Merge branch 'for-rmk' of git://git.pengutronix.de/git/imx/linux-2.6 into devel-stable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
59
60 #ifndef MODULE
61 static void autostart_arrays(int part);
62 #endif
63
64 static LIST_HEAD(pers_list);
65 static DEFINE_SPINLOCK(pers_lock);
66
67 static void md_print_devices(void);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72
73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
74
75 /*
76 * Default number of read corrections we'll attempt on an rdev
77 * before ejecting it from the array. We divide the read error
78 * count by 2 for every hour elapsed between read errors.
79 */
80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
81 /*
82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83 * is 1000 KB/sec, so the extra system load does not show up that much.
84 * Increase it if you want to have more _guaranteed_ speed. Note that
85 * the RAID driver will use the maximum available bandwidth if the IO
86 * subsystem is idle. There is also an 'absolute maximum' reconstruction
87 * speed limit - in case reconstruction slows down your system despite
88 * idle IO detection.
89 *
90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91 * or /sys/block/mdX/md/sync_speed_{min,max}
92 */
93
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
97 {
98 return mddev->sync_speed_min ?
99 mddev->sync_speed_min : sysctl_speed_limit_min;
100 }
101
102 static inline int speed_max(mddev_t *mddev)
103 {
104 return mddev->sync_speed_max ?
105 mddev->sync_speed_max : sysctl_speed_limit_max;
106 }
107
108 static struct ctl_table_header *raid_table_header;
109
110 static ctl_table raid_table[] = {
111 {
112 .procname = "speed_limit_min",
113 .data = &sysctl_speed_limit_min,
114 .maxlen = sizeof(int),
115 .mode = S_IRUGO|S_IWUSR,
116 .proc_handler = proc_dointvec,
117 },
118 {
119 .procname = "speed_limit_max",
120 .data = &sysctl_speed_limit_max,
121 .maxlen = sizeof(int),
122 .mode = S_IRUGO|S_IWUSR,
123 .proc_handler = proc_dointvec,
124 },
125 { }
126 };
127
128 static ctl_table raid_dir_table[] = {
129 {
130 .procname = "raid",
131 .maxlen = 0,
132 .mode = S_IRUGO|S_IXUGO,
133 .child = raid_table,
134 },
135 { }
136 };
137
138 static ctl_table raid_root_table[] = {
139 {
140 .procname = "dev",
141 .maxlen = 0,
142 .mode = 0555,
143 .child = raid_dir_table,
144 },
145 { }
146 };
147
148 static const struct block_device_operations md_fops;
149
150 static int start_readonly;
151
152 /* bio_clone_mddev
153 * like bio_clone, but with a local bio set
154 */
155
156 static void mddev_bio_destructor(struct bio *bio)
157 {
158 mddev_t *mddev, **mddevp;
159
160 mddevp = (void*)bio;
161 mddev = mddevp[-1];
162
163 bio_free(bio, mddev->bio_set);
164 }
165
166 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
167 mddev_t *mddev)
168 {
169 struct bio *b;
170 mddev_t **mddevp;
171
172 if (!mddev || !mddev->bio_set)
173 return bio_alloc(gfp_mask, nr_iovecs);
174
175 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
176 mddev->bio_set);
177 if (!b)
178 return NULL;
179 mddevp = (void*)b;
180 mddevp[-1] = mddev;
181 b->bi_destructor = mddev_bio_destructor;
182 return b;
183 }
184 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
185
186 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
187 mddev_t *mddev)
188 {
189 struct bio *b;
190 mddev_t **mddevp;
191
192 if (!mddev || !mddev->bio_set)
193 return bio_clone(bio, gfp_mask);
194
195 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
196 mddev->bio_set);
197 if (!b)
198 return NULL;
199 mddevp = (void*)b;
200 mddevp[-1] = mddev;
201 b->bi_destructor = mddev_bio_destructor;
202 __bio_clone(b, bio);
203 if (bio_integrity(bio)) {
204 int ret;
205
206 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
207
208 if (ret < 0) {
209 bio_put(b);
210 return NULL;
211 }
212 }
213
214 return b;
215 }
216 EXPORT_SYMBOL_GPL(bio_clone_mddev);
217
218 /*
219 * We have a system wide 'event count' that is incremented
220 * on any 'interesting' event, and readers of /proc/mdstat
221 * can use 'poll' or 'select' to find out when the event
222 * count increases.
223 *
224 * Events are:
225 * start array, stop array, error, add device, remove device,
226 * start build, activate spare
227 */
228 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
229 static atomic_t md_event_count;
230 void md_new_event(mddev_t *mddev)
231 {
232 atomic_inc(&md_event_count);
233 wake_up(&md_event_waiters);
234 }
235 EXPORT_SYMBOL_GPL(md_new_event);
236
237 /* Alternate version that can be called from interrupts
238 * when calling sysfs_notify isn't needed.
239 */
240 static void md_new_event_inintr(mddev_t *mddev)
241 {
242 atomic_inc(&md_event_count);
243 wake_up(&md_event_waiters);
244 }
245
246 /*
247 * Enables to iterate over all existing md arrays
248 * all_mddevs_lock protects this list.
249 */
250 static LIST_HEAD(all_mddevs);
251 static DEFINE_SPINLOCK(all_mddevs_lock);
252
253
254 /*
255 * iterates through all used mddevs in the system.
256 * We take care to grab the all_mddevs_lock whenever navigating
257 * the list, and to always hold a refcount when unlocked.
258 * Any code which breaks out of this loop while own
259 * a reference to the current mddev and must mddev_put it.
260 */
261 #define for_each_mddev(mddev,tmp) \
262 \
263 for (({ spin_lock(&all_mddevs_lock); \
264 tmp = all_mddevs.next; \
265 mddev = NULL;}); \
266 ({ if (tmp != &all_mddevs) \
267 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
268 spin_unlock(&all_mddevs_lock); \
269 if (mddev) mddev_put(mddev); \
270 mddev = list_entry(tmp, mddev_t, all_mddevs); \
271 tmp != &all_mddevs;}); \
272 ({ spin_lock(&all_mddevs_lock); \
273 tmp = tmp->next;}) \
274 )
275
276
277 /* Rather than calling directly into the personality make_request function,
278 * IO requests come here first so that we can check if the device is
279 * being suspended pending a reconfiguration.
280 * We hold a refcount over the call to ->make_request. By the time that
281 * call has finished, the bio has been linked into some internal structure
282 * and so is visible to ->quiesce(), so we don't need the refcount any more.
283 */
284 static int md_make_request(struct request_queue *q, struct bio *bio)
285 {
286 const int rw = bio_data_dir(bio);
287 mddev_t *mddev = q->queuedata;
288 int rv;
289 int cpu;
290
291 if (mddev == NULL || mddev->pers == NULL) {
292 bio_io_error(bio);
293 return 0;
294 }
295 rcu_read_lock();
296 if (mddev->suspended) {
297 DEFINE_WAIT(__wait);
298 for (;;) {
299 prepare_to_wait(&mddev->sb_wait, &__wait,
300 TASK_UNINTERRUPTIBLE);
301 if (!mddev->suspended)
302 break;
303 rcu_read_unlock();
304 schedule();
305 rcu_read_lock();
306 }
307 finish_wait(&mddev->sb_wait, &__wait);
308 }
309 atomic_inc(&mddev->active_io);
310 rcu_read_unlock();
311
312 rv = mddev->pers->make_request(mddev, bio);
313
314 cpu = part_stat_lock();
315 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
316 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
317 bio_sectors(bio));
318 part_stat_unlock();
319
320 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
321 wake_up(&mddev->sb_wait);
322
323 return rv;
324 }
325
326 /* mddev_suspend makes sure no new requests are submitted
327 * to the device, and that any requests that have been submitted
328 * are completely handled.
329 * Once ->stop is called and completes, the module will be completely
330 * unused.
331 */
332 void mddev_suspend(mddev_t *mddev)
333 {
334 BUG_ON(mddev->suspended);
335 mddev->suspended = 1;
336 synchronize_rcu();
337 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
338 mddev->pers->quiesce(mddev, 1);
339 }
340 EXPORT_SYMBOL_GPL(mddev_suspend);
341
342 void mddev_resume(mddev_t *mddev)
343 {
344 mddev->suspended = 0;
345 wake_up(&mddev->sb_wait);
346 mddev->pers->quiesce(mddev, 0);
347 }
348 EXPORT_SYMBOL_GPL(mddev_resume);
349
350 int mddev_congested(mddev_t *mddev, int bits)
351 {
352 return mddev->suspended;
353 }
354 EXPORT_SYMBOL(mddev_congested);
355
356 /*
357 * Generic flush handling for md
358 */
359
360 static void md_end_flush(struct bio *bio, int err)
361 {
362 mdk_rdev_t *rdev = bio->bi_private;
363 mddev_t *mddev = rdev->mddev;
364
365 rdev_dec_pending(rdev, mddev);
366
367 if (atomic_dec_and_test(&mddev->flush_pending)) {
368 /* The pre-request flush has finished */
369 queue_work(md_wq, &mddev->flush_work);
370 }
371 bio_put(bio);
372 }
373
374 static void md_submit_flush_data(struct work_struct *ws);
375
376 static void submit_flushes(struct work_struct *ws)
377 {
378 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
379 mdk_rdev_t *rdev;
380
381 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
382 atomic_set(&mddev->flush_pending, 1);
383 rcu_read_lock();
384 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
385 if (rdev->raid_disk >= 0 &&
386 !test_bit(Faulty, &rdev->flags)) {
387 /* Take two references, one is dropped
388 * when request finishes, one after
389 * we reclaim rcu_read_lock
390 */
391 struct bio *bi;
392 atomic_inc(&rdev->nr_pending);
393 atomic_inc(&rdev->nr_pending);
394 rcu_read_unlock();
395 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
396 bi->bi_end_io = md_end_flush;
397 bi->bi_private = rdev;
398 bi->bi_bdev = rdev->bdev;
399 atomic_inc(&mddev->flush_pending);
400 submit_bio(WRITE_FLUSH, bi);
401 rcu_read_lock();
402 rdev_dec_pending(rdev, mddev);
403 }
404 rcu_read_unlock();
405 if (atomic_dec_and_test(&mddev->flush_pending))
406 queue_work(md_wq, &mddev->flush_work);
407 }
408
409 static void md_submit_flush_data(struct work_struct *ws)
410 {
411 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
412 struct bio *bio = mddev->flush_bio;
413
414 if (bio->bi_size == 0)
415 /* an empty barrier - all done */
416 bio_endio(bio, 0);
417 else {
418 bio->bi_rw &= ~REQ_FLUSH;
419 if (mddev->pers->make_request(mddev, bio))
420 generic_make_request(bio);
421 }
422
423 mddev->flush_bio = NULL;
424 wake_up(&mddev->sb_wait);
425 }
426
427 void md_flush_request(mddev_t *mddev, struct bio *bio)
428 {
429 spin_lock_irq(&mddev->write_lock);
430 wait_event_lock_irq(mddev->sb_wait,
431 !mddev->flush_bio,
432 mddev->write_lock, /*nothing*/);
433 mddev->flush_bio = bio;
434 spin_unlock_irq(&mddev->write_lock);
435
436 INIT_WORK(&mddev->flush_work, submit_flushes);
437 queue_work(md_wq, &mddev->flush_work);
438 }
439 EXPORT_SYMBOL(md_flush_request);
440
441 /* Support for plugging.
442 * This mirrors the plugging support in request_queue, but does not
443 * require having a whole queue
444 */
445 static void plugger_work(struct work_struct *work)
446 {
447 struct plug_handle *plug =
448 container_of(work, struct plug_handle, unplug_work);
449 plug->unplug_fn(plug);
450 }
451 static void plugger_timeout(unsigned long data)
452 {
453 struct plug_handle *plug = (void *)data;
454 kblockd_schedule_work(NULL, &plug->unplug_work);
455 }
456 void plugger_init(struct plug_handle *plug,
457 void (*unplug_fn)(struct plug_handle *))
458 {
459 plug->unplug_flag = 0;
460 plug->unplug_fn = unplug_fn;
461 init_timer(&plug->unplug_timer);
462 plug->unplug_timer.function = plugger_timeout;
463 plug->unplug_timer.data = (unsigned long)plug;
464 INIT_WORK(&plug->unplug_work, plugger_work);
465 }
466 EXPORT_SYMBOL_GPL(plugger_init);
467
468 void plugger_set_plug(struct plug_handle *plug)
469 {
470 if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag))
471 mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1);
472 }
473 EXPORT_SYMBOL_GPL(plugger_set_plug);
474
475 int plugger_remove_plug(struct plug_handle *plug)
476 {
477 if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) {
478 del_timer(&plug->unplug_timer);
479 return 1;
480 } else
481 return 0;
482 }
483 EXPORT_SYMBOL_GPL(plugger_remove_plug);
484
485
486 static inline mddev_t *mddev_get(mddev_t *mddev)
487 {
488 atomic_inc(&mddev->active);
489 return mddev;
490 }
491
492 static void mddev_delayed_delete(struct work_struct *ws);
493
494 static void mddev_put(mddev_t *mddev)
495 {
496 struct bio_set *bs = NULL;
497
498 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
499 return;
500 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
501 mddev->ctime == 0 && !mddev->hold_active) {
502 /* Array is not configured at all, and not held active,
503 * so destroy it */
504 list_del(&mddev->all_mddevs);
505 bs = mddev->bio_set;
506 mddev->bio_set = NULL;
507 if (mddev->gendisk) {
508 /* We did a probe so need to clean up. Call
509 * queue_work inside the spinlock so that
510 * flush_workqueue() after mddev_find will
511 * succeed in waiting for the work to be done.
512 */
513 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
514 queue_work(md_misc_wq, &mddev->del_work);
515 } else
516 kfree(mddev);
517 }
518 spin_unlock(&all_mddevs_lock);
519 if (bs)
520 bioset_free(bs);
521 }
522
523 void mddev_init(mddev_t *mddev)
524 {
525 mutex_init(&mddev->open_mutex);
526 mutex_init(&mddev->reconfig_mutex);
527 mutex_init(&mddev->bitmap_info.mutex);
528 INIT_LIST_HEAD(&mddev->disks);
529 INIT_LIST_HEAD(&mddev->all_mddevs);
530 init_timer(&mddev->safemode_timer);
531 atomic_set(&mddev->active, 1);
532 atomic_set(&mddev->openers, 0);
533 atomic_set(&mddev->active_io, 0);
534 spin_lock_init(&mddev->write_lock);
535 atomic_set(&mddev->flush_pending, 0);
536 init_waitqueue_head(&mddev->sb_wait);
537 init_waitqueue_head(&mddev->recovery_wait);
538 mddev->reshape_position = MaxSector;
539 mddev->resync_min = 0;
540 mddev->resync_max = MaxSector;
541 mddev->level = LEVEL_NONE;
542 }
543 EXPORT_SYMBOL_GPL(mddev_init);
544
545 static mddev_t * mddev_find(dev_t unit)
546 {
547 mddev_t *mddev, *new = NULL;
548
549 retry:
550 spin_lock(&all_mddevs_lock);
551
552 if (unit) {
553 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
554 if (mddev->unit == unit) {
555 mddev_get(mddev);
556 spin_unlock(&all_mddevs_lock);
557 kfree(new);
558 return mddev;
559 }
560
561 if (new) {
562 list_add(&new->all_mddevs, &all_mddevs);
563 spin_unlock(&all_mddevs_lock);
564 new->hold_active = UNTIL_IOCTL;
565 return new;
566 }
567 } else if (new) {
568 /* find an unused unit number */
569 static int next_minor = 512;
570 int start = next_minor;
571 int is_free = 0;
572 int dev = 0;
573 while (!is_free) {
574 dev = MKDEV(MD_MAJOR, next_minor);
575 next_minor++;
576 if (next_minor > MINORMASK)
577 next_minor = 0;
578 if (next_minor == start) {
579 /* Oh dear, all in use. */
580 spin_unlock(&all_mddevs_lock);
581 kfree(new);
582 return NULL;
583 }
584
585 is_free = 1;
586 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
587 if (mddev->unit == dev) {
588 is_free = 0;
589 break;
590 }
591 }
592 new->unit = dev;
593 new->md_minor = MINOR(dev);
594 new->hold_active = UNTIL_STOP;
595 list_add(&new->all_mddevs, &all_mddevs);
596 spin_unlock(&all_mddevs_lock);
597 return new;
598 }
599 spin_unlock(&all_mddevs_lock);
600
601 new = kzalloc(sizeof(*new), GFP_KERNEL);
602 if (!new)
603 return NULL;
604
605 new->unit = unit;
606 if (MAJOR(unit) == MD_MAJOR)
607 new->md_minor = MINOR(unit);
608 else
609 new->md_minor = MINOR(unit) >> MdpMinorShift;
610
611 mddev_init(new);
612
613 goto retry;
614 }
615
616 static inline int mddev_lock(mddev_t * mddev)
617 {
618 return mutex_lock_interruptible(&mddev->reconfig_mutex);
619 }
620
621 static inline int mddev_is_locked(mddev_t *mddev)
622 {
623 return mutex_is_locked(&mddev->reconfig_mutex);
624 }
625
626 static inline int mddev_trylock(mddev_t * mddev)
627 {
628 return mutex_trylock(&mddev->reconfig_mutex);
629 }
630
631 static struct attribute_group md_redundancy_group;
632
633 static void mddev_unlock(mddev_t * mddev)
634 {
635 if (mddev->to_remove) {
636 /* These cannot be removed under reconfig_mutex as
637 * an access to the files will try to take reconfig_mutex
638 * while holding the file unremovable, which leads to
639 * a deadlock.
640 * So hold set sysfs_active while the remove in happeing,
641 * and anything else which might set ->to_remove or my
642 * otherwise change the sysfs namespace will fail with
643 * -EBUSY if sysfs_active is still set.
644 * We set sysfs_active under reconfig_mutex and elsewhere
645 * test it under the same mutex to ensure its correct value
646 * is seen.
647 */
648 struct attribute_group *to_remove = mddev->to_remove;
649 mddev->to_remove = NULL;
650 mddev->sysfs_active = 1;
651 mutex_unlock(&mddev->reconfig_mutex);
652
653 if (mddev->kobj.sd) {
654 if (to_remove != &md_redundancy_group)
655 sysfs_remove_group(&mddev->kobj, to_remove);
656 if (mddev->pers == NULL ||
657 mddev->pers->sync_request == NULL) {
658 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
659 if (mddev->sysfs_action)
660 sysfs_put(mddev->sysfs_action);
661 mddev->sysfs_action = NULL;
662 }
663 }
664 mddev->sysfs_active = 0;
665 } else
666 mutex_unlock(&mddev->reconfig_mutex);
667
668 md_wakeup_thread(mddev->thread);
669 }
670
671 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
672 {
673 mdk_rdev_t *rdev;
674
675 list_for_each_entry(rdev, &mddev->disks, same_set)
676 if (rdev->desc_nr == nr)
677 return rdev;
678
679 return NULL;
680 }
681
682 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
683 {
684 mdk_rdev_t *rdev;
685
686 list_for_each_entry(rdev, &mddev->disks, same_set)
687 if (rdev->bdev->bd_dev == dev)
688 return rdev;
689
690 return NULL;
691 }
692
693 static struct mdk_personality *find_pers(int level, char *clevel)
694 {
695 struct mdk_personality *pers;
696 list_for_each_entry(pers, &pers_list, list) {
697 if (level != LEVEL_NONE && pers->level == level)
698 return pers;
699 if (strcmp(pers->name, clevel)==0)
700 return pers;
701 }
702 return NULL;
703 }
704
705 /* return the offset of the super block in 512byte sectors */
706 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
707 {
708 sector_t num_sectors = i_size_read(bdev->bd_inode) / 512;
709 return MD_NEW_SIZE_SECTORS(num_sectors);
710 }
711
712 static int alloc_disk_sb(mdk_rdev_t * rdev)
713 {
714 if (rdev->sb_page)
715 MD_BUG();
716
717 rdev->sb_page = alloc_page(GFP_KERNEL);
718 if (!rdev->sb_page) {
719 printk(KERN_ALERT "md: out of memory.\n");
720 return -ENOMEM;
721 }
722
723 return 0;
724 }
725
726 static void free_disk_sb(mdk_rdev_t * rdev)
727 {
728 if (rdev->sb_page) {
729 put_page(rdev->sb_page);
730 rdev->sb_loaded = 0;
731 rdev->sb_page = NULL;
732 rdev->sb_start = 0;
733 rdev->sectors = 0;
734 }
735 }
736
737
738 static void super_written(struct bio *bio, int error)
739 {
740 mdk_rdev_t *rdev = bio->bi_private;
741 mddev_t *mddev = rdev->mddev;
742
743 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
744 printk("md: super_written gets error=%d, uptodate=%d\n",
745 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
746 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
747 md_error(mddev, rdev);
748 }
749
750 if (atomic_dec_and_test(&mddev->pending_writes))
751 wake_up(&mddev->sb_wait);
752 bio_put(bio);
753 }
754
755 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
756 sector_t sector, int size, struct page *page)
757 {
758 /* write first size bytes of page to sector of rdev
759 * Increment mddev->pending_writes before returning
760 * and decrement it on completion, waking up sb_wait
761 * if zero is reached.
762 * If an error occurred, call md_error
763 */
764 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
765
766 bio->bi_bdev = rdev->bdev;
767 bio->bi_sector = sector;
768 bio_add_page(bio, page, size, 0);
769 bio->bi_private = rdev;
770 bio->bi_end_io = super_written;
771
772 atomic_inc(&mddev->pending_writes);
773 submit_bio(REQ_WRITE | REQ_SYNC | REQ_UNPLUG | REQ_FLUSH | REQ_FUA,
774 bio);
775 }
776
777 void md_super_wait(mddev_t *mddev)
778 {
779 /* wait for all superblock writes that were scheduled to complete */
780 DEFINE_WAIT(wq);
781 for(;;) {
782 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
783 if (atomic_read(&mddev->pending_writes)==0)
784 break;
785 schedule();
786 }
787 finish_wait(&mddev->sb_wait, &wq);
788 }
789
790 static void bi_complete(struct bio *bio, int error)
791 {
792 complete((struct completion*)bio->bi_private);
793 }
794
795 int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
796 struct page *page, int rw)
797 {
798 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
799 struct completion event;
800 int ret;
801
802 rw |= REQ_SYNC | REQ_UNPLUG;
803
804 bio->bi_bdev = rdev->bdev;
805 bio->bi_sector = sector;
806 bio_add_page(bio, page, size, 0);
807 init_completion(&event);
808 bio->bi_private = &event;
809 bio->bi_end_io = bi_complete;
810 submit_bio(rw, bio);
811 wait_for_completion(&event);
812
813 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
814 bio_put(bio);
815 return ret;
816 }
817 EXPORT_SYMBOL_GPL(sync_page_io);
818
819 static int read_disk_sb(mdk_rdev_t * rdev, int size)
820 {
821 char b[BDEVNAME_SIZE];
822 if (!rdev->sb_page) {
823 MD_BUG();
824 return -EINVAL;
825 }
826 if (rdev->sb_loaded)
827 return 0;
828
829
830 if (!sync_page_io(rdev, rdev->sb_start, size, rdev->sb_page, READ))
831 goto fail;
832 rdev->sb_loaded = 1;
833 return 0;
834
835 fail:
836 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
837 bdevname(rdev->bdev,b));
838 return -EINVAL;
839 }
840
841 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
842 {
843 return sb1->set_uuid0 == sb2->set_uuid0 &&
844 sb1->set_uuid1 == sb2->set_uuid1 &&
845 sb1->set_uuid2 == sb2->set_uuid2 &&
846 sb1->set_uuid3 == sb2->set_uuid3;
847 }
848
849 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
850 {
851 int ret;
852 mdp_super_t *tmp1, *tmp2;
853
854 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
855 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
856
857 if (!tmp1 || !tmp2) {
858 ret = 0;
859 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
860 goto abort;
861 }
862
863 *tmp1 = *sb1;
864 *tmp2 = *sb2;
865
866 /*
867 * nr_disks is not constant
868 */
869 tmp1->nr_disks = 0;
870 tmp2->nr_disks = 0;
871
872 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
873 abort:
874 kfree(tmp1);
875 kfree(tmp2);
876 return ret;
877 }
878
879
880 static u32 md_csum_fold(u32 csum)
881 {
882 csum = (csum & 0xffff) + (csum >> 16);
883 return (csum & 0xffff) + (csum >> 16);
884 }
885
886 static unsigned int calc_sb_csum(mdp_super_t * sb)
887 {
888 u64 newcsum = 0;
889 u32 *sb32 = (u32*)sb;
890 int i;
891 unsigned int disk_csum, csum;
892
893 disk_csum = sb->sb_csum;
894 sb->sb_csum = 0;
895
896 for (i = 0; i < MD_SB_BYTES/4 ; i++)
897 newcsum += sb32[i];
898 csum = (newcsum & 0xffffffff) + (newcsum>>32);
899
900
901 #ifdef CONFIG_ALPHA
902 /* This used to use csum_partial, which was wrong for several
903 * reasons including that different results are returned on
904 * different architectures. It isn't critical that we get exactly
905 * the same return value as before (we always csum_fold before
906 * testing, and that removes any differences). However as we
907 * know that csum_partial always returned a 16bit value on
908 * alphas, do a fold to maximise conformity to previous behaviour.
909 */
910 sb->sb_csum = md_csum_fold(disk_csum);
911 #else
912 sb->sb_csum = disk_csum;
913 #endif
914 return csum;
915 }
916
917
918 /*
919 * Handle superblock details.
920 * We want to be able to handle multiple superblock formats
921 * so we have a common interface to them all, and an array of
922 * different handlers.
923 * We rely on user-space to write the initial superblock, and support
924 * reading and updating of superblocks.
925 * Interface methods are:
926 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
927 * loads and validates a superblock on dev.
928 * if refdev != NULL, compare superblocks on both devices
929 * Return:
930 * 0 - dev has a superblock that is compatible with refdev
931 * 1 - dev has a superblock that is compatible and newer than refdev
932 * so dev should be used as the refdev in future
933 * -EINVAL superblock incompatible or invalid
934 * -othererror e.g. -EIO
935 *
936 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
937 * Verify that dev is acceptable into mddev.
938 * The first time, mddev->raid_disks will be 0, and data from
939 * dev should be merged in. Subsequent calls check that dev
940 * is new enough. Return 0 or -EINVAL
941 *
942 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
943 * Update the superblock for rdev with data in mddev
944 * This does not write to disc.
945 *
946 */
947
948 struct super_type {
949 char *name;
950 struct module *owner;
951 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
952 int minor_version);
953 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
954 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
955 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
956 sector_t num_sectors);
957 };
958
959 /*
960 * Check that the given mddev has no bitmap.
961 *
962 * This function is called from the run method of all personalities that do not
963 * support bitmaps. It prints an error message and returns non-zero if mddev
964 * has a bitmap. Otherwise, it returns 0.
965 *
966 */
967 int md_check_no_bitmap(mddev_t *mddev)
968 {
969 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
970 return 0;
971 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
972 mdname(mddev), mddev->pers->name);
973 return 1;
974 }
975 EXPORT_SYMBOL(md_check_no_bitmap);
976
977 /*
978 * load_super for 0.90.0
979 */
980 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
981 {
982 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
983 mdp_super_t *sb;
984 int ret;
985
986 /*
987 * Calculate the position of the superblock (512byte sectors),
988 * it's at the end of the disk.
989 *
990 * It also happens to be a multiple of 4Kb.
