Make sure all changes to md/degraded are notified.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
47
48 #include <linux/init.h>
49
50 #include <linux/file.h>
51
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
55
56 #include <asm/unaligned.h>
57
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
60
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
63
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66
67
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
71
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
74
75 static void md_print_devices(void);
76
77 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
78
79 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
80
81 /*
82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83 * is 1000 KB/sec, so the extra system load does not show up that much.
84 * Increase it if you want to have more _guaranteed_ speed. Note that
85 * the RAID driver will use the maximum available bandwidth if the IO
86 * subsystem is idle. There is also an 'absolute maximum' reconstruction
87 * speed limit - in case reconstruction slows down your system despite
88 * idle IO detection.
89 *
90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91 * or /sys/block/mdX/md/sync_speed_{min,max}
92 */
93
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
97 {
98 return mddev->sync_speed_min ?
99 mddev->sync_speed_min : sysctl_speed_limit_min;
100 }
101
102 static inline int speed_max(mddev_t *mddev)
103 {
104 return mddev->sync_speed_max ?
105 mddev->sync_speed_max : sysctl_speed_limit_max;
106 }
107
108 static struct ctl_table_header *raid_table_header;
109
110 static ctl_table raid_table[] = {
111 {
112 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
113 .procname = "speed_limit_min",
114 .data = &sysctl_speed_limit_min,
115 .maxlen = sizeof(int),
116 .mode = S_IRUGO|S_IWUSR,
117 .proc_handler = &proc_dointvec,
118 },
119 {
120 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = &proc_dointvec,
126 },
127 { .ctl_name = 0 }
128 };
129
130 static ctl_table raid_dir_table[] = {
131 {
132 .ctl_name = DEV_RAID,
133 .procname = "raid",
134 .maxlen = 0,
135 .mode = S_IRUGO|S_IXUGO,
136 .child = raid_table,
137 },
138 { .ctl_name = 0 }
139 };
140
141 static ctl_table raid_root_table[] = {
142 {
143 .ctl_name = CTL_DEV,
144 .procname = "dev",
145 .maxlen = 0,
146 .mode = 0555,
147 .child = raid_dir_table,
148 },
149 { .ctl_name = 0 }
150 };
151
152 static struct block_device_operations md_fops;
153
154 static int start_readonly;
155
156 /*
157 * We have a system wide 'event count' that is incremented
158 * on any 'interesting' event, and readers of /proc/mdstat
159 * can use 'poll' or 'select' to find out when the event
160 * count increases.
161 *
162 * Events are:
163 * start array, stop array, error, add device, remove device,
164 * start build, activate spare
165 */
166 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
167 static atomic_t md_event_count;
168 void md_new_event(mddev_t *mddev)
169 {
170 atomic_inc(&md_event_count);
171 wake_up(&md_event_waiters);
172 }
173 EXPORT_SYMBOL_GPL(md_new_event);
174
175 /* Alternate version that can be called from interrupts
176 * when calling sysfs_notify isn't needed.
177 */
178 static void md_new_event_inintr(mddev_t *mddev)
179 {
180 atomic_inc(&md_event_count);
181 wake_up(&md_event_waiters);
182 }
183
184 /*
185 * Enables to iterate over all existing md arrays
186 * all_mddevs_lock protects this list.
187 */
188 static LIST_HEAD(all_mddevs);
189 static DEFINE_SPINLOCK(all_mddevs_lock);
190
191
192 /*
193 * iterates through all used mddevs in the system.
194 * We take care to grab the all_mddevs_lock whenever navigating
195 * the list, and to always hold a refcount when unlocked.
196 * Any code which breaks out of this loop while own
197 * a reference to the current mddev and must mddev_put it.
198 */
199 #define for_each_mddev(mddev,tmp) \
200 \
201 for (({ spin_lock(&all_mddevs_lock); \
202 tmp = all_mddevs.next; \
203 mddev = NULL;}); \
204 ({ if (tmp != &all_mddevs) \
205 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
206 spin_unlock(&all_mddevs_lock); \
207 if (mddev) mddev_put(mddev); \
208 mddev = list_entry(tmp, mddev_t, all_mddevs); \
209 tmp != &all_mddevs;}); \
210 ({ spin_lock(&all_mddevs_lock); \
211 tmp = tmp->next;}) \
212 )
213
214
215 static int md_fail_request (struct request_queue *q, struct bio *bio)
216 {
217 bio_io_error(bio);
218 return 0;
219 }
220
221 static inline mddev_t *mddev_get(mddev_t *mddev)
222 {
223 atomic_inc(&mddev->active);
224 return mddev;
225 }
226
227 static void mddev_put(mddev_t *mddev)
228 {
229 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
230 return;
231 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
232 list_del(&mddev->all_mddevs);
233 spin_unlock(&all_mddevs_lock);
234 blk_cleanup_queue(mddev->queue);
235 kobject_put(&mddev->kobj);
236 } else
237 spin_unlock(&all_mddevs_lock);
238 }
239
240 static mddev_t * mddev_find(dev_t unit)
241 {
242 mddev_t *mddev, *new = NULL;
243
244 retry:
245 spin_lock(&all_mddevs_lock);
246 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
247 if (mddev->unit == unit) {
248 mddev_get(mddev);
249 spin_unlock(&all_mddevs_lock);
250 kfree(new);
251 return mddev;
252 }
253
254 if (new) {
255 list_add(&new->all_mddevs, &all_mddevs);
256 spin_unlock(&all_mddevs_lock);
257 return new;
258 }
259 spin_unlock(&all_mddevs_lock);
260
261 new = kzalloc(sizeof(*new), GFP_KERNEL);
262 if (!new)
263 return NULL;
264
265 new->unit = unit;
266 if (MAJOR(unit) == MD_MAJOR)
267 new->md_minor = MINOR(unit);
268 else
269 new->md_minor = MINOR(unit) >> MdpMinorShift;
270
271 mutex_init(&new->reconfig_mutex);
272 INIT_LIST_HEAD(&new->disks);
273 INIT_LIST_HEAD(&new->all_mddevs);
274 init_timer(&new->safemode_timer);
275 atomic_set(&new->active, 1);
276 spin_lock_init(&new->write_lock);
277 init_waitqueue_head(&new->sb_wait);
278 init_waitqueue_head(&new->recovery_wait);
279 new->reshape_position = MaxSector;
280 new->resync_min = 0;
281 new->resync_max = MaxSector;
282 new->level = LEVEL_NONE;
283
284 new->queue = blk_alloc_queue(GFP_KERNEL);
285 if (!new->queue) {
286 kfree(new);
287 return NULL;
288 }
289 /* Can be unlocked because the queue is new: no concurrency */
290 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, new->queue);
291
292 blk_queue_make_request(new->queue, md_fail_request);
293
294 goto retry;
295 }
296
297 static inline int mddev_lock(mddev_t * mddev)
298 {
299 return mutex_lock_interruptible(&mddev->reconfig_mutex);
300 }
301
302 static inline int mddev_trylock(mddev_t * mddev)
303 {
304 return mutex_trylock(&mddev->reconfig_mutex);
305 }
306
307 static inline void mddev_unlock(mddev_t * mddev)
308 {
309 mutex_unlock(&mddev->reconfig_mutex);
310
311 md_wakeup_thread(mddev->thread);
312 }
313
314 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
315 {
316 mdk_rdev_t * rdev;
317 struct list_head *tmp;
318
319 rdev_for_each(rdev, tmp, mddev) {
320 if (rdev->desc_nr == nr)
321 return rdev;
322 }
323 return NULL;
324 }
325
326 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
327 {
328 struct list_head *tmp;
329 mdk_rdev_t *rdev;
330
331 rdev_for_each(rdev, tmp, mddev) {
332 if (rdev->bdev->bd_dev == dev)
333 return rdev;
334 }
335 return NULL;
336 }
337
338 static struct mdk_personality *find_pers(int level, char *clevel)
339 {
340 struct mdk_personality *pers;
341 list_for_each_entry(pers, &pers_list, list) {
342 if (level != LEVEL_NONE && pers->level == level)
343 return pers;
344 if (strcmp(pers->name, clevel)==0)
345 return pers;
346 }
347 return NULL;
348 }
349
350 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
351 {
352 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
353 return MD_NEW_SIZE_BLOCKS(size);
354 }
355
356 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
357 {
358 sector_t size;
359
360 size = rdev->sb_offset;
361
362 if (chunk_size)
363 size &= ~((sector_t)chunk_size/1024 - 1);
364 return size;
365 }
366
367 static int alloc_disk_sb(mdk_rdev_t * rdev)
368 {
369 if (rdev->sb_page)
370 MD_BUG();
371
372 rdev->sb_page = alloc_page(GFP_KERNEL);
373 if (!rdev->sb_page) {
374 printk(KERN_ALERT "md: out of memory.\n");
375 return -EINVAL;
376 }
377
378 return 0;
379 }
380
381 static void free_disk_sb(mdk_rdev_t * rdev)
382 {
383 if (rdev->sb_page) {
384 put_page(rdev->sb_page);
385 rdev->sb_loaded = 0;
386 rdev->sb_page = NULL;
387 rdev->sb_offset = 0;
388 rdev->size = 0;
389 }
390 }
391
392
393 static void super_written(struct bio *bio, int error)
394 {
395 mdk_rdev_t *rdev = bio->bi_private;
396 mddev_t *mddev = rdev->mddev;
397
398 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
399 printk("md: super_written gets error=%d, uptodate=%d\n",
400 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
401 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
402 md_error(mddev, rdev);
403 }
404
405 if (atomic_dec_and_test(&mddev->pending_writes))
406 wake_up(&mddev->sb_wait);
407 bio_put(bio);
408 }
409
410 static void super_written_barrier(struct bio *bio, int error)
411 {
412 struct bio *bio2 = bio->bi_private;
413 mdk_rdev_t *rdev = bio2->bi_private;
414 mddev_t *mddev = rdev->mddev;
415
416 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
417 error == -EOPNOTSUPP) {
418 unsigned long flags;
419 /* barriers don't appear to be supported :-( */
420 set_bit(BarriersNotsupp, &rdev->flags);
421 mddev->barriers_work = 0;
422 spin_lock_irqsave(&mddev->write_lock, flags);
423 bio2->bi_next = mddev->biolist;
424 mddev->biolist = bio2;
425 spin_unlock_irqrestore(&mddev->write_lock, flags);
426 wake_up(&mddev->sb_wait);
427 bio_put(bio);
428 } else {
429 bio_put(bio2);
430 bio->bi_private = rdev;
431 super_written(bio, error);
432 }
433 }
434
435 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
436 sector_t sector, int size, struct page *page)
437 {
438 /* write first size bytes of page to sector of rdev
439 * Increment mddev->pending_writes before returning
440 * and decrement it on completion, waking up sb_wait
441 * if zero is reached.
442 * If an error occurred, call md_error
443 *
444 * As we might need to resubmit the request if BIO_RW_BARRIER
445 * causes ENOTSUPP, we allocate a spare bio...
446 */
447 struct bio *bio = bio_alloc(GFP_NOIO, 1);
448 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
449
450 bio->bi_bdev = rdev->bdev;
451 bio->bi_sector = sector;
452 bio_add_page(bio, page, size, 0);
453 bio->bi_private = rdev;
454 bio->bi_end_io = super_written;
455 bio->bi_rw = rw;
456
457 atomic_inc(&mddev->pending_writes);
458 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
459 struct bio *rbio;
460 rw |= (1<<BIO_RW_BARRIER);
461 rbio = bio_clone(bio, GFP_NOIO);
462 rbio->bi_private = bio;
463 rbio->bi_end_io = super_written_barrier;
464 submit_bio(rw, rbio);
465 } else
466 submit_bio(rw, bio);
467 }
468
469 void md_super_wait(mddev_t *mddev)
470 {
471 /* wait for all superblock writes that were scheduled to complete.
472 * if any had to be retried (due to BARRIER problems), retry them
473 */
474 DEFINE_WAIT(wq);
475 for(;;) {
476 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
477 if (atomic_read(&mddev->pending_writes)==0)
478 break;
479 while (mddev->biolist) {
480 struct bio *bio;
481 spin_lock_irq(&mddev->write_lock);
482 bio = mddev->biolist;
483 mddev->biolist = bio->bi_next ;
484 bio->bi_next = NULL;
485 spin_unlock_irq(&mddev->write_lock);
486 submit_bio(bio->bi_rw, bio);
487 }
488 schedule();
489 }
490 finish_wait(&mddev->sb_wait, &wq);
491 }
492
493 static void bi_complete(struct bio *bio, int error)
494 {
495 complete((struct completion*)bio->bi_private);
496 }
497
498 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
499 struct page *page, int rw)
500 {
501 struct bio *bio = bio_alloc(GFP_NOIO, 1);
502 struct completion event;
503 int ret;
504
505 rw |= (1 << BIO_RW_SYNC);
506
507 bio->bi_bdev = bdev;
508 bio->bi_sector = sector;
509 bio_add_page(bio, page, size, 0);
510 init_completion(&event);
511 bio->bi_private = &event;
512 bio->bi_end_io = bi_complete;
513 submit_bio(rw, bio);
514 wait_for_completion(&event);
515
516 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
517 bio_put(bio);
518 return ret;
519 }
520 EXPORT_SYMBOL_GPL(sync_page_io);
521
522 static int read_disk_sb(mdk_rdev_t * rdev, int size)
523 {
524 char b[BDEVNAME_SIZE];
525 if (!rdev->sb_page) {
526 MD_BUG();
527 return -EINVAL;
528 }
529 if (rdev->sb_loaded)
530 return 0;
531
532
533 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
534 goto fail;
535 rdev->sb_loaded = 1;
536 return 0;
537
538 fail:
539 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
540 bdevname(rdev->bdev,b));
541 return -EINVAL;
542 }
543
544 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
545 {
546 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
547 (sb1->set_uuid1 == sb2->set_uuid1) &&
548 (sb1->set_uuid2 == sb2->set_uuid2) &&
549 (sb1->set_uuid3 == sb2->set_uuid3))
550
551 return 1;
552
553 return 0;
554 }
555
556
557 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
558 {
559 int ret;
560 mdp_super_t *tmp1, *tmp2;
561
562 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
563 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
564
565 if (!tmp1 || !tmp2) {
566 ret = 0;
567 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
568 goto abort;
569 }
570
571 *tmp1 = *sb1;
572 *tmp2 = *sb2;
573
574 /*
575 * nr_disks is not constant
576 */
577 tmp1->nr_disks = 0;
578 tmp2->nr_disks = 0;
579
580 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
581 ret = 0;
582 else
583 ret = 1;
584
585 abort:
586 kfree(tmp1);
587 kfree(tmp2);
588 return ret;
589 }
590
591
592 static u32 md_csum_fold(u32 csum)
593 {
594 csum = (csum & 0xffff) + (csum >> 16);
595 return (csum & 0xffff) + (csum >> 16);
596 }
597
598 static unsigned int calc_sb_csum(mdp_super_t * sb)
599 {
600 u64 newcsum = 0;
601 u32 *sb32 = (u32*)sb;
602 int i;
603 unsigned int disk_csum, csum;
604
605 disk_csum = sb->sb_csum;
606 sb->sb_csum = 0;
607
608 for (i = 0; i < MD_SB_BYTES/4 ; i++)
609 newcsum += sb32[i];
610 csum = (newcsum & 0xffffffff) + (newcsum>>32);
611
612
613 #ifdef CONFIG_ALPHA
614 /* This used to use csum_partial, which was wrong for several
615 * reasons including that different results are returned on
616 * different architectures. It isn't critical that we get exactly
617 * the same return value as before (we always csum_fold before
618 * testing, and that removes any differences). However as we
619 * know that csum_partial always returned a 16bit value on
620 * alphas, do a fold to maximise conformity to previous behaviour.
621 */
622 sb->sb_csum = md_csum_fold(disk_csum);
623 #else
624 sb->sb_csum = disk_csum;
625 #endif
626 return csum;
627 }
628
629
630 /*
631 * Handle superblock details.
632 * We want to be able to handle multiple superblock formats
633 * so we have a common interface to them all, and an array of
634 * different handlers.
635 * We rely on user-space to write the initial superblock, and support
636 * reading and updating of superblocks.
637 * Interface methods are:
638 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
639 * loads and validates a superblock on dev.
640 * if refdev != NULL, compare superblocks on both devices
641 * Return:
642 * 0 - dev has a superblock that is compatible with refdev
643 * 1 - dev has a superblock that is compatible and newer than refdev
644 * so dev should be used as the refdev in future
645 * -EINVAL superblock incompatible or invalid
646 * -othererror e.g. -EIO
647 *
648 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
649 * Verify that dev is acceptable into mddev.
650 * The first time, mddev->raid_disks will be 0, and data from
651 * dev should be merged in. Subsequent calls check that dev
652 * is new enough. Return 0 or -EINVAL
653 *
654 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
655 * Update the superblock for rdev with data in mddev
656 * This does not write to disc.
657 *
658 */
659
660 struct super_type {
661 char *name;
662 struct module *owner;
663 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
664 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
665 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
666 };
667
668 /*
669 * load_super for 0.90.0
670 */
671 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
672 {
673 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
674 mdp_super_t *sb;
675 int ret;
676 sector_t sb_offset;
677
678 /*
679 * Calculate the position of the superblock,
680 * it's at the end of the disk.
681 *
682 * It also happens to be a multiple of 4Kb.
683 */
684 sb_offset = calc_dev_sboffset(rdev->bdev);
685 rdev->sb_offset = sb_offset;
686
687 ret = read_disk_sb(rdev, MD_SB_BYTES);
688 if (ret) return ret;
689
690 ret = -EINVAL;
691
692 bdevname(rdev->bdev, b);
693 sb = (mdp_super_t*)page_address(rdev->sb_page);
694
695 if (sb->md_magic != MD_SB_MAGIC) {
696 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
697 b);
698 goto abort;
699 }
700
701 if (sb->major_version != 0 ||
702 sb->minor_version < 90 ||
703 sb->minor_version > 91) {
704 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
705 sb->major_version, sb->minor_version,
706 b);
707 goto abort;
708 }
709
710 if (sb->raid_disks <= 0)
711 goto abort;
712
713 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
714 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
715 b);
716 goto abort;
717 }
718
719 rdev->preferred_minor = sb->md_minor;
720 rdev->data_offset = 0;
721 rdev->sb_size = MD_SB_BYTES;
722
723 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
724 if (sb->level != 1 && sb->level != 4
725 && sb->level != 5 && sb->level != 6
726 && sb->level != 10) {
727 /* FIXME use a better test */
728 printk(KERN_WARNING
729 "md: bitmaps not supported for this level.\n");
730 goto abort;
731 }
732 }
733
734 if (sb->level == LEVEL_MULTIPATH)
735 rdev->desc_nr = -1;
736 else
737 rdev->desc_nr = sb->this_disk.number;
738
739 if (!refdev) {
740 ret = 1;
741 } else {
742 __u64 ev1, ev2;
743 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
744 if (!uuid_equal(refsb, sb)) {
745 printk(KERN_WARNING "md: %s has different UUID to %s\n",
746 b, bdevname(refdev->bdev,b2));
747 goto abort;
748 }
749 if (!sb_equal(refsb, sb)) {
750 printk(KERN_WARNING "md: %s has same UUID"
751 " but different superblock to %s\n",
752 b, bdevname(refdev->bdev, b2));
753 goto abort;
754 }
755 ev1 = md_event(sb);
756 ev2 = md_event(refsb);
757 if (ev1 > ev2)
758 ret = 1;
759 else
760 ret = 0;
761 }
762 rdev->size = calc_dev_size(rdev, sb->chunk_size);
763
764 if (rdev->size < sb->size && sb->level > 1)
765 /* "this cannot possibly happen" ... */
766 ret = -EINVAL;
767
768 abort:
769 return ret;
770 }
771
772 /*
773 * validate_super for 0.90.0
774 */
775 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
776 {
777 mdp_disk_t *desc;
778 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
779 __u64 ev1 = md_event(sb);
780
781 rdev->raid_disk = -1;
782 clear_bit(Faulty, &rdev->flags);
783 clear_bit(In_sync, &rdev->flags);
784 clear_bit(WriteMostly, &rdev->flags);
785 clear_bit(BarriersNotsupp, &rdev->flags);
786
787 if (mddev->raid_disks == 0) {
788 mddev->major_version = 0;
789 mddev->minor_version = sb->minor_version;
790 mddev->patch_version = sb->patch_version;
791 mddev->external = 0;
792 mddev->chunk_size = sb->chunk_size;
793 mddev->ctime = sb->ctime;
794 mddev->utime = sb->utime;
795 mddev->level = sb->level;
796 mddev->clevel[0] = 0;
797 mddev->layout = sb->layout;
798 mddev->raid_disks = sb->raid_disks;
799 mddev->size = sb->size;
800 mddev->events = ev1;
801 mddev->bitmap_offset = 0;
802 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
803
804 if (mddev->minor_version >= 91) {
805 mddev->reshape_position = sb->reshape_position;
806 mddev->delta_disks = sb->delta_disks;
807 mddev->new_level = sb->new_level;
808 mddev->new_layout = sb->new_layout;
809 mddev->new_chunk = sb->new_chunk;
810 } else {
811 mddev->reshape_position = MaxSector;
812 mddev->delta_disks = 0;
813 mddev->new_level = mddev->level;
814 mddev->new_layout = mddev->layout;
815 mddev->new_chunk = mddev->chunk_size;
816 }
817
818 if (sb->state & (1<<MD_SB_CLEAN))
819 mddev->recovery_cp = MaxSector;
820 else {
821 if (sb->events_hi == sb->cp_events_hi &&
822 sb->events_lo == sb->cp_events_lo) {
823 mddev->recovery_cp = sb->recovery_cp;
824 } else
825 mddev->recovery_cp = 0;
826 }
827
828 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
829 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
830 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
831 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
832
833 mddev->max_disks = MD_SB_DISKS;
834
835 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
836 mddev->bitmap_file == NULL)
837 mddev->bitmap_offset = mddev->default_bitmap_offset;
838
839 } else if (mddev->pers == NULL) {
840 /* Insist on good event counter while assembling */
841 ++ev1;
842 if (ev1 < mddev->events)
843 return -EINVAL;
844 } else if (mddev->bitmap) {
845 /* if adding to array with a bitmap, then we can accept an
846 * older device ... but not too old.
847 */
848 if (ev1 < mddev->bitmap->events_cleared)
849 return 0;
850 } else {
851 if (ev1 < mddev->events)
852 /* just a hot-add of a new device, leave raid_disk at -1 */
853 return 0;
854 }
855
856 if (mddev->level != LEVEL_MULTIPATH) {
857 desc = sb->disks + rdev->desc_nr;
858
859 if (desc->state & (1<<MD_DISK_FAULTY))
860 set_bit(Faulty, &rdev->flags);
861 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
862 desc->raid_disk < mddev->raid_disks */) {
863 set_bit(In_sync, &rdev->flags);
864 rdev->raid_disk = desc->raid_disk;
865 }
866 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
867 set_bit(WriteMostly, &rdev->flags);
868 } else /* MULTIPATH are always insync */
869 set_bit(In_sync, &rdev->flags);
870 return 0;
871 }
872
873 /*
874 * sync_super for 0.90.0
875 */
876 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
877 {
878 mdp_super_t *sb;
879 struct list_head *tmp;
880 mdk_rdev_t *rdev2;
881 int next_spare = mddev->raid_disks;
882
883
884 /* make rdev->sb match mddev data..
885 *
886 * 1/ zero out disks
887 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
888 * 3/ any empty disks < next_spare become removed
889 *
890 * disks[0] gets initialised to REMOVED because
891 * we cannot be sure from other fields if it has
892 * been initialised or not.
