Merge tag 'md-3.3-fixes' of git://neil.brown.name/md
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
81 */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
90 * idle IO detection.
91 *
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
94 */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113 {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
119 },
120 {
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
126 },
127 { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131 {
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = S_IRUGO|S_IXUGO,
135 .child = raid_table,
136 },
137 { }
138 };
139
140 static ctl_table raid_root_table[] = {
141 {
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
146 },
147 { }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155 * like bio_clone, but with a local bio set
156 */
157
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160 struct mddev *mddev, **mddevp;
161
162 mddevp = (void*)bio;
163 mddev = mddevp[-1];
164
165 bio_free(bio, mddev->bio_set);
166 }
167
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169 struct mddev *mddev)
170 {
171 struct bio *b;
172 struct mddev **mddevp;
173
174 if (!mddev || !mddev->bio_set)
175 return bio_alloc(gfp_mask, nr_iovecs);
176
177 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178 mddev->bio_set);
179 if (!b)
180 return NULL;
181 mddevp = (void*)b;
182 mddevp[-1] = mddev;
183 b->bi_destructor = mddev_bio_destructor;
184 return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189 struct mddev *mddev)
190 {
191 struct bio *b;
192 struct mddev **mddevp;
193
194 if (!mddev || !mddev->bio_set)
195 return bio_clone(bio, gfp_mask);
196
197 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198 mddev->bio_set);
199 if (!b)
200 return NULL;
201 mddevp = (void*)b;
202 mddevp[-1] = mddev;
203 b->bi_destructor = mddev_bio_destructor;
204 __bio_clone(b, bio);
205 if (bio_integrity(bio)) {
206 int ret;
207
208 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209
210 if (ret < 0) {
211 bio_put(b);
212 return NULL;
213 }
214 }
215
216 return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222 /* 'bio' is a cloned bio which we need to trim to match
223 * the given offset and size.
224 * This requires adjusting bi_sector, bi_size, and bi_io_vec
225 */
226 int i;
227 struct bio_vec *bvec;
228 int sofar = 0;
229
230 size <<= 9;
231 if (offset == 0 && size == bio->bi_size)
232 return;
233
234 bio->bi_sector += offset;
235 bio->bi_size = size;
236 offset <<= 9;
237 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238
239 while (bio->bi_idx < bio->bi_vcnt &&
240 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 /* remove this whole bio_vec */
242 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243 bio->bi_idx++;
244 }
245 if (bio->bi_idx < bio->bi_vcnt) {
246 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248 }
249 /* avoid any complications with bi_idx being non-zero*/
250 if (bio->bi_idx) {
251 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 bio->bi_vcnt -= bio->bi_idx;
254 bio->bi_idx = 0;
255 }
256 /* Make sure vcnt and last bv are not too big */
257 bio_for_each_segment(bvec, bio, i) {
258 if (sofar + bvec->bv_len > size)
259 bvec->bv_len = size - sofar;
260 if (bvec->bv_len == 0) {
261 bio->bi_vcnt = i;
262 break;
263 }
264 sofar += bvec->bv_len;
265 }
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268
269 /*
270 * We have a system wide 'event count' that is incremented
271 * on any 'interesting' event, and readers of /proc/mdstat
272 * can use 'poll' or 'select' to find out when the event
273 * count increases.
274 *
275 * Events are:
276 * start array, stop array, error, add device, remove device,
277 * start build, activate spare
278 */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283 atomic_inc(&md_event_count);
284 wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287
288 /* Alternate version that can be called from interrupts
289 * when calling sysfs_notify isn't needed.
290 */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293 atomic_inc(&md_event_count);
294 wake_up(&md_event_waiters);
295 }
296
297 /*
298 * Enables to iterate over all existing md arrays
299 * all_mddevs_lock protects this list.
300 */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303
304
305 /*
306 * iterates through all used mddevs in the system.
307 * We take care to grab the all_mddevs_lock whenever navigating
308 * the list, and to always hold a refcount when unlocked.
309 * Any code which breaks out of this loop while own
310 * a reference to the current mddev and must mddev_put it.
311 */
312 #define for_each_mddev(_mddev,_tmp) \
313 \
314 for (({ spin_lock(&all_mddevs_lock); \
315 _tmp = all_mddevs.next; \
316 _mddev = NULL;}); \
317 ({ if (_tmp != &all_mddevs) \
318 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 spin_unlock(&all_mddevs_lock); \
320 if (_mddev) mddev_put(_mddev); \
321 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
322 _tmp != &all_mddevs;}); \
323 ({ spin_lock(&all_mddevs_lock); \
324 _tmp = _tmp->next;}) \
325 )
326
327
328 /* Rather than calling directly into the personality make_request function,
329 * IO requests come here first so that we can check if the device is
330 * being suspended pending a reconfiguration.
331 * We hold a refcount over the call to ->make_request. By the time that
332 * call has finished, the bio has been linked into some internal structure
333 * and so is visible to ->quiesce(), so we don't need the refcount any more.
334 */
335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337 const int rw = bio_data_dir(bio);
338 struct mddev *mddev = q->queuedata;
339 int cpu;
340 unsigned int sectors;
341
342 if (mddev == NULL || mddev->pers == NULL
343 || !mddev->ready) {
344 bio_io_error(bio);
345 return;
346 }
347 smp_rmb(); /* Ensure implications of 'active' are visible */
348 rcu_read_lock();
349 if (mddev->suspended) {
350 DEFINE_WAIT(__wait);
351 for (;;) {
352 prepare_to_wait(&mddev->sb_wait, &__wait,
353 TASK_UNINTERRUPTIBLE);
354 if (!mddev->suspended)
355 break;
356 rcu_read_unlock();
357 schedule();
358 rcu_read_lock();
359 }
360 finish_wait(&mddev->sb_wait, &__wait);
361 }
362 atomic_inc(&mddev->active_io);
363 rcu_read_unlock();
364
365 /*
366 * save the sectors now since our bio can
367 * go away inside make_request
368 */
369 sectors = bio_sectors(bio);
370 mddev->pers->make_request(mddev, bio);
371
372 cpu = part_stat_lock();
373 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375 part_stat_unlock();
376
377 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378 wake_up(&mddev->sb_wait);
379 }
380
381 /* mddev_suspend makes sure no new requests are submitted
382 * to the device, and that any requests that have been submitted
383 * are completely handled.
384 * Once ->stop is called and completes, the module will be completely
385 * unused.
386 */
387 void mddev_suspend(struct mddev *mddev)
388 {
389 BUG_ON(mddev->suspended);
390 mddev->suspended = 1;
391 synchronize_rcu();
392 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393 mddev->pers->quiesce(mddev, 1);
394 }
395 EXPORT_SYMBOL_GPL(mddev_suspend);
396
397 void mddev_resume(struct mddev *mddev)
398 {
399 mddev->suspended = 0;
400 wake_up(&mddev->sb_wait);
401 mddev->pers->quiesce(mddev, 0);
402
403 md_wakeup_thread(mddev->thread);
404 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
405 }
406 EXPORT_SYMBOL_GPL(mddev_resume);
407
408 int mddev_congested(struct mddev *mddev, int bits)
409 {
410 return mddev->suspended;
411 }
412 EXPORT_SYMBOL(mddev_congested);
413
414 /*
415 * Generic flush handling for md
416 */
417
418 static void md_end_flush(struct bio *bio, int err)
419 {
420 struct md_rdev *rdev = bio->bi_private;
421 struct mddev *mddev = rdev->mddev;
422
423 rdev_dec_pending(rdev, mddev);
424
425 if (atomic_dec_and_test(&mddev->flush_pending)) {
426 /* The pre-request flush has finished */
427 queue_work(md_wq, &mddev->flush_work);
428 }
429 bio_put(bio);
430 }
431
432 static void md_submit_flush_data(struct work_struct *ws);
433
434 static void submit_flushes(struct work_struct *ws)
435 {
436 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
437 struct md_rdev *rdev;
438
439 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
440 atomic_set(&mddev->flush_pending, 1);
441 rcu_read_lock();
442 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
443 if (rdev->raid_disk >= 0 &&
444 !test_bit(Faulty, &rdev->flags)) {
445 /* Take two references, one is dropped
446 * when request finishes, one after
447 * we reclaim rcu_read_lock
448 */
449 struct bio *bi;
450 atomic_inc(&rdev->nr_pending);
451 atomic_inc(&rdev->nr_pending);
452 rcu_read_unlock();
453 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
454 bi->bi_end_io = md_end_flush;
455 bi->bi_private = rdev;
456 bi->bi_bdev = rdev->bdev;
457 atomic_inc(&mddev->flush_pending);
458 submit_bio(WRITE_FLUSH, bi);
459 rcu_read_lock();
460 rdev_dec_pending(rdev, mddev);
461 }
462 rcu_read_unlock();
463 if (atomic_dec_and_test(&mddev->flush_pending))
464 queue_work(md_wq, &mddev->flush_work);
465 }
466
467 static void md_submit_flush_data(struct work_struct *ws)
468 {
469 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
470 struct bio *bio = mddev->flush_bio;
471
472 if (bio->bi_size == 0)
473 /* an empty barrier - all done */
474 bio_endio(bio, 0);
475 else {
476 bio->bi_rw &= ~REQ_FLUSH;
477 mddev->pers->make_request(mddev, bio);
478 }
479
480 mddev->flush_bio = NULL;
481 wake_up(&mddev->sb_wait);
482 }
483
484 void md_flush_request(struct mddev *mddev, struct bio *bio)
485 {
486 spin_lock_irq(&mddev->write_lock);
487 wait_event_lock_irq(mddev->sb_wait,
488 !mddev->flush_bio,
489 mddev->write_lock, /*nothing*/);
490 mddev->flush_bio = bio;
491 spin_unlock_irq(&mddev->write_lock);
492
493 INIT_WORK(&mddev->flush_work, submit_flushes);
494 queue_work(md_wq, &mddev->flush_work);
495 }
496 EXPORT_SYMBOL(md_flush_request);
497
498 /* Support for plugging.
499 * This mirrors the plugging support in request_queue, but does not
500 * require having a whole queue or request structures.
501 * We allocate an md_plug_cb for each md device and each thread it gets
502 * plugged on. This links tot the private plug_handle structure in the
503 * personality data where we keep a count of the number of outstanding
504 * plugs so other code can see if a plug is active.
505 */
506 struct md_plug_cb {
507 struct blk_plug_cb cb;
508 struct mddev *mddev;
509 };
510
511 static void plugger_unplug(struct blk_plug_cb *cb)
512 {
513 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
514 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
515 md_wakeup_thread(mdcb->mddev->thread);
516 kfree(mdcb);
517 }
518
519 /* Check that an unplug wakeup will come shortly.
520 * If not, wakeup the md thread immediately
521 */
522 int mddev_check_plugged(struct mddev *mddev)
523 {
524 struct blk_plug *plug = current->plug;
525 struct md_plug_cb *mdcb;
526
527 if (!plug)
528 return 0;
529
530 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
531 if (mdcb->cb.callback == plugger_unplug &&
532 mdcb->mddev == mddev) {
533 /* Already on the list, move to top */
534 if (mdcb != list_first_entry(&plug->cb_list,
535 struct md_plug_cb,
536 cb.list))
537 list_move(&mdcb->cb.list, &plug->cb_list);
538 return 1;
539 }
540 }
541 /* Not currently on the callback list */
542 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
543 if (!mdcb)
544 return 0;
545
546 mdcb->mddev = mddev;
547 mdcb->cb.callback = plugger_unplug;
548 atomic_inc(&mddev->plug_cnt);
549 list_add(&mdcb->cb.list, &plug->cb_list);
550 return 1;
551 }
552 EXPORT_SYMBOL_GPL(mddev_check_plugged);
553
554 static inline struct mddev *mddev_get(struct mddev *mddev)
555 {
556 atomic_inc(&mddev->active);
557 return mddev;
558 }
559
560 static void mddev_delayed_delete(struct work_struct *ws);
561
562 static void mddev_put(struct mddev *mddev)
563 {
564 struct bio_set *bs = NULL;
565
566 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
567 return;
568 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
569 mddev->ctime == 0 && !mddev->hold_active) {
570 /* Array is not configured at all, and not held active,
571 * so destroy it */
572 list_del_init(&mddev->all_mddevs);
573 bs = mddev->bio_set;
574 mddev->bio_set = NULL;
575 if (mddev->gendisk) {
576 /* We did a probe so need to clean up. Call
577 * queue_work inside the spinlock so that
578 * flush_workqueue() after mddev_find will
579 * succeed in waiting for the work to be done.
580 */
581 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
582 queue_work(md_misc_wq, &mddev->del_work);
583 } else
584 kfree(mddev);
585 }
586 spin_unlock(&all_mddevs_lock);
587 if (bs)
588 bioset_free(bs);
589 }
590
591 void mddev_init(struct mddev *mddev)
592 {
593 mutex_init(&mddev->open_mutex);
594 mutex_init(&mddev->reconfig_mutex);
595 mutex_init(&mddev->bitmap_info.mutex);
596 INIT_LIST_HEAD(&mddev->disks);
597 INIT_LIST_HEAD(&mddev->all_mddevs);
598 init_timer(&mddev->safemode_timer);
599 atomic_set(&mddev->active, 1);
600 atomic_set(&mddev->openers, 0);
601 atomic_set(&mddev->active_io, 0);
602 atomic_set(&mddev->plug_cnt, 0);
603 spin_lock_init(&mddev->write_lock);
604 atomic_set(&mddev->flush_pending, 0);
605 init_waitqueue_head(&mddev->sb_wait);
606 init_waitqueue_head(&mddev->recovery_wait);
607 mddev->reshape_position = MaxSector;
608 mddev->resync_min = 0;
609 mddev->resync_max = MaxSector;
610 mddev->level = LEVEL_NONE;
611 }
612 EXPORT_SYMBOL_GPL(mddev_init);
613
614 static struct mddev * mddev_find(dev_t unit)
615 {
616 struct mddev *mddev, *new = NULL;
617
618 if (unit && MAJOR(unit) != MD_MAJOR)
619 unit &= ~((1<<MdpMinorShift)-1);
620
621 retry:
622 spin_lock(&all_mddevs_lock);
623
624 if (unit) {
625 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
626 if (mddev->unit == unit) {
627 mddev_get(mddev);
628 spin_unlock(&all_mddevs_lock);
629 kfree(new);
630 return mddev;
631 }
632
633 if (new) {
634 list_add(&new->all_mddevs, &all_mddevs);
635 spin_unlock(&all_mddevs_lock);
636 new->hold_active = UNTIL_IOCTL;
637 return new;
638 }
639 } else if (new) {
640 /* find an unused unit number */
641 static int next_minor = 512;
642 int start = next_minor;
643 int is_free = 0;
644 int dev = 0;
645 while (!is_free) {
646 dev = MKDEV(MD_MAJOR, next_minor);
647 next_minor++;
648 if (next_minor > MINORMASK)
649 next_minor = 0;
650 if (next_minor == start) {
651 /* Oh dear, all in use. */
652 spin_unlock(&all_mddevs_lock);
653 kfree(new);
654 return NULL;
655 }
656
657 is_free = 1;
658 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
659 if (mddev->unit == dev) {
660 is_free = 0;
661 break;
662 }
663 }
664 new->unit = dev;
665 new->md_minor = MINOR(dev);
666 new->hold_active = UNTIL_STOP;
667 list_add(&new->all_mddevs, &all_mddevs);
668 spin_unlock(&all_mddevs_lock);
669 return new;
670 }
671 spin_unlock(&all_mddevs_lock);
672
673 new = kzalloc(sizeof(*new), GFP_KERNEL);
674 if (!new)
675 return NULL;
676
677 new->unit = unit;
678 if (MAJOR(unit) == MD_MAJOR)
679 new->md_minor = MINOR(unit);
680 else
681 new->md_minor = MINOR(unit) >> MdpMinorShift;
682
683 mddev_init(new);
684
685 goto retry;
686 }
687
688 static inline int mddev_lock(struct mddev * mddev)
689 {
690 return mutex_lock_interruptible(&mddev->reconfig_mutex);
691 }
692
693 static inline int mddev_is_locked(struct mddev *mddev)
694 {
695 return mutex_is_locked(&mddev->reconfig_mutex);
696 }
697
698 static inline int mddev_trylock(struct mddev * mddev)
699 {
700 return mutex_trylock(&mddev->reconfig_mutex);
701 }
702
703 static struct attribute_group md_redundancy_group;
704
705 static void mddev_unlock(struct mddev * mddev)
706 {
707 if (mddev->to_remove) {
708 /* These cannot be removed under reconfig_mutex as
709 * an access to the files will try to take reconfig_mutex
710 * while holding the file unremovable, which leads to
711 * a deadlock.
712 * So hold set sysfs_active while the remove in happeing,
713 * and anything else which might set ->to_remove or my
714 * otherwise change the sysfs namespace will fail with
715 * -EBUSY if sysfs_active is still set.
716 * We set sysfs_active under reconfig_mutex and elsewhere
717 * test it under the same mutex to ensure its correct value
718 * is seen.
719 */
720 struct attribute_group *to_remove = mddev->to_remove;
721 mddev->to_remove = NULL;
722 mddev->sysfs_active = 1;
723 mutex_unlock(&mddev->reconfig_mutex);
724
725 if (mddev->kobj.sd) {
726 if (to_remove != &md_redundancy_group)
727 sysfs_remove_group(&mddev->kobj, to_remove);
728 if (mddev->pers == NULL ||
729 mddev->pers->sync_request == NULL) {
730 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
731 if (mddev->sysfs_action)
732 sysfs_put(mddev->sysfs_action);
733 mddev->sysfs_action = NULL;
734 }
735 }
736 mddev->sysfs_active = 0;
737 } else
738 mutex_unlock(&mddev->reconfig_mutex);
739
740 /* As we've dropped the mutex we need a spinlock to
741 * make sure the thread doesn't disappear
742 */
743 spin_lock(&pers_lock);
744 md_wakeup_thread(mddev->thread);
745 spin_unlock(&pers_lock);
746 }
747
748 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
749 {
750 struct md_rdev *rdev;
751
752 list_for_each_entry(rdev, &mddev->disks, same_set)
753 if (rdev->desc_nr == nr)
754 return rdev;
755
756 return NULL;
757 }
758
759 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
760 {
761 struct md_rdev *rdev;
762
763 list_for_each_entry(rdev, &mddev->disks, same_set)
764 if (rdev->bdev->bd_dev == dev)
765 return rdev;
766
767 return NULL;
768 }
769
770 static struct md_personality *find_pers(int level, char *clevel)
771 {
772 struct md_personality *pers;
773 list_for_each_entry(pers, &pers_list, list) {
774 if (level != LEVEL_NONE && pers->level == level)
775 return pers;
776 if (strcmp(pers->name, clevel)==0)
777 return pers;
778 }
779 return NULL;
780 }
781
782 /* return the offset of the super block in 512byte sectors */
783 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
784 {
785 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
786 return MD_NEW_SIZE_SECTORS(num_sectors);
787 }
788
789 static int alloc_disk_sb(struct md_rdev * rdev)
790 {
791 if (rdev->sb_page)
792 MD_BUG();
793
794 rdev->sb_page = alloc_page(GFP_KERNEL);
795 if (!rdev->sb_page) {
796 printk(KERN_ALERT "md: out of memory.\n");
797 return -ENOMEM;
798 }
799
800 return 0;
801 }
802
803 static void free_disk_sb(struct md_rdev * rdev)
804 {
805 if (rdev->sb_page) {
806 put_page(rdev->sb_page);
807 rdev->sb_loaded = 0;
808 rdev->sb_page = NULL;
809 rdev->sb_start = 0;
810 rdev->sectors = 0;
811 }
812 if (rdev->bb_page) {
813 put_page(rdev->bb_page);
814 rdev->bb_page = NULL;
815 }
816 }
817
818
819 static void super_written(struct bio *bio, int error)
820 {
821 struct md_rdev *rdev = bio->bi_private;
822 struct mddev *mddev = rdev->mddev;
823
824 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
825 printk("md: super_written gets error=%d, uptodate=%d\n",
826 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
827 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
828 md_error(mddev, rdev);
829 }
830
831 if (atomic_dec_and_test(&mddev->pending_writes))
832 wake_up(&mddev->sb_wait);
833 bio_put(bio);
834 }
835
836 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
837 sector_t sector, int size, struct page *page)
838 {
839 /* write first size bytes of page to sector of rdev
840 * Increment mddev->pending_writes before returning
841 * and decrement it on completion, waking up sb_wait
842 * if zero is reached.
843 * If an error occurred, call md_error
844 */
845 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
846
847 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
848 bio->bi_sector = sector;
849 bio_add_page(bio, page, size, 0);
850 bio->bi_private = rdev;
851 bio->bi_end_io = super_written;
852
853 atomic_inc(&mddev->pending_writes);
854 submit_bio(WRITE_FLUSH_FUA, bio);
855 }
856
857 void md_super_wait(struct mddev *mddev)
858 {
859 /* wait for all superblock writes that were scheduled to complete */
860 DEFINE_WAIT(wq);
861 for(;;) {
862 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
863 if (atomic_read(&mddev->pending_writes)==0)
864 break;
865 schedule();
866 }
867 finish_wait(&mddev->sb_wait, &wq);
868 }
869
870 static void bi_complete(struct bio *bio, int error)
871 {
872 complete((struct completion*)bio->bi_private);
873 }
874
875 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
876 struct page *page, int rw, bool metadata_op)
877 {
878 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
879 struct completion event;
880 int ret;
881
882 rw |= REQ_SYNC;
883
884 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
885 rdev->meta_bdev : rdev->bdev;
886 if (metadata_op)
887 bio->bi_sector = sector + rdev->sb_start;
888 else
889 bio->bi_sector = sector + rdev->data_offset;
890 bio_add_page(bio, page, size, 0);
891 init_completion(&event);
892 bio->bi_private = &event;
893 bio->bi_end_io = bi_complete;
894 submit_bio(rw, bio);
895 wait_for_completion(&event);
896
897 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
898 bio_put(bio);
899 return ret;
900 }
901 EXPORT_SYMBOL_GPL(sync_page_io);
902
903 static int read_disk_sb(struct md_rdev * rdev, int size)
904 {
905 char b[BDEVNAME_SIZE];
906 if (!rdev->sb_page) {
907 MD_BUG();
908 return -EINVAL;
909 }
910 if (rdev->sb_loaded)
911 return 0;
912
913
914 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
915 goto fail;
916 rdev->sb_loaded = 1;
917 return 0;
918
919 fail:
920 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
921 bdevname(rdev->bdev,b));
922 return -EINVAL;
923 }
924
925 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
926 {
927 return sb1->set_uuid0 == sb2->set_uuid0 &&
928 sb1->set_uuid1 == sb2->set_uuid1 &&
929 sb1->set_uuid2 == sb2->set_uuid2 &&
930 sb1->set_uuid3 == sb2->set_uuid3;
931 }
932
933 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
934 {
935 int ret;
936 mdp_super_t *tmp1, *tmp2;
937
938 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
939 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
940
941 if (!tmp1 || !tmp2) {
942 ret = 0;
943 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
944 goto abort;
945 }
946
947 *tmp1 = *sb1;
948 *tmp2 = *sb2;
949
950 /*
951 * nr_disks is not constant
952 */
953 tmp1->nr_disks = 0;
954 tmp2->nr_disks = 0;
955
956 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
957 abort:
958 kfree(tmp1);
959 kfree(tmp2);
960 return ret;
961 }
962
963
964 static u32 md_csum_fold(u32 csum)
965 {
966 csum = (csum & 0xffff) + (csum >> 16);
967 return (csum & 0xffff) + (csum >> 16);
968 }
969
970 static unsigned int calc_sb_csum(mdp_super_t * sb)
971 {
972 u64 newcsum = 0;
973 u32 *sb32 = (u32*)sb;
974 int i;
975 unsigned int disk_csum, csum;
976
977 disk_csum = sb->sb_csum;
978 sb->sb_csum = 0;
979
980 for (i = 0; i < MD_SB_BYTES/4 ; i++)
981 newcsum += sb32[i];
982 csum = (newcsum & 0xffffffff) + (newcsum>>32);
983
984
985 #ifdef CONFIG_ALPHA
986 /* This used to use csum_partial, which was wrong for several
987 * reasons including that different results are returned on
988 * different architectures. It isn't critical that we get exactly
989 * the same return value as before (we always csum_fold before
990 * testing, and that removes any differences). However as we
991 * know that csum_partial always returned a 16bit value on
992 * alphas, do a fold to maximise conformity to previous behaviour.
993 */
994 sb->sb_csum = md_csum_fold(disk_csum);
995 #else
996 sb->sb_csum = disk_csum;
997 #endif
998 return csum;
999 }
1000
1001
1002 /*
1003 * Handle superblock details.
1004 * We want to be able to handle multiple superblock formats
1005 * so we have a common interface to them all, and an array of
1006 * different handlers.
1007 * We rely on user-space to write the initial superblock, and support
1008 * reading and updating of superblocks.
1009 * Interface methods are:
1010 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1011 * loads and validates a superblock on dev.
1012 * if refdev != NULL, compare superblocks on both devices
1013 * Return:
1014 * 0 - dev has a superblock that is compatible with refdev
1015 * 1 - dev has a superblock that is compatible and newer than refdev
1016 * so dev should be used as the refdev in future
1017 * -EINVAL superblock incompatible or invalid
1018 * -othererror e.g. -EIO
1019 *
1020 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1021 * Verify that dev is acceptable into mddev.
1022 * The first time, mddev->raid_disks will be 0, and data from
1023 * dev should be merged in. Subsequent calls check that dev
1024 * is new enough. Return 0 or -EINVAL
1025 *
1026 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1027 * Update the superblock for rdev with data in mddev
1028 * This does not write to disc.
1029 *
1030 */
1031
1032 struct super_type {
1033 char *name;
1034 struct module *owner;
1035 int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1036 int minor_version);
1037 int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1038 void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1039 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1040 sector_t num_sectors);
1041 };
1042
1043 /*
1044 * Check that the given mddev has no bitmap.
1045 *
1046 * This function is called from the run method of all personalities that do not
1047 * support bitmaps. It prints an error message and returns non-zero if mddev
1048 * has a bitmap. Otherwise, it returns 0.
1049 *
1050 */
1051 int md_check_no_bitmap(struct mddev *mddev)
1052 {
1053 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1054 return 0;
1055 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1056 mdname(mddev), mddev->pers->name);
1057 return 1;
1058 }
1059 EXPORT_SYMBOL(md_check_no_bitmap);
1060
1061 /*
1062 * load_super for 0.90.0
1063 */
1064 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1065 {
1066 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1067 mdp_super_t *sb;
1068 int ret;
1069
1070 /*
1071 * Calculate the position of the superblock (512byte sectors),
1072 * it's at the end of the disk.
1073 *
1074 * It also happens to be a multiple of 4Kb.