991 */
992 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
993
994 ret = read_disk_sb(rdev, MD_SB_BYTES);
995 if (ret) return ret;
996
997 ret = -EINVAL;
998
999 bdevname(rdev->bdev, b);
1000 sb = (mdp_super_t*)page_address(rdev->sb_page);
1001
1002 if (sb->md_magic != MD_SB_MAGIC) {
1003 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1004 b);
1005 goto abort;
1006 }
1007
1008 if (sb->major_version != 0 ||
1009 sb->minor_version < 90 ||
1010 sb->minor_version > 91) {
1011 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1012 sb->major_version, sb->minor_version,
1013 b);
1014 goto abort;
1015 }
1016
1017 if (sb->raid_disks <= 0)
1018 goto abort;
1019
1020 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1021 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1022 b);
1023 goto abort;
1024 }
1025
1026 rdev->preferred_minor = sb->md_minor;
1027 rdev->data_offset = 0;
1028 rdev->sb_size = MD_SB_BYTES;
1029
1030 if (sb->level == LEVEL_MULTIPATH)
1031 rdev->desc_nr = -1;
1032 else
1033 rdev->desc_nr = sb->this_disk.number;
1034
1035 if (!refdev) {
1036 ret = 1;
1037 } else {
1038 __u64 ev1, ev2;
1039 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
1040 if (!uuid_equal(refsb, sb)) {
1041 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1042 b, bdevname(refdev->bdev,b2));
1043 goto abort;
1044 }
1045 if (!sb_equal(refsb, sb)) {
1046 printk(KERN_WARNING "md: %s has same UUID"
1047 " but different superblock to %s\n",
1048 b, bdevname(refdev->bdev, b2));
1049 goto abort;
1050 }
1051 ev1 = md_event(sb);
1052 ev2 = md_event(refsb);
1053 if (ev1 > ev2)
1054 ret = 1;
1055 else
1056 ret = 0;
1057 }
1058 rdev->sectors = rdev->sb_start;
1059
1060 if (rdev->sectors < sb->size * 2 && sb->level > 1)
1061 /* "this cannot possibly happen" ... */
1062 ret = -EINVAL;
1063
1064 abort:
1065 return ret;
1066 }
1067
1068 /*
1069 * validate_super for 0.90.0
1070 */
1071 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1072 {
1073 mdp_disk_t *desc;
1074 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1075 __u64 ev1 = md_event(sb);
1076
1077 rdev->raid_disk = -1;
1078 clear_bit(Faulty, &rdev->flags);
1079 clear_bit(In_sync, &rdev->flags);
1080 clear_bit(WriteMostly, &rdev->flags);
1081
1082 if (mddev->raid_disks == 0) {
1083 mddev->major_version = 0;
1084 mddev->minor_version = sb->minor_version;
1085 mddev->patch_version = sb->patch_version;
1086 mddev->external = 0;
1087 mddev->chunk_sectors = sb->chunk_size >> 9;
1088 mddev->ctime = sb->ctime;
1089 mddev->utime = sb->utime;
1090 mddev->level = sb->level;
1091 mddev->clevel[0] = 0;
1092 mddev->layout = sb->layout;
1093 mddev->raid_disks = sb->raid_disks;
1094 mddev->dev_sectors = sb->size * 2;
1095 mddev->events = ev1;
1096 mddev->bitmap_info.offset = 0;
1097 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1098
1099 if (mddev->minor_version >= 91) {
1100 mddev->reshape_position = sb->reshape_position;
1101 mddev->delta_disks = sb->delta_disks;
1102 mddev->new_level = sb->new_level;
1103 mddev->new_layout = sb->new_layout;
1104 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1105 } else {
1106 mddev->reshape_position = MaxSector;
1107 mddev->delta_disks = 0;
1108 mddev->new_level = mddev->level;
1109 mddev->new_layout = mddev->layout;
1110 mddev->new_chunk_sectors = mddev->chunk_sectors;
1111 }
1112
1113 if (sb->state & (1<<MD_SB_CLEAN))
1114 mddev->recovery_cp = MaxSector;
1115 else {
1116 if (sb->events_hi == sb->cp_events_hi &&
1117 sb->events_lo == sb->cp_events_lo) {
1118 mddev->recovery_cp = sb->recovery_cp;
1119 } else
1120 mddev->recovery_cp = 0;
1121 }
1122
1123 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1124 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1125 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1126 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1127
1128 mddev->max_disks = MD_SB_DISKS;
1129
1130 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1131 mddev->bitmap_info.file == NULL)
1132 mddev->bitmap_info.offset =
1133 mddev->bitmap_info.default_offset;
1134
1135 } else if (mddev->pers == NULL) {
1136 /* Insist on good event counter while assembling, except
1137 * for spares (which don't need an event count) */
1138 ++ev1;
1139 if (sb->disks[rdev->desc_nr].state & (
1140 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1141 if (ev1 < mddev->events)
1142 return -EINVAL;
1143 } else if (mddev->bitmap) {
1144 /* if adding to array with a bitmap, then we can accept an
1145 * older device ... but not too old.
1146 */
1147 if (ev1 < mddev->bitmap->events_cleared)
1148 return 0;
1149 } else {
1150 if (ev1 < mddev->events)
1151 /* just a hot-add of a new device, leave raid_disk at -1 */
1152 return 0;
1153 }
1154
1155 if (mddev->level != LEVEL_MULTIPATH) {
1156 desc = sb->disks + rdev->desc_nr;
1157
1158 if (desc->state & (1<<MD_DISK_FAULTY))
1159 set_bit(Faulty, &rdev->flags);
1160 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1161 desc->raid_disk < mddev->raid_disks */) {
1162 set_bit(In_sync, &rdev->flags);
1163 rdev->raid_disk = desc->raid_disk;
1164 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1165 /* active but not in sync implies recovery up to
1166 * reshape position. We don't know exactly where
1167 * that is, so set to zero for now */
1168 if (mddev->minor_version >= 91) {
1169 rdev->recovery_offset = 0;
1170 rdev->raid_disk = desc->raid_disk;
1171 }
1172 }
1173 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1174 set_bit(WriteMostly, &rdev->flags);
1175 } else /* MULTIPATH are always insync */
1176 set_bit(In_sync, &rdev->flags);
1177 return 0;
1178 }
1179
1180 /*
1181 * sync_super for 0.90.0
1182 */
1183 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1184 {
1185 mdp_super_t *sb;
1186 mdk_rdev_t *rdev2;
1187 int next_spare = mddev->raid_disks;
1188
1189
1190 /* make rdev->sb match mddev data..
1191 *
1192 * 1/ zero out disks
1193 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1194 * 3/ any empty disks < next_spare become removed
1195 *
1196 * disks[0] gets initialised to REMOVED because
1197 * we cannot be sure from other fields if it has
1198 * been initialised or not.
1199 */
1200 int i;
1201 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1202
1203 rdev->sb_size = MD_SB_BYTES;
1204
1205 sb = (mdp_super_t*)page_address(rdev->sb_page);
1206
1207 memset(sb, 0, sizeof(*sb));
1208
1209 sb->md_magic = MD_SB_MAGIC;
1210 sb->major_version = mddev->major_version;
1211 sb->patch_version = mddev->patch_version;
1212 sb->gvalid_words = 0; /* ignored */
1213 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1214 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1215 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1216 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1217
1218 sb->ctime = mddev->ctime;
1219 sb->level = mddev->level;
1220 sb->size = mddev->dev_sectors / 2;
1221 sb->raid_disks = mddev->raid_disks;
1222 sb->md_minor = mddev->md_minor;
1223 sb->not_persistent = 0;
1224 sb->utime = mddev->utime;
1225 sb->state = 0;
1226 sb->events_hi = (mddev->events>>32);
1227 sb->events_lo = (u32)mddev->events;
1228
1229 if (mddev->reshape_position == MaxSector)
1230 sb->minor_version = 90;
1231 else {
1232 sb->minor_version = 91;
1233 sb->reshape_position = mddev->reshape_position;
1234 sb->new_level = mddev->new_level;
1235 sb->delta_disks = mddev->delta_disks;
1236 sb->new_layout = mddev->new_layout;
1237 sb->new_chunk = mddev->new_chunk_sectors << 9;
1238 }
1239 mddev->minor_version = sb->minor_version;
1240 if (mddev->in_sync)
1241 {
1242 sb->recovery_cp = mddev->recovery_cp;
1243 sb->cp_events_hi = (mddev->events>>32);
1244 sb->cp_events_lo = (u32)mddev->events;
1245 if (mddev->recovery_cp == MaxSector)
1246 sb->state = (1<< MD_SB_CLEAN);
1247 } else
1248 sb->recovery_cp = 0;
1249
1250 sb->layout = mddev->layout;
1251 sb->chunk_size = mddev->chunk_sectors << 9;
1252
1253 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1254 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1255
1256 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1257 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1258 mdp_disk_t *d;
1259 int desc_nr;
1260 int is_active = test_bit(In_sync, &rdev2->flags);
1261
1262 if (rdev2->raid_disk >= 0 &&
1263 sb->minor_version >= 91)
1264 /* we have nowhere to store the recovery_offset,
1265 * but if it is not below the reshape_position,
1266 * we can piggy-back on that.
1267 */
1268 is_active = 1;
1269 if (rdev2->raid_disk < 0 ||
1270 test_bit(Faulty, &rdev2->flags))
1271 is_active = 0;
1272 if (is_active)
1273 desc_nr = rdev2->raid_disk;
1274 else
1275 desc_nr = next_spare++;
1276 rdev2->desc_nr = desc_nr;
1277 d = &sb->disks[rdev2->desc_nr];
1278 nr_disks++;
1279 d->number = rdev2->desc_nr;
1280 d->major = MAJOR(rdev2->bdev->bd_dev);
1281 d->minor = MINOR(rdev2->bdev->bd_dev);
1282 if (is_active)
1283 d->raid_disk = rdev2->raid_disk;
1284 else
1285 d->raid_disk = rdev2->desc_nr; /* compatibility */
1286 if (test_bit(Faulty, &rdev2->flags))
1287 d->state = (1<<MD_DISK_FAULTY);
1288 else if (is_active) {
1289 d->state = (1<<MD_DISK_ACTIVE);
1290 if (test_bit(In_sync, &rdev2->flags))
1291 d->state |= (1<<MD_DISK_SYNC);
1292 active++;
1293 working++;
1294 } else {
1295 d->state = 0;
1296 spare++;
1297 working++;
1298 }
1299 if (test_bit(WriteMostly, &rdev2->flags))
1300 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1301 }
1302 /* now set the "removed" and "faulty" bits on any missing devices */
1303 for (i=0 ; i < mddev->raid_disks ; i++) {
1304 mdp_disk_t *d = &sb->disks[i];
1305 if (d->state == 0 && d->number == 0) {
1306 d->number = i;
1307 d->raid_disk = i;
1308 d->state = (1<<MD_DISK_REMOVED);
1309 d->state |= (1<<MD_DISK_FAULTY);
1310 failed++;
1311 }
1312 }
1313 sb->nr_disks = nr_disks;
1314 sb->active_disks = active;
1315 sb->working_disks = working;
1316 sb->failed_disks = failed;
1317 sb->spare_disks = spare;
1318
1319 sb->this_disk = sb->disks[rdev->desc_nr];
1320 sb->sb_csum = calc_sb_csum(sb);
1321 }
1322
1323 /*
1324 * rdev_size_change for 0.90.0
1325 */
1326 static unsigned long long
1327 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1328 {
1329 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1330 return 0; /* component must fit device */
1331 if (rdev->mddev->bitmap_info.offset)
1332 return 0; /* can't move bitmap */
1333 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1334 if (!num_sectors || num_sectors > rdev->sb_start)
1335 num_sectors = rdev->sb_start;
1336 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1337 rdev->sb_page);
1338 md_super_wait(rdev->mddev);
1339 return num_sectors;
1340 }
1341
1342
1343 /*
1344 * version 1 superblock
1345 */
1346
1347 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1348 {
1349 __le32 disk_csum;
1350 u32 csum;
1351 unsigned long long newcsum;
1352 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1353 __le32 *isuper = (__le32*)sb;
1354 int i;
1355
1356 disk_csum = sb->sb_csum;
1357 sb->sb_csum = 0;
1358 newcsum = 0;
1359 for (i=0; size>=4; size -= 4 )
1360 newcsum += le32_to_cpu(*isuper++);
1361
1362 if (size == 2)
1363 newcsum += le16_to_cpu(*(__le16*) isuper);
1364
1365 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1366 sb->sb_csum = disk_csum;
1367 return cpu_to_le32(csum);
1368 }
1369
1370 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1371 {
1372 struct mdp_superblock_1 *sb;
1373 int ret;
1374 sector_t sb_start;
1375 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1376 int bmask;
1377
1378 /*
1379 * Calculate the position of the superblock in 512byte sectors.
1380 * It is always aligned to a 4K boundary and
1381 * depeding on minor_version, it can be:
1382 * 0: At least 8K, but less than 12K, from end of device
1383 * 1: At start of device
1384 * 2: 4K from start of device.
1385 */
1386 switch(minor_version) {
1387 case 0:
1388 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1389 sb_start -= 8*2;
1390 sb_start &= ~(sector_t)(4*2-1);
1391 break;
1392 case 1:
1393 sb_start = 0;
1394 break;
1395 case 2:
1396 sb_start = 8;
1397 break;
1398 default:
1399 return -EINVAL;
1400 }
1401 rdev->sb_start = sb_start;
1402
1403 /* superblock is rarely larger than 1K, but it can be larger,
1404 * and it is safe to read 4k, so we do that
1405 */
1406 ret = read_disk_sb(rdev, 4096);
1407 if (ret) return ret;
1408
1409
1410 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1411
1412 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1413 sb->major_version != cpu_to_le32(1) ||
1414 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1415 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1416 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1417 return -EINVAL;
1418
1419 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1420 printk("md: invalid superblock checksum on %s\n",
1421 bdevname(rdev->bdev,b));
1422 return -EINVAL;
1423 }
1424 if (le64_to_cpu(sb->data_size) < 10) {
1425 printk("md: data_size too small on %s\n",
1426 bdevname(rdev->bdev,b));
1427 return -EINVAL;
1428 }
1429
1430 rdev->preferred_minor = 0xffff;
1431 rdev->data_offset = le64_to_cpu(sb->data_offset);
1432 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1433
1434 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1435 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1436 if (rdev->sb_size & bmask)
1437 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1438
1439 if (minor_version
1440 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1441 return -EINVAL;
1442
1443 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1444 rdev->desc_nr = -1;
1445 else
1446 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1447
1448 if (!refdev) {
1449 ret = 1;
1450 } else {
1451 __u64 ev1, ev2;
1452 struct mdp_superblock_1 *refsb =
1453 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1454
1455 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1456 sb->level != refsb->level ||
1457 sb->layout != refsb->layout ||
1458 sb->chunksize != refsb->chunksize) {
1459 printk(KERN_WARNING "md: %s has strangely different"
1460 " superblock to %s\n",
1461 bdevname(rdev->bdev,b),
1462 bdevname(refdev->bdev,b2));
1463 return -EINVAL;
1464 }
1465 ev1 = le64_to_cpu(sb->events);
1466 ev2 = le64_to_cpu(refsb->events);
1467
1468 if (ev1 > ev2)
1469 ret = 1;
1470 else
1471 ret = 0;
1472 }
1473 if (minor_version)
1474 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1475 le64_to_cpu(sb->data_offset);
1476 else
1477 rdev->sectors = rdev->sb_start;
1478 if (rdev->sectors < le64_to_cpu(sb->data_size))
1479 return -EINVAL;
1480 rdev->sectors = le64_to_cpu(sb->data_size);
1481 if (le64_to_cpu(sb->size) > rdev->sectors)
1482 return -EINVAL;
1483 return ret;
1484 }
1485
1486 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1487 {
1488 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1489 __u64 ev1 = le64_to_cpu(sb->events);
1490
1491 rdev->raid_disk = -1;
1492 clear_bit(Faulty, &rdev->flags);
1493 clear_bit(In_sync, &rdev->flags);
1494 clear_bit(WriteMostly, &rdev->flags);
1495
1496 if (mddev->raid_disks == 0) {
1497 mddev->major_version = 1;
1498 mddev->patch_version = 0;
1499 mddev->external = 0;
1500 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1501 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1502 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1503 mddev->level = le32_to_cpu(sb->level);
1504 mddev->clevel[0] = 0;
1505 mddev->layout = le32_to_cpu(sb->layout);
1506 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1507 mddev->dev_sectors = le64_to_cpu(sb->size);
1508 mddev->events = ev1;
1509 mddev->bitmap_info.offset = 0;
1510 mddev->bitmap_info.default_offset = 1024 >> 9;
1511
1512 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1513 memcpy(mddev->uuid, sb->set_uuid, 16);
1514
1515 mddev->max_disks = (4096-256)/2;
1516
1517 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1518 mddev->bitmap_info.file == NULL )
1519 mddev->bitmap_info.offset =
1520 (__s32)le32_to_cpu(sb->bitmap_offset);
1521
1522 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1523 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1524 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1525 mddev->new_level = le32_to_cpu(sb->new_level);
1526 mddev->new_layout = le32_to_cpu(sb->new_layout);
1527 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1528 } else {
1529 mddev->reshape_position = MaxSector;
1530 mddev->delta_disks = 0;
1531 mddev->new_level = mddev->level;
1532 mddev->new_layout = mddev->layout;
1533 mddev->new_chunk_sectors = mddev->chunk_sectors;
1534 }
1535
1536 } else if (mddev->pers == NULL) {
1537 /* Insist of good event counter while assembling, except for
1538 * spares (which don't need an event count) */
1539 ++ev1;
1540 if (rdev->desc_nr >= 0 &&
1541 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1542 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1543 if (ev1 < mddev->events)
1544 return -EINVAL;
1545 } else if (mddev->bitmap) {
1546 /* If adding to array with a bitmap, then we can accept an
1547 * older device, but not too old.
1548 */
1549 if (ev1 < mddev->bitmap->events_cleared)
1550 return 0;
1551 } else {
1552 if (ev1 < mddev->events)
1553 /* just a hot-add of a new device, leave raid_disk at -1 */
1554 return 0;
1555 }
1556 if (mddev->level != LEVEL_MULTIPATH) {
1557 int role;
1558 if (rdev->desc_nr < 0 ||
1559 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1560 role = 0xffff;
1561 rdev->desc_nr = -1;
1562 } else
1563 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1564 switch(role) {
1565 case 0xffff: /* spare */
1566 break;
1567 case 0xfffe: /* faulty */
1568 set_bit(Faulty, &rdev->flags);
1569 break;
1570 default:
1571 if ((le32_to_cpu(sb->feature_map) &
1572 MD_FEATURE_RECOVERY_OFFSET))
1573 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1574 else
1575 set_bit(In_sync, &rdev->flags);
1576 rdev->raid_disk = role;
1577 break;
1578 }
1579 if (sb->devflags & WriteMostly1)
1580 set_bit(WriteMostly, &rdev->flags);
1581 } else /* MULTIPATH are always insync */
1582 set_bit(In_sync, &rdev->flags);
1583
1584 return 0;
1585 }
1586
1587 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1588 {
1589 struct mdp_superblock_1 *sb;
1590 mdk_rdev_t *rdev2;
1591 int max_dev, i;
1592 /* make rdev->sb match mddev and rdev data. */
1593
1594 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1595
1596 sb->feature_map = 0;
1597 sb->pad0 = 0;
1598 sb->recovery_offset = cpu_to_le64(0);
1599 memset(sb->pad1, 0, sizeof(sb->pad1));
1600 memset(sb->pad2, 0, sizeof(sb->pad2));
1601 memset(sb->pad3, 0, sizeof(sb->pad3));
1602
1603 sb->utime = cpu_to_le64((__u64)mddev->utime);
1604 sb->events = cpu_to_le64(mddev->events);
1605 if (mddev->in_sync)
1606 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1607 else
1608 sb->resync_offset = cpu_to_le64(0);
1609
1610 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1611
1612 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1613 sb->size = cpu_to_le64(mddev->dev_sectors);
1614 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1615 sb->level = cpu_to_le32(mddev->level);
1616 sb->layout = cpu_to_le32(mddev->layout);
1617
1618 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1619 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1620 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1621 }
1622
1623 if (rdev->raid_disk >= 0 &&
1624 !test_bit(In_sync, &rdev->flags)) {
1625 sb->feature_map |=
1626 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1627 sb->recovery_offset =
1628 cpu_to_le64(rdev->recovery_offset);
1629 }
1630
1631 if (mddev->reshape_position != MaxSector) {
1632 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1633 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1634 sb->new_layout = cpu_to_le32(mddev->new_layout);
1635 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1636 sb->new_level = cpu_to_le32(mddev->new_level);
1637 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1638 }
1639
1640 max_dev = 0;
1641 list_for_each_entry(rdev2, &mddev->disks, same_set)
1642 if (rdev2->desc_nr+1 > max_dev)
1643 max_dev = rdev2->desc_nr+1;
1644
1645 if (max_dev > le32_to_cpu(sb->max_dev)) {
1646 int bmask;
1647 sb->max_dev = cpu_to_le32(max_dev);
1648 rdev->sb_size = max_dev * 2 + 256;
1649 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1650 if (rdev->sb_size & bmask)
1651 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1652 } else
1653 max_dev = le32_to_cpu(sb->max_dev);
1654
1655 for (i=0; i<max_dev;i++)
1656 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1657
1658 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1659 i = rdev2->desc_nr;
1660 if (test_bit(Faulty, &rdev2->flags))
1661 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1662 else if (test_bit(In_sync, &rdev2->flags))
1663 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1664 else if (rdev2->raid_disk >= 0)
1665 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1666 else
1667 sb->dev_roles[i] = cpu_to_le16(0xffff);
1668 }
1669
1670 sb->sb_csum = calc_sb_1_csum(sb);
1671 }
1672
1673 static unsigned long long
1674 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1675 {
1676 struct mdp_superblock_1 *sb;
1677 sector_t max_sectors;
1678 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1679 return 0; /* component must fit device */
1680 if (rdev->sb_start < rdev->data_offset) {
1681 /* minor versions 1 and 2; superblock before data */
1682 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1683 max_sectors -= rdev->data_offset;
1684 if (!num_sectors || num_sectors > max_sectors)
1685 num_sectors = max_sectors;
1686 } else if (rdev->mddev->bitmap_info.offset) {
1687 /* minor version 0 with bitmap we can't move */
1688 return 0;
1689 } else {
1690 /* minor version 0; superblock after data */
1691 sector_t sb_start;
1692 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1693 sb_start &= ~(sector_t)(4*2 - 1);
1694 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1695 if (!num_sectors || num_sectors > max_sectors)
1696 num_sectors = max_sectors;
1697 rdev->sb_start = sb_start;
1698 }
1699 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1700 sb->data_size = cpu_to_le64(num_sectors);
1701 sb->super_offset = rdev->sb_start;
1702 sb->sb_csum = calc_sb_1_csum(sb);
1703 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1704 rdev->sb_page);
1705 md_super_wait(rdev->mddev);
1706 return num_sectors;
1707 }
1708
1709 static struct super_type super_types[] = {
1710 [0] = {
1711 .name = "0.90.0",
1712 .owner = THIS_MODULE,
1713 .load_super = super_90_load,
1714 .validate_super = super_90_validate,
1715 .sync_super = super_90_sync,
1716 .rdev_size_change = super_90_rdev_size_change,
1717 },
1718 [1] = {
1719 .name = "md-1",
1720 .owner = THIS_MODULE,
1721 .load_super = super_1_load,
1722 .validate_super = super_1_validate,
1723 .sync_super = super_1_sync,
1724 .rdev_size_change = super_1_rdev_size_change,
1725 },
1726 };
1727
1728 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1729 {
1730 mdk_rdev_t *rdev, *rdev2;
1731
1732 rcu_read_lock();
1733 rdev_for_each_rcu(rdev, mddev1)
1734 rdev_for_each_rcu(rdev2, mddev2)
1735 if (rdev->bdev->bd_contains ==
1736 rdev2->bdev->bd_contains) {
1737 rcu_read_unlock();
1738 return 1;
1739 }
1740 rcu_read_unlock();
1741 return 0;
1742 }
1743
1744 static LIST_HEAD(pending_raid_disks);
1745
1746 /*
1747 * Try to register data integrity profile for an mddev
1748 *
1749 * This is called when an array is started and after a disk has been kicked
1750 * from the array. It only succeeds if all working and active component devices
1751 * are integrity capable with matching profiles.
1752 */
1753 int md_integrity_register(mddev_t *mddev)
1754 {
1755 mdk_rdev_t *rdev, *reference = NULL;
1756
1757 if (list_empty(&mddev->disks))
1758 return 0; /* nothing to do */
1759 if (blk_get_integrity(mddev->gendisk))
1760 return 0; /* already registered */
1761 list_for_each_entry(rdev, &mddev->disks, same_set) {
1762 /* skip spares and non-functional disks */
1763 if (test_bit(Faulty, &rdev->flags))
1764 continue;
1765 if (rdev->raid_disk < 0)
1766 continue;
1767 /*
1768 * If at least one rdev is not integrity capable, we can not
1769 * enable data integrity for the md device.
1770 */
1771 if (!bdev_get_integrity(rdev->bdev))
1772 return -EINVAL;
1773 if (!reference) {
1774 /* Use the first rdev as the reference */
1775 reference = rdev;
1776 continue;
1777 }
1778 /* does this rdev's profile match the reference profile? */
1779 if (blk_integrity_compare(reference->bdev->bd_disk,
1780 rdev->bdev->bd_disk) < 0)
1781 return -EINVAL;
1782 }
1783 /*
1784 * All component devices are integrity capable and have matching
1785 * profiles, register the common profile for the md device.
1786 */
1787 if (blk_integrity_register(mddev->gendisk,
1788 bdev_get_integrity(reference->bdev)) != 0) {
1789 printk(KERN_ERR "md: failed to register integrity for %s\n",
1790 mdname(mddev));
1791 return -EINVAL;
1792 }
1793 printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1794 mdname(mddev));
1795 return 0;
1796 }
1797 EXPORT_SYMBOL(md_integrity_register);
1798
1799 /* Disable data integrity if non-capable/non-matching disk is being added */
1800 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1801 {
1802 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1803 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1804
1805 if (!bi_mddev) /* nothing to do */
1806 return;
1807 if (rdev->raid_disk < 0) /* skip spares */
1808 return;
1809 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1810 rdev->bdev->bd_disk) >= 0)
1811 return;
1812 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1813 blk_integrity_unregister(mddev->gendisk);
1814 }
1815 EXPORT_SYMBOL(md_integrity_add_rdev);
1816
1817 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1818 {
1819 char b[BDEVNAME_SIZE];
1820 struct kobject *ko;
1821 char *s;
1822 int err;
1823
1824 if (rdev->mddev) {
1825 MD_BUG();
1826 return -EINVAL;
1827 }
1828
1829 /* prevent duplicates */
1830 if (find_rdev(mddev, rdev->bdev->bd_dev))
1831 return -EEXIST;
1832
1833 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1834 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1835 rdev->sectors < mddev->dev_sectors)) {
1836 if (mddev->pers) {
1837 /* Cannot change size, so fail
1838 * If mddev->level <= 0, then we don't care
1839 * about aligning sizes (e.g. linear)
1840 */
1841 if (mddev->level > 0)
1842 return -ENOSPC;
1843 } else
1844 mddev->dev_sectors = rdev->sectors;
1845 }
1846
1847 /* Verify rdev->desc_nr is unique.
1848 * If it is -1, assign a free number, else
1849 * check number is not in use
1850 */
1851 if (rdev->desc_nr < 0) {
1852 int choice = 0;
1853 if (mddev->pers) choice = mddev->raid_disks;
1854 while (find_rdev_nr(mddev, choice))
1855 choice++;
1856 rdev->desc_nr = choice;
1857 } else {
1858 if (find_rdev_nr(mddev, rdev->desc_nr))
1859 return -EBUSY;
1860 }
1861 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1862 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1863 mdname(mddev), mddev->max_disks);
1864 return -EBUSY;
1865 }
1866 bdevname(rdev->bdev,b);
1867 while ( (s=strchr(b, '/')) != NULL)
1868 *s = '!';
1869
1870 rdev->mddev = mddev;
1871 printk(KERN_INFO "md: bind<%s>\n", b);
1872
1873 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1874 goto fail;
1875
1876 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1877 if (sysfs_create_link(&rdev->kobj, ko, "block"))
1878 /* failure here is OK */;
1879 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1880
1881 list_add_rcu(&rdev->same_set, &mddev->disks);
1882 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1883
1884 /* May as well allow recovery to be retried once */
1885 mddev->recovery_disabled = 0;
1886
1887 return 0;
1888
1889 fail:
1890 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1891 b, mdname(mddev));
1892 return err;
1893 }
1894
1895 static void md_delayed_delete(struct work_struct *ws)
1896 {
1897 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1898 kobject_del(&rdev->kobj);
1899 kobject_put(&rdev->kobj);
1900 }
1901
1902 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1903 {
1904 char b[BDEVNAME_SIZE];
1905 if (!rdev->mddev) {
1906 MD_BUG();
1907 return;
1908 }
1909 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1910 list_del_rcu(&rdev->same_set);
1911 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1912 rdev->mddev = NULL;
1913 sysfs_remove_link(&rdev->kobj, "block");
1914 sysfs_put(rdev->sysfs_state);
1915 rdev->sysfs_state = NULL;
1916 /* We need to delay this, otherwise we can deadlock when
1917 * writing to 'remove' to "dev/state". We also need
1918 * to delay it due to rcu usage.
1919 */
1920 synchronize_rcu();
1921 INIT_WORK(&rdev->del_work, md_delayed_delete);
1922 kobject_get(&rdev->kobj);
1923 queue_work(md_misc_wq, &rdev->del_work);
1924 }
1925
1926 /*
1927 * prevent the device from being mounted, repartitioned or
1928 * otherwise reused by a RAID array (or any other kernel
1929 * subsystem), by bd_claiming the device.