893 */
894 int i;
895 int active=0, working=0,failed=0,spare=0,nr_disks=0;
896
897 rdev->sb_size = MD_SB_BYTES;
898
899 sb = (mdp_super_t*)page_address(rdev->sb_page);
900
901 memset(sb, 0, sizeof(*sb));
902
903 sb->md_magic = MD_SB_MAGIC;
904 sb->major_version = mddev->major_version;
905 sb->patch_version = mddev->patch_version;
906 sb->gvalid_words = 0; /* ignored */
907 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
908 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
909 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
910 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
911
912 sb->ctime = mddev->ctime;
913 sb->level = mddev->level;
914 sb->size = mddev->size;
915 sb->raid_disks = mddev->raid_disks;
916 sb->md_minor = mddev->md_minor;
917 sb->not_persistent = 0;
918 sb->utime = mddev->utime;
919 sb->state = 0;
920 sb->events_hi = (mddev->events>>32);
921 sb->events_lo = (u32)mddev->events;
922
923 if (mddev->reshape_position == MaxSector)
924 sb->minor_version = 90;
925 else {
926 sb->minor_version = 91;
927 sb->reshape_position = mddev->reshape_position;
928 sb->new_level = mddev->new_level;
929 sb->delta_disks = mddev->delta_disks;
930 sb->new_layout = mddev->new_layout;
931 sb->new_chunk = mddev->new_chunk;
932 }
933 mddev->minor_version = sb->minor_version;
934 if (mddev->in_sync)
935 {
936 sb->recovery_cp = mddev->recovery_cp;
937 sb->cp_events_hi = (mddev->events>>32);
938 sb->cp_events_lo = (u32)mddev->events;
939 if (mddev->recovery_cp == MaxSector)
940 sb->state = (1<< MD_SB_CLEAN);
941 } else
942 sb->recovery_cp = 0;
943
944 sb->layout = mddev->layout;
945 sb->chunk_size = mddev->chunk_size;
946
947 if (mddev->bitmap && mddev->bitmap_file == NULL)
948 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
949
950 sb->disks[0].state = (1<<MD_DISK_REMOVED);
951 rdev_for_each(rdev2, tmp, mddev) {
952 mdp_disk_t *d;
953 int desc_nr;
954 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
955 && !test_bit(Faulty, &rdev2->flags))
956 desc_nr = rdev2->raid_disk;
957 else
958 desc_nr = next_spare++;
959 rdev2->desc_nr = desc_nr;
960 d = &sb->disks[rdev2->desc_nr];
961 nr_disks++;
962 d->number = rdev2->desc_nr;
963 d->major = MAJOR(rdev2->bdev->bd_dev);
964 d->minor = MINOR(rdev2->bdev->bd_dev);
965 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
966 && !test_bit(Faulty, &rdev2->flags))
967 d->raid_disk = rdev2->raid_disk;
968 else
969 d->raid_disk = rdev2->desc_nr; /* compatibility */
970 if (test_bit(Faulty, &rdev2->flags))
971 d->state = (1<<MD_DISK_FAULTY);
972 else if (test_bit(In_sync, &rdev2->flags)) {
973 d->state = (1<<MD_DISK_ACTIVE);
974 d->state |= (1<<MD_DISK_SYNC);
975 active++;
976 working++;
977 } else {
978 d->state = 0;
979 spare++;
980 working++;
981 }
982 if (test_bit(WriteMostly, &rdev2->flags))
983 d->state |= (1<<MD_DISK_WRITEMOSTLY);
984 }
985 /* now set the "removed" and "faulty" bits on any missing devices */
986 for (i=0 ; i < mddev->raid_disks ; i++) {
987 mdp_disk_t *d = &sb->disks[i];
988 if (d->state == 0 && d->number == 0) {
989 d->number = i;
990 d->raid_disk = i;
991 d->state = (1<<MD_DISK_REMOVED);
992 d->state |= (1<<MD_DISK_FAULTY);
993 failed++;
994 }
995 }
996 sb->nr_disks = nr_disks;
997 sb->active_disks = active;
998 sb->working_disks = working;
999 sb->failed_disks = failed;
1000 sb->spare_disks = spare;
1001
1002 sb->this_disk = sb->disks[rdev->desc_nr];
1003 sb->sb_csum = calc_sb_csum(sb);
1004 }
1005
1006 /*
1007 * version 1 superblock
1008 */
1009
1010 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1011 {
1012 __le32 disk_csum;
1013 u32 csum;
1014 unsigned long long newcsum;
1015 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1016 __le32 *isuper = (__le32*)sb;
1017 int i;
1018
1019 disk_csum = sb->sb_csum;
1020 sb->sb_csum = 0;
1021 newcsum = 0;
1022 for (i=0; size>=4; size -= 4 )
1023 newcsum += le32_to_cpu(*isuper++);
1024
1025 if (size == 2)
1026 newcsum += le16_to_cpu(*(__le16*) isuper);
1027
1028 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1029 sb->sb_csum = disk_csum;
1030 return cpu_to_le32(csum);
1031 }
1032
1033 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1034 {
1035 struct mdp_superblock_1 *sb;
1036 int ret;
1037 sector_t sb_offset;
1038 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1039 int bmask;
1040
1041 /*
1042 * Calculate the position of the superblock.
1043 * It is always aligned to a 4K boundary and
1044 * depeding on minor_version, it can be:
1045 * 0: At least 8K, but less than 12K, from end of device
1046 * 1: At start of device
1047 * 2: 4K from start of device.
1048 */
1049 switch(minor_version) {
1050 case 0:
1051 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1052 sb_offset -= 8*2;
1053 sb_offset &= ~(sector_t)(4*2-1);
1054 /* convert from sectors to K */
1055 sb_offset /= 2;
1056 break;
1057 case 1:
1058 sb_offset = 0;
1059 break;
1060 case 2:
1061 sb_offset = 4;
1062 break;
1063 default:
1064 return -EINVAL;
1065 }
1066 rdev->sb_offset = sb_offset;
1067
1068 /* superblock is rarely larger than 1K, but it can be larger,
1069 * and it is safe to read 4k, so we do that
1070 */
1071 ret = read_disk_sb(rdev, 4096);
1072 if (ret) return ret;
1073
1074
1075 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1076
1077 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1078 sb->major_version != cpu_to_le32(1) ||
1079 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1080 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1081 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1082 return -EINVAL;
1083
1084 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1085 printk("md: invalid superblock checksum on %s\n",
1086 bdevname(rdev->bdev,b));
1087 return -EINVAL;
1088 }
1089 if (le64_to_cpu(sb->data_size) < 10) {
1090 printk("md: data_size too small on %s\n",
1091 bdevname(rdev->bdev,b));
1092 return -EINVAL;
1093 }
1094 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1095 if (sb->level != cpu_to_le32(1) &&
1096 sb->level != cpu_to_le32(4) &&
1097 sb->level != cpu_to_le32(5) &&
1098 sb->level != cpu_to_le32(6) &&
1099 sb->level != cpu_to_le32(10)) {
1100 printk(KERN_WARNING
1101 "md: bitmaps not supported for this level.\n");
1102 return -EINVAL;
1103 }
1104 }
1105
1106 rdev->preferred_minor = 0xffff;
1107 rdev->data_offset = le64_to_cpu(sb->data_offset);
1108 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1109
1110 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1111 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1112 if (rdev->sb_size & bmask)
1113 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1114
1115 if (minor_version
1116 && rdev->data_offset < sb_offset + (rdev->sb_size/512))
1117 return -EINVAL;
1118
1119 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1120 rdev->desc_nr = -1;
1121 else
1122 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1123
1124 if (!refdev) {
1125 ret = 1;
1126 } else {
1127 __u64 ev1, ev2;
1128 struct mdp_superblock_1 *refsb =
1129 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1130
1131 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1132 sb->level != refsb->level ||
1133 sb->layout != refsb->layout ||
1134 sb->chunksize != refsb->chunksize) {
1135 printk(KERN_WARNING "md: %s has strangely different"
1136 " superblock to %s\n",
1137 bdevname(rdev->bdev,b),
1138 bdevname(refdev->bdev,b2));
1139 return -EINVAL;
1140 }
1141 ev1 = le64_to_cpu(sb->events);
1142 ev2 = le64_to_cpu(refsb->events);
1143
1144 if (ev1 > ev2)
1145 ret = 1;
1146 else
1147 ret = 0;
1148 }
1149 if (minor_version)
1150 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1151 else
1152 rdev->size = rdev->sb_offset;
1153 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1154 return -EINVAL;
1155 rdev->size = le64_to_cpu(sb->data_size)/2;
1156 if (le32_to_cpu(sb->chunksize))
1157 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1158
1159 if (le64_to_cpu(sb->size) > rdev->size*2)
1160 return -EINVAL;
1161 return ret;
1162 }
1163
1164 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1165 {
1166 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1167 __u64 ev1 = le64_to_cpu(sb->events);
1168
1169 rdev->raid_disk = -1;
1170 clear_bit(Faulty, &rdev->flags);
1171 clear_bit(In_sync, &rdev->flags);
1172 clear_bit(WriteMostly, &rdev->flags);
1173 clear_bit(BarriersNotsupp, &rdev->flags);
1174
1175 if (mddev->raid_disks == 0) {
1176 mddev->major_version = 1;
1177 mddev->patch_version = 0;
1178 mddev->external = 0;
1179 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1180 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1181 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1182 mddev->level = le32_to_cpu(sb->level);
1183 mddev->clevel[0] = 0;
1184 mddev->layout = le32_to_cpu(sb->layout);
1185 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1186 mddev->size = le64_to_cpu(sb->size)/2;
1187 mddev->events = ev1;
1188 mddev->bitmap_offset = 0;
1189 mddev->default_bitmap_offset = 1024 >> 9;
1190
1191 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1192 memcpy(mddev->uuid, sb->set_uuid, 16);
1193
1194 mddev->max_disks = (4096-256)/2;
1195
1196 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1197 mddev->bitmap_file == NULL )
1198 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1199
1200 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1201 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1202 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1203 mddev->new_level = le32_to_cpu(sb->new_level);
1204 mddev->new_layout = le32_to_cpu(sb->new_layout);
1205 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1206 } else {
1207 mddev->reshape_position = MaxSector;
1208 mddev->delta_disks = 0;
1209 mddev->new_level = mddev->level;
1210 mddev->new_layout = mddev->layout;
1211 mddev->new_chunk = mddev->chunk_size;
1212 }
1213
1214 } else if (mddev->pers == NULL) {
1215 /* Insist of good event counter while assembling */
1216 ++ev1;
1217 if (ev1 < mddev->events)
1218 return -EINVAL;
1219 } else if (mddev->bitmap) {
1220 /* If adding to array with a bitmap, then we can accept an
1221 * older device, but not too old.
1222 */
1223 if (ev1 < mddev->bitmap->events_cleared)
1224 return 0;
1225 } else {
1226 if (ev1 < mddev->events)
1227 /* just a hot-add of a new device, leave raid_disk at -1 */
1228 return 0;
1229 }
1230 if (mddev->level != LEVEL_MULTIPATH) {
1231 int role;
1232 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1233 switch(role) {
1234 case 0xffff: /* spare */
1235 break;
1236 case 0xfffe: /* faulty */
1237 set_bit(Faulty, &rdev->flags);
1238 break;
1239 default:
1240 if ((le32_to_cpu(sb->feature_map) &
1241 MD_FEATURE_RECOVERY_OFFSET))
1242 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1243 else
1244 set_bit(In_sync, &rdev->flags);
1245 rdev->raid_disk = role;
1246 break;
1247 }
1248 if (sb->devflags & WriteMostly1)
1249 set_bit(WriteMostly, &rdev->flags);
1250 } else /* MULTIPATH are always insync */
1251 set_bit(In_sync, &rdev->flags);
1252
1253 return 0;
1254 }
1255
1256 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1257 {
1258 struct mdp_superblock_1 *sb;
1259 struct list_head *tmp;
1260 mdk_rdev_t *rdev2;
1261 int max_dev, i;
1262 /* make rdev->sb match mddev and rdev data. */
1263
1264 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1265
1266 sb->feature_map = 0;
1267 sb->pad0 = 0;
1268 sb->recovery_offset = cpu_to_le64(0);
1269 memset(sb->pad1, 0, sizeof(sb->pad1));
1270 memset(sb->pad2, 0, sizeof(sb->pad2));
1271 memset(sb->pad3, 0, sizeof(sb->pad3));
1272
1273 sb->utime = cpu_to_le64((__u64)mddev->utime);
1274 sb->events = cpu_to_le64(mddev->events);
1275 if (mddev->in_sync)
1276 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1277 else
1278 sb->resync_offset = cpu_to_le64(0);
1279
1280 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1281
1282 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1283 sb->size = cpu_to_le64(mddev->size<<1);
1284
1285 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1286 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1287 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1288 }
1289
1290 if (rdev->raid_disk >= 0 &&
1291 !test_bit(In_sync, &rdev->flags) &&
1292 rdev->recovery_offset > 0) {
1293 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1294 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1295 }
1296
1297 if (mddev->reshape_position != MaxSector) {
1298 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1299 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1300 sb->new_layout = cpu_to_le32(mddev->new_layout);
1301 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1302 sb->new_level = cpu_to_le32(mddev->new_level);
1303 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1304 }
1305
1306 max_dev = 0;
1307 rdev_for_each(rdev2, tmp, mddev)
1308 if (rdev2->desc_nr+1 > max_dev)
1309 max_dev = rdev2->desc_nr+1;
1310
1311 if (max_dev > le32_to_cpu(sb->max_dev))
1312 sb->max_dev = cpu_to_le32(max_dev);
1313 for (i=0; i<max_dev;i++)
1314 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1315
1316 rdev_for_each(rdev2, tmp, mddev) {
1317 i = rdev2->desc_nr;
1318 if (test_bit(Faulty, &rdev2->flags))
1319 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1320 else if (test_bit(In_sync, &rdev2->flags))
1321 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1322 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1323 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1324 else
1325 sb->dev_roles[i] = cpu_to_le16(0xffff);
1326 }
1327
1328 sb->sb_csum = calc_sb_1_csum(sb);
1329 }
1330
1331
1332 static struct super_type super_types[] = {
1333 [0] = {
1334 .name = "0.90.0",
1335 .owner = THIS_MODULE,
1336 .load_super = super_90_load,
1337 .validate_super = super_90_validate,
1338 .sync_super = super_90_sync,
1339 },
1340 [1] = {
1341 .name = "md-1",
1342 .owner = THIS_MODULE,
1343 .load_super = super_1_load,
1344 .validate_super = super_1_validate,
1345 .sync_super = super_1_sync,
1346 },
1347 };
1348
1349 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1350 {
1351 struct list_head *tmp, *tmp2;
1352 mdk_rdev_t *rdev, *rdev2;
1353
1354 rdev_for_each(rdev, tmp, mddev1)
1355 rdev_for_each(rdev2, tmp2, mddev2)
1356 if (rdev->bdev->bd_contains ==
1357 rdev2->bdev->bd_contains)
1358 return 1;
1359
1360 return 0;
1361 }
1362
1363 static LIST_HEAD(pending_raid_disks);
1364
1365 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1366 {
1367 char b[BDEVNAME_SIZE];
1368 struct kobject *ko;
1369 char *s;
1370 int err;
1371
1372 if (rdev->mddev) {
1373 MD_BUG();
1374 return -EINVAL;
1375 }
1376
1377 /* prevent duplicates */
1378 if (find_rdev(mddev, rdev->bdev->bd_dev))
1379 return -EEXIST;
1380
1381 /* make sure rdev->size exceeds mddev->size */
1382 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1383 if (mddev->pers) {
1384 /* Cannot change size, so fail
1385 * If mddev->level <= 0, then we don't care
1386 * about aligning sizes (e.g. linear)
1387 */
1388 if (mddev->level > 0)
1389 return -ENOSPC;
1390 } else
1391 mddev->size = rdev->size;
1392 }
1393
1394 /* Verify rdev->desc_nr is unique.
1395 * If it is -1, assign a free number, else
1396 * check number is not in use
1397 */
1398 if (rdev->desc_nr < 0) {
1399 int choice = 0;
1400 if (mddev->pers) choice = mddev->raid_disks;
1401 while (find_rdev_nr(mddev, choice))
1402 choice++;
1403 rdev->desc_nr = choice;
1404 } else {
1405 if (find_rdev_nr(mddev, rdev->desc_nr))
1406 return -EBUSY;
1407 }
1408 bdevname(rdev->bdev,b);
1409 while ( (s=strchr(b, '/')) != NULL)
1410 *s = '!';
1411
1412 rdev->mddev = mddev;
1413 printk(KERN_INFO "md: bind<%s>\n", b);
1414
1415 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1416 goto fail;
1417
1418 if (rdev->bdev->bd_part)
1419 ko = &rdev->bdev->bd_part->dev.kobj;
1420 else
1421 ko = &rdev->bdev->bd_disk->dev.kobj;
1422 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1423 kobject_del(&rdev->kobj);
1424 goto fail;
1425 }
1426 list_add(&rdev->same_set, &mddev->disks);
1427 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1428 return 0;
1429
1430 fail:
1431 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1432 b, mdname(mddev));
1433 return err;
1434 }
1435
1436 static void md_delayed_delete(struct work_struct *ws)
1437 {
1438 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1439 kobject_del(&rdev->kobj);
1440 kobject_put(&rdev->kobj);
1441 }
1442
1443 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1444 {
1445 char b[BDEVNAME_SIZE];
1446 if (!rdev->mddev) {
1447 MD_BUG();
1448 return;
1449 }
1450 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1451 list_del_init(&rdev->same_set);
1452 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1453 rdev->mddev = NULL;
1454 sysfs_remove_link(&rdev->kobj, "block");
1455
1456 /* We need to delay this, otherwise we can deadlock when
1457 * writing to 'remove' to "dev/state"
1458 */
1459 INIT_WORK(&rdev->del_work, md_delayed_delete);
1460 kobject_get(&rdev->kobj);
1461 schedule_work(&rdev->del_work);
1462 }
1463
1464 /*
1465 * prevent the device from being mounted, repartitioned or
1466 * otherwise reused by a RAID array (or any other kernel
1467 * subsystem), by bd_claiming the device.
1468 */
1469 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1470 {
1471 int err = 0;
1472 struct block_device *bdev;
1473 char b[BDEVNAME_SIZE];
1474
1475 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1476 if (IS_ERR(bdev)) {
1477 printk(KERN_ERR "md: could not open %s.\n",
1478 __bdevname(dev, b));
1479 return PTR_ERR(bdev);
1480 }
1481 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1482 if (err) {
1483 printk(KERN_ERR "md: could not bd_claim %s.\n",
1484 bdevname(bdev, b));
1485 blkdev_put(bdev);
1486 return err;
1487 }
1488 if (!shared)
1489 set_bit(AllReserved, &rdev->flags);
1490 rdev->bdev = bdev;
1491 return err;
1492 }
1493
1494 static void unlock_rdev(mdk_rdev_t *rdev)
1495 {
1496 struct block_device *bdev = rdev->bdev;
1497 rdev->bdev = NULL;
1498 if (!bdev)
1499 MD_BUG();
1500 bd_release(bdev);
1501 blkdev_put(bdev);
1502 }
1503
1504 void md_autodetect_dev(dev_t dev);
1505
1506 static void export_rdev(mdk_rdev_t * rdev)
1507 {
1508 char b[BDEVNAME_SIZE];
1509 printk(KERN_INFO "md: export_rdev(%s)\n",
1510 bdevname(rdev->bdev,b));
1511 if (rdev->mddev)
1512 MD_BUG();
1513 free_disk_sb(rdev);
1514 list_del_init(&rdev->same_set);
1515 #ifndef MODULE
1516 if (test_bit(AutoDetected, &rdev->flags))
1517 md_autodetect_dev(rdev->bdev->bd_dev);
1518 #endif
1519 unlock_rdev(rdev);
1520 kobject_put(&rdev->kobj);
1521 }
1522
1523 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1524 {
1525 unbind_rdev_from_array(rdev);
1526 export_rdev(rdev);
1527 }
1528
1529 static void export_array(mddev_t *mddev)
1530 {
1531 struct list_head *tmp;
1532 mdk_rdev_t *rdev;
1533
1534 rdev_for_each(rdev, tmp, mddev) {
1535 if (!rdev->mddev) {
1536 MD_BUG();
1537 continue;
1538 }
1539 kick_rdev_from_array(rdev);
1540 }
1541 if (!list_empty(&mddev->disks))
1542 MD_BUG();
1543 mddev->raid_disks = 0;
1544 mddev->major_version = 0;
1545 }
1546
1547 static void print_desc(mdp_disk_t *desc)
1548 {
1549 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1550 desc->major,desc->minor,desc->raid_disk,desc->state);
1551 }
1552
1553 static void print_sb(mdp_super_t *sb)
1554 {
1555 int i;
1556
1557 printk(KERN_INFO
1558 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1559 sb->major_version, sb->minor_version, sb->patch_version,
1560 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1561 sb->ctime);
1562 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1563 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1564 sb->md_minor, sb->layout, sb->chunk_size);
1565 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1566 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1567 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1568 sb->failed_disks, sb->spare_disks,
1569 sb->sb_csum, (unsigned long)sb->events_lo);
1570
1571 printk(KERN_INFO);
1572 for (i = 0; i < MD_SB_DISKS; i++) {
1573 mdp_disk_t *desc;
1574
1575 desc = sb->disks + i;
1576 if (desc->number || desc->major || desc->minor ||
1577 desc->raid_disk || (desc->state && (desc->state != 4))) {
1578 printk(" D %2d: ", i);
1579 print_desc(desc);
1580 }
1581 }
1582 printk(KERN_INFO "md: THIS: ");
1583 print_desc(&sb->this_disk);
1584
1585 }
1586
1587 static void print_rdev(mdk_rdev_t *rdev)
1588 {
1589 char b[BDEVNAME_SIZE];
1590 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1591 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1592 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1593 rdev->desc_nr);
1594 if (rdev->sb_loaded) {
1595 printk(KERN_INFO "md: rdev superblock:\n");
1596 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1597 } else
1598 printk(KERN_INFO "md: no rdev superblock!\n");
1599 }
1600
1601 static void md_print_devices(void)
1602 {
1603 struct list_head *tmp, *tmp2;
1604 mdk_rdev_t *rdev;
1605 mddev_t *mddev;
1606 char b[BDEVNAME_SIZE];
1607
1608 printk("\n");
1609 printk("md: **********************************\n");
1610 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1611 printk("md: **********************************\n");
1612 for_each_mddev(mddev, tmp) {
1613
1614 if (mddev->bitmap)
1615 bitmap_print_sb(mddev->bitmap);
1616 else
1617 printk("%s: ", mdname(mddev));
1618 rdev_for_each(rdev, tmp2, mddev)
1619 printk("<%s>", bdevname(rdev->bdev,b));
1620 printk("\n");
1621
1622 rdev_for_each(rdev, tmp2, mddev)
1623 print_rdev(rdev);
1624 }
1625 printk("md: **********************************\n");
1626 printk("\n");
1627 }
1628
1629
1630 static void sync_sbs(mddev_t * mddev, int nospares)
1631 {
1632 /* Update each superblock (in-memory image), but
1633 * if we are allowed to, skip spares which already
1634 * have the right event counter, or have one earlier
1635 * (which would mean they aren't being marked as dirty
1636 * with the rest of the array)
1637 */
1638 mdk_rdev_t *rdev;
1639 struct list_head *tmp;
1640
1641 rdev_for_each(rdev, tmp, mddev) {
1642 if (rdev->sb_events == mddev->events ||
1643 (nospares &&
1644 rdev->raid_disk < 0 &&
1645 (rdev->sb_events&1)==0 &&
1646 rdev->sb_events+1 == mddev->events)) {
1647 /* Don't update this superblock */
1648 rdev->sb_loaded = 2;
1649 } else {
1650 super_types[mddev->major_version].
1651 sync_super(mddev, rdev);
1652 rdev->sb_loaded = 1;
1653 }
1654 }
1655 }
1656
1657 static void md_update_sb(mddev_t * mddev, int force_change)
1658 {
1659 struct list_head *tmp;
1660 mdk_rdev_t *rdev;
1661 int sync_req;
1662 int nospares = 0;
1663
1664 if (mddev->external)
1665 return;
1666 repeat:
1667 spin_lock_irq(&mddev->write_lock);
1668
1669 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1670 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1671 force_change = 1;
1672 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1673 /* just a clean<-> dirty transition, possibly leave spares alone,
1674 * though if events isn't the right even/odd, we will have to do
1675 * spares after all
1676 */
1677 nospares = 1;
1678 if (force_change)
1679 nospares = 0;
1680 if (mddev->degraded)
1681 /* If the array is degraded, then skipping spares is both
1682 * dangerous and fairly pointless.
