Merge branch 'fix/hda' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/raid/md.h>
37 #include <linux/raid/bitmap.h>
38 #include <linux/sysctl.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/hdreg.h>
43 #include <linux/proc_fs.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/file.h>
47 #include <linux/delay.h>
48
49 #define MAJOR_NR MD_MAJOR
50
51 /* 63 partitions with the alternate major number (mdp) */
52 #define MdpMinorShift 6
53
54 #define DEBUG 0
55 #define dprintk(x...) ((void)(DEBUG && printk(x)))
56
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 static LIST_HEAD(pers_list);
63 static DEFINE_SPINLOCK(pers_lock);
64
65 static void md_print_devices(void);
66
67 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
68
69 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
70
71 /*
72 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
73 * is 1000 KB/sec, so the extra system load does not show up that much.
74 * Increase it if you want to have more _guaranteed_ speed. Note that
75 * the RAID driver will use the maximum available bandwidth if the IO
76 * subsystem is idle. There is also an 'absolute maximum' reconstruction
77 * speed limit - in case reconstruction slows down your system despite
78 * idle IO detection.
79 *
80 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
81 * or /sys/block/mdX/md/sync_speed_{min,max}
82 */
83
84 static int sysctl_speed_limit_min = 1000;
85 static int sysctl_speed_limit_max = 200000;
86 static inline int speed_min(mddev_t *mddev)
87 {
88 return mddev->sync_speed_min ?
89 mddev->sync_speed_min : sysctl_speed_limit_min;
90 }
91
92 static inline int speed_max(mddev_t *mddev)
93 {
94 return mddev->sync_speed_max ?
95 mddev->sync_speed_max : sysctl_speed_limit_max;
96 }
97
98 static struct ctl_table_header *raid_table_header;
99
100 static ctl_table raid_table[] = {
101 {
102 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
103 .procname = "speed_limit_min",
104 .data = &sysctl_speed_limit_min,
105 .maxlen = sizeof(int),
106 .mode = S_IRUGO|S_IWUSR,
107 .proc_handler = &proc_dointvec,
108 },
109 {
110 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
111 .procname = "speed_limit_max",
112 .data = &sysctl_speed_limit_max,
113 .maxlen = sizeof(int),
114 .mode = S_IRUGO|S_IWUSR,
115 .proc_handler = &proc_dointvec,
116 },
117 { .ctl_name = 0 }
118 };
119
120 static ctl_table raid_dir_table[] = {
121 {
122 .ctl_name = DEV_RAID,
123 .procname = "raid",
124 .maxlen = 0,
125 .mode = S_IRUGO|S_IXUGO,
126 .child = raid_table,
127 },
128 { .ctl_name = 0 }
129 };
130
131 static ctl_table raid_root_table[] = {
132 {
133 .ctl_name = CTL_DEV,
134 .procname = "dev",
135 .maxlen = 0,
136 .mode = 0555,
137 .child = raid_dir_table,
138 },
139 { .ctl_name = 0 }
140 };
141
142 static struct block_device_operations md_fops;
143
144 static int start_readonly;
145
146 /*
147 * We have a system wide 'event count' that is incremented
148 * on any 'interesting' event, and readers of /proc/mdstat
149 * can use 'poll' or 'select' to find out when the event
150 * count increases.
151 *
152 * Events are:
153 * start array, stop array, error, add device, remove device,
154 * start build, activate spare
155 */
156 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
157 static atomic_t md_event_count;
158 void md_new_event(mddev_t *mddev)
159 {
160 atomic_inc(&md_event_count);
161 wake_up(&md_event_waiters);
162 }
163 EXPORT_SYMBOL_GPL(md_new_event);
164
165 /* Alternate version that can be called from interrupts
166 * when calling sysfs_notify isn't needed.
167 */
168 static void md_new_event_inintr(mddev_t *mddev)
169 {
170 atomic_inc(&md_event_count);
171 wake_up(&md_event_waiters);
172 }
173
174 /*
175 * Enables to iterate over all existing md arrays
176 * all_mddevs_lock protects this list.
177 */
178 static LIST_HEAD(all_mddevs);
179 static DEFINE_SPINLOCK(all_mddevs_lock);
180
181
182 /*
183 * iterates through all used mddevs in the system.
184 * We take care to grab the all_mddevs_lock whenever navigating
185 * the list, and to always hold a refcount when unlocked.
186 * Any code which breaks out of this loop while own
187 * a reference to the current mddev and must mddev_put it.
188 */
189 #define for_each_mddev(mddev,tmp) \
190 \
191 for (({ spin_lock(&all_mddevs_lock); \
192 tmp = all_mddevs.next; \
193 mddev = NULL;}); \
194 ({ if (tmp != &all_mddevs) \
195 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
196 spin_unlock(&all_mddevs_lock); \
197 if (mddev) mddev_put(mddev); \
198 mddev = list_entry(tmp, mddev_t, all_mddevs); \
199 tmp != &all_mddevs;}); \
200 ({ spin_lock(&all_mddevs_lock); \
201 tmp = tmp->next;}) \
202 )
203
204
205 static int md_fail_request(struct request_queue *q, struct bio *bio)
206 {
207 bio_io_error(bio);
208 return 0;
209 }
210
211 static inline mddev_t *mddev_get(mddev_t *mddev)
212 {
213 atomic_inc(&mddev->active);
214 return mddev;
215 }
216
217 static void mddev_delayed_delete(struct work_struct *ws)
218 {
219 mddev_t *mddev = container_of(ws, mddev_t, del_work);
220 kobject_del(&mddev->kobj);
221 kobject_put(&mddev->kobj);
222 }
223
224 static void mddev_put(mddev_t *mddev)
225 {
226 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
227 return;
228 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
229 !mddev->hold_active) {
230 list_del(&mddev->all_mddevs);
231 if (mddev->gendisk) {
232 /* we did a probe so need to clean up.
233 * Call schedule_work inside the spinlock
234 * so that flush_scheduled_work() after
235 * mddev_find will succeed in waiting for the
236 * work to be done.
237 */
238 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
239 schedule_work(&mddev->del_work);
240 } else
241 kfree(mddev);
242 }
243 spin_unlock(&all_mddevs_lock);
244 }
245
246 static mddev_t * mddev_find(dev_t unit)
247 {
248 mddev_t *mddev, *new = NULL;
249
250 retry:
251 spin_lock(&all_mddevs_lock);
252
253 if (unit) {
254 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
255 if (mddev->unit == unit) {
256 mddev_get(mddev);
257 spin_unlock(&all_mddevs_lock);
258 kfree(new);
259 return mddev;
260 }
261
262 if (new) {
263 list_add(&new->all_mddevs, &all_mddevs);
264 spin_unlock(&all_mddevs_lock);
265 new->hold_active = UNTIL_IOCTL;
266 return new;
267 }
268 } else if (new) {
269 /* find an unused unit number */
270 static int next_minor = 512;
271 int start = next_minor;
272 int is_free = 0;
273 int dev = 0;
274 while (!is_free) {
275 dev = MKDEV(MD_MAJOR, next_minor);
276 next_minor++;
277 if (next_minor > MINORMASK)
278 next_minor = 0;
279 if (next_minor == start) {
280 /* Oh dear, all in use. */
281 spin_unlock(&all_mddevs_lock);
282 kfree(new);
283 return NULL;
284 }
285
286 is_free = 1;
287 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
288 if (mddev->unit == dev) {
289 is_free = 0;
290 break;
291 }
292 }
293 new->unit = dev;
294 new->md_minor = MINOR(dev);
295 new->hold_active = UNTIL_STOP;
296 list_add(&new->all_mddevs, &all_mddevs);
297 spin_unlock(&all_mddevs_lock);
298 return new;
299 }
300 spin_unlock(&all_mddevs_lock);
301
302 new = kzalloc(sizeof(*new), GFP_KERNEL);
303 if (!new)
304 return NULL;
305
306 new->unit = unit;
307 if (MAJOR(unit) == MD_MAJOR)
308 new->md_minor = MINOR(unit);
309 else
310 new->md_minor = MINOR(unit) >> MdpMinorShift;
311
312 mutex_init(&new->reconfig_mutex);
313 INIT_LIST_HEAD(&new->disks);
314 INIT_LIST_HEAD(&new->all_mddevs);
315 init_timer(&new->safemode_timer);
316 atomic_set(&new->active, 1);
317 atomic_set(&new->openers, 0);
318 spin_lock_init(&new->write_lock);
319 init_waitqueue_head(&new->sb_wait);
320 init_waitqueue_head(&new->recovery_wait);
321 new->reshape_position = MaxSector;
322 new->resync_min = 0;
323 new->resync_max = MaxSector;
324 new->level = LEVEL_NONE;
325
326 goto retry;
327 }
328
329 static inline int mddev_lock(mddev_t * mddev)
330 {
331 return mutex_lock_interruptible(&mddev->reconfig_mutex);
332 }
333
334 static inline int mddev_trylock(mddev_t * mddev)
335 {
336 return mutex_trylock(&mddev->reconfig_mutex);
337 }
338
339 static inline void mddev_unlock(mddev_t * mddev)
340 {
341 mutex_unlock(&mddev->reconfig_mutex);
342
343 md_wakeup_thread(mddev->thread);
344 }
345
346 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
347 {
348 mdk_rdev_t *rdev;
349
350 list_for_each_entry(rdev, &mddev->disks, same_set)
351 if (rdev->desc_nr == nr)
352 return rdev;
353
354 return NULL;
355 }
356
357 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
358 {
359 mdk_rdev_t *rdev;
360
361 list_for_each_entry(rdev, &mddev->disks, same_set)
362 if (rdev->bdev->bd_dev == dev)
363 return rdev;
364
365 return NULL;
366 }
367
368 static struct mdk_personality *find_pers(int level, char *clevel)
369 {
370 struct mdk_personality *pers;
371 list_for_each_entry(pers, &pers_list, list) {
372 if (level != LEVEL_NONE && pers->level == level)
373 return pers;
374 if (strcmp(pers->name, clevel)==0)
375 return pers;
376 }
377 return NULL;
378 }
379
380 /* return the offset of the super block in 512byte sectors */
381 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
382 {
383 sector_t num_sectors = bdev->bd_inode->i_size / 512;
384 return MD_NEW_SIZE_SECTORS(num_sectors);
385 }
386
387 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size)
388 {
389 sector_t num_sectors = rdev->sb_start;
390
391 if (chunk_size)
392 num_sectors &= ~((sector_t)chunk_size/512 - 1);
393 return num_sectors;
394 }
395
396 static int alloc_disk_sb(mdk_rdev_t * rdev)
397 {
398 if (rdev->sb_page)
399 MD_BUG();
400
401 rdev->sb_page = alloc_page(GFP_KERNEL);
402 if (!rdev->sb_page) {
403 printk(KERN_ALERT "md: out of memory.\n");
404 return -ENOMEM;
405 }
406
407 return 0;
408 }
409
410 static void free_disk_sb(mdk_rdev_t * rdev)
411 {
412 if (rdev->sb_page) {
413 put_page(rdev->sb_page);
414 rdev->sb_loaded = 0;
415 rdev->sb_page = NULL;
416 rdev->sb_start = 0;
417 rdev->size = 0;
418 }
419 }
420
421
422 static void super_written(struct bio *bio, int error)
423 {
424 mdk_rdev_t *rdev = bio->bi_private;
425 mddev_t *mddev = rdev->mddev;
426
427 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
428 printk("md: super_written gets error=%d, uptodate=%d\n",
429 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
430 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
431 md_error(mddev, rdev);
432 }
433
434 if (atomic_dec_and_test(&mddev->pending_writes))
435 wake_up(&mddev->sb_wait);
436 bio_put(bio);
437 }
438
439 static void super_written_barrier(struct bio *bio, int error)
440 {
441 struct bio *bio2 = bio->bi_private;
442 mdk_rdev_t *rdev = bio2->bi_private;
443 mddev_t *mddev = rdev->mddev;
444
445 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
446 error == -EOPNOTSUPP) {
447 unsigned long flags;
448 /* barriers don't appear to be supported :-( */
449 set_bit(BarriersNotsupp, &rdev->flags);
450 mddev->barriers_work = 0;
451 spin_lock_irqsave(&mddev->write_lock, flags);
452 bio2->bi_next = mddev->biolist;
453 mddev->biolist = bio2;
454 spin_unlock_irqrestore(&mddev->write_lock, flags);
455 wake_up(&mddev->sb_wait);
456 bio_put(bio);
457 } else {
458 bio_put(bio2);
459 bio->bi_private = rdev;
460 super_written(bio, error);
461 }
462 }
463
464 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
465 sector_t sector, int size, struct page *page)
466 {
467 /* write first size bytes of page to sector of rdev
468 * Increment mddev->pending_writes before returning
469 * and decrement it on completion, waking up sb_wait
470 * if zero is reached.
471 * If an error occurred, call md_error
472 *
473 * As we might need to resubmit the request if BIO_RW_BARRIER
474 * causes ENOTSUPP, we allocate a spare bio...
475 */
476 struct bio *bio = bio_alloc(GFP_NOIO, 1);
477 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
478
479 bio->bi_bdev = rdev->bdev;
480 bio->bi_sector = sector;
481 bio_add_page(bio, page, size, 0);
482 bio->bi_private = rdev;
483 bio->bi_end_io = super_written;
484 bio->bi_rw = rw;
485
486 atomic_inc(&mddev->pending_writes);
487 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
488 struct bio *rbio;
489 rw |= (1<<BIO_RW_BARRIER);
490 rbio = bio_clone(bio, GFP_NOIO);
491 rbio->bi_private = bio;
492 rbio->bi_end_io = super_written_barrier;
493 submit_bio(rw, rbio);
494 } else
495 submit_bio(rw, bio);
496 }
497
498 void md_super_wait(mddev_t *mddev)
499 {
500 /* wait for all superblock writes that were scheduled to complete.
501 * if any had to be retried (due to BARRIER problems), retry them
502 */
503 DEFINE_WAIT(wq);
504 for(;;) {
505 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
506 if (atomic_read(&mddev->pending_writes)==0)
507 break;
508 while (mddev->biolist) {
509 struct bio *bio;
510 spin_lock_irq(&mddev->write_lock);
511 bio = mddev->biolist;
512 mddev->biolist = bio->bi_next ;
513 bio->bi_next = NULL;
514 spin_unlock_irq(&mddev->write_lock);
515 submit_bio(bio->bi_rw, bio);
516 }
517 schedule();
518 }
519 finish_wait(&mddev->sb_wait, &wq);
520 }
521
522 static void bi_complete(struct bio *bio, int error)
523 {
524 complete((struct completion*)bio->bi_private);
525 }
526
527 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
528 struct page *page, int rw)
529 {
530 struct bio *bio = bio_alloc(GFP_NOIO, 1);
531 struct completion event;
532 int ret;
533
534 rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
535
536 bio->bi_bdev = bdev;
537 bio->bi_sector = sector;
538 bio_add_page(bio, page, size, 0);
539 init_completion(&event);
540 bio->bi_private = &event;
541 bio->bi_end_io = bi_complete;
542 submit_bio(rw, bio);
543 wait_for_completion(&event);
544
545 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
546 bio_put(bio);
547 return ret;
548 }
549 EXPORT_SYMBOL_GPL(sync_page_io);
550
551 static int read_disk_sb(mdk_rdev_t * rdev, int size)
552 {
553 char b[BDEVNAME_SIZE];
554 if (!rdev->sb_page) {
555 MD_BUG();
556 return -EINVAL;
557 }
558 if (rdev->sb_loaded)
559 return 0;
560
561
562 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
563 goto fail;
564 rdev->sb_loaded = 1;
565 return 0;
566
567 fail:
568 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
569 bdevname(rdev->bdev,b));
570 return -EINVAL;
571 }
572
573 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
574 {
575 return sb1->set_uuid0 == sb2->set_uuid0 &&
576 sb1->set_uuid1 == sb2->set_uuid1 &&
577 sb1->set_uuid2 == sb2->set_uuid2 &&
578 sb1->set_uuid3 == sb2->set_uuid3;
579 }
580
581 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
582 {
583 int ret;
584 mdp_super_t *tmp1, *tmp2;
585
586 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
587 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
588
589 if (!tmp1 || !tmp2) {
590 ret = 0;
591 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
592 goto abort;
593 }
594
595 *tmp1 = *sb1;
596 *tmp2 = *sb2;
597
598 /*
599 * nr_disks is not constant
600 */
601 tmp1->nr_disks = 0;
602 tmp2->nr_disks = 0;
603
604 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
605 abort:
606 kfree(tmp1);
607 kfree(tmp2);
608 return ret;
609 }
610
611
612 static u32 md_csum_fold(u32 csum)
613 {
614 csum = (csum & 0xffff) + (csum >> 16);
615 return (csum & 0xffff) + (csum >> 16);
616 }
617
618 static unsigned int calc_sb_csum(mdp_super_t * sb)
619 {
620 u64 newcsum = 0;
621 u32 *sb32 = (u32*)sb;
622 int i;
623 unsigned int disk_csum, csum;
624
625 disk_csum = sb->sb_csum;
626 sb->sb_csum = 0;
627
628 for (i = 0; i < MD_SB_BYTES/4 ; i++)
629 newcsum += sb32[i];
630 csum = (newcsum & 0xffffffff) + (newcsum>>32);
631
632
633 #ifdef CONFIG_ALPHA
634 /* This used to use csum_partial, which was wrong for several
635 * reasons including that different results are returned on
636 * different architectures. It isn't critical that we get exactly
637 * the same return value as before (we always csum_fold before
638 * testing, and that removes any differences). However as we
639 * know that csum_partial always returned a 16bit value on
640 * alphas, do a fold to maximise conformity to previous behaviour.
641 */
642 sb->sb_csum = md_csum_fold(disk_csum);
643 #else
644 sb->sb_csum = disk_csum;
645 #endif
646 return csum;
647 }
648
649
650 /*
651 * Handle superblock details.
652 * We want to be able to handle multiple superblock formats
653 * so we have a common interface to them all, and an array of
654 * different handlers.
655 * We rely on user-space to write the initial superblock, and support
656 * reading and updating of superblocks.
657 * Interface methods are:
658 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
659 * loads and validates a superblock on dev.
660 * if refdev != NULL, compare superblocks on both devices
661 * Return:
662 * 0 - dev has a superblock that is compatible with refdev
663 * 1 - dev has a superblock that is compatible and newer than refdev
664 * so dev should be used as the refdev in future
665 * -EINVAL superblock incompatible or invalid
666 * -othererror e.g. -EIO
667 *
668 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
669 * Verify that dev is acceptable into mddev.
670 * The first time, mddev->raid_disks will be 0, and data from
671 * dev should be merged in. Subsequent calls check that dev
672 * is new enough. Return 0 or -EINVAL
673 *
674 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
675 * Update the superblock for rdev with data in mddev
676 * This does not write to disc.
677 *
678 */
679
680 struct super_type {
681 char *name;
682 struct module *owner;
683 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
684 int minor_version);
685 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
686 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
687 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
688 sector_t num_sectors);
689 };
690
691 /*
692 * load_super for 0.90.0
693 */
694 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
695 {
696 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
697 mdp_super_t *sb;
698 int ret;
699
700 /*
701 * Calculate the position of the superblock (512byte sectors),
702 * it's at the end of the disk.
703 *
704 * It also happens to be a multiple of 4Kb.
705 */
706 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
707
708 ret = read_disk_sb(rdev, MD_SB_BYTES);
709 if (ret) return ret;
710
711 ret = -EINVAL;
712
713 bdevname(rdev->bdev, b);
714 sb = (mdp_super_t*)page_address(rdev->sb_page);
715
716 if (sb->md_magic != MD_SB_MAGIC) {
717 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
718 b);
719 goto abort;
720 }
721
722 if (sb->major_version != 0 ||
723 sb->minor_version < 90 ||
724 sb->minor_version > 91) {
725 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
726 sb->major_version, sb->minor_version,
727 b);
728 goto abort;
729 }
730
731 if (sb->raid_disks <= 0)
732 goto abort;
733
734 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
735 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
736 b);
737 goto abort;
738 }
739
740 rdev->preferred_minor = sb->md_minor;
741 rdev->data_offset = 0;
742 rdev->sb_size = MD_SB_BYTES;
743
744 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
745 if (sb->level != 1 && sb->level != 4
746 && sb->level != 5 && sb->level != 6
747 && sb->level != 10) {
748 /* FIXME use a better test */
749 printk(KERN_WARNING
750 "md: bitmaps not supported for this level.\n");
751 goto abort;
752 }
753 }
754
755 if (sb->level == LEVEL_MULTIPATH)
756 rdev->desc_nr = -1;
757 else
758 rdev->desc_nr = sb->this_disk.number;
759
760 if (!refdev) {
761 ret = 1;
762 } else {
763 __u64 ev1, ev2;
764 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
765 if (!uuid_equal(refsb, sb)) {
766 printk(KERN_WARNING "md: %s has different UUID to %s\n",
767 b, bdevname(refdev->bdev,b2));
768 goto abort;
769 }
770 if (!sb_equal(refsb, sb)) {
771 printk(KERN_WARNING "md: %s has same UUID"
772 " but different superblock to %s\n",
773 b, bdevname(refdev->bdev, b2));
774 goto abort;
775 }
776 ev1 = md_event(sb);
777 ev2 = md_event(refsb);
778 if (ev1 > ev2)
779 ret = 1;
780 else
781 ret = 0;
782 }
783 rdev->size = calc_num_sectors(rdev, sb->chunk_size) / 2;
784
785 if (rdev->size < sb->size && sb->level > 1)
786 /* "this cannot possibly happen" ... */
787 ret = -EINVAL;
788
789 abort:
790 return ret;
791 }
792
793 /*
794 * validate_super for 0.90.0
795 */
796 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
797 {
798 mdp_disk_t *desc;
799 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
800 __u64 ev1 = md_event(sb);
801
802 rdev->raid_disk = -1;
803 clear_bit(Faulty, &rdev->flags);
804 clear_bit(In_sync, &rdev->flags);
805 clear_bit(WriteMostly, &rdev->flags);
806 clear_bit(BarriersNotsupp, &rdev->flags);
807
808 if (mddev->raid_disks == 0) {
809 mddev->major_version = 0;
810 mddev->minor_version = sb->minor_version;
811 mddev->patch_version = sb->patch_version;
812 mddev->external = 0;
813 mddev->chunk_size = sb->chunk_size;
814 mddev->ctime = sb->ctime;
815 mddev->utime = sb->utime;
816 mddev->level = sb->level;
817 mddev->clevel[0] = 0;
818 mddev->layout = sb->layout;
819 mddev->raid_disks = sb->raid_disks;
820 mddev->size = sb->size;
821 mddev->events = ev1;
822 mddev->bitmap_offset = 0;
823 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
824
825 if (mddev->minor_version >= 91) {
826 mddev->reshape_position = sb->reshape_position;
827 mddev->delta_disks = sb->delta_disks;
828 mddev->new_level = sb->new_level;
829 mddev->new_layout = sb->new_layout;
830 mddev->new_chunk = sb->new_chunk;
831 } else {
832 mddev->reshape_position = MaxSector;
833 mddev->delta_disks = 0;
834 mddev->new_level = mddev->level;
835 mddev->new_layout = mddev->layout;
836 mddev->new_chunk = mddev->chunk_size;
837 }
838
839 if (sb->state & (1<<MD_SB_CLEAN))
840 mddev->recovery_cp = MaxSector;
841 else {
842 if (sb->events_hi == sb->cp_events_hi &&
843 sb->events_lo == sb->cp_events_lo) {
844 mddev->recovery_cp = sb->recovery_cp;
845 } else
846 mddev->recovery_cp = 0;
847 }
848
849 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
850 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
851 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
852 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
853
854 mddev->max_disks = MD_SB_DISKS;
855
856 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
857 mddev->bitmap_file == NULL)
858 mddev->bitmap_offset = mddev->default_bitmap_offset;
859
860 } else if (mddev->pers == NULL) {
861 /* Insist on good event counter while assembling */
862 ++ev1;
863 if (ev1 < mddev->events)
864 return -EINVAL;
865 } else if (mddev->bitmap) {
866 /* if adding to array with a bitmap, then we can accept an
867 * older device ... but not too old.
868 */
869 if (ev1 < mddev->bitmap->events_cleared)
870 return 0;
871 } else {
872 if (ev1 < mddev->events)
873 /* just a hot-add of a new device, leave raid_disk at -1 */
874 return 0;
875 }
876
877 if (mddev->level != LEVEL_MULTIPATH) {
878 desc = sb->disks + rdev->desc_nr;
879
880 if (desc->state & (1<<MD_DISK_FAULTY))
881 set_bit(Faulty, &rdev->flags);
882 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
883 desc->raid_disk < mddev->raid_disks */) {
884 set_bit(In_sync, &rdev->flags);
885 rdev->raid_disk = desc->raid_disk;
886 }
887 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
888 set_bit(WriteMostly, &rdev->flags);
889 } else /* MULTIPATH are always insync */
890 set_bit(In_sync, &rdev->flags);
891 return 0;
892 }
893
894 /*
895 * sync_super for 0.90.0
896 */
897 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
898 {
899 mdp_super_t *sb;
900 mdk_rdev_t *rdev2;
901 int next_spare = mddev->raid_disks;
902
903
904 /* make rdev->sb match mddev data..
905 *
906 * 1/ zero out disks
907 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
908 * 3/ any empty disks < next_spare become removed
909 *
910 * disks[0] gets initialised to REMOVED because
911 * we cannot be sure from other fields if it has
912 * been initialised or not.
