error, we schedule a write. The lowest numbered
1895 * drive is authoritative.
1896 * However requests come for physical address, so we need to map.
1897 * For every physical address there are raid_disks/copies virtual addresses,
1898 * which is always are least one, but is not necessarly an integer.
1899 * This means that a physical address can span multiple chunks, so we may
1900 * have to submit multiple io requests for a single sync request.
1901 */
1902 /*
1903 * We check if all blocks are in-sync and only write to blocks that
1904 * aren't in sync
1905 */
1906 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1907 {
1908 struct r10conf *conf = mddev->private;
1909 int i, first;
1910 struct bio *tbio, *fbio;
1911 int vcnt;
1912
1913 atomic_set(&r10_bio->remaining, 1);
1914
1915 /* find the first device with a block */
1916 for (i=0; i<conf->copies; i++)
1917 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1918 break;
1919
1920 if (i == conf->copies)
1921 goto done;
1922
1923 first = i;
1924 fbio = r10_bio->devs[i].bio;
1925
1926 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1927 /* now find blocks with errors */
1928 for (i=0 ; i < conf->copies ; i++) {
1929 int j, d;
1930
1931 tbio = r10_bio->devs[i].bio;
1932
1933 if (tbio->bi_end_io != end_sync_read)
1934 continue;
1935 if (i == first)
1936 continue;
1937 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1938 /* We know that the bi_io_vec layout is the same for
1939 * both 'first' and 'i', so we just compare them.
1940 * All vec entries are PAGE_SIZE;
1941 */
1942 for (j = 0; j < vcnt; j++)
1943 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1944 page_address(tbio->bi_io_vec[j].bv_page),
1945 fbio->bi_io_vec[j].bv_len))
1946 break;
1947 if (j == vcnt)
1948 continue;
1949 mddev->resync_mismatches += r10_bio->sectors;
1950 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1951 /* Don't fix anything. */
1952 continue;
1953 }
1954 /* Ok, we need to write this bio, either to correct an
1955 * inconsistency or to correct an unreadable block.
1956 * First we need to fixup bv_offset, bv_len and
1957 * bi_vecs, as the read request might have corrupted these
1958 */
1959 tbio->bi_vcnt = vcnt;
1960 tbio->bi_size = r10_bio->sectors << 9;
1961 tbio->bi_idx = 0;
1962 tbio->bi_phys_segments = 0;
1963 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1964 tbio->bi_flags |= 1 << BIO_UPTODATE;
1965 tbio->bi_next = NULL;
1966 tbio->bi_rw = WRITE;
1967 tbio->bi_private = r10_bio;
1968 tbio->bi_sector = r10_bio->devs[i].addr;
1969
1970 for (j=0; j < vcnt ; j++) {
1971 tbio->bi_io_vec[j].bv_offset = 0;
1972 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1973
1974 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1975 page_address(fbio->bi_io_vec[j].bv_page),
1976 PAGE_SIZE);
1977 }
1978 tbio->bi_end_io = end_sync_write;
1979
1980 d = r10_bio->devs[i].devnum;
1981 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1982 atomic_inc(&r10_bio->remaining);
1983 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1984
1985 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1986 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1987 generic_make_request(tbio);
1988 }
1989
1990 /* Now write out to any replacement devices
1991 * that are active
1992 */
1993 for (i = 0; i < conf->copies; i++) {
1994 int j, d;
1995
1996 tbio = r10_bio->devs[i].repl_bio;
1997 if (!tbio || !tbio->bi_end_io)
1998 continue;
1999 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2000 && r10_bio->devs[i].bio != fbio)
2001 for (j = 0; j < vcnt; j++)
2002 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2003 page_address(fbio->bi_io_vec[j].bv_page),
2004 PAGE_SIZE);
2005 d = r10_bio->devs[i].devnum;
2006 atomic_inc(&r10_bio->remaining);
2007 md_sync_acct(conf->mirrors[d].replacement->bdev,
2008 tbio->bi_size >> 9);
2009 generic_make_request(tbio);
2010 }
2011
2012 done:
2013 if (atomic_dec_and_test(&r10_bio->remaining)) {
2014 md_done_sync(mddev, r10_bio->sectors, 1);
2015 put_buf(r10_bio);
2016 }
2017 }
2018
2019 /*
2020 * Now for the recovery code.
2021 * Recovery happens across physical sectors.
2022 * We recover all non-is_sync drives by finding the virtual address of
2023 * each, and then choose a working drive that also has that virt address.
2024 * There is a separate r10_bio for each non-in_sync drive.
2025 * Only the first two slots are in use. The first for reading,
2026 * The second for writing.
2027 *
2028 */
2029 static void fix_recovery_read_error(struct r10bio *r10_bio)
2030 {
2031 /* We got a read error during recovery.
2032 * We repeat the read in smaller page-sized sections.
2033 * If a read succeeds, write it to the new device or record
2034 * a bad block if we cannot.
2035 * If a read fails, record a bad block on both old and
2036 * new devices.
2037 */
2038 struct mddev *mddev = r10_bio->mddev;
2039 struct r10conf *conf = mddev->private;
2040 struct bio *bio = r10_bio->devs[0].bio;
2041 sector_t sect = 0;
2042 int sectors = r10_bio->sectors;
2043 int idx = 0;
2044 int dr = r10_bio->devs[0].devnum;
2045 int dw = r10_bio->devs[1].devnum;
2046
2047 while (sectors) {
2048 int s = sectors;
2049 struct md_rdev *rdev;
2050 sector_t addr;
2051 int ok;
2052
2053 if (s > (PAGE_SIZE>>9))
2054 s = PAGE_SIZE >> 9;
2055
2056 rdev = conf->mirrors[dr].rdev;
2057 addr = r10_bio->devs[0].addr + sect,
2058 ok = sync_page_io(rdev,
2059 addr,
2060 s << 9,
2061 bio->bi_io_vec[idx].bv_page,
2062 READ, false);
2063 if (ok) {
2064 rdev = conf->mirrors[dw].rdev;
2065 addr = r10_bio->devs[1].addr + sect;
2066 ok = sync_page_io(rdev,
2067 addr,
2068 s << 9,
2069 bio->bi_io_vec[idx].bv_page,
2070 WRITE, false);
2071 if (!ok) {
2072 set_bit(WriteErrorSeen, &rdev->flags);
2073 if (!test_and_set_bit(WantReplacement,
2074 &rdev->flags))
2075 set_bit(MD_RECOVERY_NEEDED,
2076 &rdev->mddev->recovery);
2077 }
2078 }
2079 if (!ok) {
2080 /* We don't worry if we cannot set a bad block -
2081 * it really is bad so there is no loss in not
2082 * recording it yet
2083 */
2084 rdev_set_badblocks(rdev, addr, s, 0);
2085
2086 if (rdev != conf->mirrors[dw].rdev) {
2087 /* need bad block on destination too */
2088 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2089 addr = r10_bio->devs[1].addr + sect;
2090 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2091 if (!ok) {
2092 /* just abort the recovery */
2093 printk(KERN_NOTICE
2094 "md/raid10:%s: recovery aborted"
2095 " due to read error\n",
2096 mdname(mddev));
2097
2098 conf->mirrors[dw].recovery_disabled
2099 = mddev->recovery_disabled;
2100 set_bit(MD_RECOVERY_INTR,
2101 &mddev->recovery);
2102 break;
2103 }
2104 }
2105 }
2106
2107 sectors -= s;
2108 sect += s;
2109 idx++;
2110 }
2111 }
2112
2113 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2114 {
2115 struct r10conf *conf = mddev->private;
2116 int d;
2117 struct bio *wbio, *wbio2;
2118
2119 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2120 fix_recovery_read_error(r10_bio);
2121 end_sync_request(r10_bio);
2122 return;
2123 }
2124
2125 /*
2126 * share the pages with the first bio
2127 * and submit the write request
2128 */
2129 d = r10_bio->devs[1].devnum;
2130 wbio = r10_bio->devs[1].bio;
2131 wbio2 = r10_bio->devs[1].repl_bio;
2132 if (wbio->bi_end_io) {
2133 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2134 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2135 generic_make_request(wbio);
2136 }
2137 if (wbio2 && wbio2->bi_end_io) {
2138 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2139 md_sync_acct(conf->mirrors[d].replacement->bdev,
2140 wbio2->bi_size >> 9);
2141 generic_make_request(wbio2);
2142 }
2143 }
2144
2145
2146 /*
2147 * Used by fix_read_error() to decay the per rdev read_errors.
2148 * We halve the read error count for every hour that has elapsed
2149 * since the last recorded read error.
2150 *
2151 */
2152 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2153 {
2154 struct timespec cur_time_mon;
2155 unsigned long hours_since_last;
2156 unsigned int read_errors = atomic_read(&rdev->read_errors);
2157
2158 ktime_get_ts(&cur_time_mon);
2159
2160 if (rdev->last_read_error.tv_sec == 0 &&
2161 rdev->last_read_error.tv_nsec == 0) {
2162 /* first time we've seen a read error */
2163 rdev->last_read_error = cur_time_mon;
2164 return;
2165 }
2166
2167 hours_since_last = (cur_time_mon.tv_sec -
2168 rdev->last_read_error.tv_sec) / 3600;
2169
2170 rdev->last_read_error = cur_time_mon;
2171
2172 /*
2173 * if hours_since_last is > the number of bits in read_errors
2174 * just set read errors to 0. We do this to avoid
2175 * overflowing the shift of read_errors by hours_since_last.
2176 */
2177 if (hours_since_last >= 8 * sizeof(read_errors))
2178 atomic_set(&rdev->read_errors, 0);
2179 else
2180 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2181 }
2182
2183 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2184 int sectors, struct page *page, int rw)
2185 {
2186 sector_t first_bad;
2187 int bad_sectors;
2188
2189 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2190 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2191 return -1;
2192 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2193 /* success */
2194 return 1;
2195 if (rw == WRITE) {
2196 set_bit(WriteErrorSeen, &rdev->flags);
2197 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2198 set_bit(MD_RECOVERY_NEEDED,
2199 &rdev->mddev->recovery);
2200 }
2201 /* need to record an error - either for the block or the device */
2202 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2203 md_error(rdev->mddev, rdev);
2204 return 0;
2205 }
2206
2207 /*
2208 * This is a kernel thread which:
2209 *
2210 * 1. Retries failed read operations on working mirrors.
2211 * 2. Updates the raid superblock when problems encounter.
2212 * 3. Performs writes following reads for array synchronising.
2213 */
2214
2215 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2216 {
2217 int sect = 0; /* Offset from r10_bio->sector */
2218 int sectors = r10_bio->sectors;
2219 struct md_rdev*rdev;
2220 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2221 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2222
2223 /* still own a reference to this rdev, so it cannot
2224 * have been cleared recently.