1683 * Dangerous because a device that was removed from the array
1684 * might have a event_count that still looks up-to-date,
1685 * so it can be re-added without a resync.
1686 * Pointless because if there are any spares to skip,
1687 * then a recovery will happen and soon that array won't
1688 * be degraded any more and the spare can go back to sleep then.
1689 */
1690 nospares = 0;
1691
1692 sync_req = mddev->in_sync;
1693 mddev->utime = get_seconds();
1694
1695 /* If this is just a dirty<->clean transition, and the array is clean
1696 * and 'events' is odd, we can roll back to the previous clean state */
1697 if (nospares
1698 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1699 && (mddev->events & 1)
1700 && mddev->events != 1)
1701 mddev->events--;
1702 else {
1703 /* otherwise we have to go forward and ... */
1704 mddev->events ++;
1705 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1706 /* .. if the array isn't clean, insist on an odd 'events' */
1707 if ((mddev->events&1)==0) {
1708 mddev->events++;
1709 nospares = 0;
1710 }
1711 } else {
1712 /* otherwise insist on an even 'events' (for clean states) */
1713 if ((mddev->events&1)) {
1714 mddev->events++;
1715 nospares = 0;
1716 }
1717 }
1718 }
1719
1720 if (!mddev->events) {
1721 /*
1722 * oops, this 64-bit counter should never wrap.
1723 * Either we are in around ~1 trillion A.C., assuming
1724 * 1 reboot per second, or we have a bug:
1725 */
1726 MD_BUG();
1727 mddev->events --;
1728 }
1729
1730 /*
1731 * do not write anything to disk if using
1732 * nonpersistent superblocks
1733 */
1734 if (!mddev->persistent) {
1735 if (!mddev->external)
1736 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1737
1738 spin_unlock_irq(&mddev->write_lock);
1739 wake_up(&mddev->sb_wait);
1740 return;
1741 }
1742 sync_sbs(mddev, nospares);
1743 spin_unlock_irq(&mddev->write_lock);
1744
1745 dprintk(KERN_INFO
1746 "md: updating %s RAID superblock on device (in sync %d)\n",
1747 mdname(mddev),mddev->in_sync);
1748
1749 bitmap_update_sb(mddev->bitmap);
1750 rdev_for_each(rdev, tmp, mddev) {
1751 char b[BDEVNAME_SIZE];
1752 dprintk(KERN_INFO "md: ");
1753 if (rdev->sb_loaded != 1)
1754 continue; /* no noise on spare devices */
1755 if (test_bit(Faulty, &rdev->flags))
1756 dprintk("(skipping faulty ");
1757
1758 dprintk("%s ", bdevname(rdev->bdev,b));
1759 if (!test_bit(Faulty, &rdev->flags)) {
1760 md_super_write(mddev,rdev,
1761 rdev->sb_offset<<1, rdev->sb_size,
1762 rdev->sb_page);
1763 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1764 bdevname(rdev->bdev,b),
1765 (unsigned long long)rdev->sb_offset);
1766 rdev->sb_events = mddev->events;
1767
1768 } else
1769 dprintk(")\n");
1770 if (mddev->level == LEVEL_MULTIPATH)
1771 /* only need to write one superblock... */
1772 break;
1773 }
1774 md_super_wait(mddev);
1775 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1776
1777 spin_lock_irq(&mddev->write_lock);
1778 if (mddev->in_sync != sync_req ||
1779 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1780 /* have to write it out again */
1781 spin_unlock_irq(&mddev->write_lock);
1782 goto repeat;
1783 }
1784 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1785 spin_unlock_irq(&mddev->write_lock);
1786 wake_up(&mddev->sb_wait);
1787
1788 }
1789
1790 /* words written to sysfs files may, or my not, be \n terminated.
1791 * We want to accept with case. For this we use cmd_match.
1792 */
1793 static int cmd_match(const char *cmd, const char *str)
1794 {
1795 /* See if cmd, written into a sysfs file, matches
1796 * str. They must either be the same, or cmd can
1797 * have a trailing newline
1798 */
1799 while (*cmd && *str && *cmd == *str) {
1800 cmd++;
1801 str++;
1802 }
1803 if (*cmd == '\n')
1804 cmd++;
1805 if (*str || *cmd)
1806 return 0;
1807 return 1;
1808 }
1809
1810 struct rdev_sysfs_entry {
1811 struct attribute attr;
1812 ssize_t (*show)(mdk_rdev_t *, char *);
1813 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1814 };
1815
1816 static ssize_t
1817 state_show(mdk_rdev_t *rdev, char *page)
1818 {
1819 char *sep = "";
1820 size_t len = 0;
1821
1822 if (test_bit(Faulty, &rdev->flags)) {
1823 len+= sprintf(page+len, "%sfaulty",sep);
1824 sep = ",";
1825 }
1826 if (test_bit(In_sync, &rdev->flags)) {
1827 len += sprintf(page+len, "%sin_sync",sep);
1828 sep = ",";
1829 }
1830 if (test_bit(WriteMostly, &rdev->flags)) {
1831 len += sprintf(page+len, "%swrite_mostly",sep);
1832 sep = ",";
1833 }
1834 if (test_bit(Blocked, &rdev->flags)) {
1835 len += sprintf(page+len, "%sblocked", sep);
1836 sep = ",";
1837 }
1838 if (!test_bit(Faulty, &rdev->flags) &&
1839 !test_bit(In_sync, &rdev->flags)) {
1840 len += sprintf(page+len, "%sspare", sep);
1841 sep = ",";
1842 }
1843 return len+sprintf(page+len, "\n");
1844 }
1845
1846 static ssize_t
1847 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1848 {
1849 /* can write
1850 * faulty - simulates and error
1851 * remove - disconnects the device
1852 * writemostly - sets write_mostly
1853 * -writemostly - clears write_mostly
1854 * blocked - sets the Blocked flag
1855 * -blocked - clears the Blocked flag
1856 */
1857 int err = -EINVAL;
1858 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1859 md_error(rdev->mddev, rdev);
1860 err = 0;
1861 } else if (cmd_match(buf, "remove")) {
1862 if (rdev->raid_disk >= 0)
1863 err = -EBUSY;
1864 else {
1865 mddev_t *mddev = rdev->mddev;
1866 kick_rdev_from_array(rdev);
1867 if (mddev->pers)
1868 md_update_sb(mddev, 1);
1869 md_new_event(mddev);
1870 err = 0;
1871 }
1872 } else if (cmd_match(buf, "writemostly")) {
1873 set_bit(WriteMostly, &rdev->flags);
1874 err = 0;
1875 } else if (cmd_match(buf, "-writemostly")) {
1876 clear_bit(WriteMostly, &rdev->flags);
1877 err = 0;
1878 } else if (cmd_match(buf, "blocked")) {
1879 set_bit(Blocked, &rdev->flags);
1880 err = 0;
1881 } else if (cmd_match(buf, "-blocked")) {
1882 clear_bit(Blocked, &rdev->flags);
1883 wake_up(&rdev->blocked_wait);
1884 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
1885 md_wakeup_thread(rdev->mddev->thread);
1886
1887 err = 0;
1888 }
1889 return err ? err : len;
1890 }
1891 static struct rdev_sysfs_entry rdev_state =
1892 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1893
1894 static ssize_t
1895 errors_show(mdk_rdev_t *rdev, char *page)
1896 {
1897 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1898 }
1899
1900 static ssize_t
1901 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1902 {
1903 char *e;
1904 unsigned long n = simple_strtoul(buf, &e, 10);
1905 if (*buf && (*e == 0 || *e == '\n')) {
1906 atomic_set(&rdev->corrected_errors, n);
1907 return len;
1908 }
1909 return -EINVAL;
1910 }
1911 static struct rdev_sysfs_entry rdev_errors =
1912 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1913
1914 static ssize_t
1915 slot_show(mdk_rdev_t *rdev, char *page)
1916 {
1917 if (rdev->raid_disk < 0)
1918 return sprintf(page, "none\n");
1919 else
1920 return sprintf(page, "%d\n", rdev->raid_disk);
1921 }
1922
1923 static ssize_t
1924 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1925 {
1926 char *e;
1927 int err;
1928 char nm[20];
1929 int slot = simple_strtoul(buf, &e, 10);
1930 if (strncmp(buf, "none", 4)==0)
1931 slot = -1;
1932 else if (e==buf || (*e && *e!= '\n'))
1933 return -EINVAL;
1934 if (rdev->mddev->pers && slot == -1) {
1935 /* Setting 'slot' on an active array requires also
1936 * updating the 'rd%d' link, and communicating
1937 * with the personality with ->hot_*_disk.
1938 * For now we only support removing
1939 * failed/spare devices. This normally happens automatically,
1940 * but not when the metadata is externally managed.
1941 */
1942 if (rdev->raid_disk == -1)
1943 return -EEXIST;
1944 /* personality does all needed checks */
1945 if (rdev->mddev->pers->hot_add_disk == NULL)
1946 return -EINVAL;
1947 err = rdev->mddev->pers->
1948 hot_remove_disk(rdev->mddev, rdev->raid_disk);
1949 if (err)
1950 return err;
1951 sprintf(nm, "rd%d", rdev->raid_disk);
1952 sysfs_remove_link(&rdev->mddev->kobj, nm);
1953 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
1954 md_wakeup_thread(rdev->mddev->thread);
1955 } else if (rdev->mddev->pers) {
1956 mdk_rdev_t *rdev2;
1957 struct list_head *tmp;
1958 /* Activating a spare .. or possibly reactivating
1959 * if we every get bitmaps working here.
1960 */
1961
1962 if (rdev->raid_disk != -1)
1963 return -EBUSY;
1964
1965 if (rdev->mddev->pers->hot_add_disk == NULL)
1966 return -EINVAL;
1967
1968 rdev_for_each(rdev2, tmp, rdev->mddev)
1969 if (rdev2->raid_disk == slot)
1970 return -EEXIST;
1971
1972 rdev->raid_disk = slot;
1973 if (test_bit(In_sync, &rdev->flags))
1974 rdev->saved_raid_disk = slot;
1975 else
1976 rdev->saved_raid_disk = -1;
1977 err = rdev->mddev->pers->
1978 hot_add_disk(rdev->mddev, rdev);
1979 if (err) {
1980 rdev->raid_disk = -1;
1981 return err;
1982 }
1983 sprintf(nm, "rd%d", rdev->raid_disk);
1984 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
1985 printk(KERN_WARNING
1986 "md: cannot register "
1987 "%s for %s\n",
1988 nm, mdname(rdev->mddev));
1989
1990 /* don't wakeup anyone, leave that to userspace. */
1991 } else {
1992 if (slot >= rdev->mddev->raid_disks)
1993 return -ENOSPC;
1994 rdev->raid_disk = slot;
1995 /* assume it is working */
1996 clear_bit(Faulty, &rdev->flags);
1997 clear_bit(WriteMostly, &rdev->flags);
1998 set_bit(In_sync, &rdev->flags);
1999 }
2000 return len;
2001 }
2002
2003
2004 static struct rdev_sysfs_entry rdev_slot =
2005 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2006
2007 static ssize_t
2008 offset_show(mdk_rdev_t *rdev, char *page)
2009 {
2010 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2011 }
2012
2013 static ssize_t
2014 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2015 {
2016 char *e;
2017 unsigned long long offset = simple_strtoull(buf, &e, 10);
2018 if (e==buf || (*e && *e != '\n'))
2019 return -EINVAL;
2020 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2021 return -EBUSY;
2022 if (rdev->size && rdev->mddev->external)
2023 /* Must set offset before size, so overlap checks
2024 * can be sane */
2025 return -EBUSY;
2026 rdev->data_offset = offset;
2027 return len;
2028 }
2029
2030 static struct rdev_sysfs_entry rdev_offset =
2031 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2032
2033 static ssize_t
2034 rdev_size_show(mdk_rdev_t *rdev, char *page)
2035 {
2036 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
2037 }
2038
2039 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2040 {
2041 /* check if two start/length pairs overlap */
2042 if (s1+l1 <= s2)
2043 return 0;
2044 if (s2+l2 <= s1)
2045 return 0;
2046 return 1;
2047 }
2048
2049 static ssize_t
2050 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2051 {
2052 char *e;
2053 unsigned long long size = simple_strtoull(buf, &e, 10);
2054 unsigned long long oldsize = rdev->size;
2055 mddev_t *my_mddev = rdev->mddev;
2056
2057 if (e==buf || (*e && *e != '\n'))
2058 return -EINVAL;
2059 if (my_mddev->pers && rdev->raid_disk >= 0)
2060 return -EBUSY;
2061 rdev->size = size;
2062 if (size > oldsize && rdev->mddev->external) {
2063 /* need to check that all other rdevs with the same ->bdev
2064 * do not overlap. We need to unlock the mddev to avoid
2065 * a deadlock. We have already changed rdev->size, and if
2066 * we have to change it back, we will have the lock again.
2067 */
2068 mddev_t *mddev;
2069 int overlap = 0;
2070 struct list_head *tmp, *tmp2;
2071
2072 mddev_unlock(my_mddev);
2073 for_each_mddev(mddev, tmp) {
2074 mdk_rdev_t *rdev2;
2075
2076 mddev_lock(mddev);
2077 rdev_for_each(rdev2, tmp2, mddev)
2078 if (test_bit(AllReserved, &rdev2->flags) ||
2079 (rdev->bdev == rdev2->bdev &&
2080 rdev != rdev2 &&
2081 overlaps(rdev->data_offset, rdev->size,
2082 rdev2->data_offset, rdev2->size))) {
2083 overlap = 1;
2084 break;
2085 }
2086 mddev_unlock(mddev);
2087 if (overlap) {
2088 mddev_put(mddev);
2089 break;
2090 }
2091 }
2092 mddev_lock(my_mddev);
2093 if (overlap) {
2094 /* Someone else could have slipped in a size
2095 * change here, but doing so is just silly.
2096 * We put oldsize back because we *know* it is
2097 * safe, and trust userspace not to race with
2098 * itself
2099 */
2100 rdev->size = oldsize;
2101 return -EBUSY;
2102 }
2103 }
2104 if (size < my_mddev->size || my_mddev->size == 0)
2105 my_mddev->size = size;
2106 return len;
2107 }
2108
2109 static struct rdev_sysfs_entry rdev_size =
2110 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2111
2112 static struct attribute *rdev_default_attrs[] = {
2113 &rdev_state.attr,
2114 &rdev_errors.attr,
2115 &rdev_slot.attr,
2116 &rdev_offset.attr,
2117 &rdev_size.attr,
2118 NULL,
2119 };
2120 static ssize_t
2121 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2122 {
2123 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2124 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2125 mddev_t *mddev = rdev->mddev;
2126 ssize_t rv;
2127
2128 if (!entry->show)
2129 return -EIO;
2130
2131 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2132 if (!rv) {
2133 if (rdev->mddev == NULL)
2134 rv = -EBUSY;
2135 else
2136 rv = entry->show(rdev, page);
2137 mddev_unlock(mddev);
2138 }
2139 return rv;
2140 }
2141
2142 static ssize_t
2143 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2144 const char *page, size_t length)
2145 {
2146 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2147 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2148 ssize_t rv;
2149 mddev_t *mddev = rdev->mddev;
2150
2151 if (!entry->store)
2152 return -EIO;
2153 if (!capable(CAP_SYS_ADMIN))
2154 return -EACCES;
2155 rv = mddev ? mddev_lock(mddev): -EBUSY;
2156 if (!rv) {
2157 if (rdev->mddev == NULL)
2158 rv = -EBUSY;
2159 else
2160 rv = entry->store(rdev, page, length);
2161 mddev_unlock(mddev);
2162 }
2163 return rv;
2164 }
2165
2166 static void rdev_free(struct kobject *ko)
2167 {
2168 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2169 kfree(rdev);
2170 }
2171 static struct sysfs_ops rdev_sysfs_ops = {
2172 .show = rdev_attr_show,
2173 .store = rdev_attr_store,
2174 };
2175 static struct kobj_type rdev_ktype = {
2176 .release = rdev_free,
2177 .sysfs_ops = &rdev_sysfs_ops,
2178 .default_attrs = rdev_default_attrs,
2179 };
2180
2181 /*
2182 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2183 *
2184 * mark the device faulty if:
2185 *
2186 * - the device is nonexistent (zero size)
2187 * - the device has no valid superblock
2188 *
2189 * a faulty rdev _never_ has rdev->sb set.
2190 */
2191 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2192 {
2193 char b[BDEVNAME_SIZE];
2194 int err;
2195 mdk_rdev_t *rdev;
2196 sector_t size;
2197
2198 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2199 if (!rdev) {
2200 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2201 return ERR_PTR(-ENOMEM);
2202 }
2203
2204 if ((err = alloc_disk_sb(rdev)))
2205 goto abort_free;
2206
2207 err = lock_rdev(rdev, newdev, super_format == -2);
2208 if (err)
2209 goto abort_free;
2210
2211 kobject_init(&rdev->kobj, &rdev_ktype);
2212
2213 rdev->desc_nr = -1;
2214 rdev->saved_raid_disk = -1;
2215 rdev->raid_disk = -1;
2216 rdev->flags = 0;
2217 rdev->data_offset = 0;
2218 rdev->sb_events = 0;
2219 atomic_set(&rdev->nr_pending, 0);
2220 atomic_set(&rdev->read_errors, 0);
2221 atomic_set(&rdev->corrected_errors, 0);
2222
2223 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2224 if (!size) {
2225 printk(KERN_WARNING
2226 "md: %s has zero or unknown size, marking faulty!\n",
2227 bdevname(rdev->bdev,b));
2228 err = -EINVAL;
2229 goto abort_free;
2230 }
2231
2232 if (super_format >= 0) {
2233 err = super_types[super_format].
2234 load_super(rdev, NULL, super_minor);
2235 if (err == -EINVAL) {
2236 printk(KERN_WARNING
2237 "md: %s does not have a valid v%d.%d "
2238 "superblock, not importing!\n",
2239 bdevname(rdev->bdev,b),
2240 super_format, super_minor);
2241 goto abort_free;
2242 }
2243 if (err < 0) {
2244 printk(KERN_WARNING
2245 "md: could not read %s's sb, not importing!\n",
2246 bdevname(rdev->bdev,b));
2247 goto abort_free;
2248 }
2249 }
2250
2251 INIT_LIST_HEAD(&rdev->same_set);
2252 init_waitqueue_head(&rdev->blocked_wait);
2253
2254 return rdev;
2255
2256 abort_free:
2257 if (rdev->sb_page) {
2258 if (rdev->bdev)
2259 unlock_rdev(rdev);
2260 free_disk_sb(rdev);
2261 }
2262 kfree(rdev);
2263 return ERR_PTR(err);
2264 }
2265
2266 /*
2267 * Check a full RAID array for plausibility
2268 */
2269
2270
2271 static void analyze_sbs(mddev_t * mddev)
2272 {
2273 int i;
2274 struct list_head *tmp;
2275 mdk_rdev_t *rdev, *freshest;
2276 char b[BDEVNAME_SIZE];
2277
2278 freshest = NULL;
2279 rdev_for_each(rdev, tmp, mddev)
2280 switch (super_types[mddev->major_version].
2281 load_super(rdev, freshest, mddev->minor_version)) {
2282 case 1:
2283 freshest = rdev;
2284 break;
2285 case 0:
2286 break;
2287 default:
2288 printk( KERN_ERR \
2289 "md: fatal superblock inconsistency in %s"
2290 " -- removing from array\n",
2291 bdevname(rdev->bdev,b));
2292 kick_rdev_from_array(rdev);
2293 }
2294
2295
2296 super_types[mddev->major_version].
2297 validate_super(mddev, freshest);
2298
2299 i = 0;
2300 rdev_for_each(rdev, tmp, mddev) {
2301 if (rdev != freshest)
2302 if (super_types[mddev->major_version].
2303 validate_super(mddev, rdev)) {
2304 printk(KERN_WARNING "md: kicking non-fresh %s"
2305 " from array!\n",
2306 bdevname(rdev->bdev,b));
2307 kick_rdev_from_array(rdev);
2308 continue;
2309 }
2310 if (mddev->level == LEVEL_MULTIPATH) {
2311 rdev->desc_nr = i++;
2312 rdev->raid_disk = rdev->desc_nr;
2313 set_bit(In_sync, &rdev->flags);
2314 } else if (rdev->raid_disk >= mddev->raid_disks) {
2315 rdev->raid_disk = -1;
2316 clear_bit(In_sync, &rdev->flags);
2317 }
2318 }
2319
2320
2321
2322 if (mddev->recovery_cp != MaxSector &&
2323 mddev->level >= 1)
2324 printk(KERN_ERR "md: %s: raid array is not clean"
2325 " -- starting background reconstruction\n",
2326 mdname(mddev));
2327
2328 }
2329
2330 static ssize_t
2331 safe_delay_show(mddev_t *mddev, char *page)
2332 {
2333 int msec = (mddev->safemode_delay*1000)/HZ;
2334 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2335 }
2336 static ssize_t
2337 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2338 {
2339 int scale=1;
2340 int dot=0;
2341 int i;
2342 unsigned long msec;
2343 char buf[30];
2344 char *e;
2345 /* remove a period, and count digits after it */
2346 if (len >= sizeof(buf))
2347 return -EINVAL;
2348 strlcpy(buf, cbuf, len);
2349 buf[len] = 0;
2350 for (i=0; i<len; i++) {
2351 if (dot) {
2352 if (isdigit(buf[i])) {
2353 buf[i-1] = buf[i];
2354 scale *= 10;
2355 }
2356 buf[i] = 0;
2357 } else if (buf[i] == '.') {
2358 dot=1;
2359 buf[i] = 0;
2360 }
2361 }
2362 msec = simple_strtoul(buf, &e, 10);
2363 if (e == buf || (*e && *e != '\n'))
2364 return -EINVAL;
2365 msec = (msec * 1000) / scale;
2366 if (msec == 0)
2367 mddev->safemode_delay = 0;
2368 else {
2369 mddev->safemode_delay = (msec*HZ)/1000;
2370 if (mddev->safemode_delay == 0)
2371 mddev->safemode_delay = 1;
2372 }
2373 return len;
2374 }
2375 static struct md_sysfs_entry md_safe_delay =
2376 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2377
2378 static ssize_t
2379 level_show(mddev_t *mddev, char *page)
2380 {
2381 struct mdk_personality *p = mddev->pers;
2382 if (p)
2383 return sprintf(page, "%s\n", p->name);
2384 else if (mddev->clevel[0])
2385 return sprintf(page, "%s\n", mddev->clevel);
2386 else if (mddev->level != LEVEL_NONE)
2387 return sprintf(page, "%d\n", mddev->level);
2388 else
2389 return 0;
2390 }
2391
2392 static ssize_t
2393 level_store(mddev_t *mddev, const char *buf, size_t len)
2394 {
2395 ssize_t rv = len;
2396 if (mddev->pers)
2397 return -EBUSY;
2398 if (len == 0)
2399 return 0;
2400 if (len >= sizeof(mddev->clevel))
2401 return -ENOSPC;
2402 strncpy(mddev->clevel, buf, len);
2403 if (mddev->clevel[len-1] == '\n')
2404 len--;
2405 mddev->clevel[len] = 0;
2406 mddev->level = LEVEL_NONE;
2407 return rv;
2408 }
2409
2410 static struct md_sysfs_entry md_level =
2411 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2412
2413
2414 static ssize_t
2415 layout_show(mddev_t *mddev, char *page)
2416 {
2417 /* just a number, not meaningful for all levels */
2418 if (mddev->reshape_position != MaxSector &&
2419 mddev->layout != mddev->new_layout)
2420 return sprintf(page, "%d (%d)\n",
2421 mddev->new_layout, mddev->layout);
2422 return sprintf(page, "%d\n", mddev->layout);
2423 }
2424
2425 static ssize_t
2426 layout_store(mddev_t *mddev, const char *buf, size_t len)
2427 {
2428 char *e;
2429 unsigned long n = simple_strtoul(buf, &e, 10);
2430
2431 if (!*buf || (*e && *e != '\n'))
2432 return -EINVAL;
2433
2434 if (mddev->pers)
2435 return -EBUSY;
2436 if (mddev->reshape_position != MaxSector)
2437 mddev->new_layout = n;
2438 else
2439 mddev->layout = n;
2440 return len;
2441 }
2442 static struct md_sysfs_entry md_layout =
2443 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2444
2445
2446 static ssize_t
2447 raid_disks_show(mddev_t *mddev, char *page)
2448 {
2449 if (mddev->raid_disks == 0)
2450 return 0;
2451 if (mddev->reshape_position != MaxSector &&
2452 mddev->delta_disks != 0)
2453 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2454 mddev->raid_disks - mddev->delta_disks);
2455 return sprintf(page, "%d\n", mddev->raid_disks);
2456 }
2457
2458 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2459
2460 static ssize_t
2461 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2462 {
2463 char *e;
2464 int rv = 0;
2465 unsigned long n = simple_strtoul(buf, &e, 10);
2466
2467 if (!*buf || (*e && *e != '\n'))
2468 return -EINVAL;
2469
2470 if (mddev->pers)
2471 rv = update_raid_disks(mddev, n);
2472 else if (mddev->reshape_position != MaxSector) {
2473 int olddisks = mddev->raid_disks - mddev->delta_disks;
2474 mddev->delta_disks = n - olddisks;
2475 mddev->raid_disks = n;
2476 } else
2477 mddev->raid_disks = n;
2478 return rv ? rv : len;
2479 }
2480 static struct md_sysfs_entry md_raid_disks =
2481 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2482
2483 static ssize_t
2484 chunk_size_show(mddev_t *mddev, char *page)
2485 {
2486 if (mddev->reshape_position != MaxSector &&
2487 mddev->chunk_size != mddev->new_chunk)
2488 return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2489 mddev->chunk_size);
2490 return sprintf(page, "%d\n", mddev->chunk_size);
2491 }
2492
2493 static ssize_t
2494 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2495 {
2496 /* can only set chunk_size if array is not yet active */
2497 char *e;
2498 unsigned long n = simple_strtoul(buf, &e, 10);
2499
2500 if (!*buf || (*e && *e != '\n'))
2501 return -EINVAL;
2502
2503 if (mddev->pers)
2504 return -EBUSY;
2505 else if (mddev->reshape_position != MaxSector)
2506 mddev->new_chunk = n;
2507 else
2508 mddev->chunk_size = n;
2509 return len;
2510 }
2511 static struct md_sysfs_entry md_chunk_size =
2512 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2513
2514 static ssize_t
2515 resync_start_show(mddev_t *mddev, char *page)
2516 {
2517 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2518 }
2519
2520 static ssize_t
2521 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2522 {
2523 char *e;
2524 unsigned long long n = simple_strtoull(buf, &e, 10);
2525
2526 if (mddev->pers)
2527 return -EBUSY;
2528 if (!*buf || (*e && *e != '\n'))
2529 return -EINVAL;
2530
2531 mddev->recovery_cp = n;
2532 return len;
2533 }
2534 static struct md_sysfs_entry md_resync_start =
2535 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2536
2537 /*
2538 * The array state can be:
2539 *
2540 * clear
2541 * No devices, no size, no level
2542 * Equivalent to STOP_ARRAY ioctl
2543 * inactive
2544 * May have some settings, but array is not active
2545 * all IO results in error
2546 * When written, doesn't tear down array, but just stops it
2547 * suspended (not supported yet)
2548 * All IO requests will block. The array can be reconfigured.