913 */
914 int i;
915 int active=0, working=0,failed=0,spare=0,nr_disks=0;
916
917 rdev->sb_size = MD_SB_BYTES;
918
919 sb = (mdp_super_t*)page_address(rdev->sb_page);
920
921 memset(sb, 0, sizeof(*sb));
922
923 sb->md_magic = MD_SB_MAGIC;
924 sb->major_version = mddev->major_version;
925 sb->patch_version = mddev->patch_version;
926 sb->gvalid_words = 0; /* ignored */
927 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
928 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
929 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
930 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
931
932 sb->ctime = mddev->ctime;
933 sb->level = mddev->level;
934 sb->size = mddev->size;
935 sb->raid_disks = mddev->raid_disks;
936 sb->md_minor = mddev->md_minor;
937 sb->not_persistent = 0;
938 sb->utime = mddev->utime;
939 sb->state = 0;
940 sb->events_hi = (mddev->events>>32);
941 sb->events_lo = (u32)mddev->events;
942
943 if (mddev->reshape_position == MaxSector)
944 sb->minor_version = 90;
945 else {
946 sb->minor_version = 91;
947 sb->reshape_position = mddev->reshape_position;
948 sb->new_level = mddev->new_level;
949 sb->delta_disks = mddev->delta_disks;
950 sb->new_layout = mddev->new_layout;
951 sb->new_chunk = mddev->new_chunk;
952 }
953 mddev->minor_version = sb->minor_version;
954 if (mddev->in_sync)
955 {
956 sb->recovery_cp = mddev->recovery_cp;
957 sb->cp_events_hi = (mddev->events>>32);
958 sb->cp_events_lo = (u32)mddev->events;
959 if (mddev->recovery_cp == MaxSector)
960 sb->state = (1<< MD_SB_CLEAN);
961 } else
962 sb->recovery_cp = 0;
963
964 sb->layout = mddev->layout;
965 sb->chunk_size = mddev->chunk_size;
966
967 if (mddev->bitmap && mddev->bitmap_file == NULL)
968 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
969
970 sb->disks[0].state = (1<<MD_DISK_REMOVED);
971 list_for_each_entry(rdev2, &mddev->disks, same_set) {
972 mdp_disk_t *d;
973 int desc_nr;
974 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
975 && !test_bit(Faulty, &rdev2->flags))
976 desc_nr = rdev2->raid_disk;
977 else
978 desc_nr = next_spare++;
979 rdev2->desc_nr = desc_nr;
980 d = &sb->disks[rdev2->desc_nr];
981 nr_disks++;
982 d->number = rdev2->desc_nr;
983 d->major = MAJOR(rdev2->bdev->bd_dev);
984 d->minor = MINOR(rdev2->bdev->bd_dev);
985 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
986 && !test_bit(Faulty, &rdev2->flags))
987 d->raid_disk = rdev2->raid_disk;
988 else
989 d->raid_disk = rdev2->desc_nr; /* compatibility */
990 if (test_bit(Faulty, &rdev2->flags))
991 d->state = (1<<MD_DISK_FAULTY);
992 else if (test_bit(In_sync, &rdev2->flags)) {
993 d->state = (1<<MD_DISK_ACTIVE);
994 d->state |= (1<<MD_DISK_SYNC);
995 active++;
996 working++;
997 } else {
998 d->state = 0;
999 spare++;
1000 working++;
1001 }
1002 if (test_bit(WriteMostly, &rdev2->flags))
1003 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1004 }
1005 /* now set the "removed" and "faulty" bits on any missing devices */
1006 for (i=0 ; i < mddev->raid_disks ; i++) {
1007 mdp_disk_t *d = &sb->disks[i];
1008 if (d->state == 0 && d->number == 0) {
1009 d->number = i;
1010 d->raid_disk = i;
1011 d->state = (1<<MD_DISK_REMOVED);
1012 d->state |= (1<<MD_DISK_FAULTY);
1013 failed++;
1014 }
1015 }
1016 sb->nr_disks = nr_disks;
1017 sb->active_disks = active;
1018 sb->working_disks = working;
1019 sb->failed_disks = failed;
1020 sb->spare_disks = spare;
1021
1022 sb->this_disk = sb->disks[rdev->desc_nr];
1023 sb->sb_csum = calc_sb_csum(sb);
1024 }
1025
1026 /*
1027 * rdev_size_change for 0.90.0
1028 */
1029 static unsigned long long
1030 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1031 {
1032 if (num_sectors && num_sectors < rdev->mddev->size * 2)
1033 return 0; /* component must fit device */
1034 if (rdev->mddev->bitmap_offset)
1035 return 0; /* can't move bitmap */
1036 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1037 if (!num_sectors || num_sectors > rdev->sb_start)
1038 num_sectors = rdev->sb_start;
1039 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1040 rdev->sb_page);
1041 md_super_wait(rdev->mddev);
1042 return num_sectors / 2; /* kB for sysfs */
1043 }
1044
1045
1046 /*
1047 * version 1 superblock
1048 */
1049
1050 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1051 {
1052 __le32 disk_csum;
1053 u32 csum;
1054 unsigned long long newcsum;
1055 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1056 __le32 *isuper = (__le32*)sb;
1057 int i;
1058
1059 disk_csum = sb->sb_csum;
1060 sb->sb_csum = 0;
1061 newcsum = 0;
1062 for (i=0; size>=4; size -= 4 )
1063 newcsum += le32_to_cpu(*isuper++);
1064
1065 if (size == 2)
1066 newcsum += le16_to_cpu(*(__le16*) isuper);
1067
1068 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1069 sb->sb_csum = disk_csum;
1070 return cpu_to_le32(csum);
1071 }
1072
1073 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1074 {
1075 struct mdp_superblock_1 *sb;
1076 int ret;
1077 sector_t sb_start;
1078 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1079 int bmask;
1080
1081 /*
1082 * Calculate the position of the superblock in 512byte sectors.
1083 * It is always aligned to a 4K boundary and
1084 * depeding on minor_version, it can be:
1085 * 0: At least 8K, but less than 12K, from end of device
1086 * 1: At start of device
1087 * 2: 4K from start of device.
1088 */
1089 switch(minor_version) {
1090 case 0:
1091 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1092 sb_start -= 8*2;
1093 sb_start &= ~(sector_t)(4*2-1);
1094 break;
1095 case 1:
1096 sb_start = 0;
1097 break;
1098 case 2:
1099 sb_start = 8;
1100 break;
1101 default:
1102 return -EINVAL;
1103 }
1104 rdev->sb_start = sb_start;
1105
1106 /* superblock is rarely larger than 1K, but it can be larger,
1107 * and it is safe to read 4k, so we do that
1108 */
1109 ret = read_disk_sb(rdev, 4096);
1110 if (ret) return ret;
1111
1112
1113 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1114
1115 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1116 sb->major_version != cpu_to_le32(1) ||
1117 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1118 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1119 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1120 return -EINVAL;
1121
1122 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1123 printk("md: invalid superblock checksum on %s\n",
1124 bdevname(rdev->bdev,b));
1125 return -EINVAL;
1126 }
1127 if (le64_to_cpu(sb->data_size) < 10) {
1128 printk("md: data_size too small on %s\n",
1129 bdevname(rdev->bdev,b));
1130 return -EINVAL;
1131 }
1132 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1133 if (sb->level != cpu_to_le32(1) &&
1134 sb->level != cpu_to_le32(4) &&
1135 sb->level != cpu_to_le32(5) &&
1136 sb->level != cpu_to_le32(6) &&
1137 sb->level != cpu_to_le32(10)) {
1138 printk(KERN_WARNING
1139 "md: bitmaps not supported for this level.\n");
1140 return -EINVAL;
1141 }
1142 }
1143
1144 rdev->preferred_minor = 0xffff;
1145 rdev->data_offset = le64_to_cpu(sb->data_offset);
1146 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1147
1148 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1149 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1150 if (rdev->sb_size & bmask)
1151 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1152
1153 if (minor_version
1154 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1155 return -EINVAL;
1156
1157 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1158 rdev->desc_nr = -1;
1159 else
1160 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1161
1162 if (!refdev) {
1163 ret = 1;
1164 } else {
1165 __u64 ev1, ev2;
1166 struct mdp_superblock_1 *refsb =
1167 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1168
1169 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1170 sb->level != refsb->level ||
1171 sb->layout != refsb->layout ||
1172 sb->chunksize != refsb->chunksize) {
1173 printk(KERN_WARNING "md: %s has strangely different"
1174 " superblock to %s\n",
1175 bdevname(rdev->bdev,b),
1176 bdevname(refdev->bdev,b2));
1177 return -EINVAL;
1178 }
1179 ev1 = le64_to_cpu(sb->events);
1180 ev2 = le64_to_cpu(refsb->events);
1181
1182 if (ev1 > ev2)
1183 ret = 1;
1184 else
1185 ret = 0;
1186 }
1187 if (minor_version)
1188 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1189 else
1190 rdev->size = rdev->sb_start / 2;
1191 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1192 return -EINVAL;
1193 rdev->size = le64_to_cpu(sb->data_size)/2;
1194 if (le32_to_cpu(sb->chunksize))
1195 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1196
1197 if (le64_to_cpu(sb->size) > rdev->size*2)
1198 return -EINVAL;
1199 return ret;
1200 }
1201
1202 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1203 {
1204 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1205 __u64 ev1 = le64_to_cpu(sb->events);
1206
1207 rdev->raid_disk = -1;
1208 clear_bit(Faulty, &rdev->flags);
1209 clear_bit(In_sync, &rdev->flags);
1210 clear_bit(WriteMostly, &rdev->flags);
1211 clear_bit(BarriersNotsupp, &rdev->flags);
1212
1213 if (mddev->raid_disks == 0) {
1214 mddev->major_version = 1;
1215 mddev->patch_version = 0;
1216 mddev->external = 0;
1217 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1218 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1219 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1220 mddev->level = le32_to_cpu(sb->level);
1221 mddev->clevel[0] = 0;
1222 mddev->layout = le32_to_cpu(sb->layout);
1223 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1224 mddev->size = le64_to_cpu(sb->size)/2;
1225 mddev->events = ev1;
1226 mddev->bitmap_offset = 0;
1227 mddev->default_bitmap_offset = 1024 >> 9;
1228
1229 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1230 memcpy(mddev->uuid, sb->set_uuid, 16);
1231
1232 mddev->max_disks = (4096-256)/2;
1233
1234 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1235 mddev->bitmap_file == NULL )
1236 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1237
1238 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1239 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1240 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1241 mddev->new_level = le32_to_cpu(sb->new_level);
1242 mddev->new_layout = le32_to_cpu(sb->new_layout);
1243 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1244 } else {
1245 mddev->reshape_position = MaxSector;
1246 mddev->delta_disks = 0;
1247 mddev->new_level = mddev->level;
1248 mddev->new_layout = mddev->layout;
1249 mddev->new_chunk = mddev->chunk_size;
1250 }
1251
1252 } else if (mddev->pers == NULL) {
1253 /* Insist of good event counter while assembling */
1254 ++ev1;
1255 if (ev1 < mddev->events)
1256 return -EINVAL;
1257 } else if (mddev->bitmap) {
1258 /* If adding to array with a bitmap, then we can accept an
1259 * older device, but not too old.
1260 */
1261 if (ev1 < mddev->bitmap->events_cleared)
1262 return 0;
1263 } else {
1264 if (ev1 < mddev->events)
1265 /* just a hot-add of a new device, leave raid_disk at -1 */
1266 return 0;
1267 }
1268 if (mddev->level != LEVEL_MULTIPATH) {
1269 int role;
1270 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1271 switch(role) {
1272 case 0xffff: /* spare */
1273 break;
1274 case 0xfffe: /* faulty */
1275 set_bit(Faulty, &rdev->flags);
1276 break;
1277 default:
1278 if ((le32_to_cpu(sb->feature_map) &
1279 MD_FEATURE_RECOVERY_OFFSET))
1280 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1281 else
1282 set_bit(In_sync, &rdev->flags);
1283 rdev->raid_disk = role;
1284 break;
1285 }
1286 if (sb->devflags & WriteMostly1)
1287 set_bit(WriteMostly, &rdev->flags);
1288 } else /* MULTIPATH are always insync */
1289 set_bit(In_sync, &rdev->flags);
1290
1291 return 0;
1292 }
1293
1294 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1295 {
1296 struct mdp_superblock_1 *sb;
1297 mdk_rdev_t *rdev2;
1298 int max_dev, i;
1299 /* make rdev->sb match mddev and rdev data. */
1300
1301 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1302
1303 sb->feature_map = 0;
1304 sb->pad0 = 0;
1305 sb->recovery_offset = cpu_to_le64(0);
1306 memset(sb->pad1, 0, sizeof(sb->pad1));
1307 memset(sb->pad2, 0, sizeof(sb->pad2));
1308 memset(sb->pad3, 0, sizeof(sb->pad3));
1309
1310 sb->utime = cpu_to_le64((__u64)mddev->utime);
1311 sb->events = cpu_to_le64(mddev->events);
1312 if (mddev->in_sync)
1313 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1314 else
1315 sb->resync_offset = cpu_to_le64(0);
1316
1317 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1318
1319 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1320 sb->size = cpu_to_le64(mddev->size<<1);
1321
1322 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1323 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1324 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1325 }
1326
1327 if (rdev->raid_disk >= 0 &&
1328 !test_bit(In_sync, &rdev->flags) &&
1329 rdev->recovery_offset > 0) {
1330 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1331 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1332 }
1333
1334 if (mddev->reshape_position != MaxSector) {
1335 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1336 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1337 sb->new_layout = cpu_to_le32(mddev->new_layout);
1338 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1339 sb->new_level = cpu_to_le32(mddev->new_level);
1340 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1341 }
1342
1343 max_dev = 0;
1344 list_for_each_entry(rdev2, &mddev->disks, same_set)
1345 if (rdev2->desc_nr+1 > max_dev)
1346 max_dev = rdev2->desc_nr+1;
1347
1348 if (max_dev > le32_to_cpu(sb->max_dev))
1349 sb->max_dev = cpu_to_le32(max_dev);
1350 for (i=0; i<max_dev;i++)
1351 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1352
1353 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1354 i = rdev2->desc_nr;
1355 if (test_bit(Faulty, &rdev2->flags))
1356 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1357 else if (test_bit(In_sync, &rdev2->flags))
1358 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1359 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1360 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1361 else
1362 sb->dev_roles[i] = cpu_to_le16(0xffff);
1363 }
1364
1365 sb->sb_csum = calc_sb_1_csum(sb);
1366 }
1367
1368 static unsigned long long
1369 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1370 {
1371 struct mdp_superblock_1 *sb;
1372 sector_t max_sectors;
1373 if (num_sectors && num_sectors < rdev->mddev->size * 2)
1374 return 0; /* component must fit device */
1375 if (rdev->sb_start < rdev->data_offset) {
1376 /* minor versions 1 and 2; superblock before data */
1377 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1378 max_sectors -= rdev->data_offset;
1379 if (!num_sectors || num_sectors > max_sectors)
1380 num_sectors = max_sectors;
1381 } else if (rdev->mddev->bitmap_offset) {
1382 /* minor version 0 with bitmap we can't move */
1383 return 0;
1384 } else {
1385 /* minor version 0; superblock after data */
1386 sector_t sb_start;
1387 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1388 sb_start &= ~(sector_t)(4*2 - 1);
1389 max_sectors = rdev->size * 2 + sb_start - rdev->sb_start;
1390 if (!num_sectors || num_sectors > max_sectors)
1391 num_sectors = max_sectors;
1392 rdev->sb_start = sb_start;
1393 }
1394 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1395 sb->data_size = cpu_to_le64(num_sectors);
1396 sb->super_offset = rdev->sb_start;
1397 sb->sb_csum = calc_sb_1_csum(sb);
1398 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1399 rdev->sb_page);
1400 md_super_wait(rdev->mddev);
1401 return num_sectors / 2; /* kB for sysfs */
1402 }
1403
1404 static struct super_type super_types[] = {
1405 [0] = {
1406 .name = "0.90.0",
1407 .owner = THIS_MODULE,
1408 .load_super = super_90_load,
1409 .validate_super = super_90_validate,
1410 .sync_super = super_90_sync,
1411 .rdev_size_change = super_90_rdev_size_change,
1412 },
1413 [1] = {
1414 .name = "md-1",
1415 .owner = THIS_MODULE,
1416 .load_super = super_1_load,
1417 .validate_super = super_1_validate,
1418 .sync_super = super_1_sync,
1419 .rdev_size_change = super_1_rdev_size_change,
1420 },
1421 };
1422
1423 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1424 {
1425 mdk_rdev_t *rdev, *rdev2;
1426
1427 rcu_read_lock();
1428 rdev_for_each_rcu(rdev, mddev1)
1429 rdev_for_each_rcu(rdev2, mddev2)
1430 if (rdev->bdev->bd_contains ==
1431 rdev2->bdev->bd_contains) {
1432 rcu_read_unlock();
1433 return 1;
1434 }
1435 rcu_read_unlock();
1436 return 0;
1437 }
1438
1439 static LIST_HEAD(pending_raid_disks);
1440
1441 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1442 {
1443 char b[BDEVNAME_SIZE];
1444 struct kobject *ko;
1445 char *s;
1446 int err;
1447
1448 if (rdev->mddev) {
1449 MD_BUG();
1450 return -EINVAL;
1451 }
1452
1453 /* prevent duplicates */
1454 if (find_rdev(mddev, rdev->bdev->bd_dev))
1455 return -EEXIST;
1456
1457 /* make sure rdev->size exceeds mddev->size */
1458 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1459 if (mddev->pers) {
1460 /* Cannot change size, so fail
1461 * If mddev->level <= 0, then we don't care
1462 * about aligning sizes (e.g. linear)
1463 */
1464 if (mddev->level > 0)
1465 return -ENOSPC;
1466 } else
1467 mddev->size = rdev->size;
1468 }
1469
1470 /* Verify rdev->desc_nr is unique.
1471 * If it is -1, assign a free number, else
1472 * check number is not in use
1473 */
1474 if (rdev->desc_nr < 0) {
1475 int choice = 0;
1476 if (mddev->pers) choice = mddev->raid_disks;
1477 while (find_rdev_nr(mddev, choice))
1478 choice++;
1479 rdev->desc_nr = choice;
1480 } else {
1481 if (find_rdev_nr(mddev, rdev->desc_nr))
1482 return -EBUSY;
1483 }
1484 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1485 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1486 mdname(mddev), mddev->max_disks);
1487 return -EBUSY;
1488 }
1489 bdevname(rdev->bdev,b);
1490 while ( (s=strchr(b, '/')) != NULL)
1491 *s = '!';
1492
1493 rdev->mddev = mddev;
1494 printk(KERN_INFO "md: bind<%s>\n", b);
1495
1496 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1497 goto fail;
1498
1499 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1500 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1501 kobject_del(&rdev->kobj);
1502 goto fail;
1503 }
1504 rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
1505
1506 list_add_rcu(&rdev->same_set, &mddev->disks);
1507 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1508
1509 /* May as well allow recovery to be retried once */
1510 mddev->recovery_disabled = 0;
1511 return 0;
1512
1513 fail:
1514 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1515 b, mdname(mddev));
1516 return err;
1517 }
1518
1519 static void md_delayed_delete(struct work_struct *ws)
1520 {
1521 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1522 kobject_del(&rdev->kobj);
1523 kobject_put(&rdev->kobj);
1524 }
1525
1526 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1527 {
1528 char b[BDEVNAME_SIZE];
1529 if (!rdev->mddev) {
1530 MD_BUG();
1531 return;
1532 }
1533 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1534 list_del_rcu(&rdev->same_set);
1535 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1536 rdev->mddev = NULL;
1537 sysfs_remove_link(&rdev->kobj, "block");
1538 sysfs_put(rdev->sysfs_state);
1539 rdev->sysfs_state = NULL;
1540 /* We need to delay this, otherwise we can deadlock when
1541 * writing to 'remove' to "dev/state". We also need
1542 * to delay it due to rcu usage.
1543 */
1544 synchronize_rcu();
1545 INIT_WORK(&rdev->del_work, md_delayed_delete);
1546 kobject_get(&rdev->kobj);
1547 schedule_work(&rdev->del_work);
1548 }
1549
1550 /*
1551 * prevent the device from being mounted, repartitioned or
1552 * otherwise reused by a RAID array (or any other kernel
1553 * subsystem), by bd_claiming the device.
1554 */
1555 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1556 {
1557 int err = 0;
1558 struct block_device *bdev;
1559 char b[BDEVNAME_SIZE];
1560
1561 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1562 if (IS_ERR(bdev)) {
1563 printk(KERN_ERR "md: could not open %s.\n",
1564 __bdevname(dev, b));
1565 return PTR_ERR(bdev);
1566 }
1567 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1568 if (err) {
1569 printk(KERN_ERR "md: could not bd_claim %s.\n",
1570 bdevname(bdev, b));
1571 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1572 return err;
1573 }
1574 if (!shared)
1575 set_bit(AllReserved, &rdev->flags);
1576 rdev->bdev = bdev;
1577 return err;
1578 }
1579
1580 static void unlock_rdev(mdk_rdev_t *rdev)
1581 {
1582 struct block_device *bdev = rdev->bdev;
1583 rdev->bdev = NULL;
1584 if (!bdev)
1585 MD_BUG();
1586 bd_release(bdev);
1587 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1588 }
1589
1590 void md_autodetect_dev(dev_t dev);
1591
1592 static void export_rdev(mdk_rdev_t * rdev)
1593 {
1594 char b[BDEVNAME_SIZE];
1595 printk(KERN_INFO "md: export_rdev(%s)\n",
1596 bdevname(rdev->bdev,b));
1597 if (rdev->mddev)
1598 MD_BUG();
1599 free_disk_sb(rdev);
1600 #ifndef MODULE
1601 if (test_bit(AutoDetected, &rdev->flags))
1602 md_autodetect_dev(rdev->bdev->bd_dev);
1603 #endif
1604 unlock_rdev(rdev);
1605 kobject_put(&rdev->kobj);
1606 }
1607
1608 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1609 {
1610 unbind_rdev_from_array(rdev);
1611 export_rdev(rdev);
1612 }
1613
1614 static void export_array(mddev_t *mddev)
1615 {
1616 mdk_rdev_t *rdev, *tmp;
1617
1618 rdev_for_each(rdev, tmp, mddev) {
1619 if (!rdev->mddev) {
1620 MD_BUG();
1621 continue;
1622 }
1623 kick_rdev_from_array(rdev);
1624 }
1625 if (!list_empty(&mddev->disks))
1626 MD_BUG();
1627 mddev->raid_disks = 0;
1628 mddev->major_version = 0;
1629 }
1630
1631 static void print_desc(mdp_disk_t *desc)
1632 {
1633 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1634 desc->major,desc->minor,desc->raid_disk,desc->state);
1635 }
1636
1637 static void print_sb_90(mdp_super_t *sb)
1638 {
1639 int i;
1640
1641 printk(KERN_INFO
1642 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1643 sb->major_version, sb->minor_version, sb->patch_version,
1644 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1645 sb->ctime);
1646 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1647 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1648 sb->md_minor, sb->layout, sb->chunk_size);
1649 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1650 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1651 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1652 sb->failed_disks, sb->spare_disks,
1653 sb->sb_csum, (unsigned long)sb->events_lo);
1654
1655 printk(KERN_INFO);
1656 for (i = 0; i < MD_SB_DISKS; i++) {
1657 mdp_disk_t *desc;
1658
1659 desc = sb->disks + i;
1660 if (desc->number || desc->major || desc->minor ||
1661 desc->raid_disk || (desc->state && (desc->state != 4))) {
1662 printk(" D %2d: ", i);
1663 print_desc(desc);
1664 }
1665 }
1666 printk(KERN_INFO "md: THIS: ");
1667 print_desc(&sb->this_disk);
1668 }
1669
1670 static void print_sb_1(struct mdp_superblock_1 *sb)
1671 {
1672 __u8 *uuid;
1673
1674 uuid = sb->set_uuid;
1675 printk(KERN_INFO "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
1676 ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
1677 KERN_INFO "md: Name: \"%s\" CT:%llu\n",
1678 le32_to_cpu(sb->major_version),
1679 le32_to_cpu(sb->feature_map),
1680 uuid[0], uuid[1], uuid[2], uuid[3],
1681 uuid[4], uuid[5], uuid[6], uuid[7],
1682 uuid[8], uuid[9], uuid[10], uuid[11],
1683 uuid[12], uuid[13], uuid[14], uuid[15],
1684 sb->set_name,
1685 (unsigned long long)le64_to_cpu(sb->ctime)
1686 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1687
1688 uuid = sb->device_uuid;
1689 printk(KERN_INFO "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1690 " RO:%llu\n"
1691 KERN_INFO "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
1692 ":%02x%02x%02x%02x%02x%02x\n"
1693 KERN_INFO "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1694 KERN_INFO "md: (MaxDev:%u) \n",
1695 le32_to_cpu(sb->level),
1696 (unsigned long long)le64_to_cpu(sb->size),
1697 le32_to_cpu(sb->raid_disks),
1698 le32_to_cpu(sb->layout),
1699 le32_to_cpu(sb->chunksize),
1700 (unsigned long long)le64_to_cpu(sb->data_offset),
1701 (unsigned long long)le64_to_cpu(sb->data_size),
1702 (unsigned long long)le64_to_cpu(sb->super_offset),
1703 (unsigned long long)le64_to_cpu(sb->recovery_offset),
1704 le32_to_cpu(sb->dev_number),
1705 uuid[0], uuid[1], uuid[2], uuid[3],
1706 uuid[4], uuid[5], uuid[6], uuid[7],
1707 uuid[8], uuid[9], uuid[10], uuid[11],
1708 uuid[12], uuid[13], uuid[14], uuid[15],
1709 sb->devflags,
1710 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
1711 (unsigned long long)le64_to_cpu(sb->events),
1712 (unsigned long long)le64_to_cpu(sb->resync_offset),
1713 le32_to_cpu(sb->sb_csum),
1714 le32_to_cpu(sb->max_dev)
1715 );
1716 }
1717
1718 static void print_rdev(mdk_rdev_t *rdev, int major_version)
1719 {
1720 char b[BDEVNAME_SIZE];
1721 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1722 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1723 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1724 rdev->desc_nr);
1725 if (rdev->sb_loaded) {
1726 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
1727 switch (major_version) {
1728 case 0:
1729 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
1730 break;
1731 case 1:
1732 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
1733 break;
1734 }
1735 } else
1736 printk(KERN_INFO "md: no rdev superblock!\n");
1737 }
1738
1739 static void md_print_devices(void)
1740 {
1741 struct list_head *tmp;
1742 mdk_rdev_t *rdev;
1743 mddev_t *mddev;
1744 char b[BDEVNAME_SIZE];
1745
1746 printk("\n");
1747 printk("md: **********************************\n");
1748 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1749 printk("md: **********************************\n");
1750 for_each_mddev(mddev, tmp) {
1751
1752 if (mddev->bitmap)
1753 bitmap_print_sb(mddev->bitmap);
1754 else
1755 printk("%s: ", mdname(mddev));
1756 list_for_each_entry(rdev, &mddev->disks, same_set)
1757 printk("<%s>", bdevname(rdev->bdev,b));
1758 printk("\n");
1759
1760 list_for_each_entry(rdev, &mddev->disks, same_set)
1761 print_rdev(rdev, mddev->major_version);
1762 }
1763 printk("md: **********************************\n");
1764 printk("\n");
1765 }
1766
1767
1768 static void sync_sbs(mddev_t * mddev, int nospares)
1769 {
1770 /* Update each superblock (in-memory image), but
1771 * if we are allowed to, skip spares which already
1772 * have the right event counter, or have one earlier
1773 * (which would mean they aren't being marked as dirty
1774 * with the rest of the array)
1775 */
1776 mdk_rdev_t *rdev;
1777
1778 list_for_each_entry(rdev, &mddev->disks, same_set) {
1779 if (rdev->sb_events == mddev->events ||
1780 (nospares &&
1781 rdev->raid_disk < 0 &&
1782 (rdev->sb_events&1)==0 &&
1783 rdev->sb_events+1 == mddev->events)) {
1784 /* Don't update this superblock */
1785 rdev->sb_loaded = 2;
1786 } else {
1787 super_types[mddev->major_version].