1075 */
1076 rdev->sb_start = calc_dev_sboffset(rdev);
1077
1078 ret = read_disk_sb(rdev, MD_SB_BYTES);
1079 if (ret) return ret;
1080
1081 ret = -EINVAL;
1082
1083 bdevname(rdev->bdev, b);
1084 sb = page_address(rdev->sb_page);
1085
1086 if (sb->md_magic != MD_SB_MAGIC) {
1087 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1088 b);
1089 goto abort;
1090 }
1091
1092 if (sb->major_version != 0 ||
1093 sb->minor_version < 90 ||
1094 sb->minor_version > 91) {
1095 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1096 sb->major_version, sb->minor_version,
1097 b);
1098 goto abort;
1099 }
1100
1101 if (sb->raid_disks <= 0)
1102 goto abort;
1103
1104 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1105 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1106 b);
1107 goto abort;
1108 }
1109
1110 rdev->preferred_minor = sb->md_minor;
1111 rdev->data_offset = 0;
1112 rdev->sb_size = MD_SB_BYTES;
1113 rdev->badblocks.shift = -1;
1114
1115 if (sb->level == LEVEL_MULTIPATH)
1116 rdev->desc_nr = -1;
1117 else
1118 rdev->desc_nr = sb->this_disk.number;
1119
1120 if (!refdev) {
1121 ret = 1;
1122 } else {
1123 __u64 ev1, ev2;
1124 mdp_super_t *refsb = page_address(refdev->sb_page);
1125 if (!uuid_equal(refsb, sb)) {
1126 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1127 b, bdevname(refdev->bdev,b2));
1128 goto abort;
1129 }
1130 if (!sb_equal(refsb, sb)) {
1131 printk(KERN_WARNING "md: %s has same UUID"
1132 " but different superblock to %s\n",
1133 b, bdevname(refdev->bdev, b2));
1134 goto abort;
1135 }
1136 ev1 = md_event(sb);
1137 ev2 = md_event(refsb);
1138 if (ev1 > ev2)
1139 ret = 1;
1140 else
1141 ret = 0;
1142 }
1143 rdev->sectors = rdev->sb_start;
1144 /* Limit to 4TB as metadata cannot record more than that */
1145 if (rdev->sectors >= (2ULL << 32))
1146 rdev->sectors = (2ULL << 32) - 2;
1147
1148 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1149 /* "this cannot possibly happen" ... */
1150 ret = -EINVAL;
1151
1152 abort:
1153 return ret;
1154 }
1155
1156 /*
1157 * validate_super for 0.90.0
1158 */
1159 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1160 {
1161 mdp_disk_t *desc;
1162 mdp_super_t *sb = page_address(rdev->sb_page);
1163 __u64 ev1 = md_event(sb);
1164
1165 rdev->raid_disk = -1;
1166 clear_bit(Faulty, &rdev->flags);
1167 clear_bit(In_sync, &rdev->flags);
1168 clear_bit(WriteMostly, &rdev->flags);
1169
1170 if (mddev->raid_disks == 0) {
1171 mddev->major_version = 0;
1172 mddev->minor_version = sb->minor_version;
1173 mddev->patch_version = sb->patch_version;
1174 mddev->external = 0;
1175 mddev->chunk_sectors = sb->chunk_size >> 9;
1176 mddev->ctime = sb->ctime;
1177 mddev->utime = sb->utime;
1178 mddev->level = sb->level;
1179 mddev->clevel[0] = 0;
1180 mddev->layout = sb->layout;
1181 mddev->raid_disks = sb->raid_disks;
1182 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1183 mddev->events = ev1;
1184 mddev->bitmap_info.offset = 0;
1185 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1186
1187 if (mddev->minor_version >= 91) {
1188 mddev->reshape_position = sb->reshape_position;
1189 mddev->delta_disks = sb->delta_disks;
1190 mddev->new_level = sb->new_level;
1191 mddev->new_layout = sb->new_layout;
1192 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1193 } else {
1194 mddev->reshape_position = MaxSector;
1195 mddev->delta_disks = 0;
1196 mddev->new_level = mddev->level;
1197 mddev->new_layout = mddev->layout;
1198 mddev->new_chunk_sectors = mddev->chunk_sectors;
1199 }
1200
1201 if (sb->state & (1<<MD_SB_CLEAN))
1202 mddev->recovery_cp = MaxSector;
1203 else {
1204 if (sb->events_hi == sb->cp_events_hi &&
1205 sb->events_lo == sb->cp_events_lo) {
1206 mddev->recovery_cp = sb->recovery_cp;
1207 } else
1208 mddev->recovery_cp = 0;
1209 }
1210
1211 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1212 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1213 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1214 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1215
1216 mddev->max_disks = MD_SB_DISKS;
1217
1218 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1219 mddev->bitmap_info.file == NULL)
1220 mddev->bitmap_info.offset =
1221 mddev->bitmap_info.default_offset;
1222
1223 } else if (mddev->pers == NULL) {
1224 /* Insist on good event counter while assembling, except
1225 * for spares (which don't need an event count) */
1226 ++ev1;
1227 if (sb->disks[rdev->desc_nr].state & (
1228 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1229 if (ev1 < mddev->events)
1230 return -EINVAL;
1231 } else if (mddev->bitmap) {
1232 /* if adding to array with a bitmap, then we can accept an
1233 * older device ... but not too old.
1234 */
1235 if (ev1 < mddev->bitmap->events_cleared)
1236 return 0;
1237 } else {
1238 if (ev1 < mddev->events)
1239 /* just a hot-add of a new device, leave raid_disk at -1 */
1240 return 0;
1241 }
1242
1243 if (mddev->level != LEVEL_MULTIPATH) {
1244 desc = sb->disks + rdev->desc_nr;
1245
1246 if (desc->state & (1<<MD_DISK_FAULTY))
1247 set_bit(Faulty, &rdev->flags);
1248 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1249 desc->raid_disk < mddev->raid_disks */) {
1250 set_bit(In_sync, &rdev->flags);
1251 rdev->raid_disk = desc->raid_disk;
1252 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1253 /* active but not in sync implies recovery up to
1254 * reshape position. We don't know exactly where
1255 * that is, so set to zero for now */
1256 if (mddev->minor_version >= 91) {
1257 rdev->recovery_offset = 0;
1258 rdev->raid_disk = desc->raid_disk;
1259 }
1260 }
1261 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1262 set_bit(WriteMostly, &rdev->flags);
1263 } else /* MULTIPATH are always insync */
1264 set_bit(In_sync, &rdev->flags);
1265 return 0;
1266 }
1267
1268 /*
1269 * sync_super for 0.90.0
1270 */
1271 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1272 {
1273 mdp_super_t *sb;
1274 struct md_rdev *rdev2;
1275 int next_spare = mddev->raid_disks;
1276
1277
1278 /* make rdev->sb match mddev data..
1279 *
1280 * 1/ zero out disks
1281 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1282 * 3/ any empty disks < next_spare become removed
1283 *
1284 * disks[0] gets initialised to REMOVED because
1285 * we cannot be sure from other fields if it has
1286 * been initialised or not.
1287 */
1288 int i;
1289 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1290
1291 rdev->sb_size = MD_SB_BYTES;
1292
1293 sb = page_address(rdev->sb_page);
1294
1295 memset(sb, 0, sizeof(*sb));
1296
1297 sb->md_magic = MD_SB_MAGIC;
1298 sb->major_version = mddev->major_version;
1299 sb->patch_version = mddev->patch_version;
1300 sb->gvalid_words = 0; /* ignored */
1301 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1302 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1303 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1304 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1305
1306 sb->ctime = mddev->ctime;
1307 sb->level = mddev->level;
1308 sb->size = mddev->dev_sectors / 2;
1309 sb->raid_disks = mddev->raid_disks;
1310 sb->md_minor = mddev->md_minor;
1311 sb->not_persistent = 0;
1312 sb->utime = mddev->utime;
1313 sb->state = 0;
1314 sb->events_hi = (mddev->events>>32);
1315 sb->events_lo = (u32)mddev->events;
1316
1317 if (mddev->reshape_position == MaxSector)
1318 sb->minor_version = 90;
1319 else {
1320 sb->minor_version = 91;
1321 sb->reshape_position = mddev->reshape_position;
1322 sb->new_level = mddev->new_level;
1323 sb->delta_disks = mddev->delta_disks;
1324 sb->new_layout = mddev->new_layout;
1325 sb->new_chunk = mddev->new_chunk_sectors << 9;
1326 }
1327 mddev->minor_version = sb->minor_version;
1328 if (mddev->in_sync)
1329 {
1330 sb->recovery_cp = mddev->recovery_cp;
1331 sb->cp_events_hi = (mddev->events>>32);
1332 sb->cp_events_lo = (u32)mddev->events;
1333 if (mddev->recovery_cp == MaxSector)
1334 sb->state = (1<< MD_SB_CLEAN);
1335 } else
1336 sb->recovery_cp = 0;
1337
1338 sb->layout = mddev->layout;
1339 sb->chunk_size = mddev->chunk_sectors << 9;
1340
1341 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1342 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1343
1344 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1345 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1346 mdp_disk_t *d;
1347 int desc_nr;
1348 int is_active = test_bit(In_sync, &rdev2->flags);
1349
1350 if (rdev2->raid_disk >= 0 &&
1351 sb->minor_version >= 91)
1352 /* we have nowhere to store the recovery_offset,
1353 * but if it is not below the reshape_position,
1354 * we can piggy-back on that.
1355 */
1356 is_active = 1;
1357 if (rdev2->raid_disk < 0 ||
1358 test_bit(Faulty, &rdev2->flags))
1359 is_active = 0;
1360 if (is_active)
1361 desc_nr = rdev2->raid_disk;
1362 else
1363 desc_nr = next_spare++;
1364 rdev2->desc_nr = desc_nr;
1365 d = &sb->disks[rdev2->desc_nr];
1366 nr_disks++;
1367 d->number = rdev2->desc_nr;
1368 d->major = MAJOR(rdev2->bdev->bd_dev);
1369 d->minor = MINOR(rdev2->bdev->bd_dev);
1370 if (is_active)
1371 d->raid_disk = rdev2->raid_disk;
1372 else
1373 d->raid_disk = rdev2->desc_nr; /* compatibility */
1374 if (test_bit(Faulty, &rdev2->flags))
1375 d->state = (1<<MD_DISK_FAULTY);
1376 else if (is_active) {
1377 d->state = (1<<MD_DISK_ACTIVE);
1378 if (test_bit(In_sync, &rdev2->flags))
1379 d->state |= (1<<MD_DISK_SYNC);
1380 active++;
1381 working++;
1382 } else {
1383 d->state = 0;
1384 spare++;
1385 working++;
1386 }
1387 if (test_bit(WriteMostly, &rdev2->flags))
1388 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1389 }
1390 /* now set the "removed" and "faulty" bits on any missing devices */
1391 for (i=0 ; i < mddev->raid_disks ; i++) {
1392 mdp_disk_t *d = &sb->disks[i];
1393 if (d->state == 0 && d->number == 0) {
1394 d->number = i;
1395 d->raid_disk = i;
1396 d->state = (1<<MD_DISK_REMOVED);
1397 d->state |= (1<<MD_DISK_FAULTY);
1398 failed++;
1399 }
1400 }
1401 sb->nr_disks = nr_disks;
1402 sb->active_disks = active;
1403 sb->working_disks = working;
1404 sb->failed_disks = failed;
1405 sb->spare_disks = spare;
1406
1407 sb->this_disk = sb->disks[rdev->desc_nr];
1408 sb->sb_csum = calc_sb_csum(sb);
1409 }
1410
1411 /*
1412 * rdev_size_change for 0.90.0
1413 */
1414 static unsigned long long
1415 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1416 {
1417 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1418 return 0; /* component must fit device */
1419 if (rdev->mddev->bitmap_info.offset)
1420 return 0; /* can't move bitmap */
1421 rdev->sb_start = calc_dev_sboffset(rdev);
1422 if (!num_sectors || num_sectors > rdev->sb_start)
1423 num_sectors = rdev->sb_start;
1424 /* Limit to 4TB as metadata cannot record more than that.
1425 * 4TB == 2^32 KB, or 2*2^32 sectors.
1426 */
1427 if (num_sectors >= (2ULL << 32))
1428 num_sectors = (2ULL << 32) - 2;
1429 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1430 rdev->sb_page);
1431 md_super_wait(rdev->mddev);
1432 return num_sectors;
1433 }
1434
1435
1436 /*
1437 * version 1 superblock
1438 */
1439
1440 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1441 {
1442 __le32 disk_csum;
1443 u32 csum;
1444 unsigned long long newcsum;
1445 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1446 __le32 *isuper = (__le32*)sb;
1447 int i;
1448
1449 disk_csum = sb->sb_csum;
1450 sb->sb_csum = 0;
1451 newcsum = 0;
1452 for (i=0; size>=4; size -= 4 )
1453 newcsum += le32_to_cpu(*isuper++);
1454
1455 if (size == 2)
1456 newcsum += le16_to_cpu(*(__le16*) isuper);
1457
1458 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1459 sb->sb_csum = disk_csum;
1460 return cpu_to_le32(csum);
1461 }
1462
1463 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1464 int acknowledged);
1465 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1466 {
1467 struct mdp_superblock_1 *sb;
1468 int ret;
1469 sector_t sb_start;
1470 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1471 int bmask;
1472
1473 /*
1474 * Calculate the position of the superblock in 512byte sectors.
1475 * It is always aligned to a 4K boundary and
1476 * depeding on minor_version, it can be:
1477 * 0: At least 8K, but less than 12K, from end of device
1478 * 1: At start of device
1479 * 2: 4K from start of device.
1480 */
1481 switch(minor_version) {
1482 case 0:
1483 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1484 sb_start -= 8*2;
1485 sb_start &= ~(sector_t)(4*2-1);
1486 break;
1487 case 1:
1488 sb_start = 0;
1489 break;
1490 case 2:
1491 sb_start = 8;
1492 break;
1493 default:
1494 return -EINVAL;
1495 }
1496 rdev->sb_start = sb_start;
1497
1498 /* superblock is rarely larger than 1K, but it can be larger,
1499 * and it is safe to read 4k, so we do that
1500 */
1501 ret = read_disk_sb(rdev, 4096);
1502 if (ret) return ret;
1503
1504
1505 sb = page_address(rdev->sb_page);
1506
1507 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1508 sb->major_version != cpu_to_le32(1) ||
1509 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1510 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1511 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1512 return -EINVAL;
1513
1514 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1515 printk("md: invalid superblock checksum on %s\n",
1516 bdevname(rdev->bdev,b));
1517 return -EINVAL;
1518 }
1519 if (le64_to_cpu(sb->data_size) < 10) {
1520 printk("md: data_size too small on %s\n",
1521 bdevname(rdev->bdev,b));
1522 return -EINVAL;
1523 }
1524
1525 rdev->preferred_minor = 0xffff;
1526 rdev->data_offset = le64_to_cpu(sb->data_offset);
1527 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1528
1529 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1530 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1531 if (rdev->sb_size & bmask)
1532 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1533
1534 if (minor_version
1535 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1536 return -EINVAL;
1537
1538 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1539 rdev->desc_nr = -1;
1540 else
1541 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1542
1543 if (!rdev->bb_page) {
1544 rdev->bb_page = alloc_page(GFP_KERNEL);
1545 if (!rdev->bb_page)
1546 return -ENOMEM;
1547 }
1548 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1549 rdev->badblocks.count == 0) {
1550 /* need to load the bad block list.
1551 * Currently we limit it to one page.
1552 */
1553 s32 offset;
1554 sector_t bb_sector;
1555 u64 *bbp;
1556 int i;
1557 int sectors = le16_to_cpu(sb->bblog_size);
1558 if (sectors > (PAGE_SIZE / 512))
1559 return -EINVAL;
1560 offset = le32_to_cpu(sb->bblog_offset);
1561 if (offset == 0)
1562 return -EINVAL;
1563 bb_sector = (long long)offset;
1564 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1565 rdev->bb_page, READ, true))
1566 return -EIO;
1567 bbp = (u64 *)page_address(rdev->bb_page);
1568 rdev->badblocks.shift = sb->bblog_shift;
1569 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1570 u64 bb = le64_to_cpu(*bbp);
1571 int count = bb & (0x3ff);
1572 u64 sector = bb >> 10;
1573 sector <<= sb->bblog_shift;
1574 count <<= sb->bblog_shift;
1575 if (bb + 1 == 0)
1576 break;
1577 if (md_set_badblocks(&rdev->badblocks,
1578 sector, count, 1) == 0)
1579 return -EINVAL;
1580 }
1581 } else if (sb->bblog_offset == 0)
1582 rdev->badblocks.shift = -1;
1583
1584 if (!refdev) {
1585 ret = 1;
1586 } else {
1587 __u64 ev1, ev2;
1588 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1589
1590 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1591 sb->level != refsb->level ||
1592 sb->layout != refsb->layout ||
1593 sb->chunksize != refsb->chunksize) {
1594 printk(KERN_WARNING "md: %s has strangely different"
1595 " superblock to %s\n",
1596 bdevname(rdev->bdev,b),
1597 bdevname(refdev->bdev,b2));
1598 return -EINVAL;
1599 }
1600 ev1 = le64_to_cpu(sb->events);
1601 ev2 = le64_to_cpu(refsb->events);
1602
1603 if (ev1 > ev2)
1604 ret = 1;
1605 else
1606 ret = 0;
1607 }
1608 if (minor_version)
1609 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1610 le64_to_cpu(sb->data_offset);
1611 else
1612 rdev->sectors = rdev->sb_start;
1613 if (rdev->sectors < le64_to_cpu(sb->data_size))
1614 return -EINVAL;
1615 rdev->sectors = le64_to_cpu(sb->data_size);
1616 if (le64_to_cpu(sb->size) > rdev->sectors)
1617 return -EINVAL;
1618 return ret;
1619 }
1620
1621 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1622 {
1623 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1624 __u64 ev1 = le64_to_cpu(sb->events);
1625
1626 rdev->raid_disk = -1;
1627 clear_bit(Faulty, &rdev->flags);
1628 clear_bit(In_sync, &rdev->flags);
1629 clear_bit(WriteMostly, &rdev->flags);
1630
1631 if (mddev->raid_disks == 0) {
1632 mddev->major_version = 1;
1633 mddev->patch_version = 0;
1634 mddev->external = 0;
1635 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1636 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1637 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1638 mddev->level = le32_to_cpu(sb->level);
1639 mddev->clevel[0] = 0;
1640 mddev->layout = le32_to_cpu(sb->layout);
1641 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1642 mddev->dev_sectors = le64_to_cpu(sb->size);
1643 mddev->events = ev1;
1644 mddev->bitmap_info.offset = 0;
1645 mddev->bitmap_info.default_offset = 1024 >> 9;
1646
1647 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1648 memcpy(mddev->uuid, sb->set_uuid, 16);
1649
1650 mddev->max_disks = (4096-256)/2;
1651
1652 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1653 mddev->bitmap_info.file == NULL )
1654 mddev->bitmap_info.offset =
1655 (__s32)le32_to_cpu(sb->bitmap_offset);
1656
1657 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1658 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1659 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1660 mddev->new_level = le32_to_cpu(sb->new_level);
1661 mddev->new_layout = le32_to_cpu(sb->new_layout);
1662 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1663 } else {
1664 mddev->reshape_position = MaxSector;
1665 mddev->delta_disks = 0;
1666 mddev->new_level = mddev->level;
1667 mddev->new_layout = mddev->layout;
1668 mddev->new_chunk_sectors = mddev->chunk_sectors;
1669 }
1670
1671 } else if (mddev->pers == NULL) {
1672 /* Insist of good event counter while assembling, except for
1673 * spares (which don't need an event count) */
1674 ++ev1;
1675 if (rdev->desc_nr >= 0 &&
1676 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1677 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1678 if (ev1 < mddev->events)
1679 return -EINVAL;
1680 } else if (mddev->bitmap) {
1681 /* If adding to array with a bitmap, then we can accept an
1682 * older device, but not too old.
1683 */
1684 if (ev1 < mddev->bitmap->events_cleared)
1685 return 0;
1686 } else {
1687 if (ev1 < mddev->events)
1688 /* just a hot-add of a new device, leave raid_disk at -1 */
1689 return 0;
1690 }
1691 if (mddev->level != LEVEL_MULTIPATH) {
1692 int role;
1693 if (rdev->desc_nr < 0 ||
1694 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1695 role = 0xffff;
1696 rdev->desc_nr = -1;
1697 } else
1698 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1699 switch(role) {
1700 case 0xffff: /* spare */
1701 break;
1702 case 0xfffe: /* faulty */
1703 set_bit(Faulty, &rdev->flags);
1704 break;
1705 default:
1706 if ((le32_to_cpu(sb->feature_map) &
1707 MD_FEATURE_RECOVERY_OFFSET))
1708 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1709 else
1710 set_bit(In_sync, &rdev->flags);
1711 rdev->raid_disk = role;
1712 break;
1713 }
1714 if (sb->devflags & WriteMostly1)
1715 set_bit(WriteMostly, &rdev->flags);
1716 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1717 set_bit(Replacement, &rdev->flags);
1718 } else /* MULTIPATH are always insync */
1719 set_bit(In_sync, &rdev->flags);
1720
1721 return 0;
1722 }
1723
1724 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1725 {
1726 struct mdp_superblock_1 *sb;
1727 struct md_rdev *rdev2;
1728 int max_dev, i;
1729 /* make rdev->sb match mddev and rdev data. */
1730
1731 sb = page_address(rdev->sb_page);
1732
1733 sb->feature_map = 0;
1734 sb->pad0 = 0;
1735 sb->recovery_offset = cpu_to_le64(0);
1736 memset(sb->pad1, 0, sizeof(sb->pad1));
1737 memset(sb->pad3, 0, sizeof(sb->pad3));
1738
1739 sb->utime = cpu_to_le64((__u64)mddev->utime);
1740 sb->events = cpu_to_le64(mddev->events);
1741 if (mddev->in_sync)
1742 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1743 else
1744 sb->resync_offset = cpu_to_le64(0);
1745
1746 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1747
1748 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1749 sb->size = cpu_to_le64(mddev->dev_sectors);
1750 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1751 sb->level = cpu_to_le32(mddev->level);
1752 sb->layout = cpu_to_le32(mddev->layout);
1753
1754 if (test_bit(WriteMostly, &rdev->flags))
1755 sb->devflags |= WriteMostly1;
1756 else
1757 sb->devflags &= ~WriteMostly1;
1758
1759 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1760 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1761 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1762 }
1763
1764 if (rdev->raid_disk >= 0 &&
1765 !test_bit(In_sync, &rdev->flags)) {
1766 sb->feature_map |=
1767 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1768 sb->recovery_offset =
1769 cpu_to_le64(rdev->recovery_offset);
1770 }
1771 if (test_bit(Replacement, &rdev->flags))
1772 sb->feature_map |=
1773 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1774
1775 if (mddev->reshape_position != MaxSector) {
1776 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1777 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1778 sb->new_layout = cpu_to_le32(mddev->new_layout);
1779 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1780 sb->new_level = cpu_to_le32(mddev->new_level);
1781 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1782 }
1783
1784 if (rdev->badblocks.count == 0)
1785 /* Nothing to do for bad blocks*/ ;
1786 else if (sb->bblog_offset == 0)
1787 /* Cannot record bad blocks on this device */
1788 md_error(mddev, rdev);
1789 else {
1790 struct badblocks *bb = &rdev->badblocks;
1791 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1792 u64 *p = bb->page;
1793 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1794 if (bb->changed) {
1795 unsigned seq;
1796
1797 retry:
1798 seq = read_seqbegin(&bb->lock);
1799
1800 memset(bbp, 0xff, PAGE_SIZE);
1801
1802 for (i = 0 ; i < bb->count ; i++) {
1803 u64 internal_bb = *p++;
1804 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1805 | BB_LEN(internal_bb));
1806 *bbp++ = cpu_to_le64(store_bb);
1807 }
1808 if (read_seqretry(&bb->lock, seq))
1809 goto retry;
1810
1811 bb->sector = (rdev->sb_start +
1812 (int)le32_to_cpu(sb->bblog_offset));
1813 bb->size = le16_to_cpu(sb->bblog_size);
1814 bb->changed = 0;
1815 }
1816 }
1817
1818 max_dev = 0;
1819 list_for_each_entry(rdev2, &mddev->disks, same_set)
1820 if (rdev2->desc_nr+1 > max_dev)
1821 max_dev = rdev2->desc_nr+1;
1822
1823 if (max_dev > le32_to_cpu(sb->max_dev)) {
1824 int bmask;
1825 sb->max_dev = cpu_to_le32(max_dev);
1826 rdev->sb_size = max_dev * 2 + 256;
1827 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1828 if (rdev->sb_size & bmask)
1829 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1830 } else
1831 max_dev = le32_to_cpu(sb->max_dev);
1832
1833 for (i=0; i<max_dev;i++)
1834 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1835
1836 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1837 i = rdev2->desc_nr;
1838 if (test_bit(Faulty, &rdev2->flags))
1839 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1840 else if (test_bit(In_sync, &rdev2->flags))
1841 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1842 else if (rdev2->raid_disk >= 0)
1843 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1844 else
1845 sb->dev_roles[i] = cpu_to_le16(0xffff);
1846 }
1847
1848 sb->sb_csum = calc_sb_1_csum(sb);
1849 }
1850
1851 static unsigned long long
1852 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1853 {
1854 struct mdp_superblock_1 *sb;
1855 sector_t max_sectors;
1856 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1857 return 0; /* component must fit device */
1858 if (rdev->sb_start < rdev->data_offset) {
1859 /* minor versions 1 and 2; superblock before data */
1860 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1861 max_sectors -= rdev->data_offset;
1862 if (!num_sectors || num_sectors > max_sectors)
1863 num_sectors = max_sectors;
1864 } else if (rdev->mddev->bitmap_info.offset) {
1865 /* minor version 0 with bitmap we can't move */
1866 return 0;
1867 } else {
1868 /* minor version 0; superblock after data */
1869 sector_t sb_start;
1870 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1871 sb_start &= ~(sector_t)(4*2 - 1);
1872 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1873 if (!num_sectors || num_sectors > max_sectors)
1874 num_sectors = max_sectors;
1875 rdev->sb_start = sb_start;
1876 }
1877 sb = page_address(rdev->sb_page);
1878 sb->data_size = cpu_to_le64(num_sectors);
1879 sb->super_offset = rdev->sb_start;
1880 sb->sb_csum = calc_sb_1_csum(sb);
1881 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1882 rdev->sb_page);
1883 md_super_wait(rdev->mddev);
1884 return num_sectors;
1885 }
1886
1887 static struct super_type super_types[] = {
1888 [0] = {
1889 .name = "0.90.0",
1890 .owner = THIS_MODULE,
1891 .load_super = super_90_load,
1892 .validate_super = super_90_validate,
1893 .sync_super = super_90_sync,
1894 .rdev_size_change = super_90_rdev_size_change,
1895 },
1896 [1] = {
1897 .name = "md-1",
1898 .owner = THIS_MODULE,
1899 .load_super = super_1_load,
1900 .validate_super = super_1_validate,
1901 .sync_super = super_1_sync,
1902 .rdev_size_change = super_1_rdev_size_change,
1903 },
1904 };
1905
1906 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1907 {
1908 if (mddev->sync_super) {
1909 mddev->sync_super(mddev, rdev);
1910 return;
1911 }
1912
1913 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1914
1915 super_types[mddev->major_version].sync_super(mddev, rdev);
1916 }
1917
1918 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1919 {
1920 struct md_rdev *rdev, *rdev2;
1921
1922 rcu_read_lock();
1923 rdev_for_each_rcu(rdev, mddev1)
1924 rdev_for_each_rcu(rdev2, mddev2)
1925 if (rdev->bdev->bd_contains ==
1926 rdev2->bdev->bd_contains) {
1927 rcu_read_unlock();
1928 return 1;
1929 }
1930 rcu_read_unlock();
1931 return 0;
1932 }
1933
1934 static LIST_HEAD(pending_raid_disks);
1935
1936 /*
1937 * Try to register data integrity profile for an mddev
1938 *
1939 * This is called when an array is started and after a disk has been kicked
1940 * from the array. It only succeeds if all working and active component devices
1941 * are integrity capable with matching profiles.