2549 * Writing this, if accepted, will block until array is quiessent
2550 * readonly
2551 * no resync can happen. no superblocks get written.
2552 * write requests fail
2553 * read-auto
2554 * like readonly, but behaves like 'clean' on a write request.
2555 *
2556 * clean - no pending writes, but otherwise active.
2557 * When written to inactive array, starts without resync
2558 * If a write request arrives then
2559 * if metadata is known, mark 'dirty' and switch to 'active'.
2560 * if not known, block and switch to write-pending
2561 * If written to an active array that has pending writes, then fails.
2562 * active
2563 * fully active: IO and resync can be happening.
2564 * When written to inactive array, starts with resync
2565 *
2566 * write-pending
2567 * clean, but writes are blocked waiting for 'active' to be written.
2568 *
2569 * active-idle
2570 * like active, but no writes have been seen for a while (100msec).
2571 *
2572 */
2573 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2574 write_pending, active_idle, bad_word};
2575 static char *array_states[] = {
2576 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2577 "write-pending", "active-idle", NULL };
2578
2579 static int match_word(const char *word, char **list)
2580 {
2581 int n;
2582 for (n=0; list[n]; n++)
2583 if (cmd_match(word, list[n]))
2584 break;
2585 return n;
2586 }
2587
2588 static ssize_t
2589 array_state_show(mddev_t *mddev, char *page)
2590 {
2591 enum array_state st = inactive;
2592
2593 if (mddev->pers)
2594 switch(mddev->ro) {
2595 case 1:
2596 st = readonly;
2597 break;
2598 case 2:
2599 st = read_auto;
2600 break;
2601 case 0:
2602 if (mddev->in_sync)
2603 st = clean;
2604 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2605 st = write_pending;
2606 else if (mddev->safemode)
2607 st = active_idle;
2608 else
2609 st = active;
2610 }
2611 else {
2612 if (list_empty(&mddev->disks) &&
2613 mddev->raid_disks == 0 &&
2614 mddev->size == 0)
2615 st = clear;
2616 else
2617 st = inactive;
2618 }
2619 return sprintf(page, "%s\n", array_states[st]);
2620 }
2621
2622 static int do_md_stop(mddev_t * mddev, int ro);
2623 static int do_md_run(mddev_t * mddev);
2624 static int restart_array(mddev_t *mddev);
2625
2626 static ssize_t
2627 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2628 {
2629 int err = -EINVAL;
2630 enum array_state st = match_word(buf, array_states);
2631 switch(st) {
2632 case bad_word:
2633 break;
2634 case clear:
2635 /* stopping an active array */
2636 if (atomic_read(&mddev->active) > 1)
2637 return -EBUSY;
2638 err = do_md_stop(mddev, 0);
2639 break;
2640 case inactive:
2641 /* stopping an active array */
2642 if (mddev->pers) {
2643 if (atomic_read(&mddev->active) > 1)
2644 return -EBUSY;
2645 err = do_md_stop(mddev, 2);
2646 } else
2647 err = 0; /* already inactive */
2648 break;
2649 case suspended:
2650 break; /* not supported yet */
2651 case readonly:
2652 if (mddev->pers)
2653 err = do_md_stop(mddev, 1);
2654 else {
2655 mddev->ro = 1;
2656 set_disk_ro(mddev->gendisk, 1);
2657 err = do_md_run(mddev);
2658 }
2659 break;
2660 case read_auto:
2661 if (mddev->pers) {
2662 if (mddev->ro != 1)
2663 err = do_md_stop(mddev, 1);
2664 else
2665 err = restart_array(mddev);
2666 if (err == 0) {
2667 mddev->ro = 2;
2668 set_disk_ro(mddev->gendisk, 0);
2669 }
2670 } else {
2671 mddev->ro = 2;
2672 err = do_md_run(mddev);
2673 }
2674 break;
2675 case clean:
2676 if (mddev->pers) {
2677 restart_array(mddev);
2678 spin_lock_irq(&mddev->write_lock);
2679 if (atomic_read(&mddev->writes_pending) == 0) {
2680 if (mddev->in_sync == 0) {
2681 mddev->in_sync = 1;
2682 if (mddev->safemode == 1)
2683 mddev->safemode = 0;
2684 if (mddev->persistent)
2685 set_bit(MD_CHANGE_CLEAN,
2686 &mddev->flags);
2687 }
2688 err = 0;
2689 } else
2690 err = -EBUSY;
2691 spin_unlock_irq(&mddev->write_lock);
2692 } else {
2693 mddev->ro = 0;
2694 mddev->recovery_cp = MaxSector;
2695 err = do_md_run(mddev);
2696 }
2697 break;
2698 case active:
2699 if (mddev->pers) {
2700 restart_array(mddev);
2701 if (mddev->external)
2702 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2703 wake_up(&mddev->sb_wait);
2704 err = 0;
2705 } else {
2706 mddev->ro = 0;
2707 set_disk_ro(mddev->gendisk, 0);
2708 err = do_md_run(mddev);
2709 }
2710 break;
2711 case write_pending:
2712 case active_idle:
2713 /* these cannot be set */
2714 break;
2715 }
2716 if (err)
2717 return err;
2718 else {
2719 sysfs_notify(&mddev->kobj, NULL, "array_state");
2720 return len;
2721 }
2722 }
2723 static struct md_sysfs_entry md_array_state =
2724 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2725
2726 static ssize_t
2727 null_show(mddev_t *mddev, char *page)
2728 {
2729 return -EINVAL;
2730 }
2731
2732 static ssize_t
2733 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2734 {
2735 /* buf must be %d:%d\n? giving major and minor numbers */
2736 /* The new device is added to the array.
2737 * If the array has a persistent superblock, we read the
2738 * superblock to initialise info and check validity.
2739 * Otherwise, only checking done is that in bind_rdev_to_array,
2740 * which mainly checks size.
2741 */
2742 char *e;
2743 int major = simple_strtoul(buf, &e, 10);
2744 int minor;
2745 dev_t dev;
2746 mdk_rdev_t *rdev;
2747 int err;
2748
2749 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2750 return -EINVAL;
2751 minor = simple_strtoul(e+1, &e, 10);
2752 if (*e && *e != '\n')
2753 return -EINVAL;
2754 dev = MKDEV(major, minor);
2755 if (major != MAJOR(dev) ||
2756 minor != MINOR(dev))
2757 return -EOVERFLOW;
2758
2759
2760 if (mddev->persistent) {
2761 rdev = md_import_device(dev, mddev->major_version,
2762 mddev->minor_version);
2763 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2764 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2765 mdk_rdev_t, same_set);
2766 err = super_types[mddev->major_version]
2767 .load_super(rdev, rdev0, mddev->minor_version);
2768 if (err < 0)
2769 goto out;
2770 }
2771 } else if (mddev->external)
2772 rdev = md_import_device(dev, -2, -1);
2773 else
2774 rdev = md_import_device(dev, -1, -1);
2775
2776 if (IS_ERR(rdev))
2777 return PTR_ERR(rdev);
2778 err = bind_rdev_to_array(rdev, mddev);
2779 out:
2780 if (err)
2781 export_rdev(rdev);
2782 return err ? err : len;
2783 }
2784
2785 static struct md_sysfs_entry md_new_device =
2786 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2787
2788 static ssize_t
2789 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2790 {
2791 char *end;
2792 unsigned long chunk, end_chunk;
2793
2794 if (!mddev->bitmap)
2795 goto out;
2796 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2797 while (*buf) {
2798 chunk = end_chunk = simple_strtoul(buf, &end, 0);
2799 if (buf == end) break;
2800 if (*end == '-') { /* range */
2801 buf = end + 1;
2802 end_chunk = simple_strtoul(buf, &end, 0);
2803 if (buf == end) break;
2804 }
2805 if (*end && !isspace(*end)) break;
2806 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2807 buf = end;
2808 while (isspace(*buf)) buf++;
2809 }
2810 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2811 out:
2812 return len;
2813 }
2814
2815 static struct md_sysfs_entry md_bitmap =
2816 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2817
2818 static ssize_t
2819 size_show(mddev_t *mddev, char *page)
2820 {
2821 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2822 }
2823
2824 static int update_size(mddev_t *mddev, unsigned long size);
2825
2826 static ssize_t
2827 size_store(mddev_t *mddev, const char *buf, size_t len)
2828 {
2829 /* If array is inactive, we can reduce the component size, but
2830 * not increase it (except from 0).
2831 * If array is active, we can try an on-line resize
2832 */
2833 char *e;
2834 int err = 0;
2835 unsigned long long size = simple_strtoull(buf, &e, 10);
2836 if (!*buf || *buf == '\n' ||
2837 (*e && *e != '\n'))
2838 return -EINVAL;
2839
2840 if (mddev->pers) {
2841 err = update_size(mddev, size);
2842 md_update_sb(mddev, 1);
2843 } else {
2844 if (mddev->size == 0 ||
2845 mddev->size > size)
2846 mddev->size = size;
2847 else
2848 err = -ENOSPC;
2849 }
2850 return err ? err : len;
2851 }
2852
2853 static struct md_sysfs_entry md_size =
2854 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2855
2856
2857 /* Metdata version.
2858 * This is one of
2859 * 'none' for arrays with no metadata (good luck...)
2860 * 'external' for arrays with externally managed metadata,
2861 * or N.M for internally known formats
2862 */
2863 static ssize_t
2864 metadata_show(mddev_t *mddev, char *page)
2865 {
2866 if (mddev->persistent)
2867 return sprintf(page, "%d.%d\n",
2868 mddev->major_version, mddev->minor_version);
2869 else if (mddev->external)
2870 return sprintf(page, "external:%s\n", mddev->metadata_type);
2871 else
2872 return sprintf(page, "none\n");
2873 }
2874
2875 static ssize_t
2876 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2877 {
2878 int major, minor;
2879 char *e;
2880 if (!list_empty(&mddev->disks))
2881 return -EBUSY;
2882
2883 if (cmd_match(buf, "none")) {
2884 mddev->persistent = 0;
2885 mddev->external = 0;
2886 mddev->major_version = 0;
2887 mddev->minor_version = 90;
2888 return len;
2889 }
2890 if (strncmp(buf, "external:", 9) == 0) {
2891 size_t namelen = len-9;
2892 if (namelen >= sizeof(mddev->metadata_type))
2893 namelen = sizeof(mddev->metadata_type)-1;
2894 strncpy(mddev->metadata_type, buf+9, namelen);
2895 mddev->metadata_type[namelen] = 0;
2896 if (namelen && mddev->metadata_type[namelen-1] == '\n')
2897 mddev->metadata_type[--namelen] = 0;
2898 mddev->persistent = 0;
2899 mddev->external = 1;
2900 mddev->major_version = 0;
2901 mddev->minor_version = 90;
2902 return len;
2903 }
2904 major = simple_strtoul(buf, &e, 10);
2905 if (e==buf || *e != '.')
2906 return -EINVAL;
2907 buf = e+1;
2908 minor = simple_strtoul(buf, &e, 10);
2909 if (e==buf || (*e && *e != '\n') )
2910 return -EINVAL;
2911 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2912 return -ENOENT;
2913 mddev->major_version = major;
2914 mddev->minor_version = minor;
2915 mddev->persistent = 1;
2916 mddev->external = 0;
2917 return len;
2918 }
2919
2920 static struct md_sysfs_entry md_metadata =
2921 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2922
2923 static ssize_t
2924 action_show(mddev_t *mddev, char *page)
2925 {
2926 char *type = "idle";
2927 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2928 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2929 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2930 type = "reshape";
2931 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2932 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2933 type = "resync";
2934 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2935 type = "check";
2936 else
2937 type = "repair";
2938 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
2939 type = "recover";
2940 }
2941 return sprintf(page, "%s\n", type);
2942 }
2943
2944 static ssize_t
2945 action_store(mddev_t *mddev, const char *page, size_t len)
2946 {
2947 if (!mddev->pers || !mddev->pers->sync_request)
2948 return -EINVAL;
2949
2950 if (cmd_match(page, "idle")) {
2951 if (mddev->sync_thread) {
2952 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953 md_unregister_thread(mddev->sync_thread);
2954 mddev->sync_thread = NULL;
2955 mddev->recovery = 0;
2956 }
2957 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2958 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2959 return -EBUSY;
2960 else if (cmd_match(page, "resync"))
2961 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2962 else if (cmd_match(page, "recover")) {
2963 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2964 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2965 } else if (cmd_match(page, "reshape")) {
2966 int err;
2967 if (mddev->pers->start_reshape == NULL)
2968 return -EINVAL;
2969 err = mddev->pers->start_reshape(mddev);
2970 if (err)
2971 return err;
2972 sysfs_notify(&mddev->kobj, NULL, "degraded");
2973 } else {
2974 if (cmd_match(page, "check"))
2975 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2976 else if (!cmd_match(page, "repair"))
2977 return -EINVAL;
2978 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2979 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2980 }
2981 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2982 md_wakeup_thread(mddev->thread);
2983 sysfs_notify(&mddev->kobj, NULL, "sync_action");
2984 return len;
2985 }
2986
2987 static ssize_t
2988 mismatch_cnt_show(mddev_t *mddev, char *page)
2989 {
2990 return sprintf(page, "%llu\n",
2991 (unsigned long long) mddev->resync_mismatches);
2992 }
2993
2994 static struct md_sysfs_entry md_scan_mode =
2995 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2996
2997
2998 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2999
3000 static ssize_t
3001 sync_min_show(mddev_t *mddev, char *page)
3002 {
3003 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3004 mddev->sync_speed_min ? "local": "system");
3005 }
3006
3007 static ssize_t
3008 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3009 {
3010 int min;
3011 char *e;
3012 if (strncmp(buf, "system", 6)==0) {
3013 mddev->sync_speed_min = 0;
3014 return len;
3015 }
3016 min = simple_strtoul(buf, &e, 10);
3017 if (buf == e || (*e && *e != '\n') || min <= 0)
3018 return -EINVAL;
3019 mddev->sync_speed_min = min;
3020 return len;
3021 }
3022
3023 static struct md_sysfs_entry md_sync_min =
3024 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3025
3026 static ssize_t
3027 sync_max_show(mddev_t *mddev, char *page)
3028 {
3029 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3030 mddev->sync_speed_max ? "local": "system");
3031 }
3032
3033 static ssize_t
3034 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3035 {
3036 int max;
3037 char *e;
3038 if (strncmp(buf, "system", 6)==0) {
3039 mddev->sync_speed_max = 0;
3040 return len;
3041 }
3042 max = simple_strtoul(buf, &e, 10);
3043 if (buf == e || (*e && *e != '\n') || max <= 0)
3044 return -EINVAL;
3045 mddev->sync_speed_max = max;
3046 return len;
3047 }
3048
3049 static struct md_sysfs_entry md_sync_max =
3050 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3051
3052 static ssize_t
3053 degraded_show(mddev_t *mddev, char *page)
3054 {
3055 return sprintf(page, "%d\n", mddev->degraded);
3056 }
3057 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3058
3059 static ssize_t
3060 sync_force_parallel_show(mddev_t *mddev, char *page)
3061 {
3062 return sprintf(page, "%d\n", mddev->parallel_resync);
3063 }
3064
3065 static ssize_t
3066 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3067 {
3068 long n;
3069
3070 if (strict_strtol(buf, 10, &n))
3071 return -EINVAL;
3072
3073 if (n != 0 && n != 1)
3074 return -EINVAL;
3075
3076 mddev->parallel_resync = n;
3077
3078 if (mddev->sync_thread)
3079 wake_up(&resync_wait);
3080
3081 return len;
3082 }
3083
3084 /* force parallel resync, even with shared block devices */
3085 static struct md_sysfs_entry md_sync_force_parallel =
3086 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3087 sync_force_parallel_show, sync_force_parallel_store);
3088
3089 static ssize_t
3090 sync_speed_show(mddev_t *mddev, char *page)
3091 {
3092 unsigned long resync, dt, db;
3093 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
3094 dt = ((jiffies - mddev->resync_mark) / HZ);
3095 if (!dt) dt++;
3096 db = resync - (mddev->resync_mark_cnt);
3097 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
3098 }
3099
3100 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3101
3102 static ssize_t
3103 sync_completed_show(mddev_t *mddev, char *page)
3104 {
3105 unsigned long max_blocks, resync;
3106
3107 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3108 max_blocks = mddev->resync_max_sectors;
3109 else
3110 max_blocks = mddev->size << 1;
3111
3112 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
3113 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
3114 }
3115
3116 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3117
3118 static ssize_t
3119 min_sync_show(mddev_t *mddev, char *page)
3120 {
3121 return sprintf(page, "%llu\n",
3122 (unsigned long long)mddev->resync_min);
3123 }
3124 static ssize_t
3125 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3126 {
3127 unsigned long long min;
3128 if (strict_strtoull(buf, 10, &min))
3129 return -EINVAL;
3130 if (min > mddev->resync_max)
3131 return -EINVAL;
3132 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3133 return -EBUSY;
3134
3135 /* Must be a multiple of chunk_size */
3136 if (mddev->chunk_size) {
3137 if (min & (sector_t)((mddev->chunk_size>>9)-1))
3138 return -EINVAL;
3139 }
3140 mddev->resync_min = min;
3141
3142 return len;
3143 }
3144
3145 static struct md_sysfs_entry md_min_sync =
3146 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3147
3148 static ssize_t
3149 max_sync_show(mddev_t *mddev, char *page)
3150 {
3151 if (mddev->resync_max == MaxSector)
3152 return sprintf(page, "max\n");
3153 else
3154 return sprintf(page, "%llu\n",
3155 (unsigned long long)mddev->resync_max);
3156 }
3157 static ssize_t
3158 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3159 {
3160 if (strncmp(buf, "max", 3) == 0)
3161 mddev->resync_max = MaxSector;
3162 else {
3163 unsigned long long max;
3164 if (strict_strtoull(buf, 10, &max))
3165 return -EINVAL;
3166 if (max < mddev->resync_min)
3167 return -EINVAL;
3168 if (max < mddev->resync_max &&
3169 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3170 return -EBUSY;
3171
3172 /* Must be a multiple of chunk_size */
3173 if (mddev->chunk_size) {
3174 if (max & (sector_t)((mddev->chunk_size>>9)-1))
3175 return -EINVAL;
3176 }
3177 mddev->resync_max = max;
3178 }
3179 wake_up(&mddev->recovery_wait);
3180 return len;
3181 }
3182
3183 static struct md_sysfs_entry md_max_sync =
3184 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3185
3186 static ssize_t
3187 suspend_lo_show(mddev_t *mddev, char *page)
3188 {
3189 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3190 }
3191
3192 static ssize_t
3193 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3194 {
3195 char *e;
3196 unsigned long long new = simple_strtoull(buf, &e, 10);
3197
3198 if (mddev->pers->quiesce == NULL)
3199 return -EINVAL;
3200 if (buf == e || (*e && *e != '\n'))
3201 return -EINVAL;
3202 if (new >= mddev->suspend_hi ||
3203 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3204 mddev->suspend_lo = new;
3205 mddev->pers->quiesce(mddev, 2);
3206 return len;
3207 } else
3208 return -EINVAL;
3209 }
3210 static struct md_sysfs_entry md_suspend_lo =
3211 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3212
3213
3214 static ssize_t
3215 suspend_hi_show(mddev_t *mddev, char *page)
3216 {
3217 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3218 }
3219
3220 static ssize_t
3221 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3222 {
3223 char *e;
3224 unsigned long long new = simple_strtoull(buf, &e, 10);
3225
3226 if (mddev->pers->quiesce == NULL)
3227 return -EINVAL;
3228 if (buf == e || (*e && *e != '\n'))
3229 return -EINVAL;
3230 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3231 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3232 mddev->suspend_hi = new;
3233 mddev->pers->quiesce(mddev, 1);
3234 mddev->pers->quiesce(mddev, 0);
3235 return len;
3236 } else
3237 return -EINVAL;
3238 }
3239 static struct md_sysfs_entry md_suspend_hi =
3240 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3241
3242 static ssize_t
3243 reshape_position_show(mddev_t *mddev, char *page)
3244 {
3245 if (mddev->reshape_position != MaxSector)
3246 return sprintf(page, "%llu\n",
3247 (unsigned long long)mddev->reshape_position);
3248 strcpy(page, "none\n");
3249 return 5;
3250 }
3251
3252 static ssize_t
3253 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3254 {
3255 char *e;
3256 unsigned long long new = simple_strtoull(buf, &e, 10);
3257 if (mddev->pers)
3258 return -EBUSY;
3259 if (buf == e || (*e && *e != '\n'))
3260 return -EINVAL;
3261 mddev->reshape_position = new;
3262 mddev->delta_disks = 0;
3263 mddev->new_level = mddev->level;
3264 mddev->new_layout = mddev->layout;
3265 mddev->new_chunk = mddev->chunk_size;
3266 return len;
3267 }
3268
3269 static struct md_sysfs_entry md_reshape_position =
3270 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3271 reshape_position_store);
3272
3273
3274 static struct attribute *md_default_attrs[] = {
3275 &md_level.attr,
3276 &md_layout.attr,
3277 &md_raid_disks.attr,
3278 &md_chunk_size.attr,
3279 &md_size.attr,
3280 &md_resync_start.attr,
3281 &md_metadata.attr,
3282 &md_new_device.attr,
3283 &md_safe_delay.attr,
3284 &md_array_state.attr,
3285 &md_reshape_position.attr,
3286 NULL,
3287 };
3288
3289 static struct attribute *md_redundancy_attrs[] = {
3290 &md_scan_mode.attr,
3291 &md_mismatches.attr,
3292 &md_sync_min.attr,
3293 &md_sync_max.attr,
3294 &md_sync_speed.attr,
3295 &md_sync_force_parallel.attr,
3296 &md_sync_completed.attr,
3297 &md_min_sync.attr,
3298 &md_max_sync.attr,
3299 &md_suspend_lo.attr,
3300 &md_suspend_hi.attr,
3301 &md_bitmap.attr,
3302 &md_degraded.attr,
3303 NULL,
3304 };
3305 static struct attribute_group md_redundancy_group = {
3306 .name = NULL,
3307 .attrs = md_redundancy_attrs,
3308 };
3309
3310
3311 static ssize_t
3312 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3313 {
3314 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3315 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3316 ssize_t rv;
3317
3318 if (!entry->show)
3319 return -EIO;
3320 rv = mddev_lock(mddev);
3321 if (!rv) {
3322 rv = entry->show(mddev, page);
3323 mddev_unlock(mddev);
3324 }
3325 return rv;
3326 }
3327
3328 static ssize_t
3329 md_attr_store(struct kobject *kobj, struct attribute *attr,
3330 const char *page, size_t length)
3331 {
3332 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3333 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3334 ssize_t rv;
3335
3336 if (!entry->store)
3337 return -EIO;
3338 if (!capable(CAP_SYS_ADMIN))
3339 return -EACCES;
3340 rv = mddev_lock(mddev);
3341 if (!rv) {
3342 rv = entry->store(mddev, page, length);
3343 mddev_unlock(mddev);
3344 }
3345 return rv;
3346 }
3347
3348 static void md_free(struct kobject *ko)
3349 {
3350 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3351 kfree(mddev);
3352 }
3353
3354 static struct sysfs_ops md_sysfs_ops = {
3355 .show = md_attr_show,
3356 .store = md_attr_store,
3357 };
3358 static struct kobj_type md_ktype = {
3359 .release = md_free,
3360 .sysfs_ops = &md_sysfs_ops,
3361 .default_attrs = md_default_attrs,
3362 };
3363
3364 int mdp_major = 0;
3365
3366 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3367 {
3368 static DEFINE_MUTEX(disks_mutex);
3369 mddev_t *mddev = mddev_find(dev);
3370 struct gendisk *disk;
3371 int partitioned = (MAJOR(dev) != MD_MAJOR);
3372 int shift = partitioned ? MdpMinorShift : 0;
3373 int unit = MINOR(dev) >> shift;
3374 int error;
3375
3376 if (!mddev)
3377 return NULL;
3378
3379 mutex_lock(&disks_mutex);
3380 if (mddev->gendisk) {
3381 mutex_unlock(&disks_mutex);
3382 mddev_put(mddev);
3383 return NULL;
3384 }
3385 disk = alloc_disk(1 << shift);
3386 if (!disk) {
3387 mutex_unlock(&disks_mutex);
3388 mddev_put(mddev);
3389 return NULL;
3390 }
3391 disk->major = MAJOR(dev);
3392 disk->first_minor = unit << shift;
3393 if (partitioned)
3394 sprintf(disk->disk_name, "md_d%d", unit);
3395 else
3396 sprintf(disk->disk_name, "md%d", unit);
3397 disk->fops = &md_fops;
3398 disk->private_data = mddev;
3399 disk->queue = mddev->queue;
3400 add_disk(disk);
3401 mddev->gendisk = disk;
3402 error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk->dev.kobj,
3403 "%s", "md");
3404 mutex_unlock(&disks_mutex);
3405 if (error)
3406 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3407 disk->disk_name);
3408 else
3409 kobject_uevent(&mddev->kobj, KOBJ_ADD);
3410 return NULL;
3411 }
3412
3413 static void md_safemode_timeout(unsigned long data)
3414 {
3415 mddev_t *mddev = (mddev_t *) data;
3416
3417 if (!atomic_read(&mddev->writes_pending)) {
3418 mddev->safemode = 1;
3419 if (mddev->external)
3420 sysfs_notify(&mddev->kobj, NULL, "array_state");
3421 }
3422 md_wakeup_thread(mddev->thread);
3423 }
3424
3425 static int start_dirty_degraded;
3426
3427 static int do_md_run(mddev_t * mddev)
3428 {
3429 int err;
3430 int chunk_size;
3431 struct list_head *tmp;
3432 mdk_rdev_t *rdev;
3433 struct gendisk *disk;
3434 struct mdk_personality *pers;
3435 char b[BDEVNAME_SIZE];
3436
3437 if (list_empty(&mddev->disks))
3438 /* cannot run an array with no devices.. */
3439 return -EINVAL;
3440
3441 if (mddev->pers)
3442 return -EBUSY;
3443
3444 /*
3445 * Analyze all RAID superblock(s)
3446 */
3447 if (!mddev->raid_disks) {
3448 if (!mddev->persistent)
3449 return -EINVAL;
3450 analyze_sbs(mddev);
3451 }
3452
3453 chunk_size = mddev->chunk_size;
3454
3455 if (chunk_size) {
3456 if (chunk_size > MAX_CHUNK_SIZE) {
3457 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3458 chunk_size, MAX_CHUNK_SIZE);
3459 return -EINVAL;
3460 }
3461 /*
3462 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3463 */
3464 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3465 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3466 return -EINVAL;
3467 }
3468 if (chunk_size < PAGE_SIZE) {
3469 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3470 chunk_size, PAGE_SIZE);
3471 return -EINVAL;
3472 }
3473
3474 /* devices must have minimum size of one chunk */
3475 rdev_for_each(rdev, tmp, mddev) {
3476 if (test_bit(Faulty, &rdev->flags))
3477 continue;
3478 if (rdev->size < chunk_size / 1024) {
3479 printk(KERN_WARNING
3480 "md: Dev %s smaller than chunk_size:"
3481 " %lluk < %dk\n",
3482 bdevname(rdev->bdev,b),
3483 (unsigned long long)rdev->size,
3484 chunk_size / 1024);
3485 return -EINVAL;
3486 }
3487 }
3488 }
3489
3490 #ifdef CONFIG_KMOD
3491 if (mddev->level != LEVEL_NONE)
3492 request_module("md-level-%d", mddev->level);
3493 else if (mddev->clevel[0])
3494 request_module("md-%s", mddev->clevel);
3495 #endif
3496
3497 /*
3498 * Drop all container device buffers, from now on
3499 * the only valid external interface is through the md
3500 * device.