2225 */
2226 rdev = conf->mirrors[d].rdev;
2227
2228 if (test_bit(Faulty, &rdev->flags))
2229 /* drive has already been failed, just ignore any
2230 more fix_read_error() attempts */
2231 return;
2232
2233 check_decay_read_errors(mddev, rdev);
2234 atomic_inc(&rdev->read_errors);
2235 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2236 char b[BDEVNAME_SIZE];
2237 bdevname(rdev->bdev, b);
2238
2239 printk(KERN_NOTICE
2240 "md/raid10:%s: %s: Raid device exceeded "
2241 "read_error threshold [cur %d:max %d]\n",
2242 mdname(mddev), b,
2243 atomic_read(&rdev->read_errors), max_read_errors);
2244 printk(KERN_NOTICE
2245 "md/raid10:%s: %s: Failing raid device\n",
2246 mdname(mddev), b);
2247 md_error(mddev, conf->mirrors[d].rdev);
2248 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2249 return;
2250 }
2251
2252 while(sectors) {
2253 int s = sectors;
2254 int sl = r10_bio->read_slot;
2255 int success = 0;
2256 int start;
2257
2258 if (s > (PAGE_SIZE>>9))
2259 s = PAGE_SIZE >> 9;
2260
2261 rcu_read_lock();
2262 do {
2263 sector_t first_bad;
2264 int bad_sectors;
2265
2266 d = r10_bio->devs[sl].devnum;
2267 rdev = rcu_dereference(conf->mirrors[d].rdev);
2268 if (rdev &&
2269 !test_bit(Unmerged, &rdev->flags) &&
2270 test_bit(In_sync, &rdev->flags) &&
2271 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2272 &first_bad, &bad_sectors) == 0) {
2273 atomic_inc(&rdev->nr_pending);
2274 rcu_read_unlock();
2275 success = sync_page_io(rdev,
2276 r10_bio->devs[sl].addr +
2277 sect,
2278 s<<9,
2279 conf->tmppage, READ, false);
2280 rdev_dec_pending(rdev, mddev);
2281 rcu_read_lock();
2282 if (success)
2283 break;
2284 }
2285 sl++;
2286 if (sl == conf->copies)
2287 sl = 0;
2288 } while (!success && sl != r10_bio->read_slot);
2289 rcu_read_unlock();
2290
2291 if (!success) {
2292 /* Cannot read from anywhere, just mark the block
2293 * as bad on the first device to discourage future
2294 * reads.
2295 */
2296 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2297 rdev = conf->mirrors[dn].rdev;
2298
2299 if (!rdev_set_badblocks(
2300 rdev,
2301 r10_bio->devs[r10_bio->read_slot].addr
2302 + sect,
2303 s, 0)) {
2304 md_error(mddev, rdev);
2305 r10_bio->devs[r10_bio->read_slot].bio
2306 = IO_BLOCKED;
2307 }
2308 break;
2309 }
2310
2311 start = sl;
2312 /* write it back and re-read */
2313 rcu_read_lock();
2314 while (sl != r10_bio->read_slot) {
2315 char b[BDEVNAME_SIZE];
2316
2317 if (sl==0)
2318 sl = conf->copies;
2319 sl--;
2320 d = r10_bio->devs[sl].devnum;
2321 rdev = rcu_dereference(conf->mirrors[d].rdev);
2322 if (!rdev ||
2323 test_bit(Unmerged, &rdev->flags) ||
2324 !test_bit(In_sync, &rdev->flags))
2325 continue;
2326
2327 atomic_inc(&rdev->nr_pending);
2328 rcu_read_unlock();
2329 if (r10_sync_page_io(rdev,
2330 r10_bio->devs[sl].addr +
2331 sect,
2332 s, conf->tmppage, WRITE)
2333 == 0) {
2334 /* Well, this device is dead */
2335 printk(KERN_NOTICE
2336 "md/raid10:%s: read correction "
2337 "write failed"
2338 " (%d sectors at %llu on %s)\n",
2339 mdname(mddev), s,
2340 (unsigned long long)(
2341 sect +
2342 choose_data_offset(r10_bio,
2343 rdev)),
2344 bdevname(rdev->bdev, b));
2345 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2346 "drive\n",
2347 mdname(mddev),
2348 bdevname(rdev->bdev, b));
2349 }
2350 rdev_dec_pending(rdev, mddev);
2351 rcu_read_lock();
2352 }
2353 sl = start;
2354 while (sl != r10_bio->read_slot) {
2355 char b[BDEVNAME_SIZE];
2356
2357 if (sl==0)
2358 sl = conf->copies;
2359 sl--;
2360 d = r10_bio->devs[sl].devnum;
2361 rdev = rcu_dereference(conf->mirrors[d].rdev);
2362 if (!rdev ||
2363 !test_bit(In_sync, &rdev->flags))
2364 continue;
2365
2366 atomic_inc(&rdev->nr_pending);
2367 rcu_read_unlock();
2368 switch (r10_sync_page_io(rdev,
2369 r10_bio->devs[sl].addr +
2370 sect,
2371 s, conf->tmppage,
2372 READ)) {
2373 case 0:
2374 /* Well, this device is dead */
2375 printk(KERN_NOTICE
2376 "md/raid10:%s: unable to read back "
2377 "corrected sectors"
2378 " (%d sectors at %llu on %s)\n",
2379 mdname(mddev), s,
2380 (unsigned long long)(
2381 sect +
2382 choose_data_offset(r10_bio, rdev)),
2383 bdevname(rdev->bdev, b));
2384 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2385 "drive\n",
2386 mdname(mddev),
2387 bdevname(rdev->bdev, b));
2388 break;
2389 case 1:
2390 printk(KERN_INFO
2391 "md/raid10:%s: read error corrected"
2392 " (%d sectors at %llu on %s)\n",
2393 mdname(mddev), s,
2394 (unsigned long long)(
2395 sect +
2396 choose_data_offset(r10_bio, rdev)),
2397 bdevname(rdev->bdev, b));
2398 atomic_add(s, &rdev->corrected_errors);
2399 }
2400
2401 rdev_dec_pending(rdev, mddev);
2402 rcu_read_lock();
2403 }
2404 rcu_read_unlock();
2405
2406 sectors -= s;
2407 sect += s;
2408 }
2409 }
2410
2411 static void bi_complete(struct bio *bio, int error)
2412 {
2413 complete((struct completion *)bio->bi_private);
2414 }
2415
2416 static int submit_bio_wait(int rw, struct bio *bio)
2417 {
2418 struct completion event;
2419 rw |= REQ_SYNC;
2420
2421 init_completion(&event);
2422 bio->bi_private = &event;
2423 bio->bi_end_io = bi_complete;
2424 submit_bio(rw, bio);
2425 wait_for_completion(&event);
2426
2427 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2428 }
2429
2430 static int narrow_write_error(struct r10bio *r10_bio, int i)
2431 {
2432 struct bio *bio = r10_bio->master_bio;
2433 struct mddev *mddev = r10_bio->mddev;
2434 struct r10conf *conf = mddev->private;
2435 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2436 /* bio has the data to be written to slot 'i' where
2437 * we just recently had a write error.
2438 * We repeatedly clone the bio and trim down to one block,
2439 * then try the write. Where the write fails we record
2440 * a bad block.
2441 * It is conceivable that the bio doesn't exactly align with
2442 * blocks. We must handle this.
2443 *
2444 * We currently own a reference to the rdev.
2445 */
2446
2447 int block_sectors;
2448 sector_t sector;
2449 int sectors;
2450 int sect_to_write = r10_bio->sectors;
2451 int ok = 1;
2452
2453 if (rdev->badblocks.shift < 0)
2454 return 0;
2455
2456 block_sectors = 1 << rdev->badblocks.shift;
2457 sector = r10_bio->sector;
2458 sectors = ((r10_bio->sector + block_sectors)
2459 & ~(sector_t)(block_sectors - 1))
2460 - sector;
2461
2462 while (sect_to_write) {
2463 struct bio *wbio;
2464 if (sectors > sect_to_write)
2465 sectors = sect_to_write;
2466 /* Write at 'sector' for 'sectors' */
2467 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2468 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2469 wbio->bi_sector = (r10_bio->devs[i].addr+
2470 choose_data_offset(r10_bio, rdev) +
2471 (sector - r10_bio->sector));
2472 wbio->bi_bdev = rdev->bdev;
2473 if (submit_bio_wait(WRITE, wbio) == 0)
2474 /* Failure! */
2475 ok = rdev_set_badblocks(rdev, sector,
2476 sectors, 0)
2477 && ok;
2478
2479 bio_put(wbio);
2480 sect_to_write -= sectors;
2481 sector += sectors;
2482 sectors = block_sectors;
2483 }
2484 return ok;
2485 }
2486
2487 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2488 {
2489 int slot = r10_bio->read_slot;
2490 struct bio *bio;
2491 struct r10conf *conf = mddev->private;
2492 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2493 char b[BDEVNAME_SIZE];
2494 unsigned long do_sync;
2495 int max_sectors;
2496
2497 /* we got a read error. Maybe the drive is bad. Maybe just
2498 * the block and we can fix it.
2499 * We freeze all other IO, and try reading the block from
2500 * other devices. When we find one, we re-write
2501 * and check it that fixes the read error.
2502 * This is all done synchronously while the array is
2503 * frozen.
2504 */
2505 bio = r10_bio->devs[slot].bio;
2506 bdevname(bio->bi_bdev, b);
2507 bio_put(bio);
2508 r10_bio->devs[slot].bio = NULL;
2509
2510 if (mddev->ro == 0) {
2511 freeze_array(conf);
2512 fix_read_error(conf, mddev, r10_bio);
2513 unfreeze_array(conf);
2514 } else
2515 r10_bio->devs[slot].bio = IO_BLOCKED;
2516
2517 rdev_dec_pending(rdev, mddev);
2518
2519 read_more:
2520 rdev = read_balance(conf, r10_bio, &max_sectors);
2521 if (rdev == NULL) {
2522 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2523 " read error for block %llu\n",
2524 mdname(mddev), b,
2525 (unsigned long long)r10_bio->sector);
2526 raid_end_bio_io(r10_bio);
2527 return;
2528 }
2529
2530 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2531 slot = r10_bio->read_slot;
2532 printk_ratelimited(
2533 KERN_ERR
2534 "md/raid10:%s: %s: redirecting "
2535 "sector %llu to another mirror\n",
2536 mdname(mddev),
2537 bdevname(rdev->bdev, b),
2538 (unsigned long long)r10_bio->sector);
2539 bio = bio_clone_mddev(r10_bio->master_bio,
2540 GFP_NOIO, mddev);
2541 md_trim_bio(bio,
2542 r10_bio->sector - bio->bi_sector,
2543 max_sectors);
2544 r10_bio->devs[slot].bio = bio;
2545 r10_bio->devs[slot].rdev = rdev;
2546 bio->bi_sector = r10_bio->devs[slot].addr
2547 + choose_data_offset(r10_bio, rdev);
2548 bio->bi_bdev = rdev->bdev;
2549 bio->bi_rw = READ | do_sync;
2550 bio->bi_private = r10_bio;
2551 bio->bi_end_io = raid10_end_read_request;
2552 if (max_sectors < r10_bio->sectors) {
2553 /* Drat - have to split this up more */
2554 struct bio *mbio = r10_bio->master_bio;
2555 int sectors_handled =
2556 r10_bio->sector + max_sectors
2557 - mbio->bi_sector;
2558 r10_bio->sectors = max_sectors;
2559 spin_lock_irq(&conf->device_lock);
2560 if (mbio->bi_phys_segments == 0)
2561 mbio->bi_phys_segments = 2;
2562 else
2563 mbio->bi_phys_segments++;
2564 spin_unlock_irq(&conf->device_lock);
2565 generic_make_request(bio);
2566
2567 r10_bio = mempool_alloc(conf->r10bio_pool,
2568 GFP_NOIO);
2569 r10_bio->master_bio = mbio;
2570 r10_bio->sectors = (mbio->bi_size >> 9)
2571 - sectors_handled;
2572 r10_bio->state = 0;
2573 set_bit(R10BIO_ReadError,
2574 &r10_bio->state);
2575 r10_bio->mddev = mddev;
2576 r10_bio->sector = mbio->bi_sector
2577 + sectors_handled;
2578
2579 goto read_more;
2580 } else
2581 generic_make_request(bio);
2582 }
2583
2584 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2585 {
2586 /* Some sort of write request has finished and it
2587 * succeeded in writing where we thought there was a
2588 * bad block. So forget the bad block.