1942 */
1943 int md_integrity_register(struct mddev *mddev)
1944 {
1945 struct md_rdev *rdev, *reference = NULL;
1946
1947 if (list_empty(&mddev->disks))
1948 return 0; /* nothing to do */
1949 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1950 return 0; /* shouldn't register, or already is */
1951 list_for_each_entry(rdev, &mddev->disks, same_set) {
1952 /* skip spares and non-functional disks */
1953 if (test_bit(Faulty, &rdev->flags))
1954 continue;
1955 if (rdev->raid_disk < 0)
1956 continue;
1957 if (!reference) {
1958 /* Use the first rdev as the reference */
1959 reference = rdev;
1960 continue;
1961 }
1962 /* does this rdev's profile match the reference profile? */
1963 if (blk_integrity_compare(reference->bdev->bd_disk,
1964 rdev->bdev->bd_disk) < 0)
1965 return -EINVAL;
1966 }
1967 if (!reference || !bdev_get_integrity(reference->bdev))
1968 return 0;
1969 /*
1970 * All component devices are integrity capable and have matching
1971 * profiles, register the common profile for the md device.
1972 */
1973 if (blk_integrity_register(mddev->gendisk,
1974 bdev_get_integrity(reference->bdev)) != 0) {
1975 printk(KERN_ERR "md: failed to register integrity for %s\n",
1976 mdname(mddev));
1977 return -EINVAL;
1978 }
1979 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1980 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1981 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1982 mdname(mddev));
1983 return -EINVAL;
1984 }
1985 return 0;
1986 }
1987 EXPORT_SYMBOL(md_integrity_register);
1988
1989 /* Disable data integrity if non-capable/non-matching disk is being added */
1990 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1991 {
1992 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1993 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1994
1995 if (!bi_mddev) /* nothing to do */
1996 return;
1997 if (rdev->raid_disk < 0) /* skip spares */
1998 return;
1999 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2000 rdev->bdev->bd_disk) >= 0)
2001 return;
2002 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2003 blk_integrity_unregister(mddev->gendisk);
2004 }
2005 EXPORT_SYMBOL(md_integrity_add_rdev);
2006
2007 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2008 {
2009 char b[BDEVNAME_SIZE];
2010 struct kobject *ko;
2011 char *s;
2012 int err;
2013
2014 if (rdev->mddev) {
2015 MD_BUG();
2016 return -EINVAL;
2017 }
2018
2019 /* prevent duplicates */
2020 if (find_rdev(mddev, rdev->bdev->bd_dev))
2021 return -EEXIST;
2022
2023 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2024 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2025 rdev->sectors < mddev->dev_sectors)) {
2026 if (mddev->pers) {
2027 /* Cannot change size, so fail
2028 * If mddev->level <= 0, then we don't care
2029 * about aligning sizes (e.g. linear)
2030 */
2031 if (mddev->level > 0)
2032 return -ENOSPC;
2033 } else
2034 mddev->dev_sectors = rdev->sectors;
2035 }
2036
2037 /* Verify rdev->desc_nr is unique.
2038 * If it is -1, assign a free number, else
2039 * check number is not in use
2040 */
2041 if (rdev->desc_nr < 0) {
2042 int choice = 0;
2043 if (mddev->pers) choice = mddev->raid_disks;
2044 while (find_rdev_nr(mddev, choice))
2045 choice++;
2046 rdev->desc_nr = choice;
2047 } else {
2048 if (find_rdev_nr(mddev, rdev->desc_nr))
2049 return -EBUSY;
2050 }
2051 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2052 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2053 mdname(mddev), mddev->max_disks);
2054 return -EBUSY;
2055 }
2056 bdevname(rdev->bdev,b);
2057 while ( (s=strchr(b, '/')) != NULL)
2058 *s = '!';
2059
2060 rdev->mddev = mddev;
2061 printk(KERN_INFO "md: bind<%s>\n", b);
2062
2063 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2064 goto fail;
2065
2066 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2067 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2068 /* failure here is OK */;
2069 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2070
2071 list_add_rcu(&rdev->same_set, &mddev->disks);
2072 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2073
2074 /* May as well allow recovery to be retried once */
2075 mddev->recovery_disabled++;
2076
2077 return 0;
2078
2079 fail:
2080 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2081 b, mdname(mddev));
2082 return err;
2083 }
2084
2085 static void md_delayed_delete(struct work_struct *ws)
2086 {
2087 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2088 kobject_del(&rdev->kobj);
2089 kobject_put(&rdev->kobj);
2090 }
2091
2092 static void unbind_rdev_from_array(struct md_rdev * rdev)
2093 {
2094 char b[BDEVNAME_SIZE];
2095 if (!rdev->mddev) {
2096 MD_BUG();
2097 return;
2098 }
2099 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2100 list_del_rcu(&rdev->same_set);
2101 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2102 rdev->mddev = NULL;
2103 sysfs_remove_link(&rdev->kobj, "block");
2104 sysfs_put(rdev->sysfs_state);
2105 rdev->sysfs_state = NULL;
2106 kfree(rdev->badblocks.page);
2107 rdev->badblocks.count = 0;
2108 rdev->badblocks.page = NULL;
2109 /* We need to delay this, otherwise we can deadlock when
2110 * writing to 'remove' to "dev/state". We also need
2111 * to delay it due to rcu usage.
2112 */
2113 synchronize_rcu();
2114 INIT_WORK(&rdev->del_work, md_delayed_delete);
2115 kobject_get(&rdev->kobj);
2116 queue_work(md_misc_wq, &rdev->del_work);
2117 }
2118
2119 /*
2120 * prevent the device from being mounted, repartitioned or
2121 * otherwise reused by a RAID array (or any other kernel
2122 * subsystem), by bd_claiming the device.
2123 */
2124 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2125 {
2126 int err = 0;
2127 struct block_device *bdev;
2128 char b[BDEVNAME_SIZE];
2129
2130 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2131 shared ? (struct md_rdev *)lock_rdev : rdev);
2132 if (IS_ERR(bdev)) {
2133 printk(KERN_ERR "md: could not open %s.\n",
2134 __bdevname(dev, b));
2135 return PTR_ERR(bdev);
2136 }
2137 rdev->bdev = bdev;
2138 return err;
2139 }
2140
2141 static void unlock_rdev(struct md_rdev *rdev)
2142 {
2143 struct block_device *bdev = rdev->bdev;
2144 rdev->bdev = NULL;
2145 if (!bdev)
2146 MD_BUG();
2147 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2148 }
2149
2150 void md_autodetect_dev(dev_t dev);
2151
2152 static void export_rdev(struct md_rdev * rdev)
2153 {
2154 char b[BDEVNAME_SIZE];
2155 printk(KERN_INFO "md: export_rdev(%s)\n",
2156 bdevname(rdev->bdev,b));
2157 if (rdev->mddev)
2158 MD_BUG();
2159 free_disk_sb(rdev);
2160 #ifndef MODULE
2161 if (test_bit(AutoDetected, &rdev->flags))
2162 md_autodetect_dev(rdev->bdev->bd_dev);
2163 #endif
2164 unlock_rdev(rdev);
2165 kobject_put(&rdev->kobj);
2166 }
2167
2168 static void kick_rdev_from_array(struct md_rdev * rdev)
2169 {
2170 unbind_rdev_from_array(rdev);
2171 export_rdev(rdev);
2172 }
2173
2174 static void export_array(struct mddev *mddev)
2175 {
2176 struct md_rdev *rdev, *tmp;
2177
2178 rdev_for_each(rdev, tmp, mddev) {
2179 if (!rdev->mddev) {
2180 MD_BUG();
2181 continue;
2182 }
2183 kick_rdev_from_array(rdev);
2184 }
2185 if (!list_empty(&mddev->disks))
2186 MD_BUG();
2187 mddev->raid_disks = 0;
2188 mddev->major_version = 0;
2189 }
2190
2191 static void print_desc(mdp_disk_t *desc)
2192 {
2193 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2194 desc->major,desc->minor,desc->raid_disk,desc->state);
2195 }
2196
2197 static void print_sb_90(mdp_super_t *sb)
2198 {
2199 int i;
2200
2201 printk(KERN_INFO
2202 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2203 sb->major_version, sb->minor_version, sb->patch_version,
2204 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2205 sb->ctime);
2206 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2207 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2208 sb->md_minor, sb->layout, sb->chunk_size);
2209 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2210 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2211 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2212 sb->failed_disks, sb->spare_disks,
2213 sb->sb_csum, (unsigned long)sb->events_lo);
2214
2215 printk(KERN_INFO);
2216 for (i = 0; i < MD_SB_DISKS; i++) {
2217 mdp_disk_t *desc;
2218
2219 desc = sb->disks + i;
2220 if (desc->number || desc->major || desc->minor ||
2221 desc->raid_disk || (desc->state && (desc->state != 4))) {
2222 printk(" D %2d: ", i);
2223 print_desc(desc);
2224 }
2225 }
2226 printk(KERN_INFO "md: THIS: ");
2227 print_desc(&sb->this_disk);
2228 }
2229
2230 static void print_sb_1(struct mdp_superblock_1 *sb)
2231 {
2232 __u8 *uuid;
2233
2234 uuid = sb->set_uuid;
2235 printk(KERN_INFO
2236 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2237 "md: Name: \"%s\" CT:%llu\n",
2238 le32_to_cpu(sb->major_version),
2239 le32_to_cpu(sb->feature_map),
2240 uuid,
2241 sb->set_name,
2242 (unsigned long long)le64_to_cpu(sb->ctime)
2243 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2244
2245 uuid = sb->device_uuid;
2246 printk(KERN_INFO
2247 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2248 " RO:%llu\n"
2249 "md: Dev:%08x UUID: %pU\n"
2250 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2251 "md: (MaxDev:%u) \n",
2252 le32_to_cpu(sb->level),
2253 (unsigned long long)le64_to_cpu(sb->size),
2254 le32_to_cpu(sb->raid_disks),
2255 le32_to_cpu(sb->layout),
2256 le32_to_cpu(sb->chunksize),
2257 (unsigned long long)le64_to_cpu(sb->data_offset),
2258 (unsigned long long)le64_to_cpu(sb->data_size),
2259 (unsigned long long)le64_to_cpu(sb->super_offset),
2260 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2261 le32_to_cpu(sb->dev_number),
2262 uuid,
2263 sb->devflags,
2264 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2265 (unsigned long long)le64_to_cpu(sb->events),
2266 (unsigned long long)le64_to_cpu(sb->resync_offset),
2267 le32_to_cpu(sb->sb_csum),
2268 le32_to_cpu(sb->max_dev)
2269 );
2270 }
2271
2272 static void print_rdev(struct md_rdev *rdev, int major_version)
2273 {
2274 char b[BDEVNAME_SIZE];
2275 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2276 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2277 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2278 rdev->desc_nr);
2279 if (rdev->sb_loaded) {
2280 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2281 switch (major_version) {
2282 case 0:
2283 print_sb_90(page_address(rdev->sb_page));
2284 break;
2285 case 1:
2286 print_sb_1(page_address(rdev->sb_page));
2287 break;
2288 }
2289 } else
2290 printk(KERN_INFO "md: no rdev superblock!\n");
2291 }
2292
2293 static void md_print_devices(void)
2294 {
2295 struct list_head *tmp;
2296 struct md_rdev *rdev;
2297 struct mddev *mddev;
2298 char b[BDEVNAME_SIZE];
2299
2300 printk("\n");
2301 printk("md: **********************************\n");
2302 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2303 printk("md: **********************************\n");
2304 for_each_mddev(mddev, tmp) {
2305
2306 if (mddev->bitmap)
2307 bitmap_print_sb(mddev->bitmap);
2308 else
2309 printk("%s: ", mdname(mddev));
2310 list_for_each_entry(rdev, &mddev->disks, same_set)
2311 printk("<%s>", bdevname(rdev->bdev,b));
2312 printk("\n");
2313
2314 list_for_each_entry(rdev, &mddev->disks, same_set)
2315 print_rdev(rdev, mddev->major_version);
2316 }
2317 printk("md: **********************************\n");
2318 printk("\n");
2319 }
2320
2321
2322 static void sync_sbs(struct mddev * mddev, int nospares)
2323 {
2324 /* Update each superblock (in-memory image), but
2325 * if we are allowed to, skip spares which already
2326 * have the right event counter, or have one earlier
2327 * (which would mean they aren't being marked as dirty
2328 * with the rest of the array)
2329 */
2330 struct md_rdev *rdev;
2331 list_for_each_entry(rdev, &mddev->disks, same_set) {
2332 if (rdev->sb_events == mddev->events ||
2333 (nospares &&
2334 rdev->raid_disk < 0 &&
2335 rdev->sb_events+1 == mddev->events)) {
2336 /* Don't update this superblock */
2337 rdev->sb_loaded = 2;
2338 } else {
2339 sync_super(mddev, rdev);
2340 rdev->sb_loaded = 1;
2341 }
2342 }
2343 }
2344
2345 static void md_update_sb(struct mddev * mddev, int force_change)
2346 {
2347 struct md_rdev *rdev;
2348 int sync_req;
2349 int nospares = 0;
2350 int any_badblocks_changed = 0;
2351
2352 repeat:
2353 /* First make sure individual recovery_offsets are correct */
2354 list_for_each_entry(rdev, &mddev->disks, same_set) {
2355 if (rdev->raid_disk >= 0 &&
2356 mddev->delta_disks >= 0 &&
2357 !test_bit(In_sync, &rdev->flags) &&
2358 mddev->curr_resync_completed > rdev->recovery_offset)
2359 rdev->recovery_offset = mddev->curr_resync_completed;
2360
2361 }
2362 if (!mddev->persistent) {
2363 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2364 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2365 if (!mddev->external) {
2366 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2367 list_for_each_entry(rdev, &mddev->disks, same_set) {
2368 if (rdev->badblocks.changed) {
2369 md_ack_all_badblocks(&rdev->badblocks);
2370 md_error(mddev, rdev);
2371 }
2372 clear_bit(Blocked, &rdev->flags);
2373 clear_bit(BlockedBadBlocks, &rdev->flags);
2374 wake_up(&rdev->blocked_wait);
2375 }
2376 }
2377 wake_up(&mddev->sb_wait);
2378 return;
2379 }
2380
2381 spin_lock_irq(&mddev->write_lock);
2382
2383 mddev->utime = get_seconds();
2384
2385 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2386 force_change = 1;
2387 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2388 /* just a clean<-> dirty transition, possibly leave spares alone,
2389 * though if events isn't the right even/odd, we will have to do
2390 * spares after all
2391 */
2392 nospares = 1;
2393 if (force_change)
2394 nospares = 0;
2395 if (mddev->degraded)
2396 /* If the array is degraded, then skipping spares is both
2397 * dangerous and fairly pointless.
2398 * Dangerous because a device that was removed from the array
2399 * might have a event_count that still looks up-to-date,
2400 * so it can be re-added without a resync.
2401 * Pointless because if there are any spares to skip,
2402 * then a recovery will happen and soon that array won't
2403 * be degraded any more and the spare can go back to sleep then.
2404 */
2405 nospares = 0;
2406
2407 sync_req = mddev->in_sync;
2408
2409 /* If this is just a dirty<->clean transition, and the array is clean
2410 * and 'events' is odd, we can roll back to the previous clean state */
2411 if (nospares
2412 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2413 && mddev->can_decrease_events
2414 && mddev->events != 1) {
2415 mddev->events--;
2416 mddev->can_decrease_events = 0;
2417 } else {
2418 /* otherwise we have to go forward and ... */
2419 mddev->events ++;
2420 mddev->can_decrease_events = nospares;
2421 }
2422
2423 if (!mddev->events) {
2424 /*
2425 * oops, this 64-bit counter should never wrap.
2426 * Either we are in around ~1 trillion A.C., assuming
2427 * 1 reboot per second, or we have a bug:
2428 */
2429 MD_BUG();
2430 mddev->events --;
2431 }
2432
2433 list_for_each_entry(rdev, &mddev->disks, same_set) {
2434 if (rdev->badblocks.changed)
2435 any_badblocks_changed++;
2436 if (test_bit(Faulty, &rdev->flags))
2437 set_bit(FaultRecorded, &rdev->flags);
2438 }
2439
2440 sync_sbs(mddev, nospares);
2441 spin_unlock_irq(&mddev->write_lock);
2442
2443 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2444 mdname(mddev), mddev->in_sync);
2445
2446 bitmap_update_sb(mddev->bitmap);
2447 list_for_each_entry(rdev, &mddev->disks, same_set) {
2448 char b[BDEVNAME_SIZE];
2449
2450 if (rdev->sb_loaded != 1)
2451 continue; /* no noise on spare devices */
2452
2453 if (!test_bit(Faulty, &rdev->flags) &&
2454 rdev->saved_raid_disk == -1) {
2455 md_super_write(mddev,rdev,
2456 rdev->sb_start, rdev->sb_size,
2457 rdev->sb_page);
2458 pr_debug("md: (write) %s's sb offset: %llu\n",
2459 bdevname(rdev->bdev, b),
2460 (unsigned long long)rdev->sb_start);
2461 rdev->sb_events = mddev->events;
2462 if (rdev->badblocks.size) {
2463 md_super_write(mddev, rdev,
2464 rdev->badblocks.sector,
2465 rdev->badblocks.size << 9,
2466 rdev->bb_page);
2467 rdev->badblocks.size = 0;
2468 }
2469
2470 } else if (test_bit(Faulty, &rdev->flags))
2471 pr_debug("md: %s (skipping faulty)\n",
2472 bdevname(rdev->bdev, b));
2473 else
2474 pr_debug("(skipping incremental s/r ");
2475
2476 if (mddev->level == LEVEL_MULTIPATH)
2477 /* only need to write one superblock... */
2478 break;
2479 }
2480 md_super_wait(mddev);
2481 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2482
2483 spin_lock_irq(&mddev->write_lock);
2484 if (mddev->in_sync != sync_req ||
2485 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2486 /* have to write it out again */
2487 spin_unlock_irq(&mddev->write_lock);
2488 goto repeat;
2489 }
2490 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2491 spin_unlock_irq(&mddev->write_lock);
2492 wake_up(&mddev->sb_wait);
2493 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2494 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2495
2496 list_for_each_entry(rdev, &mddev->disks, same_set) {
2497 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2498 clear_bit(Blocked, &rdev->flags);
2499
2500 if (any_badblocks_changed)
2501 md_ack_all_badblocks(&rdev->badblocks);
2502 clear_bit(BlockedBadBlocks, &rdev->flags);
2503 wake_up(&rdev->blocked_wait);
2504 }
2505 }
2506
2507 /* words written to sysfs files may, or may not, be \n terminated.
2508 * We want to accept with case. For this we use cmd_match.
2509 */
2510 static int cmd_match(const char *cmd, const char *str)
2511 {
2512 /* See if cmd, written into a sysfs file, matches
2513 * str. They must either be the same, or cmd can
2514 * have a trailing newline
2515 */
2516 while (*cmd && *str && *cmd == *str) {
2517 cmd++;
2518 str++;
2519 }
2520 if (*cmd == '\n')
2521 cmd++;
2522 if (*str || *cmd)
2523 return 0;
2524 return 1;
2525 }
2526
2527 struct rdev_sysfs_entry {
2528 struct attribute attr;
2529 ssize_t (*show)(struct md_rdev *, char *);
2530 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2531 };
2532
2533 static ssize_t
2534 state_show(struct md_rdev *rdev, char *page)
2535 {
2536 char *sep = "";
2537 size_t len = 0;
2538
2539 if (test_bit(Faulty, &rdev->flags) ||
2540 rdev->badblocks.unacked_exist) {
2541 len+= sprintf(page+len, "%sfaulty",sep);
2542 sep = ",";
2543 }
2544 if (test_bit(In_sync, &rdev->flags)) {
2545 len += sprintf(page+len, "%sin_sync",sep);
2546 sep = ",";
2547 }
2548 if (test_bit(WriteMostly, &rdev->flags)) {
2549 len += sprintf(page+len, "%swrite_mostly",sep);
2550 sep = ",";
2551 }
2552 if (test_bit(Blocked, &rdev->flags) ||
2553 (rdev->badblocks.unacked_exist
2554 && !test_bit(Faulty, &rdev->flags))) {
2555 len += sprintf(page+len, "%sblocked", sep);
2556 sep = ",";
2557 }
2558 if (!test_bit(Faulty, &rdev->flags) &&
2559 !test_bit(In_sync, &rdev->flags)) {
2560 len += sprintf(page+len, "%sspare", sep);
2561 sep = ",";
2562 }
2563 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2564 len += sprintf(page+len, "%swrite_error", sep);
2565 sep = ",";
2566 }
2567 if (test_bit(WantReplacement, &rdev->flags)) {
2568 len += sprintf(page+len, "%swant_replacement", sep);
2569 sep = ",";
2570 }
2571 if (test_bit(Replacement, &rdev->flags)) {
2572 len += sprintf(page+len, "%sreplacement", sep);
2573 sep = ",";
2574 }
2575
2576 return len+sprintf(page+len, "\n");
2577 }
2578
2579 static ssize_t
2580 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2581 {
2582 /* can write
2583 * faulty - simulates an error
2584 * remove - disconnects the device
2585 * writemostly - sets write_mostly
2586 * -writemostly - clears write_mostly
2587 * blocked - sets the Blocked flags
2588 * -blocked - clears the Blocked and possibly simulates an error
2589 * insync - sets Insync providing device isn't active
2590 * write_error - sets WriteErrorSeen
2591 * -write_error - clears WriteErrorSeen
2592 */
2593 int err = -EINVAL;
2594 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2595 md_error(rdev->mddev, rdev);
2596 if (test_bit(Faulty, &rdev->flags))
2597 err = 0;
2598 else
2599 err = -EBUSY;
2600 } else if (cmd_match(buf, "remove")) {
2601 if (rdev->raid_disk >= 0)
2602 err = -EBUSY;
2603 else {
2604 struct mddev *mddev = rdev->mddev;
2605 kick_rdev_from_array(rdev);
2606 if (mddev->pers)
2607 md_update_sb(mddev, 1);
2608 md_new_event(mddev);
2609 err = 0;
2610 }
2611 } else if (cmd_match(buf, "writemostly")) {
2612 set_bit(WriteMostly, &rdev->flags);
2613 err = 0;
2614 } else if (cmd_match(buf, "-writemostly")) {
2615 clear_bit(WriteMostly, &rdev->flags);
2616 err = 0;
2617 } else if (cmd_match(buf, "blocked")) {
2618 set_bit(Blocked, &rdev->flags);
2619 err = 0;
2620 } else if (cmd_match(buf, "-blocked")) {
2621 if (!test_bit(Faulty, &rdev->flags) &&
2622 rdev->badblocks.unacked_exist) {
2623 /* metadata handler doesn't understand badblocks,
2624 * so we need to fail the device
2625 */
2626 md_error(rdev->mddev, rdev);
2627 }
2628 clear_bit(Blocked, &rdev->flags);
2629 clear_bit(BlockedBadBlocks, &rdev->flags);
2630 wake_up(&rdev->blocked_wait);
2631 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2632 md_wakeup_thread(rdev->mddev->thread);
2633
2634 err = 0;
2635 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2636 set_bit(In_sync, &rdev->flags);
2637 err = 0;
2638 } else if (cmd_match(buf, "write_error")) {
2639 set_bit(WriteErrorSeen, &rdev->flags);
2640 err = 0;
2641 } else if (cmd_match(buf, "-write_error")) {
2642 clear_bit(WriteErrorSeen, &rdev->flags);
2643 err = 0;
2644 } else if (cmd_match(buf, "want_replacement")) {
2645 /* Any non-spare device that is not a replacement can
2646 * become want_replacement at any time, but we then need to
2647 * check if recovery is needed.
2648 */
2649 if (rdev->raid_disk >= 0 &&
2650 !test_bit(Replacement, &rdev->flags))
2651 set_bit(WantReplacement, &rdev->flags);
2652 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2653 md_wakeup_thread(rdev->mddev->thread);
2654 err = 0;
2655 } else if (cmd_match(buf, "-want_replacement")) {
2656 /* Clearing 'want_replacement' is always allowed.
2657 * Once replacements starts it is too late though.
2658 */
2659 err = 0;
2660 clear_bit(WantReplacement, &rdev->flags);
2661 } else if (cmd_match(buf, "replacement")) {
2662 /* Can only set a device as a replacement when array has not
2663 * yet been started. Once running, replacement is automatic
2664 * from spares, or by assigning 'slot'.
2665 */
2666 if (rdev->mddev->pers)
2667 err = -EBUSY;
2668 else {
2669 set_bit(Replacement, &rdev->flags);
2670 err = 0;
2671 }
2672 } else if (cmd_match(buf, "-replacement")) {
2673 /* Similarly, can only clear Replacement before start */
2674 if (rdev->mddev->pers)
2675 err = -EBUSY;
2676 else {
2677 clear_bit(Replacement, &rdev->flags);
2678 err = 0;
2679 }
2680 }
2681 if (!err)
2682 sysfs_notify_dirent_safe(rdev->sysfs_state);
2683 return err ? err : len;
2684 }
2685 static struct rdev_sysfs_entry rdev_state =
2686 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2687
2688 static ssize_t
2689 errors_show(struct md_rdev *rdev, char *page)
2690 {
2691 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2692 }
2693
2694 static ssize_t
2695 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2696 {
2697 char *e;
2698 unsigned long n = simple_strtoul(buf, &e, 10);
2699 if (*buf && (*e == 0 || *e == '\n')) {
2700 atomic_set(&rdev->corrected_errors, n);
2701 return len;
2702 }
2703 return -EINVAL;
2704 }
2705 static struct rdev_sysfs_entry rdev_errors =
2706 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2707
2708 static ssize_t
2709 slot_show(struct md_rdev *rdev, char *page)
2710 {
2711 if (rdev->raid_disk < 0)
2712 return sprintf(page, "none\n");
2713 else
2714 return sprintf(page, "%d\n", rdev->raid_disk);
2715 }
2716
2717 static ssize_t
2718 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2719 {
2720 char *e;
2721 int err;
2722 int slot = simple_strtoul(buf, &e, 10);
2723 if (strncmp(buf, "none", 4)==0)
2724 slot = -1;
2725 else if (e==buf || (*e && *e!= '\n'))
2726 return -EINVAL;
2727 if (rdev->mddev->pers && slot == -1) {
2728 /* Setting 'slot' on an active array requires also
2729 * updating the 'rd%d' link, and communicating
2730 * with the personality with ->hot_*_disk.