1930 */
1931 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1932 {
1933 int err = 0;
1934 struct block_device *bdev;
1935 char b[BDEVNAME_SIZE];
1936
1937 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1938 if (IS_ERR(bdev)) {
1939 printk(KERN_ERR "md: could not open %s.\n",
1940 __bdevname(dev, b));
1941 return PTR_ERR(bdev);
1942 }
1943 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1944 if (err) {
1945 printk(KERN_ERR "md: could not bd_claim %s.\n",
1946 bdevname(bdev, b));
1947 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1948 return err;
1949 }
1950 if (!shared)
1951 set_bit(AllReserved, &rdev->flags);
1952 rdev->bdev = bdev;
1953 return err;
1954 }
1955
1956 static void unlock_rdev(mdk_rdev_t *rdev)
1957 {
1958 struct block_device *bdev = rdev->bdev;
1959 rdev->bdev = NULL;
1960 if (!bdev)
1961 MD_BUG();
1962 bd_release(bdev);
1963 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1964 }
1965
1966 void md_autodetect_dev(dev_t dev);
1967
1968 static void export_rdev(mdk_rdev_t * rdev)
1969 {
1970 char b[BDEVNAME_SIZE];
1971 printk(KERN_INFO "md: export_rdev(%s)\n",
1972 bdevname(rdev->bdev,b));
1973 if (rdev->mddev)
1974 MD_BUG();
1975 free_disk_sb(rdev);
1976 #ifndef MODULE
1977 if (test_bit(AutoDetected, &rdev->flags))
1978 md_autodetect_dev(rdev->bdev->bd_dev);
1979 #endif
1980 unlock_rdev(rdev);
1981 kobject_put(&rdev->kobj);
1982 }
1983
1984 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1985 {
1986 unbind_rdev_from_array(rdev);
1987 export_rdev(rdev);
1988 }
1989
1990 static void export_array(mddev_t *mddev)
1991 {
1992 mdk_rdev_t *rdev, *tmp;
1993
1994 rdev_for_each(rdev, tmp, mddev) {
1995 if (!rdev->mddev) {
1996 MD_BUG();
1997 continue;
1998 }
1999 kick_rdev_from_array(rdev);
2000 }
2001 if (!list_empty(&mddev->disks))
2002 MD_BUG();
2003 mddev->raid_disks = 0;
2004 mddev->major_version = 0;
2005 }
2006
2007 static void print_desc(mdp_disk_t *desc)
2008 {
2009 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2010 desc->major,desc->minor,desc->raid_disk,desc->state);
2011 }
2012
2013 static void print_sb_90(mdp_super_t *sb)
2014 {
2015 int i;
2016
2017 printk(KERN_INFO
2018 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2019 sb->major_version, sb->minor_version, sb->patch_version,
2020 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2021 sb->ctime);
2022 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2023 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2024 sb->md_minor, sb->layout, sb->chunk_size);
2025 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2026 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2027 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2028 sb->failed_disks, sb->spare_disks,
2029 sb->sb_csum, (unsigned long)sb->events_lo);
2030
2031 printk(KERN_INFO);
2032 for (i = 0; i < MD_SB_DISKS; i++) {
2033 mdp_disk_t *desc;
2034
2035 desc = sb->disks + i;
2036 if (desc->number || desc->major || desc->minor ||
2037 desc->raid_disk || (desc->state && (desc->state != 4))) {
2038 printk(" D %2d: ", i);
2039 print_desc(desc);
2040 }
2041 }
2042 printk(KERN_INFO "md: THIS: ");
2043 print_desc(&sb->this_disk);
2044 }
2045
2046 static void print_sb_1(struct mdp_superblock_1 *sb)
2047 {
2048 __u8 *uuid;
2049
2050 uuid = sb->set_uuid;
2051 printk(KERN_INFO
2052 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2053 "md: Name: \"%s\" CT:%llu\n",
2054 le32_to_cpu(sb->major_version),
2055 le32_to_cpu(sb->feature_map),
2056 uuid,
2057 sb->set_name,
2058 (unsigned long long)le64_to_cpu(sb->ctime)
2059 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2060
2061 uuid = sb->device_uuid;
2062 printk(KERN_INFO
2063 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2064 " RO:%llu\n"
2065 "md: Dev:%08x UUID: %pU\n"
2066 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2067 "md: (MaxDev:%u) \n",
2068 le32_to_cpu(sb->level),
2069 (unsigned long long)le64_to_cpu(sb->size),
2070 le32_to_cpu(sb->raid_disks),
2071 le32_to_cpu(sb->layout),
2072 le32_to_cpu(sb->chunksize),
2073 (unsigned long long)le64_to_cpu(sb->data_offset),
2074 (unsigned long long)le64_to_cpu(sb->data_size),
2075 (unsigned long long)le64_to_cpu(sb->super_offset),
2076 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2077 le32_to_cpu(sb->dev_number),
2078 uuid,
2079 sb->devflags,
2080 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2081 (unsigned long long)le64_to_cpu(sb->events),
2082 (unsigned long long)le64_to_cpu(sb->resync_offset),
2083 le32_to_cpu(sb->sb_csum),
2084 le32_to_cpu(sb->max_dev)
2085 );
2086 }
2087
2088 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2089 {
2090 char b[BDEVNAME_SIZE];
2091 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2092 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2093 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2094 rdev->desc_nr);
2095 if (rdev->sb_loaded) {
2096 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2097 switch (major_version) {
2098 case 0:
2099 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2100 break;
2101 case 1:
2102 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2103 break;
2104 }
2105 } else
2106 printk(KERN_INFO "md: no rdev superblock!\n");
2107 }
2108
2109 static void md_print_devices(void)
2110 {
2111 struct list_head *tmp;
2112 mdk_rdev_t *rdev;
2113 mddev_t *mddev;
2114 char b[BDEVNAME_SIZE];
2115
2116 printk("\n");
2117 printk("md: **********************************\n");
2118 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2119 printk("md: **********************************\n");
2120 for_each_mddev(mddev, tmp) {
2121
2122 if (mddev->bitmap)
2123 bitmap_print_sb(mddev->bitmap);
2124 else
2125 printk("%s: ", mdname(mddev));
2126 list_for_each_entry(rdev, &mddev->disks, same_set)
2127 printk("<%s>", bdevname(rdev->bdev,b));
2128 printk("\n");
2129
2130 list_for_each_entry(rdev, &mddev->disks, same_set)
2131 print_rdev(rdev, mddev->major_version);
2132 }
2133 printk("md: **********************************\n");
2134 printk("\n");
2135 }
2136
2137
2138 static void sync_sbs(mddev_t * mddev, int nospares)
2139 {
2140 /* Update each superblock (in-memory image), but
2141 * if we are allowed to, skip spares which already
2142 * have the right event counter, or have one earlier
2143 * (which would mean they aren't being marked as dirty
2144 * with the rest of the array)
2145 */
2146 mdk_rdev_t *rdev;
2147 list_for_each_entry(rdev, &mddev->disks, same_set) {
2148 if (rdev->sb_events == mddev->events ||
2149 (nospares &&
2150 rdev->raid_disk < 0 &&
2151 rdev->sb_events+1 == mddev->events)) {
2152 /* Don't update this superblock */
2153 rdev->sb_loaded = 2;
2154 } else {
2155 super_types[mddev->major_version].
2156 sync_super(mddev, rdev);
2157 rdev->sb_loaded = 1;
2158 }
2159 }
2160 }
2161
2162 static void md_update_sb(mddev_t * mddev, int force_change)
2163 {
2164 mdk_rdev_t *rdev;
2165 int sync_req;
2166 int nospares = 0;
2167
2168 repeat:
2169 /* First make sure individual recovery_offsets are correct */
2170 list_for_each_entry(rdev, &mddev->disks, same_set) {
2171 if (rdev->raid_disk >= 0 &&
2172 mddev->delta_disks >= 0 &&
2173 !test_bit(In_sync, &rdev->flags) &&
2174 mddev->curr_resync_completed > rdev->recovery_offset)
2175 rdev->recovery_offset = mddev->curr_resync_completed;
2176
2177 }
2178 if (!mddev->persistent) {
2179 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2180 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2181 if (!mddev->external)
2182 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2183 wake_up(&mddev->sb_wait);
2184 return;
2185 }
2186
2187 spin_lock_irq(&mddev->write_lock);
2188
2189 mddev->utime = get_seconds();
2190
2191 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2192 force_change = 1;
2193 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2194 /* just a clean<-> dirty transition, possibly leave spares alone,
2195 * though if events isn't the right even/odd, we will have to do
2196 * spares after all
2197 */
2198 nospares = 1;
2199 if (force_change)
2200 nospares = 0;
2201 if (mddev->degraded)
2202 /* If the array is degraded, then skipping spares is both
2203 * dangerous and fairly pointless.
2204 * Dangerous because a device that was removed from the array
2205 * might have a event_count that still looks up-to-date,
2206 * so it can be re-added without a resync.
2207 * Pointless because if there are any spares to skip,
2208 * then a recovery will happen and soon that array won't
2209 * be degraded any more and the spare can go back to sleep then.
2210 */
2211 nospares = 0;
2212
2213 sync_req = mddev->in_sync;
2214
2215 /* If this is just a dirty<->clean transition, and the array is clean
2216 * and 'events' is odd, we can roll back to the previous clean state */
2217 if (nospares
2218 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2219 && mddev->can_decrease_events
2220 && mddev->events != 1) {
2221 mddev->events--;
2222 mddev->can_decrease_events = 0;
2223 } else {
2224 /* otherwise we have to go forward and ... */
2225 mddev->events ++;
2226 mddev->can_decrease_events = nospares;
2227 }
2228
2229 if (!mddev->events) {
2230 /*
2231 * oops, this 64-bit counter should never wrap.
2232 * Either we are in around ~1 trillion A.C., assuming
2233 * 1 reboot per second, or we have a bug:
2234 */
2235 MD_BUG();
2236 mddev->events --;
2237 }
2238 sync_sbs(mddev, nospares);
2239 spin_unlock_irq(&mddev->write_lock);
2240
2241 dprintk(KERN_INFO
2242 "md: updating %s RAID superblock on device (in sync %d)\n",
2243 mdname(mddev),mddev->in_sync);
2244
2245 bitmap_update_sb(mddev->bitmap);
2246 list_for_each_entry(rdev, &mddev->disks, same_set) {
2247 char b[BDEVNAME_SIZE];
2248 dprintk(KERN_INFO "md: ");
2249 if (rdev->sb_loaded != 1)
2250 continue; /* no noise on spare devices */
2251 if (test_bit(Faulty, &rdev->flags))
2252 dprintk("(skipping faulty ");
2253
2254 dprintk("%s ", bdevname(rdev->bdev,b));
2255 if (!test_bit(Faulty, &rdev->flags)) {
2256 md_super_write(mddev,rdev,
2257 rdev->sb_start, rdev->sb_size,
2258 rdev->sb_page);
2259 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2260 bdevname(rdev->bdev,b),
2261 (unsigned long long)rdev->sb_start);
2262 rdev->sb_events = mddev->events;
2263
2264 } else
2265 dprintk(")\n");
2266 if (mddev->level == LEVEL_MULTIPATH)
2267 /* only need to write one superblock... */
2268 break;
2269 }
2270 md_super_wait(mddev);
2271 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2272
2273 spin_lock_irq(&mddev->write_lock);
2274 if (mddev->in_sync != sync_req ||
2275 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2276 /* have to write it out again */
2277 spin_unlock_irq(&mddev->write_lock);
2278 goto repeat;
2279 }
2280 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2281 spin_unlock_irq(&mddev->write_lock);
2282 wake_up(&mddev->sb_wait);
2283 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2284 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2285
2286 }
2287
2288 /* words written to sysfs files may, or may not, be \n terminated.
2289 * We want to accept with case. For this we use cmd_match.
2290 */
2291 static int cmd_match(const char *cmd, const char *str)
2292 {
2293 /* See if cmd, written into a sysfs file, matches
2294 * str. They must either be the same, or cmd can
2295 * have a trailing newline
2296 */
2297 while (*cmd && *str && *cmd == *str) {
2298 cmd++;
2299 str++;
2300 }
2301 if (*cmd == '\n')
2302 cmd++;
2303 if (*str || *cmd)
2304 return 0;
2305 return 1;
2306 }
2307
2308 struct rdev_sysfs_entry {
2309 struct attribute attr;
2310 ssize_t (*show)(mdk_rdev_t *, char *);
2311 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2312 };
2313
2314 static ssize_t
2315 state_show(mdk_rdev_t *rdev, char *page)
2316 {
2317 char *sep = "";
2318 size_t len = 0;
2319
2320 if (test_bit(Faulty, &rdev->flags)) {
2321 len+= sprintf(page+len, "%sfaulty",sep);
2322 sep = ",";
2323 }
2324 if (test_bit(In_sync, &rdev->flags)) {
2325 len += sprintf(page+len, "%sin_sync",sep);
2326 sep = ",";
2327 }
2328 if (test_bit(WriteMostly, &rdev->flags)) {
2329 len += sprintf(page+len, "%swrite_mostly",sep);
2330 sep = ",";
2331 }
2332 if (test_bit(Blocked, &rdev->flags)) {
2333 len += sprintf(page+len, "%sblocked", sep);
2334 sep = ",";
2335 }
2336 if (!test_bit(Faulty, &rdev->flags) &&
2337 !test_bit(In_sync, &rdev->flags)) {
2338 len += sprintf(page+len, "%sspare", sep);
2339 sep = ",";
2340 }
2341 return len+sprintf(page+len, "\n");
2342 }
2343
2344 static ssize_t
2345 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2346 {
2347 /* can write
2348 * faulty - simulates and error
2349 * remove - disconnects the device
2350 * writemostly - sets write_mostly
2351 * -writemostly - clears write_mostly
2352 * blocked - sets the Blocked flag
2353 * -blocked - clears the Blocked flag
2354 * insync - sets Insync providing device isn't active
2355 */
2356 int err = -EINVAL;
2357 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2358 md_error(rdev->mddev, rdev);
2359 err = 0;
2360 } else if (cmd_match(buf, "remove")) {
2361 if (rdev->raid_disk >= 0)
2362 err = -EBUSY;
2363 else {
2364 mddev_t *mddev = rdev->mddev;
2365 kick_rdev_from_array(rdev);
2366 if (mddev->pers)
2367 md_update_sb(mddev, 1);
2368 md_new_event(mddev);
2369 err = 0;
2370 }
2371 } else if (cmd_match(buf, "writemostly")) {
2372 set_bit(WriteMostly, &rdev->flags);
2373 err = 0;
2374 } else if (cmd_match(buf, "-writemostly")) {
2375 clear_bit(WriteMostly, &rdev->flags);
2376 err = 0;
2377 } else if (cmd_match(buf, "blocked")) {
2378 set_bit(Blocked, &rdev->flags);
2379 err = 0;
2380 } else if (cmd_match(buf, "-blocked")) {
2381 clear_bit(Blocked, &rdev->flags);
2382 wake_up(&rdev->blocked_wait);
2383 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2384 md_wakeup_thread(rdev->mddev->thread);
2385
2386 err = 0;
2387 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2388 set_bit(In_sync, &rdev->flags);
2389 err = 0;
2390 }
2391 if (!err)
2392 sysfs_notify_dirent_safe(rdev->sysfs_state);
2393 return err ? err : len;
2394 }
2395 static struct rdev_sysfs_entry rdev_state =
2396 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2397
2398 static ssize_t
2399 errors_show(mdk_rdev_t *rdev, char *page)
2400 {
2401 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2402 }
2403
2404 static ssize_t
2405 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2406 {
2407 char *e;
2408 unsigned long n = simple_strtoul(buf, &e, 10);
2409 if (*buf && (*e == 0 || *e == '\n')) {
2410 atomic_set(&rdev->corrected_errors, n);
2411 return len;
2412 }
2413 return -EINVAL;
2414 }
2415 static struct rdev_sysfs_entry rdev_errors =
2416 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2417
2418 static ssize_t
2419 slot_show(mdk_rdev_t *rdev, char *page)
2420 {
2421 if (rdev->raid_disk < 0)
2422 return sprintf(page, "none\n");
2423 else
2424 return sprintf(page, "%d\n", rdev->raid_disk);
2425 }
2426
2427 static ssize_t
2428 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2429 {
2430 char *e;
2431 int err;
2432 char nm[20];
2433 int slot = simple_strtoul(buf, &e, 10);
2434 if (strncmp(buf, "none", 4)==0)
2435 slot = -1;
2436 else if (e==buf || (*e && *e!= '\n'))
2437 return -EINVAL;
2438 if (rdev->mddev->pers && slot == -1) {
2439 /* Setting 'slot' on an active array requires also
2440 * updating the 'rd%d' link, and communicating
2441 * with the personality with ->hot_*_disk.
2442 * For now we only support removing
2443 * failed/spare devices. This normally happens automatically,
2444 * but not when the metadata is externally managed.
2445 */
2446 if (rdev->raid_disk == -1)
2447 return -EEXIST;
2448 /* personality does all needed checks */
2449 if (rdev->mddev->pers->hot_add_disk == NULL)
2450 return -EINVAL;
2451 err = rdev->mddev->pers->
2452 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2453 if (err)
2454 return err;
2455 sprintf(nm, "rd%d", rdev->raid_disk);
2456 sysfs_remove_link(&rdev->mddev->kobj, nm);
2457 rdev->raid_disk = -1;
2458 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2459 md_wakeup_thread(rdev->mddev->thread);
2460 } else if (rdev->mddev->pers) {
2461 mdk_rdev_t *rdev2;
2462 /* Activating a spare .. or possibly reactivating
2463 * if we ever get bitmaps working here.
2464 */
2465
2466 if (rdev->raid_disk != -1)
2467 return -EBUSY;
2468
2469 if (rdev->mddev->pers->hot_add_disk == NULL)
2470 return -EINVAL;
2471
2472 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2473 if (rdev2->raid_disk == slot)
2474 return -EEXIST;
2475
2476 rdev->raid_disk = slot;
2477 if (test_bit(In_sync, &rdev->flags))
2478 rdev->saved_raid_disk = slot;
2479 else
2480 rdev->saved_raid_disk = -1;
2481 err = rdev->mddev->pers->
2482 hot_add_disk(rdev->mddev, rdev);
2483 if (err) {
2484 rdev->raid_disk = -1;
2485 return err;
2486 } else
2487 sysfs_notify_dirent_safe(rdev->sysfs_state);
2488 sprintf(nm, "rd%d", rdev->raid_disk);
2489 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2490 /* failure here is OK */;
2491 /* don't wakeup anyone, leave that to userspace. */
2492 } else {
2493 if (slot >= rdev->mddev->raid_disks)
2494 return -ENOSPC;
2495 rdev->raid_disk = slot;
2496 /* assume it is working */
2497 clear_bit(Faulty, &rdev->flags);
2498 clear_bit(WriteMostly, &rdev->flags);
2499 set_bit(In_sync, &rdev->flags);
2500 sysfs_notify_dirent_safe(rdev->sysfs_state);
2501 }
2502 return len;
2503 }
2504
2505
2506 static struct rdev_sysfs_entry rdev_slot =
2507 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2508
2509 static ssize_t
2510 offset_show(mdk_rdev_t *rdev, char *page)
2511 {
2512 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2513 }
2514
2515 static ssize_t
2516 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2517 {
2518 char *e;
2519 unsigned long long offset = simple_strtoull(buf, &e, 10);
2520 if (e==buf || (*e && *e != '\n'))
2521 return -EINVAL;
2522 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2523 return -EBUSY;
2524 if (rdev->sectors && rdev->mddev->external)
2525 /* Must set offset before size, so overlap checks
2526 * can be sane */
2527 return -EBUSY;
2528 rdev->data_offset = offset;
2529 return len;
2530 }
2531
2532 static struct rdev_sysfs_entry rdev_offset =
2533 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2534
2535 static ssize_t
2536 rdev_size_show(mdk_rdev_t *rdev, char *page)
2537 {
2538 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2539 }
2540
2541 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2542 {
2543 /* check if two start/length pairs overlap */
2544 if (s1+l1 <= s2)
2545 return 0;
2546 if (s2+l2 <= s1)
2547 return 0;
2548 return 1;
2549 }
2550
2551 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2552 {
2553 unsigned long long blocks;
2554 sector_t new;
2555
2556 if (strict_strtoull(buf, 10, &blocks) < 0)
2557 return -EINVAL;
2558
2559 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2560 return -EINVAL; /* sector conversion overflow */
2561
2562 new = blocks * 2;
2563 if (new != blocks * 2)
2564 return -EINVAL; /* unsigned long long to sector_t overflow */
2565
2566 *sectors = new;
2567 return 0;
2568 }
2569
2570 static ssize_t
2571 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2572 {
2573 mddev_t *my_mddev = rdev->mddev;
2574 sector_t oldsectors = rdev->sectors;
2575 sector_t sectors;
2576
2577 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2578 return -EINVAL;
2579 if (my_mddev->pers && rdev->raid_disk >= 0) {
2580 if (my_mddev->persistent) {
2581 sectors = super_types[my_mddev->major_version].
2582 rdev_size_change(rdev, sectors);
2583 if (!sectors)
2584 return -EBUSY;
2585 } else if (!sectors)
2586 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2587 rdev->data_offset;
2588 }
2589 if (sectors < my_mddev->dev_sectors)
2590 return -EINVAL; /* component must fit device */
2591
2592 rdev->sectors = sectors;
2593 if (sectors > oldsectors && my_mddev->external) {
2594 /* need to check that all other rdevs with the same ->bdev
2595 * do not overlap. We need to unlock the mddev to avoid
2596 * a deadlock. We have already changed rdev->sectors, and if
2597 * we have to change it back, we will have the lock again.
2598 */
2599 mddev_t *mddev;
2600 int overlap = 0;
2601 struct list_head *tmp;
2602
2603 mddev_unlock(my_mddev);
2604 for_each_mddev(mddev, tmp) {
2605 mdk_rdev_t *rdev2;
2606
2607 mddev_lock(mddev);
2608 list_for_each_entry(rdev2, &mddev->disks, same_set)
2609 if (test_bit(AllReserved, &rdev2->flags) ||
2610 (rdev->bdev == rdev2->bdev &&
2611 rdev != rdev2 &&
2612 overlaps(rdev->data_offset, rdev->sectors,
2613 rdev2->data_offset,
2614 rdev2->sectors))) {
2615 overlap = 1;
2616 break;
2617 }
2618 mddev_unlock(mddev);
2619 if (overlap) {
2620 mddev_put(mddev);
2621 break;
2622 }
2623 }
2624 mddev_lock(my_mddev);
2625 if (overlap) {
2626 /* Someone else could have slipped in a size
2627 * change here, but doing so is just silly.
2628 * We put oldsectors back because we *know* it is
2629 * safe, and trust userspace not to race with
2630 * itself
2631 */
2632 rdev->sectors = oldsectors;
2633 return -EBUSY;
2634 }
2635 }
2636 return len;
2637 }
2638
2639 static struct rdev_sysfs_entry rdev_size =
2640 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2641
2642
2643 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2644 {
2645 unsigned long long recovery_start = rdev->recovery_offset;
2646
2647 if (test_bit(In_sync, &rdev->flags) ||
2648 recovery_start == MaxSector)
2649 return sprintf(page, "none\n");
2650
2651 return sprintf(page, "%llu\n", recovery_start);
2652 }
2653
2654 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2655 {
2656 unsigned long long recovery_start;
2657
2658 if (cmd_match(buf, "none"))
2659 recovery_start = MaxSector;
2660 else if (strict_strtoull(buf, 10, &recovery_start))
2661 return -EINVAL;
2662
2663 if (rdev->mddev->pers &&
2664 rdev->raid_disk >= 0)
2665 return -EBUSY;
2666
2667 rdev->recovery_offset = recovery_start;
2668 if (recovery_start == MaxSector)
2669 set_bit(In_sync, &rdev->flags);
2670 else
2671 clear_bit(In_sync, &rdev->flags);
2672 return len;
2673 }
2674
2675 static struct rdev_sysfs_entry rdev_recovery_start =
2676 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2677
2678 static struct attribute *rdev_default_attrs[] = {
2679 &rdev_state.attr,
2680 &rdev_errors.attr,
2681 &rdev_slot.attr,
2682 &rdev_offset.attr,
2683 &rdev_size.attr,
2684 &rdev_recovery_start.attr,
2685 NULL,
2686 };
2687 static ssize_t
2688 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2689 {
2690 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2691 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2692 mddev_t *mddev = rdev->mddev;
2693 ssize_t rv;
2694
2695 if (!entry->show)
2696 return -EIO;
2697
2698 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2699 if (!rv) {
2700 if (rdev->mddev == NULL)
2701 rv = -EBUSY;
2702 else
2703 rv = entry->show(rdev, page);
2704 mddev_unlock(mddev);
2705 }
2706 return rv;
2707 }
2708
2709 static ssize_t
2710 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2711 const char *page, size_t length)
2712 {
2713 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2714 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2715 ssize_t rv;
2716 mddev_t *mddev = rdev->mddev;
2717
2718 if (!entry->store)
2719 return -EIO;
2720 if (!capable(CAP_SYS_ADMIN))
2721 return -EACCES;
2722 rv = mddev ? mddev_lock(mddev): -EBUSY;
2723 if (!rv) {
2724 if (rdev->mddev == NULL)
2725 rv = -EBUSY;
2726 else
2727 rv = entry->store(rdev, page, length);
2728 mddev_unlock(mddev);
2729 }
2730 return rv;
2731 }
2732
2733 static void rdev_free(struct kobject *ko)
2734 {
2735 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2736 kfree(rdev);
2737 }
2738 static const struct sysfs_ops rdev_sysfs_ops = {
2739 .show = rdev_attr_show,
2740 .store = rdev_attr_store,
2741 };
2742 static struct kobj_type rdev_ktype = {
2743 .release = rdev_free,
2744 .sysfs_ops = &rdev_sysfs_ops,
2745 .default_attrs = rdev_default_attrs,
2746 };
2747
2748 void md_rdev_init(mdk_rdev_t *rdev)
2749 {
2750 rdev->desc_nr = -1;
2751 rdev->saved_raid_disk = -1;
2752 rdev->raid_disk = -1;
2753 rdev->flags = 0;
2754 rdev->data_offset = 0;
2755 rdev->sb_events = 0;
2756 rdev->last_read_error.tv_sec = 0;
2757 rdev->last_read_error.tv_nsec = 0;
2758 atomic_set(&rdev->nr_pending, 0);
2759 atomic_set(&rdev->read_errors, 0);
2760 atomic_set(&rdev->corrected_errors, 0);
2761
2762 INIT_LIST_HEAD(&rdev->same_set);
2763 init_waitqueue_head(&rdev->blocked_wait);
2764 }
2765 EXPORT_SYMBOL_GPL(md_rdev_init);
2766 /*
2767 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2768 *
2769 * mark the device faulty if:
2770 *
2771 * - the device is nonexistent (zero size)
2772 * - the device has no valid superblock
2773 *
2774 * a faulty rdev _never_ has rdev->sb set.
2775 */
2776 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2777 {
2778 char b[BDEVNAME_SIZE];
2779 int err;
2780 mdk_rdev_t *rdev;
2781 sector_t size;
2782
2783 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2784 if (!rdev) {
2785 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2786 return ERR_PTR(-ENOMEM);
2787 }
2788
2789 md_rdev_init(rdev);
2790 if ((err = alloc_disk_sb(rdev)))
2791 goto abort_free;
2792
2793 err = lock_rdev(rdev, newdev, super_format == -2);
2794 if (err)
2795 goto abort_free;
2796
2797 kobject_init(&rdev->kobj, &rdev_ktype);
2798
2799 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
2800 if (!size) {
2801 printk(KERN_WARNING
2802 "md: %s has zero or unknown size, marking faulty!\n",
2803 bdevname(rdev->bdev,b));
2804 err = -EINVAL;
2805 goto abort_free;
2806 }
2807
2808 if (super_format >= 0) {
2809 err = super_types[super_format].