2589 * Or possibly if failed and we need to record
2590 * a bad block.
2591 */
2592 int m;
2593 struct md_rdev *rdev;
2594
2595 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2596 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2597 for (m = 0; m < conf->copies; m++) {
2598 int dev = r10_bio->devs[m].devnum;
2599 rdev = conf->mirrors[dev].rdev;
2600 if (r10_bio->devs[m].bio == NULL)
2601 continue;
2602 if (test_bit(BIO_UPTODATE,
2603 &r10_bio->devs[m].bio->bi_flags)) {
2604 rdev_clear_badblocks(
2605 rdev,
2606 r10_bio->devs[m].addr,
2607 r10_bio->sectors, 0);
2608 } else {
2609 if (!rdev_set_badblocks(
2610 rdev,
2611 r10_bio->devs[m].addr,
2612 r10_bio->sectors, 0))
2613 md_error(conf->mddev, rdev);
2614 }
2615 rdev = conf->mirrors[dev].replacement;
2616 if (r10_bio->devs[m].repl_bio == NULL)
2617 continue;
2618 if (test_bit(BIO_UPTODATE,
2619 &r10_bio->devs[m].repl_bio->bi_flags)) {
2620 rdev_clear_badblocks(
2621 rdev,
2622 r10_bio->devs[m].addr,
2623 r10_bio->sectors, 0);
2624 } else {
2625 if (!rdev_set_badblocks(
2626 rdev,
2627 r10_bio->devs[m].addr,
2628 r10_bio->sectors, 0))
2629 md_error(conf->mddev, rdev);
2630 }
2631 }
2632 put_buf(r10_bio);
2633 } else {
2634 for (m = 0; m < conf->copies; m++) {
2635 int dev = r10_bio->devs[m].devnum;
2636 struct bio *bio = r10_bio->devs[m].bio;
2637 rdev = conf->mirrors[dev].rdev;
2638 if (bio == IO_MADE_GOOD) {
2639 rdev_clear_badblocks(
2640 rdev,
2641 r10_bio->devs[m].addr,
2642 r10_bio->sectors, 0);
2643 rdev_dec_pending(rdev, conf->mddev);
2644 } else if (bio != NULL &&
2645 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2646 if (!narrow_write_error(r10_bio, m)) {
2647 md_error(conf->mddev, rdev);
2648 set_bit(R10BIO_Degraded,
2649 &r10_bio->state);
2650 }
2651 rdev_dec_pending(rdev, conf->mddev);
2652 }
2653 bio = r10_bio->devs[m].repl_bio;
2654 rdev = conf->mirrors[dev].replacement;
2655 if (rdev && bio == IO_MADE_GOOD) {
2656 rdev_clear_badblocks(
2657 rdev,
2658 r10_bio->devs[m].addr,
2659 r10_bio->sectors, 0);
2660 rdev_dec_pending(rdev, conf->mddev);
2661 }
2662 }
2663 if (test_bit(R10BIO_WriteError,
2664 &r10_bio->state))
2665 close_write(r10_bio);
2666 raid_end_bio_io(r10_bio);
2667 }
2668 }
2669
2670 static void raid10d(struct mddev *mddev)
2671 {
2672 struct r10bio *r10_bio;
2673 unsigned long flags;
2674 struct r10conf *conf = mddev->private;
2675 struct list_head *head = &conf->retry_list;
2676 struct blk_plug plug;
2677
2678 md_check_recovery(mddev);
2679
2680 blk_start_plug(&plug);
2681 for (;;) {
2682
2683 flush_pending_writes(conf);
2684
2685 spin_lock_irqsave(&conf->device_lock, flags);
2686 if (list_empty(head)) {
2687 spin_unlock_irqrestore(&conf->device_lock, flags);
2688 break;
2689 }
2690 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2691 list_del(head->prev);
2692 conf->nr_queued--;
2693 spin_unlock_irqrestore(&conf->device_lock, flags);
2694
2695 mddev = r10_bio->mddev;
2696 conf = mddev->private;
2697 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2698 test_bit(R10BIO_WriteError, &r10_bio->state))
2699 handle_write_completed(conf, r10_bio);
2700 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2701 reshape_request_write(mddev, r10_bio);
2702 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2703 sync_request_write(mddev, r10_bio);
2704 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2705 recovery_request_write(mddev, r10_bio);
2706 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2707 handle_read_error(mddev, r10_bio);
2708 else {
2709 /* just a partial read to be scheduled from a
2710 * separate context
2711 */
2712 int slot = r10_bio->read_slot;
2713 generic_make_request(r10_bio->devs[slot].bio);
2714 }
2715
2716 cond_resched();
2717 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2718 md_check_recovery(mddev);
2719 }
2720 blk_finish_plug(&plug);
2721 }
2722
2723
2724 static int init_resync(struct r10conf *conf)
2725 {
2726 int buffs;
2727 int i;
2728
2729 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2730 BUG_ON(conf->r10buf_pool);
2731 conf->have_replacement = 0;
2732 for (i = 0; i < conf->geo.raid_disks; i++)
2733 if (conf->mirrors[i].replacement)
2734 conf->have_replacement = 1;
2735 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2736 if (!conf->r10buf_pool)
2737 return -ENOMEM;
2738 conf->next_resync = 0;
2739 return 0;
2740 }
2741
2742 /*
2743 * perform a "sync" on one "block"
2744 *
2745 * We need to make sure that no normal I/O request - particularly write
2746 * requests - conflict with active sync requests.
2747 *
2748 * This is achieved by tracking pending requests and a 'barrier' concept
2749 * that can be installed to exclude normal IO requests.
2750 *
2751 * Resync and recovery are handled very differently.
2752 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2753 *
2754 * For resync, we iterate over virtual addresses, read all copies,
2755 * and update if there are differences. If only one copy is live,
2756 * skip it.
2757 * For recovery, we iterate over physical addresses, read a good
2758 * value for each non-in_sync drive, and over-write.
2759 *
2760 * So, for recovery we may have several outstanding complex requests for a
2761 * given address, one for each out-of-sync device. We model this by allocating
2762 * a number of r10_bio structures, one for each out-of-sync device.
2763 * As we setup these structures, we collect all bio's together into a list
2764 * which we then process collectively to add pages, and then process again
2765 * to pass to generic_make_request.
2766 *
2767 * The r10_bio structures are linked using a borrowed master_bio pointer.
2768 * This link is counted in ->remaining. When the r10_bio that points to NULL
2769 * has its remaining count decremented to 0, the whole complex operation
2770 * is complete.
2771 *
2772 */
2773
2774 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2775 int *skipped, int go_faster)
2776 {
2777 struct r10conf *conf = mddev->private;
2778 struct r10bio *r10_bio;
2779 struct bio *biolist = NULL, *bio;
2780 sector_t max_sector, nr_sectors;
2781 int i;
2782 int max_sync;
2783 sector_t sync_blocks;
2784 sector_t sectors_skipped = 0;
2785 int chunks_skipped = 0;
2786 sector_t chunk_mask = conf->geo.chunk_mask;
2787
2788 if (!conf->r10buf_pool)
2789 if (init_resync(conf))
2790 return 0;
2791
2792 skipped:
2793 max_sector = mddev->dev_sectors;
2794 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2795 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2796 max_sector = mddev->resync_max_sectors;
2797 if (sector_nr >= max_sector) {
2798 /* If we aborted, we need to abort the
2799 * sync on the 'current' bitmap chucks (there can
2800 * be several when recovering multiple devices).
2801 * as we may have started syncing it but not finished.
2802 * We can find the current address in
2803 * mddev->curr_resync, but for recovery,
2804 * we need to convert that to several
2805 * virtual addresses.
2806 */
2807 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2808 end_reshape(conf);
2809 return 0;
2810 }
2811
2812 if (mddev->curr_resync < max_sector) { /* aborted */
2813 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2814 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2815 &sync_blocks, 1);
2816 else for (i = 0; i < conf->geo.raid_disks; i++) {
2817 sector_t sect =
2818 raid10_find_virt(conf, mddev->curr_resync, i);
2819 bitmap_end_sync(mddev->bitmap, sect,
2820 &sync_blocks, 1);
2821 }
2822 } else {
2823 /* completed sync */
2824 if ((!mddev->bitmap || conf->fullsync)
2825 && conf->have_replacement
2826 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2827 /* Completed a full sync so the replacements
2828 * are now fully recovered.
2829 */
2830 for (i = 0; i < conf->geo.raid_disks; i++)
2831 if (conf->mirrors[i].replacement)
2832 conf->mirrors[i].replacement
2833 ->recovery_offset
2834 = MaxSector;
2835 }
2836 conf->fullsync = 0;
2837 }
2838 bitmap_close_sync(mddev->bitmap);
2839 close_sync(conf);
2840 *skipped = 1;
2841 return sectors_skipped;
2842 }
2843
2844 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2845 return reshape_request(mddev, sector_nr, skipped);
2846
2847 if (chunks_skipped >= conf->geo.raid_disks) {
2848 /* if there has been nothing to do on any drive,
2849 * then there is nothing to do at all..
2850 */
2851 *skipped = 1;
2852 return (max_sector - sector_nr) + sectors_skipped;
2853 }
2854
2855 if (max_sector > mddev->resync_max)
2856 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2857
2858 /* make sure whole request will fit in a chunk - if chunks
2859 * are meaningful
2860 */
2861 if (conf->geo.near_copies < conf->geo.raid_disks &&
2862 max_sector > (sector_nr | chunk_mask))
2863 max_sector = (sector_nr | chunk_mask) + 1;
2864 /*
2865 * If there is non-resync activity waiting for us then
2866 * put in a delay to throttle resync.
2867 */
2868 if (!go_faster && conf->nr_waiting)
2869 msleep_interruptible(1000);
2870
2871 /* Again, very different code for resync and recovery.
2872 * Both must result in an r10bio with a list of bios that
2873 * have bi_end_io, bi_sector, bi_bdev set,
2874 * and bi_private set to the r10bio.
2875 * For recovery, we may actually create several r10bios
2876 * with 2 bios in each, that correspond to the bios in the main one.
2877 * In this case, the subordinate r10bios link back through a
2878 * borrowed master_bio pointer, and the counter in the master
2879 * includes a ref from each subordinate.
2880 */
2881 /* First, we decide what to do and set ->bi_end_io
2882 * To end_sync_read if we want to read, and
2883 * end_sync_write if we will want to write.