1788 sync_super(mddev, rdev);
1789 rdev->sb_loaded = 1;
1790 }
1791 }
1792 }
1793
1794 static void md_update_sb(mddev_t * mddev, int force_change)
1795 {
1796 mdk_rdev_t *rdev;
1797 int sync_req;
1798 int nospares = 0;
1799
1800 if (mddev->external)
1801 return;
1802 repeat:
1803 spin_lock_irq(&mddev->write_lock);
1804
1805 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1806 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1807 force_change = 1;
1808 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1809 /* just a clean<-> dirty transition, possibly leave spares alone,
1810 * though if events isn't the right even/odd, we will have to do
1811 * spares after all
1812 */
1813 nospares = 1;
1814 if (force_change)
1815 nospares = 0;
1816 if (mddev->degraded)
1817 /* If the array is degraded, then skipping spares is both
1818 * dangerous and fairly pointless.
1819 * Dangerous because a device that was removed from the array
1820 * might have a event_count that still looks up-to-date,
1821 * so it can be re-added without a resync.
1822 * Pointless because if there are any spares to skip,
1823 * then a recovery will happen and soon that array won't
1824 * be degraded any more and the spare can go back to sleep then.
1825 */
1826 nospares = 0;
1827
1828 sync_req = mddev->in_sync;
1829 mddev->utime = get_seconds();
1830
1831 /* If this is just a dirty<->clean transition, and the array is clean
1832 * and 'events' is odd, we can roll back to the previous clean state */
1833 if (nospares
1834 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1835 && (mddev->events & 1)
1836 && mddev->events != 1)
1837 mddev->events--;
1838 else {
1839 /* otherwise we have to go forward and ... */
1840 mddev->events ++;
1841 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1842 /* .. if the array isn't clean, insist on an odd 'events' */
1843 if ((mddev->events&1)==0) {
1844 mddev->events++;
1845 nospares = 0;
1846 }
1847 } else {
1848 /* otherwise insist on an even 'events' (for clean states) */
1849 if ((mddev->events&1)) {
1850 mddev->events++;
1851 nospares = 0;
1852 }
1853 }
1854 }
1855
1856 if (!mddev->events) {
1857 /*
1858 * oops, this 64-bit counter should never wrap.
1859 * Either we are in around ~1 trillion A.C., assuming
1860 * 1 reboot per second, or we have a bug:
1861 */
1862 MD_BUG();
1863 mddev->events --;
1864 }
1865
1866 /*
1867 * do not write anything to disk if using
1868 * nonpersistent superblocks
1869 */
1870 if (!mddev->persistent) {
1871 if (!mddev->external)
1872 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1873
1874 spin_unlock_irq(&mddev->write_lock);
1875 wake_up(&mddev->sb_wait);
1876 return;
1877 }
1878 sync_sbs(mddev, nospares);
1879 spin_unlock_irq(&mddev->write_lock);
1880
1881 dprintk(KERN_INFO
1882 "md: updating %s RAID superblock on device (in sync %d)\n",
1883 mdname(mddev),mddev->in_sync);
1884
1885 bitmap_update_sb(mddev->bitmap);
1886 list_for_each_entry(rdev, &mddev->disks, same_set) {
1887 char b[BDEVNAME_SIZE];
1888 dprintk(KERN_INFO "md: ");
1889 if (rdev->sb_loaded != 1)
1890 continue; /* no noise on spare devices */
1891 if (test_bit(Faulty, &rdev->flags))
1892 dprintk("(skipping faulty ");
1893
1894 dprintk("%s ", bdevname(rdev->bdev,b));
1895 if (!test_bit(Faulty, &rdev->flags)) {
1896 md_super_write(mddev,rdev,
1897 rdev->sb_start, rdev->sb_size,
1898 rdev->sb_page);
1899 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1900 bdevname(rdev->bdev,b),
1901 (unsigned long long)rdev->sb_start);
1902 rdev->sb_events = mddev->events;
1903
1904 } else
1905 dprintk(")\n");
1906 if (mddev->level == LEVEL_MULTIPATH)
1907 /* only need to write one superblock... */
1908 break;
1909 }
1910 md_super_wait(mddev);
1911 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1912
1913 spin_lock_irq(&mddev->write_lock);
1914 if (mddev->in_sync != sync_req ||
1915 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1916 /* have to write it out again */
1917 spin_unlock_irq(&mddev->write_lock);
1918 goto repeat;
1919 }
1920 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1921 spin_unlock_irq(&mddev->write_lock);
1922 wake_up(&mddev->sb_wait);
1923
1924 }
1925
1926 /* words written to sysfs files may, or may not, be \n terminated.
1927 * We want to accept with case. For this we use cmd_match.
1928 */
1929 static int cmd_match(const char *cmd, const char *str)
1930 {
1931 /* See if cmd, written into a sysfs file, matches
1932 * str. They must either be the same, or cmd can
1933 * have a trailing newline
1934 */
1935 while (*cmd && *str && *cmd == *str) {
1936 cmd++;
1937 str++;
1938 }
1939 if (*cmd == '\n')
1940 cmd++;
1941 if (*str || *cmd)
1942 return 0;
1943 return 1;
1944 }
1945
1946 struct rdev_sysfs_entry {
1947 struct attribute attr;
1948 ssize_t (*show)(mdk_rdev_t *, char *);
1949 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1950 };
1951
1952 static ssize_t
1953 state_show(mdk_rdev_t *rdev, char *page)
1954 {
1955 char *sep = "";
1956 size_t len = 0;
1957
1958 if (test_bit(Faulty, &rdev->flags)) {
1959 len+= sprintf(page+len, "%sfaulty",sep);
1960 sep = ",";
1961 }
1962 if (test_bit(In_sync, &rdev->flags)) {
1963 len += sprintf(page+len, "%sin_sync",sep);
1964 sep = ",";
1965 }
1966 if (test_bit(WriteMostly, &rdev->flags)) {
1967 len += sprintf(page+len, "%swrite_mostly",sep);
1968 sep = ",";
1969 }
1970 if (test_bit(Blocked, &rdev->flags)) {
1971 len += sprintf(page+len, "%sblocked", sep);
1972 sep = ",";
1973 }
1974 if (!test_bit(Faulty, &rdev->flags) &&
1975 !test_bit(In_sync, &rdev->flags)) {
1976 len += sprintf(page+len, "%sspare", sep);
1977 sep = ",";
1978 }
1979 return len+sprintf(page+len, "\n");
1980 }
1981
1982 static ssize_t
1983 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1984 {
1985 /* can write
1986 * faulty - simulates and error
1987 * remove - disconnects the device
1988 * writemostly - sets write_mostly
1989 * -writemostly - clears write_mostly
1990 * blocked - sets the Blocked flag
1991 * -blocked - clears the Blocked flag
1992 */
1993 int err = -EINVAL;
1994 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1995 md_error(rdev->mddev, rdev);
1996 err = 0;
1997 } else if (cmd_match(buf, "remove")) {
1998 if (rdev->raid_disk >= 0)
1999 err = -EBUSY;
2000 else {
2001 mddev_t *mddev = rdev->mddev;
2002 kick_rdev_from_array(rdev);
2003 if (mddev->pers)
2004 md_update_sb(mddev, 1);
2005 md_new_event(mddev);
2006 err = 0;
2007 }
2008 } else if (cmd_match(buf, "writemostly")) {
2009 set_bit(WriteMostly, &rdev->flags);
2010 err = 0;
2011 } else if (cmd_match(buf, "-writemostly")) {
2012 clear_bit(WriteMostly, &rdev->flags);
2013 err = 0;
2014 } else if (cmd_match(buf, "blocked")) {
2015 set_bit(Blocked, &rdev->flags);
2016 err = 0;
2017 } else if (cmd_match(buf, "-blocked")) {
2018 clear_bit(Blocked, &rdev->flags);
2019 wake_up(&rdev->blocked_wait);
2020 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2021 md_wakeup_thread(rdev->mddev->thread);
2022
2023 err = 0;
2024 }
2025 if (!err && rdev->sysfs_state)
2026 sysfs_notify_dirent(rdev->sysfs_state);
2027 return err ? err : len;
2028 }
2029 static struct rdev_sysfs_entry rdev_state =
2030 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2031
2032 static ssize_t
2033 errors_show(mdk_rdev_t *rdev, char *page)
2034 {
2035 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2036 }
2037
2038 static ssize_t
2039 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2040 {
2041 char *e;
2042 unsigned long n = simple_strtoul(buf, &e, 10);
2043 if (*buf && (*e == 0 || *e == '\n')) {
2044 atomic_set(&rdev->corrected_errors, n);
2045 return len;
2046 }
2047 return -EINVAL;
2048 }
2049 static struct rdev_sysfs_entry rdev_errors =
2050 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2051
2052 static ssize_t
2053 slot_show(mdk_rdev_t *rdev, char *page)
2054 {
2055 if (rdev->raid_disk < 0)
2056 return sprintf(page, "none\n");
2057 else
2058 return sprintf(page, "%d\n", rdev->raid_disk);
2059 }
2060
2061 static ssize_t
2062 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2063 {
2064 char *e;
2065 int err;
2066 char nm[20];
2067 int slot = simple_strtoul(buf, &e, 10);
2068 if (strncmp(buf, "none", 4)==0)
2069 slot = -1;
2070 else if (e==buf || (*e && *e!= '\n'))
2071 return -EINVAL;
2072 if (rdev->mddev->pers && slot == -1) {
2073 /* Setting 'slot' on an active array requires also
2074 * updating the 'rd%d' link, and communicating
2075 * with the personality with ->hot_*_disk.
2076 * For now we only support removing
2077 * failed/spare devices. This normally happens automatically,
2078 * but not when the metadata is externally managed.
2079 */
2080 if (rdev->raid_disk == -1)
2081 return -EEXIST;
2082 /* personality does all needed checks */
2083 if (rdev->mddev->pers->hot_add_disk == NULL)
2084 return -EINVAL;
2085 err = rdev->mddev->pers->
2086 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2087 if (err)
2088 return err;
2089 sprintf(nm, "rd%d", rdev->raid_disk);
2090 sysfs_remove_link(&rdev->mddev->kobj, nm);
2091 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2092 md_wakeup_thread(rdev->mddev->thread);
2093 } else if (rdev->mddev->pers) {
2094 mdk_rdev_t *rdev2;
2095 /* Activating a spare .. or possibly reactivating
2096 * if we every get bitmaps working here.
2097 */
2098
2099 if (rdev->raid_disk != -1)
2100 return -EBUSY;
2101
2102 if (rdev->mddev->pers->hot_add_disk == NULL)
2103 return -EINVAL;
2104
2105 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2106 if (rdev2->raid_disk == slot)
2107 return -EEXIST;
2108
2109 rdev->raid_disk = slot;
2110 if (test_bit(In_sync, &rdev->flags))
2111 rdev->saved_raid_disk = slot;
2112 else
2113 rdev->saved_raid_disk = -1;
2114 err = rdev->mddev->pers->
2115 hot_add_disk(rdev->mddev, rdev);
2116 if (err) {
2117 rdev->raid_disk = -1;
2118 return err;
2119 } else
2120 sysfs_notify_dirent(rdev->sysfs_state);
2121 sprintf(nm, "rd%d", rdev->raid_disk);
2122 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2123 printk(KERN_WARNING
2124 "md: cannot register "
2125 "%s for %s\n",
2126 nm, mdname(rdev->mddev));
2127
2128 /* don't wakeup anyone, leave that to userspace. */
2129 } else {
2130 if (slot >= rdev->mddev->raid_disks)
2131 return -ENOSPC;
2132 rdev->raid_disk = slot;
2133 /* assume it is working */
2134 clear_bit(Faulty, &rdev->flags);
2135 clear_bit(WriteMostly, &rdev->flags);
2136 set_bit(In_sync, &rdev->flags);
2137 sysfs_notify_dirent(rdev->sysfs_state);
2138 }
2139 return len;
2140 }
2141
2142
2143 static struct rdev_sysfs_entry rdev_slot =
2144 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2145
2146 static ssize_t
2147 offset_show(mdk_rdev_t *rdev, char *page)
2148 {
2149 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2150 }
2151
2152 static ssize_t
2153 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2154 {
2155 char *e;
2156 unsigned long long offset = simple_strtoull(buf, &e, 10);
2157 if (e==buf || (*e && *e != '\n'))
2158 return -EINVAL;
2159 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2160 return -EBUSY;
2161 if (rdev->size && rdev->mddev->external)
2162 /* Must set offset before size, so overlap checks
2163 * can be sane */
2164 return -EBUSY;
2165 rdev->data_offset = offset;
2166 return len;
2167 }
2168
2169 static struct rdev_sysfs_entry rdev_offset =
2170 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2171
2172 static ssize_t
2173 rdev_size_show(mdk_rdev_t *rdev, char *page)
2174 {
2175 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
2176 }
2177
2178 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2179 {
2180 /* check if two start/length pairs overlap */
2181 if (s1+l1 <= s2)
2182 return 0;
2183 if (s2+l2 <= s1)
2184 return 0;
2185 return 1;
2186 }
2187
2188 static ssize_t
2189 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2190 {
2191 unsigned long long size;
2192 unsigned long long oldsize = rdev->size;
2193 mddev_t *my_mddev = rdev->mddev;
2194
2195 if (strict_strtoull(buf, 10, &size) < 0)
2196 return -EINVAL;
2197 if (my_mddev->pers && rdev->raid_disk >= 0) {
2198 if (my_mddev->persistent) {
2199 size = super_types[my_mddev->major_version].
2200 rdev_size_change(rdev, size * 2);
2201 if (!size)
2202 return -EBUSY;
2203 } else if (!size) {
2204 size = (rdev->bdev->bd_inode->i_size >> 10);
2205 size -= rdev->data_offset/2;
2206 }
2207 }
2208 if (size < my_mddev->size)
2209 return -EINVAL; /* component must fit device */
2210
2211 rdev->size = size;
2212 if (size > oldsize && my_mddev->external) {
2213 /* need to check that all other rdevs with the same ->bdev
2214 * do not overlap. We need to unlock the mddev to avoid
2215 * a deadlock. We have already changed rdev->size, and if
2216 * we have to change it back, we will have the lock again.
2217 */
2218 mddev_t *mddev;
2219 int overlap = 0;
2220 struct list_head *tmp;
2221
2222 mddev_unlock(my_mddev);
2223 for_each_mddev(mddev, tmp) {
2224 mdk_rdev_t *rdev2;
2225
2226 mddev_lock(mddev);
2227 list_for_each_entry(rdev2, &mddev->disks, same_set)
2228 if (test_bit(AllReserved, &rdev2->flags) ||
2229 (rdev->bdev == rdev2->bdev &&
2230 rdev != rdev2 &&
2231 overlaps(rdev->data_offset, rdev->size * 2,
2232 rdev2->data_offset,
2233 rdev2->size * 2))) {
2234 overlap = 1;
2235 break;
2236 }
2237 mddev_unlock(mddev);
2238 if (overlap) {
2239 mddev_put(mddev);
2240 break;
2241 }
2242 }
2243 mddev_lock(my_mddev);
2244 if (overlap) {
2245 /* Someone else could have slipped in a size
2246 * change here, but doing so is just silly.
2247 * We put oldsize back because we *know* it is
2248 * safe, and trust userspace not to race with
2249 * itself
2250 */
2251 rdev->size = oldsize;
2252 return -EBUSY;
2253 }
2254 }
2255 return len;
2256 }
2257
2258 static struct rdev_sysfs_entry rdev_size =
2259 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2260
2261 static struct attribute *rdev_default_attrs[] = {
2262 &rdev_state.attr,
2263 &rdev_errors.attr,
2264 &rdev_slot.attr,
2265 &rdev_offset.attr,
2266 &rdev_size.attr,
2267 NULL,
2268 };
2269 static ssize_t
2270 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2271 {
2272 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2273 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2274 mddev_t *mddev = rdev->mddev;
2275 ssize_t rv;
2276
2277 if (!entry->show)
2278 return -EIO;
2279
2280 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2281 if (!rv) {
2282 if (rdev->mddev == NULL)
2283 rv = -EBUSY;
2284 else
2285 rv = entry->show(rdev, page);
2286 mddev_unlock(mddev);
2287 }
2288 return rv;
2289 }
2290
2291 static ssize_t
2292 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2293 const char *page, size_t length)
2294 {
2295 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2296 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2297 ssize_t rv;
2298 mddev_t *mddev = rdev->mddev;
2299
2300 if (!entry->store)
2301 return -EIO;
2302 if (!capable(CAP_SYS_ADMIN))
2303 return -EACCES;
2304 rv = mddev ? mddev_lock(mddev): -EBUSY;
2305 if (!rv) {
2306 if (rdev->mddev == NULL)
2307 rv = -EBUSY;
2308 else
2309 rv = entry->store(rdev, page, length);
2310 mddev_unlock(mddev);
2311 }
2312 return rv;
2313 }
2314
2315 static void rdev_free(struct kobject *ko)
2316 {
2317 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2318 kfree(rdev);
2319 }
2320 static struct sysfs_ops rdev_sysfs_ops = {
2321 .show = rdev_attr_show,
2322 .store = rdev_attr_store,
2323 };
2324 static struct kobj_type rdev_ktype = {
2325 .release = rdev_free,
2326 .sysfs_ops = &rdev_sysfs_ops,
2327 .default_attrs = rdev_default_attrs,
2328 };
2329
2330 /*
2331 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2332 *
2333 * mark the device faulty if:
2334 *
2335 * - the device is nonexistent (zero size)
2336 * - the device has no valid superblock
2337 *
2338 * a faulty rdev _never_ has rdev->sb set.
2339 */
2340 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2341 {
2342 char b[BDEVNAME_SIZE];
2343 int err;
2344 mdk_rdev_t *rdev;
2345 sector_t size;
2346
2347 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2348 if (!rdev) {
2349 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2350 return ERR_PTR(-ENOMEM);
2351 }
2352
2353 if ((err = alloc_disk_sb(rdev)))
2354 goto abort_free;
2355
2356 err = lock_rdev(rdev, newdev, super_format == -2);
2357 if (err)
2358 goto abort_free;
2359
2360 kobject_init(&rdev->kobj, &rdev_ktype);
2361
2362 rdev->desc_nr = -1;
2363 rdev->saved_raid_disk = -1;
2364 rdev->raid_disk = -1;
2365 rdev->flags = 0;
2366 rdev->data_offset = 0;
2367 rdev->sb_events = 0;
2368 atomic_set(&rdev->nr_pending, 0);
2369 atomic_set(&rdev->read_errors, 0);
2370 atomic_set(&rdev->corrected_errors, 0);
2371
2372 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2373 if (!size) {
2374 printk(KERN_WARNING
2375 "md: %s has zero or unknown size, marking faulty!\n",
2376 bdevname(rdev->bdev,b));
2377 err = -EINVAL;
2378 goto abort_free;
2379 }
2380
2381 if (super_format >= 0) {
2382 err = super_types[super_format].
2383 load_super(rdev, NULL, super_minor);
2384 if (err == -EINVAL) {
2385 printk(KERN_WARNING
2386 "md: %s does not have a valid v%d.%d "
2387 "superblock, not importing!\n",
2388 bdevname(rdev->bdev,b),
2389 super_format, super_minor);
2390 goto abort_free;
2391 }
2392 if (err < 0) {
2393 printk(KERN_WARNING
2394 "md: could not read %s's sb, not importing!\n",
2395 bdevname(rdev->bdev,b));
2396 goto abort_free;
2397 }
2398 }
2399
2400 INIT_LIST_HEAD(&rdev->same_set);
2401 init_waitqueue_head(&rdev->blocked_wait);
2402
2403 return rdev;
2404
2405 abort_free:
2406 if (rdev->sb_page) {
2407 if (rdev->bdev)
2408 unlock_rdev(rdev);
2409 free_disk_sb(rdev);
2410 }
2411 kfree(rdev);
2412 return ERR_PTR(err);
2413 }
2414
2415 /*
2416 * Check a full RAID array for plausibility
2417 */
2418
2419
2420 static void analyze_sbs(mddev_t * mddev)
2421 {
2422 int i;
2423 mdk_rdev_t *rdev, *freshest, *tmp;
2424 char b[BDEVNAME_SIZE];
2425
2426 freshest = NULL;
2427 rdev_for_each(rdev, tmp, mddev)
2428 switch (super_types[mddev->major_version].
2429 load_super(rdev, freshest, mddev->minor_version)) {
2430 case 1:
2431 freshest = rdev;
2432 break;
2433 case 0:
2434 break;
2435 default:
2436 printk( KERN_ERR \
2437 "md: fatal superblock inconsistency in %s"
2438 " -- removing from array\n",
2439 bdevname(rdev->bdev,b));
2440 kick_rdev_from_array(rdev);
2441 }
2442
2443
2444 super_types[mddev->major_version].
2445 validate_super(mddev, freshest);
2446
2447 i = 0;
2448 rdev_for_each(rdev, tmp, mddev) {
2449 if (rdev->desc_nr >= mddev->max_disks ||
2450 i > mddev->max_disks) {
2451 printk(KERN_WARNING
2452 "md: %s: %s: only %d devices permitted\n",
2453 mdname(mddev), bdevname(rdev->bdev, b),
2454 mddev->max_disks);
2455 kick_rdev_from_array(rdev);
2456 continue;
2457 }
2458 if (rdev != freshest)
2459 if (super_types[mddev->major_version].