2810 load_super(rdev, NULL, super_minor);
2811 if (err == -EINVAL) {
2812 printk(KERN_WARNING
2813 "md: %s does not have a valid v%d.%d "
2814 "superblock, not importing!\n",
2815 bdevname(rdev->bdev,b),
2816 super_format, super_minor);
2817 goto abort_free;
2818 }
2819 if (err < 0) {
2820 printk(KERN_WARNING
2821 "md: could not read %s's sb, not importing!\n",
2822 bdevname(rdev->bdev,b));
2823 goto abort_free;
2824 }
2825 }
2826
2827 return rdev;
2828
2829 abort_free:
2830 if (rdev->sb_page) {
2831 if (rdev->bdev)
2832 unlock_rdev(rdev);
2833 free_disk_sb(rdev);
2834 }
2835 kfree(rdev);
2836 return ERR_PTR(err);
2837 }
2838
2839 /*
2840 * Check a full RAID array for plausibility
2841 */
2842
2843
2844 static void analyze_sbs(mddev_t * mddev)
2845 {
2846 int i;
2847 mdk_rdev_t *rdev, *freshest, *tmp;
2848 char b[BDEVNAME_SIZE];
2849
2850 freshest = NULL;
2851 rdev_for_each(rdev, tmp, mddev)
2852 switch (super_types[mddev->major_version].
2853 load_super(rdev, freshest, mddev->minor_version)) {
2854 case 1:
2855 freshest = rdev;
2856 break;
2857 case 0:
2858 break;
2859 default:
2860 printk( KERN_ERR \
2861 "md: fatal superblock inconsistency in %s"
2862 " -- removing from array\n",
2863 bdevname(rdev->bdev,b));
2864 kick_rdev_from_array(rdev);
2865 }
2866
2867
2868 super_types[mddev->major_version].
2869 validate_super(mddev, freshest);
2870
2871 i = 0;
2872 rdev_for_each(rdev, tmp, mddev) {
2873 if (mddev->max_disks &&
2874 (rdev->desc_nr >= mddev->max_disks ||
2875 i > mddev->max_disks)) {
2876 printk(KERN_WARNING
2877 "md: %s: %s: only %d devices permitted\n",
2878 mdname(mddev), bdevname(rdev->bdev, b),
2879 mddev->max_disks);
2880 kick_rdev_from_array(rdev);
2881 continue;
2882 }
2883 if (rdev != freshest)
2884 if (super_types[mddev->major_version].
2885 validate_super(mddev, rdev)) {
2886 printk(KERN_WARNING "md: kicking non-fresh %s"
2887 " from array!\n",
2888 bdevname(rdev->bdev,b));
2889 kick_rdev_from_array(rdev);
2890 continue;
2891 }
2892 if (mddev->level == LEVEL_MULTIPATH) {
2893 rdev->desc_nr = i++;
2894 rdev->raid_disk = rdev->desc_nr;
2895 set_bit(In_sync, &rdev->flags);
2896 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2897 rdev->raid_disk = -1;
2898 clear_bit(In_sync, &rdev->flags);
2899 }
2900 }
2901 }
2902
2903 /* Read a fixed-point number.
2904 * Numbers in sysfs attributes should be in "standard" units where
2905 * possible, so time should be in seconds.
2906 * However we internally use a a much smaller unit such as
2907 * milliseconds or jiffies.
2908 * This function takes a decimal number with a possible fractional
2909 * component, and produces an integer which is the result of
2910 * multiplying that number by 10^'scale'.
2911 * all without any floating-point arithmetic.
2912 */
2913 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2914 {
2915 unsigned long result = 0;
2916 long decimals = -1;
2917 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2918 if (*cp == '.')
2919 decimals = 0;
2920 else if (decimals < scale) {
2921 unsigned int value;
2922 value = *cp - '0';
2923 result = result * 10 + value;
2924 if (decimals >= 0)
2925 decimals++;
2926 }
2927 cp++;
2928 }
2929 if (*cp == '\n')
2930 cp++;
2931 if (*cp)
2932 return -EINVAL;
2933 if (decimals < 0)
2934 decimals = 0;
2935 while (decimals < scale) {
2936 result *= 10;
2937 decimals ++;
2938 }
2939 *res = result;
2940 return 0;
2941 }
2942
2943
2944 static void md_safemode_timeout(unsigned long data);
2945
2946 static ssize_t
2947 safe_delay_show(mddev_t *mddev, char *page)
2948 {
2949 int msec = (mddev->safemode_delay*1000)/HZ;
2950 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2951 }
2952 static ssize_t
2953 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2954 {
2955 unsigned long msec;
2956
2957 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2958 return -EINVAL;
2959 if (msec == 0)
2960 mddev->safemode_delay = 0;
2961 else {
2962 unsigned long old_delay = mddev->safemode_delay;
2963 mddev->safemode_delay = (msec*HZ)/1000;
2964 if (mddev->safemode_delay == 0)
2965 mddev->safemode_delay = 1;
2966 if (mddev->safemode_delay < old_delay)
2967 md_safemode_timeout((unsigned long)mddev);
2968 }
2969 return len;
2970 }
2971 static struct md_sysfs_entry md_safe_delay =
2972 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2973
2974 static ssize_t
2975 level_show(mddev_t *mddev, char *page)
2976 {
2977 struct mdk_personality *p = mddev->pers;
2978 if (p)
2979 return sprintf(page, "%s\n", p->name);
2980 else if (mddev->clevel[0])
2981 return sprintf(page, "%s\n", mddev->clevel);
2982 else if (mddev->level != LEVEL_NONE)
2983 return sprintf(page, "%d\n", mddev->level);
2984 else
2985 return 0;
2986 }
2987
2988 static ssize_t
2989 level_store(mddev_t *mddev, const char *buf, size_t len)
2990 {
2991 char clevel[16];
2992 ssize_t rv = len;
2993 struct mdk_personality *pers;
2994 long level;
2995 void *priv;
2996 mdk_rdev_t *rdev;
2997
2998 if (mddev->pers == NULL) {
2999 if (len == 0)
3000 return 0;
3001 if (len >= sizeof(mddev->clevel))
3002 return -ENOSPC;
3003 strncpy(mddev->clevel, buf, len);
3004 if (mddev->clevel[len-1] == '\n')
3005 len--;
3006 mddev->clevel[len] = 0;
3007 mddev->level = LEVEL_NONE;
3008 return rv;
3009 }
3010
3011 /* request to change the personality. Need to ensure:
3012 * - array is not engaged in resync/recovery/reshape
3013 * - old personality can be suspended
3014 * - new personality will access other array.
3015 */
3016
3017 if (mddev->sync_thread ||
3018 mddev->reshape_position != MaxSector ||
3019 mddev->sysfs_active)
3020 return -EBUSY;
3021
3022 if (!mddev->pers->quiesce) {
3023 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3024 mdname(mddev), mddev->pers->name);
3025 return -EINVAL;
3026 }
3027
3028 /* Now find the new personality */
3029 if (len == 0 || len >= sizeof(clevel))
3030 return -EINVAL;
3031 strncpy(clevel, buf, len);
3032 if (clevel[len-1] == '\n')
3033 len--;
3034 clevel[len] = 0;
3035 if (strict_strtol(clevel, 10, &level))
3036 level = LEVEL_NONE;
3037
3038 if (request_module("md-%s", clevel) != 0)
3039 request_module("md-level-%s", clevel);
3040 spin_lock(&pers_lock);
3041 pers = find_pers(level, clevel);
3042 if (!pers || !try_module_get(pers->owner)) {
3043 spin_unlock(&pers_lock);
3044 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3045 return -EINVAL;
3046 }
3047 spin_unlock(&pers_lock);
3048
3049 if (pers == mddev->pers) {
3050 /* Nothing to do! */
3051 module_put(pers->owner);
3052 return rv;
3053 }
3054 if (!pers->takeover) {
3055 module_put(pers->owner);
3056 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3057 mdname(mddev), clevel);
3058 return -EINVAL;
3059 }
3060
3061 list_for_each_entry(rdev, &mddev->disks, same_set)
3062 rdev->new_raid_disk = rdev->raid_disk;
3063
3064 /* ->takeover must set new_* and/or delta_disks
3065 * if it succeeds, and may set them when it fails.
3066 */
3067 priv = pers->takeover(mddev);
3068 if (IS_ERR(priv)) {
3069 mddev->new_level = mddev->level;
3070 mddev->new_layout = mddev->layout;
3071 mddev->new_chunk_sectors = mddev->chunk_sectors;
3072 mddev->raid_disks -= mddev->delta_disks;
3073 mddev->delta_disks = 0;
3074 module_put(pers->owner);
3075 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3076 mdname(mddev), clevel);
3077 return PTR_ERR(priv);
3078 }
3079
3080 /* Looks like we have a winner */
3081 mddev_suspend(mddev);
3082 mddev->pers->stop(mddev);
3083
3084 if (mddev->pers->sync_request == NULL &&
3085 pers->sync_request != NULL) {
3086 /* need to add the md_redundancy_group */
3087 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3088 printk(KERN_WARNING
3089 "md: cannot register extra attributes for %s\n",
3090 mdname(mddev));
3091 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3092 }
3093 if (mddev->pers->sync_request != NULL &&
3094 pers->sync_request == NULL) {
3095 /* need to remove the md_redundancy_group */
3096 if (mddev->to_remove == NULL)
3097 mddev->to_remove = &md_redundancy_group;
3098 }
3099
3100 if (mddev->pers->sync_request == NULL &&
3101 mddev->external) {
3102 /* We are converting from a no-redundancy array
3103 * to a redundancy array and metadata is managed
3104 * externally so we need to be sure that writes
3105 * won't block due to a need to transition
3106 * clean->dirty
3107 * until external management is started.
3108 */
3109 mddev->in_sync = 0;
3110 mddev->safemode_delay = 0;
3111 mddev->safemode = 0;
3112 }
3113
3114 list_for_each_entry(rdev, &mddev->disks, same_set) {
3115 char nm[20];
3116 if (rdev->raid_disk < 0)
3117 continue;
3118 if (rdev->new_raid_disk > mddev->raid_disks)
3119 rdev->new_raid_disk = -1;
3120 if (rdev->new_raid_disk == rdev->raid_disk)
3121 continue;
3122 sprintf(nm, "rd%d", rdev->raid_disk);
3123 sysfs_remove_link(&mddev->kobj, nm);
3124 }
3125 list_for_each_entry(rdev, &mddev->disks, same_set) {
3126 if (rdev->raid_disk < 0)
3127 continue;
3128 if (rdev->new_raid_disk == rdev->raid_disk)
3129 continue;
3130 rdev->raid_disk = rdev->new_raid_disk;
3131 if (rdev->raid_disk < 0)
3132 clear_bit(In_sync, &rdev->flags);
3133 else {
3134 char nm[20];
3135 sprintf(nm, "rd%d", rdev->raid_disk);
3136 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3137 printk("md: cannot register %s for %s after level change\n",
3138 nm, mdname(mddev));
3139 }
3140 }
3141
3142 module_put(mddev->pers->owner);
3143 mddev->pers = pers;
3144 mddev->private = priv;
3145 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3146 mddev->level = mddev->new_level;
3147 mddev->layout = mddev->new_layout;
3148 mddev->chunk_sectors = mddev->new_chunk_sectors;
3149 mddev->delta_disks = 0;
3150 if (mddev->pers->sync_request == NULL) {
3151 /* this is now an array without redundancy, so
3152 * it must always be in_sync
3153 */
3154 mddev->in_sync = 1;
3155 del_timer_sync(&mddev->safemode_timer);
3156 }
3157 pers->run(mddev);
3158 mddev_resume(mddev);
3159 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3160 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3161 md_wakeup_thread(mddev->thread);
3162 sysfs_notify(&mddev->kobj, NULL, "level");
3163 md_new_event(mddev);
3164 return rv;
3165 }
3166
3167 static struct md_sysfs_entry md_level =
3168 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3169
3170
3171 static ssize_t
3172 layout_show(mddev_t *mddev, char *page)
3173 {
3174 /* just a number, not meaningful for all levels */
3175 if (mddev->reshape_position != MaxSector &&
3176 mddev->layout != mddev->new_layout)
3177 return sprintf(page, "%d (%d)\n",
3178 mddev->new_layout, mddev->layout);
3179 return sprintf(page, "%d\n", mddev->layout);
3180 }
3181
3182 static ssize_t
3183 layout_store(mddev_t *mddev, const char *buf, size_t len)
3184 {
3185 char *e;
3186 unsigned long n = simple_strtoul(buf, &e, 10);
3187
3188 if (!*buf || (*e && *e != '\n'))
3189 return -EINVAL;
3190
3191 if (mddev->pers) {
3192 int err;
3193 if (mddev->pers->check_reshape == NULL)
3194 return -EBUSY;
3195 mddev->new_layout = n;
3196 err = mddev->pers->check_reshape(mddev);
3197 if (err) {
3198 mddev->new_layout = mddev->layout;
3199 return err;
3200 }
3201 } else {
3202 mddev->new_layout = n;
3203 if (mddev->reshape_position == MaxSector)
3204 mddev->layout = n;
3205 }
3206 return len;
3207 }
3208 static struct md_sysfs_entry md_layout =
3209 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3210
3211
3212 static ssize_t
3213 raid_disks_show(mddev_t *mddev, char *page)
3214 {
3215 if (mddev->raid_disks == 0)
3216 return 0;
3217 if (mddev->reshape_position != MaxSector &&
3218 mddev->delta_disks != 0)
3219 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3220 mddev->raid_disks - mddev->delta_disks);
3221 return sprintf(page, "%d\n", mddev->raid_disks);
3222 }
3223
3224 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3225
3226 static ssize_t
3227 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3228 {
3229 char *e;
3230 int rv = 0;
3231 unsigned long n = simple_strtoul(buf, &e, 10);
3232
3233 if (!*buf || (*e && *e != '\n'))
3234 return -EINVAL;
3235
3236 if (mddev->pers)
3237 rv = update_raid_disks(mddev, n);
3238 else if (mddev->reshape_position != MaxSector) {
3239 int olddisks = mddev->raid_disks - mddev->delta_disks;
3240 mddev->delta_disks = n - olddisks;
3241 mddev->raid_disks = n;
3242 } else
3243 mddev->raid_disks = n;
3244 return rv ? rv : len;
3245 }
3246 static struct md_sysfs_entry md_raid_disks =
3247 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3248
3249 static ssize_t
3250 chunk_size_show(mddev_t *mddev, char *page)
3251 {
3252 if (mddev->reshape_position != MaxSector &&
3253 mddev->chunk_sectors != mddev->new_chunk_sectors)
3254 return sprintf(page, "%d (%d)\n",
3255 mddev->new_chunk_sectors << 9,
3256 mddev->chunk_sectors << 9);
3257 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3258 }
3259
3260 static ssize_t
3261 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3262 {
3263 char *e;
3264 unsigned long n = simple_strtoul(buf, &e, 10);
3265
3266 if (!*buf || (*e && *e != '\n'))
3267 return -EINVAL;
3268
3269 if (mddev->pers) {
3270 int err;
3271 if (mddev->pers->check_reshape == NULL)
3272 return -EBUSY;
3273 mddev->new_chunk_sectors = n >> 9;
3274 err = mddev->pers->check_reshape(mddev);
3275 if (err) {
3276 mddev->new_chunk_sectors = mddev->chunk_sectors;
3277 return err;
3278 }
3279 } else {
3280 mddev->new_chunk_sectors = n >> 9;
3281 if (mddev->reshape_position == MaxSector)
3282 mddev->chunk_sectors = n >> 9;
3283 }
3284 return len;
3285 }
3286 static struct md_sysfs_entry md_chunk_size =
3287 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3288
3289 static ssize_t
3290 resync_start_show(mddev_t *mddev, char *page)
3291 {
3292 if (mddev->recovery_cp == MaxSector)
3293 return sprintf(page, "none\n");
3294 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3295 }
3296
3297 static ssize_t
3298 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3299 {
3300 char *e;
3301 unsigned long long n = simple_strtoull(buf, &e, 10);
3302
3303 if (mddev->pers)
3304 return -EBUSY;
3305 if (cmd_match(buf, "none"))
3306 n = MaxSector;
3307 else if (!*buf || (*e && *e != '\n'))
3308 return -EINVAL;
3309
3310 mddev->recovery_cp = n;
3311 return len;
3312 }
3313 static struct md_sysfs_entry md_resync_start =
3314 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3315
3316 /*
3317 * The array state can be:
3318 *
3319 * clear
3320 * No devices, no size, no level
3321 * Equivalent to STOP_ARRAY ioctl
3322 * inactive
3323 * May have some settings, but array is not active
3324 * all IO results in error
3325 * When written, doesn't tear down array, but just stops it
3326 * suspended (not supported yet)
3327 * All IO requests will block. The array can be reconfigured.
3328 * Writing this, if accepted, will block until array is quiescent
3329 * readonly
3330 * no resync can happen. no superblocks get written.
3331 * write requests fail
3332 * read-auto
3333 * like readonly, but behaves like 'clean' on a write request.
3334 *
3335 * clean - no pending writes, but otherwise active.
3336 * When written to inactive array, starts without resync
3337 * If a write request arrives then
3338 * if metadata is known, mark 'dirty' and switch to 'active'.
3339 * if not known, block and switch to write-pending
3340 * If written to an active array that has pending writes, then fails.
3341 * active
3342 * fully active: IO and resync can be happening.
3343 * When written to inactive array, starts with resync
3344 *
3345 * write-pending
3346 * clean, but writes are blocked waiting for 'active' to be written.
3347 *
3348 * active-idle
3349 * like active, but no writes have been seen for a while (100msec).
3350 *
3351 */
3352 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3353 write_pending, active_idle, bad_word};
3354 static char *array_states[] = {
3355 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3356 "write-pending", "active-idle", NULL };
3357
3358 static int match_word(const char *word, char **list)
3359 {
3360 int n;
3361 for (n=0; list[n]; n++)
3362 if (cmd_match(word, list[n]))
3363 break;
3364 return n;
3365 }
3366
3367 static ssize_t
3368 array_state_show(mddev_t *mddev, char *page)
3369 {
3370 enum array_state st = inactive;
3371
3372 if (mddev->pers)
3373 switch(mddev->ro) {
3374 case 1:
3375 st = readonly;
3376 break;
3377 case 2:
3378 st = read_auto;
3379 break;
3380 case 0:
3381 if (mddev->in_sync)
3382 st = clean;
3383 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3384 st = write_pending;
3385 else if (mddev->safemode)
3386 st = active_idle;
3387 else
3388 st = active;
3389 }
3390 else {
3391 if (list_empty(&mddev->disks) &&
3392 mddev->raid_disks == 0 &&
3393 mddev->dev_sectors == 0)
3394 st = clear;
3395 else
3396 st = inactive;
3397 }
3398 return sprintf(page, "%s\n", array_states[st]);
3399 }
3400
3401 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3402 static int md_set_readonly(mddev_t * mddev, int is_open);
3403 static int do_md_run(mddev_t * mddev);
3404 static int restart_array(mddev_t *mddev);
3405
3406 static ssize_t
3407 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3408 {
3409 int err = -EINVAL;
3410 enum array_state st = match_word(buf, array_states);
3411 switch(st) {
3412 case bad_word:
3413 break;
3414 case clear:
3415 /* stopping an active array */
3416 if (atomic_read(&mddev->openers) > 0)
3417 return -EBUSY;
3418 err = do_md_stop(mddev, 0, 0);
3419 break;
3420 case inactive:
3421 /* stopping an active array */
3422 if (mddev->pers) {
3423 if (atomic_read(&mddev->openers) > 0)
3424 return -EBUSY;
3425 err = do_md_stop(mddev, 2, 0);
3426 } else
3427 err = 0; /* already inactive */
3428 break;
3429 case suspended:
3430 break; /* not supported yet */
3431 case readonly:
3432 if (mddev->pers)
3433 err = md_set_readonly(mddev, 0);
3434 else {
3435 mddev->ro = 1;
3436 set_disk_ro(mddev->gendisk, 1);
3437 err = do_md_run(mddev);
3438 }
3439 break;
3440 case read_auto:
3441 if (mddev->pers) {
3442 if (mddev->ro == 0)
3443 err = md_set_readonly(mddev, 0);
3444 else if (mddev->ro == 1)
3445 err = restart_array(mddev);
3446 if (err == 0) {
3447 mddev->ro = 2;
3448 set_disk_ro(mddev->gendisk, 0);
3449 }
3450 } else {
3451 mddev->ro = 2;
3452 err = do_md_run(mddev);
3453 }
3454 break;
3455 case clean:
3456 if (mddev->pers) {
3457 restart_array(mddev);
3458 spin_lock_irq(&mddev->write_lock);
3459 if (atomic_read(&mddev->writes_pending) == 0) {
3460 if (mddev->in_sync == 0) {
3461 mddev->in_sync = 1;
3462 if (mddev->safemode == 1)
3463 mddev->safemode = 0;
3464 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3465 }
3466 err = 0;
3467 } else
3468 err = -EBUSY;
3469 spin_unlock_irq(&mddev->write_lock);
3470 } else
3471 err = -EINVAL;
3472 break;
3473 case active:
3474 if (mddev->pers) {
3475 restart_array(mddev);
3476 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3477 wake_up(&mddev->sb_wait);
3478 err = 0;
3479 } else {
3480 mddev->ro = 0;
3481 set_disk_ro(mddev->gendisk, 0);
3482 err = do_md_run(mddev);
3483 }
3484 break;
3485 case write_pending:
3486 case active_idle:
3487 /* these cannot be set */
3488 break;
3489 }
3490 if (err)
3491 return err;
3492 else {
3493 sysfs_notify_dirent_safe(mddev->sysfs_state);
3494 return len;
3495 }
3496 }
3497 static struct md_sysfs_entry md_array_state =
3498 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3499
3500 static ssize_t
3501 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3502 return sprintf(page, "%d\n",
3503 atomic_read(&mddev->max_corr_read_errors));
3504 }
3505
3506 static ssize_t
3507 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3508 {
3509 char *e;
3510 unsigned long n = simple_strtoul(buf, &e, 10);
3511
3512 if (*buf && (*e == 0 || *e == '\n')) {
3513 atomic_set(&mddev->max_corr_read_errors, n);
3514 return len;
3515 }
3516 return -EINVAL;
3517 }
3518
3519 static struct md_sysfs_entry max_corr_read_errors =
3520 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3521 max_corrected_read_errors_store);
3522
3523 static ssize_t
3524 null_show(mddev_t *mddev, char *page)
3525 {
3526 return -EINVAL;
3527 }
3528
3529 static ssize_t
3530 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3531 {
3532 /* buf must be %d:%d\n? giving major and minor numbers */
3533 /* The new device is added to the array.
3534 * If the array has a persistent superblock, we read the
3535 * superblock to initialise info and check validity.
3536 * Otherwise, only checking done is that in bind_rdev_to_array,
3537 * which mainly checks size.
3538 */
3539 char *e;
3540 int major = simple_strtoul(buf, &e, 10);
3541 int minor;
3542 dev_t dev;
3543 mdk_rdev_t *rdev;
3544 int err;
3545
3546 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3547 return -EINVAL;
3548 minor = simple_strtoul(e+1, &e, 10);
3549 if (*e && *e != '\n')
3550 return -EINVAL;
3551 dev = MKDEV(major, minor);
3552 if (major != MAJOR(dev) ||
3553 minor != MINOR(dev))
3554 return -EOVERFLOW;
3555
3556
3557 if (mddev->persistent) {
3558 rdev = md_import_device(dev, mddev->major_version,
3559 mddev->minor_version);
3560 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3561 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3562 mdk_rdev_t, same_set);
3563 err = super_types[mddev->major_version]
3564 .load_super(rdev, rdev0, mddev->minor_version);
3565 if (err < 0)
3566 goto out;
3567 }
3568 } else if (mddev->external)
3569 rdev = md_import_device(dev, -2, -1);
3570 else
3571 rdev = md_import_device(dev, -1, -1);
3572
3573 if (IS_ERR(rdev))
3574 return PTR_ERR(rdev);
3575 err = bind_rdev_to_array(rdev, mddev);
3576 out:
3577 if (err)
3578 export_rdev(rdev);
3579 return err ? err : len;
3580 }
3581
3582 static struct md_sysfs_entry md_new_device =
3583 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3584
3585 static ssize_t
3586 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3587 {
3588 char *end;
3589 unsigned long chunk, end_chunk;
3590
3591 if (!mddev->bitmap)
3592 goto out;
3593 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3594 while (*buf) {
3595 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3596 if (buf == end) break;
3597 if (*end == '-') { /* range */
3598 buf = end + 1;
3599 end_chunk = simple_strtoul(buf, &end, 0);
3600 if (buf == end) break;
3601 }
3602 if (*end && !isspace(*end)) break;
3603 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3604 buf = skip_spaces(end);
3605 }
3606 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3607 out:
3608 return len;
3609 }
3610
3611 static struct md_sysfs_entry md_bitmap =
3612 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3613
3614 static ssize_t
3615 size_show(mddev_t *mddev, char *page)
3616 {
3617 return sprintf(page, "%llu\n",
3618 (unsigned long long)mddev->dev_sectors / 2);
3619 }
3620
3621 static int update_size(mddev_t *mddev, sector_t num_sectors);
3622
3623 static ssize_t
3624 size_store(mddev_t *mddev, const char *buf, size_t len)
3625 {
3626 /* If array is inactive, we can reduce the component size, but
3627 * not increase it (except from 0).
3628 * If array is active, we can try an on-line resize
3629 */
3630 sector_t sectors;
3631 int err = strict_blocks_to_sectors(buf, &sectors);
3632
3633 if (err < 0)
3634 return err;
3635 if (mddev->pers) {
3636 err = update_size(mddev, sectors);
3637 md_update_sb(mddev, 1);
3638 } else {
3639 if (mddev->dev_sectors == 0 ||
3640 mddev->dev_sectors > sectors)
3641 mddev->dev_sectors = sectors;
3642 else
3643 err = -ENOSPC;
3644 }
3645 return err ? err : len;
3646 }
3647
3648 static struct md_sysfs_entry md_size =
3649 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3650
3651
3652 /* Metdata version.
3653 * This is one of
3654 * 'none' for arrays with no metadata (good luck...)
3655 * 'external' for arrays with externally managed metadata,
3656 * or N.M for internally known formats
3657 */
3658 static ssize_t
3659 metadata_show(mddev_t *mddev, char *page)
3660 {
3661 if (mddev->persistent)
3662 return sprintf(page, "%d.%d\n",
3663 mddev->major_version, mddev->minor_version);
3664 else if (mddev->external)
3665 return sprintf(page, "external:%s\n", mddev->metadata_type);
3666 else
3667 return sprintf(page, "none\n");
3668 }
3669
3670 static ssize_t
3671 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3672 {
3673 int major, minor;
3674 char *e;
3675 /* Changing the details of 'external' metadata is
3676 * always permitted. Otherwise there must be
3677 * no devices attached to the array.
3678 */
3679 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3680 ;
3681 else if (!list_empty(&mddev->disks))
3682 return -EBUSY;
3683
3684 if (cmd_match(buf, "none")) {
3685 mddev->persistent = 0;
3686 mddev->external = 0;
3687 mddev->major_version = 0;
3688 mddev->minor_version = 90;
3689 return len;
3690 }
3691 if (strncmp(buf, "external:", 9) == 0) {
3692 size_t namelen = len-9;
3693 if (namelen >= sizeof(mddev->metadata_type))
3694 namelen = sizeof(mddev->metadata_type)-1;
3695 strncpy(mddev->metadata_type, buf+9, namelen);
3696 mddev->metadata_type[namelen] = 0;
3697 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3698 mddev->metadata_type[--namelen] = 0;
3699 mddev->persistent = 0;
3700 mddev->external = 1;
3701 mddev->major_version = 0;
3702 mddev->minor_version = 90;
3703 return len;
3704 }
3705 major = simple_strtoul(buf, &e, 10);
3706 if (e==buf || *e != '.')