3501 */
3502 rdev_for_each(rdev, tmp, mddev) {
3503 if (test_bit(Faulty, &rdev->flags))
3504 continue;
3505 sync_blockdev(rdev->bdev);
3506 invalidate_bdev(rdev->bdev);
3507
3508 /* perform some consistency tests on the device.
3509 * We don't want the data to overlap the metadata,
3510 * Internal Bitmap issues has handled elsewhere.
3511 */
3512 if (rdev->data_offset < rdev->sb_offset) {
3513 if (mddev->size &&
3514 rdev->data_offset + mddev->size*2
3515 > rdev->sb_offset*2) {
3516 printk("md: %s: data overlaps metadata\n",
3517 mdname(mddev));
3518 return -EINVAL;
3519 }
3520 } else {
3521 if (rdev->sb_offset*2 + rdev->sb_size/512
3522 > rdev->data_offset) {
3523 printk("md: %s: metadata overlaps data\n",
3524 mdname(mddev));
3525 return -EINVAL;
3526 }
3527 }
3528 }
3529
3530 md_probe(mddev->unit, NULL, NULL);
3531 disk = mddev->gendisk;
3532 if (!disk)
3533 return -ENOMEM;
3534
3535 spin_lock(&pers_lock);
3536 pers = find_pers(mddev->level, mddev->clevel);
3537 if (!pers || !try_module_get(pers->owner)) {
3538 spin_unlock(&pers_lock);
3539 if (mddev->level != LEVEL_NONE)
3540 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3541 mddev->level);
3542 else
3543 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3544 mddev->clevel);
3545 return -EINVAL;
3546 }
3547 mddev->pers = pers;
3548 spin_unlock(&pers_lock);
3549 mddev->level = pers->level;
3550 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3551
3552 if (mddev->reshape_position != MaxSector &&
3553 pers->start_reshape == NULL) {
3554 /* This personality cannot handle reshaping... */
3555 mddev->pers = NULL;
3556 module_put(pers->owner);
3557 return -EINVAL;
3558 }
3559
3560 if (pers->sync_request) {
3561 /* Warn if this is a potentially silly
3562 * configuration.
3563 */
3564 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3565 mdk_rdev_t *rdev2;
3566 struct list_head *tmp2;
3567 int warned = 0;
3568 rdev_for_each(rdev, tmp, mddev) {
3569 rdev_for_each(rdev2, tmp2, mddev) {
3570 if (rdev < rdev2 &&
3571 rdev->bdev->bd_contains ==
3572 rdev2->bdev->bd_contains) {
3573 printk(KERN_WARNING
3574 "%s: WARNING: %s appears to be"
3575 " on the same physical disk as"
3576 " %s.\n",
3577 mdname(mddev),
3578 bdevname(rdev->bdev,b),
3579 bdevname(rdev2->bdev,b2));
3580 warned = 1;
3581 }
3582 }
3583 }
3584 if (warned)
3585 printk(KERN_WARNING
3586 "True protection against single-disk"
3587 " failure might be compromised.\n");
3588 }
3589
3590 mddev->recovery = 0;
3591 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3592 mddev->barriers_work = 1;
3593 mddev->ok_start_degraded = start_dirty_degraded;
3594
3595 if (start_readonly)
3596 mddev->ro = 2; /* read-only, but switch on first write */
3597
3598 err = mddev->pers->run(mddev);
3599 if (!err && mddev->pers->sync_request) {
3600 err = bitmap_create(mddev);
3601 if (err) {
3602 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3603 mdname(mddev), err);
3604 mddev->pers->stop(mddev);
3605 }
3606 }
3607 if (err) {
3608 printk(KERN_ERR "md: pers->run() failed ...\n");
3609 module_put(mddev->pers->owner);
3610 mddev->pers = NULL;
3611 bitmap_destroy(mddev);
3612 return err;
3613 }
3614 if (mddev->pers->sync_request) {
3615 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3616 printk(KERN_WARNING
3617 "md: cannot register extra attributes for %s\n",
3618 mdname(mddev));
3619 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
3620 mddev->ro = 0;
3621
3622 atomic_set(&mddev->writes_pending,0);
3623 mddev->safemode = 0;
3624 mddev->safemode_timer.function = md_safemode_timeout;
3625 mddev->safemode_timer.data = (unsigned long) mddev;
3626 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3627 mddev->in_sync = 1;
3628
3629 rdev_for_each(rdev, tmp, mddev)
3630 if (rdev->raid_disk >= 0) {
3631 char nm[20];
3632 sprintf(nm, "rd%d", rdev->raid_disk);
3633 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3634 printk("md: cannot register %s for %s\n",
3635 nm, mdname(mddev));
3636 }
3637
3638 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3639
3640 if (mddev->flags)
3641 md_update_sb(mddev, 0);
3642
3643 set_capacity(disk, mddev->array_size<<1);
3644
3645 /* If we call blk_queue_make_request here, it will
3646 * re-initialise max_sectors etc which may have been
3647 * refined inside -> run. So just set the bits we need to set.
3648 * Most initialisation happended when we called
3649 * blk_queue_make_request(..., md_fail_request)
3650 * earlier.
3651 */
3652 mddev->queue->queuedata = mddev;
3653 mddev->queue->make_request_fn = mddev->pers->make_request;
3654
3655 /* If there is a partially-recovered drive we need to
3656 * start recovery here. If we leave it to md_check_recovery,
3657 * it will remove the drives and not do the right thing
3658 */
3659 if (mddev->degraded && !mddev->sync_thread) {
3660 struct list_head *rtmp;
3661 int spares = 0;
3662 rdev_for_each(rdev, rtmp, mddev)
3663 if (rdev->raid_disk >= 0 &&
3664 !test_bit(In_sync, &rdev->flags) &&
3665 !test_bit(Faulty, &rdev->flags))
3666 /* complete an interrupted recovery */
3667 spares++;
3668 if (spares && mddev->pers->sync_request) {
3669 mddev->recovery = 0;
3670 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3671 mddev->sync_thread = md_register_thread(md_do_sync,
3672 mddev,
3673 "%s_resync");
3674 if (!mddev->sync_thread) {
3675 printk(KERN_ERR "%s: could not start resync"
3676 " thread...\n",
3677 mdname(mddev));
3678 /* leave the spares where they are, it shouldn't hurt */
3679 mddev->recovery = 0;
3680 }
3681 }
3682 }
3683 md_wakeup_thread(mddev->thread);
3684 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3685
3686 mddev->changed = 1;
3687 md_new_event(mddev);
3688 sysfs_notify(&mddev->kobj, NULL, "array_state");
3689 sysfs_notify(&mddev->kobj, NULL, "sync_action");
3690 sysfs_notify(&mddev->kobj, NULL, "degraded");
3691 kobject_uevent(&mddev->gendisk->dev.kobj, KOBJ_CHANGE);
3692 return 0;
3693 }
3694
3695 static int restart_array(mddev_t *mddev)
3696 {
3697 struct gendisk *disk = mddev->gendisk;
3698 int err;
3699
3700 /*
3701 * Complain if it has no devices
3702 */
3703 err = -ENXIO;
3704 if (list_empty(&mddev->disks))
3705 goto out;
3706
3707 if (mddev->pers) {
3708 err = -EBUSY;
3709 if (!mddev->ro)
3710 goto out;
3711
3712 mddev->safemode = 0;
3713 mddev->ro = 0;
3714 set_disk_ro(disk, 0);
3715
3716 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3717 mdname(mddev));
3718 /*
3719 * Kick recovery or resync if necessary
3720 */
3721 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3722 md_wakeup_thread(mddev->thread);
3723 md_wakeup_thread(mddev->sync_thread);
3724 err = 0;
3725 sysfs_notify(&mddev->kobj, NULL, "array_state");
3726
3727 } else
3728 err = -EINVAL;
3729
3730 out:
3731 return err;
3732 }
3733
3734 /* similar to deny_write_access, but accounts for our holding a reference
3735 * to the file ourselves */
3736 static int deny_bitmap_write_access(struct file * file)
3737 {
3738 struct inode *inode = file->f_mapping->host;
3739
3740 spin_lock(&inode->i_lock);
3741 if (atomic_read(&inode->i_writecount) > 1) {
3742 spin_unlock(&inode->i_lock);
3743 return -ETXTBSY;
3744 }
3745 atomic_set(&inode->i_writecount, -1);
3746 spin_unlock(&inode->i_lock);
3747
3748 return 0;
3749 }
3750
3751 static void restore_bitmap_write_access(struct file *file)
3752 {
3753 struct inode *inode = file->f_mapping->host;
3754
3755 spin_lock(&inode->i_lock);
3756 atomic_set(&inode->i_writecount, 1);
3757 spin_unlock(&inode->i_lock);
3758 }
3759
3760 /* mode:
3761 * 0 - completely stop and dis-assemble array
3762 * 1 - switch to readonly
3763 * 2 - stop but do not disassemble array
3764 */
3765 static int do_md_stop(mddev_t * mddev, int mode)
3766 {
3767 int err = 0;
3768 struct gendisk *disk = mddev->gendisk;
3769
3770 if (mddev->pers) {
3771 if (atomic_read(&mddev->active)>2) {
3772 printk("md: %s still in use.\n",mdname(mddev));
3773 return -EBUSY;
3774 }
3775
3776 if (mddev->sync_thread) {
3777 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3778 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3779 md_unregister_thread(mddev->sync_thread);
3780 mddev->sync_thread = NULL;
3781 }
3782
3783 del_timer_sync(&mddev->safemode_timer);
3784
3785 invalidate_partition(disk, 0);
3786
3787 switch(mode) {
3788 case 1: /* readonly */
3789 err = -ENXIO;
3790 if (mddev->ro==1)
3791 goto out;
3792 mddev->ro = 1;
3793 break;
3794 case 0: /* disassemble */
3795 case 2: /* stop */
3796 bitmap_flush(mddev);
3797 md_super_wait(mddev);
3798 if (mddev->ro)
3799 set_disk_ro(disk, 0);
3800 blk_queue_make_request(mddev->queue, md_fail_request);
3801 mddev->pers->stop(mddev);
3802 mddev->queue->merge_bvec_fn = NULL;
3803 mddev->queue->unplug_fn = NULL;
3804 mddev->queue->backing_dev_info.congested_fn = NULL;
3805 if (mddev->pers->sync_request)
3806 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3807
3808 module_put(mddev->pers->owner);
3809 mddev->pers = NULL;
3810 /* tell userspace to handle 'inactive' */
3811 sysfs_notify(&mddev->kobj, NULL, "array_state");
3812
3813 set_capacity(disk, 0);
3814 mddev->changed = 1;
3815
3816 if (mddev->ro)
3817 mddev->ro = 0;
3818 }
3819 if (!mddev->in_sync || mddev->flags) {
3820 /* mark array as shutdown cleanly */
3821 mddev->in_sync = 1;
3822 md_update_sb(mddev, 1);
3823 }
3824 if (mode == 1)
3825 set_disk_ro(disk, 1);
3826 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3827 }
3828
3829 /*
3830 * Free resources if final stop
3831 */
3832 if (mode == 0) {
3833 mdk_rdev_t *rdev;
3834 struct list_head *tmp;
3835
3836 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3837
3838 bitmap_destroy(mddev);
3839 if (mddev->bitmap_file) {
3840 restore_bitmap_write_access(mddev->bitmap_file);
3841 fput(mddev->bitmap_file);
3842 mddev->bitmap_file = NULL;
3843 }
3844 mddev->bitmap_offset = 0;
3845
3846 rdev_for_each(rdev, tmp, mddev)
3847 if (rdev->raid_disk >= 0) {
3848 char nm[20];
3849 sprintf(nm, "rd%d", rdev->raid_disk);
3850 sysfs_remove_link(&mddev->kobj, nm);
3851 }
3852
3853 /* make sure all md_delayed_delete calls have finished */
3854 flush_scheduled_work();
3855
3856 export_array(mddev);
3857
3858 mddev->array_size = 0;
3859 mddev->size = 0;
3860 mddev->raid_disks = 0;
3861 mddev->recovery_cp = 0;
3862 mddev->resync_min = 0;
3863 mddev->resync_max = MaxSector;
3864 mddev->reshape_position = MaxSector;
3865 mddev->external = 0;
3866 mddev->persistent = 0;
3867 mddev->level = LEVEL_NONE;
3868 mddev->clevel[0] = 0;
3869 mddev->flags = 0;
3870 mddev->ro = 0;
3871 mddev->metadata_type[0] = 0;
3872 mddev->chunk_size = 0;
3873 mddev->ctime = mddev->utime = 0;
3874 mddev->layout = 0;
3875 mddev->max_disks = 0;
3876 mddev->events = 0;
3877 mddev->delta_disks = 0;
3878 mddev->new_level = LEVEL_NONE;
3879 mddev->new_layout = 0;
3880 mddev->new_chunk = 0;
3881 mddev->curr_resync = 0;
3882 mddev->resync_mismatches = 0;
3883 mddev->suspend_lo = mddev->suspend_hi = 0;
3884 mddev->sync_speed_min = mddev->sync_speed_max = 0;
3885 mddev->recovery = 0;
3886 mddev->in_sync = 0;
3887 mddev->changed = 0;
3888 mddev->degraded = 0;
3889 mddev->barriers_work = 0;
3890 mddev->safemode = 0;
3891
3892 } else if (mddev->pers)
3893 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3894 mdname(mddev));
3895 err = 0;
3896 md_new_event(mddev);
3897 sysfs_notify(&mddev->kobj, NULL, "array_state");
3898 out:
3899 return err;
3900 }
3901
3902 #ifndef MODULE
3903 static void autorun_array(mddev_t *mddev)
3904 {
3905 mdk_rdev_t *rdev;
3906 struct list_head *tmp;
3907 int err;
3908
3909 if (list_empty(&mddev->disks))
3910 return;
3911
3912 printk(KERN_INFO "md: running: ");
3913
3914 rdev_for_each(rdev, tmp, mddev) {
3915 char b[BDEVNAME_SIZE];
3916 printk("<%s>", bdevname(rdev->bdev,b));
3917 }
3918 printk("\n");
3919
3920 err = do_md_run (mddev);
3921 if (err) {
3922 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3923 do_md_stop (mddev, 0);
3924 }
3925 }
3926
3927 /*
3928 * lets try to run arrays based on all disks that have arrived
3929 * until now. (those are in pending_raid_disks)
3930 *
3931 * the method: pick the first pending disk, collect all disks with
3932 * the same UUID, remove all from the pending list and put them into
3933 * the 'same_array' list. Then order this list based on superblock
3934 * update time (freshest comes first), kick out 'old' disks and
3935 * compare superblocks. If everything's fine then run it.
3936 *
3937 * If "unit" is allocated, then bump its reference count
3938 */
3939 static void autorun_devices(int part)
3940 {
3941 struct list_head *tmp;
3942 mdk_rdev_t *rdev0, *rdev;
3943 mddev_t *mddev;
3944 char b[BDEVNAME_SIZE];
3945
3946 printk(KERN_INFO "md: autorun ...\n");
3947 while (!list_empty(&pending_raid_disks)) {
3948 int unit;
3949 dev_t dev;
3950 LIST_HEAD(candidates);
3951 rdev0 = list_entry(pending_raid_disks.next,
3952 mdk_rdev_t, same_set);
3953
3954 printk(KERN_INFO "md: considering %s ...\n",
3955 bdevname(rdev0->bdev,b));
3956 INIT_LIST_HEAD(&candidates);
3957 rdev_for_each_list(rdev, tmp, pending_raid_disks)
3958 if (super_90_load(rdev, rdev0, 0) >= 0) {
3959 printk(KERN_INFO "md: adding %s ...\n",
3960 bdevname(rdev->bdev,b));
3961 list_move(&rdev->same_set, &candidates);
3962 }
3963 /*
3964 * now we have a set of devices, with all of them having
3965 * mostly sane superblocks. It's time to allocate the
3966 * mddev.
3967 */
3968 if (part) {
3969 dev = MKDEV(mdp_major,
3970 rdev0->preferred_minor << MdpMinorShift);
3971 unit = MINOR(dev) >> MdpMinorShift;
3972 } else {
3973 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3974 unit = MINOR(dev);
3975 }
3976 if (rdev0->preferred_minor != unit) {
3977 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3978 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3979 break;
3980 }
3981
3982 md_probe(dev, NULL, NULL);
3983 mddev = mddev_find(dev);
3984 if (!mddev || !mddev->gendisk) {
3985 if (mddev)
3986 mddev_put(mddev);
3987 printk(KERN_ERR
3988 "md: cannot allocate memory for md drive.\n");
3989 break;
3990 }
3991 if (mddev_lock(mddev))
3992 printk(KERN_WARNING "md: %s locked, cannot run\n",
3993 mdname(mddev));
3994 else if (mddev->raid_disks || mddev->major_version
3995 || !list_empty(&mddev->disks)) {
3996 printk(KERN_WARNING
3997 "md: %s already running, cannot run %s\n",
3998 mdname(mddev), bdevname(rdev0->bdev,b));
3999 mddev_unlock(mddev);
4000 } else {
4001 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4002 mddev->persistent = 1;
4003 rdev_for_each_list(rdev, tmp, candidates) {
4004 list_del_init(&rdev->same_set);
4005 if (bind_rdev_to_array(rdev, mddev))
4006 export_rdev(rdev);
4007 }
4008 autorun_array(mddev);
4009 mddev_unlock(mddev);
4010 }
4011 /* on success, candidates will be empty, on error
4012 * it won't...