2884 */
2885
2886 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2887 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2888 /* recovery... the complicated one */
2889 int j;
2890 r10_bio = NULL;
2891
2892 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2893 int still_degraded;
2894 struct r10bio *rb2;
2895 sector_t sect;
2896 int must_sync;
2897 int any_working;
2898 struct raid10_info *mirror = &conf->mirrors[i];
2899
2900 if ((mirror->rdev == NULL ||
2901 test_bit(In_sync, &mirror->rdev->flags))
2902 &&
2903 (mirror->replacement == NULL ||
2904 test_bit(Faulty,
2905 &mirror->replacement->flags)))
2906 continue;
2907
2908 still_degraded = 0;
2909 /* want to reconstruct this device */
2910 rb2 = r10_bio;
2911 sect = raid10_find_virt(conf, sector_nr, i);
2912 if (sect >= mddev->resync_max_sectors) {
2913 /* last stripe is not complete - don't
2914 * try to recover this sector.
2915 */
2916 continue;
2917 }
2918 /* Unless we are doing a full sync, or a replacement
2919 * we only need to recover the block if it is set in
2920 * the bitmap
2921 */
2922 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2923 &sync_blocks, 1);
2924 if (sync_blocks < max_sync)
2925 max_sync = sync_blocks;
2926 if (!must_sync &&
2927 mirror->replacement == NULL &&
2928 !conf->fullsync) {
2929 /* yep, skip the sync_blocks here, but don't assume
2930 * that there will never be anything to do here
2931 */
2932 chunks_skipped = -1;
2933 continue;
2934 }
2935
2936 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2937 raise_barrier(conf, rb2 != NULL);
2938 atomic_set(&r10_bio->remaining, 0);
2939
2940 r10_bio->master_bio = (struct bio*)rb2;
2941 if (rb2)
2942 atomic_inc(&rb2->remaining);
2943 r10_bio->mddev = mddev;
2944 set_bit(R10BIO_IsRecover, &r10_bio->state);
2945 r10_bio->sector = sect;
2946
2947 raid10_find_phys(conf, r10_bio);
2948
2949 /* Need to check if the array will still be
2950 * degraded
2951 */
2952 for (j = 0; j < conf->geo.raid_disks; j++)
2953 if (conf->mirrors[j].rdev == NULL ||
2954 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2955 still_degraded = 1;
2956 break;
2957 }
2958
2959 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2960 &sync_blocks, still_degraded);
2961
2962 any_working = 0;
2963 for (j=0; j<conf->copies;j++) {
2964 int k;
2965 int d = r10_bio->devs[j].devnum;
2966 sector_t from_addr, to_addr;
2967 struct md_rdev *rdev;
2968 sector_t sector, first_bad;
2969 int bad_sectors;
2970 if (!conf->mirrors[d].rdev ||
2971 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2972 continue;
2973 /* This is where we read from */
2974 any_working = 1;
2975 rdev = conf->mirrors[d].rdev;
2976 sector = r10_bio->devs[j].addr;
2977
2978 if (is_badblock(rdev, sector, max_sync,
2979 &first_bad, &bad_sectors)) {
2980 if (first_bad > sector)
2981 max_sync = first_bad - sector;
2982 else {
2983 bad_sectors -= (sector
2984 - first_bad);
2985 if (max_sync > bad_sectors)
2986 max_sync = bad_sectors;
2987 continue;
2988 }
2989 }
2990 bio = r10_bio->devs[0].bio;
2991 bio->bi_next = biolist;
2992 biolist = bio;
2993 bio->bi_private = r10_bio;
2994 bio->bi_end_io = end_sync_read;
2995 bio->bi_rw = READ;
2996 from_addr = r10_bio->devs[j].addr;
2997 bio->bi_sector = from_addr + rdev->data_offset;
2998 bio->bi_bdev = rdev->bdev;
2999 atomic_inc(&rdev->nr_pending);
3000 /* and we write to 'i' (if not in_sync) */
3001
3002 for (k=0; k<conf->copies; k++)
3003 if (r10_bio->devs[k].devnum == i)
3004 break;
3005 BUG_ON(k == conf->copies);
3006 to_addr = r10_bio->devs[k].addr;
3007 r10_bio->devs[0].devnum = d;
3008 r10_bio->devs[0].addr = from_addr;
3009 r10_bio->devs[1].devnum = i;
3010 r10_bio->devs[1].addr = to_addr;
3011
3012 rdev = mirror->rdev;
3013 if (!test_bit(In_sync, &rdev->flags)) {
3014 bio = r10_bio->devs[1].bio;
3015 bio->bi_next = biolist;
3016 biolist = bio;
3017 bio->bi_private = r10_bio;
3018 bio->bi_end_io = end_sync_write;
3019 bio->bi_rw = WRITE;
3020 bio->bi_sector = to_addr
3021 + rdev->data_offset;
3022 bio->bi_bdev = rdev->bdev;
3023 atomic_inc(&r10_bio->remaining);
3024 } else
3025 r10_bio->devs[1].bio->bi_end_io = NULL;
3026
3027 /* and maybe write to replacement */
3028 bio = r10_bio->devs[1].repl_bio;
3029 if (bio)
3030 bio->bi_end_io = NULL;
3031 rdev = mirror->replacement;
3032 /* Note: if rdev != NULL, then bio
3033 * cannot be NULL as r10buf_pool_alloc will
3034 * have allocated it.
3035 * So the second test here is pointless.
3036 * But it keeps semantic-checkers happy, and
3037 * this comment keeps human reviewers
3038 * happy.
3039 */
3040 if (rdev == NULL || bio == NULL ||
3041 test_bit(Faulty, &rdev->flags))
3042 break;
3043 bio->bi_next = biolist;
3044 biolist = bio;
3045 bio->bi_private = r10_bio;
3046 bio->bi_end_io = end_sync_write;
3047 bio->bi_rw = WRITE;
3048 bio->bi_sector = to_addr + rdev->data_offset;
3049 bio->bi_bdev = rdev->bdev;
3050 atomic_inc(&r10_bio->remaining);
3051 break;
3052 }
3053 if (j == conf->copies) {
3054 /* Cannot recover, so abort the recovery or
3055 * record a bad block */
3056 put_buf(r10_bio);
3057 if (rb2)
3058 atomic_dec(&rb2->remaining);
3059 r10_bio = rb2;
3060 if (any_working) {
3061 /* problem is that there are bad blocks
3062 * on other device(s)
3063 */
3064 int k;
3065 for (k = 0; k < conf->copies; k++)
3066 if (r10_bio->devs[k].devnum == i)
3067 break;
3068 if (!test_bit(In_sync,
3069 &mirror->rdev->flags)
3070 && !rdev_set_badblocks(
3071 mirror->rdev,
3072 r10_bio->devs[k].addr,
3073 max_sync, 0))
3074 any_working = 0;
3075 if (mirror->replacement &&
3076 !rdev_set_badblocks(
3077 mirror->replacement,
3078 r10_bio->devs[k].addr,
3079 max_sync, 0))
3080 any_working = 0;
3081 }
3082 if (!any_working) {
3083 if (!test_and_set_bit(MD_RECOVERY_INTR,
3084 &mddev->recovery))
3085 printk(KERN_INFO "md/raid10:%s: insufficient "
3086 "working devices for recovery.\n",
3087 mdname(mddev));
3088 mirror->recovery_disabled
3089 = mddev->recovery_disabled;
3090 }
3091 break;
3092 }
3093 }
3094 if (biolist == NULL) {
3095 while (r10_bio) {
3096 struct r10bio *rb2 = r10_bio;
3097 r10_bio = (struct r10bio*) rb2->master_bio;
3098 rb2->master_bio = NULL;
3099 put_buf(rb2);
3100 }
3101 goto giveup;
3102 }
3103 } else {
3104 /* resync. Schedule a read for every block at this virt offset */
3105 int count = 0;
3106
3107 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3108
3109 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3110 &sync_blocks, mddev->degraded) &&
3111 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3112 &mddev->recovery)) {
3113 /* We can skip this block */
3114 *skipped = 1;
3115 return sync_blocks + sectors_skipped;
3116 }
3117 if (sync_blocks < max_sync)
3118 max_sync = sync_blocks;
3119 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3120
3121 r10_bio->mddev = mddev;
3122 atomic_set(&r10_bio->remaining, 0);
3123 raise_barrier(conf, 0);
3124 conf->next_resync = sector_nr;
3125
3126 r10_bio->master_bio = NULL;
3127 r10_bio->sector = sector_nr;
3128 set_bit(R10BIO_IsSync, &r10_bio->state);
3129 raid10_find_phys(conf, r10_bio);
3130 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3131
3132 for (i = 0; i < conf->copies; i++) {
3133 int d = r10_bio->devs[i].devnum;
3134 sector_t first_bad, sector;
3135 int bad_sectors;
3136
3137 if (r10_bio->devs[i].repl_bio)
3138 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3139
3140 bio = r10_bio->devs[i].bio;
3141 bio->bi_end_io = NULL;
3142 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3143 if (conf->mirrors[d].rdev == NULL ||
3144 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3145 continue;
3146 sector = r10_bio->devs[i].addr;
3147 if (is_badblock(conf->mirrors[d].rdev,
3148 sector, max_sync,
3149 &first_bad, &bad_sectors)) {
3150 if (first_bad > sector)
3151 max_sync = first_bad - sector;
3152 else {
3153 bad_sectors -= (sector - first_bad);
3154 if (max_sync > bad_sectors)
3155 max_sync = max_sync;
3156 continue;
3157 }
3158 }
3159 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3160 atomic_inc(&r10_bio->remaining);
3161 bio->bi_next = biolist;
3162 biolist = bio;
3163 bio->bi_private = r10_bio;
3164 bio->bi_end_io = end_sync_read;
3165 bio->bi_rw = READ;
3166 bio->bi_sector = sector +
3167 conf->mirrors[d].rdev->data_offset;
3168 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3169 count++;
3170
3171 if (conf->mirrors[d].replacement == NULL ||
3172 test_bit(Faulty,
3173 &conf->mirrors[d].replacement->flags))
3174 continue;
3175
3176 /* Need to set up for writing to the replacement */
3177 bio = r10_bio->devs[i].repl_bio;
3178 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3179
3180 sector = r10_bio->devs[i].addr;
3181 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3182 bio->bi_next = biolist;
3183 biolist = bio;
3184 bio->bi_private = r10_bio;
3185 bio->bi_end_io = end_sync_write;
3186 bio->bi_rw = WRITE;
3187 bio->bi_sector = sector +
3188 conf->mirrors[d].replacement->data_offset;
3189 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3190 count++;
3191 }
3192
3193 if (count < 2) {
3194 for (i=0; i<conf->copies; i++) {
3195 int d = r10_bio->devs[i].devnum;
3196 if (r10_bio->devs[i].bio->bi_end_io)
3197 rdev_dec_pending(conf->mirrors[d].rdev,
3198 mddev);
3199 if (r10_bio->devs[i].repl_bio &&
3200 r10_bio->devs[i].repl_bio->bi_end_io)
3201 rdev_dec_pending(
3202 conf->mirrors[d].replacement,
3203 mddev);
3204 }
3205 put_buf(r10_bio);
3206 biolist = NULL;
3207 goto giveup;
3208 }
3209 }
3210
3211 for (bio = biolist; bio ; bio=bio->bi_next) {
3212
3213 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3214 if (bio->bi_end_io)
3215 bio->bi_flags |= 1 << BIO_UPTODATE;
3216 bio->bi_vcnt = 0;
3217 bio->bi_idx = 0;
3218 bio->bi_phys_segments = 0;
3219 bio->bi_size = 0;
3220 }
3221
3222 nr_sectors = 0;
3223 if (sector_nr + max_sync < max_sector)
3224 max_sector = sector_nr + max_sync;
3225 do {
3226 struct page *page;
3227 int len = PAGE_SIZE;
3228 if (sector_nr + (len>>9) > max_sector)
3229 len = (max_sector - sector_nr) << 9;
3230 if (len == 0)
3231 break;
3232 for (bio= biolist ; bio ; bio=bio->bi_next) {
3233 struct bio *bio2;
3234 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3235 if (bio_add_page(bio, page, len, 0))
3236 continue;
3237
3238 /* stop here */
3239 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3240 for (bio2 = biolist;
3241 bio2 && bio2 != bio;
3242 bio2 = bio2->bi_next) {
3243 /* remove last page from this bio */
3244 bio2->bi_vcnt--;
3245 bio2->bi_size -= len;
3246 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3247 }
3248 goto bio_full;
3249 }
3250 nr_sectors += len>>9;
3251 sector_nr += len>>9;
3252 } while (biolist->bi_vcnt < RESYNC_PAGES);
3253 bio_full:
3254 r10_bio->sectors = nr_sectors;
3255
3256 while (biolist) {
3257 bio = biolist;
3258 biolist = biolist->bi_next;
3259
3260 bio->bi_next = NULL;
3261 r10_bio = bio->bi_private;
3262 r10_bio->sectors = nr_sectors;
3263
3264 if (bio->bi_end_io == end_sync_read) {
3265 md_sync_acct(bio->bi_bdev, nr_sectors);
3266 generic_make_request(bio);
3267 }
3268 }
3269
3270 if (sectors_skipped)
3271 /* pretend they weren't skipped, it makes
3272 * no important difference in this case
3273 */
3274 md_done_sync(mddev, sectors_skipped, 1);
3275
3276 return sectors_skipped + nr_sectors;
3277 giveup:
3278 /* There is nowhere to write, so all non-sync
3279 * drives must be failed or in resync, all drives
3280 * have a bad block, so try the next chunk...