3707 return -EINVAL;
3708 buf = e+1;
3709 minor = simple_strtoul(buf, &e, 10);
3710 if (e==buf || (*e && *e != '\n') )
3711 return -EINVAL;
3712 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3713 return -ENOENT;
3714 mddev->major_version = major;
3715 mddev->minor_version = minor;
3716 mddev->persistent = 1;
3717 mddev->external = 0;
3718 return len;
3719 }
3720
3721 static struct md_sysfs_entry md_metadata =
3722 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3723
3724 static ssize_t
3725 action_show(mddev_t *mddev, char *page)
3726 {
3727 char *type = "idle";
3728 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3729 type = "frozen";
3730 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3731 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3732 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3733 type = "reshape";
3734 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3735 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3736 type = "resync";
3737 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3738 type = "check";
3739 else
3740 type = "repair";
3741 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3742 type = "recover";
3743 }
3744 return sprintf(page, "%s\n", type);
3745 }
3746
3747 static ssize_t
3748 action_store(mddev_t *mddev, const char *page, size_t len)
3749 {
3750 if (!mddev->pers || !mddev->pers->sync_request)
3751 return -EINVAL;
3752
3753 if (cmd_match(page, "frozen"))
3754 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3755 else
3756 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3757
3758 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3759 if (mddev->sync_thread) {
3760 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3761 md_unregister_thread(mddev->sync_thread);
3762 mddev->sync_thread = NULL;
3763 mddev->recovery = 0;
3764 }
3765 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3766 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3767 return -EBUSY;
3768 else if (cmd_match(page, "resync"))
3769 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3770 else if (cmd_match(page, "recover")) {
3771 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3772 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3773 } else if (cmd_match(page, "reshape")) {
3774 int err;
3775 if (mddev->pers->start_reshape == NULL)
3776 return -EINVAL;
3777 err = mddev->pers->start_reshape(mddev);
3778 if (err)
3779 return err;
3780 sysfs_notify(&mddev->kobj, NULL, "degraded");
3781 } else {
3782 if (cmd_match(page, "check"))
3783 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3784 else if (!cmd_match(page, "repair"))
3785 return -EINVAL;
3786 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3787 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3788 }
3789 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3790 md_wakeup_thread(mddev->thread);
3791 sysfs_notify_dirent_safe(mddev->sysfs_action);
3792 return len;
3793 }
3794
3795 static ssize_t
3796 mismatch_cnt_show(mddev_t *mddev, char *page)
3797 {
3798 return sprintf(page, "%llu\n",
3799 (unsigned long long) mddev->resync_mismatches);
3800 }
3801
3802 static struct md_sysfs_entry md_scan_mode =
3803 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3804
3805
3806 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3807
3808 static ssize_t
3809 sync_min_show(mddev_t *mddev, char *page)
3810 {
3811 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3812 mddev->sync_speed_min ? "local": "system");
3813 }
3814
3815 static ssize_t
3816 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3817 {
3818 int min;
3819 char *e;
3820 if (strncmp(buf, "system", 6)==0) {
3821 mddev->sync_speed_min = 0;
3822 return len;
3823 }
3824 min = simple_strtoul(buf, &e, 10);
3825 if (buf == e || (*e && *e != '\n') || min <= 0)
3826 return -EINVAL;
3827 mddev->sync_speed_min = min;
3828 return len;
3829 }
3830
3831 static struct md_sysfs_entry md_sync_min =
3832 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3833
3834 static ssize_t
3835 sync_max_show(mddev_t *mddev, char *page)
3836 {
3837 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3838 mddev->sync_speed_max ? "local": "system");
3839 }
3840
3841 static ssize_t
3842 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3843 {
3844 int max;
3845 char *e;
3846 if (strncmp(buf, "system", 6)==0) {
3847 mddev->sync_speed_max = 0;
3848 return len;
3849 }
3850 max = simple_strtoul(buf, &e, 10);
3851 if (buf == e || (*e && *e != '\n') || max <= 0)
3852 return -EINVAL;
3853 mddev->sync_speed_max = max;
3854 return len;
3855 }
3856
3857 static struct md_sysfs_entry md_sync_max =
3858 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3859
3860 static ssize_t
3861 degraded_show(mddev_t *mddev, char *page)
3862 {
3863 return sprintf(page, "%d\n", mddev->degraded);
3864 }
3865 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3866
3867 static ssize_t
3868 sync_force_parallel_show(mddev_t *mddev, char *page)
3869 {
3870 return sprintf(page, "%d\n", mddev->parallel_resync);
3871 }
3872
3873 static ssize_t
3874 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3875 {
3876 long n;
3877
3878 if (strict_strtol(buf, 10, &n))
3879 return -EINVAL;
3880
3881 if (n != 0 && n != 1)
3882 return -EINVAL;
3883
3884 mddev->parallel_resync = n;
3885
3886 if (mddev->sync_thread)
3887 wake_up(&resync_wait);
3888
3889 return len;
3890 }
3891
3892 /* force parallel resync, even with shared block devices */
3893 static struct md_sysfs_entry md_sync_force_parallel =
3894 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3895 sync_force_parallel_show, sync_force_parallel_store);
3896
3897 static ssize_t
3898 sync_speed_show(mddev_t *mddev, char *page)
3899 {
3900 unsigned long resync, dt, db;
3901 if (mddev->curr_resync == 0)
3902 return sprintf(page, "none\n");
3903 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3904 dt = (jiffies - mddev->resync_mark) / HZ;
3905 if (!dt) dt++;
3906 db = resync - mddev->resync_mark_cnt;
3907 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3908 }
3909
3910 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3911
3912 static ssize_t
3913 sync_completed_show(mddev_t *mddev, char *page)
3914 {
3915 unsigned long max_sectors, resync;
3916
3917 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3918 return sprintf(page, "none\n");
3919
3920 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3921 max_sectors = mddev->resync_max_sectors;
3922 else
3923 max_sectors = mddev->dev_sectors;
3924
3925 resync = mddev->curr_resync_completed;
3926 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3927 }
3928
3929 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3930
3931 static ssize_t
3932 min_sync_show(mddev_t *mddev, char *page)
3933 {
3934 return sprintf(page, "%llu\n",
3935 (unsigned long long)mddev->resync_min);
3936 }
3937 static ssize_t
3938 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3939 {
3940 unsigned long long min;
3941 if (strict_strtoull(buf, 10, &min))
3942 return -EINVAL;
3943 if (min > mddev->resync_max)
3944 return -EINVAL;
3945 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3946 return -EBUSY;
3947
3948 /* Must be a multiple of chunk_size */
3949 if (mddev->chunk_sectors) {
3950 sector_t temp = min;
3951 if (sector_div(temp, mddev->chunk_sectors))
3952 return -EINVAL;
3953 }
3954 mddev->resync_min = min;
3955
3956 return len;
3957 }
3958
3959 static struct md_sysfs_entry md_min_sync =
3960 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3961
3962 static ssize_t
3963 max_sync_show(mddev_t *mddev, char *page)
3964 {
3965 if (mddev->resync_max == MaxSector)
3966 return sprintf(page, "max\n");
3967 else
3968 return sprintf(page, "%llu\n",
3969 (unsigned long long)mddev->resync_max);
3970 }
3971 static ssize_t
3972 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3973 {
3974 if (strncmp(buf, "max", 3) == 0)
3975 mddev->resync_max = MaxSector;
3976 else {
3977 unsigned long long max;
3978 if (strict_strtoull(buf, 10, &max))
3979 return -EINVAL;
3980 if (max < mddev->resync_min)
3981 return -EINVAL;
3982 if (max < mddev->resync_max &&
3983 mddev->ro == 0 &&
3984 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3985 return -EBUSY;
3986
3987 /* Must be a multiple of chunk_size */
3988 if (mddev->chunk_sectors) {
3989 sector_t temp = max;
3990 if (sector_div(temp, mddev->chunk_sectors))
3991 return -EINVAL;
3992 }
3993 mddev->resync_max = max;
3994 }
3995 wake_up(&mddev->recovery_wait);
3996 return len;
3997 }
3998
3999 static struct md_sysfs_entry md_max_sync =
4000 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4001
4002 static ssize_t
4003 suspend_lo_show(mddev_t *mddev, char *page)
4004 {
4005 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4006 }
4007
4008 static ssize_t
4009 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4010 {
4011 char *e;
4012 unsigned long long new = simple_strtoull(buf, &e, 10);
4013
4014 if (mddev->pers == NULL ||
4015 mddev->pers->quiesce == NULL)
4016 return -EINVAL;
4017 if (buf == e || (*e && *e != '\n'))
4018 return -EINVAL;
4019 if (new >= mddev->suspend_hi ||
4020 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
4021 mddev->suspend_lo = new;
4022 mddev->pers->quiesce(mddev, 2);
4023 return len;
4024 } else
4025 return -EINVAL;
4026 }
4027 static struct md_sysfs_entry md_suspend_lo =
4028 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4029
4030
4031 static ssize_t
4032 suspend_hi_show(mddev_t *mddev, char *page)
4033 {
4034 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4035 }
4036
4037 static ssize_t
4038 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4039 {
4040 char *e;
4041 unsigned long long new = simple_strtoull(buf, &e, 10);
4042
4043 if (mddev->pers == NULL ||
4044 mddev->pers->quiesce == NULL)
4045 return -EINVAL;
4046 if (buf == e || (*e && *e != '\n'))
4047 return -EINVAL;
4048 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
4049 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
4050 mddev->suspend_hi = new;
4051 mddev->pers->quiesce(mddev, 1);
4052 mddev->pers->quiesce(mddev, 0);
4053 return len;
4054 } else
4055 return -EINVAL;
4056 }
4057 static struct md_sysfs_entry md_suspend_hi =
4058 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4059
4060 static ssize_t
4061 reshape_position_show(mddev_t *mddev, char *page)
4062 {
4063 if (mddev->reshape_position != MaxSector)
4064 return sprintf(page, "%llu\n",
4065 (unsigned long long)mddev->reshape_position);
4066 strcpy(page, "none\n");
4067 return 5;
4068 }
4069
4070 static ssize_t
4071 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4072 {
4073 char *e;
4074 unsigned long long new = simple_strtoull(buf, &e, 10);
4075 if (mddev->pers)
4076 return -EBUSY;
4077 if (buf == e || (*e && *e != '\n'))
4078 return -EINVAL;
4079 mddev->reshape_position = new;
4080 mddev->delta_disks = 0;
4081 mddev->new_level = mddev->level;
4082 mddev->new_layout = mddev->layout;
4083 mddev->new_chunk_sectors = mddev->chunk_sectors;
4084 return len;
4085 }
4086
4087 static struct md_sysfs_entry md_reshape_position =
4088 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4089 reshape_position_store);
4090
4091 static ssize_t
4092 array_size_show(mddev_t *mddev, char *page)
4093 {
4094 if (mddev->external_size)
4095 return sprintf(page, "%llu\n",
4096 (unsigned long long)mddev->array_sectors/2);
4097 else
4098 return sprintf(page, "default\n");
4099 }
4100
4101 static ssize_t
4102 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4103 {
4104 sector_t sectors;
4105
4106 if (strncmp(buf, "default", 7) == 0) {
4107 if (mddev->pers)
4108 sectors = mddev->pers->size(mddev, 0, 0);
4109 else
4110 sectors = mddev->array_sectors;
4111
4112 mddev->external_size = 0;
4113 } else {
4114 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4115 return -EINVAL;
4116 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4117 return -E2BIG;
4118
4119 mddev->external_size = 1;
4120 }
4121
4122 mddev->array_sectors = sectors;
4123 set_capacity(mddev->gendisk, mddev->array_sectors);
4124 if (mddev->pers)
4125 revalidate_disk(mddev->gendisk);
4126
4127 return len;
4128 }
4129
4130 static struct md_sysfs_entry md_array_size =
4131 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4132 array_size_store);
4133
4134 static struct attribute *md_default_attrs[] = {
4135 &md_level.attr,
4136 &md_layout.attr,
4137 &md_raid_disks.attr,
4138 &md_chunk_size.attr,
4139 &md_size.attr,
4140 &md_resync_start.attr,
4141 &md_metadata.attr,
4142 &md_new_device.attr,
4143 &md_safe_delay.attr,
4144 &md_array_state.attr,
4145 &md_reshape_position.attr,
4146 &md_array_size.attr,
4147 &max_corr_read_errors.attr,
4148 NULL,
4149 };
4150
4151 static struct attribute *md_redundancy_attrs[] = {
4152 &md_scan_mode.attr,
4153 &md_mismatches.attr,
4154 &md_sync_min.attr,
4155 &md_sync_max.attr,
4156 &md_sync_speed.attr,
4157 &md_sync_force_parallel.attr,
4158 &md_sync_completed.attr,
4159 &md_min_sync.attr,
4160 &md_max_sync.attr,
4161 &md_suspend_lo.attr,
4162 &md_suspend_hi.attr,
4163 &md_bitmap.attr,
4164 &md_degraded.attr,
4165 NULL,
4166 };
4167 static struct attribute_group md_redundancy_group = {
4168 .name = NULL,
4169 .attrs = md_redundancy_attrs,
4170 };
4171
4172
4173 static ssize_t
4174 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4175 {
4176 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4177 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4178 ssize_t rv;
4179
4180 if (!entry->show)
4181 return -EIO;
4182 rv = mddev_lock(mddev);
4183 if (!rv) {
4184 rv = entry->show(mddev, page);
4185 mddev_unlock(mddev);
4186 }
4187 return rv;
4188 }
4189
4190 static ssize_t
4191 md_attr_store(struct kobject *kobj, struct attribute *attr,
4192 const char *page, size_t length)
4193 {
4194 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4195 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4196 ssize_t rv;
4197
4198 if (!entry->store)
4199 return -EIO;
4200 if (!capable(CAP_SYS_ADMIN))
4201 return -EACCES;
4202 rv = mddev_lock(mddev);
4203 if (mddev->hold_active == UNTIL_IOCTL)
4204 mddev->hold_active = 0;
4205 if (!rv) {
4206 rv = entry->store(mddev, page, length);
4207 mddev_unlock(mddev);
4208 }
4209 return rv;
4210 }
4211
4212 static void md_free(struct kobject *ko)
4213 {
4214 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4215
4216 if (mddev->sysfs_state)
4217 sysfs_put(mddev->sysfs_state);
4218
4219 if (mddev->gendisk) {
4220 del_gendisk(mddev->gendisk);
4221 put_disk(mddev->gendisk);
4222 }
4223 if (mddev->queue)
4224 blk_cleanup_queue(mddev->queue);
4225
4226 kfree(mddev);
4227 }
4228
4229 static const struct sysfs_ops md_sysfs_ops = {
4230 .show = md_attr_show,
4231 .store = md_attr_store,
4232 };
4233 static struct kobj_type md_ktype = {
4234 .release = md_free,
4235 .sysfs_ops = &md_sysfs_ops,
4236 .default_attrs = md_default_attrs,
4237 };
4238
4239 int mdp_major = 0;
4240
4241 static void mddev_delayed_delete(struct work_struct *ws)
4242 {
4243 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4244
4245 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4246 kobject_del(&mddev->kobj);
4247 kobject_put(&mddev->kobj);
4248 }
4249
4250 static int md_alloc(dev_t dev, char *name)
4251 {
4252 static DEFINE_MUTEX(disks_mutex);
4253 mddev_t *mddev = mddev_find(dev);
4254 struct gendisk *disk;
4255 int partitioned;
4256 int shift;
4257 int unit;
4258 int error;
4259
4260 if (!mddev)
4261 return -ENODEV;
4262
4263 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4264 shift = partitioned ? MdpMinorShift : 0;
4265 unit = MINOR(mddev->unit) >> shift;
4266
4267 /* wait for any previous instance of this device to be
4268 * completely removed (mddev_delayed_delete).
4269 */
4270 flush_workqueue(md_misc_wq);
4271
4272 mutex_lock(&disks_mutex);
4273 error = -EEXIST;
4274 if (mddev->gendisk)
4275 goto abort;
4276
4277 if (name) {
4278 /* Need to ensure that 'name' is not a duplicate.
4279 */
4280 mddev_t *mddev2;
4281 spin_lock(&all_mddevs_lock);
4282
4283 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4284 if (mddev2->gendisk &&
4285 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4286 spin_unlock(&all_mddevs_lock);
4287 goto abort;
4288 }
4289 spin_unlock(&all_mddevs_lock);
4290 }
4291
4292 error = -ENOMEM;
4293 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4294 if (!mddev->queue)
4295 goto abort;
4296 mddev->queue->queuedata = mddev;
4297
4298 blk_queue_make_request(mddev->queue, md_make_request);
4299
4300 disk = alloc_disk(1 << shift);
4301 if (!disk) {
4302 blk_cleanup_queue(mddev->queue);
4303 mddev->queue = NULL;
4304 goto abort;
4305 }
4306 disk->major = MAJOR(mddev->unit);
4307 disk->first_minor = unit << shift;
4308 if (name)
4309 strcpy(disk->disk_name, name);
4310 else if (partitioned)
4311 sprintf(disk->disk_name, "md_d%d", unit);
4312 else
4313 sprintf(disk->disk_name, "md%d", unit);
4314 disk->fops = &md_fops;
4315 disk->private_data = mddev;
4316 disk->queue = mddev->queue;
4317 /* Allow extended partitions. This makes the
4318 * 'mdp' device redundant, but we can't really
4319 * remove it now.
4320 */
4321 disk->flags |= GENHD_FL_EXT_DEVT;
4322 add_disk(disk);
4323 mddev->gendisk = disk;
4324 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4325 &disk_to_dev(disk)->kobj, "%s", "md");
4326 if (error) {
4327 /* This isn't possible, but as kobject_init_and_add is marked
4328 * __must_check, we must do something with the result
4329 */
4330 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4331 disk->disk_name);
4332 error = 0;
4333 }
4334 if (mddev->kobj.sd &&
4335 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4336 printk(KERN_DEBUG "pointless warning\n");
4337
4338 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4339 abort:
4340 mutex_unlock(&disks_mutex);
4341 if (!error && mddev->kobj.sd) {
4342 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4343 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4344 }
4345 mddev_put(mddev);
4346 return error;
4347 }
4348
4349 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4350 {
4351 md_alloc(dev, NULL);
4352 return NULL;
4353 }
4354
4355 static int add_named_array(const char *val, struct kernel_param *kp)
4356 {
4357 /* val must be "md_*" where * is not all digits.
4358 * We allocate an array with a large free minor number, and
4359 * set the name to val. val must not already be an active name.
4360 */
4361 int len = strlen(val);
4362 char buf[DISK_NAME_LEN];
4363
4364 while (len && val[len-1] == '\n')
4365 len--;
4366 if (len >= DISK_NAME_LEN)
4367 return -E2BIG;
4368 strlcpy(buf, val, len+1);
4369 if (strncmp(buf, "md_", 3) != 0)
4370 return -EINVAL;
4371 return md_alloc(0, buf);
4372 }
4373
4374 static void md_safemode_timeout(unsigned long data)
4375 {
4376 mddev_t *mddev = (mddev_t *) data;
4377
4378 if (!atomic_read(&mddev->writes_pending)) {
4379 mddev->safemode = 1;
4380 if (mddev->external)
4381 sysfs_notify_dirent_safe(mddev->sysfs_state);
4382 }
4383 md_wakeup_thread(mddev->thread);
4384 }
4385
4386 static int start_dirty_degraded;
4387
4388 int md_run(mddev_t *mddev)
4389 {
4390 int err;
4391 mdk_rdev_t *rdev;
4392 struct mdk_personality *pers;
4393
4394 if (list_empty(&mddev->disks))
4395 /* cannot run an array with no devices.. */
4396 return -EINVAL;
4397
4398 if (mddev->pers)
4399 return -EBUSY;
4400 /* Cannot run until previous stop completes properly */
4401 if (mddev->sysfs_active)
4402 return -EBUSY;
4403
4404 /*
4405 * Analyze all RAID superblock(s)
4406 */
4407 if (!mddev->raid_disks) {
4408 if (!mddev->persistent)
4409 return -EINVAL;
4410 analyze_sbs(mddev);
4411 }
4412
4413 if (mddev->level != LEVEL_NONE)
4414 request_module("md-level-%d", mddev->level);
4415 else if (mddev->clevel[0])
4416 request_module("md-%s", mddev->clevel);
4417
4418 /*
4419 * Drop all container device buffers, from now on
4420 * the only valid external interface is through the md
4421 * device.
4422 */
4423 list_for_each_entry(rdev, &mddev->disks, same_set) {
4424 if (test_bit(Faulty, &rdev->flags))
4425 continue;
4426 sync_blockdev(rdev->bdev);
4427 invalidate_bdev(rdev->bdev);
4428
4429 /* perform some consistency tests on the device.
4430 * We don't want the data to overlap the metadata,
4431 * Internal Bitmap issues have been handled elsewhere.
4432 */
4433 if (rdev->data_offset < rdev->sb_start) {
4434 if (mddev->dev_sectors &&
4435 rdev->data_offset + mddev->dev_sectors
4436 > rdev->sb_start) {
4437 printk("md: %s: data overlaps metadata\n",
4438 mdname(mddev));
4439 return -EINVAL;
4440 }
4441 } else {
4442 if (rdev->sb_start + rdev->sb_size/512
4443 > rdev->data_offset) {
4444 printk("md: %s: metadata overlaps data\n",
4445 mdname(mddev));
4446 return -EINVAL;
4447 }
4448 }
4449 sysfs_notify_dirent_safe(rdev->sysfs_state);
4450 }
4451
4452 if (mddev->bio_set == NULL)
4453 mddev->bio_set = bioset_create(BIO_POOL_SIZE, sizeof(mddev));
4454
4455 spin_lock(&pers_lock);
4456 pers = find_pers(mddev->level, mddev->clevel);
4457 if (!pers || !try_module_get(pers->owner)) {
4458 spin_unlock(&pers_lock);
4459 if (mddev->level != LEVEL_NONE)
4460 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4461 mddev->level);
4462 else
4463 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4464 mddev->clevel);
4465 return -EINVAL;
4466 }
4467 mddev->pers = pers;
4468 spin_unlock(&pers_lock);
4469 if (mddev->level != pers->level) {
4470 mddev->level = pers->level;
4471 mddev->new_level = pers->level;
4472 }
4473 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4474
4475 if (mddev->reshape_position != MaxSector &&
4476 pers->start_reshape == NULL) {
4477 /* This personality cannot handle reshaping... */
4478 mddev->pers = NULL;
4479 module_put(pers->owner);
4480 return -EINVAL;
4481 }
4482
4483 if (pers->sync_request) {
4484 /* Warn if this is a potentially silly
4485 * configuration.
4486 */
4487 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4488 mdk_rdev_t *rdev2;
4489 int warned = 0;
4490
4491 list_for_each_entry(rdev, &mddev->disks, same_set)
4492 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4493 if (rdev < rdev2 &&
4494 rdev->bdev->bd_contains ==
4495 rdev2->bdev->bd_contains) {
4496 printk(KERN_WARNING
4497 "%s: WARNING: %s appears to be"
4498 " on the same physical disk as"
4499 " %s.\n",
4500 mdname(mddev),
4501 bdevname(rdev->bdev,b),
4502 bdevname(rdev2->bdev,b2));
4503 warned = 1;
4504 }
4505 }
4506
4507 if (warned)
4508 printk(KERN_WARNING
4509 "True protection against single-disk"
4510 " failure might be compromised.\n");
4511 }
4512
4513 mddev->recovery = 0;
4514 /* may be over-ridden by personality */
4515 mddev->resync_max_sectors = mddev->dev_sectors;
4516
4517 mddev->ok_start_degraded = start_dirty_degraded;
4518
4519 if (start_readonly && mddev->ro == 0)
4520 mddev->ro = 2; /* read-only, but switch on first write */
4521
4522 err = mddev->pers->run(mddev);
4523 if (err)
4524 printk(KERN_ERR "md: pers->run() failed ...\n");
4525 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4526 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4527 " but 'external_size' not in effect?\n", __func__);
4528 printk(KERN_ERR
4529 "md: invalid array_size %llu > default size %llu\n",
4530 (unsigned long long)mddev->array_sectors / 2,
4531 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4532 err = -EINVAL;
4533 mddev->pers->stop(mddev);
4534 }
4535 if (err == 0 && mddev->pers->sync_request) {
4536 err = bitmap_create(mddev);
4537 if (err) {
4538 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4539 mdname(mddev), err);
4540 mddev->pers->stop(mddev);
4541 }
4542 }
4543 if (err) {
4544 module_put(mddev->pers->owner);
4545 mddev->pers = NULL;
4546 bitmap_destroy(mddev);
4547 return err;
4548 }
4549 if (mddev->pers->sync_request) {
4550 if (mddev->kobj.sd &&
4551 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4552 printk(KERN_WARNING
4553 "md: cannot register extra attributes for %s\n",
4554 mdname(mddev));
4555 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4556 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4557 mddev->ro = 0;
4558
4559 atomic_set(&mddev->writes_pending,0);
4560 atomic_set(&mddev->max_corr_read_errors,
4561 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4562 mddev->safemode = 0;
4563 mddev->safemode_timer.function = md_safemode_timeout;
4564 mddev->safemode_timer.data = (unsigned long) mddev;
4565 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4566 mddev->in_sync = 1;
4567
4568 list_for_each_entry(rdev, &mddev->disks, same_set)
4569 if (rdev->raid_disk >= 0) {
4570 char nm[20];
4571 sprintf(nm, "rd%d", rdev->raid_disk);
4572 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4573 /* failure here is OK */;
4574 }
4575
4576 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4577
4578 if (mddev->flags)
4579 md_update_sb(mddev, 0);
4580
4581 md_wakeup_thread(mddev->thread);
4582 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4583
4584 md_new_event(mddev);
4585 sysfs_notify_dirent_safe(mddev->sysfs_state);
4586 sysfs_notify_dirent_safe(mddev->sysfs_action);
4587 sysfs_notify(&mddev->kobj, NULL, "degraded");
4588 return 0;
4589 }
4590 EXPORT_SYMBOL_GPL(md_run);
4591
4592 static int do_md_run(mddev_t *mddev)
4593 {
4594 int err;
4595
4596 err = md_run(mddev);
4597 if (err)
4598 goto out;
4599 err = bitmap_load(mddev);
4600 if (err) {
4601 bitmap_destroy(mddev);
4602 goto out;
4603 }
4604 set_capacity(mddev->gendisk, mddev->array_sectors);
4605 revalidate_disk(mddev->gendisk);
4606 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4607 out:
4608 return err;
4609 }
4610
4611 static int restart_array(mddev_t *mddev)
4612 {
4613 struct gendisk *disk = mddev->gendisk;
4614
4615 /* Complain if it has no devices */
4616 if (list_empty(&mddev->disks))
4617 return -ENXIO;
4618 if (!mddev->pers)
4619 return -EINVAL;
4620 if (!mddev->ro)
4621 return -EBUSY;
4622 mddev->safemode = 0;
4623 mddev->ro = 0;
4624 set_disk_ro(disk, 0);
4625 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4626 mdname(mddev));
4627 /* Kick recovery or resync if necessary */
4628 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4629 md_wakeup_thread(mddev->thread);
4630 md_wakeup_thread(mddev->sync_thread);
4631 sysfs_notify_dirent_safe(mddev->sysfs_state);
4632 return 0;
4633 }
4634
4635 /* similar to deny_write_access, but accounts for our holding a reference
4636 * to the file ourselves */
4637 static int deny_bitmap_write_access(struct file * file)
4638 {
4639 struct inode *inode = file->f_mapping->host;
4640
4641 spin_lock(&inode->i_lock);
4642 if (atomic_read(&inode->i_writecount) > 1) {
4643 spin_unlock(&inode->i_lock);
4644 return -ETXTBSY;
4645 }
4646 atomic_set(&inode->i_writecount, -1);
4647 spin_unlock(&inode->i_lock);
4648
4649 return 0;
4650 }
4651
4652 void restore_bitmap_write_access(struct file *file)
4653 {
4654 struct inode *inode = file->f_mapping->host;
4655
4656 spin_lock(&inode->i_lock);
4657 atomic_set(&inode->i_writecount, 1);
4658 spin_unlock(&inode->i_lock);
4659 }
4660
4661 static void md_clean(mddev_t *mddev)
4662 {
4663 mddev->array_sectors = 0;
4664 mddev->external_size = 0;
4665 mddev->dev_sectors = 0;
4666 mddev->raid_disks = 0;
4667 mddev->recovery_cp = 0;
4668 mddev->resync_min = 0;
4669 mddev->resync_max = MaxSector;
4670 mddev->reshape_position = MaxSector;
4671 mddev->external = 0;
4672 mddev->persistent = 0;
4673 mddev->level = LEVEL_NONE;
4674 mddev->clevel[0] = 0;
4675 mddev->flags = 0;
4676 mddev->ro = 0;
4677 mddev->metadata_type[0] = 0;
4678 mddev->chunk_sectors = 0;
4679 mddev->ctime = mddev->utime = 0;
4680 mddev->layout = 0;
4681 mddev->max_disks = 0;
4682 mddev->events = 0;
4683 mddev->can_decrease_events = 0;
4684 mddev->delta_disks = 0;
4685 mddev->new_level = LEVEL_NONE;
4686 mddev->new_layout = 0;
4687 mddev->new_chunk_sectors = 0;
4688 mddev->curr_resync = 0;
4689 mddev->resync_mismatches = 0;
4690 mddev->suspend_lo = mddev->suspend_hi = 0;
4691 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4692 mddev->recovery = 0;
4693 mddev->in_sync = 0;
4694 mddev->degraded = 0;
4695 mddev->safemode = 0;
4696 mddev->bitmap_info.offset = 0;
4697 mddev->bitmap_info.default_offset = 0;
4698 mddev->bitmap_info.chunksize = 0;
4699 mddev->bitmap_info.daemon_sleep = 0;
4700 mddev->bitmap_info.max_write_behind = 0;
4701 mddev->plug = NULL;
4702 }
4703
4704 void md_stop_writes(mddev_t *mddev)
4705 {
4706 if (mddev->sync_thread) {
4707 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4708 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4709 md_unregister_thread(mddev->sync_thread);
4710 mddev->sync_thread = NULL;
4711 }
4712
4713 del_timer_sync(&mddev->safemode_timer);
4714
4715 bitmap_flush(mddev);
4716 md_super_wait(mddev);
4717
4718 if (!mddev->in_sync || mddev->flags) {
4719 /* mark array as shutdown cleanly */
4720 mddev->in_sync = 1;
4721 md_update_sb(mddev, 1);
4722 }
4723 }
4724 EXPORT_SYMBOL_GPL(md_stop_writes);
4725
4726 void md_stop(mddev_t *mddev)
4727 {
4728 mddev->pers->stop(mddev);
4729 if (mddev->pers->sync_request && mddev->to_remove == NULL)
4730 mddev->to_remove = &md_redundancy_group;
4731 module_put(mddev->pers->owner);
4732 mddev->pers = NULL;
4733 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4734 }
4735 EXPORT_SYMBOL_GPL(md_stop);
4736
4737 static int md_set_readonly(mddev_t *mddev, int is_open)
4738 {
4739 int err = 0;
4740 mutex_lock(&mddev->open_mutex);
4741 if (atomic_read(&mddev->openers) > is_open) {
4742 printk("md: %s still in use.\n",mdname(mddev));
4743 err = -EBUSY;
4744 goto out;
4745 }
4746 if (mddev->pers) {
4747 md_stop_writes(mddev);
4748
4749 err = -ENXIO;
4750 if (mddev->ro==1)
4751 goto out;
4752 mddev->ro = 1;
4753 set_disk_ro(mddev->gendisk, 1);
4754 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4755 sysfs_notify_dirent_safe(mddev->sysfs_state);
4756 err = 0;
4757 }
4758 out:
4759 mutex_unlock(&mddev->open_mutex);
4760 return err;
4761 }
4762
4763 /* mode:
4764 * 0 - completely stop and dis-assemble array
4765 * 2 - stop but do not disassemble array
4766 */
4767 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4768 {
4769 struct gendisk *disk = mddev->gendisk;
4770 mdk_rdev_t *rdev;
4771
4772 mutex_lock(&mddev->open_mutex);
4773 if (atomic_read(&mddev->openers) > is_open ||
4774 mddev->sysfs_active) {
4775 printk("md: %s still in use.\n",mdname(mddev));
4776 mutex_unlock(&mddev->open_mutex);
4777 return -EBUSY;
4778 }
4779
4780 if (mddev->pers) {
4781 if (mddev->ro)
4782 set_disk_ro(disk, 0);
4783
4784 md_stop_writes(mddev);
4785 md_stop(mddev);
4786 mddev->queue->merge_bvec_fn = NULL;
4787 mddev->queue->unplug_fn = NULL;
4788 mddev->queue->backing_dev_info.congested_fn = NULL;
4789
4790 /* tell userspace to handle 'inactive' */
4791 sysfs_notify_dirent_safe(mddev->sysfs_state);
4792
4793 list_for_each_entry(rdev, &mddev->disks, same_set)
4794 if (rdev->raid_disk >= 0) {
4795 char nm[20];
4796 sprintf(nm, "rd%d", rdev->raid_disk);
4797 sysfs_remove_link(&mddev->kobj, nm);
4798 }
4799
4800 set_capacity(disk, 0);
4801 mutex_unlock(&mddev->open_mutex);
4802 revalidate_disk(disk);
4803
4804 if (mddev->ro)
4805 mddev->ro = 0;
4806 } else
4807 mutex_unlock(&mddev->open_mutex);
4808 /*
4809 * Free resources if final stop
4810 */
4811 if (mode == 0) {
4812 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4813
4814 bitmap_destroy(mddev);
4815 if (mddev->bitmap_info.file) {
4816 restore_bitmap_write_access(mddev->bitmap_info.file);
4817 fput(mddev->bitmap_info.file);
4818 mddev->bitmap_info.file = NULL;
4819 }
4820 mddev->bitmap_info.offset = 0;
4821
4822 export_array(mddev);
4823
4824 md_clean(mddev);
4825 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4826 if (mddev->hold_active == UNTIL_STOP)
4827 mddev->hold_active = 0;
4828 }
4829 blk_integrity_unregister(disk);
4830 md_new_event(mddev);
4831 sysfs_notify_dirent_safe(mddev->sysfs_state);
4832 return 0;
4833 }
4834
4835 #ifndef MODULE
4836 static void autorun_array(mddev_t *mddev)
4837 {
4838 mdk_rdev_t *rdev;
4839 int err;
4840
4841 if (list_empty(&mddev->disks))
4842 return;
4843
4844 printk(KERN_INFO "md: running: ");
4845
4846 list_for_each_entry(rdev, &mddev->disks, same_set) {
4847 char b[BDEVNAME_SIZE];
4848 printk("<%s>", bdevname(rdev->bdev,b));
4849 }
4850 printk("\n");
4851
4852 err = do_md_run(mddev);
4853 if (err) {
4854 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4855 do_md_stop(mddev, 0, 0);
4856 }
4857 }
4858
4859 /*
4860 * lets try to run arrays based on all disks that have arrived
4861 * until now. (those are in pending_raid_disks)
4862 *
4863 * the method: pick the first pending disk, collect all disks with
4864 * the same UUID, remove all from the pending list and put them into
4865 * the 'same_array' list. Then order this list based on superblock
4866 * update time (freshest comes first), kick out 'old' disks and
4867 * compare superblocks. If everything's fine then run it.