2731 * For now we only support removing
2732 * failed/spare devices. This normally happens automatically,
2733 * but not when the metadata is externally managed.
2734 */
2735 if (rdev->raid_disk == -1)
2736 return -EEXIST;
2737 /* personality does all needed checks */
2738 if (rdev->mddev->pers->hot_remove_disk == NULL)
2739 return -EINVAL;
2740 err = rdev->mddev->pers->
2741 hot_remove_disk(rdev->mddev, rdev);
2742 if (err)
2743 return err;
2744 sysfs_unlink_rdev(rdev->mddev, rdev);
2745 rdev->raid_disk = -1;
2746 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2747 md_wakeup_thread(rdev->mddev->thread);
2748 } else if (rdev->mddev->pers) {
2749 /* Activating a spare .. or possibly reactivating
2750 * if we ever get bitmaps working here.
2751 */
2752
2753 if (rdev->raid_disk != -1)
2754 return -EBUSY;
2755
2756 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2757 return -EBUSY;
2758
2759 if (rdev->mddev->pers->hot_add_disk == NULL)
2760 return -EINVAL;
2761
2762 if (slot >= rdev->mddev->raid_disks &&
2763 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2764 return -ENOSPC;
2765
2766 rdev->raid_disk = slot;
2767 if (test_bit(In_sync, &rdev->flags))
2768 rdev->saved_raid_disk = slot;
2769 else
2770 rdev->saved_raid_disk = -1;
2771 clear_bit(In_sync, &rdev->flags);
2772 err = rdev->mddev->pers->
2773 hot_add_disk(rdev->mddev, rdev);
2774 if (err) {
2775 rdev->raid_disk = -1;
2776 return err;
2777 } else
2778 sysfs_notify_dirent_safe(rdev->sysfs_state);
2779 if (sysfs_link_rdev(rdev->mddev, rdev))
2780 /* failure here is OK */;
2781 /* don't wakeup anyone, leave that to userspace. */
2782 } else {
2783 if (slot >= rdev->mddev->raid_disks &&
2784 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2785 return -ENOSPC;
2786 rdev->raid_disk = slot;
2787 /* assume it is working */
2788 clear_bit(Faulty, &rdev->flags);
2789 clear_bit(WriteMostly, &rdev->flags);
2790 set_bit(In_sync, &rdev->flags);
2791 sysfs_notify_dirent_safe(rdev->sysfs_state);
2792 }
2793 return len;
2794 }
2795
2796
2797 static struct rdev_sysfs_entry rdev_slot =
2798 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2799
2800 static ssize_t
2801 offset_show(struct md_rdev *rdev, char *page)
2802 {
2803 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2804 }
2805
2806 static ssize_t
2807 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2808 {
2809 char *e;
2810 unsigned long long offset = simple_strtoull(buf, &e, 10);
2811 if (e==buf || (*e && *e != '\n'))
2812 return -EINVAL;
2813 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2814 return -EBUSY;
2815 if (rdev->sectors && rdev->mddev->external)
2816 /* Must set offset before size, so overlap checks
2817 * can be sane */
2818 return -EBUSY;
2819 rdev->data_offset = offset;
2820 return len;
2821 }
2822
2823 static struct rdev_sysfs_entry rdev_offset =
2824 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2825
2826 static ssize_t
2827 rdev_size_show(struct md_rdev *rdev, char *page)
2828 {
2829 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2830 }
2831
2832 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2833 {
2834 /* check if two start/length pairs overlap */
2835 if (s1+l1 <= s2)
2836 return 0;
2837 if (s2+l2 <= s1)
2838 return 0;
2839 return 1;
2840 }
2841
2842 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2843 {
2844 unsigned long long blocks;
2845 sector_t new;
2846
2847 if (strict_strtoull(buf, 10, &blocks) < 0)
2848 return -EINVAL;
2849
2850 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2851 return -EINVAL; /* sector conversion overflow */
2852
2853 new = blocks * 2;
2854 if (new != blocks * 2)
2855 return -EINVAL; /* unsigned long long to sector_t overflow */
2856
2857 *sectors = new;
2858 return 0;
2859 }
2860
2861 static ssize_t
2862 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2863 {
2864 struct mddev *my_mddev = rdev->mddev;
2865 sector_t oldsectors = rdev->sectors;
2866 sector_t sectors;
2867
2868 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2869 return -EINVAL;
2870 if (my_mddev->pers && rdev->raid_disk >= 0) {
2871 if (my_mddev->persistent) {
2872 sectors = super_types[my_mddev->major_version].
2873 rdev_size_change(rdev, sectors);
2874 if (!sectors)
2875 return -EBUSY;
2876 } else if (!sectors)
2877 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2878 rdev->data_offset;
2879 }
2880 if (sectors < my_mddev->dev_sectors)
2881 return -EINVAL; /* component must fit device */
2882
2883 rdev->sectors = sectors;
2884 if (sectors > oldsectors && my_mddev->external) {
2885 /* need to check that all other rdevs with the same ->bdev
2886 * do not overlap. We need to unlock the mddev to avoid
2887 * a deadlock. We have already changed rdev->sectors, and if
2888 * we have to change it back, we will have the lock again.
2889 */
2890 struct mddev *mddev;
2891 int overlap = 0;
2892 struct list_head *tmp;
2893
2894 mddev_unlock(my_mddev);
2895 for_each_mddev(mddev, tmp) {
2896 struct md_rdev *rdev2;
2897
2898 mddev_lock(mddev);
2899 list_for_each_entry(rdev2, &mddev->disks, same_set)
2900 if (rdev->bdev == rdev2->bdev &&
2901 rdev != rdev2 &&
2902 overlaps(rdev->data_offset, rdev->sectors,
2903 rdev2->data_offset,
2904 rdev2->sectors)) {
2905 overlap = 1;
2906 break;
2907 }
2908 mddev_unlock(mddev);
2909 if (overlap) {
2910 mddev_put(mddev);
2911 break;
2912 }
2913 }
2914 mddev_lock(my_mddev);
2915 if (overlap) {
2916 /* Someone else could have slipped in a size
2917 * change here, but doing so is just silly.
2918 * We put oldsectors back because we *know* it is
2919 * safe, and trust userspace not to race with
2920 * itself
2921 */
2922 rdev->sectors = oldsectors;
2923 return -EBUSY;
2924 }
2925 }
2926 return len;
2927 }
2928
2929 static struct rdev_sysfs_entry rdev_size =
2930 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2931
2932
2933 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2934 {
2935 unsigned long long recovery_start = rdev->recovery_offset;
2936
2937 if (test_bit(In_sync, &rdev->flags) ||
2938 recovery_start == MaxSector)
2939 return sprintf(page, "none\n");
2940
2941 return sprintf(page, "%llu\n", recovery_start);
2942 }
2943
2944 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2945 {
2946 unsigned long long recovery_start;
2947
2948 if (cmd_match(buf, "none"))
2949 recovery_start = MaxSector;
2950 else if (strict_strtoull(buf, 10, &recovery_start))
2951 return -EINVAL;
2952
2953 if (rdev->mddev->pers &&
2954 rdev->raid_disk >= 0)
2955 return -EBUSY;
2956
2957 rdev->recovery_offset = recovery_start;
2958 if (recovery_start == MaxSector)
2959 set_bit(In_sync, &rdev->flags);
2960 else
2961 clear_bit(In_sync, &rdev->flags);
2962 return len;
2963 }
2964
2965 static struct rdev_sysfs_entry rdev_recovery_start =
2966 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2967
2968
2969 static ssize_t
2970 badblocks_show(struct badblocks *bb, char *page, int unack);
2971 static ssize_t
2972 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2973
2974 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2975 {
2976 return badblocks_show(&rdev->badblocks, page, 0);
2977 }
2978 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2979 {
2980 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2981 /* Maybe that ack was all we needed */
2982 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2983 wake_up(&rdev->blocked_wait);
2984 return rv;
2985 }
2986 static struct rdev_sysfs_entry rdev_bad_blocks =
2987 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2988
2989
2990 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2991 {
2992 return badblocks_show(&rdev->badblocks, page, 1);
2993 }
2994 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2995 {
2996 return badblocks_store(&rdev->badblocks, page, len, 1);
2997 }
2998 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2999 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3000
3001 static struct attribute *rdev_default_attrs[] = {
3002 &rdev_state.attr,
3003 &rdev_errors.attr,
3004 &rdev_slot.attr,
3005 &rdev_offset.attr,
3006 &rdev_size.attr,
3007 &rdev_recovery_start.attr,
3008 &rdev_bad_blocks.attr,
3009 &rdev_unack_bad_blocks.attr,
3010 NULL,
3011 };
3012 static ssize_t
3013 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3014 {
3015 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3016 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3017 struct mddev *mddev = rdev->mddev;
3018 ssize_t rv;
3019
3020 if (!entry->show)
3021 return -EIO;
3022
3023 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3024 if (!rv) {
3025 if (rdev->mddev == NULL)
3026 rv = -EBUSY;
3027 else
3028 rv = entry->show(rdev, page);
3029 mddev_unlock(mddev);
3030 }
3031 return rv;
3032 }
3033
3034 static ssize_t
3035 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3036 const char *page, size_t length)
3037 {
3038 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3039 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3040 ssize_t rv;
3041 struct mddev *mddev = rdev->mddev;
3042
3043 if (!entry->store)
3044 return -EIO;
3045 if (!capable(CAP_SYS_ADMIN))
3046 return -EACCES;
3047 rv = mddev ? mddev_lock(mddev): -EBUSY;
3048 if (!rv) {
3049 if (rdev->mddev == NULL)
3050 rv = -EBUSY;
3051 else
3052 rv = entry->store(rdev, page, length);
3053 mddev_unlock(mddev);
3054 }
3055 return rv;
3056 }
3057
3058 static void rdev_free(struct kobject *ko)
3059 {
3060 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3061 kfree(rdev);
3062 }
3063 static const struct sysfs_ops rdev_sysfs_ops = {
3064 .show = rdev_attr_show,
3065 .store = rdev_attr_store,
3066 };
3067 static struct kobj_type rdev_ktype = {
3068 .release = rdev_free,
3069 .sysfs_ops = &rdev_sysfs_ops,
3070 .default_attrs = rdev_default_attrs,
3071 };
3072
3073 int md_rdev_init(struct md_rdev *rdev)
3074 {
3075 rdev->desc_nr = -1;
3076 rdev->saved_raid_disk = -1;
3077 rdev->raid_disk = -1;
3078 rdev->flags = 0;
3079 rdev->data_offset = 0;
3080 rdev->sb_events = 0;
3081 rdev->last_read_error.tv_sec = 0;
3082 rdev->last_read_error.tv_nsec = 0;
3083 rdev->sb_loaded = 0;
3084 rdev->bb_page = NULL;
3085 atomic_set(&rdev->nr_pending, 0);
3086 atomic_set(&rdev->read_errors, 0);
3087 atomic_set(&rdev->corrected_errors, 0);
3088
3089 INIT_LIST_HEAD(&rdev->same_set);
3090 init_waitqueue_head(&rdev->blocked_wait);
3091
3092 /* Add space to store bad block list.
3093 * This reserves the space even on arrays where it cannot
3094 * be used - I wonder if that matters
3095 */
3096 rdev->badblocks.count = 0;
3097 rdev->badblocks.shift = 0;
3098 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3099 seqlock_init(&rdev->badblocks.lock);
3100 if (rdev->badblocks.page == NULL)
3101 return -ENOMEM;
3102
3103 return 0;
3104 }
3105 EXPORT_SYMBOL_GPL(md_rdev_init);
3106 /*
3107 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3108 *
3109 * mark the device faulty if:
3110 *
3111 * - the device is nonexistent (zero size)
3112 * - the device has no valid superblock
3113 *
3114 * a faulty rdev _never_ has rdev->sb set.
3115 */
3116 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3117 {
3118 char b[BDEVNAME_SIZE];
3119 int err;
3120 struct md_rdev *rdev;
3121 sector_t size;
3122
3123 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3124 if (!rdev) {
3125 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3126 return ERR_PTR(-ENOMEM);
3127 }
3128
3129 err = md_rdev_init(rdev);
3130 if (err)
3131 goto abort_free;
3132 err = alloc_disk_sb(rdev);
3133 if (err)
3134 goto abort_free;
3135
3136 err = lock_rdev(rdev, newdev, super_format == -2);
3137 if (err)
3138 goto abort_free;
3139
3140 kobject_init(&rdev->kobj, &rdev_ktype);
3141
3142 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3143 if (!size) {
3144 printk(KERN_WARNING
3145 "md: %s has zero or unknown size, marking faulty!\n",
3146 bdevname(rdev->bdev,b));
3147 err = -EINVAL;
3148 goto abort_free;
3149 }
3150
3151 if (super_format >= 0) {
3152 err = super_types[super_format].
3153 load_super(rdev, NULL, super_minor);
3154 if (err == -EINVAL) {
3155 printk(KERN_WARNING
3156 "md: %s does not have a valid v%d.%d "
3157 "superblock, not importing!\n",
3158 bdevname(rdev->bdev,b),
3159 super_format, super_minor);
3160 goto abort_free;
3161 }
3162 if (err < 0) {
3163 printk(KERN_WARNING
3164 "md: could not read %s's sb, not importing!\n",
3165 bdevname(rdev->bdev,b));
3166 goto abort_free;
3167 }
3168 }
3169 if (super_format == -1)
3170 /* hot-add for 0.90, or non-persistent: so no badblocks */
3171 rdev->badblocks.shift = -1;
3172
3173 return rdev;
3174
3175 abort_free:
3176 if (rdev->bdev)
3177 unlock_rdev(rdev);
3178 free_disk_sb(rdev);
3179 kfree(rdev->badblocks.page);
3180 kfree(rdev);
3181 return ERR_PTR(err);
3182 }
3183
3184 /*
3185 * Check a full RAID array for plausibility
3186 */
3187
3188
3189 static void analyze_sbs(struct mddev * mddev)
3190 {
3191 int i;
3192 struct md_rdev *rdev, *freshest, *tmp;
3193 char b[BDEVNAME_SIZE];
3194
3195 freshest = NULL;
3196 rdev_for_each(rdev, tmp, mddev)
3197 switch (super_types[mddev->major_version].
3198 load_super(rdev, freshest, mddev->minor_version)) {
3199 case 1:
3200 freshest = rdev;
3201 break;
3202 case 0:
3203 break;
3204 default:
3205 printk( KERN_ERR \
3206 "md: fatal superblock inconsistency in %s"
3207 " -- removing from array\n",
3208 bdevname(rdev->bdev,b));
3209 kick_rdev_from_array(rdev);
3210 }
3211
3212
3213 super_types[mddev->major_version].
3214 validate_super(mddev, freshest);
3215
3216 i = 0;
3217 rdev_for_each(rdev, tmp, mddev) {
3218 if (mddev->max_disks &&
3219 (rdev->desc_nr >= mddev->max_disks ||
3220 i > mddev->max_disks)) {
3221 printk(KERN_WARNING
3222 "md: %s: %s: only %d devices permitted\n",
3223 mdname(mddev), bdevname(rdev->bdev, b),
3224 mddev->max_disks);
3225 kick_rdev_from_array(rdev);
3226 continue;
3227 }
3228 if (rdev != freshest)
3229 if (super_types[mddev->major_version].
3230 validate_super(mddev, rdev)) {
3231 printk(KERN_WARNING "md: kicking non-fresh %s"
3232 " from array!\n",
3233 bdevname(rdev->bdev,b));
3234 kick_rdev_from_array(rdev);
3235 continue;
3236 }
3237 if (mddev->level == LEVEL_MULTIPATH) {
3238 rdev->desc_nr = i++;
3239 rdev->raid_disk = rdev->desc_nr;
3240 set_bit(In_sync, &rdev->flags);
3241 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3242 rdev->raid_disk = -1;
3243 clear_bit(In_sync, &rdev->flags);
3244 }
3245 }
3246 }
3247
3248 /* Read a fixed-point number.
3249 * Numbers in sysfs attributes should be in "standard" units where
3250 * possible, so time should be in seconds.
3251 * However we internally use a a much smaller unit such as
3252 * milliseconds or jiffies.
3253 * This function takes a decimal number with a possible fractional
3254 * component, and produces an integer which is the result of
3255 * multiplying that number by 10^'scale'.
3256 * all without any floating-point arithmetic.
3257 */
3258 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3259 {
3260 unsigned long result = 0;
3261 long decimals = -1;
3262 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3263 if (*cp == '.')
3264 decimals = 0;
3265 else if (decimals < scale) {
3266 unsigned int value;
3267 value = *cp - '0';
3268 result = result * 10 + value;
3269 if (decimals >= 0)
3270 decimals++;
3271 }
3272 cp++;
3273 }
3274 if (*cp == '\n')
3275 cp++;
3276 if (*cp)
3277 return -EINVAL;
3278 if (decimals < 0)
3279 decimals = 0;
3280 while (decimals < scale) {
3281 result *= 10;
3282 decimals ++;
3283 }
3284 *res = result;
3285 return 0;
3286 }
3287
3288
3289 static void md_safemode_timeout(unsigned long data);
3290
3291 static ssize_t
3292 safe_delay_show(struct mddev *mddev, char *page)
3293 {
3294 int msec = (mddev->safemode_delay*1000)/HZ;
3295 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3296 }
3297 static ssize_t
3298 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3299 {
3300 unsigned long msec;
3301
3302 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3303 return -EINVAL;
3304 if (msec == 0)
3305 mddev->safemode_delay = 0;
3306 else {
3307 unsigned long old_delay = mddev->safemode_delay;
3308 mddev->safemode_delay = (msec*HZ)/1000;
3309 if (mddev->safemode_delay == 0)
3310 mddev->safemode_delay = 1;
3311 if (mddev->safemode_delay < old_delay)
3312 md_safemode_timeout((unsigned long)mddev);
3313 }
3314 return len;
3315 }
3316 static struct md_sysfs_entry md_safe_delay =
3317 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3318
3319 static ssize_t
3320 level_show(struct mddev *mddev, char *page)
3321 {
3322 struct md_personality *p = mddev->pers;
3323 if (p)
3324 return sprintf(page, "%s\n", p->name);
3325 else if (mddev->clevel[0])
3326 return sprintf(page, "%s\n", mddev->clevel);
3327 else if (mddev->level != LEVEL_NONE)
3328 return sprintf(page, "%d\n", mddev->level);
3329 else
3330 return 0;
3331 }
3332
3333 static ssize_t
3334 level_store(struct mddev *mddev, const char *buf, size_t len)
3335 {
3336 char clevel[16];
3337 ssize_t rv = len;
3338 struct md_personality *pers;
3339 long level;
3340 void *priv;
3341 struct md_rdev *rdev;
3342
3343 if (mddev->pers == NULL) {
3344 if (len == 0)
3345 return 0;
3346 if (len >= sizeof(mddev->clevel))
3347 return -ENOSPC;
3348 strncpy(mddev->clevel, buf, len);
3349 if (mddev->clevel[len-1] == '\n')
3350 len--;
3351 mddev->clevel[len] = 0;
3352 mddev->level = LEVEL_NONE;
3353 return rv;
3354 }
3355
3356 /* request to change the personality. Need to ensure:
3357 * - array is not engaged in resync/recovery/reshape
3358 * - old personality can be suspended
3359 * - new personality will access other array.
3360 */
3361
3362 if (mddev->sync_thread ||
3363 mddev->reshape_position != MaxSector ||
3364 mddev->sysfs_active)
3365 return -EBUSY;
3366
3367 if (!mddev->pers->quiesce) {
3368 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3369 mdname(mddev), mddev->pers->name);
3370 return -EINVAL;
3371 }
3372
3373 /* Now find the new personality */
3374 if (len == 0 || len >= sizeof(clevel))
3375 return -EINVAL;
3376 strncpy(clevel, buf, len);
3377 if (clevel[len-1] == '\n')
3378 len--;
3379 clevel[len] = 0;
3380 if (strict_strtol(clevel, 10, &level))
3381 level = LEVEL_NONE;
3382
3383 if (request_module("md-%s", clevel) != 0)
3384 request_module("md-level-%s", clevel);
3385 spin_lock(&pers_lock);
3386 pers = find_pers(level, clevel);
3387 if (!pers || !try_module_get(pers->owner)) {
3388 spin_unlock(&pers_lock);
3389 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3390 return -EINVAL;
3391 }
3392 spin_unlock(&pers_lock);
3393
3394 if (pers == mddev->pers) {
3395 /* Nothing to do! */
3396 module_put(pers->owner);
3397 return rv;
3398 }
3399 if (!pers->takeover) {
3400 module_put(pers->owner);
3401 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3402 mdname(mddev), clevel);
3403 return -EINVAL;
3404 }
3405
3406 list_for_each_entry(rdev, &mddev->disks, same_set)
3407 rdev->new_raid_disk = rdev->raid_disk;
3408
3409 /* ->takeover must set new_* and/or delta_disks
3410 * if it succeeds, and may set them when it fails.
3411 */
3412 priv = pers->takeover(mddev);
3413 if (IS_ERR(priv)) {
3414 mddev->new_level = mddev->level;
3415 mddev->new_layout = mddev->layout;
3416 mddev->new_chunk_sectors = mddev->chunk_sectors;
3417 mddev->raid_disks -= mddev->delta_disks;
3418 mddev->delta_disks = 0;
3419 module_put(pers->owner);
3420 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3421 mdname(mddev), clevel);
3422 return PTR_ERR(priv);
3423 }
3424
3425 /* Looks like we have a winner */
3426 mddev_suspend(mddev);
3427 mddev->pers->stop(mddev);
3428
3429 if (mddev->pers->sync_request == NULL &&
3430 pers->sync_request != NULL) {
3431 /* need to add the md_redundancy_group */
3432 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3433 printk(KERN_WARNING
3434 "md: cannot register extra attributes for %s\n",
3435 mdname(mddev));
3436 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3437 }
3438 if (mddev->pers->sync_request != NULL &&
3439 pers->sync_request == NULL) {
3440 /* need to remove the md_redundancy_group */
3441 if (mddev->to_remove == NULL)
3442 mddev->to_remove = &md_redundancy_group;
3443 }
3444
3445 if (mddev->pers->sync_request == NULL &&
3446 mddev->external) {
3447 /* We are converting from a no-redundancy array
3448 * to a redundancy array and metadata is managed
3449 * externally so we need to be sure that writes
3450 * won't block due to a need to transition
3451 * clean->dirty
3452 * until external management is started.