3281 */
3282 if (sector_nr + max_sync < max_sector)
3283 max_sector = sector_nr + max_sync;
3284
3285 sectors_skipped += (max_sector - sector_nr);
3286 chunks_skipped ++;
3287 sector_nr = max_sector;
3288 goto skipped;
3289 }
3290
3291 static sector_t
3292 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3293 {
3294 sector_t size;
3295 struct r10conf *conf = mddev->private;
3296
3297 if (!raid_disks)
3298 raid_disks = min(conf->geo.raid_disks,
3299 conf->prev.raid_disks);
3300 if (!sectors)
3301 sectors = conf->dev_sectors;
3302
3303 size = sectors >> conf->geo.chunk_shift;
3304 sector_div(size, conf->geo.far_copies);
3305 size = size * raid_disks;
3306 sector_div(size, conf->geo.near_copies);
3307
3308 return size << conf->geo.chunk_shift;
3309 }
3310
3311 static void calc_sectors(struct r10conf *conf, sector_t size)
3312 {
3313 /* Calculate the number of sectors-per-device that will
3314 * actually be used, and set conf->dev_sectors and
3315 * conf->stride
3316 */
3317
3318 size = size >> conf->geo.chunk_shift;
3319 sector_div(size, conf->geo.far_copies);
3320 size = size * conf->geo.raid_disks;
3321 sector_div(size, conf->geo.near_copies);
3322 /* 'size' is now the number of chunks in the array */
3323 /* calculate "used chunks per device" */
3324 size = size * conf->copies;
3325
3326 /* We need to round up when dividing by raid_disks to
3327 * get the stride size.
3328 */
3329 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3330
3331 conf->dev_sectors = size << conf->geo.chunk_shift;
3332
3333 if (conf->geo.far_offset)
3334 conf->geo.stride = 1 << conf->geo.chunk_shift;
3335 else {
3336 sector_div(size, conf->geo.far_copies);
3337 conf->geo.stride = size << conf->geo.chunk_shift;
3338 }
3339 }
3340
3341 enum geo_type {geo_new, geo_old, geo_start};
3342 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3343 {
3344 int nc, fc, fo;
3345 int layout, chunk, disks;
3346 switch (new) {
3347 case geo_old:
3348 layout = mddev->layout;
3349 chunk = mddev->chunk_sectors;
3350 disks = mddev->raid_disks - mddev->delta_disks;
3351 break;
3352 case geo_new:
3353 layout = mddev->new_layout;
3354 chunk = mddev->new_chunk_sectors;
3355 disks = mddev->raid_disks;
3356 break;
3357 default: /* avoid 'may be unused' warnings */
3358 case geo_start: /* new when starting reshape - raid_disks not
3359 * updated yet. */
3360 layout = mddev->new_layout;
3361 chunk = mddev->new_chunk_sectors;
3362 disks = mddev->raid_disks + mddev->delta_disks;
3363 break;
3364 }
3365 if (layout >> 17)
3366 return -1;
3367 if (chunk < (PAGE_SIZE >> 9) ||
3368 !is_power_of_2(chunk))
3369 return -2;
3370 nc = layout & 255;
3371 fc = (layout >> 8) & 255;
3372 fo = layout & (1<<16);
3373 geo->raid_disks = disks;
3374 geo->near_copies = nc;
3375 geo->far_copies = fc;
3376 geo->far_offset = fo;
3377 geo->chunk_mask = chunk - 1;
3378 geo->chunk_shift = ffz(~chunk);
3379 return nc*fc;
3380 }
3381
3382 static struct r10conf *setup_conf(struct mddev *mddev)
3383 {
3384 struct r10conf *conf = NULL;
3385 int err = -EINVAL;
3386 struct geom geo;
3387 int copies;
3388
3389 copies = setup_geo(&geo, mddev, geo_new);
3390
3391 if (copies == -2) {
3392 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3393 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3394 mdname(mddev), PAGE_SIZE);
3395 goto out;
3396 }
3397
3398 if (copies < 2 || copies > mddev->raid_disks) {
3399 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3400 mdname(mddev), mddev->new_layout);
3401 goto out;
3402 }
3403
3404 err = -ENOMEM;
3405 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3406 if (!conf)
3407 goto out;
3408
3409 /* FIXME calc properly */
3410 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3411 max(0,mddev->delta_disks)),
3412 GFP_KERNEL);
3413 if (!conf->mirrors)
3414 goto out;
3415
3416 conf->tmppage = alloc_page(GFP_KERNEL);
3417 if (!conf->tmppage)
3418 goto out;
3419
3420 conf->geo = geo;
3421 conf->copies = copies;
3422 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3423 r10bio_pool_free, conf);
3424 if (!conf->r10bio_pool)
3425 goto out;
3426
3427 calc_sectors(conf, mddev->dev_sectors);
3428 if (mddev->reshape_position == MaxSector) {
3429 conf->prev = conf->geo;
3430 conf->reshape_progress = MaxSector;
3431 } else {
3432 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3433 err = -EINVAL;
3434 goto out;
3435 }
3436 conf->reshape_progress = mddev->reshape_position;
3437 if (conf->prev.far_offset)
3438 conf->prev.stride = 1 << conf->prev.chunk_shift;
3439 else
3440 /* far_copies must be 1 */
3441 conf->prev.stride = conf->dev_sectors;
3442 }
3443 spin_lock_init(&conf->device_lock);
3444 INIT_LIST_HEAD(&conf->retry_list);
3445
3446 spin_lock_init(&conf->resync_lock);
3447 init_waitqueue_head(&conf->wait_barrier);
3448
3449 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3450 if (!conf->thread)
3451 goto out;
3452
3453 conf->mddev = mddev;
3454 return conf;
3455
3456 out:
3457 if (err == -ENOMEM)
3458 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3459 mdname(mddev));
3460 if (conf) {
3461 if (conf->r10bio_pool)
3462 mempool_destroy(conf->r10bio_pool);
3463 kfree(conf->mirrors);
3464 safe_put_page(conf->tmppage);
3465 kfree(conf);
3466 }
3467 return ERR_PTR(err);
3468 }
3469
3470 static int run(struct mddev *mddev)
3471 {
3472 struct r10conf *conf;
3473 int i, disk_idx, chunk_size;
3474 struct raid10_info *disk;
3475 struct md_rdev *rdev;
3476 sector_t size;
3477 sector_t min_offset_diff = 0;
3478 int first = 1;
3479
3480 if (mddev->private == NULL) {
3481 conf = setup_conf(mddev);
3482 if (IS_ERR(conf))
3483 return PTR_ERR(conf);
3484 mddev->private = conf;
3485 }
3486 conf = mddev->private;
3487 if (!conf)
3488 goto out;
3489
3490 mddev->thread = conf->thread;
3491 conf->thread = NULL;
3492
3493 chunk_size = mddev->chunk_sectors << 9;
3494 if (mddev->queue) {
3495 blk_queue_io_min(mddev->queue, chunk_size);
3496 if (conf->geo.raid_disks % conf->geo.near_copies)
3497 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3498 else
3499 blk_queue_io_opt(mddev->queue, chunk_size *
3500 (conf->geo.raid_disks / conf->geo.near_copies));
3501 }
3502
3503 rdev_for_each(rdev, mddev) {
3504 long long diff;
3505 struct request_queue *q;
3506
3507 disk_idx = rdev->raid_disk;
3508 if (disk_idx < 0)
3509 continue;
3510 if (disk_idx >= conf->geo.raid_disks &&
3511 disk_idx >= conf->prev.raid_disks)
3512 continue;
3513 disk = conf->mirrors + disk_idx;
3514
3515 if (test_bit(Replacement, &rdev->flags)) {
3516 if (disk->replacement)
3517 goto out_free_conf;
3518 disk->replacement = rdev;
3519 } else {
3520 if (disk->rdev)
3521 goto out_free_conf;
3522 disk->rdev = rdev;
3523 }
3524 q = bdev_get_queue(rdev->bdev);
3525 if (q->merge_bvec_fn)
3526 mddev->merge_check_needed = 1;
3527 diff = (rdev->new_data_offset - rdev->data_offset);
3528 if (!mddev->reshape_backwards)
3529 diff = -diff;
3530 if (diff < 0)
3531 diff = 0;
3532 if (first || diff < min_offset_diff)
3533 min_offset_diff = diff;
3534
3535 if (mddev->gendisk)
3536 disk_stack_limits(mddev->gendisk, rdev->bdev,
3537 rdev->data_offset << 9);
3538
3539 disk->head_position = 0;
3540 }
3541
3542 /* need to check that every block has at least one working mirror */
3543 if (!enough(conf, -1)) {
3544 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3545 mdname(mddev));
3546 goto out_free_conf;
3547 }
3548
3549 if (conf->reshape_progress != MaxSector) {
3550 /* must ensure that shape change is supported */
3551 if (conf->geo.far_copies != 1 &&
3552 conf->geo.far_offset == 0)
3553 goto out_free_conf;
3554 if (conf->prev.far_copies != 1 &&
3555 conf->geo.far_offset == 0)
3556 goto out_free_conf;
3557 }
3558
3559 mddev->degraded = 0;
3560 for (i = 0;
3561 i < conf->geo.raid_disks
3562 || i < conf->prev.raid_disks;
3563 i++) {
3564
3565 disk = conf->mirrors + i;
3566
3567 if (!disk->rdev && disk->replacement) {
3568 /* The replacement is all we have - use it */
3569 disk->rdev = disk->replacement;
3570 disk->replacement = NULL;
3571 clear_bit(Replacement, &disk->rdev->flags);
3572 }
3573
3574 if (!disk->rdev ||
3575 !test_bit(In_sync, &disk->rdev->flags)) {
3576 disk->head_position = 0;
3577 mddev->degraded++;
3578 if (disk->rdev)
3579 conf->fullsync = 1;
3580 }
3581 disk->recovery_disabled = mddev->recovery_disabled - 1;
3582 }
3583
3584 if (mddev->recovery_cp != MaxSector)
3585 printk(KERN_NOTICE "md/raid10:%s: not clean"
3586 " -- starting background reconstruction\n",
3587 mdname(mddev));
3588 printk(KERN_INFO
3589 "md/raid10:%s: active with %d out of %d devices\n",
3590 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3591 conf->geo.raid_disks);
3592 /*
3593 * Ok, everything is just fine now
3594 */
3595 mddev->dev_sectors = conf->dev_sectors;
3596 size = raid10_size(mddev, 0, 0);
3597 md_set_array_sectors(mddev, size);
3598 mddev->resync_max_sectors = size;
3599
3600 if (mddev->queue) {
3601 int stripe = conf->geo.raid_disks *
3602 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3603 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3604 mddev->queue->backing_dev_info.congested_data = mddev;
3605
3606 /* Calculate max read-ahead size.