2460 validate_super(mddev, rdev)) {
2461 printk(KERN_WARNING "md: kicking non-fresh %s"
2462 " from array!\n",
2463 bdevname(rdev->bdev,b));
2464 kick_rdev_from_array(rdev);
2465 continue;
2466 }
2467 if (mddev->level == LEVEL_MULTIPATH) {
2468 rdev->desc_nr = i++;
2469 rdev->raid_disk = rdev->desc_nr;
2470 set_bit(In_sync, &rdev->flags);
2471 } else if (rdev->raid_disk >= mddev->raid_disks) {
2472 rdev->raid_disk = -1;
2473 clear_bit(In_sync, &rdev->flags);
2474 }
2475 }
2476
2477
2478
2479 if (mddev->recovery_cp != MaxSector &&
2480 mddev->level >= 1)
2481 printk(KERN_ERR "md: %s: raid array is not clean"
2482 " -- starting background reconstruction\n",
2483 mdname(mddev));
2484
2485 }
2486
2487 static void md_safemode_timeout(unsigned long data);
2488
2489 static ssize_t
2490 safe_delay_show(mddev_t *mddev, char *page)
2491 {
2492 int msec = (mddev->safemode_delay*1000)/HZ;
2493 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2494 }
2495 static ssize_t
2496 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2497 {
2498 int scale=1;
2499 int dot=0;
2500 int i;
2501 unsigned long msec;
2502 char buf[30];
2503
2504 /* remove a period, and count digits after it */
2505 if (len >= sizeof(buf))
2506 return -EINVAL;
2507 strlcpy(buf, cbuf, sizeof(buf));
2508 for (i=0; i<len; i++) {
2509 if (dot) {
2510 if (isdigit(buf[i])) {
2511 buf[i-1] = buf[i];
2512 scale *= 10;
2513 }
2514 buf[i] = 0;
2515 } else if (buf[i] == '.') {
2516 dot=1;
2517 buf[i] = 0;
2518 }
2519 }
2520 if (strict_strtoul(buf, 10, &msec) < 0)
2521 return -EINVAL;
2522 msec = (msec * 1000) / scale;
2523 if (msec == 0)
2524 mddev->safemode_delay = 0;
2525 else {
2526 unsigned long old_delay = mddev->safemode_delay;
2527 mddev->safemode_delay = (msec*HZ)/1000;
2528 if (mddev->safemode_delay == 0)
2529 mddev->safemode_delay = 1;
2530 if (mddev->safemode_delay < old_delay)
2531 md_safemode_timeout((unsigned long)mddev);
2532 }
2533 return len;
2534 }
2535 static struct md_sysfs_entry md_safe_delay =
2536 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2537
2538 static ssize_t
2539 level_show(mddev_t *mddev, char *page)
2540 {
2541 struct mdk_personality *p = mddev->pers;
2542 if (p)
2543 return sprintf(page, "%s\n", p->name);
2544 else if (mddev->clevel[0])
2545 return sprintf(page, "%s\n", mddev->clevel);
2546 else if (mddev->level != LEVEL_NONE)
2547 return sprintf(page, "%d\n", mddev->level);
2548 else
2549 return 0;
2550 }
2551
2552 static ssize_t
2553 level_store(mddev_t *mddev, const char *buf, size_t len)
2554 {
2555 ssize_t rv = len;
2556 if (mddev->pers)
2557 return -EBUSY;
2558 if (len == 0)
2559 return 0;
2560 if (len >= sizeof(mddev->clevel))
2561 return -ENOSPC;
2562 strncpy(mddev->clevel, buf, len);
2563 if (mddev->clevel[len-1] == '\n')
2564 len--;
2565 mddev->clevel[len] = 0;
2566 mddev->level = LEVEL_NONE;
2567 return rv;
2568 }
2569
2570 static struct md_sysfs_entry md_level =
2571 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2572
2573
2574 static ssize_t
2575 layout_show(mddev_t *mddev, char *page)
2576 {
2577 /* just a number, not meaningful for all levels */
2578 if (mddev->reshape_position != MaxSector &&
2579 mddev->layout != mddev->new_layout)
2580 return sprintf(page, "%d (%d)\n",
2581 mddev->new_layout, mddev->layout);
2582 return sprintf(page, "%d\n", mddev->layout);
2583 }
2584
2585 static ssize_t
2586 layout_store(mddev_t *mddev, const char *buf, size_t len)
2587 {
2588 char *e;
2589 unsigned long n = simple_strtoul(buf, &e, 10);
2590
2591 if (!*buf || (*e && *e != '\n'))
2592 return -EINVAL;
2593
2594 if (mddev->pers)
2595 return -EBUSY;
2596 if (mddev->reshape_position != MaxSector)
2597 mddev->new_layout = n;
2598 else
2599 mddev->layout = n;
2600 return len;
2601 }
2602 static struct md_sysfs_entry md_layout =
2603 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2604
2605
2606 static ssize_t
2607 raid_disks_show(mddev_t *mddev, char *page)
2608 {
2609 if (mddev->raid_disks == 0)
2610 return 0;
2611 if (mddev->reshape_position != MaxSector &&
2612 mddev->delta_disks != 0)
2613 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2614 mddev->raid_disks - mddev->delta_disks);
2615 return sprintf(page, "%d\n", mddev->raid_disks);
2616 }
2617
2618 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2619
2620 static ssize_t
2621 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2622 {
2623 char *e;
2624 int rv = 0;
2625 unsigned long n = simple_strtoul(buf, &e, 10);
2626
2627 if (!*buf || (*e && *e != '\n'))
2628 return -EINVAL;
2629
2630 if (mddev->pers)
2631 rv = update_raid_disks(mddev, n);
2632 else if (mddev->reshape_position != MaxSector) {
2633 int olddisks = mddev->raid_disks - mddev->delta_disks;
2634 mddev->delta_disks = n - olddisks;
2635 mddev->raid_disks = n;
2636 } else
2637 mddev->raid_disks = n;
2638 return rv ? rv : len;
2639 }
2640 static struct md_sysfs_entry md_raid_disks =
2641 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2642
2643 static ssize_t
2644 chunk_size_show(mddev_t *mddev, char *page)
2645 {
2646 if (mddev->reshape_position != MaxSector &&
2647 mddev->chunk_size != mddev->new_chunk)
2648 return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2649 mddev->chunk_size);
2650 return sprintf(page, "%d\n", mddev->chunk_size);
2651 }
2652
2653 static ssize_t
2654 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2655 {
2656 /* can only set chunk_size if array is not yet active */
2657 char *e;
2658 unsigned long n = simple_strtoul(buf, &e, 10);
2659
2660 if (!*buf || (*e && *e != '\n'))
2661 return -EINVAL;
2662
2663 if (mddev->pers)
2664 return -EBUSY;
2665 else if (mddev->reshape_position != MaxSector)
2666 mddev->new_chunk = n;
2667 else
2668 mddev->chunk_size = n;
2669 return len;
2670 }
2671 static struct md_sysfs_entry md_chunk_size =
2672 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2673
2674 static ssize_t
2675 resync_start_show(mddev_t *mddev, char *page)
2676 {
2677 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2678 }
2679
2680 static ssize_t
2681 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2682 {
2683 char *e;
2684 unsigned long long n = simple_strtoull(buf, &e, 10);
2685
2686 if (mddev->pers)
2687 return -EBUSY;
2688 if (!*buf || (*e && *e != '\n'))
2689 return -EINVAL;
2690
2691 mddev->recovery_cp = n;
2692 return len;
2693 }
2694 static struct md_sysfs_entry md_resync_start =
2695 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2696
2697 /*
2698 * The array state can be:
2699 *
2700 * clear
2701 * No devices, no size, no level
2702 * Equivalent to STOP_ARRAY ioctl
2703 * inactive
2704 * May have some settings, but array is not active
2705 * all IO results in error
2706 * When written, doesn't tear down array, but just stops it
2707 * suspended (not supported yet)
2708 * All IO requests will block. The array can be reconfigured.
2709 * Writing this, if accepted, will block until array is quiescent
2710 * readonly
2711 * no resync can happen. no superblocks get written.
2712 * write requests fail
2713 * read-auto
2714 * like readonly, but behaves like 'clean' on a write request.
2715 *
2716 * clean - no pending writes, but otherwise active.
2717 * When written to inactive array, starts without resync
2718 * If a write request arrives then
2719 * if metadata is known, mark 'dirty' and switch to 'active'.
2720 * if not known, block and switch to write-pending
2721 * If written to an active array that has pending writes, then fails.
2722 * active
2723 * fully active: IO and resync can be happening.
2724 * When written to inactive array, starts with resync
2725 *
2726 * write-pending
2727 * clean, but writes are blocked waiting for 'active' to be written.
2728 *
2729 * active-idle
2730 * like active, but no writes have been seen for a while (100msec).
2731 *
2732 */
2733 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2734 write_pending, active_idle, bad_word};
2735 static char *array_states[] = {
2736 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2737 "write-pending", "active-idle", NULL };
2738
2739 static int match_word(const char *word, char **list)
2740 {
2741 int n;
2742 for (n=0; list[n]; n++)
2743 if (cmd_match(word, list[n]))
2744 break;
2745 return n;
2746 }
2747
2748 static ssize_t
2749 array_state_show(mddev_t *mddev, char *page)
2750 {
2751 enum array_state st = inactive;
2752
2753 if (mddev->pers)
2754 switch(mddev->ro) {
2755 case 1:
2756 st = readonly;
2757 break;
2758 case 2:
2759 st = read_auto;
2760 break;
2761 case 0:
2762 if (mddev->in_sync)
2763 st = clean;
2764 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2765 st = write_pending;
2766 else if (mddev->safemode)
2767 st = active_idle;
2768 else
2769 st = active;
2770 }
2771 else {
2772 if (list_empty(&mddev->disks) &&
2773 mddev->raid_disks == 0 &&
2774 mddev->size == 0)
2775 st = clear;
2776 else
2777 st = inactive;
2778 }
2779 return sprintf(page, "%s\n", array_states[st]);
2780 }
2781
2782 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
2783 static int do_md_run(mddev_t * mddev);
2784 static int restart_array(mddev_t *mddev);
2785
2786 static ssize_t
2787 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2788 {
2789 int err = -EINVAL;
2790 enum array_state st = match_word(buf, array_states);
2791 switch(st) {
2792 case bad_word:
2793 break;
2794 case clear:
2795 /* stopping an active array */
2796 if (atomic_read(&mddev->openers) > 0)
2797 return -EBUSY;
2798 err = do_md_stop(mddev, 0, 0);
2799 break;
2800 case inactive:
2801 /* stopping an active array */
2802 if (mddev->pers) {
2803 if (atomic_read(&mddev->openers) > 0)
2804 return -EBUSY;
2805 err = do_md_stop(mddev, 2, 0);
2806 } else
2807 err = 0; /* already inactive */
2808 break;
2809 case suspended:
2810 break; /* not supported yet */
2811 case readonly:
2812 if (mddev->pers)
2813 err = do_md_stop(mddev, 1, 0);
2814 else {
2815 mddev->ro = 1;
2816 set_disk_ro(mddev->gendisk, 1);
2817 err = do_md_run(mddev);
2818 }
2819 break;
2820 case read_auto:
2821 if (mddev->pers) {
2822 if (mddev->ro == 0)
2823 err = do_md_stop(mddev, 1, 0);
2824 else if (mddev->ro == 1)
2825 err = restart_array(mddev);
2826 if (err == 0) {
2827 mddev->ro = 2;
2828 set_disk_ro(mddev->gendisk, 0);
2829 }
2830 } else {
2831 mddev->ro = 2;
2832 err = do_md_run(mddev);
2833 }
2834 break;
2835 case clean:
2836 if (mddev->pers) {
2837 restart_array(mddev);
2838 spin_lock_irq(&mddev->write_lock);
2839 if (atomic_read(&mddev->writes_pending) == 0) {
2840 if (mddev->in_sync == 0) {
2841 mddev->in_sync = 1;
2842 if (mddev->safemode == 1)
2843 mddev->safemode = 0;
2844 if (mddev->persistent)
2845 set_bit(MD_CHANGE_CLEAN,
2846 &mddev->flags);
2847 }
2848 err = 0;
2849 } else
2850 err = -EBUSY;
2851 spin_unlock_irq(&mddev->write_lock);
2852 } else {
2853 mddev->ro = 0;
2854 mddev->recovery_cp = MaxSector;
2855 err = do_md_run(mddev);
2856 }
2857 break;
2858 case active:
2859 if (mddev->pers) {
2860 restart_array(mddev);
2861 if (mddev->external)
2862 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2863 wake_up(&mddev->sb_wait);
2864 err = 0;
2865 } else {
2866 mddev->ro = 0;
2867 set_disk_ro(mddev->gendisk, 0);
2868 err = do_md_run(mddev);
2869 }
2870 break;
2871 case write_pending:
2872 case active_idle:
2873 /* these cannot be set */
2874 break;
2875 }
2876 if (err)
2877 return err;
2878 else {
2879 sysfs_notify_dirent(mddev->sysfs_state);
2880 return len;
2881 }
2882 }
2883 static struct md_sysfs_entry md_array_state =
2884 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2885
2886 static ssize_t
2887 null_show(mddev_t *mddev, char *page)
2888 {
2889 return -EINVAL;
2890 }
2891
2892 static ssize_t
2893 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2894 {
2895 /* buf must be %d:%d\n? giving major and minor numbers */
2896 /* The new device is added to the array.
2897 * If the array has a persistent superblock, we read the
2898 * superblock to initialise info and check validity.
2899 * Otherwise, only checking done is that in bind_rdev_to_array,
2900 * which mainly checks size.
2901 */
2902 char *e;
2903 int major = simple_strtoul(buf, &e, 10);
2904 int minor;
2905 dev_t dev;
2906 mdk_rdev_t *rdev;
2907 int err;
2908
2909 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2910 return -EINVAL;
2911 minor = simple_strtoul(e+1, &e, 10);
2912 if (*e && *e != '\n')
2913 return -EINVAL;
2914 dev = MKDEV(major, minor);
2915 if (major != MAJOR(dev) ||
2916 minor != MINOR(dev))
2917 return -EOVERFLOW;
2918
2919
2920 if (mddev->persistent) {
2921 rdev = md_import_device(dev, mddev->major_version,
2922 mddev->minor_version);
2923 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2924 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2925 mdk_rdev_t, same_set);
2926 err = super_types[mddev->major_version]
2927 .load_super(rdev, rdev0, mddev->minor_version);
2928 if (err < 0)
2929 goto out;
2930 }
2931 } else if (mddev->external)
2932 rdev = md_import_device(dev, -2, -1);
2933 else
2934 rdev = md_import_device(dev, -1, -1);
2935
2936 if (IS_ERR(rdev))
2937 return PTR_ERR(rdev);
2938 err = bind_rdev_to_array(rdev, mddev);
2939 out:
2940 if (err)
2941 export_rdev(rdev);
2942 return err ? err : len;
2943 }
2944
2945 static struct md_sysfs_entry md_new_device =
2946 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2947
2948 static ssize_t
2949 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2950 {
2951 char *end;
2952 unsigned long chunk, end_chunk;
2953
2954 if (!mddev->bitmap)
2955 goto out;
2956 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2957 while (*buf) {
2958 chunk = end_chunk = simple_strtoul(buf, &end, 0);
2959 if (buf == end) break;
2960 if (*end == '-') { /* range */
2961 buf = end + 1;
2962 end_chunk = simple_strtoul(buf, &end, 0);
2963 if (buf == end) break;
2964 }
2965 if (*end && !isspace(*end)) break;
2966 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2967 buf = end;
2968 while (isspace(*buf)) buf++;
2969 }
2970 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2971 out:
2972 return len;
2973 }
2974
2975 static struct md_sysfs_entry md_bitmap =
2976 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2977
2978 static ssize_t
2979 size_show(mddev_t *mddev, char *page)
2980 {
2981 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2982 }
2983
2984 static int update_size(mddev_t *mddev, sector_t num_sectors);
2985
2986 static ssize_t
2987 size_store(mddev_t *mddev, const char *buf, size_t len)
2988 {
2989 /* If array is inactive, we can reduce the component size, but
2990 * not increase it (except from 0).
2991 * If array is active, we can try an on-line resize
2992 */
2993 char *e;
2994 int err = 0;
2995 unsigned long long size = simple_strtoull(buf, &e, 10);
2996 if (!*buf || *buf == '\n' ||
2997 (*e && *e != '\n'))
2998 return -EINVAL;
2999
3000 if (mddev->pers) {
3001 err = update_size(mddev, size * 2);
3002 md_update_sb(mddev, 1);
3003 } else {
3004 if (mddev->size == 0 ||
3005 mddev->size > size)
3006 mddev->size = size;
3007 else
3008 err = -ENOSPC;
3009 }
3010 return err ? err : len;
3011 }
3012
3013 static struct md_sysfs_entry md_size =
3014 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3015
3016
3017 /* Metdata version.
3018 * This is one of
3019 * 'none' for arrays with no metadata (good luck...)
3020 * 'external' for arrays with externally managed metadata,
3021 * or N.M for internally known formats
3022 */
3023 static ssize_t
3024 metadata_show(mddev_t *mddev, char *page)
3025 {
3026 if (mddev->persistent)
3027 return sprintf(page, "%d.%d\n",
3028 mddev->major_version, mddev->minor_version);
3029 else if (mddev->external)
3030 return sprintf(page, "external:%s\n", mddev->metadata_type);
3031 else
3032 return sprintf(page, "none\n");
3033 }
3034
3035 static ssize_t
3036 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3037 {
3038 int major, minor;
3039 char *e;
3040 /* Changing the details of 'external' metadata is
3041 * always permitted. Otherwise there must be
3042 * no devices attached to the array.
3043 */
3044 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3045 ;
3046 else if (!list_empty(&mddev->disks))
3047 return -EBUSY;
3048
3049 if (cmd_match(buf, "none")) {
3050 mddev->persistent = 0;
3051 mddev->external = 0;
3052 mddev->major_version = 0;
3053 mddev->minor_version = 90;
3054 return len;
3055 }
3056 if (strncmp(buf, "external:", 9) == 0) {
3057 size_t namelen = len-9;
3058 if (namelen >= sizeof(mddev->metadata_type))
3059 namelen = sizeof(mddev->metadata_type)-1;
3060 strncpy(mddev->metadata_type, buf+9, namelen);
3061 mddev->metadata_type[namelen] = 0;
3062 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3063 mddev->metadata_type[--namelen] = 0;
3064 mddev->persistent = 0;
3065 mddev->external = 1;
3066 mddev->major_version = 0;
3067 mddev->minor_version = 90;
3068 return len;
3069 }
3070 major = simple_strtoul(buf, &e, 10);
3071 if (e==buf || *e != '.')
3072 return -EINVAL;
3073 buf = e+1;
3074 minor = simple_strtoul(buf, &e, 10);
3075 if (e==buf || (*e && *e != '\n') )
3076 return -EINVAL;
3077 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3078 return -ENOENT;
3079 mddev->major_version = major;
3080 mddev->minor_version = minor;
3081 mddev->persistent = 1;
3082 mddev->external = 0;
3083 return len;
3084 }
3085
3086 static struct md_sysfs_entry md_metadata =
3087 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3088
3089 static ssize_t
3090 action_show(mddev_t *mddev, char *page)
3091 {
3092 char *type = "idle";
3093 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3094 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3095 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3096 type = "reshape";
3097 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3098 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3099 type = "resync";
3100 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3101 type = "check";
3102 else
3103 type = "repair";
3104 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3105 type = "recover";
3106 }
3107 return sprintf(page, "%s\n", type);
3108 }
3109
3110 static ssize_t
3111 action_store(mddev_t *mddev, const char *page, size_t len)
3112 {
3113 if (!mddev->pers || !mddev->pers->sync_request)
3114 return -EINVAL;
3115
3116 if (cmd_match(page, "idle")) {
3117 if (mddev->sync_thread) {
3118 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3119 md_unregister_thread(mddev->sync_thread);
3120 mddev->sync_thread = NULL;
3121 mddev->recovery = 0;
3122 }
3123 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3124 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3125 return -EBUSY;
3126 else if (cmd_match(page, "resync"))
3127 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3128 else if (cmd_match(page, "recover")) {
3129 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3130 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3131 } else if (cmd_match(page, "reshape")) {
3132 int err;
3133 if (mddev->pers->start_reshape == NULL)
3134 return -EINVAL;
3135 err = mddev->pers->start_reshape(mddev);
3136 if (err)
3137 return err;
3138 sysfs_notify(&mddev->kobj, NULL, "degraded");
3139 } else {
3140 if (cmd_match(page, "check"))
3141 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3142 else if (!cmd_match(page, "repair"))
3143 return -EINVAL;
3144 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3145 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3146 }
3147 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3148 md_wakeup_thread(mddev->thread);
3149 sysfs_notify_dirent(mddev->sysfs_action);
3150 return len;
3151 }
3152
3153 static ssize_t
3154 mismatch_cnt_show(mddev_t *mddev, char *page)
3155 {
3156 return sprintf(page, "%llu\n",
3157 (unsigned long long) mddev->resync_mismatches);
3158 }
3159
3160 static struct md_sysfs_entry md_scan_mode =
3161 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3162
3163
3164 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3165
3166 static ssize_t
3167 sync_min_show(mddev_t *mddev, char *page)
3168 {
3169 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3170 mddev->sync_speed_min ? "local": "system");
3171 }
3172
3173 static ssize_t
3174 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3175 {
3176 int min;
3177 char *e;
3178 if (strncmp(buf, "system", 6)==0) {
3179 mddev->sync_speed_min = 0;
3180 return len;
3181 }
3182 min = simple_strtoul(buf, &e, 10);
3183 if (buf == e || (*e && *e != '\n') || min <= 0)
3184 return -EINVAL;
3185 mddev->sync_speed_min = min;
3186 return len;
3187 }
3188
3189 static struct md_sysfs_entry md_sync_min =
3190 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3191
3192 static ssize_t
3193 sync_max_show(mddev_t *mddev, char *page)
3194 {
3195 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3196 mddev->sync_speed_max ? "local": "system");
3197 }
3198
3199 static ssize_t
3200 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3201 {
3202 int max;
3203 char *e;
3204 if (strncmp(buf, "system", 6)==0) {
3205 mddev->sync_speed_max = 0;
3206 return len;
3207 }
3208 max = simple_strtoul(buf, &e, 10);
3209 if (buf == e || (*e && *e != '\n') || max <= 0)
3210 return -EINVAL;
3211 mddev->sync_speed_max = max;
3212 return len;
3213 }
3214
3215 static struct md_sysfs_entry md_sync_max =
3216 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3217
3218 static ssize_t
3219 degraded_show(mddev_t *mddev, char *page)
3220 {
3221 return sprintf(page, "%d\n", mddev->degraded);
3222 }
3223 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3224
3225 static ssize_t
3226 sync_force_parallel_show(mddev_t *mddev, char *page)
3227 {
3228 return sprintf(page, "%d\n", mddev->parallel_resync);
3229 }
3230
3231 static ssize_t
3232 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3233 {
3234 long n;
3235
3236 if (strict_strtol(buf, 10, &n))
3237 return -EINVAL;
3238
3239 if (n != 0 && n != 1)
3240 return -EINVAL;
3241
3242 mddev->parallel_resync = n;
3243
3244 if (mddev->sync_thread)
3245 wake_up(&resync_wait);
3246
3247 return len;
3248 }
3249
3250 /* force parallel resync, even with shared block devices */
3251 static struct md_sysfs_entry md_sync_force_parallel =
3252 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3253 sync_force_parallel_show, sync_force_parallel_store);
3254
3255 static ssize_t
3256 sync_speed_show(mddev_t *mddev, char *page)
3257 {
3258 unsigned long resync, dt, db;
3259 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3260 dt = (jiffies - mddev->resync_mark) / HZ;
3261 if (!dt) dt++;
3262 db = resync - mddev->resync_mark_cnt;
3263 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3264 }
3265
3266 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3267
3268 static ssize_t
3269 sync_completed_show(mddev_t *mddev, char *page)
3270 {
3271 unsigned long max_blocks, resync;
3272
3273 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3274 max_blocks = mddev->resync_max_sectors;
3275 else
3276 max_blocks = mddev->size << 1;
3277
3278 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
3279 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
3280 }
3281
3282 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3283
3284 static ssize_t
3285 min_sync_show(mddev_t *mddev, char *page)
3286 {
3287 return sprintf(page, "%llu\n",
3288 (unsigned long long)mddev->resync_min);
3289 }
3290 static ssize_t
3291 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3292 {
3293 unsigned long long min;
3294 if (strict_strtoull(buf, 10, &min))
3295 return -EINVAL;
3296 if (min > mddev->resync_max)
3297 return -EINVAL;
3298 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3299 return -EBUSY;
3300
3301 /* Must be a multiple of chunk_size */
3302 if (mddev->chunk_size) {
3303 if (min & (sector_t)((mddev->chunk_size>>9)-1))
3304 return -EINVAL;
3305 }
3306 mddev->resync_min = min;
3307
3308 return len;
3309 }
3310
3311 static struct md_sysfs_entry md_min_sync =
3312 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3313
3314 static ssize_t
3315 max_sync_show(mddev_t *mddev, char *page)
3316 {
3317 if (mddev->resync_max == MaxSector)
3318 return sprintf(page, "max\n");
3319 else
3320 return sprintf(page, "%llu\n",
3321 (unsigned long long)mddev->resync_max);
3322 }
3323 static ssize_t
3324 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3325 {
3326 if (strncmp(buf, "max", 3) == 0)
3327 mddev->resync_max = MaxSector;
3328 else {
3329 unsigned long long max;
3330 if (strict_strtoull(buf, 10, &max))
3331 return -EINVAL;
3332 if (max < mddev->resync_min)
3333 return -EINVAL;
3334 if (max < mddev->resync_max &&
3335 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3336 return -EBUSY;
3337
3338 /* Must be a multiple of chunk_size */
3339 if (mddev->chunk_size) {
3340 if (max & (sector_t)((mddev->chunk_size>>9)-1))
3341 return -EINVAL;
3342 }
3343 mddev->resync_max = max;
3344 }
3345 wake_up(&mddev->recovery_wait);
3346 return len;
3347 }
3348
3349 static struct md_sysfs_entry md_max_sync =
3350 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3351
3352 static ssize_t
3353 suspend_lo_show(mddev_t *mddev, char *page)
3354 {
3355 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3356 }
3357
3358 static ssize_t
3359 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3360 {
3361 char *e;
3362 unsigned long long new = simple_strtoull(buf, &e, 10);
3363
3364 if (mddev->pers->quiesce == NULL)
3365 return -EINVAL;
3366 if (buf == e || (*e && *e != '\n'))
3367 return -EINVAL;
3368 if (new >= mddev->suspend_hi ||
3369 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3370 mddev->suspend_lo = new;
3371 mddev->pers->quiesce(mddev, 2);
3372 return len;
3373 } else
3374 return -EINVAL;
3375 }
3376 static struct md_sysfs_entry md_suspend_lo =
3377 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3378
3379
3380 static ssize_t
3381 suspend_hi_show(mddev_t *mddev, char *page)
3382 {
3383 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3384 }
3385
3386 static ssize_t
3387 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3388 {
3389 char *e;
3390 unsigned long long new = simple_strtoull(buf, &e, 10);
3391
3392 if (mddev->pers->quiesce == NULL)
3393 return -EINVAL;
3394 if (buf == e || (*e && *e != '\n'))
3395 return -EINVAL;
3396 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3397 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3398 mddev->suspend_hi = new;
3399 mddev->pers->quiesce(mddev, 1);
3400 mddev->pers->quiesce(mddev, 0);
3401 return len;
3402 } else
3403 return -EINVAL;
3404 }
3405 static struct md_sysfs_entry md_suspend_hi =
3406 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3407
3408 static ssize_t
3409 reshape_position_show(mddev_t *mddev, char *page)
3410 {
3411 if (mddev->reshape_position != MaxSector)
3412 return sprintf(page, "%llu\n",
3413 (unsigned long long)mddev->reshape_position);
3414 strcpy(page, "none\n");
3415 return 5;
3416 }
3417
3418 static ssize_t
3419 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3420 {
3421 char *e;
3422 unsigned long long new = simple_strtoull(buf, &e, 10);
3423 if (mddev->pers)
3424 return -EBUSY;
3425 if (buf == e || (*e && *e != '\n'))
3426 return -EINVAL;
3427 mddev->reshape_position = new;
3428 mddev->delta_disks = 0;
3429 mddev->new_level = mddev->level;
3430 mddev->new_layout = mddev->layout;
3431 mddev->new_chunk = mddev->chunk_size;
3432 return len;
3433 }
3434
3435 static struct md_sysfs_entry md_reshape_position =
3436 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3437 reshape_position_store);
3438
3439
3440 static struct attribute *md_default_attrs[] = {
3441 &md_level.attr,
3442 &md_layout.attr,
3443 &md_raid_disks.attr,
3444 &md_chunk_size.attr,
3445 &md_size.attr,
3446 &md_resync_start.attr,
3447 &md_metadata.attr,
3448 &md_new_device.attr,
3449 &md_safe_delay.attr,
3450 &md_array_state.attr,
3451 &md_reshape_position.attr,
3452 NULL,
3453 };
3454
3455 static struct attribute *md_redundancy_attrs[] = {
3456 &md_scan_mode.attr,
3457 &md_mismatches.attr,
3458 &md_sync_min.attr,
3459 &md_sync_max.attr,
3460 &md_sync_speed.attr,
3461 &md_sync_force_parallel.attr,
3462 &md_sync_completed.attr,
3463 &md_min_sync.attr,
3464 &md_max_sync.attr,
3465 &md_suspend_lo.attr,
3466 &md_suspend_hi.attr,
3467 &md_bitmap.attr,
3468 &md_degraded.attr,
3469 NULL,
3470 };
3471 static struct attribute_group md_redundancy_group = {
3472 .name = NULL,
3473 .attrs = md_redundancy_attrs,
3474 };
3475
3476
3477 static ssize_t
3478 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3479 {
3480 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3481 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3482 ssize_t rv;
3483
3484 if (!entry->show)
3485 return -EIO;
3486 rv = mddev_lock(mddev);
3487 if (!rv) {
3488 rv = entry->show(mddev, page);
3489 mddev_unlock(mddev);
3490 }
3491 return rv;
3492 }
3493
3494 static ssize_t
3495 md_attr_store(struct kobject *kobj, struct attribute *attr,
3496 const char *page, size_t length)
3497 {
3498 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3499 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3500 ssize_t rv;
3501
3502 if (!entry->store)
3503 return -EIO;
3504 if (!capable(CAP_SYS_ADMIN))
3505 return -EACCES;
3506 rv = mddev_lock(mddev);
3507 if (mddev->hold_active == UNTIL_IOCTL)
3508 mddev->hold_active = 0;
3509 if (!rv) {
3510 rv = entry->store(mddev, page, length);
3511 mddev_unlock(mddev);
3512 }
3513 return rv;
3514 }
3515
3516 static void md_free(struct kobject *ko)
3517 {
3518 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3519
3520 if (mddev->sysfs_state)
3521 sysfs_put(mddev->sysfs_state);
3522
3523 if (mddev->gendisk) {
3524 del_gendisk(mddev->gendisk);
3525 put_disk(mddev->gendisk);
3526 }
3527 if (mddev->queue)
3528 blk_cleanup_queue(mddev->queue);
3529
3530 kfree(mddev);
3531 }
3532
3533 static struct sysfs_ops md_sysfs_ops = {
3534 .show = md_attr_show,
3535 .store = md_attr_store,
3536 };
3537 static struct kobj_type md_ktype = {
3538 .release = md_free,
3539 .sysfs_ops = &md_sysfs_ops,
3540 .default_attrs = md_default_attrs,
3541 };
3542
3543 int mdp_major = 0;
3544
3545 static int md_alloc(dev_t dev, char *name)
3546 {
3547 static DEFINE_MUTEX(disks_mutex);
3548 mddev_t *mddev = mddev_find(dev);
3549 struct gendisk *disk;
3550 int partitioned;
3551 int shift;
3552 int unit;
3553 int error;
3554
3555 if (!mddev)
3556 return -ENODEV;
3557
3558 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
3559 shift = partitioned ? MdpMinorShift : 0;
3560 unit = MINOR(mddev->unit) >> shift;
3561
3562 /* wait for any previous instance if this device
3563 * to be completed removed (mddev_delayed_delete).