4868 *
4869 * If "unit" is allocated, then bump its reference count
4870 */
4871 static void autorun_devices(int part)
4872 {
4873 mdk_rdev_t *rdev0, *rdev, *tmp;
4874 mddev_t *mddev;
4875 char b[BDEVNAME_SIZE];
4876
4877 printk(KERN_INFO "md: autorun ...\n");
4878 while (!list_empty(&pending_raid_disks)) {
4879 int unit;
4880 dev_t dev;
4881 LIST_HEAD(candidates);
4882 rdev0 = list_entry(pending_raid_disks.next,
4883 mdk_rdev_t, same_set);
4884
4885 printk(KERN_INFO "md: considering %s ...\n",
4886 bdevname(rdev0->bdev,b));
4887 INIT_LIST_HEAD(&candidates);
4888 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4889 if (super_90_load(rdev, rdev0, 0) >= 0) {
4890 printk(KERN_INFO "md: adding %s ...\n",
4891 bdevname(rdev->bdev,b));
4892 list_move(&rdev->same_set, &candidates);
4893 }
4894 /*
4895 * now we have a set of devices, with all of them having
4896 * mostly sane superblocks. It's time to allocate the
4897 * mddev.
4898 */
4899 if (part) {
4900 dev = MKDEV(mdp_major,
4901 rdev0->preferred_minor << MdpMinorShift);
4902 unit = MINOR(dev) >> MdpMinorShift;
4903 } else {
4904 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4905 unit = MINOR(dev);
4906 }
4907 if (rdev0->preferred_minor != unit) {
4908 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4909 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4910 break;
4911 }
4912
4913 md_probe(dev, NULL, NULL);
4914 mddev = mddev_find(dev);
4915 if (!mddev || !mddev->gendisk) {
4916 if (mddev)
4917 mddev_put(mddev);
4918 printk(KERN_ERR
4919 "md: cannot allocate memory for md drive.\n");
4920 break;
4921 }
4922 if (mddev_lock(mddev))
4923 printk(KERN_WARNING "md: %s locked, cannot run\n",
4924 mdname(mddev));
4925 else if (mddev->raid_disks || mddev->major_version
4926 || !list_empty(&mddev->disks)) {
4927 printk(KERN_WARNING
4928 "md: %s already running, cannot run %s\n",
4929 mdname(mddev), bdevname(rdev0->bdev,b));
4930 mddev_unlock(mddev);
4931 } else {
4932 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4933 mddev->persistent = 1;
4934 rdev_for_each_list(rdev, tmp, &candidates) {
4935 list_del_init(&rdev->same_set);
4936 if (bind_rdev_to_array(rdev, mddev))
4937 export_rdev(rdev);
4938 }
4939 autorun_array(mddev);
4940 mddev_unlock(mddev);
4941 }
4942 /* on success, candidates will be empty, on error
4943 * it won't...
4944 */
4945 rdev_for_each_list(rdev, tmp, &candidates) {
4946 list_del_init(&rdev->same_set);
4947 export_rdev(rdev);
4948 }
4949 mddev_put(mddev);
4950 }
4951 printk(KERN_INFO "md: ... autorun DONE.\n");
4952 }
4953 #endif /* !MODULE */
4954
4955 static int get_version(void __user * arg)
4956 {
4957 mdu_version_t ver;
4958
4959 ver.major = MD_MAJOR_VERSION;
4960 ver.minor = MD_MINOR_VERSION;
4961 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4962
4963 if (copy_to_user(arg, &ver, sizeof(ver)))
4964 return -EFAULT;
4965
4966 return 0;
4967 }
4968
4969 static int get_array_info(mddev_t * mddev, void __user * arg)
4970 {
4971 mdu_array_info_t info;
4972 int nr,working,insync,failed,spare;
4973 mdk_rdev_t *rdev;
4974
4975 nr=working=insync=failed=spare=0;
4976 list_for_each_entry(rdev, &mddev->disks, same_set) {
4977 nr++;
4978 if (test_bit(Faulty, &rdev->flags))
4979 failed++;
4980 else {
4981 working++;
4982 if (test_bit(In_sync, &rdev->flags))
4983 insync++;
4984 else
4985 spare++;
4986 }
4987 }
4988
4989 info.major_version = mddev->major_version;
4990 info.minor_version = mddev->minor_version;
4991 info.patch_version = MD_PATCHLEVEL_VERSION;
4992 info.ctime = mddev->ctime;
4993 info.level = mddev->level;
4994 info.size = mddev->dev_sectors / 2;
4995 if (info.size != mddev->dev_sectors / 2) /* overflow */
4996 info.size = -1;
4997 info.nr_disks = nr;
4998 info.raid_disks = mddev->raid_disks;
4999 info.md_minor = mddev->md_minor;
5000 info.not_persistent= !mddev->persistent;
5001
5002 info.utime = mddev->utime;
5003 info.state = 0;
5004 if (mddev->in_sync)
5005 info.state = (1<<MD_SB_CLEAN);
5006 if (mddev->bitmap && mddev->bitmap_info.offset)
5007 info.state = (1<<MD_SB_BITMAP_PRESENT);
5008 info.active_disks = insync;
5009 info.working_disks = working;
5010 info.failed_disks = failed;
5011 info.spare_disks = spare;
5012
5013 info.layout = mddev->layout;
5014 info.chunk_size = mddev->chunk_sectors << 9;
5015
5016 if (copy_to_user(arg, &info, sizeof(info)))
5017 return -EFAULT;
5018
5019 return 0;
5020 }
5021
5022 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5023 {
5024 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5025 char *ptr, *buf = NULL;
5026 int err = -ENOMEM;
5027
5028 if (md_allow_write(mddev))
5029 file = kmalloc(sizeof(*file), GFP_NOIO);
5030 else
5031 file = kmalloc(sizeof(*file), GFP_KERNEL);
5032
5033 if (!file)
5034 goto out;
5035
5036 /* bitmap disabled, zero the first byte and copy out */
5037 if (!mddev->bitmap || !mddev->bitmap->file) {
5038 file->pathname[0] = '\0';
5039 goto copy_out;
5040 }
5041
5042 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5043 if (!buf)
5044 goto out;
5045
5046 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5047 if (IS_ERR(ptr))
5048 goto out;
5049
5050 strcpy(file->pathname, ptr);
5051
5052 copy_out:
5053 err = 0;
5054 if (copy_to_user(arg, file, sizeof(*file)))
5055 err = -EFAULT;
5056 out:
5057 kfree(buf);
5058 kfree(file);
5059 return err;
5060 }
5061
5062 static int get_disk_info(mddev_t * mddev, void __user * arg)
5063 {
5064 mdu_disk_info_t info;
5065 mdk_rdev_t *rdev;
5066
5067 if (copy_from_user(&info, arg, sizeof(info)))
5068 return -EFAULT;
5069
5070 rdev = find_rdev_nr(mddev, info.number);
5071 if (rdev) {
5072 info.major = MAJOR(rdev->bdev->bd_dev);
5073 info.minor = MINOR(rdev->bdev->bd_dev);
5074 info.raid_disk = rdev->raid_disk;
5075 info.state = 0;
5076 if (test_bit(Faulty, &rdev->flags))
5077 info.state |= (1<<MD_DISK_FAULTY);
5078 else if (test_bit(In_sync, &rdev->flags)) {
5079 info.state |= (1<<MD_DISK_ACTIVE);
5080 info.state |= (1<<MD_DISK_SYNC);
5081 }
5082 if (test_bit(WriteMostly, &rdev->flags))
5083 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5084 } else {
5085 info.major = info.minor = 0;
5086 info.raid_disk = -1;
5087 info.state = (1<<MD_DISK_REMOVED);
5088 }
5089
5090 if (copy_to_user(arg, &info, sizeof(info)))
5091 return -EFAULT;
5092
5093 return 0;
5094 }
5095
5096 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5097 {
5098 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5099 mdk_rdev_t *rdev;
5100 dev_t dev = MKDEV(info->major,info->minor);
5101
5102 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5103 return -EOVERFLOW;
5104
5105 if (!mddev->raid_disks) {
5106 int err;
5107 /* expecting a device which has a superblock */
5108 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5109 if (IS_ERR(rdev)) {
5110 printk(KERN_WARNING
5111 "md: md_import_device returned %ld\n",
5112 PTR_ERR(rdev));
5113 return PTR_ERR(rdev);
5114 }
5115 if (!list_empty(&mddev->disks)) {
5116 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5117 mdk_rdev_t, same_set);
5118 err = super_types[mddev->major_version]
5119 .load_super(rdev, rdev0, mddev->minor_version);
5120 if (err < 0) {
5121 printk(KERN_WARNING
5122 "md: %s has different UUID to %s\n",
5123 bdevname(rdev->bdev,b),
5124 bdevname(rdev0->bdev,b2));
5125 export_rdev(rdev);
5126 return -EINVAL;
5127 }
5128 }
5129 err = bind_rdev_to_array(rdev, mddev);
5130 if (err)
5131 export_rdev(rdev);
5132 return err;
5133 }
5134
5135 /*
5136 * add_new_disk can be used once the array is assembled
5137 * to add "hot spares". They must already have a superblock
5138 * written
5139 */
5140 if (mddev->pers) {
5141 int err;
5142 if (!mddev->pers->hot_add_disk) {
5143 printk(KERN_WARNING
5144 "%s: personality does not support diskops!\n",
5145 mdname(mddev));
5146 return -EINVAL;
5147 }
5148 if (mddev->persistent)
5149 rdev = md_import_device(dev, mddev->major_version,
5150 mddev->minor_version);
5151 else
5152 rdev = md_import_device(dev, -1, -1);
5153 if (IS_ERR(rdev)) {
5154 printk(KERN_WARNING
5155 "md: md_import_device returned %ld\n",
5156 PTR_ERR(rdev));
5157 return PTR_ERR(rdev);
5158 }
5159 /* set saved_raid_disk if appropriate */
5160 if (!mddev->persistent) {
5161 if (info->state & (1<<MD_DISK_SYNC) &&
5162 info->raid_disk < mddev->raid_disks)
5163 rdev->raid_disk = info->raid_disk;
5164 else
5165 rdev->raid_disk = -1;
5166 } else
5167 super_types[mddev->major_version].
5168 validate_super(mddev, rdev);
5169 if (test_bit(In_sync, &rdev->flags))
5170 rdev->saved_raid_disk = rdev->raid_disk;
5171 else
5172 rdev->saved_raid_disk = -1;
5173
5174 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5175 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5176 set_bit(WriteMostly, &rdev->flags);
5177 else
5178 clear_bit(WriteMostly, &rdev->flags);
5179
5180 rdev->raid_disk = -1;
5181 err = bind_rdev_to_array(rdev, mddev);
5182 if (!err && !mddev->pers->hot_remove_disk) {
5183 /* If there is hot_add_disk but no hot_remove_disk
5184 * then added disks for geometry changes,
5185 * and should be added immediately.
5186 */
5187 super_types[mddev->major_version].
5188 validate_super(mddev, rdev);
5189 err = mddev->pers->hot_add_disk(mddev, rdev);
5190 if (err)
5191 unbind_rdev_from_array(rdev);
5192 }
5193 if (err)
5194 export_rdev(rdev);
5195 else
5196 sysfs_notify_dirent_safe(rdev->sysfs_state);
5197
5198 md_update_sb(mddev, 1);
5199 if (mddev->degraded)
5200 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5201 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5202 md_wakeup_thread(mddev->thread);
5203 return err;
5204 }
5205
5206 /* otherwise, add_new_disk is only allowed
5207 * for major_version==0 superblocks
5208 */
5209 if (mddev->major_version != 0) {
5210 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5211 mdname(mddev));
5212 return -EINVAL;
5213 }
5214
5215 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5216 int err;
5217 rdev = md_import_device(dev, -1, 0);
5218 if (IS_ERR(rdev)) {
5219 printk(KERN_WARNING
5220 "md: error, md_import_device() returned %ld\n",
5221 PTR_ERR(rdev));
5222 return PTR_ERR(rdev);
5223 }
5224 rdev->desc_nr = info->number;
5225 if (info->raid_disk < mddev->raid_disks)
5226 rdev->raid_disk = info->raid_disk;
5227 else
5228 rdev->raid_disk = -1;
5229
5230 if (rdev->raid_disk < mddev->raid_disks)
5231 if (info->state & (1<<MD_DISK_SYNC))
5232 set_bit(In_sync, &rdev->flags);
5233
5234 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5235 set_bit(WriteMostly, &rdev->flags);
5236
5237 if (!mddev->persistent) {
5238 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5239 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5240 } else
5241 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5242 rdev->sectors = rdev->sb_start;
5243
5244 err = bind_rdev_to_array(rdev, mddev);
5245 if (err) {
5246 export_rdev(rdev);
5247 return err;
5248 }
5249 }
5250
5251 return 0;
5252 }
5253
5254 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5255 {
5256 char b[BDEVNAME_SIZE];
5257 mdk_rdev_t *rdev;
5258
5259 rdev = find_rdev(mddev, dev);
5260 if (!rdev)
5261 return -ENXIO;
5262
5263 if (rdev->raid_disk >= 0)
5264 goto busy;
5265
5266 kick_rdev_from_array(rdev);
5267 md_update_sb(mddev, 1);
5268 md_new_event(mddev);
5269
5270 return 0;
5271 busy:
5272 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5273 bdevname(rdev->bdev,b), mdname(mddev));
5274 return -EBUSY;
5275 }
5276
5277 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5278 {
5279 char b[BDEVNAME_SIZE];
5280 int err;
5281 mdk_rdev_t *rdev;
5282
5283 if (!mddev->pers)
5284 return -ENODEV;
5285
5286 if (mddev->major_version != 0) {
5287 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5288 " version-0 superblocks.\n",
5289 mdname(mddev));
5290 return -EINVAL;
5291 }
5292 if (!mddev->pers->hot_add_disk) {
5293 printk(KERN_WARNING
5294 "%s: personality does not support diskops!\n",
5295 mdname(mddev));
5296 return -EINVAL;
5297 }
5298
5299 rdev = md_import_device(dev, -1, 0);
5300 if (IS_ERR(rdev)) {
5301 printk(KERN_WARNING
5302 "md: error, md_import_device() returned %ld\n",
5303 PTR_ERR(rdev));
5304 return -EINVAL;
5305 }
5306
5307 if (mddev->persistent)
5308 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5309 else
5310 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5311
5312 rdev->sectors = rdev->sb_start;
5313
5314 if (test_bit(Faulty, &rdev->flags)) {
5315 printk(KERN_WARNING
5316 "md: can not hot-add faulty %s disk to %s!\n",
5317 bdevname(rdev->bdev,b), mdname(mddev));
5318 err = -EINVAL;
5319 goto abort_export;
5320 }
5321 clear_bit(In_sync, &rdev->flags);
5322 rdev->desc_nr = -1;
5323 rdev->saved_raid_disk = -1;
5324 err = bind_rdev_to_array(rdev, mddev);
5325 if (err)
5326 goto abort_export;
5327
5328 /*
5329 * The rest should better be atomic, we can have disk failures
5330 * noticed in interrupt contexts ...
5331 */
5332
5333 rdev->raid_disk = -1;
5334
5335 md_update_sb(mddev, 1);
5336
5337 /*
5338 * Kick recovery, maybe this spare has to be added to the
5339 * array immediately.
5340 */
5341 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5342 md_wakeup_thread(mddev->thread);
5343 md_new_event(mddev);
5344 return 0;
5345
5346 abort_export:
5347 export_rdev(rdev);
5348 return err;
5349 }
5350
5351 static int set_bitmap_file(mddev_t *mddev, int fd)
5352 {
5353 int err;
5354
5355 if (mddev->pers) {
5356 if (!mddev->pers->quiesce)
5357 return -EBUSY;
5358 if (mddev->recovery || mddev->sync_thread)
5359 return -EBUSY;
5360 /* we should be able to change the bitmap.. */
5361 }
5362
5363
5364 if (fd >= 0) {
5365 if (mddev->bitmap)
5366 return -EEXIST; /* cannot add when bitmap is present */
5367 mddev->bitmap_info.file = fget(fd);
5368
5369 if (mddev->bitmap_info.file == NULL) {
5370 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5371 mdname(mddev));
5372 return -EBADF;
5373 }
5374
5375 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5376 if (err) {
5377 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5378 mdname(mddev));
5379 fput(mddev->bitmap_info.file);
5380 mddev->bitmap_info.file = NULL;
5381 return err;
5382 }
5383 mddev->bitmap_info.offset = 0; /* file overrides offset */
5384 } else if (mddev->bitmap == NULL)
5385 return -ENOENT; /* cannot remove what isn't there */
5386 err = 0;
5387 if (mddev->pers) {
5388 mddev->pers->quiesce(mddev, 1);
5389 if (fd >= 0) {
5390 err = bitmap_create(mddev);
5391 if (!err)
5392 err = bitmap_load(mddev);
5393 }
5394 if (fd < 0 || err) {
5395 bitmap_destroy(mddev);
5396 fd = -1; /* make sure to put the file */
5397 }
5398 mddev->pers->quiesce(mddev, 0);
5399 }
5400 if (fd < 0) {
5401 if (mddev->bitmap_info.file) {
5402 restore_bitmap_write_access(mddev->bitmap_info.file);
5403 fput(mddev->bitmap_info.file);
5404 }
5405 mddev->bitmap_info.file = NULL;
5406 }
5407
5408 return err;
5409 }
5410
5411 /*
5412 * set_array_info is used two different ways
5413 * The original usage is when creating a new array.
5414 * In this usage, raid_disks is > 0 and it together with
5415 * level, size, not_persistent,layout,chunksize determine the
5416 * shape of the array.
5417 * This will always create an array with a type-0.90.0 superblock.
5418 * The newer usage is when assembling an array.
5419 * In this case raid_disks will be 0, and the major_version field is
5420 * use to determine which style super-blocks are to be found on the devices.
5421 * The minor and patch _version numbers are also kept incase the
5422 * super_block handler wishes to interpret them.
5423 */
5424 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5425 {
5426
5427 if (info->raid_disks == 0) {
5428 /* just setting version number for superblock loading */
5429 if (info->major_version < 0 ||
5430 info->major_version >= ARRAY_SIZE(super_types) ||
5431 super_types[info->major_version].name == NULL) {
5432 /* maybe try to auto-load a module? */
5433 printk(KERN_INFO
5434 "md: superblock version %d not known\n",
5435 info->major_version);
5436 return -EINVAL;
5437 }
5438 mddev->major_version = info->major_version;
5439 mddev->minor_version = info->minor_version;
5440 mddev->patch_version = info->patch_version;
5441 mddev->persistent = !info->not_persistent;
5442 /* ensure mddev_put doesn't delete this now that there
5443 * is some minimal configuration.
5444 */
5445 mddev->ctime = get_seconds();
5446 return 0;
5447 }
5448 mddev->major_version = MD_MAJOR_VERSION;
5449 mddev->minor_version = MD_MINOR_VERSION;
5450 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5451 mddev->ctime = get_seconds();
5452
5453 mddev->level = info->level;
5454 mddev->clevel[0] = 0;
5455 mddev->dev_sectors = 2 * (sector_t)info->size;
5456 mddev->raid_disks = info->raid_disks;
5457 /* don't set md_minor, it is determined by which /dev/md* was
5458 * openned
5459 */
5460 if (info->state & (1<<MD_SB_CLEAN))
5461 mddev->recovery_cp = MaxSector;
5462 else
5463 mddev->recovery_cp = 0;
5464 mddev->persistent = ! info->not_persistent;
5465 mddev->external = 0;
5466
5467 mddev->layout = info->layout;
5468 mddev->chunk_sectors = info->chunk_size >> 9;
5469
5470 mddev->max_disks = MD_SB_DISKS;
5471
5472 if (mddev->persistent)
5473 mddev->flags = 0;
5474 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5475
5476 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5477 mddev->bitmap_info.offset = 0;
5478
5479 mddev->reshape_position = MaxSector;
5480
5481 /*
5482 * Generate a 128 bit UUID
5483 */
5484 get_random_bytes(mddev->uuid, 16);
5485
5486 mddev->new_level = mddev->level;
5487 mddev->new_chunk_sectors = mddev->chunk_sectors;
5488 mddev->new_layout = mddev->layout;
5489 mddev->delta_disks = 0;
5490
5491 return 0;
5492 }
5493
5494 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5495 {
5496 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5497
5498 if (mddev->external_size)
5499 return;
5500
5501 mddev->array_sectors = array_sectors;
5502 }
5503 EXPORT_SYMBOL(md_set_array_sectors);
5504
5505 static int update_size(mddev_t *mddev, sector_t num_sectors)
5506 {
5507 mdk_rdev_t *rdev;
5508 int rv;
5509 int fit = (num_sectors == 0);
5510
5511 if (mddev->pers->resize == NULL)
5512 return -EINVAL;
5513 /* The "num_sectors" is the number of sectors of each device that
5514 * is used. This can only make sense for arrays with redundancy.
5515 * linear and raid0 always use whatever space is available. We can only
5516 * consider changing this number if no resync or reconstruction is
5517 * happening, and if the new size is acceptable. It must fit before the
5518 * sb_start or, if that is <data_offset, it must fit before the size
5519 * of each device. If num_sectors is zero, we find the largest size
5520 * that fits.
5521
5522 */
5523 if (mddev->sync_thread)
5524 return -EBUSY;
5525 if (mddev->bitmap)
5526 /* Sorry, cannot grow a bitmap yet, just remove it,
5527 * grow, and re-add.
5528 */
5529 return -EBUSY;
5530 list_for_each_entry(rdev, &mddev->disks, same_set) {
5531 sector_t avail = rdev->sectors;
5532
5533 if (fit && (num_sectors == 0 || num_sectors > avail))
5534 num_sectors = avail;
5535 if (avail < num_sectors)
5536 return -ENOSPC;
5537 }
5538 rv = mddev->pers->resize(mddev, num_sectors);
5539 if (!rv)
5540 revalidate_disk(mddev->gendisk);
5541 return rv;
5542 }
5543
5544 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5545 {
5546 int rv;
5547 /* change the number of raid disks */
5548 if (mddev->pers->check_reshape == NULL)
5549 return -EINVAL;
5550 if (raid_disks <= 0 ||
5551 (mddev->max_disks && raid_disks >= mddev->max_disks))
5552 return -EINVAL;
5553 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5554 return -EBUSY;
5555 mddev->delta_disks = raid_disks - mddev->raid_disks;
5556
5557 rv = mddev->pers->check_reshape(mddev);
5558 return rv;
5559 }
5560
5561
5562 /*
5563 * update_array_info is used to change the configuration of an
5564 * on-line array.
5565 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5566 * fields in the info are checked against the array.
5567 * Any differences that cannot be handled will cause an error.
5568 * Normally, only one change can be managed at a time.