3453 */
3454 mddev->in_sync = 0;
3455 mddev->safemode_delay = 0;
3456 mddev->safemode = 0;
3457 }
3458
3459 list_for_each_entry(rdev, &mddev->disks, same_set) {
3460 if (rdev->raid_disk < 0)
3461 continue;
3462 if (rdev->new_raid_disk >= mddev->raid_disks)
3463 rdev->new_raid_disk = -1;
3464 if (rdev->new_raid_disk == rdev->raid_disk)
3465 continue;
3466 sysfs_unlink_rdev(mddev, rdev);
3467 }
3468 list_for_each_entry(rdev, &mddev->disks, same_set) {
3469 if (rdev->raid_disk < 0)
3470 continue;
3471 if (rdev->new_raid_disk == rdev->raid_disk)
3472 continue;
3473 rdev->raid_disk = rdev->new_raid_disk;
3474 if (rdev->raid_disk < 0)
3475 clear_bit(In_sync, &rdev->flags);
3476 else {
3477 if (sysfs_link_rdev(mddev, rdev))
3478 printk(KERN_WARNING "md: cannot register rd%d"
3479 " for %s after level change\n",
3480 rdev->raid_disk, mdname(mddev));
3481 }
3482 }
3483
3484 module_put(mddev->pers->owner);
3485 mddev->pers = pers;
3486 mddev->private = priv;
3487 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3488 mddev->level = mddev->new_level;
3489 mddev->layout = mddev->new_layout;
3490 mddev->chunk_sectors = mddev->new_chunk_sectors;
3491 mddev->delta_disks = 0;
3492 mddev->degraded = 0;
3493 if (mddev->pers->sync_request == NULL) {
3494 /* this is now an array without redundancy, so
3495 * it must always be in_sync
3496 */
3497 mddev->in_sync = 1;
3498 del_timer_sync(&mddev->safemode_timer);
3499 }
3500 pers->run(mddev);
3501 mddev_resume(mddev);
3502 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3503 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3504 md_wakeup_thread(mddev->thread);
3505 sysfs_notify(&mddev->kobj, NULL, "level");
3506 md_new_event(mddev);
3507 return rv;
3508 }
3509
3510 static struct md_sysfs_entry md_level =
3511 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3512
3513
3514 static ssize_t
3515 layout_show(struct mddev *mddev, char *page)
3516 {
3517 /* just a number, not meaningful for all levels */
3518 if (mddev->reshape_position != MaxSector &&
3519 mddev->layout != mddev->new_layout)
3520 return sprintf(page, "%d (%d)\n",
3521 mddev->new_layout, mddev->layout);
3522 return sprintf(page, "%d\n", mddev->layout);
3523 }
3524
3525 static ssize_t
3526 layout_store(struct mddev *mddev, const char *buf, size_t len)
3527 {
3528 char *e;
3529 unsigned long n = simple_strtoul(buf, &e, 10);
3530
3531 if (!*buf || (*e && *e != '\n'))
3532 return -EINVAL;
3533
3534 if (mddev->pers) {
3535 int err;
3536 if (mddev->pers->check_reshape == NULL)
3537 return -EBUSY;
3538 mddev->new_layout = n;
3539 err = mddev->pers->check_reshape(mddev);
3540 if (err) {
3541 mddev->new_layout = mddev->layout;
3542 return err;
3543 }
3544 } else {
3545 mddev->new_layout = n;
3546 if (mddev->reshape_position == MaxSector)
3547 mddev->layout = n;
3548 }
3549 return len;
3550 }
3551 static struct md_sysfs_entry md_layout =
3552 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3553
3554
3555 static ssize_t
3556 raid_disks_show(struct mddev *mddev, char *page)
3557 {
3558 if (mddev->raid_disks == 0)
3559 return 0;
3560 if (mddev->reshape_position != MaxSector &&
3561 mddev->delta_disks != 0)
3562 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3563 mddev->raid_disks - mddev->delta_disks);
3564 return sprintf(page, "%d\n", mddev->raid_disks);
3565 }
3566
3567 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3568
3569 static ssize_t
3570 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3571 {
3572 char *e;
3573 int rv = 0;
3574 unsigned long n = simple_strtoul(buf, &e, 10);
3575
3576 if (!*buf || (*e && *e != '\n'))
3577 return -EINVAL;
3578
3579 if (mddev->pers)
3580 rv = update_raid_disks(mddev, n);
3581 else if (mddev->reshape_position != MaxSector) {
3582 int olddisks = mddev->raid_disks - mddev->delta_disks;
3583 mddev->delta_disks = n - olddisks;
3584 mddev->raid_disks = n;
3585 } else
3586 mddev->raid_disks = n;
3587 return rv ? rv : len;
3588 }
3589 static struct md_sysfs_entry md_raid_disks =
3590 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3591
3592 static ssize_t
3593 chunk_size_show(struct mddev *mddev, char *page)
3594 {
3595 if (mddev->reshape_position != MaxSector &&
3596 mddev->chunk_sectors != mddev->new_chunk_sectors)
3597 return sprintf(page, "%d (%d)\n",
3598 mddev->new_chunk_sectors << 9,
3599 mddev->chunk_sectors << 9);
3600 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3601 }
3602
3603 static ssize_t
3604 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3605 {
3606 char *e;
3607 unsigned long n = simple_strtoul(buf, &e, 10);
3608
3609 if (!*buf || (*e && *e != '\n'))
3610 return -EINVAL;
3611
3612 if (mddev->pers) {
3613 int err;
3614 if (mddev->pers->check_reshape == NULL)
3615 return -EBUSY;
3616 mddev->new_chunk_sectors = n >> 9;
3617 err = mddev->pers->check_reshape(mddev);
3618 if (err) {
3619 mddev->new_chunk_sectors = mddev->chunk_sectors;
3620 return err;
3621 }
3622 } else {
3623 mddev->new_chunk_sectors = n >> 9;
3624 if (mddev->reshape_position == MaxSector)
3625 mddev->chunk_sectors = n >> 9;
3626 }
3627 return len;
3628 }
3629 static struct md_sysfs_entry md_chunk_size =
3630 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3631
3632 static ssize_t
3633 resync_start_show(struct mddev *mddev, char *page)
3634 {
3635 if (mddev->recovery_cp == MaxSector)
3636 return sprintf(page, "none\n");
3637 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3638 }
3639
3640 static ssize_t
3641 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3642 {
3643 char *e;
3644 unsigned long long n = simple_strtoull(buf, &e, 10);
3645
3646 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3647 return -EBUSY;
3648 if (cmd_match(buf, "none"))
3649 n = MaxSector;
3650 else if (!*buf || (*e && *e != '\n'))
3651 return -EINVAL;
3652
3653 mddev->recovery_cp = n;
3654 return len;
3655 }
3656 static struct md_sysfs_entry md_resync_start =
3657 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3658
3659 /*
3660 * The array state can be:
3661 *
3662 * clear
3663 * No devices, no size, no level
3664 * Equivalent to STOP_ARRAY ioctl
3665 * inactive
3666 * May have some settings, but array is not active
3667 * all IO results in error
3668 * When written, doesn't tear down array, but just stops it
3669 * suspended (not supported yet)
3670 * All IO requests will block. The array can be reconfigured.
3671 * Writing this, if accepted, will block until array is quiescent
3672 * readonly
3673 * no resync can happen. no superblocks get written.
3674 * write requests fail
3675 * read-auto
3676 * like readonly, but behaves like 'clean' on a write request.
3677 *
3678 * clean - no pending writes, but otherwise active.
3679 * When written to inactive array, starts without resync
3680 * If a write request arrives then
3681 * if metadata is known, mark 'dirty' and switch to 'active'.
3682 * if not known, block and switch to write-pending
3683 * If written to an active array that has pending writes, then fails.
3684 * active
3685 * fully active: IO and resync can be happening.
3686 * When written to inactive array, starts with resync
3687 *
3688 * write-pending
3689 * clean, but writes are blocked waiting for 'active' to be written.
3690 *
3691 * active-idle
3692 * like active, but no writes have been seen for a while (100msec).
3693 *
3694 */
3695 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3696 write_pending, active_idle, bad_word};
3697 static char *array_states[] = {
3698 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3699 "write-pending", "active-idle", NULL };
3700
3701 static int match_word(const char *word, char **list)
3702 {
3703 int n;
3704 for (n=0; list[n]; n++)
3705 if (cmd_match(word, list[n]))
3706 break;
3707 return n;
3708 }
3709
3710 static ssize_t
3711 array_state_show(struct mddev *mddev, char *page)
3712 {
3713 enum array_state st = inactive;
3714
3715 if (mddev->pers)
3716 switch(mddev->ro) {
3717 case 1:
3718 st = readonly;
3719 break;
3720 case 2:
3721 st = read_auto;
3722 break;
3723 case 0:
3724 if (mddev->in_sync)
3725 st = clean;
3726 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3727 st = write_pending;
3728 else if (mddev->safemode)
3729 st = active_idle;
3730 else
3731 st = active;
3732 }
3733 else {
3734 if (list_empty(&mddev->disks) &&
3735 mddev->raid_disks == 0 &&
3736 mddev->dev_sectors == 0)
3737 st = clear;
3738 else
3739 st = inactive;
3740 }
3741 return sprintf(page, "%s\n", array_states[st]);
3742 }
3743
3744 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3745 static int md_set_readonly(struct mddev * mddev, int is_open);
3746 static int do_md_run(struct mddev * mddev);
3747 static int restart_array(struct mddev *mddev);
3748
3749 static ssize_t
3750 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3751 {
3752 int err = -EINVAL;
3753 enum array_state st = match_word(buf, array_states);
3754 switch(st) {
3755 case bad_word:
3756 break;
3757 case clear:
3758 /* stopping an active array */
3759 if (atomic_read(&mddev->openers) > 0)
3760 return -EBUSY;
3761 err = do_md_stop(mddev, 0, 0);
3762 break;
3763 case inactive:
3764 /* stopping an active array */
3765 if (mddev->pers) {
3766 if (atomic_read(&mddev->openers) > 0)
3767 return -EBUSY;
3768 err = do_md_stop(mddev, 2, 0);
3769 } else
3770 err = 0; /* already inactive */
3771 break;
3772 case suspended:
3773 break; /* not supported yet */
3774 case readonly:
3775 if (mddev->pers)
3776 err = md_set_readonly(mddev, 0);
3777 else {
3778 mddev->ro = 1;
3779 set_disk_ro(mddev->gendisk, 1);
3780 err = do_md_run(mddev);
3781 }
3782 break;
3783 case read_auto:
3784 if (mddev->pers) {
3785 if (mddev->ro == 0)
3786 err = md_set_readonly(mddev, 0);
3787 else if (mddev->ro == 1)
3788 err = restart_array(mddev);
3789 if (err == 0) {
3790 mddev->ro = 2;
3791 set_disk_ro(mddev->gendisk, 0);
3792 }
3793 } else {
3794 mddev->ro = 2;
3795 err = do_md_run(mddev);
3796 }
3797 break;
3798 case clean:
3799 if (mddev->pers) {
3800 restart_array(mddev);
3801 spin_lock_irq(&mddev->write_lock);
3802 if (atomic_read(&mddev->writes_pending) == 0) {
3803 if (mddev->in_sync == 0) {
3804 mddev->in_sync = 1;
3805 if (mddev->safemode == 1)
3806 mddev->safemode = 0;
3807 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3808 }
3809 err = 0;
3810 } else
3811 err = -EBUSY;
3812 spin_unlock_irq(&mddev->write_lock);
3813 } else
3814 err = -EINVAL;
3815 break;
3816 case active:
3817 if (mddev->pers) {
3818 restart_array(mddev);
3819 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3820 wake_up(&mddev->sb_wait);
3821 err = 0;
3822 } else {
3823 mddev->ro = 0;
3824 set_disk_ro(mddev->gendisk, 0);
3825 err = do_md_run(mddev);
3826 }
3827 break;
3828 case write_pending:
3829 case active_idle:
3830 /* these cannot be set */
3831 break;
3832 }
3833 if (err)
3834 return err;
3835 else {
3836 if (mddev->hold_active == UNTIL_IOCTL)
3837 mddev->hold_active = 0;
3838 sysfs_notify_dirent_safe(mddev->sysfs_state);
3839 return len;
3840 }
3841 }
3842 static struct md_sysfs_entry md_array_state =
3843 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3844
3845 static ssize_t
3846 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3847 return sprintf(page, "%d\n",
3848 atomic_read(&mddev->max_corr_read_errors));
3849 }
3850
3851 static ssize_t
3852 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3853 {
3854 char *e;
3855 unsigned long n = simple_strtoul(buf, &e, 10);
3856
3857 if (*buf && (*e == 0 || *e == '\n')) {
3858 atomic_set(&mddev->max_corr_read_errors, n);
3859 return len;
3860 }
3861 return -EINVAL;
3862 }
3863
3864 static struct md_sysfs_entry max_corr_read_errors =
3865 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3866 max_corrected_read_errors_store);
3867
3868 static ssize_t
3869 null_show(struct mddev *mddev, char *page)
3870 {
3871 return -EINVAL;
3872 }
3873
3874 static ssize_t
3875 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3876 {
3877 /* buf must be %d:%d\n? giving major and minor numbers */
3878 /* The new device is added to the array.
3879 * If the array has a persistent superblock, we read the
3880 * superblock to initialise info and check validity.
3881 * Otherwise, only checking done is that in bind_rdev_to_array,
3882 * which mainly checks size.
3883 */
3884 char *e;
3885 int major = simple_strtoul(buf, &e, 10);
3886 int minor;
3887 dev_t dev;
3888 struct md_rdev *rdev;
3889 int err;
3890
3891 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3892 return -EINVAL;
3893 minor = simple_strtoul(e+1, &e, 10);
3894 if (*e && *e != '\n')
3895 return -EINVAL;
3896 dev = MKDEV(major, minor);
3897 if (major != MAJOR(dev) ||
3898 minor != MINOR(dev))
3899 return -EOVERFLOW;
3900
3901
3902 if (mddev->persistent) {
3903 rdev = md_import_device(dev, mddev->major_version,
3904 mddev->minor_version);
3905 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3906 struct md_rdev *rdev0
3907 = list_entry(mddev->disks.next,
3908 struct md_rdev, same_set);
3909 err = super_types[mddev->major_version]
3910 .load_super(rdev, rdev0, mddev->minor_version);
3911 if (err < 0)
3912 goto out;
3913 }
3914 } else if (mddev->external)
3915 rdev = md_import_device(dev, -2, -1);
3916 else
3917 rdev = md_import_device(dev, -1, -1);
3918
3919 if (IS_ERR(rdev))
3920 return PTR_ERR(rdev);
3921 err = bind_rdev_to_array(rdev, mddev);
3922 out:
3923 if (err)
3924 export_rdev(rdev);
3925 return err ? err : len;
3926 }
3927
3928 static struct md_sysfs_entry md_new_device =
3929 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3930
3931 static ssize_t
3932 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3933 {
3934 char *end;
3935 unsigned long chunk, end_chunk;
3936
3937 if (!mddev->bitmap)
3938 goto out;
3939 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3940 while (*buf) {
3941 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3942 if (buf == end) break;
3943 if (*end == '-') { /* range */
3944 buf = end + 1;
3945 end_chunk = simple_strtoul(buf, &end, 0);
3946 if (buf == end) break;
3947 }
3948 if (*end && !isspace(*end)) break;
3949 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3950 buf = skip_spaces(end);
3951 }
3952 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3953 out:
3954 return len;
3955 }
3956
3957 static struct md_sysfs_entry md_bitmap =
3958 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3959
3960 static ssize_t
3961 size_show(struct mddev *mddev, char *page)
3962 {
3963 return sprintf(page, "%llu\n",
3964 (unsigned long long)mddev->dev_sectors / 2);
3965 }
3966
3967 static int update_size(struct mddev *mddev, sector_t num_sectors);
3968
3969 static ssize_t
3970 size_store(struct mddev *mddev, const char *buf, size_t len)
3971 {
3972 /* If array is inactive, we can reduce the component size, but
3973 * not increase it (except from 0).
3974 * If array is active, we can try an on-line resize
3975 */
3976 sector_t sectors;
3977 int err = strict_blocks_to_sectors(buf, &sectors);
3978
3979 if (err < 0)
3980 return err;
3981 if (mddev->pers) {
3982 err = update_size(mddev, sectors);
3983 md_update_sb(mddev, 1);
3984 } else {
3985 if (mddev->dev_sectors == 0 ||
3986 mddev->dev_sectors > sectors)
3987 mddev->dev_sectors = sectors;
3988 else
3989 err = -ENOSPC;
3990 }
3991 return err ? err : len;
3992 }
3993
3994 static struct md_sysfs_entry md_size =
3995 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3996
3997
3998 /* Metdata version.
3999 * This is one of
4000 * 'none' for arrays with no metadata (good luck...)
4001 * 'external' for arrays with externally managed metadata,
4002 * or N.M for internally known formats
4003 */
4004 static ssize_t
4005 metadata_show(struct mddev *mddev, char *page)
4006 {
4007 if (mddev->persistent)
4008 return sprintf(page, "%d.%d\n",
4009 mddev->major_version, mddev->minor_version);
4010 else if (mddev->external)
4011 return sprintf(page, "external:%s\n", mddev->metadata_type);
4012 else
4013 return sprintf(page, "none\n");
4014 }
4015
4016 static ssize_t
4017 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4018 {
4019 int major, minor;
4020 char *e;
4021 /* Changing the details of 'external' metadata is
4022 * always permitted. Otherwise there must be
4023 * no devices attached to the array.
4024 */
4025 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4026 ;
4027 else if (!list_empty(&mddev->disks))
4028 return -EBUSY;
4029
4030 if (cmd_match(buf, "none")) {
4031 mddev->persistent = 0;
4032 mddev->external = 0;
4033 mddev->major_version = 0;
4034 mddev->minor_version = 90;
4035 return len;
4036 }
4037 if (strncmp(buf, "external:", 9) == 0) {
4038 size_t namelen = len-9;
4039 if (namelen >= sizeof(mddev->metadata_type))
4040 namelen = sizeof(mddev->metadata_type)-1;
4041 strncpy(mddev->metadata_type, buf+9, namelen);
4042 mddev->metadata_type[namelen] = 0;
4043 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4044 mddev->metadata_type[--namelen] = 0;
4045 mddev->persistent = 0;
4046 mddev->external = 1;
4047 mddev->major_version = 0;
4048 mddev->minor_version = 90;
4049 return len;
4050 }
4051 major = simple_strtoul(buf, &e, 10);
4052 if (e==buf || *e != '.')
4053 return -EINVAL;
4054 buf = e+1;
4055 minor = simple_strtoul(buf, &e, 10);
4056 if (e==buf || (*e && *e != '\n') )
4057 return -EINVAL;
4058 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4059 return -ENOENT;
4060 mddev->major_version = major;
4061 mddev->minor_version = minor;
4062 mddev->persistent = 1;
4063 mddev->external = 0;
4064 return len;
4065 }
4066
4067 static struct md_sysfs_entry md_metadata =
4068 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4069
4070 static ssize_t
4071 action_show(struct mddev *mddev, char *page)
4072 {
4073 char *type = "idle";
4074 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4075 type = "frozen";
4076 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4077 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4078 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4079 type = "reshape";
4080 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4081 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4082 type = "resync";
4083 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4084 type = "check";
4085 else
4086 type = "repair";
4087 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4088 type = "recover";
4089 }
4090 return sprintf(page, "%s\n", type);
4091 }
4092
4093 static void reap_sync_thread(struct mddev *mddev);
4094
4095 static ssize_t
4096 action_store(struct mddev *mddev, const char *page, size_t len)
4097 {
4098 if (!mddev->pers || !mddev->pers->sync_request)
4099 return -EINVAL;
4100
4101 if (cmd_match(page, "frozen"))
4102 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4103 else
4104 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4105
4106 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4107 if (mddev->sync_thread) {
4108 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4109 reap_sync_thread(mddev);
4110 }
4111 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4112 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4113 return -EBUSY;
4114 else if (cmd_match(page, "resync"))
4115 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4116 else if (cmd_match(page, "recover")) {
4117 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4118 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4119 } else if (cmd_match(page, "reshape")) {
4120 int err;
4121 if (mddev->pers->start_reshape == NULL)
4122 return -EINVAL;
4123 err = mddev->pers->start_reshape(mddev);
4124 if (err)
4125 return err;
4126 sysfs_notify(&mddev->kobj, NULL, "degraded");
4127 } else {
4128 if (cmd_match(page, "check"))
4129 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4130 else if (!cmd_match(page, "repair"))
4131 return -EINVAL;
4132 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4133 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4134 }
4135 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4136 md_wakeup_thread(mddev->thread);
4137 sysfs_notify_dirent_safe(mddev->sysfs_action);
4138 return len;
4139 }
4140
4141 static ssize_t
4142 mismatch_cnt_show(struct mddev *mddev, char *page)
4143 {
4144 return sprintf(page, "%llu\n",
4145 (unsigned long long) mddev->resync_mismatches);
4146 }
4147
4148 static struct md_sysfs_entry md_scan_mode =
4149 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4150
4151
4152 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4153
4154 static ssize_t
4155 sync_min_show(struct mddev *mddev, char *page)
4156 {
4157 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4158 mddev->sync_speed_min ? "local": "system");
4159 }
4160
4161 static ssize_t
4162 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4163 {
4164 int min;
4165 char *e;
4166 if (strncmp(buf, "system", 6)==0) {
4167 mddev->sync_speed_min = 0;
4168 return len;
4169 }
4170 min = simple_strtoul(buf, &e, 10);
4171 if (buf == e || (*e && *e != '\n') || min <= 0)
4172 return -EINVAL;
4173 mddev->sync_speed_min = min;
4174 return len;
4175 }
4176
4177 static struct md_sysfs_entry md_sync_min =
4178 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4179
4180 static ssize_t
4181 sync_max_show(struct mddev *mddev, char *page)
4182 {
4183 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4184 mddev->sync_speed_max ? "local": "system");
4185 }
4186
4187 static ssize_t
4188 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4189 {
4190 int max;
4191 char *e;
4192 if (strncmp(buf, "system", 6)==0) {
4193 mddev->sync_speed_max = 0;
4194 return len;
4195 }
4196 max = simple_strtoul(buf, &e, 10);
4197 if (buf == e || (*e && *e != '\n') || max <= 0)
4198 return -EINVAL;
4199 mddev->sync_speed_max = max;
4200 return len;
4201 }
4202
4203 static struct md_sysfs_entry md_sync_max =
4204 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4205
4206 static ssize_t
4207 degraded_show(struct mddev *mddev, char *page)
4208 {
4209 return sprintf(page, "%d\n", mddev->degraded);
4210 }
4211 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4212
4213 static ssize_t
4214 sync_force_parallel_show(struct mddev *mddev, char *page)
4215 {
4216 return sprintf(page, "%d\n", mddev->parallel_resync);
4217 }
4218
4219 static ssize_t
4220 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4221 {
4222 long n;
4223
4224 if (strict_strtol(buf, 10, &n))
4225 return -EINVAL;
4226
4227 if (n != 0 && n != 1)
4228 return -EINVAL;
4229
4230 mddev->parallel_resync = n;
4231
4232 if (mddev->sync_thread)
4233 wake_up(&resync_wait);
4234
4235 return len;
4236 }
4237
4238 /* force parallel resync, even with shared block devices */
4239 static struct md_sysfs_entry md_sync_force_parallel =
4240 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4241 sync_force_parallel_show, sync_force_parallel_store);
4242
4243 static ssize_t
4244 sync_speed_show(struct mddev *mddev, char *page)
4245 {
4246 unsigned long resync, dt, db;
4247 if (mddev->curr_resync == 0)
4248 return sprintf(page, "none\n");
4249 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4250 dt = (jiffies - mddev->resync_mark) / HZ;
4251 if (!dt) dt++;
4252 db = resync - mddev->resync_mark_cnt;
4253 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4254 }
4255
4256 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4257
4258 static ssize_t
4259 sync_completed_show(struct mddev *mddev, char *page)
4260 {
4261 unsigned long long max_sectors, resync;
4262
4263 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4264 return sprintf(page, "none\n");
4265
4266 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4267 max_sectors = mddev->resync_max_sectors;
4268 else
4269 max_sectors = mddev->dev_sectors;
4270
4271 resync = mddev->curr_resync_completed;
4272 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4273 }
4274
4275 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4276
4277 static ssize_t
4278 min_sync_show(struct mddev *mddev, char *page)
4279 {
4280 return sprintf(page, "%llu\n",
4281 (unsigned long long)mddev->resync_min);
4282 }
4283 static ssize_t
4284 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4285 {
4286 unsigned long long min;
4287 if (strict_strtoull(buf, 10, &min))
4288 return -EINVAL;
4289 if (min > mddev->resync_max)
4290 return -EINVAL;
4291 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4292 return -EBUSY;
4293
4294 /* Must be a multiple of chunk_size */
4295 if (mddev->chunk_sectors) {
4296 sector_t temp = min;
4297 if (sector_div(temp, mddev->chunk_sectors))
4298 return -EINVAL;
4299 }
4300 mddev->resync_min = min;
4301
4302 return len;
4303 }
4304
4305 static struct md_sysfs_entry md_min_sync =
4306 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4307
4308 static ssize_t
4309 max_sync_show(struct mddev *mddev, char *page)
4310 {
4311 if (mddev->resync_max == MaxSector)
4312 return sprintf(page, "max\n");
4313 else
4314 return sprintf(page, "%llu\n",
4315 (unsigned long long)mddev->resync_max);
4316 }
4317 static ssize_t
4318 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4319 {
4320 if (strncmp(buf, "max", 3) == 0)
4321 mddev->resync_max = MaxSector;
4322 else {
4323 unsigned long long max;
4324 if (strict_strtoull(buf, 10, &max))
4325 return -EINVAL;
4326 if (max < mddev->resync_min)
4327 return -EINVAL;
4328 if (max < mddev->resync_max &&
4329 mddev->ro == 0 &&
4330 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4331 return -EBUSY;
4332
4333 /* Must be a multiple of chunk_size */
4334 if (mddev->chunk_sectors) {
4335 sector_t temp = max;
4336 if (sector_div(temp, mddev->chunk_sectors))
4337 return -EINVAL;
4338 }
4339 mddev->resync_max = max;
4340 }
4341 wake_up(&mddev->recovery_wait);
4342 return len;
4343 }
4344
4345 static struct md_sysfs_entry md_max_sync =
4346 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4347
4348 static ssize_t
4349 suspend_lo_show(struct mddev *mddev, char *page)
4350 {
4351 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4352 }
4353
4354 static ssize_t
4355 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4356 {
4357 char *e;
4358 unsigned long long new = simple_strtoull(buf, &e, 10);
4359 unsigned long long old = mddev->suspend_lo;
4360
4361 if (mddev->pers == NULL ||
4362 mddev->pers->quiesce == NULL)
4363 return -EINVAL;
4364 if (buf == e || (*e && *e != '\n'))
4365 return -EINVAL;
4366
4367 mddev->suspend_lo = new;
4368 if (new >= old)
4369 /* Shrinking suspended region */
4370 mddev->pers->quiesce(mddev, 2);
4371 else {
4372 /* Expanding suspended region - need to wait */
4373 mddev->pers->quiesce(mddev, 1);
4374 mddev->pers->quiesce(mddev, 0);
4375 }
4376 return len;
4377 }
4378 static struct md_sysfs_entry md_suspend_lo =
4379 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4380
4381
4382 static ssize_t
4383 suspend_hi_show(struct mddev *mddev, char *page)
4384 {
4385 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4386 }
4387
4388 static ssize_t
4389 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4390 {
4391 char *e;
4392 unsigned long long new = simple_strtoull(buf, &e, 10);
4393 unsigned long long old = mddev->suspend_hi;
4394
4395 if (mddev->pers == NULL ||
4396 mddev->pers->quiesce == NULL)
4397 return -EINVAL;
4398 if (buf == e || (*e && *e != '\n'))
4399 return -EINVAL;
4400
4401 mddev->suspend_hi = new;
4402 if (new <= old)
4403 /* Shrinking suspended region */
4404 mddev->pers->quiesce(mddev, 2);
4405 else {
4406 /* Expanding suspended region - need to wait */
4407 mddev->pers->quiesce(mddev, 1);
4408 mddev->pers->quiesce(mddev, 0);
4409 }
4410 return len;
4411 }
4412 static struct md_sysfs_entry md_suspend_hi =
4413 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4414
4415 static ssize_t
4416 reshape_position_show(struct mddev *mddev, char *page)
4417 {
4418 if (mddev->reshape_position != MaxSector)
4419 return sprintf(page, "%llu\n",
4420 (unsigned long long)mddev->reshape_position);
4421 strcpy(page, "none\n");
4422 return 5;
4423 }
4424
4425 static ssize_t
4426 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4427 {
4428 char *e;
4429 unsigned long long new = simple_strtoull(buf, &e, 10);
4430 if (mddev->pers)
4431 return -EBUSY;
4432 if (buf == e || (*e && *e != '\n'))
4433 return -EINVAL;
4434 mddev->reshape_position = new;
4435 mddev->delta_disks = 0;
4436 mddev->new_level = mddev->level;
4437 mddev->new_layout = mddev->layout;
4438 mddev->new_chunk_sectors = mddev->chunk_sectors;
4439 return len;
4440 }
4441
4442 static struct md_sysfs_entry md_reshape_position =
4443 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4444 reshape_position_store);
4445
4446 static ssize_t
4447 array_size_show(struct mddev *mddev, char *page)
4448 {
4449 if (mddev->external_size)
4450 return sprintf(page, "%llu\n",
4451 (unsigned long long)mddev->array_sectors/2);
4452 else
4453 return sprintf(page, "default\n");
4454 }
4455
4456 static ssize_t
4457 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4458 {
4459 sector_t sectors;
4460
4461 if (strncmp(buf, "default", 7) == 0) {
4462 if (mddev->pers)
4463 sectors = mddev->pers->size(mddev, 0, 0);
4464 else
4465 sectors = mddev->array_sectors;
4466
4467 mddev->external_size = 0;
4468 } else {
4469 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4470 return -EINVAL;
4471 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4472 return -E2BIG;
4473
4474 mddev->external_size = 1;
4475 }
4476
4477 mddev->array_sectors = sectors;
4478 if (mddev->pers) {
4479 set_capacity(mddev->gendisk, mddev->array_sectors);
4480 revalidate_disk(mddev->gendisk);
4481 }
4482 return len;
4483 }
4484
4485 static struct md_sysfs_entry md_array_size =
4486 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4487 array_size_store);
4488
4489 static struct attribute *md_default_attrs[] = {
4490 &md_level.attr,
4491 &md_layout.attr,
4492 &md_raid_disks.attr,
4493 &md_chunk_size.attr,
4494 &md_size.attr,
4495 &md_resync_start.attr,
4496 &md_metadata.attr,
4497 &md_new_device.attr,
4498 &md_safe_delay.attr,
4499 &md_array_state.attr,
4500 &md_reshape_position.attr,
4501 &md_array_size.attr,
4502 &max_corr_read_errors.attr,
4503 NULL,
4504 };
4505
4506 static struct attribute *md_redundancy_attrs[] = {
4507 &md_scan_mode.attr,
4508 &md_mismatches.attr,
4509 &md_sync_min.attr,
4510 &md_sync_max.attr,
4511 &md_sync_speed.attr,
4512 &md_sync_force_parallel.attr,
4513 &md_sync_completed.attr,
4514 &md_min_sync.attr,
4515 &md_max_sync.attr,
4516 &md_suspend_lo.attr,
4517 &md_suspend_hi.attr,
4518 &md_bitmap.attr,
4519 &md_degraded.attr,
4520 NULL,
4521 };
4522 static struct attribute_group md_redundancy_group = {
4523 .name = NULL,
4524 .attrs = md_redundancy_attrs,
4525 };
4526
4527
4528 static ssize_t
4529 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4530 {
4531 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4532 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4533 ssize_t rv;
4534
4535 if (!entry->show)
4536 return -EIO;
4537 spin_lock(&all_mddevs_lock);
4538 if (list_empty(&mddev->all_mddevs)) {
4539 spin_unlock(&all_mddevs_lock);
4540 return -EBUSY;
4541 }
4542 mddev_get(mddev);
4543 spin_unlock(&all_mddevs_lock);
4544
4545 rv = mddev_lock(mddev);
4546 if (!rv) {
4547 rv = entry->show(mddev, page);
4548 mddev_unlock(mddev);
4549 }
4550 mddev_put(mddev);
4551 return rv;
4552 }
4553
4554 static ssize_t
4555 md_attr_store(struct kobject *kobj, struct attribute *attr,
4556 const char *page, size_t length)
4557 {
4558 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4559 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4560 ssize_t rv;
4561
4562 if (!entry->store)
4563 return -EIO;
4564 if (!capable(CAP_SYS_ADMIN))
4565 return -EACCES;
4566 spin_lock(&all_mddevs_lock);
4567 if (list_empty(&mddev->all_mddevs)) {
4568 spin_unlock(&all_mddevs_lock);
4569 return -EBUSY;
4570 }
4571 mddev_get(mddev);
4572 spin_unlock(&all_mddevs_lock);
4573 rv = mddev_lock(mddev);
4574 if (!rv) {
4575 rv = entry->store(mddev, page, length);
4576 mddev_unlock(mddev);
4577 }
4578 mddev_put(mddev);
4579 return rv;
4580 }
4581
4582 static void md_free(struct kobject *ko)
4583 {
4584 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4585
4586 if (mddev->sysfs_state)
4587 sysfs_put(mddev->sysfs_state);
4588
4589 if (mddev->gendisk) {
4590 del_gendisk(mddev->gendisk);
4591 put_disk(mddev->gendisk);
4592 }
4593 if (mddev->queue)
4594 blk_cleanup_queue(mddev->queue);
4595
4596 kfree(mddev);
4597 }
4598
4599 static const struct sysfs_ops md_sysfs_ops = {
4600 .show = md_attr_show,
4601 .store = md_attr_store,
4602 };
4603 static struct kobj_type md_ktype = {
4604 .release = md_free,
4605 .sysfs_ops = &md_sysfs_ops,
4606 .default_attrs = md_default_attrs,
4607 };
4608
4609 int mdp_major = 0;
4610
4611 static void mddev_delayed_delete(struct work_struct *ws)
4612 {
4613 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4614
4615 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4616 kobject_del(&mddev->kobj);
4617 kobject_put(&mddev->kobj);
4618 }
4619
4620 static int md_alloc(dev_t dev, char *name)
4621 {
4622 static DEFINE_MUTEX(disks_mutex);
4623 struct mddev *mddev = mddev_find(dev);
4624 struct gendisk *disk;
4625 int partitioned;
4626 int shift;
4627 int unit;
4628 int error;
4629
4630 if (!mddev)
4631 return -ENODEV;
4632
4633 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4634 shift = partitioned ? MdpMinorShift : 0;
4635 unit = MINOR(mddev->unit) >> shift;
4636
4637 /* wait for any previous instance of this device to be
4638 * completely removed (mddev_delayed_delete).