3564 */
3565 flush_scheduled_work();
3566
3567 mutex_lock(&disks_mutex);
3568 if (mddev->gendisk) {
3569 mutex_unlock(&disks_mutex);
3570 mddev_put(mddev);
3571 return -EEXIST;
3572 }
3573
3574 if (name) {
3575 /* Need to ensure that 'name' is not a duplicate.
3576 */
3577 mddev_t *mddev2;
3578 spin_lock(&all_mddevs_lock);
3579
3580 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
3581 if (mddev2->gendisk &&
3582 strcmp(mddev2->gendisk->disk_name, name) == 0) {
3583 spin_unlock(&all_mddevs_lock);
3584 return -EEXIST;
3585 }
3586 spin_unlock(&all_mddevs_lock);
3587 }
3588
3589 mddev->queue = blk_alloc_queue(GFP_KERNEL);
3590 if (!mddev->queue) {
3591 mutex_unlock(&disks_mutex);
3592 mddev_put(mddev);
3593 return -ENOMEM;
3594 }
3595 /* Can be unlocked because the queue is new: no concurrency */
3596 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
3597
3598 blk_queue_make_request(mddev->queue, md_fail_request);
3599
3600 disk = alloc_disk(1 << shift);
3601 if (!disk) {
3602 mutex_unlock(&disks_mutex);
3603 blk_cleanup_queue(mddev->queue);
3604 mddev->queue = NULL;
3605 mddev_put(mddev);
3606 return -ENOMEM;
3607 }
3608 disk->major = MAJOR(mddev->unit);
3609 disk->first_minor = unit << shift;
3610 if (name)
3611 strcpy(disk->disk_name, name);
3612 else if (partitioned)
3613 sprintf(disk->disk_name, "md_d%d", unit);
3614 else
3615 sprintf(disk->disk_name, "md%d", unit);
3616 disk->fops = &md_fops;
3617 disk->private_data = mddev;
3618 disk->queue = mddev->queue;
3619 /* Allow extended partitions. This makes the
3620 * 'mdp' device redundant, but we can't really
3621 * remove it now.
3622 */
3623 disk->flags |= GENHD_FL_EXT_DEVT;
3624 add_disk(disk);
3625 mddev->gendisk = disk;
3626 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
3627 &disk_to_dev(disk)->kobj, "%s", "md");
3628 mutex_unlock(&disks_mutex);
3629 if (error)
3630 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3631 disk->disk_name);
3632 else {
3633 kobject_uevent(&mddev->kobj, KOBJ_ADD);
3634 mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
3635 }
3636 mddev_put(mddev);
3637 return 0;
3638 }
3639
3640 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3641 {
3642 md_alloc(dev, NULL);
3643 return NULL;
3644 }
3645
3646 static int add_named_array(const char *val, struct kernel_param *kp)
3647 {
3648 /* val must be "md_*" where * is not all digits.
3649 * We allocate an array with a large free minor number, and
3650 * set the name to val. val must not already be an active name.
3651 */
3652 int len = strlen(val);
3653 char buf[DISK_NAME_LEN];
3654
3655 while (len && val[len-1] == '\n')
3656 len--;
3657 if (len >= DISK_NAME_LEN)
3658 return -E2BIG;
3659 strlcpy(buf, val, len+1);
3660 if (strncmp(buf, "md_", 3) != 0)
3661 return -EINVAL;
3662 return md_alloc(0, buf);
3663 }
3664
3665 static void md_safemode_timeout(unsigned long data)
3666 {
3667 mddev_t *mddev = (mddev_t *) data;
3668
3669 if (!atomic_read(&mddev->writes_pending)) {
3670 mddev->safemode = 1;
3671 if (mddev->external)
3672 sysfs_notify_dirent(mddev->sysfs_state);
3673 }
3674 md_wakeup_thread(mddev->thread);
3675 }
3676
3677 static int start_dirty_degraded;
3678
3679 static int do_md_run(mddev_t * mddev)
3680 {
3681 int err;
3682 int chunk_size;
3683 mdk_rdev_t *rdev;
3684 struct gendisk *disk;
3685 struct mdk_personality *pers;
3686 char b[BDEVNAME_SIZE];
3687
3688 if (list_empty(&mddev->disks))
3689 /* cannot run an array with no devices.. */
3690 return -EINVAL;
3691
3692 if (mddev->pers)
3693 return -EBUSY;
3694
3695 /*
3696 * Analyze all RAID superblock(s)
3697 */
3698 if (!mddev->raid_disks) {
3699 if (!mddev->persistent)
3700 return -EINVAL;
3701 analyze_sbs(mddev);
3702 }
3703
3704 chunk_size = mddev->chunk_size;
3705
3706 if (chunk_size) {
3707 if (chunk_size > MAX_CHUNK_SIZE) {
3708 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3709 chunk_size, MAX_CHUNK_SIZE);
3710 return -EINVAL;
3711 }
3712 /*
3713 * chunk-size has to be a power of 2
3714 */
3715 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3716 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3717 return -EINVAL;
3718 }
3719
3720 /* devices must have minimum size of one chunk */
3721 list_for_each_entry(rdev, &mddev->disks, same_set) {
3722 if (test_bit(Faulty, &rdev->flags))
3723 continue;
3724 if (rdev->size < chunk_size / 1024) {
3725 printk(KERN_WARNING
3726 "md: Dev %s smaller than chunk_size:"
3727 " %lluk < %dk\n",
3728 bdevname(rdev->bdev,b),
3729 (unsigned long long)rdev->size,
3730 chunk_size / 1024);
3731 return -EINVAL;
3732 }
3733 }
3734 }
3735
3736 if (mddev->level != LEVEL_NONE)
3737 request_module("md-level-%d", mddev->level);
3738 else if (mddev->clevel[0])
3739 request_module("md-%s", mddev->clevel);
3740
3741 /*
3742 * Drop all container device buffers, from now on
3743 * the only valid external interface is through the md
3744 * device.
3745 */
3746 list_for_each_entry(rdev, &mddev->disks, same_set) {
3747 if (test_bit(Faulty, &rdev->flags))
3748 continue;
3749 sync_blockdev(rdev->bdev);
3750 invalidate_bdev(rdev->bdev);
3751
3752 /* perform some consistency tests on the device.
3753 * We don't want the data to overlap the metadata,
3754 * Internal Bitmap issues has handled elsewhere.
3755 */
3756 if (rdev->data_offset < rdev->sb_start) {
3757 if (mddev->size &&
3758 rdev->data_offset + mddev->size*2
3759 > rdev->sb_start) {
3760 printk("md: %s: data overlaps metadata\n",
3761 mdname(mddev));
3762 return -EINVAL;
3763 }
3764 } else {
3765 if (rdev->sb_start + rdev->sb_size/512
3766 > rdev->data_offset) {
3767 printk("md: %s: metadata overlaps data\n",
3768 mdname(mddev));
3769 return -EINVAL;
3770 }
3771 }
3772 sysfs_notify_dirent(rdev->sysfs_state);
3773 }
3774
3775 md_probe(mddev->unit, NULL, NULL);
3776 disk = mddev->gendisk;
3777 if (!disk)
3778 return -ENOMEM;
3779
3780 spin_lock(&pers_lock);
3781 pers = find_pers(mddev->level, mddev->clevel);
3782 if (!pers || !try_module_get(pers->owner)) {
3783 spin_unlock(&pers_lock);
3784 if (mddev->level != LEVEL_NONE)
3785 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3786 mddev->level);
3787 else
3788 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3789 mddev->clevel);
3790 return -EINVAL;
3791 }
3792 mddev->pers = pers;
3793 spin_unlock(&pers_lock);
3794 mddev->level = pers->level;
3795 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3796
3797 if (mddev->reshape_position != MaxSector &&
3798 pers->start_reshape == NULL) {
3799 /* This personality cannot handle reshaping... */
3800 mddev->pers = NULL;
3801 module_put(pers->owner);
3802 return -EINVAL;
3803 }
3804
3805 if (pers->sync_request) {
3806 /* Warn if this is a potentially silly
3807 * configuration.
3808 */
3809 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3810 mdk_rdev_t *rdev2;
3811 int warned = 0;
3812
3813 list_for_each_entry(rdev, &mddev->disks, same_set)
3814 list_for_each_entry(rdev2, &mddev->disks, same_set) {
3815 if (rdev < rdev2 &&
3816 rdev->bdev->bd_contains ==
3817 rdev2->bdev->bd_contains) {
3818 printk(KERN_WARNING
3819 "%s: WARNING: %s appears to be"
3820 " on the same physical disk as"
3821 " %s.\n",
3822 mdname(mddev),
3823 bdevname(rdev->bdev,b),
3824 bdevname(rdev2->bdev,b2));
3825 warned = 1;
3826 }
3827 }
3828
3829 if (warned)
3830 printk(KERN_WARNING
3831 "True protection against single-disk"
3832 " failure might be compromised.\n");
3833 }
3834
3835 mddev->recovery = 0;
3836 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3837 mddev->barriers_work = 1;
3838 mddev->ok_start_degraded = start_dirty_degraded;
3839
3840 if (start_readonly)
3841 mddev->ro = 2; /* read-only, but switch on first write */
3842
3843 err = mddev->pers->run(mddev);
3844 if (err)
3845 printk(KERN_ERR "md: pers->run() failed ...\n");
3846 else if (mddev->pers->sync_request) {
3847 err = bitmap_create(mddev);
3848 if (err) {
3849 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3850 mdname(mddev), err);
3851 mddev->pers->stop(mddev);
3852 }
3853 }
3854 if (err) {
3855 module_put(mddev->pers->owner);
3856 mddev->pers = NULL;
3857 bitmap_destroy(mddev);
3858 return err;
3859 }
3860 if (mddev->pers->sync_request) {
3861 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3862 printk(KERN_WARNING
3863 "md: cannot register extra attributes for %s\n",
3864 mdname(mddev));
3865 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3866 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
3867 mddev->ro = 0;
3868
3869 atomic_set(&mddev->writes_pending,0);
3870 mddev->safemode = 0;
3871 mddev->safemode_timer.function = md_safemode_timeout;
3872 mddev->safemode_timer.data = (unsigned long) mddev;
3873 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3874 mddev->in_sync = 1;
3875
3876 list_for_each_entry(rdev, &mddev->disks, same_set)
3877 if (rdev->raid_disk >= 0) {
3878 char nm[20];
3879 sprintf(nm, "rd%d", rdev->raid_disk);
3880 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3881 printk("md: cannot register %s for %s\n",
3882 nm, mdname(mddev));
3883 }
3884
3885 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3886
3887 if (mddev->flags)
3888 md_update_sb(mddev, 0);
3889
3890 set_capacity(disk, mddev->array_sectors);
3891
3892 /* If we call blk_queue_make_request here, it will
3893 * re-initialise max_sectors etc which may have been
3894 * refined inside -> run. So just set the bits we need to set.
3895 * Most initialisation happended when we called
3896 * blk_queue_make_request(..., md_fail_request)
3897 * earlier.
3898 */
3899 mddev->queue->queuedata = mddev;
3900 mddev->queue->make_request_fn = mddev->pers->make_request;
3901
3902 /* If there is a partially-recovered drive we need to
3903 * start recovery here. If we leave it to md_check_recovery,
3904 * it will remove the drives and not do the right thing
3905 */
3906 if (mddev->degraded && !mddev->sync_thread) {
3907 int spares = 0;
3908 list_for_each_entry(rdev, &mddev->disks, same_set)
3909 if (rdev->raid_disk >= 0 &&
3910 !test_bit(In_sync, &rdev->flags) &&
3911 !test_bit(Faulty, &rdev->flags))
3912 /* complete an interrupted recovery */
3913 spares++;
3914 if (spares && mddev->pers->sync_request) {
3915 mddev->recovery = 0;
3916 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3917 mddev->sync_thread = md_register_thread(md_do_sync,
3918 mddev,
3919 "%s_resync");
3920 if (!mddev->sync_thread) {
3921 printk(KERN_ERR "%s: could not start resync"
3922 " thread...\n",
3923 mdname(mddev));
3924 /* leave the spares where they are, it shouldn't hurt */
3925 mddev->recovery = 0;
3926 }
3927 }
3928 }
3929 md_wakeup_thread(mddev->thread);
3930 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3931
3932 mddev->changed = 1;
3933 md_new_event(mddev);
3934 sysfs_notify_dirent(mddev->sysfs_state);
3935 if (mddev->sysfs_action)
3936 sysfs_notify_dirent(mddev->sysfs_action);
3937 sysfs_notify(&mddev->kobj, NULL, "degraded");
3938 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
3939 return 0;
3940 }
3941
3942 static int restart_array(mddev_t *mddev)
3943 {
3944 struct gendisk *disk = mddev->gendisk;
3945
3946 /* Complain if it has no devices */
3947 if (list_empty(&mddev->disks))
3948 return -ENXIO;
3949 if (!mddev->pers)
3950 return -EINVAL;
3951 if (!mddev->ro)
3952 return -EBUSY;
3953 mddev->safemode = 0;
3954 mddev->ro = 0;
3955 set_disk_ro(disk, 0);
3956 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3957 mdname(mddev));
3958 /* Kick recovery or resync if necessary */
3959 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3960 md_wakeup_thread(mddev->thread);
3961 md_wakeup_thread(mddev->sync_thread);
3962 sysfs_notify_dirent(mddev->sysfs_state);
3963 return 0;
3964 }
3965
3966 /* similar to deny_write_access, but accounts for our holding a reference
3967 * to the file ourselves */
3968 static int deny_bitmap_write_access(struct file * file)
3969 {
3970 struct inode *inode = file->f_mapping->host;
3971
3972 spin_lock(&inode->i_lock);
3973 if (atomic_read(&inode->i_writecount) > 1) {
3974 spin_unlock(&inode->i_lock);
3975 return -ETXTBSY;
3976 }
3977 atomic_set(&inode->i_writecount, -1);
3978 spin_unlock(&inode->i_lock);
3979
3980 return 0;
3981 }
3982
3983 static void restore_bitmap_write_access(struct file *file)
3984 {
3985 struct inode *inode = file->f_mapping->host;
3986
3987 spin_lock(&inode->i_lock);
3988 atomic_set(&inode->i_writecount, 1);
3989 spin_unlock(&inode->i_lock);
3990 }
3991
3992 /* mode:
3993 * 0 - completely stop and dis-assemble array
3994 * 1 - switch to readonly
3995 * 2 - stop but do not disassemble array
3996 */
3997 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
3998 {
3999 int err = 0;
4000 struct gendisk *disk = mddev->gendisk;
4001
4002 if (atomic_read(&mddev->openers) > is_open) {
4003 printk("md: %s still in use.\n",mdname(mddev));
4004 return -EBUSY;
4005 }
4006
4007 if (mddev->pers) {
4008
4009 if (mddev->sync_thread) {
4010 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4011 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4012 md_unregister_thread(mddev->sync_thread);
4013 mddev->sync_thread = NULL;
4014 }
4015
4016 del_timer_sync(&mddev->safemode_timer);
4017
4018 switch(mode) {
4019 case 1: /* readonly */
4020 err = -ENXIO;
4021 if (mddev->ro==1)
4022 goto out;
4023 mddev->ro = 1;
4024 break;
4025 case 0: /* disassemble */
4026 case 2: /* stop */
4027 bitmap_flush(mddev);
4028 md_super_wait(mddev);
4029 if (mddev->ro)
4030 set_disk_ro(disk, 0);
4031 blk_queue_make_request(mddev->queue, md_fail_request);
4032 mddev->pers->stop(mddev);
4033 mddev->queue->merge_bvec_fn = NULL;
4034 mddev->queue->unplug_fn = NULL;
4035 mddev->queue->backing_dev_info.congested_fn = NULL;
4036 if (mddev->pers->sync_request) {
4037 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
4038 if (mddev->sysfs_action)
4039 sysfs_put(mddev->sysfs_action);
4040 mddev->sysfs_action = NULL;
4041 }
4042 module_put(mddev->pers->owner);
4043 mddev->pers = NULL;
4044 /* tell userspace to handle 'inactive' */
4045 sysfs_notify_dirent(mddev->sysfs_state);
4046
4047 set_capacity(disk, 0);
4048 mddev->changed = 1;
4049
4050 if (mddev->ro)
4051 mddev->ro = 0;
4052 }
4053 if (!mddev->in_sync || mddev->flags) {
4054 /* mark array as shutdown cleanly */
4055 mddev->in_sync = 1;
4056 md_update_sb(mddev, 1);
4057 }
4058 if (mode == 1)
4059 set_disk_ro(disk, 1);
4060 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4061 }
4062
4063 /*
4064 * Free resources if final stop
4065 */
4066 if (mode == 0) {
4067 mdk_rdev_t *rdev;
4068
4069 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4070
4071 bitmap_destroy(mddev);
4072 if (mddev->bitmap_file) {
4073 restore_bitmap_write_access(mddev->bitmap_file);
4074 fput(mddev->bitmap_file);
4075 mddev->bitmap_file = NULL;
4076 }
4077 mddev->bitmap_offset = 0;
4078
4079 list_for_each_entry(rdev, &mddev->disks, same_set)
4080 if (rdev->raid_disk >= 0) {
4081 char nm[20];
4082 sprintf(nm, "rd%d", rdev->raid_disk);
4083 sysfs_remove_link(&mddev->kobj, nm);
4084 }
4085
4086 /* make sure all md_delayed_delete calls have finished */
4087 flush_scheduled_work();
4088
4089 export_array(mddev);
4090
4091 mddev->array_sectors = 0;
4092 mddev->size = 0;
4093 mddev->raid_disks = 0;
4094 mddev->recovery_cp = 0;
4095 mddev->resync_min = 0;
4096 mddev->resync_max = MaxSector;
4097 mddev->reshape_position = MaxSector;
4098 mddev->external = 0;
4099 mddev->persistent = 0;
4100 mddev->level = LEVEL_NONE;
4101 mddev->clevel[0] = 0;
4102 mddev->flags = 0;
4103 mddev->ro = 0;
4104 mddev->metadata_type[0] = 0;
4105 mddev->chunk_size = 0;
4106 mddev->ctime = mddev->utime = 0;
4107 mddev->layout = 0;
4108 mddev->max_disks = 0;
4109 mddev->events = 0;
4110 mddev->delta_disks = 0;
4111 mddev->new_level = LEVEL_NONE;
4112 mddev->new_layout = 0;
4113 mddev->new_chunk = 0;
4114 mddev->curr_resync = 0;
4115 mddev->resync_mismatches = 0;
4116 mddev->suspend_lo = mddev->suspend_hi = 0;
4117 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4118 mddev->recovery = 0;
4119 mddev->in_sync = 0;
4120 mddev->changed = 0;
4121 mddev->degraded = 0;
4122 mddev->barriers_work = 0;
4123 mddev->safemode = 0;
4124 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4125 if (mddev->hold_active == UNTIL_STOP)
4126 mddev->hold_active = 0;
4127
4128 } else if (mddev->pers)
4129 printk(KERN_INFO "md: %s switched to read-only mode.\n",
4130 mdname(mddev));
4131 err = 0;
4132 md_new_event(mddev);
4133 sysfs_notify_dirent(mddev->sysfs_state);
4134 out:
4135 return err;
4136 }
4137
4138 #ifndef MODULE
4139 static void autorun_array(mddev_t *mddev)
4140 {
4141 mdk_rdev_t *rdev;
4142 int err;
4143
4144 if (list_empty(&mddev->disks))
4145 return;
4146
4147 printk(KERN_INFO "md: running: ");
4148
4149 list_for_each_entry(rdev, &mddev->disks, same_set) {
4150 char b[BDEVNAME_SIZE];
4151 printk("<%s>", bdevname(rdev->bdev,b));
4152 }
4153 printk("\n");
4154
4155 err = do_md_run(mddev);
4156 if (err) {
4157 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4158 do_md_stop(mddev, 0, 0);
4159 }
4160 }
4161
4162 /*
4163 * lets try to run arrays based on all disks that have arrived
4164 * until now. (those are in pending_raid_disks)
4165 *
4166 * the method: pick the first pending disk, collect all disks with
4167 * the same UUID, remove all from the pending list and put them into
4168 * the 'same_array' list. Then order this list based on superblock
4169 * update time (freshest comes first), kick out 'old' disks and
4170 * compare superblocks. If everything's fine then run it.