3607 * We need to readahead at least twice a whole stripe....
3608 * maybe...
3609 */
3610 stripe /= conf->geo.near_copies;
3611 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3612 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3613 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3614 }
3615
3616
3617 if (md_integrity_register(mddev))
3618 goto out_free_conf;
3619
3620 if (conf->reshape_progress != MaxSector) {
3621 unsigned long before_length, after_length;
3622
3623 before_length = ((1 << conf->prev.chunk_shift) *
3624 conf->prev.far_copies);
3625 after_length = ((1 << conf->geo.chunk_shift) *
3626 conf->geo.far_copies);
3627
3628 if (max(before_length, after_length) > min_offset_diff) {
3629 /* This cannot work */
3630 printk("md/raid10: offset difference not enough to continue reshape\n");
3631 goto out_free_conf;
3632 }
3633 conf->offset_diff = min_offset_diff;
3634
3635 conf->reshape_safe = conf->reshape_progress;
3636 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3637 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3638 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3639 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3640 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3641 "reshape");
3642 }
3643
3644 return 0;
3645
3646 out_free_conf:
3647 md_unregister_thread(&mddev->thread);
3648 if (conf->r10bio_pool)
3649 mempool_destroy(conf->r10bio_pool);
3650 safe_put_page(conf->tmppage);
3651 kfree(conf->mirrors);
3652 kfree(conf);
3653 mddev->private = NULL;
3654 out:
3655 return -EIO;
3656 }
3657
3658 static int stop(struct mddev *mddev)
3659 {
3660 struct r10conf *conf = mddev->private;
3661
3662 raise_barrier(conf, 0);
3663 lower_barrier(conf);
3664
3665 md_unregister_thread(&mddev->thread);
3666 if (mddev->queue)
3667 /* the unplug fn references 'conf'*/
3668 blk_sync_queue(mddev->queue);
3669
3670 if (conf->r10bio_pool)
3671 mempool_destroy(conf->r10bio_pool);
3672 kfree(conf->mirrors);
3673 kfree(conf);
3674 mddev->private = NULL;
3675 return 0;
3676 }
3677
3678 static void raid10_quiesce(struct mddev *mddev, int state)
3679 {
3680 struct r10conf *conf = mddev->private;
3681
3682 switch(state) {
3683 case 1:
3684 raise_barrier(conf, 0);
3685 break;
3686 case 0:
3687 lower_barrier(conf);
3688 break;
3689 }
3690 }
3691
3692 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3693 {
3694 /* Resize of 'far' arrays is not supported.
3695 * For 'near' and 'offset' arrays we can set the
3696 * number of sectors used to be an appropriate multiple
3697 * of the chunk size.
3698 * For 'offset', this is far_copies*chunksize.
3699 * For 'near' the multiplier is the LCM of
3700 * near_copies and raid_disks.
3701 * So if far_copies > 1 && !far_offset, fail.
3702 * Else find LCM(raid_disks, near_copy)*far_copies and
3703 * multiply by chunk_size. Then round to this number.
3704 * This is mostly done by raid10_size()
3705 */
3706 struct r10conf *conf = mddev->private;
3707 sector_t oldsize, size;
3708
3709 if (mddev->reshape_position != MaxSector)
3710 return -EBUSY;
3711
3712 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3713 return -EINVAL;
3714
3715 oldsize = raid10_size(mddev, 0, 0);
3716 size = raid10_size(mddev, sectors, 0);
3717 if (mddev->external_size &&
3718 mddev->array_sectors > size)
3719 return -EINVAL;
3720 if (mddev->bitmap) {
3721 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3722 if (ret)
3723 return ret;
3724 }
3725 md_set_array_sectors(mddev, size);
3726 set_capacity(mddev->gendisk, mddev->array_sectors);
3727 revalidate_disk(mddev->gendisk);
3728 if (sectors > mddev->dev_sectors &&
3729 mddev->recovery_cp > oldsize) {
3730 mddev->recovery_cp = oldsize;
3731 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3732 }
3733 calc_sectors(conf, sectors);
3734 mddev->dev_sectors = conf->dev_sectors;
3735 mddev->resync_max_sectors = size;
3736 return 0;
3737 }
3738
3739 static void *raid10_takeover_raid0(struct mddev *mddev)
3740 {
3741 struct md_rdev *rdev;
3742 struct r10conf *conf;
3743
3744 if (mddev->degraded > 0) {
3745 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3746 mdname(mddev));
3747 return ERR_PTR(-EINVAL);
3748 }
3749
3750 /* Set new parameters */
3751 mddev->new_level = 10;
3752 /* new layout: far_copies = 1, near_copies = 2 */
3753 mddev->new_layout = (1<<8) + 2;
3754 mddev->new_chunk_sectors = mddev->chunk_sectors;
3755 mddev->delta_disks = mddev->raid_disks;
3756 mddev->raid_disks *= 2;
3757 /* make sure it will be not marked as dirty */
3758 mddev->recovery_cp = MaxSector;
3759
3760 conf = setup_conf(mddev);
3761 if (!IS_ERR(conf)) {
3762 rdev_for_each(rdev, mddev)
3763 if (rdev->raid_disk >= 0)
3764 rdev->new_raid_disk = rdev->raid_disk * 2;
3765 conf->barrier = 1;
3766 }
3767
3768 return conf;
3769 }
3770
3771 static void *raid10_takeover(struct mddev *mddev)
3772 {
3773 struct r0conf *raid0_conf;
3774
3775 /* raid10 can take over:
3776 * raid0 - providing it has only two drives
3777 */
3778 if (mddev->level == 0) {
3779 /* for raid0 takeover only one zone is supported */
3780 raid0_conf = mddev->private;
3781 if (raid0_conf->nr_strip_zones > 1) {
3782 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3783 " with more than one zone.\n",
3784 mdname(mddev));
3785 return ERR_PTR(-EINVAL);
3786 }
3787 return raid10_takeover_raid0(mddev);
3788 }
3789 return ERR_PTR(-EINVAL);
3790 }
3791
3792 static int raid10_check_reshape(struct mddev *mddev)
3793 {
3794 /* Called when there is a request to change
3795 * - layout (to ->new_layout)
3796 * - chunk size (to ->new_chunk_sectors)
3797 * - raid_disks (by delta_disks)
3798 * or when trying to restart a reshape that was ongoing.
3799 *
3800 * We need to validate the request and possibly allocate
3801 * space if that might be an issue later.
3802 *
3803 * Currently we reject any reshape of a 'far' mode array,
3804 * allow chunk size to change if new is generally acceptable,
3805 * allow raid_disks to increase, and allow
3806 * a switch between 'near' mode and 'offset' mode.
3807 */
3808 struct r10conf *conf = mddev->private;
3809 struct geom geo;
3810
3811 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3812 return -EINVAL;
3813
3814 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3815 /* mustn't change number of copies */
3816 return -EINVAL;
3817 if (geo.far_copies > 1 && !geo.far_offset)
3818 /* Cannot switch to 'far' mode */
3819 return -EINVAL;
3820
3821 if (mddev->array_sectors & geo.chunk_mask)
3822 /* not factor of array size */
3823 return -EINVAL;
3824
3825 if (!enough(conf, -1))
3826 return -EINVAL;
3827
3828 kfree(conf->mirrors_new);
3829 conf->mirrors_new = NULL;
3830 if (mddev->delta_disks > 0) {
3831 /* allocate new 'mirrors' list */
3832 conf->mirrors_new = kzalloc(
3833 sizeof(struct raid10_info)
3834 *(mddev->raid_disks +
3835 mddev->delta_disks),
3836 GFP_KERNEL);
3837 if (!conf->mirrors_new)
3838 return -ENOMEM;
3839 }
3840 return 0;
3841 }
3842
3843 /*
3844 * Need to check if array has failed when deciding whether to:
3845 * - start an array
3846 * - remove non-faulty devices
3847 * - add a spare
3848 * - allow a reshape
3849 * This determination is simple when no reshape is happening.
3850 * However if there is a reshape, we need to carefully check
3851 * both the before and after sections.
3852 * This is because some failed devices may only affect one
3853 * of the two sections, and some non-in_sync devices may
3854 * be insync in the section most affected by failed devices.
3855 */
3856 static int calc_degraded(struct r10conf *conf)
3857 {
3858 int degraded, degraded2;
3859 int i;
3860
3861 rcu_read_lock();
3862 degraded = 0;
3863 /* 'prev' section first */
3864 for (i = 0; i < conf->prev.raid_disks; i++) {
3865 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3866 if (!rdev || test_bit(Faulty, &rdev->flags))
3867 degraded++;
3868 else if (!test_bit(In_sync, &rdev->flags))
3869 /* When we can reduce the number of devices in
3870 * an array, this might not contribute to
3871 * 'degraded'. It does now.
3872 */
3873 degraded++;
3874 }
3875 rcu_read_unlock();
3876 if (conf->geo.raid_disks == conf->prev.raid_disks)
3877 return degraded;
3878 rcu_read_lock();
3879 degraded2 = 0;
3880 for (i = 0; i < conf->geo.raid_disks; i++) {
3881 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3882 if (!rdev || test_bit(Faulty, &rdev->flags))
3883 degraded2++;
3884 else if (!test_bit(In_sync, &rdev->flags)) {
3885 /* If reshape is increasing the number of devices,
3886 * this section has already been recovered, so
3887 * it doesn't contribute to degraded.
3888 * else it does.
3889 */
3890 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3891 degraded2++;
3892 }
3893 }
3894 rcu_read_unlock();
3895 if (degraded2 > degraded)
3896 return degraded2;
3897 return degraded;
3898 }
3899
3900 static int raid10_start_reshape(struct mddev *mddev)
3901 {
3902 /* A 'reshape' has been requested. This commits
3903 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3904 * This also checks if there are enough spares and adds them
3905 * to the array.
3906 * We currently require enough spares to make the final
3907 * array non-degraded. We also require that the difference
3908 * between old and new data_offset - on each device - is
3909 * enough that we never risk over-writing.