4639 */
4640 flush_workqueue(md_misc_wq);
4641
4642 mutex_lock(&disks_mutex);
4643 error = -EEXIST;
4644 if (mddev->gendisk)
4645 goto abort;
4646
4647 if (name) {
4648 /* Need to ensure that 'name' is not a duplicate.
4649 */
4650 struct mddev *mddev2;
4651 spin_lock(&all_mddevs_lock);
4652
4653 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4654 if (mddev2->gendisk &&
4655 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4656 spin_unlock(&all_mddevs_lock);
4657 goto abort;
4658 }
4659 spin_unlock(&all_mddevs_lock);
4660 }
4661
4662 error = -ENOMEM;
4663 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4664 if (!mddev->queue)
4665 goto abort;
4666 mddev->queue->queuedata = mddev;
4667
4668 blk_queue_make_request(mddev->queue, md_make_request);
4669
4670 disk = alloc_disk(1 << shift);
4671 if (!disk) {
4672 blk_cleanup_queue(mddev->queue);
4673 mddev->queue = NULL;
4674 goto abort;
4675 }
4676 disk->major = MAJOR(mddev->unit);
4677 disk->first_minor = unit << shift;
4678 if (name)
4679 strcpy(disk->disk_name, name);
4680 else if (partitioned)
4681 sprintf(disk->disk_name, "md_d%d", unit);
4682 else
4683 sprintf(disk->disk_name, "md%d", unit);
4684 disk->fops = &md_fops;
4685 disk->private_data = mddev;
4686 disk->queue = mddev->queue;
4687 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4688 /* Allow extended partitions. This makes the
4689 * 'mdp' device redundant, but we can't really
4690 * remove it now.
4691 */
4692 disk->flags |= GENHD_FL_EXT_DEVT;
4693 mddev->gendisk = disk;
4694 /* As soon as we call add_disk(), another thread could get
4695 * through to md_open, so make sure it doesn't get too far
4696 */
4697 mutex_lock(&mddev->open_mutex);
4698 add_disk(disk);
4699
4700 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4701 &disk_to_dev(disk)->kobj, "%s", "md");
4702 if (error) {
4703 /* This isn't possible, but as kobject_init_and_add is marked
4704 * __must_check, we must do something with the result
4705 */
4706 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4707 disk->disk_name);
4708 error = 0;
4709 }
4710 if (mddev->kobj.sd &&
4711 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4712 printk(KERN_DEBUG "pointless warning\n");
4713 mutex_unlock(&mddev->open_mutex);
4714 abort:
4715 mutex_unlock(&disks_mutex);
4716 if (!error && mddev->kobj.sd) {
4717 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4718 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4719 }
4720 mddev_put(mddev);
4721 return error;
4722 }
4723
4724 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4725 {
4726 md_alloc(dev, NULL);
4727 return NULL;
4728 }
4729
4730 static int add_named_array(const char *val, struct kernel_param *kp)
4731 {
4732 /* val must be "md_*" where * is not all digits.
4733 * We allocate an array with a large free minor number, and
4734 * set the name to val. val must not already be an active name.
4735 */
4736 int len = strlen(val);
4737 char buf[DISK_NAME_LEN];
4738
4739 while (len && val[len-1] == '\n')
4740 len--;
4741 if (len >= DISK_NAME_LEN)
4742 return -E2BIG;
4743 strlcpy(buf, val, len+1);
4744 if (strncmp(buf, "md_", 3) != 0)
4745 return -EINVAL;
4746 return md_alloc(0, buf);
4747 }
4748
4749 static void md_safemode_timeout(unsigned long data)
4750 {
4751 struct mddev *mddev = (struct mddev *) data;
4752
4753 if (!atomic_read(&mddev->writes_pending)) {
4754 mddev->safemode = 1;
4755 if (mddev->external)
4756 sysfs_notify_dirent_safe(mddev->sysfs_state);
4757 }
4758 md_wakeup_thread(mddev->thread);
4759 }
4760
4761 static int start_dirty_degraded;
4762
4763 int md_run(struct mddev *mddev)
4764 {
4765 int err;
4766 struct md_rdev *rdev;
4767 struct md_personality *pers;
4768
4769 if (list_empty(&mddev->disks))
4770 /* cannot run an array with no devices.. */
4771 return -EINVAL;
4772
4773 if (mddev->pers)
4774 return -EBUSY;
4775 /* Cannot run until previous stop completes properly */
4776 if (mddev->sysfs_active)
4777 return -EBUSY;
4778
4779 /*
4780 * Analyze all RAID superblock(s)
4781 */
4782 if (!mddev->raid_disks) {
4783 if (!mddev->persistent)
4784 return -EINVAL;
4785 analyze_sbs(mddev);
4786 }
4787
4788 if (mddev->level != LEVEL_NONE)
4789 request_module("md-level-%d", mddev->level);
4790 else if (mddev->clevel[0])
4791 request_module("md-%s", mddev->clevel);
4792
4793 /*
4794 * Drop all container device buffers, from now on
4795 * the only valid external interface is through the md
4796 * device.
4797 */
4798 list_for_each_entry(rdev, &mddev->disks, same_set) {
4799 if (test_bit(Faulty, &rdev->flags))
4800 continue;
4801 sync_blockdev(rdev->bdev);
4802 invalidate_bdev(rdev->bdev);
4803
4804 /* perform some consistency tests on the device.
4805 * We don't want the data to overlap the metadata,
4806 * Internal Bitmap issues have been handled elsewhere.
4807 */
4808 if (rdev->meta_bdev) {
4809 /* Nothing to check */;
4810 } else if (rdev->data_offset < rdev->sb_start) {
4811 if (mddev->dev_sectors &&
4812 rdev->data_offset + mddev->dev_sectors
4813 > rdev->sb_start) {
4814 printk("md: %s: data overlaps metadata\n",
4815 mdname(mddev));
4816 return -EINVAL;
4817 }
4818 } else {
4819 if (rdev->sb_start + rdev->sb_size/512
4820 > rdev->data_offset) {
4821 printk("md: %s: metadata overlaps data\n",
4822 mdname(mddev));
4823 return -EINVAL;
4824 }
4825 }
4826 sysfs_notify_dirent_safe(rdev->sysfs_state);
4827 }
4828
4829 if (mddev->bio_set == NULL)
4830 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4831 sizeof(struct mddev *));
4832
4833 spin_lock(&pers_lock);
4834 pers = find_pers(mddev->level, mddev->clevel);
4835 if (!pers || !try_module_get(pers->owner)) {
4836 spin_unlock(&pers_lock);
4837 if (mddev->level != LEVEL_NONE)
4838 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4839 mddev->level);
4840 else
4841 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4842 mddev->clevel);
4843 return -EINVAL;
4844 }
4845 mddev->pers = pers;
4846 spin_unlock(&pers_lock);
4847 if (mddev->level != pers->level) {
4848 mddev->level = pers->level;
4849 mddev->new_level = pers->level;
4850 }
4851 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4852
4853 if (mddev->reshape_position != MaxSector &&
4854 pers->start_reshape == NULL) {
4855 /* This personality cannot handle reshaping... */
4856 mddev->pers = NULL;
4857 module_put(pers->owner);
4858 return -EINVAL;
4859 }
4860
4861 if (pers->sync_request) {
4862 /* Warn if this is a potentially silly
4863 * configuration.
4864 */
4865 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4866 struct md_rdev *rdev2;
4867 int warned = 0;
4868
4869 list_for_each_entry(rdev, &mddev->disks, same_set)
4870 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4871 if (rdev < rdev2 &&
4872 rdev->bdev->bd_contains ==
4873 rdev2->bdev->bd_contains) {
4874 printk(KERN_WARNING
4875 "%s: WARNING: %s appears to be"
4876 " on the same physical disk as"
4877 " %s.\n",
4878 mdname(mddev),
4879 bdevname(rdev->bdev,b),
4880 bdevname(rdev2->bdev,b2));
4881 warned = 1;
4882 }
4883 }
4884
4885 if (warned)
4886 printk(KERN_WARNING
4887 "True protection against single-disk"
4888 " failure might be compromised.\n");
4889 }
4890
4891 mddev->recovery = 0;
4892 /* may be over-ridden by personality */
4893 mddev->resync_max_sectors = mddev->dev_sectors;
4894
4895 mddev->ok_start_degraded = start_dirty_degraded;
4896
4897 if (start_readonly && mddev->ro == 0)
4898 mddev->ro = 2; /* read-only, but switch on first write */
4899
4900 err = mddev->pers->run(mddev);
4901 if (err)
4902 printk(KERN_ERR "md: pers->run() failed ...\n");
4903 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4904 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4905 " but 'external_size' not in effect?\n", __func__);
4906 printk(KERN_ERR
4907 "md: invalid array_size %llu > default size %llu\n",
4908 (unsigned long long)mddev->array_sectors / 2,
4909 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4910 err = -EINVAL;
4911 mddev->pers->stop(mddev);
4912 }
4913 if (err == 0 && mddev->pers->sync_request) {
4914 err = bitmap_create(mddev);
4915 if (err) {
4916 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4917 mdname(mddev), err);
4918 mddev->pers->stop(mddev);
4919 }
4920 }
4921 if (err) {
4922 module_put(mddev->pers->owner);
4923 mddev->pers = NULL;
4924 bitmap_destroy(mddev);
4925 return err;
4926 }
4927 if (mddev->pers->sync_request) {
4928 if (mddev->kobj.sd &&
4929 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4930 printk(KERN_WARNING
4931 "md: cannot register extra attributes for %s\n",
4932 mdname(mddev));
4933 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4934 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4935 mddev->ro = 0;
4936
4937 atomic_set(&mddev->writes_pending,0);
4938 atomic_set(&mddev->max_corr_read_errors,
4939 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4940 mddev->safemode = 0;
4941 mddev->safemode_timer.function = md_safemode_timeout;
4942 mddev->safemode_timer.data = (unsigned long) mddev;
4943 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4944 mddev->in_sync = 1;
4945 smp_wmb();
4946 mddev->ready = 1;
4947 list_for_each_entry(rdev, &mddev->disks, same_set)
4948 if (rdev->raid_disk >= 0)
4949 if (sysfs_link_rdev(mddev, rdev))
4950 /* failure here is OK */;
4951
4952 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4953
4954 if (mddev->flags)
4955 md_update_sb(mddev, 0);
4956
4957 md_new_event(mddev);
4958 sysfs_notify_dirent_safe(mddev->sysfs_state);
4959 sysfs_notify_dirent_safe(mddev->sysfs_action);
4960 sysfs_notify(&mddev->kobj, NULL, "degraded");
4961 return 0;
4962 }
4963 EXPORT_SYMBOL_GPL(md_run);
4964
4965 static int do_md_run(struct mddev *mddev)
4966 {
4967 int err;
4968
4969 err = md_run(mddev);
4970 if (err)
4971 goto out;
4972 err = bitmap_load(mddev);
4973 if (err) {
4974 bitmap_destroy(mddev);
4975 goto out;
4976 }
4977
4978 md_wakeup_thread(mddev->thread);
4979 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4980
4981 set_capacity(mddev->gendisk, mddev->array_sectors);
4982 revalidate_disk(mddev->gendisk);
4983 mddev->changed = 1;
4984 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4985 out:
4986 return err;
4987 }
4988
4989 static int restart_array(struct mddev *mddev)
4990 {
4991 struct gendisk *disk = mddev->gendisk;
4992
4993 /* Complain if it has no devices */
4994 if (list_empty(&mddev->disks))
4995 return -ENXIO;
4996 if (!mddev->pers)
4997 return -EINVAL;
4998 if (!mddev->ro)
4999 return -EBUSY;
5000 mddev->safemode = 0;
5001 mddev->ro = 0;
5002 set_disk_ro(disk, 0);
5003 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5004 mdname(mddev));
5005 /* Kick recovery or resync if necessary */
5006 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5007 md_wakeup_thread(mddev->thread);
5008 md_wakeup_thread(mddev->sync_thread);
5009 sysfs_notify_dirent_safe(mddev->sysfs_state);
5010 return 0;
5011 }
5012
5013 /* similar to deny_write_access, but accounts for our holding a reference
5014 * to the file ourselves */
5015 static int deny_bitmap_write_access(struct file * file)
5016 {
5017 struct inode *inode = file->f_mapping->host;
5018
5019 spin_lock(&inode->i_lock);
5020 if (atomic_read(&inode->i_writecount) > 1) {
5021 spin_unlock(&inode->i_lock);
5022 return -ETXTBSY;
5023 }
5024 atomic_set(&inode->i_writecount, -1);
5025 spin_unlock(&inode->i_lock);
5026
5027 return 0;
5028 }
5029
5030 void restore_bitmap_write_access(struct file *file)
5031 {
5032 struct inode *inode = file->f_mapping->host;
5033
5034 spin_lock(&inode->i_lock);
5035 atomic_set(&inode->i_writecount, 1);
5036 spin_unlock(&inode->i_lock);
5037 }
5038
5039 static void md_clean(struct mddev *mddev)
5040 {
5041 mddev->array_sectors = 0;
5042 mddev->external_size = 0;
5043 mddev->dev_sectors = 0;
5044 mddev->raid_disks = 0;
5045 mddev->recovery_cp = 0;
5046 mddev->resync_min = 0;
5047 mddev->resync_max = MaxSector;
5048 mddev->reshape_position = MaxSector;
5049 mddev->external = 0;
5050 mddev->persistent = 0;
5051 mddev->level = LEVEL_NONE;
5052 mddev->clevel[0] = 0;
5053 mddev->flags = 0;
5054 mddev->ro = 0;
5055 mddev->metadata_type[0] = 0;
5056 mddev->chunk_sectors = 0;
5057 mddev->ctime = mddev->utime = 0;
5058 mddev->layout = 0;
5059 mddev->max_disks = 0;
5060 mddev->events = 0;
5061 mddev->can_decrease_events = 0;
5062 mddev->delta_disks = 0;
5063 mddev->new_level = LEVEL_NONE;
5064 mddev->new_layout = 0;
5065 mddev->new_chunk_sectors = 0;
5066 mddev->curr_resync = 0;
5067 mddev->resync_mismatches = 0;
5068 mddev->suspend_lo = mddev->suspend_hi = 0;
5069 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5070 mddev->recovery = 0;
5071 mddev->in_sync = 0;
5072 mddev->changed = 0;
5073 mddev->degraded = 0;
5074 mddev->safemode = 0;
5075 mddev->bitmap_info.offset = 0;
5076 mddev->bitmap_info.default_offset = 0;
5077 mddev->bitmap_info.chunksize = 0;
5078 mddev->bitmap_info.daemon_sleep = 0;
5079 mddev->bitmap_info.max_write_behind = 0;
5080 }
5081
5082 static void __md_stop_writes(struct mddev *mddev)
5083 {
5084 if (mddev->sync_thread) {
5085 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5086 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5087 reap_sync_thread(mddev);
5088 }
5089
5090 del_timer_sync(&mddev->safemode_timer);
5091
5092 bitmap_flush(mddev);
5093 md_super_wait(mddev);
5094
5095 if (!mddev->in_sync || mddev->flags) {
5096 /* mark array as shutdown cleanly */
5097 mddev->in_sync = 1;
5098 md_update_sb(mddev, 1);
5099 }
5100 }
5101
5102 void md_stop_writes(struct mddev *mddev)
5103 {
5104 mddev_lock(mddev);
5105 __md_stop_writes(mddev);
5106 mddev_unlock(mddev);
5107 }
5108 EXPORT_SYMBOL_GPL(md_stop_writes);
5109
5110 void md_stop(struct mddev *mddev)
5111 {
5112 mddev->ready = 0;
5113 mddev->pers->stop(mddev);
5114 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5115 mddev->to_remove = &md_redundancy_group;
5116 module_put(mddev->pers->owner);
5117 mddev->pers = NULL;
5118 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5119 }
5120 EXPORT_SYMBOL_GPL(md_stop);
5121
5122 static int md_set_readonly(struct mddev *mddev, int is_open)
5123 {
5124 int err = 0;
5125 mutex_lock(&mddev->open_mutex);
5126 if (atomic_read(&mddev->openers) > is_open) {
5127 printk("md: %s still in use.\n",mdname(mddev));
5128 err = -EBUSY;
5129 goto out;
5130 }
5131 if (mddev->pers) {
5132 __md_stop_writes(mddev);
5133
5134 err = -ENXIO;
5135 if (mddev->ro==1)
5136 goto out;
5137 mddev->ro = 1;
5138 set_disk_ro(mddev->gendisk, 1);
5139 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5140 sysfs_notify_dirent_safe(mddev->sysfs_state);
5141 err = 0;
5142 }
5143 out:
5144 mutex_unlock(&mddev->open_mutex);
5145 return err;
5146 }
5147
5148 /* mode:
5149 * 0 - completely stop and dis-assemble array
5150 * 2 - stop but do not disassemble array
5151 */
5152 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5153 {
5154 struct gendisk *disk = mddev->gendisk;
5155 struct md_rdev *rdev;
5156
5157 mutex_lock(&mddev->open_mutex);
5158 if (atomic_read(&mddev->openers) > is_open ||
5159 mddev->sysfs_active) {
5160 printk("md: %s still in use.\n",mdname(mddev));
5161 mutex_unlock(&mddev->open_mutex);
5162 return -EBUSY;
5163 }
5164
5165 if (mddev->pers) {
5166 if (mddev->ro)
5167 set_disk_ro(disk, 0);
5168
5169 __md_stop_writes(mddev);
5170 md_stop(mddev);
5171 mddev->queue->merge_bvec_fn = NULL;
5172 mddev->queue->backing_dev_info.congested_fn = NULL;
5173
5174 /* tell userspace to handle 'inactive' */
5175 sysfs_notify_dirent_safe(mddev->sysfs_state);
5176
5177 list_for_each_entry(rdev, &mddev->disks, same_set)
5178 if (rdev->raid_disk >= 0)
5179 sysfs_unlink_rdev(mddev, rdev);
5180
5181 set_capacity(disk, 0);
5182 mutex_unlock(&mddev->open_mutex);
5183 mddev->changed = 1;
5184 revalidate_disk(disk);
5185
5186 if (mddev->ro)
5187 mddev->ro = 0;
5188 } else
5189 mutex_unlock(&mddev->open_mutex);
5190 /*
5191 * Free resources if final stop
5192 */
5193 if (mode == 0) {
5194 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5195
5196 bitmap_destroy(mddev);
5197 if (mddev->bitmap_info.file) {
5198 restore_bitmap_write_access(mddev->bitmap_info.file);
5199 fput(mddev->bitmap_info.file);
5200 mddev->bitmap_info.file = NULL;
5201 }
5202 mddev->bitmap_info.offset = 0;
5203
5204 export_array(mddev);
5205
5206 md_clean(mddev);
5207 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5208 if (mddev->hold_active == UNTIL_STOP)
5209 mddev->hold_active = 0;
5210 }
5211 blk_integrity_unregister(disk);
5212 md_new_event(mddev);
5213 sysfs_notify_dirent_safe(mddev->sysfs_state);
5214 return 0;
5215 }
5216
5217 #ifndef MODULE
5218 static void autorun_array(struct mddev *mddev)
5219 {
5220 struct md_rdev *rdev;
5221 int err;
5222
5223 if (list_empty(&mddev->disks))
5224 return;
5225
5226 printk(KERN_INFO "md: running: ");
5227
5228 list_for_each_entry(rdev, &mddev->disks, same_set) {
5229 char b[BDEVNAME_SIZE];
5230 printk("<%s>", bdevname(rdev->bdev,b));
5231 }
5232 printk("\n");
5233
5234 err = do_md_run(mddev);
5235 if (err) {
5236 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5237 do_md_stop(mddev, 0, 0);
5238 }
5239 }
5240
5241 /*
5242 * lets try to run arrays based on all disks that have arrived
5243 * until now. (those are in pending_raid_disks)
5244 *
5245 * the method: pick the first pending disk, collect all disks with
5246 * the same UUID, remove all from the pending list and put them into
5247 * the 'same_array' list. Then order this list based on superblock
5248 * update time (freshest comes first), kick out 'old' disks and
5249 * compare superblocks. If everything's fine then run it.
5250 *
5251 * If "unit" is allocated, then bump its reference count
5252 */
5253 static void autorun_devices(int part)
5254 {
5255 struct md_rdev *rdev0, *rdev, *tmp;
5256 struct mddev *mddev;
5257 char b[BDEVNAME_SIZE];
5258
5259 printk(KERN_INFO "md: autorun ...\n");
5260 while (!list_empty(&pending_raid_disks)) {
5261 int unit;
5262 dev_t dev;
5263 LIST_HEAD(candidates);
5264 rdev0 = list_entry(pending_raid_disks.next,
5265 struct md_rdev, same_set);
5266
5267 printk(KERN_INFO "md: considering %s ...\n",
5268 bdevname(rdev0->bdev,b));
5269 INIT_LIST_HEAD(&candidates);
5270 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5271 if (super_90_load(rdev, rdev0, 0) >= 0) {
5272 printk(KERN_INFO "md: adding %s ...\n",
5273 bdevname(rdev->bdev,b));
5274 list_move(&rdev->same_set, &candidates);
5275 }
5276 /*
5277 * now we have a set of devices, with all of them having
5278 * mostly sane superblocks. It's time to allocate the
5279 * mddev.
5280 */
5281 if (part) {
5282 dev = MKDEV(mdp_major,
5283 rdev0->preferred_minor << MdpMinorShift);
5284 unit = MINOR(dev) >> MdpMinorShift;
5285 } else {
5286 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5287 unit = MINOR(dev);
5288 }
5289 if (rdev0->preferred_minor != unit) {
5290 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5291 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5292 break;
5293 }
5294
5295 md_probe(dev, NULL, NULL);
5296 mddev = mddev_find(dev);
5297 if (!mddev || !mddev->gendisk) {
5298 if (mddev)
5299 mddev_put(mddev);
5300 printk(KERN_ERR
5301 "md: cannot allocate memory for md drive.\n");
5302 break;
5303 }
5304 if (mddev_lock(mddev))
5305 printk(KERN_WARNING "md: %s locked, cannot run\n",
5306 mdname(mddev));
5307 else if (mddev->raid_disks || mddev->major_version
5308 || !list_empty(&mddev->disks)) {
5309 printk(KERN_WARNING
5310 "md: %s already running, cannot run %s\n",
5311 mdname(mddev), bdevname(rdev0->bdev,b));
5312 mddev_unlock(mddev);
5313 } else {
5314 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5315 mddev->persistent = 1;
5316 rdev_for_each_list(rdev, tmp, &candidates) {
5317 list_del_init(&rdev->same_set);
5318 if (bind_rdev_to_array(rdev, mddev))
5319 export_rdev(rdev);
5320 }
5321 autorun_array(mddev);
5322 mddev_unlock(mddev);
5323 }
5324 /* on success, candidates will be empty, on error
5325 * it won't...