4171 *
4172 * If "unit" is allocated, then bump its reference count
4173 */
4174 static void autorun_devices(int part)
4175 {
4176 mdk_rdev_t *rdev0, *rdev, *tmp;
4177 mddev_t *mddev;
4178 char b[BDEVNAME_SIZE];
4179
4180 printk(KERN_INFO "md: autorun ...\n");
4181 while (!list_empty(&pending_raid_disks)) {
4182 int unit;
4183 dev_t dev;
4184 LIST_HEAD(candidates);
4185 rdev0 = list_entry(pending_raid_disks.next,
4186 mdk_rdev_t, same_set);
4187
4188 printk(KERN_INFO "md: considering %s ...\n",
4189 bdevname(rdev0->bdev,b));
4190 INIT_LIST_HEAD(&candidates);
4191 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4192 if (super_90_load(rdev, rdev0, 0) >= 0) {
4193 printk(KERN_INFO "md: adding %s ...\n",
4194 bdevname(rdev->bdev,b));
4195 list_move(&rdev->same_set, &candidates);
4196 }
4197 /*
4198 * now we have a set of devices, with all of them having
4199 * mostly sane superblocks. It's time to allocate the
4200 * mddev.
4201 */
4202 if (part) {
4203 dev = MKDEV(mdp_major,
4204 rdev0->preferred_minor << MdpMinorShift);
4205 unit = MINOR(dev) >> MdpMinorShift;
4206 } else {
4207 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4208 unit = MINOR(dev);
4209 }
4210 if (rdev0->preferred_minor != unit) {
4211 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4212 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4213 break;
4214 }
4215
4216 md_probe(dev, NULL, NULL);
4217 mddev = mddev_find(dev);
4218 if (!mddev || !mddev->gendisk) {
4219 if (mddev)
4220 mddev_put(mddev);
4221 printk(KERN_ERR
4222 "md: cannot allocate memory for md drive.\n");
4223 break;
4224 }
4225 if (mddev_lock(mddev))
4226 printk(KERN_WARNING "md: %s locked, cannot run\n",
4227 mdname(mddev));
4228 else if (mddev->raid_disks || mddev->major_version
4229 || !list_empty(&mddev->disks)) {
4230 printk(KERN_WARNING
4231 "md: %s already running, cannot run %s\n",
4232 mdname(mddev), bdevname(rdev0->bdev,b));
4233 mddev_unlock(mddev);
4234 } else {
4235 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4236 mddev->persistent = 1;
4237 rdev_for_each_list(rdev, tmp, &candidates) {
4238 list_del_init(&rdev->same_set);
4239 if (bind_rdev_to_array(rdev, mddev))
4240 export_rdev(rdev);
4241 }
4242 autorun_array(mddev);
4243 mddev_unlock(mddev);
4244 }
4245 /* on success, candidates will be empty, on error
4246 * it won't...
4247 */
4248 rdev_for_each_list(rdev, tmp, &candidates) {
4249 list_del_init(&rdev->same_set);
4250 export_rdev(rdev);
4251 }
4252 mddev_put(mddev);
4253 }
4254 printk(KERN_INFO "md: ... autorun DONE.\n");
4255 }
4256 #endif /* !MODULE */
4257
4258 static int get_version(void __user * arg)
4259 {
4260 mdu_version_t ver;
4261
4262 ver.major = MD_MAJOR_VERSION;
4263 ver.minor = MD_MINOR_VERSION;
4264 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4265
4266 if (copy_to_user(arg, &ver, sizeof(ver)))
4267 return -EFAULT;
4268
4269 return 0;
4270 }
4271
4272 static int get_array_info(mddev_t * mddev, void __user * arg)
4273 {
4274 mdu_array_info_t info;
4275 int nr,working,active,failed,spare;
4276 mdk_rdev_t *rdev;
4277
4278 nr=working=active=failed=spare=0;
4279 list_for_each_entry(rdev, &mddev->disks, same_set) {
4280 nr++;
4281 if (test_bit(Faulty, &rdev->flags))
4282 failed++;
4283 else {
4284 working++;
4285 if (test_bit(In_sync, &rdev->flags))
4286 active++;
4287 else
4288 spare++;
4289 }
4290 }
4291
4292 info.major_version = mddev->major_version;
4293 info.minor_version = mddev->minor_version;
4294 info.patch_version = MD_PATCHLEVEL_VERSION;
4295 info.ctime = mddev->ctime;
4296 info.level = mddev->level;
4297 info.size = mddev->size;
4298 if (info.size != mddev->size) /* overflow */
4299 info.size = -1;
4300 info.nr_disks = nr;
4301 info.raid_disks = mddev->raid_disks;
4302 info.md_minor = mddev->md_minor;
4303 info.not_persistent= !mddev->persistent;
4304
4305 info.utime = mddev->utime;
4306 info.state = 0;
4307 if (mddev->in_sync)
4308 info.state = (1<<MD_SB_CLEAN);
4309 if (mddev->bitmap && mddev->bitmap_offset)
4310 info.state = (1<<MD_SB_BITMAP_PRESENT);
4311 info.active_disks = active;
4312 info.working_disks = working;
4313 info.failed_disks = failed;
4314 info.spare_disks = spare;
4315
4316 info.layout = mddev->layout;
4317 info.chunk_size = mddev->chunk_size;
4318
4319 if (copy_to_user(arg, &info, sizeof(info)))
4320 return -EFAULT;
4321
4322 return 0;
4323 }
4324
4325 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4326 {
4327 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4328 char *ptr, *buf = NULL;
4329 int err = -ENOMEM;
4330
4331 if (md_allow_write(mddev))
4332 file = kmalloc(sizeof(*file), GFP_NOIO);
4333 else
4334 file = kmalloc(sizeof(*file), GFP_KERNEL);
4335
4336 if (!file)
4337 goto out;
4338
4339 /* bitmap disabled, zero the first byte and copy out */
4340 if (!mddev->bitmap || !mddev->bitmap->file) {
4341 file->pathname[0] = '\0';
4342 goto copy_out;
4343 }
4344
4345 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4346 if (!buf)
4347 goto out;
4348
4349 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4350 if (IS_ERR(ptr))
4351 goto out;
4352
4353 strcpy(file->pathname, ptr);
4354
4355 copy_out:
4356 err = 0;
4357 if (copy_to_user(arg, file, sizeof(*file)))
4358 err = -EFAULT;
4359 out:
4360 kfree(buf);
4361 kfree(file);
4362 return err;
4363 }
4364
4365 static int get_disk_info(mddev_t * mddev, void __user * arg)
4366 {
4367 mdu_disk_info_t info;
4368 mdk_rdev_t *rdev;
4369
4370 if (copy_from_user(&info, arg, sizeof(info)))
4371 return -EFAULT;
4372
4373 rdev = find_rdev_nr(mddev, info.number);
4374 if (rdev) {
4375 info.major = MAJOR(rdev->bdev->bd_dev);
4376 info.minor = MINOR(rdev->bdev->bd_dev);
4377 info.raid_disk = rdev->raid_disk;
4378 info.state = 0;
4379 if (test_bit(Faulty, &rdev->flags))
4380 info.state |= (1<<MD_DISK_FAULTY);
4381 else if (test_bit(In_sync, &rdev->flags)) {
4382 info.state |= (1<<MD_DISK_ACTIVE);
4383 info.state |= (1<<MD_DISK_SYNC);
4384 }
4385 if (test_bit(WriteMostly, &rdev->flags))
4386 info.state |= (1<<MD_DISK_WRITEMOSTLY);
4387 } else {
4388 info.major = info.minor = 0;
4389 info.raid_disk = -1;
4390 info.state = (1<<MD_DISK_REMOVED);
4391 }
4392
4393 if (copy_to_user(arg, &info, sizeof(info)))
4394 return -EFAULT;
4395
4396 return 0;
4397 }
4398
4399 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4400 {
4401 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4402 mdk_rdev_t *rdev;
4403 dev_t dev = MKDEV(info->major,info->minor);
4404
4405 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4406 return -EOVERFLOW;
4407
4408 if (!mddev->raid_disks) {
4409 int err;
4410 /* expecting a device which has a superblock */
4411 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4412 if (IS_ERR(rdev)) {
4413 printk(KERN_WARNING
4414 "md: md_import_device returned %ld\n",
4415 PTR_ERR(rdev));
4416 return PTR_ERR(rdev);
4417 }
4418 if (!list_empty(&mddev->disks)) {
4419 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4420 mdk_rdev_t, same_set);
4421 int err = super_types[mddev->major_version]
4422 .load_super(rdev, rdev0, mddev->minor_version);
4423 if (err < 0) {
4424 printk(KERN_WARNING
4425 "md: %s has different UUID to %s\n",
4426 bdevname(rdev->bdev,b),
4427 bdevname(rdev0->bdev,b2));
4428 export_rdev(rdev);
4429 return -EINVAL;
4430 }
4431 }
4432 err = bind_rdev_to_array(rdev, mddev);
4433 if (err)
4434 export_rdev(rdev);
4435 return err;
4436 }
4437
4438 /*
4439 * add_new_disk can be used once the array is assembled
4440 * to add "hot spares". They must already have a superblock
4441 * written
4442 */
4443 if (mddev->pers) {
4444 int err;
4445 if (!mddev->pers->hot_add_disk) {
4446 printk(KERN_WARNING
4447 "%s: personality does not support diskops!\n",
4448 mdname(mddev));
4449 return -EINVAL;
4450 }
4451 if (mddev->persistent)
4452 rdev = md_import_device(dev, mddev->major_version,
4453 mddev->minor_version);
4454 else
4455 rdev = md_import_device(dev, -1, -1);
4456 if (IS_ERR(rdev)) {
4457 printk(KERN_WARNING
4458 "md: md_import_device returned %ld\n",
4459 PTR_ERR(rdev));
4460 return PTR_ERR(rdev);
4461 }
4462 /* set save_raid_disk if appropriate */
4463 if (!mddev->persistent) {
4464 if (info->state & (1<<MD_DISK_SYNC) &&
4465 info->raid_disk < mddev->raid_disks)
4466 rdev->raid_disk = info->raid_disk;
4467 else
4468 rdev->raid_disk = -1;
4469 } else
4470 super_types[mddev->major_version].
4471 validate_super(mddev, rdev);
4472 rdev->saved_raid_disk = rdev->raid_disk;
4473
4474 clear_bit(In_sync, &rdev->flags); /* just to be sure */
4475 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4476 set_bit(WriteMostly, &rdev->flags);
4477
4478 rdev->raid_disk = -1;
4479 err = bind_rdev_to_array(rdev, mddev);
4480 if (!err && !mddev->pers->hot_remove_disk) {
4481 /* If there is hot_add_disk but no hot_remove_disk
4482 * then added disks for geometry changes,
4483 * and should be added immediately.
4484 */
4485 super_types[mddev->major_version].
4486 validate_super(mddev, rdev);
4487 err = mddev->pers->hot_add_disk(mddev, rdev);
4488 if (err)
4489 unbind_rdev_from_array(rdev);
4490 }
4491 if (err)
4492 export_rdev(rdev);
4493 else
4494 sysfs_notify_dirent(rdev->sysfs_state);
4495
4496 md_update_sb(mddev, 1);
4497 if (mddev->degraded)
4498 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4499 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4500 md_wakeup_thread(mddev->thread);
4501 return err;
4502 }
4503
4504 /* otherwise, add_new_disk is only allowed
4505 * for major_version==0 superblocks
4506 */
4507 if (mddev->major_version != 0) {
4508 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4509 mdname(mddev));
4510 return -EINVAL;
4511 }
4512
4513 if (!(info->state & (1<<MD_DISK_FAULTY))) {
4514 int err;
4515 rdev = md_import_device(dev, -1, 0);
4516 if (IS_ERR(rdev)) {
4517 printk(KERN_WARNING
4518 "md: error, md_import_device() returned %ld\n",
4519 PTR_ERR(rdev));
4520 return PTR_ERR(rdev);
4521 }
4522 rdev->desc_nr = info->number;
4523 if (info->raid_disk < mddev->raid_disks)
4524 rdev->raid_disk = info->raid_disk;
4525 else
4526 rdev->raid_disk = -1;
4527
4528 if (rdev->raid_disk < mddev->raid_disks)
4529 if (info->state & (1<<MD_DISK_SYNC))
4530 set_bit(In_sync, &rdev->flags);
4531
4532 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4533 set_bit(WriteMostly, &rdev->flags);
4534
4535 if (!mddev->persistent) {
4536 printk(KERN_INFO "md: nonpersistent superblock ...\n");
4537 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4538 } else
4539 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4540 rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2;
4541
4542 err = bind_rdev_to_array(rdev, mddev);
4543 if (err) {
4544 export_rdev(rdev);
4545 return err;
4546 }
4547 }
4548
4549 return 0;
4550 }
4551
4552 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4553 {
4554 char b[BDEVNAME_SIZE];
4555 mdk_rdev_t *rdev;
4556
4557 rdev = find_rdev(mddev, dev);
4558 if (!rdev)
4559 return -ENXIO;
4560
4561 if (rdev->raid_disk >= 0)
4562 goto busy;
4563
4564 kick_rdev_from_array(rdev);
4565 md_update_sb(mddev, 1);
4566 md_new_event(mddev);
4567
4568 return 0;
4569 busy:
4570 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4571 bdevname(rdev->bdev,b), mdname(mddev));
4572 return -EBUSY;
4573 }
4574
4575 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4576 {
4577 char b[BDEVNAME_SIZE];
4578 int err;
4579 mdk_rdev_t *rdev;
4580
4581 if (!mddev->pers)
4582 return -ENODEV;
4583
4584 if (mddev->major_version != 0) {
4585 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4586 " version-0 superblocks.\n",
4587 mdname(mddev));
4588 return -EINVAL;
4589 }
4590 if (!mddev->pers->hot_add_disk) {
4591 printk(KERN_WARNING
4592 "%s: personality does not support diskops!\n",
4593 mdname(mddev));
4594 return -EINVAL;
4595 }
4596
4597 rdev = md_import_device(dev, -1, 0);
4598 if (IS_ERR(rdev)) {
4599 printk(KERN_WARNING
4600 "md: error, md_import_device() returned %ld\n",
4601 PTR_ERR(rdev));
4602 return -EINVAL;
4603 }
4604
4605 if (mddev->persistent)
4606 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4607 else
4608 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4609
4610 rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2;
4611
4612 if (test_bit(Faulty, &rdev->flags)) {
4613 printk(KERN_WARNING
4614 "md: can not hot-add faulty %s disk to %s!\n",
4615 bdevname(rdev->bdev,b), mdname(mddev));
4616 err = -EINVAL;
4617 goto abort_export;
4618 }
4619 clear_bit(In_sync, &rdev->flags);
4620 rdev->desc_nr = -1;
4621 rdev->saved_raid_disk = -1;
4622 err = bind_rdev_to_array(rdev, mddev);
4623 if (err)
4624 goto abort_export;
4625
4626 /*
4627 * The rest should better be atomic, we can have disk failures
4628 * noticed in interrupt contexts ...
4629 */
4630
4631 rdev->raid_disk = -1;
4632
4633 md_update_sb(mddev, 1);
4634
4635 /*
4636 * Kick recovery, maybe this spare has to be added to the
4637 * array immediately.
4638 */
4639 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4640 md_wakeup_thread(mddev->thread);
4641 md_new_event(mddev);
4642 return 0;
4643
4644 abort_export:
4645 export_rdev(rdev);
4646 return err;
4647 }
4648
4649 static int set_bitmap_file(mddev_t *mddev, int fd)
4650 {
4651 int err;
4652
4653 if (mddev->pers) {
4654 if (!mddev->pers->quiesce)
4655 return -EBUSY;
4656 if (mddev->recovery || mddev->sync_thread)
4657 return -EBUSY;
4658 /* we should be able to change the bitmap.. */
4659 }
4660
4661
4662 if (fd >= 0) {
4663 if (mddev->bitmap)
4664 return -EEXIST; /* cannot add when bitmap is present */
4665 mddev->bitmap_file = fget(fd);
4666
4667 if (mddev->bitmap_file == NULL) {
4668 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4669 mdname(mddev));
4670 return -EBADF;
4671 }
4672
4673 err = deny_bitmap_write_access(mddev->bitmap_file);
4674 if (err) {
4675 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4676 mdname(mddev));
4677 fput(mddev->bitmap_file);
4678 mddev->bitmap_file = NULL;
4679 return err;
4680 }
4681 mddev->bitmap_offset = 0; /* file overrides offset */
4682 } else if (mddev->bitmap == NULL)
4683 return -ENOENT; /* cannot remove what isn't there */
4684 err = 0;
4685 if (mddev->pers) {
4686 mddev->pers->quiesce(mddev, 1);
4687 if (fd >= 0)
4688 err = bitmap_create(mddev);
4689 if (fd < 0 || err) {
4690 bitmap_destroy(mddev);
4691 fd = -1; /* make sure to put the file */
4692 }
4693 mddev->pers->quiesce(mddev, 0);
4694 }
4695 if (fd < 0) {
4696 if (mddev->bitmap_file) {
4697 restore_bitmap_write_access(mddev->bitmap_file);
4698 fput(mddev->bitmap_file);
4699 }
4700 mddev->bitmap_file = NULL;
4701 }
4702
4703 return err;
4704 }
4705
4706 /*
4707 * set_array_info is used two different ways
4708 * The original usage is when creating a new array.
4709 * In this usage, raid_disks is > 0 and it together with
4710 * level, size, not_persistent,layout,chunksize determine the
4711 * shape of the array.
4712 * This will always create an array with a type-0.90.0 superblock.
4713 * The newer usage is when assembling an array.
4714 * In this case raid_disks will be 0, and the major_version field is
4715 * use to determine which style super-blocks are to be found on the devices.
4716 * The minor and patch _version numbers are also kept incase the
4717 * super_block handler wishes to interpret them.
4718 */
4719 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4720 {
4721
4722 if (info->raid_disks == 0) {
4723 /* just setting version number for superblock loading */
4724 if (info->major_version < 0 ||
4725 info->major_version >= ARRAY_SIZE(super_types) ||
4726 super_types[info->major_version].name == NULL) {
4727 /* maybe try to auto-load a module? */
4728 printk(KERN_INFO
4729 "md: superblock version %d not known\n",
4730 info->major_version);
4731 return -EINVAL;
4732 }
4733 mddev->major_version = info->major_version;
4734 mddev->minor_version = info->minor_version;
4735 mddev->patch_version = info->patch_version;
4736 mddev->persistent = !info->not_persistent;
4737 return 0;
4738 }
4739 mddev->major_version = MD_MAJOR_VERSION;
4740 mddev->minor_version = MD_MINOR_VERSION;
4741 mddev->patch_version = MD_PATCHLEVEL_VERSION;
4742 mddev->ctime = get_seconds();
4743
4744 mddev->level = info->level;
4745 mddev->clevel[0] = 0;
4746 mddev->size = info->size;
4747 mddev->raid_disks = info->raid_disks;
4748 /* don't set md_minor, it is determined by which /dev/md* was
4749 * openned
4750 */
4751 if (info->state & (1<<MD_SB_CLEAN))
4752 mddev->recovery_cp = MaxSector;
4753 else
4754 mddev->recovery_cp = 0;
4755 mddev->persistent = ! info->not_persistent;
4756 mddev->external = 0;
4757
4758 mddev->layout = info->layout;
4759 mddev->chunk_size = info->chunk_size;
4760
4761 mddev->max_disks = MD_SB_DISKS;
4762
4763 if (mddev->persistent)
4764 mddev->flags = 0;
4765 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4766
4767 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4768 mddev->bitmap_offset = 0;
4769
4770 mddev->reshape_position = MaxSector;
4771
4772 /*
4773 * Generate a 128 bit UUID
4774 */
4775 get_random_bytes(mddev->uuid, 16);
4776
4777 mddev->new_level = mddev->level;
4778 mddev->new_chunk = mddev->chunk_size;
4779 mddev->new_layout = mddev->layout;
4780 mddev->delta_disks = 0;
4781
4782 return 0;
4783 }
4784
4785 static int update_size(mddev_t *mddev, sector_t num_sectors)
4786 {
4787 mdk_rdev_t *rdev;
4788 int rv;
4789 int fit = (num_sectors == 0);
4790
4791 if (mddev->pers->resize == NULL)
4792 return -EINVAL;
4793 /* The "num_sectors" is the number of sectors of each device that
4794 * is used. This can only make sense for arrays with redundancy.
4795 * linear and raid0 always use whatever space is available. We can only
4796 * consider changing this number if no resync or reconstruction is
4797 * happening, and if the new size is acceptable. It must fit before the
4798 * sb_start or, if that is <data_offset, it must fit before the size
4799 * of each device. If num_sectors is zero, we find the largest size
4800 * that fits.
4801
4802 */
4803 if (mddev->sync_thread)
4804 return -EBUSY;
4805 if (mddev->bitmap)
4806 /* Sorry, cannot grow a bitmap yet, just remove it,
4807 * grow, and re-add.
4808 */
4809 return -EBUSY;
4810 list_for_each_entry(rdev, &mddev->disks, same_set) {
4811 sector_t avail;
4812 avail = rdev->size * 2;
4813
4814 if (fit && (num_sectors == 0 || num_sectors > avail))
4815 num_sectors = avail;
4816 if (avail < num_sectors)
4817 return -ENOSPC;
4818 }
4819 rv = mddev->pers->resize(mddev, num_sectors);
4820 if (!rv) {
4821 struct block_device *bdev;
4822
4823 bdev = bdget_disk(mddev->gendisk, 0);
4824 if (bdev) {
4825 mutex_lock(&bdev->bd_inode->i_mutex);
4826 i_size_write(bdev->bd_inode,
4827 (loff_t)mddev->array_sectors << 9);
4828 mutex_unlock(&bdev->bd_inode->i_mutex);
4829 bdput(bdev);
4830 }
4831 }
4832 return rv;
4833 }
4834
4835 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4836 {
4837 int rv;
4838 /* change the number of raid disks */
4839 if (mddev->pers->check_reshape == NULL)
4840 return -EINVAL;
4841 if (raid_disks <= 0 ||
4842 raid_disks >= mddev->max_disks)
4843 return -EINVAL;
4844 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4845 return -EBUSY;
4846 mddev->delta_disks = raid_disks - mddev->raid_disks;
4847
4848 rv = mddev->pers->check_reshape(mddev);
4849 return rv;
4850 }
4851
4852
4853 /*
4854 * update_array_info is used to change the configuration of an
4855 * on-line array.
4856 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4857 * fields in the info are checked against the array.
4858 * Any differences that cannot be handled will cause an error.
4859 * Normally, only one change can be managed at a time.
4860 */
4861 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4862 {
4863 int rv = 0;
4864 int cnt = 0;
4865 int state = 0;
4866
4867 /* calculate expected state,ignoring low bits */
4868 if (mddev->bitmap && mddev->bitmap_offset)
4869 state |= (1 << MD_SB_BITMAP_PRESENT);
4870
4871 if (mddev->major_version != info->major_version ||
4872 mddev->minor_version != info->minor_version ||
4873 /* mddev->patch_version != info->patch_version || */
4874 mddev->ctime != info->ctime ||
4875 mddev->level != info->level ||
4876 /* mddev->layout != info->layout || */
4877 !mddev->persistent != info->not_persistent||
4878 mddev->chunk_size != info->chunk_size ||
4879 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4880 ((state^info->state) & 0xfffffe00)
4881 )
4882 return -EINVAL;
4883 /* Check there is only one change */
4884 if (info->size >= 0 && mddev->size != info->size) cnt++;
4885 if (mddev->raid_disks != info->raid_disks) cnt++;
4886 if (mddev->layout != info->layout) cnt++;
4887 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4888 if (cnt == 0) return 0;
4889 if (cnt > 1) return -EINVAL;
4890
4891 if (mddev->layout != info->layout) {
4892 /* Change layout
4893 * we don't need to do anything at the md level, the
4894 * personality will take care of it all.