5569 */
5570 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5571 {
5572 int rv = 0;
5573 int cnt = 0;
5574 int state = 0;
5575
5576 /* calculate expected state,ignoring low bits */
5577 if (mddev->bitmap && mddev->bitmap_info.offset)
5578 state |= (1 << MD_SB_BITMAP_PRESENT);
5579
5580 if (mddev->major_version != info->major_version ||
5581 mddev->minor_version != info->minor_version ||
5582 /* mddev->patch_version != info->patch_version || */
5583 mddev->ctime != info->ctime ||
5584 mddev->level != info->level ||
5585 /* mddev->layout != info->layout || */
5586 !mddev->persistent != info->not_persistent||
5587 mddev->chunk_sectors != info->chunk_size >> 9 ||
5588 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5589 ((state^info->state) & 0xfffffe00)
5590 )
5591 return -EINVAL;
5592 /* Check there is only one change */
5593 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5594 cnt++;
5595 if (mddev->raid_disks != info->raid_disks)
5596 cnt++;
5597 if (mddev->layout != info->layout)
5598 cnt++;
5599 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5600 cnt++;
5601 if (cnt == 0)
5602 return 0;
5603 if (cnt > 1)
5604 return -EINVAL;
5605
5606 if (mddev->layout != info->layout) {
5607 /* Change layout
5608 * we don't need to do anything at the md level, the
5609 * personality will take care of it all.
5610 */
5611 if (mddev->pers->check_reshape == NULL)
5612 return -EINVAL;
5613 else {
5614 mddev->new_layout = info->layout;
5615 rv = mddev->pers->check_reshape(mddev);
5616 if (rv)
5617 mddev->new_layout = mddev->layout;
5618 return rv;
5619 }
5620 }
5621 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5622 rv = update_size(mddev, (sector_t)info->size * 2);
5623
5624 if (mddev->raid_disks != info->raid_disks)
5625 rv = update_raid_disks(mddev, info->raid_disks);
5626
5627 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5628 if (mddev->pers->quiesce == NULL)
5629 return -EINVAL;
5630 if (mddev->recovery || mddev->sync_thread)
5631 return -EBUSY;
5632 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5633 /* add the bitmap */
5634 if (mddev->bitmap)
5635 return -EEXIST;
5636 if (mddev->bitmap_info.default_offset == 0)
5637 return -EINVAL;
5638 mddev->bitmap_info.offset =
5639 mddev->bitmap_info.default_offset;
5640 mddev->pers->quiesce(mddev, 1);
5641 rv = bitmap_create(mddev);
5642 if (!rv)
5643 rv = bitmap_load(mddev);
5644 if (rv)
5645 bitmap_destroy(mddev);
5646 mddev->pers->quiesce(mddev, 0);
5647 } else {
5648 /* remove the bitmap */
5649 if (!mddev->bitmap)
5650 return -ENOENT;
5651 if (mddev->bitmap->file)
5652 return -EINVAL;
5653 mddev->pers->quiesce(mddev, 1);
5654 bitmap_destroy(mddev);
5655 mddev->pers->quiesce(mddev, 0);
5656 mddev->bitmap_info.offset = 0;
5657 }
5658 }
5659 md_update_sb(mddev, 1);
5660 return rv;
5661 }
5662
5663 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5664 {
5665 mdk_rdev_t *rdev;
5666
5667 if (mddev->pers == NULL)
5668 return -ENODEV;
5669
5670 rdev = find_rdev(mddev, dev);
5671 if (!rdev)
5672 return -ENODEV;
5673
5674 md_error(mddev, rdev);
5675 return 0;
5676 }
5677
5678 /*
5679 * We have a problem here : there is no easy way to give a CHS
5680 * virtual geometry. We currently pretend that we have a 2 heads
5681 * 4 sectors (with a BIG number of cylinders...). This drives
5682 * dosfs just mad... ;-)
5683 */
5684 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5685 {
5686 mddev_t *mddev = bdev->bd_disk->private_data;
5687
5688 geo->heads = 2;
5689 geo->sectors = 4;
5690 geo->cylinders = mddev->array_sectors / 8;
5691 return 0;
5692 }
5693
5694 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5695 unsigned int cmd, unsigned long arg)
5696 {
5697 int err = 0;
5698 void __user *argp = (void __user *)arg;
5699 mddev_t *mddev = NULL;
5700 int ro;
5701
5702 if (!capable(CAP_SYS_ADMIN))
5703 return -EACCES;
5704
5705 /*
5706 * Commands dealing with the RAID driver but not any
5707 * particular array:
5708 */
5709 switch (cmd)
5710 {
5711 case RAID_VERSION:
5712 err = get_version(argp);
5713 goto done;
5714
5715 case PRINT_RAID_DEBUG:
5716 err = 0;
5717 md_print_devices();
5718 goto done;
5719
5720 #ifndef MODULE
5721 case RAID_AUTORUN:
5722 err = 0;
5723 autostart_arrays(arg);
5724 goto done;
5725 #endif
5726 default:;
5727 }
5728
5729 /*
5730 * Commands creating/starting a new array:
5731 */
5732
5733 mddev = bdev->bd_disk->private_data;
5734
5735 if (!mddev) {
5736 BUG();
5737 goto abort;
5738 }
5739
5740 err = mddev_lock(mddev);
5741 if (err) {
5742 printk(KERN_INFO
5743 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5744 err, cmd);
5745 goto abort;
5746 }
5747
5748 switch (cmd)
5749 {
5750 case SET_ARRAY_INFO:
5751 {
5752 mdu_array_info_t info;
5753 if (!arg)
5754 memset(&info, 0, sizeof(info));
5755 else if (copy_from_user(&info, argp, sizeof(info))) {
5756 err = -EFAULT;
5757 goto abort_unlock;
5758 }
5759 if (mddev->pers) {
5760 err = update_array_info(mddev, &info);
5761 if (err) {
5762 printk(KERN_WARNING "md: couldn't update"
5763 " array info. %d\n", err);
5764 goto abort_unlock;
5765 }
5766 goto done_unlock;
5767 }
5768 if (!list_empty(&mddev->disks)) {
5769 printk(KERN_WARNING
5770 "md: array %s already has disks!\n",
5771 mdname(mddev));
5772 err = -EBUSY;
5773 goto abort_unlock;
5774 }
5775 if (mddev->raid_disks) {
5776 printk(KERN_WARNING
5777 "md: array %s already initialised!\n",
5778 mdname(mddev));
5779 err = -EBUSY;
5780 goto abort_unlock;
5781 }
5782 err = set_array_info(mddev, &info);
5783 if (err) {
5784 printk(KERN_WARNING "md: couldn't set"
5785 " array info. %d\n", err);
5786 goto abort_unlock;
5787 }
5788 }
5789 goto done_unlock;
5790
5791 default:;
5792 }
5793
5794 /*
5795 * Commands querying/configuring an existing array:
5796 */
5797 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5798 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5799 if ((!mddev->raid_disks && !mddev->external)
5800 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5801 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5802 && cmd != GET_BITMAP_FILE) {
5803 err = -ENODEV;
5804 goto abort_unlock;
5805 }
5806
5807 /*
5808 * Commands even a read-only array can execute:
5809 */
5810 switch (cmd)
5811 {
5812 case GET_ARRAY_INFO:
5813 err = get_array_info(mddev, argp);
5814 goto done_unlock;
5815
5816 case GET_BITMAP_FILE:
5817 err = get_bitmap_file(mddev, argp);
5818 goto done_unlock;
5819
5820 case GET_DISK_INFO:
5821 err = get_disk_info(mddev, argp);
5822 goto done_unlock;
5823
5824 case RESTART_ARRAY_RW:
5825 err = restart_array(mddev);
5826 goto done_unlock;
5827
5828 case STOP_ARRAY:
5829 err = do_md_stop(mddev, 0, 1);
5830 goto done_unlock;
5831
5832 case STOP_ARRAY_RO:
5833 err = md_set_readonly(mddev, 1);
5834 goto done_unlock;
5835
5836 case BLKROSET:
5837 if (get_user(ro, (int __user *)(arg))) {
5838 err = -EFAULT;
5839 goto done_unlock;
5840 }
5841 err = -EINVAL;
5842
5843 /* if the bdev is going readonly the value of mddev->ro
5844 * does not matter, no writes are coming
5845 */
5846 if (ro)
5847 goto done_unlock;
5848
5849 /* are we are already prepared for writes? */
5850 if (mddev->ro != 1)
5851 goto done_unlock;
5852
5853 /* transitioning to readauto need only happen for
5854 * arrays that call md_write_start
5855 */
5856 if (mddev->pers) {
5857 err = restart_array(mddev);
5858 if (err == 0) {
5859 mddev->ro = 2;
5860 set_disk_ro(mddev->gendisk, 0);
5861 }
5862 }
5863 goto done_unlock;
5864 }
5865
5866 /*
5867 * The remaining ioctls are changing the state of the
5868 * superblock, so we do not allow them on read-only arrays.
5869 * However non-MD ioctls (e.g. get-size) will still come through
5870 * here and hit the 'default' below, so only disallow
5871 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5872 */
5873 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5874 if (mddev->ro == 2) {
5875 mddev->ro = 0;
5876 sysfs_notify_dirent_safe(mddev->sysfs_state);
5877 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5878 md_wakeup_thread(mddev->thread);
5879 } else {
5880 err = -EROFS;
5881 goto abort_unlock;
5882 }
5883 }
5884
5885 switch (cmd)
5886 {
5887 case ADD_NEW_DISK:
5888 {
5889 mdu_disk_info_t info;
5890 if (copy_from_user(&info, argp, sizeof(info)))
5891 err = -EFAULT;
5892 else
5893 err = add_new_disk(mddev, &info);
5894 goto done_unlock;
5895 }
5896
5897 case HOT_REMOVE_DISK:
5898 err = hot_remove_disk(mddev, new_decode_dev(arg));
5899 goto done_unlock;
5900
5901 case HOT_ADD_DISK:
5902 err = hot_add_disk(mddev, new_decode_dev(arg));
5903 goto done_unlock;
5904
5905 case SET_DISK_FAULTY:
5906 err = set_disk_faulty(mddev, new_decode_dev(arg));
5907 goto done_unlock;
5908
5909 case RUN_ARRAY:
5910 err = do_md_run(mddev);
5911 goto done_unlock;
5912
5913 case SET_BITMAP_FILE:
5914 err = set_bitmap_file(mddev, (int)arg);
5915 goto done_unlock;
5916
5917 default:
5918 err = -EINVAL;
5919 goto abort_unlock;
5920 }
5921
5922 done_unlock:
5923 abort_unlock:
5924 if (mddev->hold_active == UNTIL_IOCTL &&
5925 err != -EINVAL)
5926 mddev->hold_active = 0;
5927 mddev_unlock(mddev);
5928
5929 return err;
5930 done:
5931 if (err)
5932 MD_BUG();
5933 abort:
5934 return err;
5935 }
5936 #ifdef CONFIG_COMPAT
5937 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5938 unsigned int cmd, unsigned long arg)
5939 {
5940 switch (cmd) {
5941 case HOT_REMOVE_DISK:
5942 case HOT_ADD_DISK:
5943 case SET_DISK_FAULTY:
5944 case SET_BITMAP_FILE:
5945 /* These take in integer arg, do not convert */
5946 break;
5947 default:
5948 arg = (unsigned long)compat_ptr(arg);
5949 break;
5950 }
5951
5952 return md_ioctl(bdev, mode, cmd, arg);
5953 }
5954 #endif /* CONFIG_COMPAT */
5955
5956 static int md_open(struct block_device *bdev, fmode_t mode)
5957 {
5958 /*
5959 * Succeed if we can lock the mddev, which confirms that
5960 * it isn't being stopped right now.
5961 */
5962 mddev_t *mddev = mddev_find(bdev->bd_dev);
5963 int err;
5964
5965 if (mddev->gendisk != bdev->bd_disk) {
5966 /* we are racing with mddev_put which is discarding this
5967 * bd_disk.
5968 */
5969 mddev_put(mddev);
5970 /* Wait until bdev->bd_disk is definitely gone */
5971 flush_workqueue(md_misc_wq);
5972 /* Then retry the open from the top */
5973 return -ERESTARTSYS;
5974 }
5975 BUG_ON(mddev != bdev->bd_disk->private_data);
5976
5977 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5978 goto out;
5979
5980 err = 0;
5981 atomic_inc(&mddev->openers);
5982 mutex_unlock(&mddev->open_mutex);
5983
5984 check_disk_size_change(mddev->gendisk, bdev);
5985 out:
5986 return err;
5987 }
5988
5989 static int md_release(struct gendisk *disk, fmode_t mode)
5990 {
5991 mddev_t *mddev = disk->private_data;
5992
5993 BUG_ON(!mddev);
5994 atomic_dec(&mddev->openers);
5995 mddev_put(mddev);
5996
5997 return 0;
5998 }
5999 static const struct block_device_operations md_fops =
6000 {
6001 .owner = THIS_MODULE,
6002 .open = md_open,
6003 .release = md_release,
6004 .ioctl = md_ioctl,
6005 #ifdef CONFIG_COMPAT
6006 .compat_ioctl = md_compat_ioctl,
6007 #endif
6008 .getgeo = md_getgeo,
6009 };
6010
6011 static int md_thread(void * arg)
6012 {
6013 mdk_thread_t *thread = arg;
6014
6015 /*
6016 * md_thread is a 'system-thread', it's priority should be very
6017 * high. We avoid resource deadlocks individually in each
6018 * raid personality. (RAID5 does preallocation) We also use RR and
6019 * the very same RT priority as kswapd, thus we will never get
6020 * into a priority inversion deadlock.
6021 *
6022 * we definitely have to have equal or higher priority than
6023 * bdflush, otherwise bdflush will deadlock if there are too
6024 * many dirty RAID5 blocks.
6025 */
6026
6027 allow_signal(SIGKILL);
6028 while (!kthread_should_stop()) {
6029
6030 /* We need to wait INTERRUPTIBLE so that
6031 * we don't add to the load-average.
6032 * That means we need to be sure no signals are
6033 * pending
6034 */
6035 if (signal_pending(current))
6036 flush_signals(current);
6037
6038 wait_event_interruptible_timeout
6039 (thread->wqueue,
6040 test_bit(THREAD_WAKEUP, &thread->flags)
6041 || kthread_should_stop(),
6042 thread->timeout);
6043
6044 if (test_and_clear_bit(THREAD_WAKEUP, &thread->flags))
6045 thread->run(thread->mddev);
6046 }
6047
6048 return 0;
6049 }
6050
6051 void md_wakeup_thread(mdk_thread_t *thread)
6052 {
6053 if (thread) {
6054 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6055 set_bit(THREAD_WAKEUP, &thread->flags);
6056 wake_up(&thread->wqueue);
6057 }
6058 }
6059
6060 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6061 const char *name)
6062 {
6063 mdk_thread_t *thread;
6064
6065 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6066 if (!thread)
6067 return NULL;
6068
6069 init_waitqueue_head(&thread->wqueue);
6070
6071 thread->run = run;
6072 thread->mddev = mddev;
6073 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6074 thread->tsk = kthread_run(md_thread, thread,
6075 "%s_%s",
6076 mdname(thread->mddev),
6077 name ?: mddev->pers->name);
6078 if (IS_ERR(thread->tsk)) {
6079 kfree(thread);
6080 return NULL;
6081 }
6082 return thread;
6083 }
6084
6085 void md_unregister_thread(mdk_thread_t *thread)
6086 {
6087 if (!thread)
6088 return;
6089 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6090
6091 kthread_stop(thread->tsk);
6092 kfree(thread);
6093 }
6094
6095 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6096 {
6097 if (!mddev) {
6098 MD_BUG();
6099 return;
6100 }
6101
6102 if (!rdev || test_bit(Faulty, &rdev->flags))
6103 return;
6104
6105 if (mddev->external)
6106 set_bit(Blocked, &rdev->flags);
6107 /*
6108 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6109 mdname(mddev),
6110 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6111 __builtin_return_address(0),__builtin_return_address(1),
6112 __builtin_return_address(2),__builtin_return_address(3));
6113 */
6114 if (!mddev->pers)
6115 return;
6116 if (!mddev->pers->error_handler)
6117 return;
6118 mddev->pers->error_handler(mddev,rdev);
6119 if (mddev->degraded)
6120 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6121 sysfs_notify_dirent_safe(rdev->sysfs_state);
6122 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6123 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6124 md_wakeup_thread(mddev->thread);
6125 if (mddev->event_work.func)
6126 queue_work(md_misc_wq, &mddev->event_work);
6127 md_new_event_inintr(mddev);
6128 }
6129
6130 /* seq_file implementation /proc/mdstat */
6131
6132 static void status_unused(struct seq_file *seq)
6133 {
6134 int i = 0;
6135 mdk_rdev_t *rdev;
6136
6137 seq_printf(seq, "unused devices: ");
6138
6139 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6140 char b[BDEVNAME_SIZE];
6141 i++;
6142 seq_printf(seq, "%s ",
6143 bdevname(rdev->bdev,b));
6144 }
6145 if (!i)
6146 seq_printf(seq, "<none>");
6147
6148 seq_printf(seq, "\n");
6149 }
6150
6151
6152 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6153 {
6154 sector_t max_sectors, resync, res;
6155 unsigned long dt, db;
6156 sector_t rt;
6157 int scale;
6158 unsigned int per_milli;
6159
6160 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6161
6162 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6163 max_sectors = mddev->resync_max_sectors;
6164 else
6165 max_sectors = mddev->dev_sectors;
6166
6167 /*
6168 * Should not happen.
6169 */
6170 if (!max_sectors) {
6171 MD_BUG();
6172 return;
6173 }
6174 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6175 * in a sector_t, and (max_sectors>>scale) will fit in a
6176 * u32, as those are the requirements for sector_div.
6177 * Thus 'scale' must be at least 10
6178 */
6179 scale = 10;
6180 if (sizeof(sector_t) > sizeof(unsigned long)) {
6181 while ( max_sectors/2 > (1ULL<<(scale+32)))
6182 scale++;
6183 }
6184 res = (resync>>scale)*1000;
6185 sector_div(res, (u32)((max_sectors>>scale)+1));
6186
6187 per_milli = res;
6188 {
6189 int i, x = per_milli/50, y = 20-x;
6190 seq_printf(seq, "[");
6191 for (i = 0; i < x; i++)
6192 seq_printf(seq, "=");
6193 seq_printf(seq, ">");
6194 for (i = 0; i < y; i++)
6195 seq_printf(seq, ".");
6196 seq_printf(seq, "] ");
6197 }
6198 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6199 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6200 "reshape" :
6201 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6202 "check" :
6203 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6204 "resync" : "recovery"))),
6205 per_milli/10, per_milli % 10,
6206 (unsigned long long) resync/2,
6207 (unsigned long long) max_sectors/2);
6208
6209 /*
6210 * dt: time from mark until now
6211 * db: blocks written from mark until now
6212 * rt: remaining time
6213 *
6214 * rt is a sector_t, so could be 32bit or 64bit.
6215 * So we divide before multiply in case it is 32bit and close
6216 * to the limit.
6217 * We scale the divisor (db) by 32 to avoid loosing precision
6218 * near the end of resync when the number of remaining sectors
6219 * is close to 'db'.
6220 * We then divide rt by 32 after multiplying by db to compensate.
6221 * The '+1' avoids division by zero if db is very small.
6222 */
6223 dt = ((jiffies - mddev->resync_mark) / HZ);
6224 if (!dt) dt++;
6225 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6226 - mddev->resync_mark_cnt;
6227
6228 rt = max_sectors - resync; /* number of remaining sectors */
6229 sector_div(rt, db/32+1);
6230 rt *= dt;
6231 rt >>= 5;
6232
6233 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6234 ((unsigned long)rt % 60)/6);
6235
6236 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6237 }
6238
6239 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6240 {
6241 struct list_head *tmp;
6242 loff_t l = *pos;
6243 mddev_t *mddev;
6244
6245 if (l >= 0x10000)
6246 return NULL;
6247 if (!l--)
6248 /* header */
6249 return (void*)1;
6250
6251 spin_lock(&all_mddevs_lock);
6252 list_for_each(tmp,&all_mddevs)
6253 if (!l--) {
6254 mddev = list_entry(tmp, mddev_t, all_mddevs);
6255 mddev_get(mddev);
6256 spin_unlock(&all_mddevs_lock);
6257 return mddev;
6258 }
6259 spin_unlock(&all_mddevs_lock);
6260 if (!l--)
6261 return (void*)2;/* tail */
6262 return NULL;
6263 }
6264
6265 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6266 {
6267 struct list_head *tmp;
6268 mddev_t *next_mddev, *mddev = v;
6269
6270 ++*pos;
6271 if (v == (void*)2)
6272 return NULL;
6273
6274 spin_lock(&all_mddevs_lock);
6275 if (v == (void*)1)
6276 tmp = all_mddevs.next;
6277 else
6278 tmp = mddev->all_mddevs.next;
6279 if (tmp != &all_mddevs)
6280 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6281 else {
6282 next_mddev = (void*)2;
6283 *pos = 0x10000;
6284 }
6285 spin_unlock(&all_mddevs_lock);
6286
6287 if (v != (void*)1)
6288 mddev_put(mddev);
6289 return next_mddev;
6290
6291 }
6292
6293 static void md_seq_stop(struct seq_file *seq, void *v)
6294 {
6295 mddev_t *mddev = v;
6296
6297 if (mddev && v != (void*)1 && v != (void*)2)
6298 mddev_put(mddev);
6299 }
6300
6301 struct mdstat_info {
6302 int event;
6303 };
6304
6305 static int md_seq_show(struct seq_file *seq, void *v)
6306 {
6307 mddev_t *mddev = v;
6308 sector_t sectors;
6309 mdk_rdev_t *rdev;
6310 struct mdstat_info *mi = seq->private;
6311 struct bitmap *bitmap;
6312
6313 if (v == (void*)1) {
6314 struct mdk_personality *pers;
6315 seq_printf(seq, "Personalities : ");
6316 spin_lock(&pers_lock);
6317 list_for_each_entry(pers, &pers_list, list)
6318 seq_printf(seq, "[%s] ", pers->name);
6319
6320 spin_unlock(&pers_lock);
6321 seq_printf(seq, "\n");
6322 mi->event = atomic_read(&md_event_count);
6323 return 0;
6324 }
6325 if (v == (void*)2) {
6326 status_unused(seq);
6327 return 0;
6328 }
6329
6330 if (mddev_lock(mddev) < 0)
6331 return -EINTR;
6332
6333 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6334 seq_printf(seq, "%s : %sactive", mdname(mddev),
6335 mddev->pers ? "" : "in");
6336 if (mddev->pers) {
6337 if (mddev->ro==1)
6338 seq_printf(seq, " (read-only)");
6339 if (mddev->ro==2)
6340 seq_printf(seq, " (auto-read-only)");
6341 seq_printf(seq, " %s", mddev->pers->name);
6342 }
6343
6344 sectors = 0;
6345 list_for_each_entry(rdev, &mddev->disks, same_set) {
6346 char b[BDEVNAME_SIZE];
6347 seq_printf(seq, " %s[%d]",
6348 bdevname(rdev->bdev,b), rdev->desc_nr);
6349 if (test_bit(WriteMostly, &rdev->flags))
6350 seq_printf(seq, "(W)");
6351 if (test_bit(Faulty, &rdev->flags)) {
6352 seq_printf(seq, "(F)");
6353 continue;
6354 } else if (rdev->raid_disk < 0)
6355 seq_printf(seq, "(S)"); /* spare */
6356 sectors += rdev->sectors;
6357 }
6358
6359 if (!list_empty(&mddev->disks)) {
6360 if (mddev->pers)
6361 seq_printf(seq, "\n %llu blocks",
6362 (unsigned long long)
6363 mddev->array_sectors / 2);
6364 else
6365 seq_printf(seq, "\n %llu blocks",
6366 (unsigned long long)sectors / 2);
6367 }
6368 if (mddev->persistent) {
6369 if (mddev->major_version != 0 ||
6370 mddev->minor_version != 90) {
6371 seq_printf(seq," super %d.%d",
6372 mddev->major_version,
6373 mddev->minor_version);
6374 }
6375 } else if (mddev->external)
6376 seq_printf(seq, " super external:%s",
6377 mddev->metadata_type);
6378 else
6379 seq_printf(seq, " super non-persistent");
6380
6381 if (mddev->pers) {
6382 mddev->pers->status(seq, mddev);
6383 seq_printf(seq, "\n ");
6384 if (mddev->pers->sync_request) {
6385 if (mddev->curr_resync > 2) {
6386 status_resync(seq, mddev);
6387 seq_printf(seq, "\n ");
6388 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6389 seq_printf(seq, "\tresync=DELAYED\n ");
6390 else if (mddev->recovery_cp < MaxSector)
6391 seq_printf(seq, "\tresync=PENDING\n ");
6392 }
6393 } else
6394 seq_printf(seq, "\n ");
6395
6396 if ((bitmap = mddev->bitmap)) {
6397 unsigned long chunk_kb;
6398 unsigned long flags;
6399 spin_lock_irqsave(&bitmap->lock, flags);
6400 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6401 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6402 "%lu%s chunk",
6403 bitmap->pages - bitmap->missing_pages,
6404 bitmap->pages,
6405 (bitmap->pages - bitmap->missing_pages)
6406 << (PAGE_SHIFT - 10),
6407 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6408 chunk_kb ? "KB" : "B");
6409 if (bitmap->file) {
6410 seq_printf(seq, ", file: ");
6411 seq_path(seq, &bitmap->file->f_path, " \t\n");
6412 }
6413
6414 seq_printf(seq, "\n");
6415 spin_unlock_irqrestore(&bitmap->lock, flags);
6416 }
6417
6418 seq_printf(seq, "\n");
6419 }
6420 mddev_unlock(mddev);
6421
6422 return 0;
6423 }
6424
6425 static const struct seq_operations md_seq_ops = {
6426 .start = md_seq_start,
6427 .next = md_seq_next,
6428 .stop = md_seq_stop,
6429 .show = md_seq_show,
6430 };
6431
6432 static int md_seq_open(struct inode *inode, struct file *file)
6433 {
6434 int error;
6435 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6436 if (mi == NULL)
6437 return -ENOMEM;
6438
6439 error = seq_open(file, &md_seq_ops);
6440 if (error)
6441 kfree(mi);
6442 else {
6443 struct seq_file *p = file->private_data;
6444 p->private = mi;
6445 mi->event = atomic_read(&md_event_count);
6446 }
6447 return error;
6448 }
6449
6450 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6451 {
6452 struct seq_file *m = filp->private_data;
6453 struct mdstat_info *mi = m->private;
6454 int mask;
6455
6456 poll_wait(filp, &md_event_waiters, wait);
6457
6458 /* always allow read */
6459 mask = POLLIN | POLLRDNORM;
6460
6461 if (mi->event != atomic_read(&md_event_count))
6462 mask |= POLLERR | POLLPRI;
6463 return mask;
6464 }
6465
6466 static const struct file_operations md_seq_fops = {
6467 .owner = THIS_MODULE,
6468 .open = md_seq_open,
6469 .read = seq_read,
6470 .llseek = seq_lseek,
6471 .release = seq_release_private,
6472 .poll = mdstat_poll,
6473 };
6474
6475 int register_md_personality(struct mdk_personality *p)
6476 {
6477 spin_lock(&pers_lock);
6478 list_add_tail(&p->list, &pers_list);
6479 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6480 spin_unlock(&pers_lock);
6481 return 0;
6482 }
6483
6484 int unregister_md_personality(struct mdk_personality *p)
6485 {
6486 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6487 spin_lock(&pers_lock);
6488 list_del_init(&p->list);
6489 spin_unlock(&pers_lock);
6490 return 0;
6491 }
6492
6493 static int is_mddev_idle(mddev_t *mddev, int init)
6494 {
6495 mdk_rdev_t * rdev;
6496 int idle;
6497 int curr_events;
6498
6499 idle = 1;
6500 rcu_read_lock();
6501 rdev_for_each_rcu(rdev, mddev) {
6502 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6503 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6504 (int)part_stat_read(&disk->part0, sectors[1]) -
6505 atomic_read(&disk->sync_io);
6506 /* sync IO will cause sync_io to increase before the disk_stats
6507 * as sync_io is counted when a request starts, and
6508 * disk_stats is counted when it completes.
6509 * So resync activity will cause curr_events to be smaller than
6510 * when there was no such activity.
6511 * non-sync IO will cause disk_stat to increase without
6512 * increasing sync_io so curr_events will (eventually)
6513 * be larger than it was before. Once it becomes
6514 * substantially larger, the test below will cause
6515 * the array to appear non-idle, and resync will slow
6516 * down.
6517 * If there is a lot of outstanding resync activity when
6518 * we set last_event to curr_events, then all that activity
6519 * completing might cause the array to appear non-idle
6520 * and resync will be slowed down even though there might
6521 * not have been non-resync activity. This will only
6522 * happen once though. 'last_events' will soon reflect
6523 * the state where there is little or no outstanding
6524 * resync requests, and further resync activity will
6525 * always make curr_events less than last_events.