4013 */
4014 rdev_for_each_list(rdev, tmp, candidates)
4015 export_rdev(rdev);
4016 mddev_put(mddev);
4017 }
4018 printk(KERN_INFO "md: ... autorun DONE.\n");
4019 }
4020 #endif /* !MODULE */
4021
4022 static int get_version(void __user * arg)
4023 {
4024 mdu_version_t ver;
4025
4026 ver.major = MD_MAJOR_VERSION;
4027 ver.minor = MD_MINOR_VERSION;
4028 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4029
4030 if (copy_to_user(arg, &ver, sizeof(ver)))
4031 return -EFAULT;
4032
4033 return 0;
4034 }
4035
4036 static int get_array_info(mddev_t * mddev, void __user * arg)
4037 {
4038 mdu_array_info_t info;
4039 int nr,working,active,failed,spare;
4040 mdk_rdev_t *rdev;
4041 struct list_head *tmp;
4042
4043 nr=working=active=failed=spare=0;
4044 rdev_for_each(rdev, tmp, mddev) {
4045 nr++;
4046 if (test_bit(Faulty, &rdev->flags))
4047 failed++;
4048 else {
4049 working++;
4050 if (test_bit(In_sync, &rdev->flags))
4051 active++;
4052 else
4053 spare++;
4054 }
4055 }
4056
4057 info.major_version = mddev->major_version;
4058 info.minor_version = mddev->minor_version;
4059 info.patch_version = MD_PATCHLEVEL_VERSION;
4060 info.ctime = mddev->ctime;
4061 info.level = mddev->level;
4062 info.size = mddev->size;
4063 if (info.size != mddev->size) /* overflow */
4064 info.size = -1;
4065 info.nr_disks = nr;
4066 info.raid_disks = mddev->raid_disks;
4067 info.md_minor = mddev->md_minor;
4068 info.not_persistent= !mddev->persistent;
4069
4070 info.utime = mddev->utime;
4071 info.state = 0;
4072 if (mddev->in_sync)
4073 info.state = (1<<MD_SB_CLEAN);
4074 if (mddev->bitmap && mddev->bitmap_offset)
4075 info.state = (1<<MD_SB_BITMAP_PRESENT);
4076 info.active_disks = active;
4077 info.working_disks = working;
4078 info.failed_disks = failed;
4079 info.spare_disks = spare;
4080
4081 info.layout = mddev->layout;
4082 info.chunk_size = mddev->chunk_size;
4083
4084 if (copy_to_user(arg, &info, sizeof(info)))
4085 return -EFAULT;
4086
4087 return 0;
4088 }
4089
4090 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4091 {
4092 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4093 char *ptr, *buf = NULL;
4094 int err = -ENOMEM;
4095
4096 md_allow_write(mddev);
4097
4098 file = kmalloc(sizeof(*file), GFP_KERNEL);
4099 if (!file)
4100 goto out;
4101
4102 /* bitmap disabled, zero the first byte and copy out */
4103 if (!mddev->bitmap || !mddev->bitmap->file) {
4104 file->pathname[0] = '\0';
4105 goto copy_out;
4106 }
4107
4108 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4109 if (!buf)
4110 goto out;
4111
4112 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4113 if (IS_ERR(ptr))
4114 goto out;
4115
4116 strcpy(file->pathname, ptr);
4117
4118 copy_out:
4119 err = 0;
4120 if (copy_to_user(arg, file, sizeof(*file)))
4121 err = -EFAULT;
4122 out:
4123 kfree(buf);
4124 kfree(file);
4125 return err;
4126 }
4127
4128 static int get_disk_info(mddev_t * mddev, void __user * arg)
4129 {
4130 mdu_disk_info_t info;
4131 unsigned int nr;
4132 mdk_rdev_t *rdev;
4133
4134 if (copy_from_user(&info, arg, sizeof(info)))
4135 return -EFAULT;
4136
4137 nr = info.number;
4138
4139 rdev = find_rdev_nr(mddev, nr);
4140 if (rdev) {
4141 info.major = MAJOR(rdev->bdev->bd_dev);
4142 info.minor = MINOR(rdev->bdev->bd_dev);
4143 info.raid_disk = rdev->raid_disk;
4144 info.state = 0;
4145 if (test_bit(Faulty, &rdev->flags))
4146 info.state |= (1<<MD_DISK_FAULTY);
4147 else if (test_bit(In_sync, &rdev->flags)) {
4148 info.state |= (1<<MD_DISK_ACTIVE);
4149 info.state |= (1<<MD_DISK_SYNC);
4150 }
4151 if (test_bit(WriteMostly, &rdev->flags))
4152 info.state |= (1<<MD_DISK_WRITEMOSTLY);
4153 } else {
4154 info.major = info.minor = 0;
4155 info.raid_disk = -1;
4156 info.state = (1<<MD_DISK_REMOVED);
4157 }
4158
4159 if (copy_to_user(arg, &info, sizeof(info)))
4160 return -EFAULT;
4161
4162 return 0;
4163 }
4164
4165 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4166 {
4167 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4168 mdk_rdev_t *rdev;
4169 dev_t dev = MKDEV(info->major,info->minor);
4170
4171 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4172 return -EOVERFLOW;
4173
4174 if (!mddev->raid_disks) {
4175 int err;
4176 /* expecting a device which has a superblock */
4177 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4178 if (IS_ERR(rdev)) {
4179 printk(KERN_WARNING
4180 "md: md_import_device returned %ld\n",
4181 PTR_ERR(rdev));
4182 return PTR_ERR(rdev);
4183 }
4184 if (!list_empty(&mddev->disks)) {
4185 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4186 mdk_rdev_t, same_set);
4187 int err = super_types[mddev->major_version]
4188 .load_super(rdev, rdev0, mddev->minor_version);
4189 if (err < 0) {
4190 printk(KERN_WARNING
4191 "md: %s has different UUID to %s\n",
4192 bdevname(rdev->bdev,b),
4193 bdevname(rdev0->bdev,b2));
4194 export_rdev(rdev);
4195 return -EINVAL;
4196 }
4197 }
4198 err = bind_rdev_to_array(rdev, mddev);
4199 if (err)
4200 export_rdev(rdev);
4201 return err;
4202 }
4203
4204 /*
4205 * add_new_disk can be used once the array is assembled
4206 * to add "hot spares". They must already have a superblock
4207 * written
4208 */
4209 if (mddev->pers) {
4210 int err;
4211 if (!mddev->pers->hot_add_disk) {
4212 printk(KERN_WARNING
4213 "%s: personality does not support diskops!\n",
4214 mdname(mddev));
4215 return -EINVAL;
4216 }
4217 if (mddev->persistent)
4218 rdev = md_import_device(dev, mddev->major_version,
4219 mddev->minor_version);
4220 else
4221 rdev = md_import_device(dev, -1, -1);
4222 if (IS_ERR(rdev)) {
4223 printk(KERN_WARNING
4224 "md: md_import_device returned %ld\n",
4225 PTR_ERR(rdev));
4226 return PTR_ERR(rdev);
4227 }
4228 /* set save_raid_disk if appropriate */
4229 if (!mddev->persistent) {
4230 if (info->state & (1<<MD_DISK_SYNC) &&
4231 info->raid_disk < mddev->raid_disks)
4232 rdev->raid_disk = info->raid_disk;
4233 else
4234 rdev->raid_disk = -1;
4235 } else
4236 super_types[mddev->major_version].
4237 validate_super(mddev, rdev);
4238 rdev->saved_raid_disk = rdev->raid_disk;
4239
4240 clear_bit(In_sync, &rdev->flags); /* just to be sure */
4241 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4242 set_bit(WriteMostly, &rdev->flags);
4243
4244 rdev->raid_disk = -1;
4245 err = bind_rdev_to_array(rdev, mddev);
4246 if (!err && !mddev->pers->hot_remove_disk) {
4247 /* If there is hot_add_disk but no hot_remove_disk
4248 * then added disks for geometry changes,
4249 * and should be added immediately.
4250 */
4251 super_types[mddev->major_version].
4252 validate_super(mddev, rdev);
4253 err = mddev->pers->hot_add_disk(mddev, rdev);
4254 if (err)
4255 unbind_rdev_from_array(rdev);
4256 }
4257 if (err)
4258 export_rdev(rdev);
4259
4260 md_update_sb(mddev, 1);
4261 if (mddev->degraded)
4262 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4263 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4264 md_wakeup_thread(mddev->thread);
4265 return err;
4266 }
4267
4268 /* otherwise, add_new_disk is only allowed
4269 * for major_version==0 superblocks
4270 */
4271 if (mddev->major_version != 0) {
4272 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4273 mdname(mddev));
4274 return -EINVAL;
4275 }
4276
4277 if (!(info->state & (1<<MD_DISK_FAULTY))) {
4278 int err;
4279 rdev = md_import_device (dev, -1, 0);
4280 if (IS_ERR(rdev)) {
4281 printk(KERN_WARNING
4282 "md: error, md_import_device() returned %ld\n",
4283 PTR_ERR(rdev));
4284 return PTR_ERR(rdev);
4285 }
4286 rdev->desc_nr = info->number;
4287 if (info->raid_disk < mddev->raid_disks)
4288 rdev->raid_disk = info->raid_disk;
4289 else
4290 rdev->raid_disk = -1;
4291
4292 if (rdev->raid_disk < mddev->raid_disks)
4293 if (info->state & (1<<MD_DISK_SYNC))
4294 set_bit(In_sync, &rdev->flags);
4295
4296 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4297 set_bit(WriteMostly, &rdev->flags);
4298
4299 if (!mddev->persistent) {
4300 printk(KERN_INFO "md: nonpersistent superblock ...\n");
4301 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4302 } else
4303 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4304 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
4305
4306 err = bind_rdev_to_array(rdev, mddev);
4307 if (err) {
4308 export_rdev(rdev);
4309 return err;
4310 }
4311 }
4312
4313 return 0;
4314 }
4315
4316 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4317 {
4318 char b[BDEVNAME_SIZE];
4319 mdk_rdev_t *rdev;
4320
4321 rdev = find_rdev(mddev, dev);
4322 if (!rdev)
4323 return -ENXIO;
4324
4325 if (rdev->raid_disk >= 0)
4326 goto busy;
4327
4328 kick_rdev_from_array(rdev);
4329 md_update_sb(mddev, 1);
4330 md_new_event(mddev);
4331
4332 return 0;
4333 busy:
4334 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4335 bdevname(rdev->bdev,b), mdname(mddev));
4336 return -EBUSY;
4337 }
4338
4339 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4340 {
4341 char b[BDEVNAME_SIZE];
4342 int err;
4343 unsigned int size;
4344 mdk_rdev_t *rdev;
4345
4346 if (!mddev->pers)
4347 return -ENODEV;
4348
4349 if (mddev->major_version != 0) {
4350 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4351 " version-0 superblocks.\n",
4352 mdname(mddev));
4353 return -EINVAL;
4354 }
4355 if (!mddev->pers->hot_add_disk) {
4356 printk(KERN_WARNING
4357 "%s: personality does not support diskops!\n",
4358 mdname(mddev));
4359 return -EINVAL;
4360 }
4361
4362 rdev = md_import_device (dev, -1, 0);
4363 if (IS_ERR(rdev)) {
4364 printk(KERN_WARNING
4365 "md: error, md_import_device() returned %ld\n",
4366 PTR_ERR(rdev));
4367 return -EINVAL;
4368 }
4369
4370 if (mddev->persistent)
4371 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4372 else
4373 rdev->sb_offset =
4374 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4375
4376 size = calc_dev_size(rdev, mddev->chunk_size);
4377 rdev->size = size;
4378
4379 if (test_bit(Faulty, &rdev->flags)) {
4380 printk(KERN_WARNING
4381 "md: can not hot-add faulty %s disk to %s!\n",
4382 bdevname(rdev->bdev,b), mdname(mddev));
4383 err = -EINVAL;
4384 goto abort_export;
4385 }
4386 clear_bit(In_sync, &rdev->flags);
4387 rdev->desc_nr = -1;
4388 rdev->saved_raid_disk = -1;
4389 err = bind_rdev_to_array(rdev, mddev);
4390 if (err)
4391 goto abort_export;
4392
4393 /*
4394 * The rest should better be atomic, we can have disk failures
4395 * noticed in interrupt contexts ...
4396 */
4397
4398 if (rdev->desc_nr == mddev->max_disks) {
4399 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4400 mdname(mddev));
4401 err = -EBUSY;
4402 goto abort_unbind_export;
4403 }
4404
4405 rdev->raid_disk = -1;
4406
4407 md_update_sb(mddev, 1);
4408
4409 /*
4410 * Kick recovery, maybe this spare has to be added to the
4411 * array immediately.
4412 */
4413 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4414 md_wakeup_thread(mddev->thread);
4415 md_new_event(mddev);
4416 return 0;
4417
4418 abort_unbind_export:
4419 unbind_rdev_from_array(rdev);
4420
4421 abort_export:
4422 export_rdev(rdev);
4423 return err;
4424 }
4425
4426 static int set_bitmap_file(mddev_t *mddev, int fd)
4427 {
4428 int err;
4429
4430 if (mddev->pers) {
4431 if (!mddev->pers->quiesce)
4432 return -EBUSY;
4433 if (mddev->recovery || mddev->sync_thread)
4434 return -EBUSY;
4435 /* we should be able to change the bitmap.. */
4436 }
4437
4438
4439 if (fd >= 0) {
4440 if (mddev->bitmap)
4441 return -EEXIST; /* cannot add when bitmap is present */
4442 mddev->bitmap_file = fget(fd);
4443
4444 if (mddev->bitmap_file == NULL) {
4445 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4446 mdname(mddev));
4447 return -EBADF;
4448 }
4449
4450 err = deny_bitmap_write_access(mddev->bitmap_file);
4451 if (err) {
4452 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4453 mdname(mddev));
4454 fput(mddev->bitmap_file);
4455 mddev->bitmap_file = NULL;
4456 return err;
4457 }
4458 mddev->bitmap_offset = 0; /* file overrides offset */
4459 } else if (mddev->bitmap == NULL)
4460 return -ENOENT; /* cannot remove what isn't there */
4461 err = 0;
4462 if (mddev->pers) {
4463 mddev->pers->quiesce(mddev, 1);
4464 if (fd >= 0)
4465 err = bitmap_create(mddev);
4466 if (fd < 0 || err) {
4467 bitmap_destroy(mddev);
4468 fd = -1; /* make sure to put the file */
4469 }
4470 mddev->pers->quiesce(mddev, 0);
4471 }
4472 if (fd < 0) {
4473 if (mddev->bitmap_file) {
4474 restore_bitmap_write_access(mddev->bitmap_file);
4475 fput(mddev->bitmap_file);
4476 }
4477 mddev->bitmap_file = NULL;
4478 }
4479
4480 return err;
4481 }
4482
4483 /*
4484 * set_array_info is used two different ways
4485 * The original usage is when creating a new array.
4486 * In this usage, raid_disks is > 0 and it together with
4487 * level, size, not_persistent,layout,chunksize determine the
4488 * shape of the array.
4489 * This will always create an array with a type-0.90.0 superblock.
4490 * The newer usage is when assembling an array.
4491 * In this case raid_disks will be 0, and the major_version field is
4492 * use to determine which style super-blocks are to be found on the devices.
4493 * The minor and patch _version numbers are also kept incase the
4494 * super_block handler wishes to interpret them.
4495 */
4496 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4497 {
4498
4499 if (info->raid_disks == 0) {
4500 /* just setting version number for superblock loading */
4501 if (info->major_version < 0 ||
4502 info->major_version >= ARRAY_SIZE(super_types) ||
4503 super_types[info->major_version].name == NULL) {
4504 /* maybe try to auto-load a module? */
4505 printk(KERN_INFO
4506 "md: superblock version %d not known\n",
4507 info->major_version);
4508 return -EINVAL;
4509 }
4510 mddev->major_version = info->major_version;
4511 mddev->minor_version = info->minor_version;
4512 mddev->patch_version = info->patch_version;
4513 mddev->persistent = !info->not_persistent;
4514 return 0;
4515 }
4516 mddev->major_version = MD_MAJOR_VERSION;
4517 mddev->minor_version = MD_MINOR_VERSION;
4518 mddev->patch_version = MD_PATCHLEVEL_VERSION;
4519 mddev->ctime = get_seconds();
4520
4521 mddev->level = info->level;
4522 mddev->clevel[0] = 0;
4523 mddev->size = info->size;
4524 mddev->raid_disks = info->raid_disks;
4525 /* don't set md_minor, it is determined by which /dev/md* was
4526 * openned
4527 */
4528 if (info->state & (1<<MD_SB_CLEAN))
4529 mddev->recovery_cp = MaxSector;
4530 else
4531 mddev->recovery_cp = 0;
4532 mddev->persistent = ! info->not_persistent;
4533 mddev->external = 0;
4534
4535 mddev->layout = info->layout;
4536 mddev->chunk_size = info->chunk_size;
4537
4538 mddev->max_disks = MD_SB_DISKS;
4539
4540 if (mddev->persistent)
4541 mddev->flags = 0;
4542 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4543
4544 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4545 mddev->bitmap_offset = 0;
4546
4547 mddev->reshape_position = MaxSector;
4548
4549 /*
4550 * Generate a 128 bit UUID
4551 */
4552 get_random_bytes(mddev->uuid, 16);
4553
4554 mddev->new_level = mddev->level;
4555 mddev->new_chunk = mddev->chunk_size;
4556 mddev->new_layout = mddev->layout;
4557 mddev->delta_disks = 0;
4558
4559 return 0;
4560 }
4561
4562 static int update_size(mddev_t *mddev, unsigned long size)
4563 {
4564 mdk_rdev_t * rdev;
4565 int rv;
4566 struct list_head *tmp;
4567 int fit = (size == 0);
4568
4569 if (mddev->pers->resize == NULL)
4570 return -EINVAL;
4571 /* The "size" is the amount of each device that is used.
4572 * This can only make sense for arrays with redundancy.
4573 * linear and raid0 always use whatever space is available
4574 * We can only consider changing the size if no resync
4575 * or reconstruction is happening, and if the new size
4576 * is acceptable. It must fit before the sb_offset or,
4577 * if that is <data_offset, it must fit before the
4578 * size of each device.
4579 * If size is zero, we find the largest size that fits.
4580 */
4581 if (mddev->sync_thread)
4582 return -EBUSY;
4583 rdev_for_each(rdev, tmp, mddev) {
4584 sector_t avail;
4585 avail = rdev->size * 2;
4586
4587 if (fit && (size == 0 || size > avail/2))
4588 size = avail/2;
4589 if (avail < ((sector_t)size << 1))
4590 return -ENOSPC;
4591 }
4592 rv = mddev->pers->resize(mddev, (sector_t)size *2);
4593 if (!rv) {
4594 struct block_device *bdev;
4595
4596 bdev = bdget_disk(mddev->gendisk, 0);
4597 if (bdev) {
4598 mutex_lock(&bdev->bd_inode->i_mutex);
4599 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4600 mutex_unlock(&bdev->bd_inode->i_mutex);
4601 bdput(bdev);
4602 }
4603 }
4604 return rv;
4605 }
4606
4607 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4608 {
4609 int rv;
4610 /* change the number of raid disks */
4611 if (mddev->pers->check_reshape == NULL)
4612 return -EINVAL;
4613 if (raid_disks <= 0 ||
4614 raid_disks >= mddev->max_disks)
4615 return -EINVAL;
4616 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4617 return -EBUSY;
4618 mddev->delta_disks = raid_disks - mddev->raid_disks;
4619
4620 rv = mddev->pers->check_reshape(mddev);
4621 return rv;
4622 }
4623
4624
4625 /*
4626 * update_array_info is used to change the configuration of an
4627 * on-line array.
4628 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4629 * fields in the info are checked against the array.
4630 * Any differences that cannot be handled will cause an error.
4631 * Normally, only one change can be managed at a time.
4632 */
4633 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4634 {
4635 int rv = 0;
4636 int cnt = 0;
4637 int state = 0;
4638
4639 /* calculate expected state,ignoring low bits */
4640 if (mddev->bitmap && mddev->bitmap_offset)
4641 state |= (1 << MD_SB_BITMAP_PRESENT);
4642
4643 if (mddev->major_version != info->major_version ||
4644 mddev->minor_version != info->minor_version ||
4645 /* mddev->patch_version != info->patch_version || */
4646 mddev->ctime != info->ctime ||
4647 mddev->level != info->level ||
4648 /* mddev->layout != info->layout || */
4649 !mddev->persistent != info->not_persistent||
4650 mddev->chunk_size != info->chunk_size ||
4651 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4652 ((state^info->state) & 0xfffffe00)
4653 )
4654 return -EINVAL;
4655 /* Check there is only one change */
4656 if (info->size >= 0 && mddev->size != info->size) cnt++;
4657 if (mddev->raid_disks != info->raid_disks) cnt++;
4658 if (mddev->layout != info->layout) cnt++;
4659 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4660 if (cnt == 0) return 0;
4661 if (cnt > 1) return -EINVAL;
4662
4663 if (mddev->layout != info->layout) {
4664 /* Change layout
4665 * we don't need to do anything at the md level, the
4666 * personality will take care of it all.