3910 */
3911
3912 unsigned long before_length, after_length;
3913 sector_t min_offset_diff = 0;
3914 int first = 1;
3915 struct geom new;
3916 struct r10conf *conf = mddev->private;
3917 struct md_rdev *rdev;
3918 int spares = 0;
3919 int ret;
3920
3921 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3922 return -EBUSY;
3923
3924 if (setup_geo(&new, mddev, geo_start) != conf->copies)
3925 return -EINVAL;
3926
3927 before_length = ((1 << conf->prev.chunk_shift) *
3928 conf->prev.far_copies);
3929 after_length = ((1 << conf->geo.chunk_shift) *
3930 conf->geo.far_copies);
3931
3932 rdev_for_each(rdev, mddev) {
3933 if (!test_bit(In_sync, &rdev->flags)
3934 && !test_bit(Faulty, &rdev->flags))
3935 spares++;
3936 if (rdev->raid_disk >= 0) {
3937 long long diff = (rdev->new_data_offset
3938 - rdev->data_offset);
3939 if (!mddev->reshape_backwards)
3940 diff = -diff;
3941 if (diff < 0)
3942 diff = 0;
3943 if (first || diff < min_offset_diff)
3944 min_offset_diff = diff;
3945 }
3946 }
3947
3948 if (max(before_length, after_length) > min_offset_diff)
3949 return -EINVAL;
3950
3951 if (spares < mddev->delta_disks)
3952 return -EINVAL;
3953
3954 conf->offset_diff = min_offset_diff;
3955 spin_lock_irq(&conf->device_lock);
3956 if (conf->mirrors_new) {
3957 memcpy(conf->mirrors_new, conf->mirrors,
3958 sizeof(struct raid10_info)*conf->prev.raid_disks);
3959 smp_mb();
3960 kfree(conf->mirrors_old); /* FIXME and elsewhere */
3961 conf->mirrors_old = conf->mirrors;
3962 conf->mirrors = conf->mirrors_new;
3963 conf->mirrors_new = NULL;
3964 }
3965 setup_geo(&conf->geo, mddev, geo_start);
3966 smp_mb();
3967 if (mddev->reshape_backwards) {
3968 sector_t size = raid10_size(mddev, 0, 0);
3969 if (size < mddev->array_sectors) {
3970 spin_unlock_irq(&conf->device_lock);
3971 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
3972 mdname(mddev));
3973 return -EINVAL;
3974 }
3975 mddev->resync_max_sectors = size;
3976 conf->reshape_progress = size;
3977 } else
3978 conf->reshape_progress = 0;
3979 spin_unlock_irq(&conf->device_lock);
3980
3981 if (mddev->delta_disks && mddev->bitmap) {
3982 ret = bitmap_resize(mddev->bitmap,
3983 raid10_size(mddev, 0,
3984 conf->geo.raid_disks),
3985 0, 0);
3986 if (ret)
3987 goto abort;
3988 }
3989 if (mddev->delta_disks > 0) {
3990 rdev_for_each(rdev, mddev)
3991 if (rdev->raid_disk < 0 &&
3992 !test_bit(Faulty, &rdev->flags)) {
3993 if (raid10_add_disk(mddev, rdev) == 0) {
3994 if (rdev->raid_disk >=
3995 conf->prev.raid_disks)
3996 set_bit(In_sync, &rdev->flags);
3997 else
3998 rdev->recovery_offset = 0;
3999
4000 if (sysfs_link_rdev(mddev, rdev))
4001 /* Failure here is OK */;
4002 }
4003 } else if (rdev->raid_disk >= conf->prev.raid_disks
4004 && !test_bit(Faulty, &rdev->flags)) {
4005 /* This is a spare that was manually added */
4006 set_bit(In_sync, &rdev->flags);
4007 }
4008 }
4009 /* When a reshape changes the number of devices,
4010 * ->degraded is measured against the larger of the
4011 * pre and post numbers.
4012 */
4013 spin_lock_irq(&conf->device_lock);
4014 mddev->degraded = calc_degraded(conf);
4015 spin_unlock_irq(&conf->device_lock);
4016 mddev->raid_disks = conf->geo.raid_disks;
4017 mddev->reshape_position = conf->reshape_progress;
4018 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4019
4020 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4021 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4022 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4023 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4024
4025 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4026 "reshape");
4027 if (!mddev->sync_thread) {
4028 ret = -EAGAIN;
4029 goto abort;
4030 }
4031 conf->reshape_checkpoint = jiffies;
4032 md_wakeup_thread(mddev->sync_thread);
4033 md_new_event(mddev);
4034 return 0;
4035
4036 abort:
4037 mddev->recovery = 0;
4038 spin_lock_irq(&conf->device_lock);
4039 conf->geo = conf->prev;
4040 mddev->raid_disks = conf->geo.raid_disks;
4041 rdev_for_each(rdev, mddev)
4042 rdev->new_data_offset = rdev->data_offset;
4043 smp_wmb();
4044 conf->reshape_progress = MaxSector;
4045 mddev->reshape_position = MaxSector;
4046 spin_unlock_irq(&conf->device_lock);
4047 return ret;
4048 }
4049
4050 /* Calculate the last device-address that could contain
4051 * any block from the chunk that includes the array-address 's'
4052 * and report the next address.
4053 * i.e. the address returned will be chunk-aligned and after
4054 * any data that is in the chunk containing 's'.
4055 */
4056 static sector_t last_dev_address(sector_t s, struct geom *geo)
4057 {
4058 s = (s | geo->chunk_mask) + 1;
4059 s >>= geo->chunk_shift;
4060 s *= geo->near_copies;
4061 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4062 s *= geo->far_copies;
4063 s <<= geo->chunk_shift;
4064 return s;
4065 }
4066
4067 /* Calculate the first device-address that could contain
4068 * any block from the chunk that includes the array-address 's'.
4069 * This too will be the start of a chunk
4070 */
4071 static sector_t first_dev_address(sector_t s, struct geom *geo)
4072 {
4073 s >>= geo->chunk_shift;
4074 s *= geo->near_copies;
4075 sector_div(s, geo->raid_disks);
4076 s *= geo->far_copies;
4077 s <<= geo->chunk_shift;
4078 return s;
4079 }
4080
4081 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4082 int *skipped)
4083 {
4084 /* We simply copy at most one chunk (smallest of old and new)
4085 * at a time, possibly less if that exceeds RESYNC_PAGES,
4086 * or we hit a bad block or something.
4087 * This might mean we pause for normal IO in the middle of
4088 * a chunk, but that is not a problem was mddev->reshape_position
4089 * can record any location.
4090 *
4091 * If we will want to write to a location that isn't
4092 * yet recorded as 'safe' (i.e. in metadata on disk) then
4093 * we need to flush all reshape requests and update the metadata.
4094 *
4095 * When reshaping forwards (e.g. to more devices), we interpret
4096 * 'safe' as the earliest block which might not have been copied
4097 * down yet. We divide this by previous stripe size and multiply
4098 * by previous stripe length to get lowest device offset that we
4099 * cannot write to yet.
4100 * We interpret 'sector_nr' as an address that we want to write to.
4101 * From this we use last_device_address() to find where we might
4102 * write to, and first_device_address on the 'safe' position.
4103 * If this 'next' write position is after the 'safe' position,
4104 * we must update the metadata to increase the 'safe' position.
4105 *
4106 * When reshaping backwards, we round in the opposite direction
4107 * and perform the reverse test: next write position must not be
4108 * less than current safe position.
4109 *
4110 * In all this the minimum difference in data offsets
4111 * (conf->offset_diff - always positive) allows a bit of slack,
4112 * so next can be after 'safe', but not by more than offset_disk
4113 *
4114 * We need to prepare all the bios here before we start any IO
4115 * to ensure the size we choose is acceptable to all devices.
4116 * The means one for each copy for write-out and an extra one for
4117 * read-in.
4118 * We store the read-in bio in ->master_bio and the others in
4119 * ->devs[x].bio and ->devs[x].repl_bio.
4120 */
4121 struct r10conf *conf = mddev->private;
4122 struct r10bio *r10_bio;
4123 sector_t next, safe, last;
4124 int max_sectors;
4125 int nr_sectors;
4126 int s;
4127 struct md_rdev *rdev;
4128 int need_flush = 0;
4129 struct bio *blist;
4130 struct bio *bio, *read_bio;
4131 int sectors_done = 0;
4132
4133 if (sector_nr == 0) {
4134 /* If restarting in the middle, skip the initial sectors */
4135 if (mddev->reshape_backwards &&
4136 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4137 sector_nr = (raid10_size(mddev, 0, 0)
4138 - conf->reshape_progress);
4139 } else if (!mddev->reshape_backwards &&
4140 conf->reshape_progress > 0)
4141 sector_nr = conf->reshape_progress;
4142 if (sector_nr) {
4143 mddev->curr_resync_completed = sector_nr;
4144 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4145 *skipped = 1;
4146 return sector_nr;
4147 }
4148 }
4149
4150 /* We don't use sector_nr to track where we are up to
4151 * as that doesn't work well for ->reshape_backwards.
4152 * So just use ->reshape_progress.
4153 */
4154 if (mddev->reshape_backwards) {
4155 /* 'next' is the earliest device address that we might
4156 * write to for this chunk in the new layout
4157 */
4158 next = first_dev_address(conf->reshape_progress - 1,
4159 &conf->geo);
4160
4161 /* 'safe' is the last device address that we might read from
4162 * in the old layout after a restart
4163 */
4164 safe = last_dev_address(conf->reshape_safe - 1,
4165 &conf->prev);
4166
4167 if (next + conf->offset_diff < safe)
4168 need_flush = 1;
4169
4170 last = conf->reshape_progress - 1;
4171 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4172 & conf->prev.chunk_mask);
4173 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4174 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4175 } else {
4176 /* 'next' is after the last device address that we
4177 * might write to for this chunk in the new layout
4178 */
4179 next = last_dev_address(conf->reshape_progress, &conf->geo);
4180
4181 /* 'safe' is the earliest device address that we might
4182 * read from in the old layout after a restart
4183 */
4184 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4185
4186 /* Need to update metadata if 'next' might be beyond 'safe'
4187 * as that would possibly corrupt data
4188 */
4189 if (next > safe + conf->offset_diff)
4190 need_flush = 1;
4191
4192 sector_nr = conf->reshape_progress;
4193 last = sector_nr | (conf->geo.chunk_mask
4194 & conf->prev.chunk_mask);
4195
4196 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4197 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4198 }
4199
4200 if (need_flush ||
4201 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4202 /* Need to update reshape_position in metadata */
4203 wait_barrier(conf);
4204 mddev->reshape_position = conf->reshape_progress;
4205 if (mddev->reshape_backwards)
4206 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4207 - conf->reshape_progress;
4208 else
4209 mddev->curr_resync_completed = conf->reshape_progress;
4210 conf->reshape_checkpoint = jiffies;
4211 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4212 md_wakeup_thread(mddev->thread);
4213 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4214 kthread_should_stop());
4215 conf->reshape_safe = mddev->reshape_position;
4216 allow_barrier(conf);
4217 }
4218
4219 read_more:
4220 /* Now schedule reads for blocks from sector_nr to last */
4221 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4222 raise_barrier(conf, sectors_done != 0);
4223 atomic_set(&r10_bio->remaining, 0);
4224 r10_bio->mddev = mddev;
4225 r10_bio->sector = sector_nr;
4226 set_bit(R10BIO_IsReshape, &r10_bio->state);
4227 r10_bio->sectors = last - sector_nr + 1;
4228 rdev = read_balance(conf, r10_bio, &max_sectors);
4229 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4230
4231 if (!rdev) {
4232 /* Cannot read from here, so need to record bad blocks
4233 * on all the target devices.