6526 *
6527 */
6528 if (init || curr_events - rdev->last_events > 64) {
6529 rdev->last_events = curr_events;
6530 idle = 0;
6531 }
6532 }
6533 rcu_read_unlock();
6534 return idle;
6535 }
6536
6537 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6538 {
6539 /* another "blocks" (512byte) blocks have been synced */
6540 atomic_sub(blocks, &mddev->recovery_active);
6541 wake_up(&mddev->recovery_wait);
6542 if (!ok) {
6543 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6544 md_wakeup_thread(mddev->thread);
6545 // stop recovery, signal do_sync ....
6546 }
6547 }
6548
6549
6550 /* md_write_start(mddev, bi)
6551 * If we need to update some array metadata (e.g. 'active' flag
6552 * in superblock) before writing, schedule a superblock update
6553 * and wait for it to complete.
6554 */
6555 void md_write_start(mddev_t *mddev, struct bio *bi)
6556 {
6557 int did_change = 0;
6558 if (bio_data_dir(bi) != WRITE)
6559 return;
6560
6561 BUG_ON(mddev->ro == 1);
6562 if (mddev->ro == 2) {
6563 /* need to switch to read/write */
6564 mddev->ro = 0;
6565 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6566 md_wakeup_thread(mddev->thread);
6567 md_wakeup_thread(mddev->sync_thread);
6568 did_change = 1;
6569 }
6570 atomic_inc(&mddev->writes_pending);
6571 if (mddev->safemode == 1)
6572 mddev->safemode = 0;
6573 if (mddev->in_sync) {
6574 spin_lock_irq(&mddev->write_lock);
6575 if (mddev->in_sync) {
6576 mddev->in_sync = 0;
6577 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6578 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6579 md_wakeup_thread(mddev->thread);
6580 did_change = 1;
6581 }
6582 spin_unlock_irq(&mddev->write_lock);
6583 }
6584 if (did_change)
6585 sysfs_notify_dirent_safe(mddev->sysfs_state);
6586 wait_event(mddev->sb_wait,
6587 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6588 }
6589
6590 void md_write_end(mddev_t *mddev)
6591 {
6592 if (atomic_dec_and_test(&mddev->writes_pending)) {
6593 if (mddev->safemode == 2)
6594 md_wakeup_thread(mddev->thread);
6595 else if (mddev->safemode_delay)
6596 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6597 }
6598 }
6599
6600 /* md_allow_write(mddev)
6601 * Calling this ensures that the array is marked 'active' so that writes
6602 * may proceed without blocking. It is important to call this before
6603 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6604 * Must be called with mddev_lock held.
6605 *
6606 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6607 * is dropped, so return -EAGAIN after notifying userspace.
6608 */
6609 int md_allow_write(mddev_t *mddev)
6610 {
6611 if (!mddev->pers)
6612 return 0;
6613 if (mddev->ro)
6614 return 0;
6615 if (!mddev->pers->sync_request)
6616 return 0;
6617
6618 spin_lock_irq(&mddev->write_lock);
6619 if (mddev->in_sync) {
6620 mddev->in_sync = 0;
6621 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6622 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6623 if (mddev->safemode_delay &&
6624 mddev->safemode == 0)
6625 mddev->safemode = 1;
6626 spin_unlock_irq(&mddev->write_lock);
6627 md_update_sb(mddev, 0);
6628 sysfs_notify_dirent_safe(mddev->sysfs_state);
6629 } else
6630 spin_unlock_irq(&mddev->write_lock);
6631
6632 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6633 return -EAGAIN;
6634 else
6635 return 0;
6636 }
6637 EXPORT_SYMBOL_GPL(md_allow_write);
6638
6639 void md_unplug(mddev_t *mddev)
6640 {
6641 if (mddev->queue)
6642 blk_unplug(mddev->queue);
6643 if (mddev->plug)
6644 mddev->plug->unplug_fn(mddev->plug);
6645 }
6646
6647 #define SYNC_MARKS 10
6648 #define SYNC_MARK_STEP (3*HZ)
6649 void md_do_sync(mddev_t *mddev)
6650 {
6651 mddev_t *mddev2;
6652 unsigned int currspeed = 0,
6653 window;
6654 sector_t max_sectors,j, io_sectors;
6655 unsigned long mark[SYNC_MARKS];
6656 sector_t mark_cnt[SYNC_MARKS];
6657 int last_mark,m;
6658 struct list_head *tmp;
6659 sector_t last_check;
6660 int skipped = 0;
6661 mdk_rdev_t *rdev;
6662 char *desc;
6663
6664 /* just incase thread restarts... */
6665 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6666 return;
6667 if (mddev->ro) /* never try to sync a read-only array */
6668 return;
6669
6670 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6671 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6672 desc = "data-check";
6673 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6674 desc = "requested-resync";
6675 else
6676 desc = "resync";
6677 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6678 desc = "reshape";
6679 else
6680 desc = "recovery";
6681
6682 /* we overload curr_resync somewhat here.
6683 * 0 == not engaged in resync at all
6684 * 2 == checking that there is no conflict with another sync
6685 * 1 == like 2, but have yielded to allow conflicting resync to
6686 * commense
6687 * other == active in resync - this many blocks
6688 *
6689 * Before starting a resync we must have set curr_resync to
6690 * 2, and then checked that every "conflicting" array has curr_resync
6691 * less than ours. When we find one that is the same or higher
6692 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6693 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6694 * This will mean we have to start checking from the beginning again.
6695 *
6696 */
6697
6698 do {
6699 mddev->curr_resync = 2;
6700
6701 try_again:
6702 if (kthread_should_stop())
6703 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6704
6705 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6706 goto skip;
6707 for_each_mddev(mddev2, tmp) {
6708 if (mddev2 == mddev)
6709 continue;
6710 if (!mddev->parallel_resync
6711 && mddev2->curr_resync
6712 && match_mddev_units(mddev, mddev2)) {
6713 DEFINE_WAIT(wq);
6714 if (mddev < mddev2 && mddev->curr_resync == 2) {
6715 /* arbitrarily yield */
6716 mddev->curr_resync = 1;
6717 wake_up(&resync_wait);
6718 }
6719 if (mddev > mddev2 && mddev->curr_resync == 1)
6720 /* no need to wait here, we can wait the next
6721 * time 'round when curr_resync == 2
6722 */
6723 continue;
6724 /* We need to wait 'interruptible' so as not to
6725 * contribute to the load average, and not to
6726 * be caught by 'softlockup'
6727 */
6728 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6729 if (!kthread_should_stop() &&
6730 mddev2->curr_resync >= mddev->curr_resync) {
6731 printk(KERN_INFO "md: delaying %s of %s"
6732 " until %s has finished (they"
6733 " share one or more physical units)\n",
6734 desc, mdname(mddev), mdname(mddev2));
6735 mddev_put(mddev2);
6736 if (signal_pending(current))
6737 flush_signals(current);
6738 schedule();
6739 finish_wait(&resync_wait, &wq);
6740 goto try_again;
6741 }
6742 finish_wait(&resync_wait, &wq);
6743 }
6744 }
6745 } while (mddev->curr_resync < 2);
6746
6747 j = 0;
6748 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6749 /* resync follows the size requested by the personality,
6750 * which defaults to physical size, but can be virtual size
6751 */
6752 max_sectors = mddev->resync_max_sectors;
6753 mddev->resync_mismatches = 0;
6754 /* we don't use the checkpoint if there's a bitmap */
6755 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6756 j = mddev->resync_min;
6757 else if (!mddev->bitmap)
6758 j = mddev->recovery_cp;
6759
6760 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6761 max_sectors = mddev->dev_sectors;
6762 else {
6763 /* recovery follows the physical size of devices */
6764 max_sectors = mddev->dev_sectors;
6765 j = MaxSector;
6766 rcu_read_lock();
6767 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6768 if (rdev->raid_disk >= 0 &&
6769 !test_bit(Faulty, &rdev->flags) &&
6770 !test_bit(In_sync, &rdev->flags) &&
6771 rdev->recovery_offset < j)
6772 j = rdev->recovery_offset;
6773 rcu_read_unlock();
6774 }
6775
6776 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6777 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6778 " %d KB/sec/disk.\n", speed_min(mddev));
6779 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6780 "(but not more than %d KB/sec) for %s.\n",
6781 speed_max(mddev), desc);
6782
6783 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6784
6785 io_sectors = 0;
6786 for (m = 0; m < SYNC_MARKS; m++) {
6787 mark[m] = jiffies;
6788 mark_cnt[m] = io_sectors;
6789 }
6790 last_mark = 0;
6791 mddev->resync_mark = mark[last_mark];
6792 mddev->resync_mark_cnt = mark_cnt[last_mark];
6793
6794 /*
6795 * Tune reconstruction:
6796 */
6797 window = 32*(PAGE_SIZE/512);
6798 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6799 window/2,(unsigned long long) max_sectors/2);
6800
6801 atomic_set(&mddev->recovery_active, 0);
6802 last_check = 0;
6803
6804 if (j>2) {
6805 printk(KERN_INFO
6806 "md: resuming %s of %s from checkpoint.\n",
6807 desc, mdname(mddev));
6808 mddev->curr_resync = j;
6809 }
6810 mddev->curr_resync_completed = mddev->curr_resync;
6811
6812 while (j < max_sectors) {
6813 sector_t sectors;
6814
6815 skipped = 0;
6816
6817 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6818 ((mddev->curr_resync > mddev->curr_resync_completed &&
6819 (mddev->curr_resync - mddev->curr_resync_completed)
6820 > (max_sectors >> 4)) ||
6821 (j - mddev->curr_resync_completed)*2
6822 >= mddev->resync_max - mddev->curr_resync_completed
6823 )) {
6824 /* time to update curr_resync_completed */
6825 md_unplug(mddev);
6826 wait_event(mddev->recovery_wait,
6827 atomic_read(&mddev->recovery_active) == 0);
6828 mddev->curr_resync_completed =
6829 mddev->curr_resync;
6830 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6831 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6832 }
6833
6834 while (j >= mddev->resync_max && !kthread_should_stop()) {
6835 /* As this condition is controlled by user-space,
6836 * we can block indefinitely, so use '_interruptible'
6837 * to avoid triggering warnings.
6838 */
6839 flush_signals(current); /* just in case */
6840 wait_event_interruptible(mddev->recovery_wait,
6841 mddev->resync_max > j
6842 || kthread_should_stop());
6843 }
6844
6845 if (kthread_should_stop())
6846 goto interrupted;
6847
6848 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6849 currspeed < speed_min(mddev));
6850 if (sectors == 0) {
6851 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6852 goto out;
6853 }
6854
6855 if (!skipped) { /* actual IO requested */
6856 io_sectors += sectors;
6857 atomic_add(sectors, &mddev->recovery_active);
6858 }
6859
6860 j += sectors;
6861 if (j>1) mddev->curr_resync = j;
6862 mddev->curr_mark_cnt = io_sectors;
6863 if (last_check == 0)
6864 /* this is the earliers that rebuilt will be
6865 * visible in /proc/mdstat
6866 */
6867 md_new_event(mddev);
6868
6869 if (last_check + window > io_sectors || j == max_sectors)
6870 continue;
6871
6872 last_check = io_sectors;
6873
6874 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6875 break;
6876
6877 repeat:
6878 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6879 /* step marks */
6880 int next = (last_mark+1) % SYNC_MARKS;
6881
6882 mddev->resync_mark = mark[next];
6883 mddev->resync_mark_cnt = mark_cnt[next];
6884 mark[next] = jiffies;
6885 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6886 last_mark = next;
6887 }
6888
6889
6890 if (kthread_should_stop())
6891 goto interrupted;
6892
6893
6894 /*
6895 * this loop exits only if either when we are slower than
6896 * the 'hard' speed limit, or the system was IO-idle for
6897 * a jiffy.
6898 * the system might be non-idle CPU-wise, but we only care
6899 * about not overloading the IO subsystem. (things like an
6900 * e2fsck being done on the RAID array should execute fast)
6901 */
6902 md_unplug(mddev);
6903 cond_resched();
6904
6905 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6906 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6907
6908 if (currspeed > speed_min(mddev)) {
6909 if ((currspeed > speed_max(mddev)) ||
6910 !is_mddev_idle(mddev, 0)) {
6911 msleep(500);
6912 goto repeat;
6913 }
6914 }
6915 }
6916 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6917 /*
6918 * this also signals 'finished resyncing' to md_stop
6919 */
6920 out:
6921 md_unplug(mddev);
6922
6923 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6924
6925 /* tell personality that we are finished */
6926 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6927
6928 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6929 mddev->curr_resync > 2) {
6930 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6931 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6932 if (mddev->curr_resync >= mddev->recovery_cp) {
6933 printk(KERN_INFO
6934 "md: checkpointing %s of %s.\n",
6935 desc, mdname(mddev));
6936 mddev->recovery_cp = mddev->curr_resync;
6937 }
6938 } else
6939 mddev->recovery_cp = MaxSector;
6940 } else {
6941 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6942 mddev->curr_resync = MaxSector;
6943 rcu_read_lock();
6944 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6945 if (rdev->raid_disk >= 0 &&
6946 mddev->delta_disks >= 0 &&
6947 !test_bit(Faulty, &rdev->flags) &&
6948 !test_bit(In_sync, &rdev->flags) &&
6949 rdev->recovery_offset < mddev->curr_resync)
6950 rdev->recovery_offset = mddev->curr_resync;
6951 rcu_read_unlock();
6952 }
6953 }
6954 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6955
6956 skip:
6957 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6958 /* We completed so min/max setting can be forgotten if used. */
6959 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6960 mddev->resync_min = 0;
6961 mddev->resync_max = MaxSector;
6962 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6963 mddev->resync_min = mddev->curr_resync_completed;
6964 mddev->curr_resync = 0;
6965 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6966 mddev->curr_resync_completed = 0;
6967 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6968 wake_up(&resync_wait);
6969 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6970 md_wakeup_thread(mddev->thread);
6971 return;
6972
6973 interrupted:
6974 /*
6975 * got a signal, exit.
6976 */
6977 printk(KERN_INFO
6978 "md: md_do_sync() got signal ... exiting\n");
6979 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6980 goto out;
6981
6982 }
6983 EXPORT_SYMBOL_GPL(md_do_sync);
6984
6985
6986 static int remove_and_add_spares(mddev_t *mddev)
6987 {
6988 mdk_rdev_t *rdev;
6989 int spares = 0;
6990
6991 mddev->curr_resync_completed = 0;
6992
6993 list_for_each_entry(rdev, &mddev->disks, same_set)
6994 if (rdev->raid_disk >= 0 &&
6995 !test_bit(Blocked, &rdev->flags) &&
6996 (test_bit(Faulty, &rdev->flags) ||
6997 ! test_bit(In_sync, &rdev->flags)) &&
6998 atomic_read(&rdev->nr_pending)==0) {
6999 if (mddev->pers->hot_remove_disk(
7000 mddev, rdev->raid_disk)==0) {
7001 char nm[20];
7002 sprintf(nm,"rd%d", rdev->raid_disk);
7003 sysfs_remove_link(&mddev->kobj, nm);
7004 rdev->raid_disk = -1;
7005 }
7006 }
7007
7008 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
7009 list_for_each_entry(rdev, &mddev->disks, same_set) {
7010 if (rdev->raid_disk >= 0 &&
7011 !test_bit(In_sync, &rdev->flags) &&
7012 !test_bit(Blocked, &rdev->flags))
7013 spares++;
7014 if (rdev->raid_disk < 0
7015 && !test_bit(Faulty, &rdev->flags)) {
7016 rdev->recovery_offset = 0;
7017 if (mddev->pers->
7018 hot_add_disk(mddev, rdev) == 0) {
7019 char nm[20];
7020 sprintf(nm, "rd%d", rdev->raid_disk);
7021 if (sysfs_create_link(&mddev->kobj,
7022 &rdev->kobj, nm))
7023 /* failure here is OK */;
7024 spares++;
7025 md_new_event(mddev);
7026 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7027 } else
7028 break;
7029 }
7030 }
7031 }
7032 return spares;
7033 }
7034 /*
7035 * This routine is regularly called by all per-raid-array threads to
7036 * deal with generic issues like resync and super-block update.
7037 * Raid personalities that don't have a thread (linear/raid0) do not
7038 * need this as they never do any recovery or update the superblock.
7039 *
7040 * It does not do any resync itself, but rather "forks" off other threads
7041 * to do that as needed.
7042 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7043 * "->recovery" and create a thread at ->sync_thread.
7044 * When the thread finishes it sets MD_RECOVERY_DONE
7045 * and wakeups up this thread which will reap the thread and finish up.
7046 * This thread also removes any faulty devices (with nr_pending == 0).
7047 *
7048 * The overall approach is:
7049 * 1/ if the superblock needs updating, update it.
7050 * 2/ If a recovery thread is running, don't do anything else.
7051 * 3/ If recovery has finished, clean up, possibly marking spares active.
7052 * 4/ If there are any faulty devices, remove them.
7053 * 5/ If array is degraded, try to add spares devices
7054 * 6/ If array has spares or is not in-sync, start a resync thread.
7055 */
7056 void md_check_recovery(mddev_t *mddev)
7057 {
7058 mdk_rdev_t *rdev;
7059
7060
7061 if (mddev->bitmap)
7062 bitmap_daemon_work(mddev);
7063
7064 if (mddev->ro)
7065 return;
7066
7067 if (signal_pending(current)) {
7068 if (mddev->pers->sync_request && !mddev->external) {
7069 printk(KERN_INFO "md: %s in immediate safe mode\n",
7070 mdname(mddev));
7071 mddev->safemode = 2;
7072 }
7073 flush_signals(current);
7074 }
7075
7076 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7077 return;
7078 if ( ! (
7079 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7080 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7081 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7082 (mddev->external == 0 && mddev->safemode == 1) ||
7083 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7084 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7085 ))
7086 return;
7087
7088 if (mddev_trylock(mddev)) {
7089 int spares = 0;
7090
7091 if (mddev->ro) {
7092 /* Only thing we do on a ro array is remove
7093 * failed devices.
7094 */
7095 remove_and_add_spares(mddev);
7096 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7097 goto unlock;
7098 }
7099
7100 if (!mddev->external) {
7101 int did_change = 0;
7102 spin_lock_irq(&mddev->write_lock);
7103 if (mddev->safemode &&
7104 !atomic_read(&mddev->writes_pending) &&
7105 !mddev->in_sync &&
7106 mddev->recovery_cp == MaxSector) {
7107 mddev->in_sync = 1;
7108 did_change = 1;
7109 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7110 }
7111 if (mddev->safemode == 1)
7112 mddev->safemode = 0;
7113 spin_unlock_irq(&mddev->write_lock);
7114 if (did_change)
7115 sysfs_notify_dirent_safe(mddev->sysfs_state);
7116 }
7117
7118 if (mddev->flags)
7119 md_update_sb(mddev, 0);
7120
7121 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7122 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7123 /* resync/recovery still happening */
7124 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7125 goto unlock;
7126 }
7127 if (mddev->sync_thread) {
7128 /* resync has finished, collect result */
7129 md_unregister_thread(mddev->sync_thread);
7130 mddev->sync_thread = NULL;
7131 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7132 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7133 /* success...*/
7134 /* activate any spares */
7135 if (mddev->pers->spare_active(mddev))
7136 sysfs_notify(&mddev->kobj, NULL,
7137 "degraded");
7138 }
7139 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7140 mddev->pers->finish_reshape)
7141 mddev->pers->finish_reshape(mddev);
7142 md_update_sb(mddev, 1);
7143
7144 /* if array is no-longer degraded, then any saved_raid_disk
7145 * information must be scrapped
7146 */
7147 if (!mddev->degraded)
7148 list_for_each_entry(rdev, &mddev->disks, same_set)
7149 rdev->saved_raid_disk = -1;
7150
7151 mddev->recovery = 0;
7152 /* flag recovery needed just to double check */
7153 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7154 sysfs_notify_dirent_safe(mddev->sysfs_action);
7155 md_new_event(mddev);
7156 goto unlock;
7157 }
7158 /* Set RUNNING before clearing NEEDED to avoid
7159 * any transients in the value of "sync_action".
7160 */
7161 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7162 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7163 /* Clear some bits that don't mean anything, but
7164 * might be left set
7165 */
7166 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7167 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7168
7169 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7170 goto unlock;
7171 /* no recovery is running.
7172 * remove any failed drives, then
7173 * add spares if possible.
7174 * Spare are also removed and re-added, to allow
7175 * the personality to fail the re-add.
7176 */
7177
7178 if (mddev->reshape_position != MaxSector) {
7179 if (mddev->pers->check_reshape == NULL ||
7180 mddev->pers->check_reshape(mddev) != 0)
7181 /* Cannot proceed */
7182 goto unlock;
7183 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7184 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7185 } else if ((spares = remove_and_add_spares(mddev))) {
7186 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7187 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7188 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7189 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7190 } else if (mddev->recovery_cp < MaxSector) {
7191 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7192 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7193 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7194 /* nothing to be done ... */
7195 goto unlock;
7196
7197 if (mddev->pers->sync_request) {
7198 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7199 /* We are adding a device or devices to an array
7200 * which has the bitmap stored on all devices.
7201 * So make sure all bitmap pages get written
7202 */
7203 bitmap_write_all(mddev->bitmap);
7204 }
7205 mddev->sync_thread = md_register_thread(md_do_sync,
7206 mddev,
7207 "resync");
7208 if (!mddev->sync_thread) {
7209 printk(KERN_ERR "%s: could not start resync"
7210 " thread...\n",
7211 mdname(mddev));
7212 /* leave the spares where they are, it shouldn't hurt */
7213 mddev->recovery = 0;
7214 } else
7215 md_wakeup_thread(mddev->sync_thread);
7216 sysfs_notify_dirent_safe(mddev->sysfs_action);
7217 md_new_event(mddev);
7218 }
7219 unlock:
7220 if (!mddev->sync_thread) {
7221 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7222 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7223 &mddev->recovery))
7224 if (mddev->sysfs_action)
7225 sysfs_notify_dirent_safe(mddev->sysfs_action);
7226 }
7227 mddev_unlock(mddev);
7228 }
7229 }
7230
7231 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7232 {
7233 sysfs_notify_dirent_safe(rdev->sysfs_state);
7234 wait_event_timeout(rdev->blocked_wait,
7235 !test_bit(Blocked, &rdev->flags),
7236 msecs_to_jiffies(5000));
7237 rdev_dec_pending(rdev, mddev);
7238 }
7239 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7240
7241 static int md_notify_reboot(struct notifier_block *this,
7242 unsigned long code, void *x)
7243 {
7244 struct list_head *tmp;
7245 mddev_t *mddev;
7246
7247 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7248
7249 printk(KERN_INFO "md: stopping all md devices.\n");
7250
7251 for_each_mddev(mddev, tmp)
7252 if (mddev_trylock(mddev)) {
7253 /* Force a switch to readonly even array
7254 * appears to still be in use. Hence
7255 * the '100'.
7256 */
7257 md_set_readonly(mddev, 100);
7258 mddev_unlock(mddev);
7259 }
7260 /*
7261 * certain more exotic SCSI devices are known to be
7262 * volatile wrt too early system reboots. While the
7263 * right place to handle this issue is the given
7264 * driver, we do want to have a safe RAID driver ...
7265 */
7266 mdelay(1000*1);
7267 }
7268 return NOTIFY_DONE;
7269 }
7270
7271 static struct notifier_block md_notifier = {
7272 .notifier_call = md_notify_reboot,
7273 .next = NULL,
7274 .priority = INT_MAX, /* before any real devices */
7275 };
7276
7277 static void md_geninit(void)
7278 {
7279 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7280
7281 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7282 }
7283
7284 static int __init md_init(void)
7285 {
7286 int ret = -ENOMEM;
7287
7288 md_wq = alloc_workqueue("md", WQ_RESCUER, 0);
7289 if (!md_wq)
7290 goto err_wq;
7291
7292 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
7293 if (!md_misc_wq)
7294 goto err_misc_wq;
7295
7296 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
7297 goto err_md;
7298
7299 if ((ret = register_blkdev(0, "mdp")) < 0)
7300 goto err_mdp;
7301 mdp_major = ret;
7302
7303 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7304 md_probe, NULL, NULL);
7305 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7306 md_probe, NULL, NULL);
7307
7308 register_reboot_notifier(&md_notifier);
7309 raid_table_header = register_sysctl_table(raid_root_table);
7310
7311 md_geninit();
7312 return 0;
7313
7314 err_mdp:
7315 unregister_blkdev(MD_MAJOR, "md");
7316 err_md:
7317 destroy_workqueue(md_misc_wq);
7318 err_misc_wq:
7319 destroy_workqueue(md_wq);
7320 err_wq:
7321 return ret;
7322 }
7323
7324 #ifndef MODULE
7325
7326 /*
7327 * Searches all registered partitions for autorun RAID arrays
7328 * at boot time.
7329 */
7330
7331 static LIST_HEAD(all_detected_devices);
7332 struct detected_devices_node {
7333 struct list_head list;
7334 dev_t dev;
7335 };
7336
7337 void md_autodetect_dev(dev_t dev)
7338 {
7339 struct detected_devices_node *node_detected_dev;
7340
7341 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7342 if (node_detected_dev) {
7343 node_detected_dev->dev = dev;
7344 list_add_tail(&node_detected_dev->list, &all_detected_devices);
7345 } else {
7346 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7347 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7348 }
7349 }
7350
7351
7352 static void autostart_arrays(int part)
7353 {
7354 mdk_rdev_t *rdev;
7355 struct detected_devices_node *node_detected_dev;
7356 dev_t dev;
7357 int i_scanned, i_passed;
7358
7359 i_scanned = 0;
7360 i_passed = 0;
7361
7362 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7363
7364 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7365 i_scanned++;
7366 node_detected_dev = list_entry(all_detected_devices.next,
7367 struct detected_devices_node, list);
7368 list_del(&node_detected_dev->list);
7369 dev = node_detected_dev->dev;
7370 kfree(node_detected_dev);
7371 rdev = md_import_device(dev,0, 90);
7372 if (IS_ERR(rdev))
7373 continue;
7374
7375 if (test_bit(Faulty, &rdev->flags)) {
7376 MD_BUG();
7377 continue;
7378 }
7379 set_bit(AutoDetected, &rdev->flags);
7380 list_add(&rdev->same_set, &pending_raid_disks);
7381 i_passed++;
7382 }
7383
7384 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7385 i_scanned, i_passed);
7386
7387 autorun_devices(part);
7388 }
7389
7390 #endif /* !MODULE */
7391
7392 static __exit void md_exit(void)
7393 {
7394 mddev_t *mddev;
7395 struct list_head *tmp;
7396
7397 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7398 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7399
7400 unregister_blkdev(MD_MAJOR,"md");
7401 unregister_blkdev(mdp_major, "mdp");
7402 unregister_reboot_notifier(&md_notifier);
7403 unregister_sysctl_table(raid_table_header);
7404 remove_proc_entry("mdstat", NULL);
7405 for_each_mddev(mddev, tmp) {
7406 export_array(mddev);
7407 mddev->hold_active = 0;
7408 }
7409 destroy_workqueue(md_misc_wq);
7410 destroy_workqueue(md_wq);
7411 }
7412
7413 subsys_initcall(md_init);
7414 module_exit(md_exit)
7415
7416 static int get_ro(char *buffer, struct kernel_param *kp)
7417 {
7418 return sprintf(buffer, "%d", start_readonly);
7419 }
7420 static int set_ro(const char *val, struct kernel_param *kp)
7421 {
7422 char *e;
7423 int num = simple_strtoul(val, &e, 10);
7424 if (*val && (*e == '\0' || *e == '\n')) {
7425 start_readonly = num;
7426 return 0;
7427 }
7428 return -EINVAL;
7429 }
7430
7431 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7432 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7433
7434 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7435
7436 EXPORT_SYMBOL(register_md_personality);
7437 EXPORT_SYMBOL(unregister_md_personality);
7438 EXPORT_SYMBOL(md_error);
7439 EXPORT_SYMBOL(md_done_sync);
7440 EXPORT_SYMBOL(md_write_start);
7441 EXPORT_SYMBOL(md_write_end);
7442 EXPORT_SYMBOL(md_register_thread);
7443 EXPORT_SYMBOL(md_unregister_thread);
7444 EXPORT_SYMBOL(md_wakeup_thread);
7445 EXPORT_SYMBOL(md_check_recovery);
7446 MODULE_LICENSE("GPL");
7447 MODULE_DESCRIPTION("MD RAID framework");
7448 MODULE_ALIAS("md");
7449 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);