4667 */
4668 if (mddev->pers->reconfig == NULL)
4669 return -EINVAL;
4670 else
4671 return mddev->pers->reconfig(mddev, info->layout, -1);
4672 }
4673 if (info->size >= 0 && mddev->size != info->size)
4674 rv = update_size(mddev, info->size);
4675
4676 if (mddev->raid_disks != info->raid_disks)
4677 rv = update_raid_disks(mddev, info->raid_disks);
4678
4679 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4680 if (mddev->pers->quiesce == NULL)
4681 return -EINVAL;
4682 if (mddev->recovery || mddev->sync_thread)
4683 return -EBUSY;
4684 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4685 /* add the bitmap */
4686 if (mddev->bitmap)
4687 return -EEXIST;
4688 if (mddev->default_bitmap_offset == 0)
4689 return -EINVAL;
4690 mddev->bitmap_offset = mddev->default_bitmap_offset;
4691 mddev->pers->quiesce(mddev, 1);
4692 rv = bitmap_create(mddev);
4693 if (rv)
4694 bitmap_destroy(mddev);
4695 mddev->pers->quiesce(mddev, 0);
4696 } else {
4697 /* remove the bitmap */
4698 if (!mddev->bitmap)
4699 return -ENOENT;
4700 if (mddev->bitmap->file)
4701 return -EINVAL;
4702 mddev->pers->quiesce(mddev, 1);
4703 bitmap_destroy(mddev);
4704 mddev->pers->quiesce(mddev, 0);
4705 mddev->bitmap_offset = 0;
4706 }
4707 }
4708 md_update_sb(mddev, 1);
4709 return rv;
4710 }
4711
4712 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4713 {
4714 mdk_rdev_t *rdev;
4715
4716 if (mddev->pers == NULL)
4717 return -ENODEV;
4718
4719 rdev = find_rdev(mddev, dev);
4720 if (!rdev)
4721 return -ENODEV;
4722
4723 md_error(mddev, rdev);
4724 return 0;
4725 }
4726
4727 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4728 {
4729 mddev_t *mddev = bdev->bd_disk->private_data;
4730
4731 geo->heads = 2;
4732 geo->sectors = 4;
4733 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4734 return 0;
4735 }
4736
4737 static int md_ioctl(struct inode *inode, struct file *file,
4738 unsigned int cmd, unsigned long arg)
4739 {
4740 int err = 0;
4741 void __user *argp = (void __user *)arg;
4742 mddev_t *mddev = NULL;
4743
4744 if (!capable(CAP_SYS_ADMIN))
4745 return -EACCES;
4746
4747 /*
4748 * Commands dealing with the RAID driver but not any
4749 * particular array:
4750 */
4751 switch (cmd)
4752 {
4753 case RAID_VERSION:
4754 err = get_version(argp);
4755 goto done;
4756
4757 case PRINT_RAID_DEBUG:
4758 err = 0;
4759 md_print_devices();
4760 goto done;
4761
4762 #ifndef MODULE
4763 case RAID_AUTORUN:
4764 err = 0;
4765 autostart_arrays(arg);
4766 goto done;
4767 #endif
4768 default:;
4769 }
4770
4771 /*
4772 * Commands creating/starting a new array:
4773 */
4774
4775 mddev = inode->i_bdev->bd_disk->private_data;
4776
4777 if (!mddev) {
4778 BUG();
4779 goto abort;
4780 }
4781
4782 err = mddev_lock(mddev);
4783 if (err) {
4784 printk(KERN_INFO
4785 "md: ioctl lock interrupted, reason %d, cmd %d\n",
4786 err, cmd);
4787 goto abort;
4788 }
4789
4790 switch (cmd)
4791 {
4792 case SET_ARRAY_INFO:
4793 {
4794 mdu_array_info_t info;
4795 if (!arg)
4796 memset(&info, 0, sizeof(info));
4797 else if (copy_from_user(&info, argp, sizeof(info))) {
4798 err = -EFAULT;
4799 goto abort_unlock;
4800 }
4801 if (mddev->pers) {
4802 err = update_array_info(mddev, &info);
4803 if (err) {
4804 printk(KERN_WARNING "md: couldn't update"
4805 " array info. %d\n", err);
4806 goto abort_unlock;
4807 }
4808 goto done_unlock;
4809 }
4810 if (!list_empty(&mddev->disks)) {
4811 printk(KERN_WARNING
4812 "md: array %s already has disks!\n",
4813 mdname(mddev));
4814 err = -EBUSY;
4815 goto abort_unlock;
4816 }
4817 if (mddev->raid_disks) {
4818 printk(KERN_WARNING
4819 "md: array %s already initialised!\n",
4820 mdname(mddev));
4821 err = -EBUSY;
4822 goto abort_unlock;
4823 }
4824 err = set_array_info(mddev, &info);
4825 if (err) {
4826 printk(KERN_WARNING "md: couldn't set"
4827 " array info. %d\n", err);
4828 goto abort_unlock;
4829 }
4830 }
4831 goto done_unlock;
4832
4833 default:;
4834 }
4835
4836 /*
4837 * Commands querying/configuring an existing array:
4838 */
4839 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4840 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4841 if ((!mddev->raid_disks && !mddev->external)
4842 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4843 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4844 && cmd != GET_BITMAP_FILE) {
4845 err = -ENODEV;
4846 goto abort_unlock;
4847 }
4848
4849 /*
4850 * Commands even a read-only array can execute:
4851 */
4852 switch (cmd)
4853 {
4854 case GET_ARRAY_INFO:
4855 err = get_array_info(mddev, argp);
4856 goto done_unlock;
4857
4858 case GET_BITMAP_FILE:
4859 err = get_bitmap_file(mddev, argp);
4860 goto done_unlock;
4861
4862 case GET_DISK_INFO:
4863 err = get_disk_info(mddev, argp);
4864 goto done_unlock;
4865
4866 case RESTART_ARRAY_RW:
4867 err = restart_array(mddev);
4868 goto done_unlock;
4869
4870 case STOP_ARRAY:
4871 err = do_md_stop (mddev, 0);
4872 goto done_unlock;
4873
4874 case STOP_ARRAY_RO:
4875 err = do_md_stop (mddev, 1);
4876 goto done_unlock;
4877
4878 /*
4879 * We have a problem here : there is no easy way to give a CHS
4880 * virtual geometry. We currently pretend that we have a 2 heads
4881 * 4 sectors (with a BIG number of cylinders...). This drives
4882 * dosfs just mad... ;-)
4883 */
4884 }
4885
4886 /*
4887 * The remaining ioctls are changing the state of the
4888 * superblock, so we do not allow them on read-only arrays.
4889 * However non-MD ioctls (e.g. get-size) will still come through
4890 * here and hit the 'default' below, so only disallow
4891 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4892 */
4893 if (_IOC_TYPE(cmd) == MD_MAJOR &&
4894 mddev->ro && mddev->pers) {
4895 if (mddev->ro == 2) {
4896 mddev->ro = 0;
4897 sysfs_notify(&mddev->kobj, NULL, "array_state");
4898 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4899 md_wakeup_thread(mddev->thread);
4900
4901 } else {
4902 err = -EROFS;
4903 goto abort_unlock;
4904 }
4905 }
4906
4907 switch (cmd)
4908 {
4909 case ADD_NEW_DISK:
4910 {
4911 mdu_disk_info_t info;
4912 if (copy_from_user(&info, argp, sizeof(info)))
4913 err = -EFAULT;
4914 else
4915 err = add_new_disk(mddev, &info);
4916 goto done_unlock;
4917 }
4918
4919 case HOT_REMOVE_DISK:
4920 err = hot_remove_disk(mddev, new_decode_dev(arg));
4921 goto done_unlock;
4922
4923 case HOT_ADD_DISK:
4924 err = hot_add_disk(mddev, new_decode_dev(arg));
4925 goto done_unlock;
4926
4927 case SET_DISK_FAULTY:
4928 err = set_disk_faulty(mddev, new_decode_dev(arg));
4929 goto done_unlock;
4930
4931 case RUN_ARRAY:
4932 err = do_md_run (mddev);
4933 goto done_unlock;
4934
4935 case SET_BITMAP_FILE:
4936 err = set_bitmap_file(mddev, (int)arg);
4937 goto done_unlock;
4938
4939 default:
4940 err = -EINVAL;
4941 goto abort_unlock;
4942 }
4943
4944 done_unlock:
4945 abort_unlock:
4946 mddev_unlock(mddev);
4947
4948 return err;
4949 done:
4950 if (err)
4951 MD_BUG();
4952 abort:
4953 return err;
4954 }
4955
4956 static int md_open(struct inode *inode, struct file *file)
4957 {
4958 /*
4959 * Succeed if we can lock the mddev, which confirms that
4960 * it isn't being stopped right now.
4961 */
4962 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4963 int err;
4964
4965 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4966 goto out;
4967
4968 err = 0;
4969 mddev_get(mddev);
4970 mddev_unlock(mddev);
4971
4972 check_disk_change(inode->i_bdev);
4973 out:
4974 return err;
4975 }
4976
4977 static int md_release(struct inode *inode, struct file * file)
4978 {
4979 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4980
4981 BUG_ON(!mddev);
4982 mddev_put(mddev);
4983
4984 return 0;
4985 }
4986
4987 static int md_media_changed(struct gendisk *disk)
4988 {
4989 mddev_t *mddev = disk->private_data;
4990
4991 return mddev->changed;
4992 }
4993
4994 static int md_revalidate(struct gendisk *disk)
4995 {
4996 mddev_t *mddev = disk->private_data;
4997
4998 mddev->changed = 0;
4999 return 0;
5000 }
5001 static struct block_device_operations md_fops =
5002 {
5003 .owner = THIS_MODULE,
5004 .open = md_open,
5005 .release = md_release,
5006 .ioctl = md_ioctl,
5007 .getgeo = md_getgeo,
5008 .media_changed = md_media_changed,
5009 .revalidate_disk= md_revalidate,
5010 };
5011
5012 static int md_thread(void * arg)
5013 {
5014 mdk_thread_t *thread = arg;
5015
5016 /*
5017 * md_thread is a 'system-thread', it's priority should be very
5018 * high. We avoid resource deadlocks individually in each
5019 * raid personality. (RAID5 does preallocation) We also use RR and
5020 * the very same RT priority as kswapd, thus we will never get
5021 * into a priority inversion deadlock.
5022 *
5023 * we definitely have to have equal or higher priority than
5024 * bdflush, otherwise bdflush will deadlock if there are too
5025 * many dirty RAID5 blocks.
5026 */
5027
5028 allow_signal(SIGKILL);
5029 while (!kthread_should_stop()) {
5030
5031 /* We need to wait INTERRUPTIBLE so that
5032 * we don't add to the load-average.
5033 * That means we need to be sure no signals are
5034 * pending
5035 */
5036 if (signal_pending(current))
5037 flush_signals(current);
5038
5039 wait_event_interruptible_timeout
5040 (thread->wqueue,
5041 test_bit(THREAD_WAKEUP, &thread->flags)
5042 || kthread_should_stop(),
5043 thread->timeout);
5044
5045 clear_bit(THREAD_WAKEUP, &thread->flags);
5046
5047 thread->run(thread->mddev);
5048 }
5049
5050 return 0;
5051 }
5052
5053 void md_wakeup_thread(mdk_thread_t *thread)
5054 {
5055 if (thread) {
5056 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5057 set_bit(THREAD_WAKEUP, &thread->flags);
5058 wake_up(&thread->wqueue);
5059 }
5060 }
5061
5062 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5063 const char *name)
5064 {
5065 mdk_thread_t *thread;
5066
5067 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5068 if (!thread)
5069 return NULL;
5070
5071 init_waitqueue_head(&thread->wqueue);
5072
5073 thread->run = run;
5074 thread->mddev = mddev;
5075 thread->timeout = MAX_SCHEDULE_TIMEOUT;
5076 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
5077 if (IS_ERR(thread->tsk)) {
5078 kfree(thread);
5079 return NULL;
5080 }
5081 return thread;
5082 }
5083
5084 void md_unregister_thread(mdk_thread_t *thread)
5085 {
5086 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5087
5088 kthread_stop(thread->tsk);
5089 kfree(thread);
5090 }
5091
5092 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5093 {
5094 if (!mddev) {
5095 MD_BUG();
5096 return;
5097 }
5098
5099 if (!rdev || test_bit(Faulty, &rdev->flags))
5100 return;
5101
5102 if (mddev->external)
5103 set_bit(Blocked, &rdev->flags);
5104 /*
5105 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5106 mdname(mddev),
5107 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5108 __builtin_return_address(0),__builtin_return_address(1),
5109 __builtin_return_address(2),__builtin_return_address(3));
5110 */
5111 if (!mddev->pers)
5112 return;
5113 if (!mddev->pers->error_handler)
5114 return;
5115 mddev->pers->error_handler(mddev,rdev);
5116 if (mddev->degraded)
5117 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5118 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5119 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5120 md_wakeup_thread(mddev->thread);
5121 md_new_event_inintr(mddev);
5122 }
5123
5124 /* seq_file implementation /proc/mdstat */
5125
5126 static void status_unused(struct seq_file *seq)
5127 {
5128 int i = 0;
5129 mdk_rdev_t *rdev;
5130 struct list_head *tmp;
5131
5132 seq_printf(seq, "unused devices: ");
5133
5134 rdev_for_each_list(rdev, tmp, pending_raid_disks) {
5135 char b[BDEVNAME_SIZE];
5136 i++;
5137 seq_printf(seq, "%s ",
5138 bdevname(rdev->bdev,b));
5139 }
5140 if (!i)
5141 seq_printf(seq, "<none>");
5142
5143 seq_printf(seq, "\n");
5144 }
5145
5146
5147 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5148 {
5149 sector_t max_blocks, resync, res;
5150 unsigned long dt, db, rt;
5151 int scale;
5152 unsigned int per_milli;
5153
5154 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
5155
5156 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5157 max_blocks = mddev->resync_max_sectors >> 1;
5158 else
5159 max_blocks = mddev->size;
5160
5161 /*
5162 * Should not happen.
5163 */
5164 if (!max_blocks) {
5165 MD_BUG();
5166 return;
5167 }
5168 /* Pick 'scale' such that (resync>>scale)*1000 will fit
5169 * in a sector_t, and (max_blocks>>scale) will fit in a
5170 * u32, as those are the requirements for sector_div.
5171 * Thus 'scale' must be at least 10
5172 */
5173 scale = 10;
5174 if (sizeof(sector_t) > sizeof(unsigned long)) {
5175 while ( max_blocks/2 > (1ULL<<(scale+32)))
5176 scale++;
5177 }
5178 res = (resync>>scale)*1000;
5179 sector_div(res, (u32)((max_blocks>>scale)+1));
5180
5181 per_milli = res;
5182 {
5183 int i, x = per_milli/50, y = 20-x;
5184 seq_printf(seq, "[");
5185 for (i = 0; i < x; i++)
5186 seq_printf(seq, "=");
5187 seq_printf(seq, ">");
5188 for (i = 0; i < y; i++)
5189 seq_printf(seq, ".");
5190 seq_printf(seq, "] ");
5191 }
5192 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5193 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5194 "reshape" :
5195 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5196 "check" :
5197 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5198 "resync" : "recovery"))),
5199 per_milli/10, per_milli % 10,
5200 (unsigned long long) resync,
5201 (unsigned long long) max_blocks);
5202
5203 /*
5204 * We do not want to overflow, so the order of operands and
5205 * the * 100 / 100 trick are important. We do a +1 to be
5206 * safe against division by zero. We only estimate anyway.
5207 *
5208 * dt: time from mark until now
5209 * db: blocks written from mark until now
5210 * rt: remaining time
5211 */
5212 dt = ((jiffies - mddev->resync_mark) / HZ);
5213 if (!dt) dt++;
5214 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5215 - mddev->resync_mark_cnt;
5216 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
5217
5218 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
5219
5220 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5221 }
5222
5223 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5224 {
5225 struct list_head *tmp;
5226 loff_t l = *pos;
5227 mddev_t *mddev;
5228
5229 if (l >= 0x10000)
5230 return NULL;
5231 if (!l--)
5232 /* header */
5233 return (void*)1;
5234
5235 spin_lock(&all_mddevs_lock);
5236 list_for_each(tmp,&all_mddevs)
5237 if (!l--) {
5238 mddev = list_entry(tmp, mddev_t, all_mddevs);
5239 mddev_get(mddev);
5240 spin_unlock(&all_mddevs_lock);
5241 return mddev;
5242 }
5243 spin_unlock(&all_mddevs_lock);
5244 if (!l--)
5245 return (void*)2;/* tail */
5246 return NULL;
5247 }
5248
5249 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5250 {
5251 struct list_head *tmp;
5252 mddev_t *next_mddev, *mddev = v;
5253
5254 ++*pos;
5255 if (v == (void*)2)
5256 return NULL;
5257
5258 spin_lock(&all_mddevs_lock);
5259 if (v == (void*)1)
5260 tmp = all_mddevs.next;
5261 else
5262 tmp = mddev->all_mddevs.next;
5263 if (tmp != &all_mddevs)
5264 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5265 else {
5266 next_mddev = (void*)2;
5267 *pos = 0x10000;
5268 }
5269 spin_unlock(&all_mddevs_lock);
5270
5271 if (v != (void*)1)
5272 mddev_put(mddev);
5273 return next_mddev;
5274
5275 }
5276
5277 static void md_seq_stop(struct seq_file *seq, void *v)
5278 {
5279 mddev_t *mddev = v;
5280
5281 if (mddev && v != (void*)1 && v != (void*)2)
5282 mddev_put(mddev);
5283 }
5284
5285 struct mdstat_info {
5286 int event;
5287 };
5288
5289 static int md_seq_show(struct seq_file *seq, void *v)
5290 {
5291 mddev_t *mddev = v;
5292 sector_t size;
5293 struct list_head *tmp2;
5294 mdk_rdev_t *rdev;
5295 struct mdstat_info *mi = seq->private;
5296 struct bitmap *bitmap;
5297
5298 if (v == (void*)1) {
5299 struct mdk_personality *pers;
5300 seq_printf(seq, "Personalities : ");
5301 spin_lock(&pers_lock);
5302 list_for_each_entry(pers, &pers_list, list)
5303 seq_printf(seq, "[%s] ", pers->name);
5304
5305 spin_unlock(&pers_lock);
5306 seq_printf(seq, "\n");
5307 mi->event = atomic_read(&md_event_count);
5308 return 0;
5309 }
5310 if (v == (void*)2) {
5311 status_unused(seq);
5312 return 0;
5313 }
5314
5315 if (mddev_lock(mddev) < 0)
5316 return -EINTR;
5317
5318 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5319 seq_printf(seq, "%s : %sactive", mdname(mddev),
5320 mddev->pers ? "" : "in");
5321 if (mddev->pers) {
5322 if (mddev->ro==1)
5323 seq_printf(seq, " (read-only)");
5324 if (mddev->ro==2)
5325 seq_printf(seq, " (auto-read-only)");
5326 seq_printf(seq, " %s", mddev->pers->name);
5327 }
5328
5329 size = 0;
5330 rdev_for_each(rdev, tmp2, mddev) {
5331 char b[BDEVNAME_SIZE];
5332 seq_printf(seq, " %s[%d]",
5333 bdevname(rdev->bdev,b), rdev->desc_nr);
5334 if (test_bit(WriteMostly, &rdev->flags))
5335 seq_printf(seq, "(W)");
5336 if (test_bit(Faulty, &rdev->flags)) {
5337 seq_printf(seq, "(F)");
5338 continue;
5339 } else if (rdev->raid_disk < 0)
5340 seq_printf(seq, "(S)"); /* spare */
5341 size += rdev->size;
5342 }
5343
5344 if (!list_empty(&mddev->disks)) {
5345 if (mddev->pers)
5346 seq_printf(seq, "\n %llu blocks",
5347 (unsigned long long)mddev->array_size);
5348 else
5349 seq_printf(seq, "\n %llu blocks",
5350 (unsigned long long)size);
5351 }
5352 if (mddev->persistent) {
5353 if (mddev->major_version != 0 ||
5354 mddev->minor_version != 90) {
5355 seq_printf(seq," super %d.%d",
5356 mddev->major_version,
5357 mddev->minor_version);
5358 }
5359 } else if (mddev->external)
5360 seq_printf(seq, " super external:%s",
5361 mddev->metadata_type);
5362 else
5363 seq_printf(seq, " super non-persistent");
5364
5365 if (mddev->pers) {
5366 mddev->pers->status (seq, mddev);
5367 seq_printf(seq, "\n ");
5368 if (mddev->pers->sync_request) {
5369 if (mddev->curr_resync > 2) {
5370 status_resync (seq, mddev);
5371 seq_printf(seq, "\n ");
5372 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5373 seq_printf(seq, "\tresync=DELAYED\n ");
5374 else if (mddev->recovery_cp < MaxSector)
5375 seq_printf(seq, "\tresync=PENDING\n ");
5376 }
5377 } else
5378 seq_printf(seq, "\n ");
5379
5380 if ((bitmap = mddev->bitmap)) {
5381 unsigned long chunk_kb;
5382 unsigned long flags;
5383 spin_lock_irqsave(&bitmap->lock, flags);
5384 chunk_kb = bitmap->chunksize >> 10;
5385 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5386 "%lu%s chunk",
5387 bitmap->pages - bitmap->missing_pages,
5388 bitmap->pages,
5389 (bitmap->pages - bitmap->missing_pages)
5390 << (PAGE_SHIFT - 10),
5391 chunk_kb ? chunk_kb : bitmap->chunksize,
5392 chunk_kb ? "KB" : "B");
5393 if (bitmap->file) {
5394 seq_printf(seq, ", file: ");
5395 seq_path(seq, &bitmap->file->f_path, " \t\n");
5396 }
5397
5398 seq_printf(seq, "\n");
5399 spin_unlock_irqrestore(&bitmap->lock, flags);
5400 }
5401
5402 seq_printf(seq, "\n");
5403 }
5404 mddev_unlock(mddev);
5405
5406 return 0;
5407 }
5408
5409 static struct seq_operations md_seq_ops = {
5410 .start = md_seq_start,
5411 .next = md_seq_next,
5412 .stop = md_seq_stop,
5413 .show = md_seq_show,
5414 };
5415
5416 static int md_seq_open(struct inode *inode, struct file *file)
5417 {
5418 int error;
5419 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5420 if (mi == NULL)
5421 return -ENOMEM;
5422
5423 error = seq_open(file, &md_seq_ops);
5424 if (error)
5425 kfree(mi);
5426 else {
5427 struct seq_file *p = file->private_data;
5428 p->private = mi;
5429 mi->event = atomic_read(&md_event_count);
5430 }
5431 return error;
5432 }
5433
5434 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5435 {
5436 struct seq_file *m = filp->private_data;
5437 struct mdstat_info *mi = m->private;
5438 int mask;
5439
5440 poll_wait(filp, &md_event_waiters, wait);
5441
5442 /* always allow read */
5443 mask = POLLIN | POLLRDNORM;
5444
5445 if (mi->event != atomic_read(&md_event_count))
5446 mask |= POLLERR | POLLPRI;
5447 return mask;
5448 }
5449
5450 static const struct file_operations md_seq_fops = {
5451 .owner = THIS_MODULE,
5452 .open = md_seq_open,
5453 .read = seq_read,
5454 .llseek = seq_lseek,
5455 .release = seq_release_private,
5456 .poll = mdstat_poll,
5457 };
5458
5459 int register_md_personality(struct mdk_personality *p)
5460 {
5461 spin_lock(&pers_lock);
5462 list_add_tail(&p->list, &pers_list);
5463 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5464 spin_unlock(&pers_lock);
5465 return 0;
5466 }
5467
5468 int unregister_md_personality(struct mdk_personality *p)
5469 {
5470 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5471 spin_lock(&pers_lock);
5472 list_del_init(&p->list);
5473 spin_unlock(&pers_lock);
5474 return 0;
5475 }
5476
5477 static int is_mddev_idle(mddev_t *mddev)
5478 {
5479 mdk_rdev_t * rdev;
5480 struct list_head *tmp;
5481 int idle;
5482 long curr_events;
5483
5484 idle = 1;
5485 rdev_for_each(rdev, tmp, mddev) {
5486 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5487 curr_events = disk_stat_read(disk, sectors[0]) +
5488 disk_stat_read(disk, sectors[1]) -
5489 atomic_read(&disk->sync_io);
5490 /* sync IO will cause sync_io to increase before the disk_stats
5491 * as sync_io is counted when a request starts, and
5492 * disk_stats is counted when it completes.
5493 * So resync activity will cause curr_events to be smaller than
5494 * when there was no such activity.
5495 * non-sync IO will cause disk_stat to increase without
5496 * increasing sync_io so curr_events will (eventually)
5497 * be larger than it was before. Once it becomes
5498 * substantially larger, the test below will cause
5499 * the array to appear non-idle, and resync will slow
5500 * down.
5501 * If there is a lot of outstanding resync activity when
5502 * we set last_event to curr_events, then all that activity
5503 * completing might cause the array to appear non-idle
5504 * and resync will be slowed down even though there might
5505 * not have been non-resync activity. This will only
5506 * happen once though. 'last_events' will soon reflect
5507 * the state where there is little or no outstanding
5508 * resync requests, and further resync activity will
5509 * always make curr_events less than last_events.
5510 *
5511 */
5512 if (curr_events - rdev->last_events > 4096) {
5513 rdev->last_events = curr_events;
5514 idle = 0;
5515 }
5516 }
5517 return idle;
5518 }
5519
5520 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5521 {
5522 /* another "blocks" (512byte) blocks have been synced */
5523 atomic_sub(blocks, &mddev->recovery_active);
5524 wake_up(&mddev->recovery_wait);
5525 if (!ok) {
5526 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5527 md_wakeup_thread(mddev->thread);
5528 // stop recovery, signal do_sync ....
5529 }
5530 }
5531
5532
5533 /* md_write_start(mddev, bi)
5534 * If we need to update some array metadata (e.g. 'active' flag
5535 * in superblock) before writing, schedule a superblock update
5536 * and wait for it to complete.
5537 */
5538 void md_write_start(mddev_t *mddev, struct bio *bi)
5539 {
5540 int did_change = 0;
5541 if (bio_data_dir(bi) != WRITE)
5542 return;
5543
5544 BUG_ON(mddev->ro == 1);
5545 if (mddev->ro == 2) {
5546 /* need to switch to read/write */
5547 mddev->ro = 0;
5548 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5549 md_wakeup_thread(mddev->thread);
5550 md_wakeup_thread(mddev->sync_thread);
5551 did_change = 1;
5552 }
5553 atomic_inc(&mddev->writes_pending);
5554 if (mddev->safemode == 1)
5555 mddev->safemode = 0;
5556 if (mddev->in_sync) {
5557 spin_lock_irq(&mddev->write_lock);
5558 if (mddev->in_sync) {
5559 mddev->in_sync = 0;
5560 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5561 md_wakeup_thread(mddev->thread);
5562 did_change = 1;
5563 }
5564 spin_unlock_irq(&mddev->write_lock);
5565 }
5566 if (did_change)
5567 sysfs_notify(&mddev->kobj, NULL, "array_state");
5568 wait_event(mddev->sb_wait,
5569 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
5570 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5571 }
5572
5573 void md_write_end(mddev_t *mddev)
5574 {
5575 if (atomic_dec_and_test(&mddev->writes_pending)) {
5576 if (mddev->safemode == 2)
5577 md_wakeup_thread(mddev->thread);
5578 else if (mddev->safemode_delay)
5579 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5580 }
5581 }
5582
5583 /* md_allow_write(mddev)
5584 * Calling this ensures that the array is marked 'active' so that writes
5585 * may proceed without blocking. It is important to call this before
5586 * attempting a GFP_KERNEL allocation while holding the mddev lock.