4895 */
4896 if (mddev->pers->reconfig == NULL)
4897 return -EINVAL;
4898 else
4899 return mddev->pers->reconfig(mddev, info->layout, -1);
4900 }
4901 if (info->size >= 0 && mddev->size != info->size)
4902 rv = update_size(mddev, (sector_t)info->size * 2);
4903
4904 if (mddev->raid_disks != info->raid_disks)
4905 rv = update_raid_disks(mddev, info->raid_disks);
4906
4907 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4908 if (mddev->pers->quiesce == NULL)
4909 return -EINVAL;
4910 if (mddev->recovery || mddev->sync_thread)
4911 return -EBUSY;
4912 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4913 /* add the bitmap */
4914 if (mddev->bitmap)
4915 return -EEXIST;
4916 if (mddev->default_bitmap_offset == 0)
4917 return -EINVAL;
4918 mddev->bitmap_offset = mddev->default_bitmap_offset;
4919 mddev->pers->quiesce(mddev, 1);
4920 rv = bitmap_create(mddev);
4921 if (rv)
4922 bitmap_destroy(mddev);
4923 mddev->pers->quiesce(mddev, 0);
4924 } else {
4925 /* remove the bitmap */
4926 if (!mddev->bitmap)
4927 return -ENOENT;
4928 if (mddev->bitmap->file)
4929 return -EINVAL;
4930 mddev->pers->quiesce(mddev, 1);
4931 bitmap_destroy(mddev);
4932 mddev->pers->quiesce(mddev, 0);
4933 mddev->bitmap_offset = 0;
4934 }
4935 }
4936 md_update_sb(mddev, 1);
4937 return rv;
4938 }
4939
4940 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4941 {
4942 mdk_rdev_t *rdev;
4943
4944 if (mddev->pers == NULL)
4945 return -ENODEV;
4946
4947 rdev = find_rdev(mddev, dev);
4948 if (!rdev)
4949 return -ENODEV;
4950
4951 md_error(mddev, rdev);
4952 return 0;
4953 }
4954
4955 /*
4956 * We have a problem here : there is no easy way to give a CHS
4957 * virtual geometry. We currently pretend that we have a 2 heads
4958 * 4 sectors (with a BIG number of cylinders...). This drives
4959 * dosfs just mad... ;-)
4960 */
4961 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4962 {
4963 mddev_t *mddev = bdev->bd_disk->private_data;
4964
4965 geo->heads = 2;
4966 geo->sectors = 4;
4967 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4968 return 0;
4969 }
4970
4971 static int md_ioctl(struct block_device *bdev, fmode_t mode,
4972 unsigned int cmd, unsigned long arg)
4973 {
4974 int err = 0;
4975 void __user *argp = (void __user *)arg;
4976 mddev_t *mddev = NULL;
4977
4978 if (!capable(CAP_SYS_ADMIN))
4979 return -EACCES;
4980
4981 /*
4982 * Commands dealing with the RAID driver but not any
4983 * particular array:
4984 */
4985 switch (cmd)
4986 {
4987 case RAID_VERSION:
4988 err = get_version(argp);
4989 goto done;
4990
4991 case PRINT_RAID_DEBUG:
4992 err = 0;
4993 md_print_devices();
4994 goto done;
4995
4996 #ifndef MODULE
4997 case RAID_AUTORUN:
4998 err = 0;
4999 autostart_arrays(arg);
5000 goto done;
5001 #endif
5002 default:;
5003 }
5004
5005 /*
5006 * Commands creating/starting a new array:
5007 */
5008
5009 mddev = bdev->bd_disk->private_data;
5010
5011 if (!mddev) {
5012 BUG();
5013 goto abort;
5014 }
5015
5016 err = mddev_lock(mddev);
5017 if (err) {
5018 printk(KERN_INFO
5019 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5020 err, cmd);
5021 goto abort;
5022 }
5023
5024 switch (cmd)
5025 {
5026 case SET_ARRAY_INFO:
5027 {
5028 mdu_array_info_t info;
5029 if (!arg)
5030 memset(&info, 0, sizeof(info));
5031 else if (copy_from_user(&info, argp, sizeof(info))) {
5032 err = -EFAULT;
5033 goto abort_unlock;
5034 }
5035 if (mddev->pers) {
5036 err = update_array_info(mddev, &info);
5037 if (err) {
5038 printk(KERN_WARNING "md: couldn't update"
5039 " array info. %d\n", err);
5040 goto abort_unlock;
5041 }
5042 goto done_unlock;
5043 }
5044 if (!list_empty(&mddev->disks)) {
5045 printk(KERN_WARNING
5046 "md: array %s already has disks!\n",
5047 mdname(mddev));
5048 err = -EBUSY;
5049 goto abort_unlock;
5050 }
5051 if (mddev->raid_disks) {
5052 printk(KERN_WARNING
5053 "md: array %s already initialised!\n",
5054 mdname(mddev));
5055 err = -EBUSY;
5056 goto abort_unlock;
5057 }
5058 err = set_array_info(mddev, &info);
5059 if (err) {
5060 printk(KERN_WARNING "md: couldn't set"
5061 " array info. %d\n", err);
5062 goto abort_unlock;
5063 }
5064 }
5065 goto done_unlock;
5066
5067 default:;
5068 }
5069
5070 /*
5071 * Commands querying/configuring an existing array:
5072 */
5073 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5074 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5075 if ((!mddev->raid_disks && !mddev->external)
5076 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5077 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5078 && cmd != GET_BITMAP_FILE) {
5079 err = -ENODEV;
5080 goto abort_unlock;
5081 }
5082
5083 /*
5084 * Commands even a read-only array can execute:
5085 */
5086 switch (cmd)
5087 {
5088 case GET_ARRAY_INFO:
5089 err = get_array_info(mddev, argp);
5090 goto done_unlock;
5091
5092 case GET_BITMAP_FILE:
5093 err = get_bitmap_file(mddev, argp);
5094 goto done_unlock;
5095
5096 case GET_DISK_INFO:
5097 err = get_disk_info(mddev, argp);
5098 goto done_unlock;
5099
5100 case RESTART_ARRAY_RW:
5101 err = restart_array(mddev);
5102 goto done_unlock;
5103
5104 case STOP_ARRAY:
5105 err = do_md_stop(mddev, 0, 1);
5106 goto done_unlock;
5107
5108 case STOP_ARRAY_RO:
5109 err = do_md_stop(mddev, 1, 1);
5110 goto done_unlock;
5111
5112 }
5113
5114 /*
5115 * The remaining ioctls are changing the state of the
5116 * superblock, so we do not allow them on read-only arrays.
5117 * However non-MD ioctls (e.g. get-size) will still come through
5118 * here and hit the 'default' below, so only disallow
5119 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5120 */
5121 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5122 if (mddev->ro == 2) {
5123 mddev->ro = 0;
5124 sysfs_notify_dirent(mddev->sysfs_state);
5125 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5126 md_wakeup_thread(mddev->thread);
5127 } else {
5128 err = -EROFS;
5129 goto abort_unlock;
5130 }
5131 }
5132
5133 switch (cmd)
5134 {
5135 case ADD_NEW_DISK:
5136 {
5137 mdu_disk_info_t info;
5138 if (copy_from_user(&info, argp, sizeof(info)))
5139 err = -EFAULT;
5140 else
5141 err = add_new_disk(mddev, &info);
5142 goto done_unlock;
5143 }
5144
5145 case HOT_REMOVE_DISK:
5146 err = hot_remove_disk(mddev, new_decode_dev(arg));
5147 goto done_unlock;
5148
5149 case HOT_ADD_DISK:
5150 err = hot_add_disk(mddev, new_decode_dev(arg));
5151 goto done_unlock;
5152
5153 case SET_DISK_FAULTY:
5154 err = set_disk_faulty(mddev, new_decode_dev(arg));
5155 goto done_unlock;
5156
5157 case RUN_ARRAY:
5158 err = do_md_run(mddev);
5159 goto done_unlock;
5160
5161 case SET_BITMAP_FILE:
5162 err = set_bitmap_file(mddev, (int)arg);
5163 goto done_unlock;
5164
5165 default:
5166 err = -EINVAL;
5167 goto abort_unlock;
5168 }
5169
5170 done_unlock:
5171 abort_unlock:
5172 if (mddev->hold_active == UNTIL_IOCTL &&
5173 err != -EINVAL)
5174 mddev->hold_active = 0;
5175 mddev_unlock(mddev);
5176
5177 return err;
5178 done:
5179 if (err)
5180 MD_BUG();
5181 abort:
5182 return err;
5183 }
5184
5185 static int md_open(struct block_device *bdev, fmode_t mode)
5186 {
5187 /*
5188 * Succeed if we can lock the mddev, which confirms that
5189 * it isn't being stopped right now.
5190 */
5191 mddev_t *mddev = mddev_find(bdev->bd_dev);
5192 int err;
5193
5194 if (mddev->gendisk != bdev->bd_disk) {
5195 /* we are racing with mddev_put which is discarding this
5196 * bd_disk.
5197 */
5198 mddev_put(mddev);
5199 /* Wait until bdev->bd_disk is definitely gone */
5200 flush_scheduled_work();
5201 /* Then retry the open from the top */
5202 return -ERESTARTSYS;
5203 }
5204 BUG_ON(mddev != bdev->bd_disk->private_data);
5205
5206 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
5207 goto out;
5208
5209 err = 0;
5210 atomic_inc(&mddev->openers);
5211 mddev_unlock(mddev);
5212
5213 check_disk_change(bdev);
5214 out:
5215 return err;
5216 }
5217
5218 static int md_release(struct gendisk *disk, fmode_t mode)
5219 {
5220 mddev_t *mddev = disk->private_data;
5221
5222 BUG_ON(!mddev);
5223 atomic_dec(&mddev->openers);
5224 mddev_put(mddev);
5225
5226 return 0;
5227 }
5228
5229 static int md_media_changed(struct gendisk *disk)
5230 {
5231 mddev_t *mddev = disk->private_data;
5232
5233 return mddev->changed;
5234 }
5235
5236 static int md_revalidate(struct gendisk *disk)
5237 {
5238 mddev_t *mddev = disk->private_data;
5239
5240 mddev->changed = 0;
5241 return 0;
5242 }
5243 static struct block_device_operations md_fops =
5244 {
5245 .owner = THIS_MODULE,
5246 .open = md_open,
5247 .release = md_release,
5248 .locked_ioctl = md_ioctl,
5249 .getgeo = md_getgeo,
5250 .media_changed = md_media_changed,
5251 .revalidate_disk= md_revalidate,
5252 };
5253
5254 static int md_thread(void * arg)
5255 {
5256 mdk_thread_t *thread = arg;
5257
5258 /*
5259 * md_thread is a 'system-thread', it's priority should be very
5260 * high. We avoid resource deadlocks individually in each
5261 * raid personality. (RAID5 does preallocation) We also use RR and
5262 * the very same RT priority as kswapd, thus we will never get
5263 * into a priority inversion deadlock.
5264 *
5265 * we definitely have to have equal or higher priority than
5266 * bdflush, otherwise bdflush will deadlock if there are too
5267 * many dirty RAID5 blocks.
5268 */
5269
5270 allow_signal(SIGKILL);
5271 while (!kthread_should_stop()) {
5272
5273 /* We need to wait INTERRUPTIBLE so that
5274 * we don't add to the load-average.
5275 * That means we need to be sure no signals are
5276 * pending
5277 */
5278 if (signal_pending(current))
5279 flush_signals(current);
5280
5281 wait_event_interruptible_timeout
5282 (thread->wqueue,
5283 test_bit(THREAD_WAKEUP, &thread->flags)
5284 || kthread_should_stop(),
5285 thread->timeout);
5286
5287 clear_bit(THREAD_WAKEUP, &thread->flags);
5288
5289 thread->run(thread->mddev);
5290 }
5291
5292 return 0;
5293 }
5294
5295 void md_wakeup_thread(mdk_thread_t *thread)
5296 {
5297 if (thread) {
5298 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5299 set_bit(THREAD_WAKEUP, &thread->flags);
5300 wake_up(&thread->wqueue);
5301 }
5302 }
5303
5304 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5305 const char *name)
5306 {
5307 mdk_thread_t *thread;
5308
5309 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5310 if (!thread)
5311 return NULL;
5312
5313 init_waitqueue_head(&thread->wqueue);
5314
5315 thread->run = run;
5316 thread->mddev = mddev;
5317 thread->timeout = MAX_SCHEDULE_TIMEOUT;
5318 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
5319 if (IS_ERR(thread->tsk)) {
5320 kfree(thread);
5321 return NULL;
5322 }
5323 return thread;
5324 }
5325
5326 void md_unregister_thread(mdk_thread_t *thread)
5327 {
5328 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5329
5330 kthread_stop(thread->tsk);
5331 kfree(thread);
5332 }
5333
5334 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5335 {
5336 if (!mddev) {
5337 MD_BUG();
5338 return;
5339 }
5340
5341 if (!rdev || test_bit(Faulty, &rdev->flags))
5342 return;
5343
5344 if (mddev->external)
5345 set_bit(Blocked, &rdev->flags);
5346 /*
5347 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5348 mdname(mddev),
5349 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5350 __builtin_return_address(0),__builtin_return_address(1),
5351 __builtin_return_address(2),__builtin_return_address(3));
5352 */
5353 if (!mddev->pers)
5354 return;
5355 if (!mddev->pers->error_handler)
5356 return;
5357 mddev->pers->error_handler(mddev,rdev);
5358 if (mddev->degraded)
5359 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5360 set_bit(StateChanged, &rdev->flags);
5361 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5362 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5363 md_wakeup_thread(mddev->thread);
5364 md_new_event_inintr(mddev);
5365 }
5366
5367 /* seq_file implementation /proc/mdstat */
5368
5369 static void status_unused(struct seq_file *seq)
5370 {
5371 int i = 0;
5372 mdk_rdev_t *rdev;
5373
5374 seq_printf(seq, "unused devices: ");
5375
5376 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
5377 char b[BDEVNAME_SIZE];
5378 i++;
5379 seq_printf(seq, "%s ",
5380 bdevname(rdev->bdev,b));
5381 }
5382 if (!i)
5383 seq_printf(seq, "<none>");
5384
5385 seq_printf(seq, "\n");
5386 }
5387
5388
5389 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5390 {
5391 sector_t max_blocks, resync, res;
5392 unsigned long dt, db, rt;
5393 int scale;
5394 unsigned int per_milli;
5395
5396 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
5397
5398 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5399 max_blocks = mddev->resync_max_sectors >> 1;
5400 else
5401 max_blocks = mddev->size;
5402
5403 /*
5404 * Should not happen.
5405 */
5406 if (!max_blocks) {
5407 MD_BUG();
5408 return;
5409 }
5410 /* Pick 'scale' such that (resync>>scale)*1000 will fit
5411 * in a sector_t, and (max_blocks>>scale) will fit in a
5412 * u32, as those are the requirements for sector_div.
5413 * Thus 'scale' must be at least 10
5414 */
5415 scale = 10;
5416 if (sizeof(sector_t) > sizeof(unsigned long)) {
5417 while ( max_blocks/2 > (1ULL<<(scale+32)))
5418 scale++;
5419 }
5420 res = (resync>>scale)*1000;
5421 sector_div(res, (u32)((max_blocks>>scale)+1));
5422
5423 per_milli = res;
5424 {
5425 int i, x = per_milli/50, y = 20-x;
5426 seq_printf(seq, "[");
5427 for (i = 0; i < x; i++)
5428 seq_printf(seq, "=");
5429 seq_printf(seq, ">");
5430 for (i = 0; i < y; i++)
5431 seq_printf(seq, ".");
5432 seq_printf(seq, "] ");
5433 }
5434 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5435 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5436 "reshape" :
5437 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5438 "check" :
5439 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5440 "resync" : "recovery"))),
5441 per_milli/10, per_milli % 10,
5442 (unsigned long long) resync,
5443 (unsigned long long) max_blocks);
5444
5445 /*
5446 * We do not want to overflow, so the order of operands and
5447 * the * 100 / 100 trick are important. We do a +1 to be
5448 * safe against division by zero. We only estimate anyway.
5449 *
5450 * dt: time from mark until now
5451 * db: blocks written from mark until now
5452 * rt: remaining time
5453 */
5454 dt = ((jiffies - mddev->resync_mark) / HZ);
5455 if (!dt) dt++;
5456 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5457 - mddev->resync_mark_cnt;
5458 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
5459
5460 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
5461
5462 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5463 }
5464
5465 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5466 {
5467 struct list_head *tmp;
5468 loff_t l = *pos;
5469 mddev_t *mddev;
5470
5471 if (l >= 0x10000)
5472 return NULL;
5473 if (!l--)
5474 /* header */
5475 return (void*)1;
5476
5477 spin_lock(&all_mddevs_lock);
5478 list_for_each(tmp,&all_mddevs)
5479 if (!l--) {
5480 mddev = list_entry(tmp, mddev_t, all_mddevs);
5481 mddev_get(mddev);
5482 spin_unlock(&all_mddevs_lock);
5483 return mddev;
5484 }
5485 spin_unlock(&all_mddevs_lock);
5486 if (!l--)
5487 return (void*)2;/* tail */
5488 return NULL;
5489 }
5490
5491 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5492 {
5493 struct list_head *tmp;
5494 mddev_t *next_mddev, *mddev = v;
5495
5496 ++*pos;
5497 if (v == (void*)2)
5498 return NULL;
5499
5500 spin_lock(&all_mddevs_lock);
5501 if (v == (void*)1)
5502 tmp = all_mddevs.next;
5503 else
5504 tmp = mddev->all_mddevs.next;
5505 if (tmp != &all_mddevs)
5506 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5507 else {
5508 next_mddev = (void*)2;
5509 *pos = 0x10000;
5510 }
5511 spin_unlock(&all_mddevs_lock);
5512
5513 if (v != (void*)1)
5514 mddev_put(mddev);
5515 return next_mddev;
5516
5517 }
5518
5519 static void md_seq_stop(struct seq_file *seq, void *v)
5520 {
5521 mddev_t *mddev = v;
5522
5523 if (mddev && v != (void*)1 && v != (void*)2)
5524 mddev_put(mddev);
5525 }
5526
5527 struct mdstat_info {
5528 int event;
5529 };
5530
5531 static int md_seq_show(struct seq_file *seq, void *v)
5532 {
5533 mddev_t *mddev = v;
5534 sector_t size;
5535 mdk_rdev_t *rdev;
5536 struct mdstat_info *mi = seq->private;
5537 struct bitmap *bitmap;
5538
5539 if (v == (void*)1) {
5540 struct mdk_personality *pers;
5541 seq_printf(seq, "Personalities : ");
5542 spin_lock(&pers_lock);
5543 list_for_each_entry(pers, &pers_list, list)
5544 seq_printf(seq, "[%s] ", pers->name);
5545
5546 spin_unlock(&pers_lock);
5547 seq_printf(seq, "\n");
5548 mi->event = atomic_read(&md_event_count);
5549 return 0;
5550 }
5551 if (v == (void*)2) {
5552 status_unused(seq);
5553 return 0;
5554 }
5555
5556 if (mddev_lock(mddev) < 0)
5557 return -EINTR;
5558
5559 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5560 seq_printf(seq, "%s : %sactive", mdname(mddev),
5561 mddev->pers ? "" : "in");
5562 if (mddev->pers) {
5563 if (mddev->ro==1)
5564 seq_printf(seq, " (read-only)");
5565 if (mddev->ro==2)
5566 seq_printf(seq, " (auto-read-only)");
5567 seq_printf(seq, " %s", mddev->pers->name);
5568 }
5569
5570 size = 0;
5571 list_for_each_entry(rdev, &mddev->disks, same_set) {
5572 char b[BDEVNAME_SIZE];
5573 seq_printf(seq, " %s[%d]",
5574 bdevname(rdev->bdev,b), rdev->desc_nr);
5575 if (test_bit(WriteMostly, &rdev->flags))
5576 seq_printf(seq, "(W)");
5577 if (test_bit(Faulty, &rdev->flags)) {
5578 seq_printf(seq, "(F)");
5579 continue;
5580 } else if (rdev->raid_disk < 0)
5581 seq_printf(seq, "(S)"); /* spare */
5582 size += rdev->size;
5583 }
5584
5585 if (!list_empty(&mddev->disks)) {
5586 if (mddev->pers)
5587 seq_printf(seq, "\n %llu blocks",
5588 (unsigned long long)
5589 mddev->array_sectors / 2);
5590 else
5591 seq_printf(seq, "\n %llu blocks",
5592 (unsigned long long)size);
5593 }
5594 if (mddev->persistent) {
5595 if (mddev->major_version != 0 ||
5596 mddev->minor_version != 90) {
5597 seq_printf(seq," super %d.%d",
5598 mddev->major_version,
5599 mddev->minor_version);
5600 }
5601 } else if (mddev->external)
5602 seq_printf(seq, " super external:%s",
5603 mddev->metadata_type);
5604 else
5605 seq_printf(seq, " super non-persistent");
5606
5607 if (mddev->pers) {
5608 mddev->pers->status(seq, mddev);
5609 seq_printf(seq, "\n ");
5610 if (mddev->pers->sync_request) {
5611 if (mddev->curr_resync > 2) {
5612 status_resync(seq, mddev);
5613 seq_printf(seq, "\n ");
5614 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5615 seq_printf(seq, "\tresync=DELAYED\n ");
5616 else if (mddev->recovery_cp < MaxSector)
5617 seq_printf(seq, "\tresync=PENDING\n ");
5618 }
5619 } else
5620 seq_printf(seq, "\n ");
5621
5622 if ((bitmap = mddev->bitmap)) {
5623 unsigned long chunk_kb;
5624 unsigned long flags;
5625 spin_lock_irqsave(&bitmap->lock, flags);
5626 chunk_kb = bitmap->chunksize >> 10;
5627 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5628 "%lu%s chunk",
5629 bitmap->pages - bitmap->missing_pages,
5630 bitmap->pages,
5631 (bitmap->pages - bitmap->missing_pages)
5632 << (PAGE_SHIFT - 10),
5633 chunk_kb ? chunk_kb : bitmap->chunksize,
5634 chunk_kb ? "KB" : "B");
5635 if (bitmap->file) {
5636 seq_printf(seq, ", file: ");
5637 seq_path(seq, &bitmap->file->f_path, " \t\n");
5638 }
5639
5640 seq_printf(seq, "\n");
5641 spin_unlock_irqrestore(&bitmap->lock, flags);
5642 }
5643
5644 seq_printf(seq, "\n");
5645 }
5646 mddev_unlock(mddev);
5647
5648 return 0;
5649 }
5650
5651 static struct seq_operations md_seq_ops = {
5652 .start = md_seq_start,
5653 .next = md_seq_next,
5654 .stop = md_seq_stop,
5655 .show = md_seq_show,
5656 };
5657
5658 static int md_seq_open(struct inode *inode, struct file *file)
5659 {
5660 int error;
5661 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5662 if (mi == NULL)
5663 return -ENOMEM;
5664
5665 error = seq_open(file, &md_seq_ops);
5666 if (error)
5667 kfree(mi);
5668 else {
5669 struct seq_file *p = file->private_data;
5670 p->private = mi;
5671 mi->event = atomic_read(&md_event_count);
5672 }
5673 return error;
5674 }
5675
5676 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5677 {
5678 struct seq_file *m = filp->private_data;
5679 struct mdstat_info *mi = m->private;
5680 int mask;
5681
5682 poll_wait(filp, &md_event_waiters, wait);
5683
5684 /* always allow read */
5685 mask = POLLIN | POLLRDNORM;
5686
5687 if (mi->event != atomic_read(&md_event_count))
5688 mask |= POLLERR | POLLPRI;
5689 return mask;
5690 }
5691
5692 static const struct file_operations md_seq_fops = {
5693 .owner = THIS_MODULE,
5694 .open = md_seq_open,
5695 .read = seq_read,
5696 .llseek = seq_lseek,
5697 .release = seq_release_private,
5698 .poll = mdstat_poll,
5699 };
5700
5701 int register_md_personality(struct mdk_personality *p)
5702 {
5703 spin_lock(&pers_lock);
5704 list_add_tail(&p->list, &pers_list);
5705 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5706 spin_unlock(&pers_lock);
5707 return 0;
5708 }
5709
5710 int unregister_md_personality(struct mdk_personality *p)
5711 {
5712 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5713 spin_lock(&pers_lock);
5714 list_del_init(&p->list);
5715 spin_unlock(&pers_lock);
5716 return 0;
5717 }
5718
5719 static int is_mddev_idle(mddev_t *mddev)
5720 {
5721 mdk_rdev_t * rdev;
5722 int idle;
5723 long curr_events;
5724
5725 idle = 1;
5726 rcu_read_lock();
5727 rdev_for_each_rcu(rdev, mddev) {
5728 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5729 curr_events = part_stat_read(&disk->part0, sectors[0]) +
5730 part_stat_read(&disk->part0, sectors[1]) -
5731 atomic_read(&disk->sync_io);
5732 /* sync IO will cause sync_io to increase before the disk_stats
5733 * as sync_io is counted when a request starts, and
5734 * disk_stats is counted when it completes.
5735 * So resync activity will cause curr_events to be smaller than
5736 * when there was no such activity.
5737 * non-sync IO will cause disk_stat to increase without
5738 * increasing sync_io so curr_events will (eventually)
5739 * be larger than it was before. Once it becomes
5740 * substantially larger, the test below will cause
5741 * the array to appear non-idle, and resync will slow
5742 * down.
5743 * If there is a lot of outstanding resync activity when
5744 * we set last_event to curr_events, then all that activity
5745 * completing might cause the array to appear non-idle
5746 * and resync will be slowed down even though there might
5747 * not have been non-resync activity. This will only
5748 * happen once though. 'last_events' will soon reflect
5749 * the state where there is little or no outstanding
5750 * resync requests, and further resync activity will
5751 * always make curr_events less than last_events.
5752 *
5753 */
5754 if (curr_events - rdev->last_events > 4096) {
5755 rdev->last_events = curr_events;
5756 idle = 0;
5757 }
5758 }
5759 rcu_read_unlock();
5760 return idle;
5761 }
5762
5763 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5764 {
5765 /* another "blocks" (512byte) blocks have been synced */
5766 atomic_sub(blocks, &mddev->recovery_active);
5767 wake_up(&mddev->recovery_wait);
5768 if (!ok) {
5769 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5770 md_wakeup_thread(mddev->thread);
5771 // stop recovery, signal do_sync ....
5772 }
5773 }
5774
5775
5776 /* md_write_start(mddev, bi)
5777 * If we need to update some array metadata (e.g. 'active' flag
5778 * in superblock) before writing, schedule a superblock update
5779 * and wait for it to complete.