4234 */
4235 // FIXME
4236 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4237 return sectors_done;
4238 }
4239
4240 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4241
4242 read_bio->bi_bdev = rdev->bdev;
4243 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4244 + rdev->data_offset);
4245 read_bio->bi_private = r10_bio;
4246 read_bio->bi_end_io = end_sync_read;
4247 read_bio->bi_rw = READ;
4248 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4249 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4250 read_bio->bi_vcnt = 0;
4251 read_bio->bi_idx = 0;
4252 read_bio->bi_size = 0;
4253 r10_bio->master_bio = read_bio;
4254 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4255
4256 /* Now find the locations in the new layout */
4257 __raid10_find_phys(&conf->geo, r10_bio);
4258
4259 blist = read_bio;
4260 read_bio->bi_next = NULL;
4261
4262 for (s = 0; s < conf->copies*2; s++) {
4263 struct bio *b;
4264 int d = r10_bio->devs[s/2].devnum;
4265 struct md_rdev *rdev2;
4266 if (s&1) {
4267 rdev2 = conf->mirrors[d].replacement;
4268 b = r10_bio->devs[s/2].repl_bio;
4269 } else {
4270 rdev2 = conf->mirrors[d].rdev;
4271 b = r10_bio->devs[s/2].bio;
4272 }
4273 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4274 continue;
4275 b->bi_bdev = rdev2->bdev;
4276 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4277 b->bi_private = r10_bio;
4278 b->bi_end_io = end_reshape_write;
4279 b->bi_rw = WRITE;
4280 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4281 b->bi_flags |= 1 << BIO_UPTODATE;
4282 b->bi_next = blist;
4283 b->bi_vcnt = 0;
4284 b->bi_idx = 0;
4285 b->bi_size = 0;
4286 blist = b;
4287 }
4288
4289 /* Now add as many pages as possible to all of these bios. */
4290
4291 nr_sectors = 0;
4292 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4293 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4294 int len = (max_sectors - s) << 9;
4295 if (len > PAGE_SIZE)
4296 len = PAGE_SIZE;
4297 for (bio = blist; bio ; bio = bio->bi_next) {
4298 struct bio *bio2;
4299 if (bio_add_page(bio, page, len, 0))
4300 continue;
4301
4302 /* Didn't fit, must stop */
4303 for (bio2 = blist;
4304 bio2 && bio2 != bio;
4305 bio2 = bio2->bi_next) {
4306 /* Remove last page from this bio */
4307 bio2->bi_vcnt--;
4308 bio2->bi_size -= len;
4309 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4310 }
4311 goto bio_full;
4312 }
4313 sector_nr += len >> 9;
4314 nr_sectors += len >> 9;
4315 }
4316 bio_full:
4317 r10_bio->sectors = nr_sectors;
4318
4319 /* Now submit the read */
4320 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4321 atomic_inc(&r10_bio->remaining);
4322 read_bio->bi_next = NULL;
4323 generic_make_request(read_bio);
4324 sector_nr += nr_sectors;
4325 sectors_done += nr_sectors;
4326 if (sector_nr <= last)
4327 goto read_more;
4328
4329 /* Now that we have done the whole section we can
4330 * update reshape_progress
4331 */
4332 if (mddev->reshape_backwards)
4333 conf->reshape_progress -= sectors_done;
4334 else
4335 conf->reshape_progress += sectors_done;
4336
4337 return sectors_done;
4338 }
4339
4340 static void end_reshape_request(struct r10bio *r10_bio);
4341 static int handle_reshape_read_error(struct mddev *mddev,
4342 struct r10bio *r10_bio);
4343 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4344 {
4345 /* Reshape read completed. Hopefully we have a block
4346 * to write out.
4347 * If we got a read error then we do sync 1-page reads from
4348 * elsewhere until we find the data - or give up.
4349 */
4350 struct r10conf *conf = mddev->private;
4351 int s;
4352
4353 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4354 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4355 /* Reshape has been aborted */
4356 md_done_sync(mddev, r10_bio->sectors, 0);
4357 return;
4358 }
4359
4360 /* We definitely have the data in the pages, schedule the
4361 * writes.
4362 */
4363 atomic_set(&r10_bio->remaining, 1);
4364 for (s = 0; s < conf->copies*2; s++) {
4365 struct bio *b;
4366 int d = r10_bio->devs[s/2].devnum;
4367 struct md_rdev *rdev;
4368 if (s&1) {
4369 rdev = conf->mirrors[d].replacement;
4370 b = r10_bio->devs[s/2].repl_bio;
4371 } else {
4372 rdev = conf->mirrors[d].rdev;
4373 b = r10_bio->devs[s/2].bio;
4374 }
4375 if (!rdev || test_bit(Faulty, &rdev->flags))
4376 continue;
4377 atomic_inc(&rdev->nr_pending);
4378 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4379 atomic_inc(&r10_bio->remaining);
4380 b->bi_next = NULL;
4381 generic_make_request(b);
4382 }
4383 end_reshape_request(r10_bio);
4384 }
4385
4386 static void end_reshape(struct r10conf *conf)
4387 {
4388 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4389 return;
4390
4391 spin_lock_irq(&conf->device_lock);
4392 conf->prev = conf->geo;
4393 md_finish_reshape(conf->mddev);
4394 smp_wmb();
4395 conf->reshape_progress = MaxSector;
4396 spin_unlock_irq(&conf->device_lock);
4397
4398 /* read-ahead size must cover two whole stripes, which is
4399 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4400 */
4401 if (conf->mddev->queue) {
4402 int stripe = conf->geo.raid_disks *
4403 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4404 stripe /= conf->geo.near_copies;
4405 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4406 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4407 }
4408 conf->fullsync = 0;
4409 }
4410
4411
4412 static int handle_reshape_read_error(struct mddev *mddev,
4413 struct r10bio *r10_bio)
4414 {
4415 /* Use sync reads to get the blocks from somewhere else */
4416 int sectors = r10_bio->sectors;
4417 struct r10bio r10b;
4418 struct r10conf *conf = mddev->private;
4419 int slot = 0;
4420 int idx = 0;
4421 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4422
4423 r10b.sector = r10_bio->sector;
4424 __raid10_find_phys(&conf->prev, &r10b);
4425
4426 while (sectors) {
4427 int s = sectors;
4428 int success = 0;
4429 int first_slot = slot;
4430
4431 if (s > (PAGE_SIZE >> 9))
4432 s = PAGE_SIZE >> 9;
4433
4434 while (!success) {
4435 int d = r10b.devs[slot].devnum;
4436 struct md_rdev *rdev = conf->mirrors[d].rdev;
4437 sector_t addr;
4438 if (rdev == NULL ||
4439 test_bit(Faulty, &rdev->flags) ||
4440 !test_bit(In_sync, &rdev->flags))
4441 goto failed;
4442
4443 addr = r10b.devs[slot].addr + idx * PAGE_SIZE;
4444 success = sync_page_io(rdev,
4445 addr,
4446 s << 9,
4447 bvec[idx].bv_page,
4448 READ, false);
4449 if (success)
4450 break;
4451 failed:
4452 slot++;
4453 if (slot >= conf->copies)
4454 slot = 0;
4455 if (slot == first_slot)
4456 break;
4457 }
4458 if (!success) {
4459 /* couldn't read this block, must give up */
4460 set_bit(MD_RECOVERY_INTR,
4461 &mddev->recovery);
4462 return -EIO;
4463 }
4464 sectors -= s;
4465 idx++;
4466 }
4467 return 0;
4468 }
4469
4470 static void end_reshape_write(struct bio *bio, int error)
4471 {
4472 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4473 struct r10bio *r10_bio = bio->bi_private;
4474 struct mddev *mddev = r10_bio->mddev;
4475 struct r10conf *conf = mddev->private;
4476 int d;
4477 int slot;
4478 int repl;
4479 struct md_rdev *rdev = NULL;
4480
4481 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4482 if (repl)
4483 rdev = conf->mirrors[d].replacement;
4484 if (!rdev) {
4485 smp_mb();
4486 rdev = conf->mirrors[d].rdev;
4487 }
4488
4489 if (!uptodate) {
4490 /* FIXME should record badblock */
4491 md_error(mddev, rdev);
4492 }
4493
4494 rdev_dec_pending(rdev, mddev);
4495 end_reshape_request(r10_bio);
4496 }
4497
4498 static void end_reshape_request(struct r10bio *r10_bio)
4499 {
4500 if (!atomic_dec_and_test(&r10_bio->remaining))
4501 return;
4502 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4503 bio_put(r10_bio->master_bio);
4504 put_buf(r10_bio);
4505 }
4506
4507 static void raid10_finish_reshape(struct mddev *mddev)
4508 {
4509 struct r10conf *conf = mddev->private;
4510
4511 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4512 return;
4513
4514 if (mddev->delta_disks > 0) {
4515 sector_t size = raid10_size(mddev, 0, 0);
4516 md_set_array_sectors(mddev, size);
4517 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4518 mddev->recovery_cp = mddev->resync_max_sectors;
4519 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4520 }
4521 mddev->resync_max_sectors = size;
4522 set_capacity(mddev->gendisk, mddev->array_sectors);
4523 revalidate_disk(mddev->gendisk);
4524 } else {
4525 int d;
4526 for (d = conf->geo.raid_disks ;
4527 d < conf->geo.raid_disks - mddev->delta_disks;
4528 d++) {
4529 struct md_rdev *rdev = conf->mirrors[d].rdev;
4530 if (rdev)
4531 clear_bit(In_sync, &rdev->flags);
4532 rdev = conf->mirrors[d].replacement;
4533 if (rdev)
4534 clear_bit(In_sync, &rdev->flags);
4535 }
4536 }
4537 mddev->layout = mddev->new_layout;
4538 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4539 mddev->reshape_position = MaxSector;
4540 mddev->delta_disks = 0;
4541 mddev->reshape_backwards = 0;
4542 }
4543
4544 static struct md_personality raid10_personality =
4545 {
4546 .name = "raid10",
4547 .level = 10,
4548 .owner = THIS_MODULE,
4549 .make_request = make_request,
4550 .run = run,
4551 .stop = stop,
4552 .status = status,
4553 .error_handler = error,
4554 .hot_add_disk = raid10_add_disk,
4555 .hot_remove_disk= raid10_remove_disk,
4556 .spare_active = raid10_spare_active,
4557 .sync_request = sync_request,
4558 .quiesce = raid10_quiesce,
4559 .size = raid10_size,
4560 .resize = raid10_resize,
4561 .takeover = raid10_takeover,
4562 .check_reshape = raid10_check_reshape,
4563 .start_reshape = raid10_start_reshape,
4564 .finish_reshape = raid10_finish_reshape,
4565 };
4566
4567 static int __init raid_init(void)
4568 {
4569 return register_md_personality(&raid10_personality);
4570 }
4571
4572 static void raid_exit(void)
4573 {
4574 unregister_md_personality(&raid10_personality);
4575 }
4576
4577 module_init(raid_init);
4578 module_exit(raid_exit);
4579 MODULE_LICENSE("GPL");
4580 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4581 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4582 MODULE_ALIAS("md-raid10");
4583 MODULE_ALIAS("md-level-10");
4584
4585 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);