5326 */
5327 rdev_for_each_list(rdev, tmp, &candidates) {
5328 list_del_init(&rdev->same_set);
5329 export_rdev(rdev);
5330 }
5331 mddev_put(mddev);
5332 }
5333 printk(KERN_INFO "md: ... autorun DONE.\n");
5334 }
5335 #endif /* !MODULE */
5336
5337 static int get_version(void __user * arg)
5338 {
5339 mdu_version_t ver;
5340
5341 ver.major = MD_MAJOR_VERSION;
5342 ver.minor = MD_MINOR_VERSION;
5343 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5344
5345 if (copy_to_user(arg, &ver, sizeof(ver)))
5346 return -EFAULT;
5347
5348 return 0;
5349 }
5350
5351 static int get_array_info(struct mddev * mddev, void __user * arg)
5352 {
5353 mdu_array_info_t info;
5354 int nr,working,insync,failed,spare;
5355 struct md_rdev *rdev;
5356
5357 nr=working=insync=failed=spare=0;
5358 list_for_each_entry(rdev, &mddev->disks, same_set) {
5359 nr++;
5360 if (test_bit(Faulty, &rdev->flags))
5361 failed++;
5362 else {
5363 working++;
5364 if (test_bit(In_sync, &rdev->flags))
5365 insync++;
5366 else
5367 spare++;
5368 }
5369 }
5370
5371 info.major_version = mddev->major_version;
5372 info.minor_version = mddev->minor_version;
5373 info.patch_version = MD_PATCHLEVEL_VERSION;
5374 info.ctime = mddev->ctime;
5375 info.level = mddev->level;
5376 info.size = mddev->dev_sectors / 2;
5377 if (info.size != mddev->dev_sectors / 2) /* overflow */
5378 info.size = -1;
5379 info.nr_disks = nr;
5380 info.raid_disks = mddev->raid_disks;
5381 info.md_minor = mddev->md_minor;
5382 info.not_persistent= !mddev->persistent;
5383
5384 info.utime = mddev->utime;
5385 info.state = 0;
5386 if (mddev->in_sync)
5387 info.state = (1<<MD_SB_CLEAN);
5388 if (mddev->bitmap && mddev->bitmap_info.offset)
5389 info.state = (1<<MD_SB_BITMAP_PRESENT);
5390 info.active_disks = insync;
5391 info.working_disks = working;
5392 info.failed_disks = failed;
5393 info.spare_disks = spare;
5394
5395 info.layout = mddev->layout;
5396 info.chunk_size = mddev->chunk_sectors << 9;
5397
5398 if (copy_to_user(arg, &info, sizeof(info)))
5399 return -EFAULT;
5400
5401 return 0;
5402 }
5403
5404 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5405 {
5406 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5407 char *ptr, *buf = NULL;
5408 int err = -ENOMEM;
5409
5410 if (md_allow_write(mddev))
5411 file = kmalloc(sizeof(*file), GFP_NOIO);
5412 else
5413 file = kmalloc(sizeof(*file), GFP_KERNEL);
5414
5415 if (!file)
5416 goto out;
5417
5418 /* bitmap disabled, zero the first byte and copy out */
5419 if (!mddev->bitmap || !mddev->bitmap->file) {
5420 file->pathname[0] = '\0';
5421 goto copy_out;
5422 }
5423
5424 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5425 if (!buf)
5426 goto out;
5427
5428 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5429 if (IS_ERR(ptr))
5430 goto out;
5431
5432 strcpy(file->pathname, ptr);
5433
5434 copy_out:
5435 err = 0;
5436 if (copy_to_user(arg, file, sizeof(*file)))
5437 err = -EFAULT;
5438 out:
5439 kfree(buf);
5440 kfree(file);
5441 return err;
5442 }
5443
5444 static int get_disk_info(struct mddev * mddev, void __user * arg)
5445 {
5446 mdu_disk_info_t info;
5447 struct md_rdev *rdev;
5448
5449 if (copy_from_user(&info, arg, sizeof(info)))
5450 return -EFAULT;
5451
5452 rdev = find_rdev_nr(mddev, info.number);
5453 if (rdev) {
5454 info.major = MAJOR(rdev->bdev->bd_dev);
5455 info.minor = MINOR(rdev->bdev->bd_dev);
5456 info.raid_disk = rdev->raid_disk;
5457 info.state = 0;
5458 if (test_bit(Faulty, &rdev->flags))
5459 info.state |= (1<<MD_DISK_FAULTY);
5460 else if (test_bit(In_sync, &rdev->flags)) {
5461 info.state |= (1<<MD_DISK_ACTIVE);
5462 info.state |= (1<<MD_DISK_SYNC);
5463 }
5464 if (test_bit(WriteMostly, &rdev->flags))
5465 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5466 } else {
5467 info.major = info.minor = 0;
5468 info.raid_disk = -1;
5469 info.state = (1<<MD_DISK_REMOVED);
5470 }
5471
5472 if (copy_to_user(arg, &info, sizeof(info)))
5473 return -EFAULT;
5474
5475 return 0;
5476 }
5477
5478 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5479 {
5480 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5481 struct md_rdev *rdev;
5482 dev_t dev = MKDEV(info->major,info->minor);
5483
5484 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5485 return -EOVERFLOW;
5486
5487 if (!mddev->raid_disks) {
5488 int err;
5489 /* expecting a device which has a superblock */
5490 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5491 if (IS_ERR(rdev)) {
5492 printk(KERN_WARNING
5493 "md: md_import_device returned %ld\n",
5494 PTR_ERR(rdev));
5495 return PTR_ERR(rdev);
5496 }
5497 if (!list_empty(&mddev->disks)) {
5498 struct md_rdev *rdev0
5499 = list_entry(mddev->disks.next,
5500 struct md_rdev, same_set);
5501 err = super_types[mddev->major_version]
5502 .load_super(rdev, rdev0, mddev->minor_version);
5503 if (err < 0) {
5504 printk(KERN_WARNING
5505 "md: %s has different UUID to %s\n",
5506 bdevname(rdev->bdev,b),
5507 bdevname(rdev0->bdev,b2));
5508 export_rdev(rdev);
5509 return -EINVAL;
5510 }
5511 }
5512 err = bind_rdev_to_array(rdev, mddev);
5513 if (err)
5514 export_rdev(rdev);
5515 return err;
5516 }
5517
5518 /*
5519 * add_new_disk can be used once the array is assembled
5520 * to add "hot spares". They must already have a superblock
5521 * written
5522 */
5523 if (mddev->pers) {
5524 int err;
5525 if (!mddev->pers->hot_add_disk) {
5526 printk(KERN_WARNING
5527 "%s: personality does not support diskops!\n",
5528 mdname(mddev));
5529 return -EINVAL;
5530 }
5531 if (mddev->persistent)
5532 rdev = md_import_device(dev, mddev->major_version,
5533 mddev->minor_version);
5534 else
5535 rdev = md_import_device(dev, -1, -1);
5536 if (IS_ERR(rdev)) {
5537 printk(KERN_WARNING
5538 "md: md_import_device returned %ld\n",
5539 PTR_ERR(rdev));
5540 return PTR_ERR(rdev);
5541 }
5542 /* set saved_raid_disk if appropriate */
5543 if (!mddev->persistent) {
5544 if (info->state & (1<<MD_DISK_SYNC) &&
5545 info->raid_disk < mddev->raid_disks) {
5546 rdev->raid_disk = info->raid_disk;
5547 set_bit(In_sync, &rdev->flags);
5548 } else
5549 rdev->raid_disk = -1;
5550 } else
5551 super_types[mddev->major_version].
5552 validate_super(mddev, rdev);
5553 if ((info->state & (1<<MD_DISK_SYNC)) &&
5554 (!test_bit(In_sync, &rdev->flags) ||
5555 rdev->raid_disk != info->raid_disk)) {
5556 /* This was a hot-add request, but events doesn't
5557 * match, so reject it.
5558 */
5559 export_rdev(rdev);
5560 return -EINVAL;
5561 }
5562
5563 if (test_bit(In_sync, &rdev->flags))
5564 rdev->saved_raid_disk = rdev->raid_disk;
5565 else
5566 rdev->saved_raid_disk = -1;
5567
5568 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5569 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5570 set_bit(WriteMostly, &rdev->flags);
5571 else
5572 clear_bit(WriteMostly, &rdev->flags);
5573
5574 rdev->raid_disk = -1;
5575 err = bind_rdev_to_array(rdev, mddev);
5576 if (!err && !mddev->pers->hot_remove_disk) {
5577 /* If there is hot_add_disk but no hot_remove_disk
5578 * then added disks for geometry changes,
5579 * and should be added immediately.
5580 */
5581 super_types[mddev->major_version].
5582 validate_super(mddev, rdev);
5583 err = mddev->pers->hot_add_disk(mddev, rdev);
5584 if (err)
5585 unbind_rdev_from_array(rdev);
5586 }
5587 if (err)
5588 export_rdev(rdev);
5589 else
5590 sysfs_notify_dirent_safe(rdev->sysfs_state);
5591
5592 md_update_sb(mddev, 1);
5593 if (mddev->degraded)
5594 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5595 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5596 if (!err)
5597 md_new_event(mddev);
5598 md_wakeup_thread(mddev->thread);
5599 return err;
5600 }
5601
5602 /* otherwise, add_new_disk is only allowed
5603 * for major_version==0 superblocks
5604 */
5605 if (mddev->major_version != 0) {
5606 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5607 mdname(mddev));
5608 return -EINVAL;
5609 }
5610
5611 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5612 int err;
5613 rdev = md_import_device(dev, -1, 0);
5614 if (IS_ERR(rdev)) {
5615 printk(KERN_WARNING
5616 "md: error, md_import_device() returned %ld\n",
5617 PTR_ERR(rdev));
5618 return PTR_ERR(rdev);
5619 }
5620 rdev->desc_nr = info->number;
5621 if (info->raid_disk < mddev->raid_disks)
5622 rdev->raid_disk = info->raid_disk;
5623 else
5624 rdev->raid_disk = -1;
5625
5626 if (rdev->raid_disk < mddev->raid_disks)
5627 if (info->state & (1<<MD_DISK_SYNC))
5628 set_bit(In_sync, &rdev->flags);
5629
5630 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5631 set_bit(WriteMostly, &rdev->flags);
5632
5633 if (!mddev->persistent) {
5634 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5635 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5636 } else
5637 rdev->sb_start = calc_dev_sboffset(rdev);
5638 rdev->sectors = rdev->sb_start;
5639
5640 err = bind_rdev_to_array(rdev, mddev);
5641 if (err) {
5642 export_rdev(rdev);
5643 return err;
5644 }
5645 }
5646
5647 return 0;
5648 }
5649
5650 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5651 {
5652 char b[BDEVNAME_SIZE];
5653 struct md_rdev *rdev;
5654
5655 rdev = find_rdev(mddev, dev);
5656 if (!rdev)
5657 return -ENXIO;
5658
5659 if (rdev->raid_disk >= 0)
5660 goto busy;
5661
5662 kick_rdev_from_array(rdev);
5663 md_update_sb(mddev, 1);
5664 md_new_event(mddev);
5665
5666 return 0;
5667 busy:
5668 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5669 bdevname(rdev->bdev,b), mdname(mddev));
5670 return -EBUSY;
5671 }
5672
5673 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5674 {
5675 char b[BDEVNAME_SIZE];
5676 int err;
5677 struct md_rdev *rdev;
5678
5679 if (!mddev->pers)
5680 return -ENODEV;
5681
5682 if (mddev->major_version != 0) {
5683 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5684 " version-0 superblocks.\n",
5685 mdname(mddev));
5686 return -EINVAL;
5687 }
5688 if (!mddev->pers->hot_add_disk) {
5689 printk(KERN_WARNING
5690 "%s: personality does not support diskops!\n",
5691 mdname(mddev));
5692 return -EINVAL;
5693 }
5694
5695 rdev = md_import_device(dev, -1, 0);
5696 if (IS_ERR(rdev)) {
5697 printk(KERN_WARNING
5698 "md: error, md_import_device() returned %ld\n",
5699 PTR_ERR(rdev));
5700 return -EINVAL;
5701 }
5702
5703 if (mddev->persistent)
5704 rdev->sb_start = calc_dev_sboffset(rdev);
5705 else
5706 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5707
5708 rdev->sectors = rdev->sb_start;
5709
5710 if (test_bit(Faulty, &rdev->flags)) {
5711 printk(KERN_WARNING
5712 "md: can not hot-add faulty %s disk to %s!\n",
5713 bdevname(rdev->bdev,b), mdname(mddev));
5714 err = -EINVAL;
5715 goto abort_export;
5716 }
5717 clear_bit(In_sync, &rdev->flags);
5718 rdev->desc_nr = -1;
5719 rdev->saved_raid_disk = -1;
5720 err = bind_rdev_to_array(rdev, mddev);
5721 if (err)
5722 goto abort_export;
5723
5724 /*
5725 * The rest should better be atomic, we can have disk failures
5726 * noticed in interrupt contexts ...
5727 */
5728
5729 rdev->raid_disk = -1;
5730
5731 md_update_sb(mddev, 1);
5732
5733 /*
5734 * Kick recovery, maybe this spare has to be added to the
5735 * array immediately.
5736 */
5737 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5738 md_wakeup_thread(mddev->thread);
5739 md_new_event(mddev);
5740 return 0;
5741
5742 abort_export:
5743 export_rdev(rdev);
5744 return err;
5745 }
5746
5747 static int set_bitmap_file(struct mddev *mddev, int fd)
5748 {
5749 int err;
5750
5751 if (mddev->pers) {
5752 if (!mddev->pers->quiesce)
5753 return -EBUSY;
5754 if (mddev->recovery || mddev->sync_thread)
5755 return -EBUSY;
5756 /* we should be able to change the bitmap.. */
5757 }
5758
5759
5760 if (fd >= 0) {
5761 if (mddev->bitmap)
5762 return -EEXIST; /* cannot add when bitmap is present */
5763 mddev->bitmap_info.file = fget(fd);
5764
5765 if (mddev->bitmap_info.file == NULL) {
5766 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5767 mdname(mddev));
5768 return -EBADF;
5769 }
5770
5771 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5772 if (err) {
5773 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5774 mdname(mddev));
5775 fput(mddev->bitmap_info.file);
5776 mddev->bitmap_info.file = NULL;
5777 return err;
5778 }
5779 mddev->bitmap_info.offset = 0; /* file overrides offset */
5780 } else if (mddev->bitmap == NULL)
5781 return -ENOENT; /* cannot remove what isn't there */
5782 err = 0;
5783 if (mddev->pers) {
5784 mddev->pers->quiesce(mddev, 1);
5785 if (fd >= 0) {
5786 err = bitmap_create(mddev);
5787 if (!err)
5788 err = bitmap_load(mddev);
5789 }
5790 if (fd < 0 || err) {
5791 bitmap_destroy(mddev);
5792 fd = -1; /* make sure to put the file */
5793 }
5794 mddev->pers->quiesce(mddev, 0);
5795 }
5796 if (fd < 0) {
5797 if (mddev->bitmap_info.file) {
5798 restore_bitmap_write_access(mddev->bitmap_info.file);
5799 fput(mddev->bitmap_info.file);
5800 }
5801 mddev->bitmap_info.file = NULL;
5802 }
5803
5804 return err;
5805 }
5806
5807 /*
5808 * set_array_info is used two different ways
5809 * The original usage is when creating a new array.
5810 * In this usage, raid_disks is > 0 and it together with
5811 * level, size, not_persistent,layout,chunksize determine the
5812 * shape of the array.
5813 * This will always create an array with a type-0.90.0 superblock.
5814 * The newer usage is when assembling an array.
5815 * In this case raid_disks will be 0, and the major_version field is
5816 * use to determine which style super-blocks are to be found on the devices.
5817 * The minor and patch _version numbers are also kept incase the
5818 * super_block handler wishes to interpret them.
5819 */
5820 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5821 {
5822
5823 if (info->raid_disks == 0) {
5824 /* just setting version number for superblock loading */
5825 if (info->major_version < 0 ||
5826 info->major_version >= ARRAY_SIZE(super_types) ||
5827 super_types[info->major_version].name == NULL) {
5828 /* maybe try to auto-load a module? */
5829 printk(KERN_INFO
5830 "md: superblock version %d not known\n",
5831 info->major_version);
5832 return -EINVAL;
5833 }
5834 mddev->major_version = info->major_version;
5835 mddev->minor_version = info->minor_version;
5836 mddev->patch_version = info->patch_version;
5837 mddev->persistent = !info->not_persistent;
5838 /* ensure mddev_put doesn't delete this now that there
5839 * is some minimal configuration.
5840 */
5841 mddev->ctime = get_seconds();
5842 return 0;
5843 }
5844 mddev->major_version = MD_MAJOR_VERSION;
5845 mddev->minor_version = MD_MINOR_VERSION;
5846 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5847 mddev->ctime = get_seconds();
5848
5849 mddev->level = info->level;
5850 mddev->clevel[0] = 0;
5851 mddev->dev_sectors = 2 * (sector_t)info->size;
5852 mddev->raid_disks = info->raid_disks;
5853 /* don't set md_minor, it is determined by which /dev/md* was
5854 * openned
5855 */
5856 if (info->state & (1<<MD_SB_CLEAN))
5857 mddev->recovery_cp = MaxSector;
5858 else
5859 mddev->recovery_cp = 0;
5860 mddev->persistent = ! info->not_persistent;
5861 mddev->external = 0;
5862
5863 mddev->layout = info->layout;
5864 mddev->chunk_sectors = info->chunk_size >> 9;
5865
5866 mddev->max_disks = MD_SB_DISKS;
5867
5868 if (mddev->persistent)
5869 mddev->flags = 0;
5870 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5871
5872 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5873 mddev->bitmap_info.offset = 0;
5874
5875 mddev->reshape_position = MaxSector;
5876
5877 /*
5878 * Generate a 128 bit UUID
5879 */
5880 get_random_bytes(mddev->uuid, 16);
5881
5882 mddev->new_level = mddev->level;
5883 mddev->new_chunk_sectors = mddev->chunk_sectors;
5884 mddev->new_layout = mddev->layout;
5885 mddev->delta_disks = 0;
5886
5887 return 0;
5888 }
5889
5890 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5891 {
5892 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5893
5894 if (mddev->external_size)
5895 return;
5896
5897 mddev->array_sectors = array_sectors;
5898 }
5899 EXPORT_SYMBOL(md_set_array_sectors);
5900
5901 static int update_size(struct mddev *mddev, sector_t num_sectors)
5902 {
5903 struct md_rdev *rdev;
5904 int rv;
5905 int fit = (num_sectors == 0);
5906
5907 if (mddev->pers->resize == NULL)
5908 return -EINVAL;
5909 /* The "num_sectors" is the number of sectors of each device that
5910 * is used. This can only make sense for arrays with redundancy.
5911 * linear and raid0 always use whatever space is available. We can only
5912 * consider changing this number if no resync or reconstruction is
5913 * happening, and if the new size is acceptable. It must fit before the
5914 * sb_start or, if that is <data_offset, it must fit before the size
5915 * of each device. If num_sectors is zero, we find the largest size
5916 * that fits.
5917 */
5918 if (mddev->sync_thread)
5919 return -EBUSY;
5920 if (mddev->bitmap)
5921 /* Sorry, cannot grow a bitmap yet, just remove it,
5922 * grow, and re-add.
5923 */
5924 return -EBUSY;
5925 list_for_each_entry(rdev, &mddev->disks, same_set) {
5926 sector_t avail = rdev->sectors;
5927
5928 if (fit && (num_sectors == 0 || num_sectors > avail))
5929 num_sectors = avail;
5930 if (avail < num_sectors)
5931 return -ENOSPC;
5932 }
5933 rv = mddev->pers->resize(mddev, num_sectors);
5934 if (!rv)
5935 revalidate_disk(mddev->gendisk);
5936 return rv;
5937 }
5938
5939 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5940 {
5941 int rv;
5942 /* change the number of raid disks */
5943 if (mddev->pers->check_reshape == NULL)
5944 return -EINVAL;
5945 if (raid_disks <= 0 ||
5946 (mddev->max_disks && raid_disks >= mddev->max_disks))
5947 return -EINVAL;
5948 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5949 return -EBUSY;
5950 mddev->delta_disks = raid_disks - mddev->raid_disks;
5951
5952 rv = mddev->pers->check_reshape(mddev);
5953 if (rv < 0)
5954 mddev->delta_disks = 0;
5955 return rv;
5956 }
5957
5958
5959 /*
5960 * update_array_info is used to change the configuration of an
5961 * on-line array.
5962 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5963 * fields in the info are checked against the array.
5964 * Any differences that cannot be handled will cause an error.
5965 * Normally, only one change can be managed at a time.
5966 */
5967 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5968 {
5969 int rv = 0;
5970 int cnt = 0;
5971 int state = 0;
5972
5973 /* calculate expected state,ignoring low bits */
5974 if (mddev->bitmap && mddev->bitmap_info.offset)
5975 state |= (1 << MD_SB_BITMAP_PRESENT);
5976
5977 if (mddev->major_version != info->major_version ||
5978 mddev->minor_version != info->minor_version ||
5979 /* mddev->patch_version != info->patch_version || */
5980 mddev->ctime != info->ctime ||
5981 mddev->level != info->level ||
5982 /* mddev->layout != info->layout || */
5983 !mddev->persistent != info->not_persistent||
5984 mddev->chunk_sectors != info->chunk_size >> 9 ||
5985 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5986 ((state^info->state) & 0xfffffe00)
5987 )
5988 return -EINVAL;
5989 /* Check there is only one change */
5990 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5991 cnt++;
5992 if (mddev->raid_disks != info->raid_disks)
5993 cnt++;
5994 if (mddev->layout != info->layout)
5995 cnt++;
5996 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5997 cnt++;
5998 if (cnt == 0)
5999 return 0;
6000 if (cnt > 1)
6001 return -EINVAL;
6002
6003 if (mddev->layout != info->layout) {
6004 /* Change layout
6005 * we don't need to do anything at the md level, the
6006 * personality will take care of it all.
6007 */
6008 if (mddev->pers->check_reshape == NULL)
6009 return -EINVAL;
6010 else {
6011 mddev->new_layout = info->layout;
6012 rv = mddev->pers->check_reshape(mddev);
6013 if (rv)
6014 mddev->new_layout = mddev->layout;
6015 return rv;
6016 }
6017 }
6018 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6019 rv = update_size(mddev, (sector_t)info->size * 2);
6020
6021 if (mddev->raid_disks != info->raid_disks)
6022 rv = update_raid_disks(mddev, info->raid_disks);
6023
6024 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6025 if (mddev->pers->quiesce == NULL)
6026 return -EINVAL;
6027 if (mddev->recovery || mddev->sync_thread)
6028 return -EBUSY;
6029 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6030 /* add the bitmap */
6031 if (mddev->bitmap)
6032 return -EEXIST;
6033 if (mddev->bitmap_info.default_offset == 0)
6034 return -EINVAL;
6035 mddev->bitmap_info.offset =
6036 mddev->bitmap_info.default_offset;
6037 mddev->pers->quiesce(mddev, 1);
6038 rv = bitmap_create(mddev);
6039 if (!rv)
6040 rv = bitmap_load(mddev);
6041 if (rv)
6042 bitmap_destroy(mddev);
6043 mddev->pers->quiesce(mddev, 0);
6044 } else {
6045 /* remove the bitmap */
6046 if (!mddev->bitmap)
6047 return -ENOENT;
6048 if (mddev->bitmap->file)
6049 return -EINVAL;
6050 mddev->pers->quiesce(mddev, 1);
6051 bitmap_destroy(mddev);
6052 mddev->pers->quiesce(mddev, 0);
6053 mddev->bitmap_info.offset = 0;
6054 }
6055 }
6056 md_update_sb(mddev, 1);
6057 return rv;
6058 }
6059
6060 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6061 {
6062 struct md_rdev *rdev;
6063
6064 if (mddev->pers == NULL)
6065 return -ENODEV;
6066
6067 rdev = find_rdev(mddev, dev);
6068 if (!rdev)
6069 return -ENODEV;
6070
6071 md_error(mddev, rdev);
6072 if (!test_bit(Faulty, &rdev->flags))
6073 return -EBUSY;
6074 return 0;
6075 }
6076
6077 /*
6078 * We have a problem here : there is no easy way to give a CHS
6079 * virtual geometry. We currently pretend that we have a 2 heads
6080 * 4 sectors (with a BIG number of cylinders...). This drives
6081 * dosfs just mad... ;-)
6082 */
6083 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6084 {
6085 struct mddev *mddev = bdev->bd_disk->private_data;
6086
6087 geo->heads = 2;
6088 geo->sectors = 4;
6089 geo->cylinders = mddev->array_sectors / 8;
6090 return 0;
6091 }
6092
6093 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6094 unsigned int cmd, unsigned long arg)
6095 {
6096 int err = 0;
6097 void __user *argp = (void __user *)arg;
6098 struct mddev *mddev = NULL;
6099 int ro;
6100
6101 switch (cmd) {
6102 case RAID_VERSION:
6103 case GET_ARRAY_INFO:
6104 case GET_DISK_INFO:
6105 break;
6106 default:
6107 if (!capable(CAP_SYS_ADMIN))
6108 return -EACCES;
6109 }
6110
6111 /*
6112 * Commands dealing with the RAID driver but not any
6113 * particular array:
6114 */
6115 switch (cmd)
6116 {
6117 case RAID_VERSION:
6118 err = get_version(argp);
6119 goto done;
6120
6121 case PRINT_RAID_DEBUG:
6122 err = 0;
6123 md_print_devices();
6124 goto done;
6125
6126 #ifndef MODULE
6127 case RAID_AUTORUN:
6128 err = 0;
6129 autostart_arrays(arg);
6130 goto done;
6131 #endif
6132 default:;
6133 }
6134
6135 /*
6136 * Commands creating/starting a new array:
6137 */
6138
6139 mddev = bdev->bd_disk->private_data;
6140
6141 if (!mddev) {
6142 BUG();
6143 goto abort;
6144 }
6145
6146 err = mddev_lock(mddev);
6147 if (err) {
6148 printk(KERN_INFO
6149 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6150 err, cmd);
6151 goto abort;
6152 }
6153
6154 switch (cmd)
6155 {
6156 case SET_ARRAY_INFO:
6157 {
6158 mdu_array_info_t info;
6159 if (!arg)
6160 memset(&info, 0, sizeof(info));
6161 else if (copy_from_user(&info, argp, sizeof(info))) {
6162 err = -EFAULT;
6163 goto abort_unlock;
6164 }
6165 if (mddev->pers) {
6166 err = update_array_info(mddev, &info);
6167 if (err) {
6168 printk(KERN_WARNING "md: couldn't update"
6169 " array info. %d\n", err);
6170 goto abort_unlock;
6171 }
6172 goto done_unlock;
6173 }
6174 if (!list_empty(&mddev->disks)) {
6175 printk(KERN_WARNING
6176 "md: array %s already has disks!\n",
6177 mdname(mddev));
6178 err = -EBUSY;
6179 goto abort_unlock;
6180 }
6181 if (mddev->raid_disks) {
6182 printk(KERN_WARNING
6183 "md: array %s already initialised!\n",
6184 mdname(mddev));
6185 err = -EBUSY;
6186 goto abort_unlock;
6187 }
6188 err = set_array_info(mddev, &info);
6189 if (err) {
6190 printk(KERN_WARNING "md: couldn't set"
6191 " array info. %d\n", err);
6192 goto abort_unlock;
6193 }
6194 }
6195 goto done_unlock;
6196
6197 default:;
6198 }
6199
6200 /*
6201 * Commands querying/configuring an existing array:
6202 */
6203 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6204 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6205 if ((!mddev->raid_disks && !mddev->external)
6206 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6207 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6208 && cmd != GET_BITMAP_FILE) {
6209 err = -ENODEV;
6210 goto abort_unlock;
6211 }
6212
6213 /*
6214 * Commands even a read-only array can execute:
6215 */
6216 switch (cmd)
6217 {
6218 case GET_ARRAY_INFO:
6219 err = get_array_info(mddev, argp);
6220 goto done_unlock;
6221
6222 case GET_BITMAP_FILE:
6223 err = get_bitmap_file(mddev, argp);
6224 goto done_unlock;
6225
6226 case GET_DISK_INFO:
6227 err = get_disk_info(mddev, argp);
6228 goto done_unlock;
6229
6230 case RESTART_ARRAY_RW:
6231 err = restart_array(mddev);
6232 goto done_unlock;
6233
6234 case STOP_ARRAY:
6235 err = do_md_stop(mddev, 0, 1);
6236 goto done_unlock;
6237
6238 case STOP_ARRAY_RO:
6239 err = md_set_readonly(mddev, 1);
6240 goto done_unlock;
6241
6242 case BLKROSET:
6243 if (get_user(ro, (int __user *)(arg))) {
6244 err = -EFAULT;
6245 goto done_unlock;
6246 }
6247 err = -EINVAL;
6248
6249 /* if the bdev is going readonly the value of mddev->ro
6250 * does not matter, no writes are coming
6251 */
6252 if (ro)
6253 goto done_unlock;
6254
6255 /* are we are already prepared for writes? */
6256 if (mddev->ro != 1)
6257 goto done_unlock;
6258
6259 /* transitioning to readauto need only happen for
6260 * arrays that call md_write_start
6261 */
6262 if (mddev->pers) {
6263 err = restart_array(mddev);
6264 if (err == 0) {
6265 mddev->ro = 2;
6266 set_disk_ro(mddev->gendisk, 0);
6267 }
6268 }
6269 goto done_unlock;
6270 }
6271
6272 /*
6273 * The remaining ioctls are changing the state of the
6274 * superblock, so we do not allow them on read-only arrays.