5780 */
5781 void md_write_start(mddev_t *mddev, struct bio *bi)
5782 {
5783 int did_change = 0;
5784 if (bio_data_dir(bi) != WRITE)
5785 return;
5786
5787 BUG_ON(mddev->ro == 1);
5788 if (mddev->ro == 2) {
5789 /* need to switch to read/write */
5790 mddev->ro = 0;
5791 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5792 md_wakeup_thread(mddev->thread);
5793 md_wakeup_thread(mddev->sync_thread);
5794 did_change = 1;
5795 }
5796 atomic_inc(&mddev->writes_pending);
5797 if (mddev->safemode == 1)
5798 mddev->safemode = 0;
5799 if (mddev->in_sync) {
5800 spin_lock_irq(&mddev->write_lock);
5801 if (mddev->in_sync) {
5802 mddev->in_sync = 0;
5803 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5804 md_wakeup_thread(mddev->thread);
5805 did_change = 1;
5806 }
5807 spin_unlock_irq(&mddev->write_lock);
5808 }
5809 if (did_change)
5810 sysfs_notify_dirent(mddev->sysfs_state);
5811 wait_event(mddev->sb_wait,
5812 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
5813 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5814 }
5815
5816 void md_write_end(mddev_t *mddev)
5817 {
5818 if (atomic_dec_and_test(&mddev->writes_pending)) {
5819 if (mddev->safemode == 2)
5820 md_wakeup_thread(mddev->thread);
5821 else if (mddev->safemode_delay)
5822 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5823 }
5824 }
5825
5826 /* md_allow_write(mddev)
5827 * Calling this ensures that the array is marked 'active' so that writes
5828 * may proceed without blocking. It is important to call this before
5829 * attempting a GFP_KERNEL allocation while holding the mddev lock.
5830 * Must be called with mddev_lock held.
5831 *
5832 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
5833 * is dropped, so return -EAGAIN after notifying userspace.
5834 */
5835 int md_allow_write(mddev_t *mddev)
5836 {
5837 if (!mddev->pers)
5838 return 0;
5839 if (mddev->ro)
5840 return 0;
5841 if (!mddev->pers->sync_request)
5842 return 0;
5843
5844 spin_lock_irq(&mddev->write_lock);
5845 if (mddev->in_sync) {
5846 mddev->in_sync = 0;
5847 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5848 if (mddev->safemode_delay &&
5849 mddev->safemode == 0)
5850 mddev->safemode = 1;
5851 spin_unlock_irq(&mddev->write_lock);
5852 md_update_sb(mddev, 0);
5853 sysfs_notify_dirent(mddev->sysfs_state);
5854 } else
5855 spin_unlock_irq(&mddev->write_lock);
5856
5857 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
5858 return -EAGAIN;
5859 else
5860 return 0;
5861 }
5862 EXPORT_SYMBOL_GPL(md_allow_write);
5863
5864 #define SYNC_MARKS 10
5865 #define SYNC_MARK_STEP (3*HZ)
5866 void md_do_sync(mddev_t *mddev)
5867 {
5868 mddev_t *mddev2;
5869 unsigned int currspeed = 0,
5870 window;
5871 sector_t max_sectors,j, io_sectors;
5872 unsigned long mark[SYNC_MARKS];
5873 sector_t mark_cnt[SYNC_MARKS];
5874 int last_mark,m;
5875 struct list_head *tmp;
5876 sector_t last_check;
5877 int skipped = 0;
5878 mdk_rdev_t *rdev;
5879 char *desc;
5880
5881 /* just incase thread restarts... */
5882 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5883 return;
5884 if (mddev->ro) /* never try to sync a read-only array */
5885 return;
5886
5887 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5888 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5889 desc = "data-check";
5890 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5891 desc = "requested-resync";
5892 else
5893 desc = "resync";
5894 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5895 desc = "reshape";
5896 else
5897 desc = "recovery";
5898
5899 /* we overload curr_resync somewhat here.
5900 * 0 == not engaged in resync at all
5901 * 2 == checking that there is no conflict with another sync
5902 * 1 == like 2, but have yielded to allow conflicting resync to
5903 * commense
5904 * other == active in resync - this many blocks
5905 *
5906 * Before starting a resync we must have set curr_resync to
5907 * 2, and then checked that every "conflicting" array has curr_resync
5908 * less than ours. When we find one that is the same or higher
5909 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5910 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5911 * This will mean we have to start checking from the beginning again.
5912 *
5913 */
5914
5915 do {
5916 mddev->curr_resync = 2;
5917
5918 try_again:
5919 if (kthread_should_stop()) {
5920 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5921 goto skip;
5922 }
5923 for_each_mddev(mddev2, tmp) {
5924 if (mddev2 == mddev)
5925 continue;
5926 if (!mddev->parallel_resync
5927 && mddev2->curr_resync
5928 && match_mddev_units(mddev, mddev2)) {
5929 DEFINE_WAIT(wq);
5930 if (mddev < mddev2 && mddev->curr_resync == 2) {
5931 /* arbitrarily yield */
5932 mddev->curr_resync = 1;
5933 wake_up(&resync_wait);
5934 }
5935 if (mddev > mddev2 && mddev->curr_resync == 1)
5936 /* no need to wait here, we can wait the next
5937 * time 'round when curr_resync == 2
5938 */
5939 continue;
5940 /* We need to wait 'interruptible' so as not to
5941 * contribute to the load average, and not to
5942 * be caught by 'softlockup'
5943 */
5944 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
5945 if (!kthread_should_stop() &&
5946 mddev2->curr_resync >= mddev->curr_resync) {
5947 printk(KERN_INFO "md: delaying %s of %s"
5948 " until %s has finished (they"
5949 " share one or more physical units)\n",
5950 desc, mdname(mddev), mdname(mddev2));
5951 mddev_put(mddev2);
5952 if (signal_pending(current))
5953 flush_signals(current);
5954 schedule();
5955 finish_wait(&resync_wait, &wq);
5956 goto try_again;
5957 }
5958 finish_wait(&resync_wait, &wq);
5959 }
5960 }
5961 } while (mddev->curr_resync < 2);
5962
5963 j = 0;
5964 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5965 /* resync follows the size requested by the personality,
5966 * which defaults to physical size, but can be virtual size
5967 */
5968 max_sectors = mddev->resync_max_sectors;
5969 mddev->resync_mismatches = 0;
5970 /* we don't use the checkpoint if there's a bitmap */
5971 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5972 j = mddev->resync_min;
5973 else if (!mddev->bitmap)
5974 j = mddev->recovery_cp;
5975
5976 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5977 max_sectors = mddev->size << 1;
5978 else {
5979 /* recovery follows the physical size of devices */
5980 max_sectors = mddev->size << 1;
5981 j = MaxSector;
5982 list_for_each_entry(rdev, &mddev->disks, same_set)
5983 if (rdev->raid_disk >= 0 &&
5984 !test_bit(Faulty, &rdev->flags) &&
5985 !test_bit(In_sync, &rdev->flags) &&
5986 rdev->recovery_offset < j)
5987 j = rdev->recovery_offset;
5988 }
5989
5990 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5991 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
5992 " %d KB/sec/disk.\n", speed_min(mddev));
5993 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5994 "(but not more than %d KB/sec) for %s.\n",
5995 speed_max(mddev), desc);
5996
5997 is_mddev_idle(mddev); /* this also initializes IO event counters */
5998
5999 io_sectors = 0;
6000 for (m = 0; m < SYNC_MARKS; m++) {
6001 mark[m] = jiffies;
6002 mark_cnt[m] = io_sectors;
6003 }
6004 last_mark = 0;
6005 mddev->resync_mark = mark[last_mark];
6006 mddev->resync_mark_cnt = mark_cnt[last_mark];
6007
6008 /*
6009 * Tune reconstruction:
6010 */
6011 window = 32*(PAGE_SIZE/512);
6012 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6013 window/2,(unsigned long long) max_sectors/2);
6014
6015 atomic_set(&mddev->recovery_active, 0);
6016 last_check = 0;
6017
6018 if (j>2) {
6019 printk(KERN_INFO
6020 "md: resuming %s of %s from checkpoint.\n",
6021 desc, mdname(mddev));
6022 mddev->curr_resync = j;
6023 }
6024
6025 while (j < max_sectors) {
6026 sector_t sectors;
6027
6028 skipped = 0;
6029 if (j >= mddev->resync_max) {
6030 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6031 wait_event(mddev->recovery_wait,
6032 mddev->resync_max > j
6033 || kthread_should_stop());
6034 }
6035 if (kthread_should_stop())
6036 goto interrupted;
6037 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6038 currspeed < speed_min(mddev));
6039 if (sectors == 0) {
6040 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6041 goto out;
6042 }
6043
6044 if (!skipped) { /* actual IO requested */
6045 io_sectors += sectors;
6046 atomic_add(sectors, &mddev->recovery_active);
6047 }
6048
6049 j += sectors;
6050 if (j>1) mddev->curr_resync = j;
6051 mddev->curr_mark_cnt = io_sectors;
6052 if (last_check == 0)
6053 /* this is the earliers that rebuilt will be
6054 * visible in /proc/mdstat
6055 */
6056 md_new_event(mddev);
6057
6058 if (last_check + window > io_sectors || j == max_sectors)
6059 continue;
6060
6061 last_check = io_sectors;
6062
6063 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6064 break;
6065
6066 repeat:
6067 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6068 /* step marks */
6069 int next = (last_mark+1) % SYNC_MARKS;
6070
6071 mddev->resync_mark = mark[next];
6072 mddev->resync_mark_cnt = mark_cnt[next];
6073 mark[next] = jiffies;
6074 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6075 last_mark = next;
6076 }
6077
6078
6079 if (kthread_should_stop())
6080 goto interrupted;
6081
6082
6083 /*
6084 * this loop exits only if either when we are slower than
6085 * the 'hard' speed limit, or the system was IO-idle for
6086 * a jiffy.
6087 * the system might be non-idle CPU-wise, but we only care
6088 * about not overloading the IO subsystem. (things like an
6089 * e2fsck being done on the RAID array should execute fast)
6090 */
6091 blk_unplug(mddev->queue);
6092 cond_resched();
6093
6094 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6095 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6096
6097 if (currspeed > speed_min(mddev)) {
6098 if ((currspeed > speed_max(mddev)) ||
6099 !is_mddev_idle(mddev)) {
6100 msleep(500);
6101 goto repeat;
6102 }
6103 }
6104 }
6105 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6106 /*
6107 * this also signals 'finished resyncing' to md_stop
6108 */
6109 out:
6110 blk_unplug(mddev->queue);
6111
6112 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6113
6114 /* tell personality that we are finished */
6115 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6116
6117 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6118 mddev->curr_resync > 2) {
6119 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6120 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6121 if (mddev->curr_resync >= mddev->recovery_cp) {
6122 printk(KERN_INFO
6123 "md: checkpointing %s of %s.\n",
6124 desc, mdname(mddev));
6125 mddev->recovery_cp = mddev->curr_resync;
6126 }
6127 } else
6128 mddev->recovery_cp = MaxSector;
6129 } else {
6130 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6131 mddev->curr_resync = MaxSector;
6132 list_for_each_entry(rdev, &mddev->disks, same_set)
6133 if (rdev->raid_disk >= 0 &&
6134 !test_bit(Faulty, &rdev->flags) &&
6135 !test_bit(In_sync, &rdev->flags) &&
6136 rdev->recovery_offset < mddev->curr_resync)
6137 rdev->recovery_offset = mddev->curr_resync;
6138 }
6139 }
6140 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6141
6142 skip:
6143 mddev->curr_resync = 0;
6144 mddev->resync_min = 0;
6145 mddev->resync_max = MaxSector;
6146 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6147 wake_up(&resync_wait);
6148 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6149 md_wakeup_thread(mddev->thread);
6150 return;
6151
6152 interrupted:
6153 /*
6154 * got a signal, exit.
6155 */
6156 printk(KERN_INFO
6157 "md: md_do_sync() got signal ... exiting\n");
6158 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6159 goto out;
6160
6161 }
6162 EXPORT_SYMBOL_GPL(md_do_sync);
6163
6164
6165 static int remove_and_add_spares(mddev_t *mddev)
6166 {
6167 mdk_rdev_t *rdev;
6168 int spares = 0;
6169
6170 list_for_each_entry(rdev, &mddev->disks, same_set)
6171 if (rdev->raid_disk >= 0 &&
6172 !test_bit(Blocked, &rdev->flags) &&
6173 (test_bit(Faulty, &rdev->flags) ||
6174 ! test_bit(In_sync, &rdev->flags)) &&
6175 atomic_read(&rdev->nr_pending)==0) {
6176 if (mddev->pers->hot_remove_disk(
6177 mddev, rdev->raid_disk)==0) {
6178 char nm[20];
6179 sprintf(nm,"rd%d", rdev->raid_disk);
6180 sysfs_remove_link(&mddev->kobj, nm);
6181 rdev->raid_disk = -1;
6182 }
6183 }
6184
6185 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6186 list_for_each_entry(rdev, &mddev->disks, same_set) {
6187 if (rdev->raid_disk >= 0 &&
6188 !test_bit(In_sync, &rdev->flags) &&
6189 !test_bit(Blocked, &rdev->flags))
6190 spares++;
6191 if (rdev->raid_disk < 0
6192 && !test_bit(Faulty, &rdev->flags)) {
6193 rdev->recovery_offset = 0;
6194 if (mddev->pers->
6195 hot_add_disk(mddev, rdev) == 0) {
6196 char nm[20];
6197 sprintf(nm, "rd%d", rdev->raid_disk);
6198 if (sysfs_create_link(&mddev->kobj,
6199 &rdev->kobj, nm))
6200 printk(KERN_WARNING
6201 "md: cannot register "
6202 "%s for %s\n",
6203 nm, mdname(mddev));
6204 spares++;
6205 md_new_event(mddev);
6206 } else
6207 break;
6208 }
6209 }
6210 }
6211 return spares;
6212 }
6213 /*
6214 * This routine is regularly called by all per-raid-array threads to
6215 * deal with generic issues like resync and super-block update.
6216 * Raid personalities that don't have a thread (linear/raid0) do not
6217 * need this as they never do any recovery or update the superblock.
6218 *
6219 * It does not do any resync itself, but rather "forks" off other threads
6220 * to do that as needed.
6221 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6222 * "->recovery" and create a thread at ->sync_thread.
6223 * When the thread finishes it sets MD_RECOVERY_DONE
6224 * and wakeups up this thread which will reap the thread and finish up.
6225 * This thread also removes any faulty devices (with nr_pending == 0).
6226 *
6227 * The overall approach is:
6228 * 1/ if the superblock needs updating, update it.
6229 * 2/ If a recovery thread is running, don't do anything else.
6230 * 3/ If recovery has finished, clean up, possibly marking spares active.
6231 * 4/ If there are any faulty devices, remove them.
6232 * 5/ If array is degraded, try to add spares devices
6233 * 6/ If array has spares or is not in-sync, start a resync thread.
6234 */
6235 void md_check_recovery(mddev_t *mddev)
6236 {
6237 mdk_rdev_t *rdev;
6238
6239
6240 if (mddev->bitmap)
6241 bitmap_daemon_work(mddev->bitmap);
6242
6243 if (mddev->ro)
6244 return;
6245
6246 if (signal_pending(current)) {
6247 if (mddev->pers->sync_request && !mddev->external) {
6248 printk(KERN_INFO "md: %s in immediate safe mode\n",
6249 mdname(mddev));
6250 mddev->safemode = 2;
6251 }
6252 flush_signals(current);
6253 }
6254
6255 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6256 return;
6257 if ( ! (
6258 (mddev->flags && !mddev->external) ||
6259 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6260 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6261 (mddev->external == 0 && mddev->safemode == 1) ||
6262 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6263 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6264 ))
6265 return;
6266
6267 if (mddev_trylock(mddev)) {
6268 int spares = 0;
6269
6270 if (mddev->ro) {
6271 /* Only thing we do on a ro array is remove
6272 * failed devices.
6273 */
6274 remove_and_add_spares(mddev);
6275 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6276 goto unlock;
6277 }
6278
6279 if (!mddev->external) {
6280 int did_change = 0;
6281 spin_lock_irq(&mddev->write_lock);
6282 if (mddev->safemode &&
6283 !atomic_read(&mddev->writes_pending) &&
6284 !mddev->in_sync &&
6285 mddev->recovery_cp == MaxSector) {
6286 mddev->in_sync = 1;
6287 did_change = 1;
6288 if (mddev->persistent)
6289 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6290 }
6291 if (mddev->safemode == 1)
6292 mddev->safemode = 0;
6293 spin_unlock_irq(&mddev->write_lock);
6294 if (did_change)
6295 sysfs_notify_dirent(mddev->sysfs_state);
6296 }
6297
6298 if (mddev->flags)
6299 md_update_sb(mddev, 0);
6300
6301 list_for_each_entry(rdev, &mddev->disks, same_set)
6302 if (test_and_clear_bit(StateChanged, &rdev->flags))
6303 sysfs_notify_dirent(rdev->sysfs_state);
6304
6305
6306 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6307 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6308 /* resync/recovery still happening */
6309 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6310 goto unlock;
6311 }
6312 if (mddev->sync_thread) {
6313 /* resync has finished, collect result */
6314 md_unregister_thread(mddev->sync_thread);
6315 mddev->sync_thread = NULL;
6316 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6317 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6318 /* success...*/
6319 /* activate any spares */
6320 if (mddev->pers->spare_active(mddev))
6321 sysfs_notify(&mddev->kobj, NULL,
6322 "degraded");
6323 }
6324 md_update_sb(mddev, 1);
6325
6326 /* if array is no-longer degraded, then any saved_raid_disk
6327 * information must be scrapped
6328 */
6329 if (!mddev->degraded)
6330 list_for_each_entry(rdev, &mddev->disks, same_set)
6331 rdev->saved_raid_disk = -1;
6332
6333 mddev->recovery = 0;
6334 /* flag recovery needed just to double check */
6335 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6336 sysfs_notify_dirent(mddev->sysfs_action);
6337 md_new_event(mddev);
6338 goto unlock;
6339 }
6340 /* Set RUNNING before clearing NEEDED to avoid
6341 * any transients in the value of "sync_action".
6342 */
6343 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6344 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6345 /* Clear some bits that don't mean anything, but
6346 * might be left set
6347 */
6348 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6349 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6350
6351 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6352 goto unlock;
6353 /* no recovery is running.
6354 * remove any failed drives, then
6355 * add spares if possible.
6356 * Spare are also removed and re-added, to allow
6357 * the personality to fail the re-add.
6358 */
6359
6360 if (mddev->reshape_position != MaxSector) {
6361 if (mddev->pers->check_reshape(mddev) != 0)
6362 /* Cannot proceed */
6363 goto unlock;
6364 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6365 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6366 } else if ((spares = remove_and_add_spares(mddev))) {
6367 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6368 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6369 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6370 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6371 } else if (mddev->recovery_cp < MaxSector) {
6372 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6373 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6374 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6375 /* nothing to be done ... */
6376 goto unlock;
6377
6378 if (mddev->pers->sync_request) {
6379 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6380 /* We are adding a device or devices to an array
6381 * which has the bitmap stored on all devices.
6382 * So make sure all bitmap pages get written
6383 */
6384 bitmap_write_all(mddev->bitmap);
6385 }
6386 mddev->sync_thread = md_register_thread(md_do_sync,
6387 mddev,
6388 "%s_resync");
6389 if (!mddev->sync_thread) {
6390 printk(KERN_ERR "%s: could not start resync"
6391 " thread...\n",
6392 mdname(mddev));
6393 /* leave the spares where they are, it shouldn't hurt */
6394 mddev->recovery = 0;
6395 } else
6396 md_wakeup_thread(mddev->sync_thread);
6397 sysfs_notify_dirent(mddev->sysfs_action);
6398 md_new_event(mddev);
6399 }
6400 unlock:
6401 if (!mddev->sync_thread) {
6402 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6403 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6404 &mddev->recovery))
6405 if (mddev->sysfs_action)
6406 sysfs_notify_dirent(mddev->sysfs_action);
6407 }
6408 mddev_unlock(mddev);
6409 }
6410 }
6411
6412 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6413 {
6414 sysfs_notify_dirent(rdev->sysfs_state);
6415 wait_event_timeout(rdev->blocked_wait,
6416 !test_bit(Blocked, &rdev->flags),
6417 msecs_to_jiffies(5000));
6418 rdev_dec_pending(rdev, mddev);
6419 }
6420 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6421
6422 static int md_notify_reboot(struct notifier_block *this,
6423 unsigned long code, void *x)
6424 {
6425 struct list_head *tmp;
6426 mddev_t *mddev;
6427
6428 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6429
6430 printk(KERN_INFO "md: stopping all md devices.\n");
6431
6432 for_each_mddev(mddev, tmp)
6433 if (mddev_trylock(mddev)) {
6434 /* Force a switch to readonly even array
6435 * appears to still be in use. Hence
6436 * the '100'.
6437 */
6438 do_md_stop(mddev, 1, 100);
6439 mddev_unlock(mddev);
6440 }
6441 /*
6442 * certain more exotic SCSI devices are known to be
6443 * volatile wrt too early system reboots. While the
6444 * right place to handle this issue is the given
6445 * driver, we do want to have a safe RAID driver ...
6446 */
6447 mdelay(1000*1);
6448 }
6449 return NOTIFY_DONE;
6450 }
6451
6452 static struct notifier_block md_notifier = {
6453 .notifier_call = md_notify_reboot,
6454 .next = NULL,
6455 .priority = INT_MAX, /* before any real devices */
6456 };
6457
6458 static void md_geninit(void)
6459 {
6460 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6461
6462 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6463 }
6464
6465 static int __init md_init(void)
6466 {
6467 if (register_blkdev(MAJOR_NR, "md"))
6468 return -1;
6469 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6470 unregister_blkdev(MAJOR_NR, "md");
6471 return -1;
6472 }
6473 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
6474 md_probe, NULL, NULL);
6475 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6476 md_probe, NULL, NULL);
6477
6478 register_reboot_notifier(&md_notifier);
6479 raid_table_header = register_sysctl_table(raid_root_table);
6480
6481 md_geninit();
6482 return 0;
6483 }
6484
6485
6486 #ifndef MODULE
6487
6488 /*
6489 * Searches all registered partitions for autorun RAID arrays
6490 * at boot time.
6491 */
6492
6493 static LIST_HEAD(all_detected_devices);
6494 struct detected_devices_node {
6495 struct list_head list;
6496 dev_t dev;
6497 };
6498
6499 void md_autodetect_dev(dev_t dev)
6500 {
6501 struct detected_devices_node *node_detected_dev;
6502
6503 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6504 if (node_detected_dev) {
6505 node_detected_dev->dev = dev;
6506 list_add_tail(&node_detected_dev->list, &all_detected_devices);
6507 } else {
6508 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6509 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6510 }
6511 }
6512
6513
6514 static void autostart_arrays(int part)
6515 {
6516 mdk_rdev_t *rdev;
6517 struct detected_devices_node *node_detected_dev;
6518 dev_t dev;
6519 int i_scanned, i_passed;
6520
6521 i_scanned = 0;
6522 i_passed = 0;
6523
6524 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6525
6526 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6527 i_scanned++;
6528 node_detected_dev = list_entry(all_detected_devices.next,
6529 struct detected_devices_node, list);
6530 list_del(&node_detected_dev->list);
6531 dev = node_detected_dev->dev;
6532 kfree(node_detected_dev);
6533 rdev = md_import_device(dev,0, 90);
6534 if (IS_ERR(rdev))
6535 continue;
6536
6537 if (test_bit(Faulty, &rdev->flags)) {
6538 MD_BUG();
6539 continue;
6540 }
6541 set_bit(AutoDetected, &rdev->flags);
6542 list_add(&rdev->same_set, &pending_raid_disks);
6543 i_passed++;
6544 }
6545
6546 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6547 i_scanned, i_passed);
6548
6549 autorun_devices(part);
6550 }
6551
6552 #endif /* !MODULE */
6553
6554 static __exit void md_exit(void)
6555 {
6556 mddev_t *mddev;
6557 struct list_head *tmp;
6558
6559 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
6560 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6561
6562 unregister_blkdev(MAJOR_NR,"md");
6563 unregister_blkdev(mdp_major, "mdp");
6564 unregister_reboot_notifier(&md_notifier);
6565 unregister_sysctl_table(raid_table_header);
6566 remove_proc_entry("mdstat", NULL);
6567 for_each_mddev(mddev, tmp) {
6568 export_array(mddev);
6569 mddev->hold_active = 0;
6570 }
6571 }
6572
6573 subsys_initcall(md_init);
6574 module_exit(md_exit)
6575
6576 static int get_ro(char *buffer, struct kernel_param *kp)
6577 {
6578 return sprintf(buffer, "%d", start_readonly);
6579 }
6580 static int set_ro(const char *val, struct kernel_param *kp)
6581 {
6582 char *e;
6583 int num = simple_strtoul(val, &e, 10);
6584 if (*val && (*e == '\0' || *e == '\n')) {
6585 start_readonly = num;
6586 return 0;
6587 }
6588 return -EINVAL;
6589 }
6590
6591 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6592 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6593
6594 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
6595
6596 EXPORT_SYMBOL(register_md_personality);
6597 EXPORT_SYMBOL(unregister_md_personality);
6598 EXPORT_SYMBOL(md_error);
6599 EXPORT_SYMBOL(md_done_sync);
6600 EXPORT_SYMBOL(md_write_start);
6601 EXPORT_SYMBOL(md_write_end);
6602 EXPORT_SYMBOL(md_register_thread);
6603 EXPORT_SYMBOL(md_unregister_thread);
6604 EXPORT_SYMBOL(md_wakeup_thread);
6605 EXPORT_SYMBOL(md_check_recovery);
6606 MODULE_LICENSE("GPL");
6607 MODULE_ALIAS("md");
6608 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);