5587 * Must be called with mddev_lock held.
5588 */
5589 void md_allow_write(mddev_t *mddev)
5590 {
5591 if (!mddev->pers)
5592 return;
5593 if (mddev->ro)
5594 return;
5595 if (!mddev->pers->sync_request)
5596 return;
5597
5598 spin_lock_irq(&mddev->write_lock);
5599 if (mddev->in_sync) {
5600 mddev->in_sync = 0;
5601 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5602 if (mddev->safemode_delay &&
5603 mddev->safemode == 0)
5604 mddev->safemode = 1;
5605 spin_unlock_irq(&mddev->write_lock);
5606 md_update_sb(mddev, 0);
5607
5608 sysfs_notify(&mddev->kobj, NULL, "array_state");
5609 /* wait for the dirty state to be recorded in the metadata */
5610 wait_event(mddev->sb_wait,
5611 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
5612 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5613 } else
5614 spin_unlock_irq(&mddev->write_lock);
5615 }
5616 EXPORT_SYMBOL_GPL(md_allow_write);
5617
5618 #define SYNC_MARKS 10
5619 #define SYNC_MARK_STEP (3*HZ)
5620 void md_do_sync(mddev_t *mddev)
5621 {
5622 mddev_t *mddev2;
5623 unsigned int currspeed = 0,
5624 window;
5625 sector_t max_sectors,j, io_sectors;
5626 unsigned long mark[SYNC_MARKS];
5627 sector_t mark_cnt[SYNC_MARKS];
5628 int last_mark,m;
5629 struct list_head *tmp;
5630 sector_t last_check;
5631 int skipped = 0;
5632 struct list_head *rtmp;
5633 mdk_rdev_t *rdev;
5634 char *desc;
5635
5636 /* just incase thread restarts... */
5637 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5638 return;
5639 if (mddev->ro) /* never try to sync a read-only array */
5640 return;
5641
5642 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5643 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5644 desc = "data-check";
5645 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5646 desc = "requested-resync";
5647 else
5648 desc = "resync";
5649 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5650 desc = "reshape";
5651 else
5652 desc = "recovery";
5653
5654 /* we overload curr_resync somewhat here.
5655 * 0 == not engaged in resync at all
5656 * 2 == checking that there is no conflict with another sync
5657 * 1 == like 2, but have yielded to allow conflicting resync to
5658 * commense
5659 * other == active in resync - this many blocks
5660 *
5661 * Before starting a resync we must have set curr_resync to
5662 * 2, and then checked that every "conflicting" array has curr_resync
5663 * less than ours. When we find one that is the same or higher
5664 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5665 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5666 * This will mean we have to start checking from the beginning again.
5667 *
5668 */
5669
5670 do {
5671 mddev->curr_resync = 2;
5672
5673 try_again:
5674 if (kthread_should_stop()) {
5675 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5676 goto skip;
5677 }
5678 for_each_mddev(mddev2, tmp) {
5679 if (mddev2 == mddev)
5680 continue;
5681 if (!mddev->parallel_resync
5682 && mddev2->curr_resync
5683 && match_mddev_units(mddev, mddev2)) {
5684 DEFINE_WAIT(wq);
5685 if (mddev < mddev2 && mddev->curr_resync == 2) {
5686 /* arbitrarily yield */
5687 mddev->curr_resync = 1;
5688 wake_up(&resync_wait);
5689 }
5690 if (mddev > mddev2 && mddev->curr_resync == 1)
5691 /* no need to wait here, we can wait the next
5692 * time 'round when curr_resync == 2
5693 */
5694 continue;
5695 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5696 if (!kthread_should_stop() &&
5697 mddev2->curr_resync >= mddev->curr_resync) {
5698 printk(KERN_INFO "md: delaying %s of %s"
5699 " until %s has finished (they"
5700 " share one or more physical units)\n",
5701 desc, mdname(mddev), mdname(mddev2));
5702 mddev_put(mddev2);
5703 schedule();
5704 finish_wait(&resync_wait, &wq);
5705 goto try_again;
5706 }
5707 finish_wait(&resync_wait, &wq);
5708 }
5709 }
5710 } while (mddev->curr_resync < 2);
5711
5712 j = 0;
5713 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5714 /* resync follows the size requested by the personality,
5715 * which defaults to physical size, but can be virtual size
5716 */
5717 max_sectors = mddev->resync_max_sectors;
5718 mddev->resync_mismatches = 0;
5719 /* we don't use the checkpoint if there's a bitmap */
5720 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5721 j = mddev->resync_min;
5722 else if (!mddev->bitmap)
5723 j = mddev->recovery_cp;
5724
5725 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5726 max_sectors = mddev->size << 1;
5727 else {
5728 /* recovery follows the physical size of devices */
5729 max_sectors = mddev->size << 1;
5730 j = MaxSector;
5731 rdev_for_each(rdev, rtmp, mddev)
5732 if (rdev->raid_disk >= 0 &&
5733 !test_bit(Faulty, &rdev->flags) &&
5734 !test_bit(In_sync, &rdev->flags) &&
5735 rdev->recovery_offset < j)
5736 j = rdev->recovery_offset;
5737 }
5738
5739 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5740 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
5741 " %d KB/sec/disk.\n", speed_min(mddev));
5742 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5743 "(but not more than %d KB/sec) for %s.\n",
5744 speed_max(mddev), desc);
5745
5746 is_mddev_idle(mddev); /* this also initializes IO event counters */
5747
5748 io_sectors = 0;
5749 for (m = 0; m < SYNC_MARKS; m++) {
5750 mark[m] = jiffies;
5751 mark_cnt[m] = io_sectors;
5752 }
5753 last_mark = 0;
5754 mddev->resync_mark = mark[last_mark];
5755 mddev->resync_mark_cnt = mark_cnt[last_mark];
5756
5757 /*
5758 * Tune reconstruction:
5759 */
5760 window = 32*(PAGE_SIZE/512);
5761 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5762 window/2,(unsigned long long) max_sectors/2);
5763
5764 atomic_set(&mddev->recovery_active, 0);
5765 last_check = 0;
5766
5767 if (j>2) {
5768 printk(KERN_INFO
5769 "md: resuming %s of %s from checkpoint.\n",
5770 desc, mdname(mddev));
5771 mddev->curr_resync = j;
5772 }
5773
5774 while (j < max_sectors) {
5775 sector_t sectors;
5776
5777 skipped = 0;
5778 if (j >= mddev->resync_max) {
5779 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5780 wait_event(mddev->recovery_wait,
5781 mddev->resync_max > j
5782 || kthread_should_stop());
5783 }
5784 if (kthread_should_stop())
5785 goto interrupted;
5786 sectors = mddev->pers->sync_request(mddev, j, &skipped,
5787 currspeed < speed_min(mddev));
5788 if (sectors == 0) {
5789 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5790 goto out;
5791 }
5792
5793 if (!skipped) { /* actual IO requested */
5794 io_sectors += sectors;
5795 atomic_add(sectors, &mddev->recovery_active);
5796 }
5797
5798 j += sectors;
5799 if (j>1) mddev->curr_resync = j;
5800 mddev->curr_mark_cnt = io_sectors;
5801 if (last_check == 0)
5802 /* this is the earliers that rebuilt will be
5803 * visible in /proc/mdstat
5804 */
5805 md_new_event(mddev);
5806
5807 if (last_check + window > io_sectors || j == max_sectors)
5808 continue;
5809
5810 last_check = io_sectors;
5811
5812 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5813 break;
5814
5815 repeat:
5816 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5817 /* step marks */
5818 int next = (last_mark+1) % SYNC_MARKS;
5819
5820 mddev->resync_mark = mark[next];
5821 mddev->resync_mark_cnt = mark_cnt[next];
5822 mark[next] = jiffies;
5823 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5824 last_mark = next;
5825 }
5826
5827
5828 if (kthread_should_stop())
5829 goto interrupted;
5830
5831
5832 /*
5833 * this loop exits only if either when we are slower than
5834 * the 'hard' speed limit, or the system was IO-idle for
5835 * a jiffy.
5836 * the system might be non-idle CPU-wise, but we only care
5837 * about not overloading the IO subsystem. (things like an
5838 * e2fsck being done on the RAID array should execute fast)
5839 */
5840 blk_unplug(mddev->queue);
5841 cond_resched();
5842
5843 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5844 /((jiffies-mddev->resync_mark)/HZ +1) +1;
5845
5846 if (currspeed > speed_min(mddev)) {
5847 if ((currspeed > speed_max(mddev)) ||
5848 !is_mddev_idle(mddev)) {
5849 msleep(500);
5850 goto repeat;
5851 }
5852 }
5853 }
5854 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5855 /*
5856 * this also signals 'finished resyncing' to md_stop
5857 */
5858 out:
5859 blk_unplug(mddev->queue);
5860
5861 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5862
5863 /* tell personality that we are finished */
5864 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5865
5866 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5867 mddev->curr_resync > 2) {
5868 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5869 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5870 if (mddev->curr_resync >= mddev->recovery_cp) {
5871 printk(KERN_INFO
5872 "md: checkpointing %s of %s.\n",
5873 desc, mdname(mddev));
5874 mddev->recovery_cp = mddev->curr_resync;
5875 }
5876 } else
5877 mddev->recovery_cp = MaxSector;
5878 } else {
5879 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5880 mddev->curr_resync = MaxSector;
5881 rdev_for_each(rdev, rtmp, mddev)
5882 if (rdev->raid_disk >= 0 &&
5883 !test_bit(Faulty, &rdev->flags) &&
5884 !test_bit(In_sync, &rdev->flags) &&
5885 rdev->recovery_offset < mddev->curr_resync)
5886 rdev->recovery_offset = mddev->curr_resync;
5887 }
5888 }
5889 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5890
5891 skip:
5892 mddev->curr_resync = 0;
5893 mddev->resync_min = 0;
5894 mddev->resync_max = MaxSector;
5895 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5896 wake_up(&resync_wait);
5897 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5898 md_wakeup_thread(mddev->thread);
5899 return;
5900
5901 interrupted:
5902 /*
5903 * got a signal, exit.
5904 */
5905 printk(KERN_INFO
5906 "md: md_do_sync() got signal ... exiting\n");
5907 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5908 goto out;
5909
5910 }
5911 EXPORT_SYMBOL_GPL(md_do_sync);
5912
5913
5914 static int remove_and_add_spares(mddev_t *mddev)
5915 {
5916 mdk_rdev_t *rdev;
5917 struct list_head *rtmp;
5918 int spares = 0;
5919
5920 rdev_for_each(rdev, rtmp, mddev)
5921 if (rdev->raid_disk >= 0 &&
5922 !test_bit(Blocked, &rdev->flags) &&
5923 (test_bit(Faulty, &rdev->flags) ||
5924 ! test_bit(In_sync, &rdev->flags)) &&
5925 atomic_read(&rdev->nr_pending)==0) {
5926 if (mddev->pers->hot_remove_disk(
5927 mddev, rdev->raid_disk)==0) {
5928 char nm[20];
5929 sprintf(nm,"rd%d", rdev->raid_disk);
5930 sysfs_remove_link(&mddev->kobj, nm);
5931 rdev->raid_disk = -1;
5932 }
5933 }
5934
5935 if (mddev->degraded) {
5936 rdev_for_each(rdev, rtmp, mddev) {
5937 if (rdev->raid_disk >= 0 &&
5938 !test_bit(In_sync, &rdev->flags))
5939 spares++;
5940 if (rdev->raid_disk < 0
5941 && !test_bit(Faulty, &rdev->flags)) {
5942 rdev->recovery_offset = 0;
5943 if (mddev->pers->
5944 hot_add_disk(mddev, rdev) == 0) {
5945 char nm[20];
5946 sprintf(nm, "rd%d", rdev->raid_disk);
5947 if (sysfs_create_link(&mddev->kobj,
5948 &rdev->kobj, nm))
5949 printk(KERN_WARNING
5950 "md: cannot register "
5951 "%s for %s\n",
5952 nm, mdname(mddev));
5953 spares++;
5954 md_new_event(mddev);
5955 } else
5956 break;
5957 }
5958 }
5959 }
5960 return spares;
5961 }
5962 /*
5963 * This routine is regularly called by all per-raid-array threads to
5964 * deal with generic issues like resync and super-block update.
5965 * Raid personalities that don't have a thread (linear/raid0) do not
5966 * need this as they never do any recovery or update the superblock.
5967 *
5968 * It does not do any resync itself, but rather "forks" off other threads
5969 * to do that as needed.
5970 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5971 * "->recovery" and create a thread at ->sync_thread.
5972 * When the thread finishes it sets MD_RECOVERY_DONE
5973 * and wakeups up this thread which will reap the thread and finish up.
5974 * This thread also removes any faulty devices (with nr_pending == 0).
5975 *
5976 * The overall approach is:
5977 * 1/ if the superblock needs updating, update it.
5978 * 2/ If a recovery thread is running, don't do anything else.
5979 * 3/ If recovery has finished, clean up, possibly marking spares active.
5980 * 4/ If there are any faulty devices, remove them.
5981 * 5/ If array is degraded, try to add spares devices
5982 * 6/ If array has spares or is not in-sync, start a resync thread.
5983 */
5984 void md_check_recovery(mddev_t *mddev)
5985 {
5986 mdk_rdev_t *rdev;
5987 struct list_head *rtmp;
5988
5989
5990 if (mddev->bitmap)
5991 bitmap_daemon_work(mddev->bitmap);
5992
5993 if (mddev->ro)
5994 return;
5995
5996 if (signal_pending(current)) {
5997 if (mddev->pers->sync_request && !mddev->external) {
5998 printk(KERN_INFO "md: %s in immediate safe mode\n",
5999 mdname(mddev));
6000 mddev->safemode = 2;
6001 }
6002 flush_signals(current);
6003 }
6004
6005 if ( ! (
6006 (mddev->flags && !mddev->external) ||
6007 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6008 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6009 (mddev->external == 0 && mddev->safemode == 1) ||
6010 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6011 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6012 ))
6013 return;
6014
6015 if (mddev_trylock(mddev)) {
6016 int spares = 0;
6017
6018 if (!mddev->external) {
6019 int did_change = 0;
6020 spin_lock_irq(&mddev->write_lock);
6021 if (mddev->safemode &&
6022 !atomic_read(&mddev->writes_pending) &&
6023 !mddev->in_sync &&
6024 mddev->recovery_cp == MaxSector) {
6025 mddev->in_sync = 1;
6026 did_change = 1;
6027 if (mddev->persistent)
6028 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6029 }
6030 if (mddev->safemode == 1)
6031 mddev->safemode = 0;
6032 spin_unlock_irq(&mddev->write_lock);
6033 if (did_change)
6034 sysfs_notify(&mddev->kobj, NULL, "array_state");
6035 }
6036
6037 if (mddev->flags)
6038 md_update_sb(mddev, 0);
6039
6040
6041 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6042 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6043 /* resync/recovery still happening */
6044 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6045 goto unlock;
6046 }
6047 if (mddev->sync_thread) {
6048 /* resync has finished, collect result */
6049 md_unregister_thread(mddev->sync_thread);
6050 mddev->sync_thread = NULL;
6051 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6052 /* success...*/
6053 /* activate any spares */
6054 if (mddev->pers->spare_active(mddev))
6055 sysfs_notify(&mddev->kobj, NULL,
6056 "degraded");
6057 }
6058 md_update_sb(mddev, 1);
6059
6060 /* if array is no-longer degraded, then any saved_raid_disk
6061 * information must be scrapped
6062 */
6063 if (!mddev->degraded)
6064 rdev_for_each(rdev, rtmp, mddev)
6065 rdev->saved_raid_disk = -1;
6066
6067 mddev->recovery = 0;
6068 /* flag recovery needed just to double check */
6069 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6070 sysfs_notify(&mddev->kobj, NULL, "sync_action");
6071 md_new_event(mddev);
6072 goto unlock;
6073 }
6074 /* Set RUNNING before clearing NEEDED to avoid
6075 * any transients in the value of "sync_action".
6076 */
6077 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6078 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6079 /* Clear some bits that don't mean anything, but
6080 * might be left set
6081 */
6082 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6083 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6084
6085 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6086 goto unlock;
6087 /* no recovery is running.
6088 * remove any failed drives, then
6089 * add spares if possible.
6090 * Spare are also removed and re-added, to allow
6091 * the personality to fail the re-add.
6092 */
6093
6094 if (mddev->reshape_position != MaxSector) {
6095 if (mddev->pers->check_reshape(mddev) != 0)
6096 /* Cannot proceed */
6097 goto unlock;
6098 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6099 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6100 } else if ((spares = remove_and_add_spares(mddev))) {
6101 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6102 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6103 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6104 } else if (mddev->recovery_cp < MaxSector) {
6105 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6106 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6107 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6108 /* nothing to be done ... */
6109 goto unlock;
6110
6111 if (mddev->pers->sync_request) {
6112 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6113 /* We are adding a device or devices to an array
6114 * which has the bitmap stored on all devices.
6115 * So make sure all bitmap pages get written
6116 */
6117 bitmap_write_all(mddev->bitmap);
6118 }
6119 mddev->sync_thread = md_register_thread(md_do_sync,
6120 mddev,
6121 "%s_resync");
6122 if (!mddev->sync_thread) {
6123 printk(KERN_ERR "%s: could not start resync"
6124 " thread...\n",
6125 mdname(mddev));
6126 /* leave the spares where they are, it shouldn't hurt */
6127 mddev->recovery = 0;
6128 } else
6129 md_wakeup_thread(mddev->sync_thread);
6130 sysfs_notify(&mddev->kobj, NULL, "sync_action");
6131 md_new_event(mddev);
6132 }
6133 unlock:
6134 if (!mddev->sync_thread) {
6135 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6136 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6137 &mddev->recovery))
6138 sysfs_notify(&mddev->kobj, NULL, "sync_action");
6139 }
6140 mddev_unlock(mddev);
6141 }
6142 }
6143
6144 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6145 {
6146 sysfs_notify(&rdev->kobj, NULL, "state");
6147 wait_event_timeout(rdev->blocked_wait,
6148 !test_bit(Blocked, &rdev->flags),
6149 msecs_to_jiffies(5000));
6150 rdev_dec_pending(rdev, mddev);
6151 }
6152 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6153
6154 static int md_notify_reboot(struct notifier_block *this,
6155 unsigned long code, void *x)
6156 {
6157 struct list_head *tmp;
6158 mddev_t *mddev;
6159
6160 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6161
6162 printk(KERN_INFO "md: stopping all md devices.\n");
6163
6164 for_each_mddev(mddev, tmp)
6165 if (mddev_trylock(mddev)) {
6166 do_md_stop (mddev, 1);
6167 mddev_unlock(mddev);
6168 }
6169 /*
6170 * certain more exotic SCSI devices are known to be
6171 * volatile wrt too early system reboots. While the
6172 * right place to handle this issue is the given
6173 * driver, we do want to have a safe RAID driver ...
6174 */
6175 mdelay(1000*1);
6176 }
6177 return NOTIFY_DONE;
6178 }
6179
6180 static struct notifier_block md_notifier = {
6181 .notifier_call = md_notify_reboot,
6182 .next = NULL,
6183 .priority = INT_MAX, /* before any real devices */
6184 };
6185
6186 static void md_geninit(void)
6187 {
6188 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6189
6190 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6191 }
6192
6193 static int __init md_init(void)
6194 {
6195 if (register_blkdev(MAJOR_NR, "md"))
6196 return -1;
6197 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6198 unregister_blkdev(MAJOR_NR, "md");
6199 return -1;
6200 }
6201 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
6202 md_probe, NULL, NULL);
6203 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6204 md_probe, NULL, NULL);
6205
6206 register_reboot_notifier(&md_notifier);
6207 raid_table_header = register_sysctl_table(raid_root_table);
6208
6209 md_geninit();
6210 return (0);
6211 }
6212
6213
6214 #ifndef MODULE
6215
6216 /*
6217 * Searches all registered partitions for autorun RAID arrays
6218 * at boot time.
6219 */
6220
6221 static LIST_HEAD(all_detected_devices);
6222 struct detected_devices_node {
6223 struct list_head list;
6224 dev_t dev;
6225 };
6226
6227 void md_autodetect_dev(dev_t dev)
6228 {
6229 struct detected_devices_node *node_detected_dev;
6230
6231 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6232 if (node_detected_dev) {
6233 node_detected_dev->dev = dev;
6234 list_add_tail(&node_detected_dev->list, &all_detected_devices);
6235 } else {
6236 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6237 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6238 }
6239 }
6240
6241
6242 static void autostart_arrays(int part)
6243 {
6244 mdk_rdev_t *rdev;
6245 struct detected_devices_node *node_detected_dev;
6246 dev_t dev;
6247 int i_scanned, i_passed;
6248
6249 i_scanned = 0;
6250 i_passed = 0;
6251
6252 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6253
6254 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6255 i_scanned++;
6256 node_detected_dev = list_entry(all_detected_devices.next,
6257 struct detected_devices_node, list);
6258 list_del(&node_detected_dev->list);
6259 dev = node_detected_dev->dev;
6260 kfree(node_detected_dev);
6261 rdev = md_import_device(dev,0, 90);
6262 if (IS_ERR(rdev))
6263 continue;
6264
6265 if (test_bit(Faulty, &rdev->flags)) {
6266 MD_BUG();
6267 continue;
6268 }
6269 set_bit(AutoDetected, &rdev->flags);
6270 list_add(&rdev->same_set, &pending_raid_disks);
6271 i_passed++;
6272 }
6273
6274 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6275 i_scanned, i_passed);
6276
6277 autorun_devices(part);
6278 }
6279
6280 #endif /* !MODULE */
6281
6282 static __exit void md_exit(void)
6283 {
6284 mddev_t *mddev;
6285 struct list_head *tmp;
6286
6287 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
6288 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6289
6290 unregister_blkdev(MAJOR_NR,"md");
6291 unregister_blkdev(mdp_major, "mdp");
6292 unregister_reboot_notifier(&md_notifier);
6293 unregister_sysctl_table(raid_table_header);
6294 remove_proc_entry("mdstat", NULL);
6295 for_each_mddev(mddev, tmp) {
6296 struct gendisk *disk = mddev->gendisk;
6297 if (!disk)
6298 continue;
6299 export_array(mddev);
6300 del_gendisk(disk);
6301 put_disk(disk);
6302 mddev->gendisk = NULL;
6303 mddev_put(mddev);
6304 }
6305 }
6306
6307 subsys_initcall(md_init);
6308 module_exit(md_exit)
6309
6310 static int get_ro(char *buffer, struct kernel_param *kp)
6311 {
6312 return sprintf(buffer, "%d", start_readonly);
6313 }
6314 static int set_ro(const char *val, struct kernel_param *kp)
6315 {
6316 char *e;
6317 int num = simple_strtoul(val, &e, 10);
6318 if (*val && (*e == '\0' || *e == '\n')) {
6319 start_readonly = num;
6320 return 0;
6321 }
6322 return -EINVAL;
6323 }
6324
6325 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6326 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6327
6328
6329 EXPORT_SYMBOL(register_md_personality);
6330 EXPORT_SYMBOL(unregister_md_personality);
6331 EXPORT_SYMBOL(md_error);
6332 EXPORT_SYMBOL(md_done_sync);
6333 EXPORT_SYMBOL(md_write_start);
6334 EXPORT_SYMBOL(md_write_end);
6335 EXPORT_SYMBOL(md_register_thread);
6336 EXPORT_SYMBOL(md_unregister_thread);
6337 EXPORT_SYMBOL(md_wakeup_thread);
6338 EXPORT_SYMBOL(md_check_recovery);
6339 MODULE_LICENSE("GPL");
6340 MODULE_ALIAS("md");
6341 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);