6275 * However non-MD ioctls (e.g. get-size) will still come through
6276 * here and hit the 'default' below, so only disallow
6277 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6278 */
6279 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6280 if (mddev->ro == 2) {
6281 mddev->ro = 0;
6282 sysfs_notify_dirent_safe(mddev->sysfs_state);
6283 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6284 md_wakeup_thread(mddev->thread);
6285 } else {
6286 err = -EROFS;
6287 goto abort_unlock;
6288 }
6289 }
6290
6291 switch (cmd)
6292 {
6293 case ADD_NEW_DISK:
6294 {
6295 mdu_disk_info_t info;
6296 if (copy_from_user(&info, argp, sizeof(info)))
6297 err = -EFAULT;
6298 else
6299 err = add_new_disk(mddev, &info);
6300 goto done_unlock;
6301 }
6302
6303 case HOT_REMOVE_DISK:
6304 err = hot_remove_disk(mddev, new_decode_dev(arg));
6305 goto done_unlock;
6306
6307 case HOT_ADD_DISK:
6308 err = hot_add_disk(mddev, new_decode_dev(arg));
6309 goto done_unlock;
6310
6311 case SET_DISK_FAULTY:
6312 err = set_disk_faulty(mddev, new_decode_dev(arg));
6313 goto done_unlock;
6314
6315 case RUN_ARRAY:
6316 err = do_md_run(mddev);
6317 goto done_unlock;
6318
6319 case SET_BITMAP_FILE:
6320 err = set_bitmap_file(mddev, (int)arg);
6321 goto done_unlock;
6322
6323 default:
6324 err = -EINVAL;
6325 goto abort_unlock;
6326 }
6327
6328 done_unlock:
6329 abort_unlock:
6330 if (mddev->hold_active == UNTIL_IOCTL &&
6331 err != -EINVAL)
6332 mddev->hold_active = 0;
6333 mddev_unlock(mddev);
6334
6335 return err;
6336 done:
6337 if (err)
6338 MD_BUG();
6339 abort:
6340 return err;
6341 }
6342 #ifdef CONFIG_COMPAT
6343 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6344 unsigned int cmd, unsigned long arg)
6345 {
6346 switch (cmd) {
6347 case HOT_REMOVE_DISK:
6348 case HOT_ADD_DISK:
6349 case SET_DISK_FAULTY:
6350 case SET_BITMAP_FILE:
6351 /* These take in integer arg, do not convert */
6352 break;
6353 default:
6354 arg = (unsigned long)compat_ptr(arg);
6355 break;
6356 }
6357
6358 return md_ioctl(bdev, mode, cmd, arg);
6359 }
6360 #endif /* CONFIG_COMPAT */
6361
6362 static int md_open(struct block_device *bdev, fmode_t mode)
6363 {
6364 /*
6365 * Succeed if we can lock the mddev, which confirms that
6366 * it isn't being stopped right now.
6367 */
6368 struct mddev *mddev = mddev_find(bdev->bd_dev);
6369 int err;
6370
6371 if (mddev->gendisk != bdev->bd_disk) {
6372 /* we are racing with mddev_put which is discarding this
6373 * bd_disk.
6374 */
6375 mddev_put(mddev);
6376 /* Wait until bdev->bd_disk is definitely gone */
6377 flush_workqueue(md_misc_wq);
6378 /* Then retry the open from the top */
6379 return -ERESTARTSYS;
6380 }
6381 BUG_ON(mddev != bdev->bd_disk->private_data);
6382
6383 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6384 goto out;
6385
6386 err = 0;
6387 atomic_inc(&mddev->openers);
6388 mutex_unlock(&mddev->open_mutex);
6389
6390 check_disk_change(bdev);
6391 out:
6392 return err;
6393 }
6394
6395 static int md_release(struct gendisk *disk, fmode_t mode)
6396 {
6397 struct mddev *mddev = disk->private_data;
6398
6399 BUG_ON(!mddev);
6400 atomic_dec(&mddev->openers);
6401 mddev_put(mddev);
6402
6403 return 0;
6404 }
6405
6406 static int md_media_changed(struct gendisk *disk)
6407 {
6408 struct mddev *mddev = disk->private_data;
6409
6410 return mddev->changed;
6411 }
6412
6413 static int md_revalidate(struct gendisk *disk)
6414 {
6415 struct mddev *mddev = disk->private_data;
6416
6417 mddev->changed = 0;
6418 return 0;
6419 }
6420 static const struct block_device_operations md_fops =
6421 {
6422 .owner = THIS_MODULE,
6423 .open = md_open,
6424 .release = md_release,
6425 .ioctl = md_ioctl,
6426 #ifdef CONFIG_COMPAT
6427 .compat_ioctl = md_compat_ioctl,
6428 #endif
6429 .getgeo = md_getgeo,
6430 .media_changed = md_media_changed,
6431 .revalidate_disk= md_revalidate,
6432 };
6433
6434 static int md_thread(void * arg)
6435 {
6436 struct md_thread *thread = arg;
6437
6438 /*
6439 * md_thread is a 'system-thread', it's priority should be very
6440 * high. We avoid resource deadlocks individually in each
6441 * raid personality. (RAID5 does preallocation) We also use RR and
6442 * the very same RT priority as kswapd, thus we will never get
6443 * into a priority inversion deadlock.
6444 *
6445 * we definitely have to have equal or higher priority than
6446 * bdflush, otherwise bdflush will deadlock if there are too
6447 * many dirty RAID5 blocks.
6448 */
6449
6450 allow_signal(SIGKILL);
6451 while (!kthread_should_stop()) {
6452
6453 /* We need to wait INTERRUPTIBLE so that
6454 * we don't add to the load-average.
6455 * That means we need to be sure no signals are
6456 * pending
6457 */
6458 if (signal_pending(current))
6459 flush_signals(current);
6460
6461 wait_event_interruptible_timeout
6462 (thread->wqueue,
6463 test_bit(THREAD_WAKEUP, &thread->flags)
6464 || kthread_should_stop(),
6465 thread->timeout);
6466
6467 clear_bit(THREAD_WAKEUP, &thread->flags);
6468 if (!kthread_should_stop())
6469 thread->run(thread->mddev);
6470 }
6471
6472 return 0;
6473 }
6474
6475 void md_wakeup_thread(struct md_thread *thread)
6476 {
6477 if (thread) {
6478 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6479 set_bit(THREAD_WAKEUP, &thread->flags);
6480 wake_up(&thread->wqueue);
6481 }
6482 }
6483
6484 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6485 const char *name)
6486 {
6487 struct md_thread *thread;
6488
6489 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6490 if (!thread)
6491 return NULL;
6492
6493 init_waitqueue_head(&thread->wqueue);
6494
6495 thread->run = run;
6496 thread->mddev = mddev;
6497 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6498 thread->tsk = kthread_run(md_thread, thread,
6499 "%s_%s",
6500 mdname(thread->mddev),
6501 name ?: mddev->pers->name);
6502 if (IS_ERR(thread->tsk)) {
6503 kfree(thread);
6504 return NULL;
6505 }
6506 return thread;
6507 }
6508
6509 void md_unregister_thread(struct md_thread **threadp)
6510 {
6511 struct md_thread *thread = *threadp;
6512 if (!thread)
6513 return;
6514 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6515 /* Locking ensures that mddev_unlock does not wake_up a
6516 * non-existent thread
6517 */
6518 spin_lock(&pers_lock);
6519 *threadp = NULL;
6520 spin_unlock(&pers_lock);
6521
6522 kthread_stop(thread->tsk);
6523 kfree(thread);
6524 }
6525
6526 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6527 {
6528 if (!mddev) {
6529 MD_BUG();
6530 return;
6531 }
6532
6533 if (!rdev || test_bit(Faulty, &rdev->flags))
6534 return;
6535
6536 if (!mddev->pers || !mddev->pers->error_handler)
6537 return;
6538 mddev->pers->error_handler(mddev,rdev);
6539 if (mddev->degraded)
6540 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6541 sysfs_notify_dirent_safe(rdev->sysfs_state);
6542 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6543 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6544 md_wakeup_thread(mddev->thread);
6545 if (mddev->event_work.func)
6546 queue_work(md_misc_wq, &mddev->event_work);
6547 md_new_event_inintr(mddev);
6548 }
6549
6550 /* seq_file implementation /proc/mdstat */
6551
6552 static void status_unused(struct seq_file *seq)
6553 {
6554 int i = 0;
6555 struct md_rdev *rdev;
6556
6557 seq_printf(seq, "unused devices: ");
6558
6559 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6560 char b[BDEVNAME_SIZE];
6561 i++;
6562 seq_printf(seq, "%s ",
6563 bdevname(rdev->bdev,b));
6564 }
6565 if (!i)
6566 seq_printf(seq, "<none>");
6567
6568 seq_printf(seq, "\n");
6569 }
6570
6571
6572 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6573 {
6574 sector_t max_sectors, resync, res;
6575 unsigned long dt, db;
6576 sector_t rt;
6577 int scale;
6578 unsigned int per_milli;
6579
6580 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6581
6582 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6583 max_sectors = mddev->resync_max_sectors;
6584 else
6585 max_sectors = mddev->dev_sectors;
6586
6587 /*
6588 * Should not happen.
6589 */
6590 if (!max_sectors) {
6591 MD_BUG();
6592 return;
6593 }
6594 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6595 * in a sector_t, and (max_sectors>>scale) will fit in a
6596 * u32, as those are the requirements for sector_div.
6597 * Thus 'scale' must be at least 10
6598 */
6599 scale = 10;
6600 if (sizeof(sector_t) > sizeof(unsigned long)) {
6601 while ( max_sectors/2 > (1ULL<<(scale+32)))
6602 scale++;
6603 }
6604 res = (resync>>scale)*1000;
6605 sector_div(res, (u32)((max_sectors>>scale)+1));
6606
6607 per_milli = res;
6608 {
6609 int i, x = per_milli/50, y = 20-x;
6610 seq_printf(seq, "[");
6611 for (i = 0; i < x; i++)
6612 seq_printf(seq, "=");
6613 seq_printf(seq, ">");
6614 for (i = 0; i < y; i++)
6615 seq_printf(seq, ".");
6616 seq_printf(seq, "] ");
6617 }
6618 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6619 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6620 "reshape" :
6621 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6622 "check" :
6623 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6624 "resync" : "recovery"))),
6625 per_milli/10, per_milli % 10,
6626 (unsigned long long) resync/2,
6627 (unsigned long long) max_sectors/2);
6628
6629 /*
6630 * dt: time from mark until now
6631 * db: blocks written from mark until now
6632 * rt: remaining time
6633 *
6634 * rt is a sector_t, so could be 32bit or 64bit.
6635 * So we divide before multiply in case it is 32bit and close
6636 * to the limit.
6637 * We scale the divisor (db) by 32 to avoid losing precision
6638 * near the end of resync when the number of remaining sectors
6639 * is close to 'db'.
6640 * We then divide rt by 32 after multiplying by db to compensate.
6641 * The '+1' avoids division by zero if db is very small.
6642 */
6643 dt = ((jiffies - mddev->resync_mark) / HZ);
6644 if (!dt) dt++;
6645 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6646 - mddev->resync_mark_cnt;
6647
6648 rt = max_sectors - resync; /* number of remaining sectors */
6649 sector_div(rt, db/32+1);
6650 rt *= dt;
6651 rt >>= 5;
6652
6653 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6654 ((unsigned long)rt % 60)/6);
6655
6656 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6657 }
6658
6659 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6660 {
6661 struct list_head *tmp;
6662 loff_t l = *pos;
6663 struct mddev *mddev;
6664
6665 if (l >= 0x10000)
6666 return NULL;
6667 if (!l--)
6668 /* header */
6669 return (void*)1;
6670
6671 spin_lock(&all_mddevs_lock);
6672 list_for_each(tmp,&all_mddevs)
6673 if (!l--) {
6674 mddev = list_entry(tmp, struct mddev, all_mddevs);
6675 mddev_get(mddev);
6676 spin_unlock(&all_mddevs_lock);
6677 return mddev;
6678 }
6679 spin_unlock(&all_mddevs_lock);
6680 if (!l--)
6681 return (void*)2;/* tail */
6682 return NULL;
6683 }
6684
6685 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6686 {
6687 struct list_head *tmp;
6688 struct mddev *next_mddev, *mddev = v;
6689
6690 ++*pos;
6691 if (v == (void*)2)
6692 return NULL;
6693
6694 spin_lock(&all_mddevs_lock);
6695 if (v == (void*)1)
6696 tmp = all_mddevs.next;
6697 else
6698 tmp = mddev->all_mddevs.next;
6699 if (tmp != &all_mddevs)
6700 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6701 else {
6702 next_mddev = (void*)2;
6703 *pos = 0x10000;
6704 }
6705 spin_unlock(&all_mddevs_lock);
6706
6707 if (v != (void*)1)
6708 mddev_put(mddev);
6709 return next_mddev;
6710
6711 }
6712
6713 static void md_seq_stop(struct seq_file *seq, void *v)
6714 {
6715 struct mddev *mddev = v;
6716
6717 if (mddev && v != (void*)1 && v != (void*)2)
6718 mddev_put(mddev);
6719 }
6720
6721 static int md_seq_show(struct seq_file *seq, void *v)
6722 {
6723 struct mddev *mddev = v;
6724 sector_t sectors;
6725 struct md_rdev *rdev;
6726 struct bitmap *bitmap;
6727
6728 if (v == (void*)1) {
6729 struct md_personality *pers;
6730 seq_printf(seq, "Personalities : ");
6731 spin_lock(&pers_lock);
6732 list_for_each_entry(pers, &pers_list, list)
6733 seq_printf(seq, "[%s] ", pers->name);
6734
6735 spin_unlock(&pers_lock);
6736 seq_printf(seq, "\n");
6737 seq->poll_event = atomic_read(&md_event_count);
6738 return 0;
6739 }
6740 if (v == (void*)2) {
6741 status_unused(seq);
6742 return 0;
6743 }
6744
6745 if (mddev_lock(mddev) < 0)
6746 return -EINTR;
6747
6748 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6749 seq_printf(seq, "%s : %sactive", mdname(mddev),
6750 mddev->pers ? "" : "in");
6751 if (mddev->pers) {
6752 if (mddev->ro==1)
6753 seq_printf(seq, " (read-only)");
6754 if (mddev->ro==2)
6755 seq_printf(seq, " (auto-read-only)");
6756 seq_printf(seq, " %s", mddev->pers->name);
6757 }
6758
6759 sectors = 0;
6760 list_for_each_entry(rdev, &mddev->disks, same_set) {
6761 char b[BDEVNAME_SIZE];
6762 seq_printf(seq, " %s[%d]",
6763 bdevname(rdev->bdev,b), rdev->desc_nr);
6764 if (test_bit(WriteMostly, &rdev->flags))
6765 seq_printf(seq, "(W)");
6766 if (test_bit(Faulty, &rdev->flags)) {
6767 seq_printf(seq, "(F)");
6768 continue;
6769 }
6770 if (rdev->raid_disk < 0)
6771 seq_printf(seq, "(S)"); /* spare */
6772 if (test_bit(Replacement, &rdev->flags))
6773 seq_printf(seq, "(R)");
6774 sectors += rdev->sectors;
6775 }
6776
6777 if (!list_empty(&mddev->disks)) {
6778 if (mddev->pers)
6779 seq_printf(seq, "\n %llu blocks",
6780 (unsigned long long)
6781 mddev->array_sectors / 2);
6782 else
6783 seq_printf(seq, "\n %llu blocks",
6784 (unsigned long long)sectors / 2);
6785 }
6786 if (mddev->persistent) {
6787 if (mddev->major_version != 0 ||
6788 mddev->minor_version != 90) {
6789 seq_printf(seq," super %d.%d",
6790 mddev->major_version,
6791 mddev->minor_version);
6792 }
6793 } else if (mddev->external)
6794 seq_printf(seq, " super external:%s",
6795 mddev->metadata_type);
6796 else
6797 seq_printf(seq, " super non-persistent");
6798
6799 if (mddev->pers) {
6800 mddev->pers->status(seq, mddev);
6801 seq_printf(seq, "\n ");
6802 if (mddev->pers->sync_request) {
6803 if (mddev->curr_resync > 2) {
6804 status_resync(seq, mddev);
6805 seq_printf(seq, "\n ");
6806 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6807 seq_printf(seq, "\tresync=DELAYED\n ");
6808 else if (mddev->recovery_cp < MaxSector)
6809 seq_printf(seq, "\tresync=PENDING\n ");
6810 }
6811 } else
6812 seq_printf(seq, "\n ");
6813
6814 if ((bitmap = mddev->bitmap)) {
6815 unsigned long chunk_kb;
6816 unsigned long flags;
6817 spin_lock_irqsave(&bitmap->lock, flags);
6818 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6819 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6820 "%lu%s chunk",
6821 bitmap->pages - bitmap->missing_pages,
6822 bitmap->pages,
6823 (bitmap->pages - bitmap->missing_pages)
6824 << (PAGE_SHIFT - 10),
6825 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6826 chunk_kb ? "KB" : "B");
6827 if (bitmap->file) {
6828 seq_printf(seq, ", file: ");
6829 seq_path(seq, &bitmap->file->f_path, " \t\n");
6830 }
6831
6832 seq_printf(seq, "\n");
6833 spin_unlock_irqrestore(&bitmap->lock, flags);
6834 }
6835
6836 seq_printf(seq, "\n");
6837 }
6838 mddev_unlock(mddev);
6839
6840 return 0;
6841 }
6842
6843 static const struct seq_operations md_seq_ops = {
6844 .start = md_seq_start,
6845 .next = md_seq_next,
6846 .stop = md_seq_stop,
6847 .show = md_seq_show,
6848 };
6849
6850 static int md_seq_open(struct inode *inode, struct file *file)
6851 {
6852 struct seq_file *seq;
6853 int error;
6854
6855 error = seq_open(file, &md_seq_ops);
6856 if (error)
6857 return error;
6858
6859 seq = file->private_data;
6860 seq->poll_event = atomic_read(&md_event_count);
6861 return error;
6862 }
6863
6864 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6865 {
6866 struct seq_file *seq = filp->private_data;
6867 int mask;
6868
6869 poll_wait(filp, &md_event_waiters, wait);
6870
6871 /* always allow read */
6872 mask = POLLIN | POLLRDNORM;
6873
6874 if (seq->poll_event != atomic_read(&md_event_count))
6875 mask |= POLLERR | POLLPRI;
6876 return mask;
6877 }
6878
6879 static const struct file_operations md_seq_fops = {
6880 .owner = THIS_MODULE,
6881 .open = md_seq_open,
6882 .read = seq_read,
6883 .llseek = seq_lseek,
6884 .release = seq_release_private,
6885 .poll = mdstat_poll,
6886 };
6887
6888 int register_md_personality(struct md_personality *p)
6889 {
6890 spin_lock(&pers_lock);
6891 list_add_tail(&p->list, &pers_list);
6892 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6893 spin_unlock(&pers_lock);
6894 return 0;
6895 }
6896
6897 int unregister_md_personality(struct md_personality *p)
6898 {
6899 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6900 spin_lock(&pers_lock);
6901 list_del_init(&p->list);
6902 spin_unlock(&pers_lock);
6903 return 0;
6904 }
6905
6906 static int is_mddev_idle(struct mddev *mddev, int init)
6907 {
6908 struct md_rdev * rdev;
6909 int idle;
6910 int curr_events;
6911
6912 idle = 1;
6913 rcu_read_lock();
6914 rdev_for_each_rcu(rdev, mddev) {
6915 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6916 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6917 (int)part_stat_read(&disk->part0, sectors[1]) -
6918 atomic_read(&disk->sync_io);
6919 /* sync IO will cause sync_io to increase before the disk_stats
6920 * as sync_io is counted when a request starts, and
6921 * disk_stats is counted when it completes.
6922 * So resync activity will cause curr_events to be smaller than
6923 * when there was no such activity.
6924 * non-sync IO will cause disk_stat to increase without
6925 * increasing sync_io so curr_events will (eventually)
6926 * be larger than it was before. Once it becomes
6927 * substantially larger, the test below will cause
6928 * the array to appear non-idle, and resync will slow
6929 * down.
6930 * If there is a lot of outstanding resync activity when
6931 * we set last_event to curr_events, then all that activity
6932 * completing might cause the array to appear non-idle
6933 * and resync will be slowed down even though there might
6934 * not have been non-resync activity. This will only
6935 * happen once though. 'last_events' will soon reflect
6936 * the state where there is little or no outstanding
6937 * resync requests, and further resync activity will
6938 * always make curr_events less than last_events.
6939 *
6940 */
6941 if (init || curr_events - rdev->last_events > 64) {
6942 rdev->last_events = curr_events;
6943 idle = 0;
6944 }
6945 }
6946 rcu_read_unlock();
6947 return idle;
6948 }
6949
6950 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6951 {
6952 /* another "blocks" (512byte) blocks have been synced */
6953 atomic_sub(blocks, &mddev->recovery_active);
6954 wake_up(&mddev->recovery_wait);
6955 if (!ok) {
6956 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6957 md_wakeup_thread(mddev->thread);
6958 // stop recovery, signal do_sync ....
6959 }
6960 }
6961
6962
6963 /* md_write_start(mddev, bi)
6964 * If we need to update some array metadata (e.g. 'active' flag
6965 * in superblock) before writing, schedule a superblock update
6966 * and wait for it to complete.
6967 */
6968 void md_write_start(struct mddev *mddev, struct bio *bi)
6969 {
6970 int did_change = 0;
6971 if (bio_data_dir(bi) != WRITE)
6972 return;
6973
6974 BUG_ON(mddev->ro == 1);
6975 if (mddev->ro == 2) {
6976 /* need to switch to read/write */
6977 mddev->ro = 0;
6978 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6979 md_wakeup_thread(mddev->thread);
6980 md_wakeup_thread(mddev->sync_thread);
6981 did_change = 1;
6982 }
6983 atomic_inc(&mddev->writes_pending);
6984 if (mddev->safemode == 1)
6985 mddev->safemode = 0;
6986 if (mddev->in_sync) {
6987 spin_lock_irq(&mddev->write_lock);
6988 if (mddev->in_sync) {
6989 mddev->in_sync = 0;
6990 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6991 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6992 md_wakeup_thread(mddev->thread);
6993 did_change = 1;
6994 }
6995 spin_unlock_irq(&mddev->write_lock);
6996 }
6997 if (did_change)
6998 sysfs_notify_dirent_safe(mddev->sysfs_state);
6999 wait_event(mddev->sb_wait,
7000 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7001 }
7002
7003 void md_write_end(struct mddev *mddev)
7004 {
7005 if (atomic_dec_and_test(&mddev->writes_pending)) {
7006 if (mddev->safemode == 2)
7007 md_wakeup_thread(mddev->thread);
7008 else if (mddev->safemode_delay)
7009 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7010 }
7011 }
7012
7013 /* md_allow_write(mddev)
7014 * Calling this ensures that the array is marked 'active' so that writes
7015 * may proceed without blocking. It is important to call this before
7016 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7017 * Must be called with mddev_lock held.
7018 *
7019 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7020 * is dropped, so return -EAGAIN after notifying userspace.
7021 */
7022 int md_allow_write(struct mddev *mddev)
7023 {
7024 if (!mddev->pers)
7025 return 0;
7026 if (mddev->ro)
7027 return 0;
7028 if (!mddev->pers->sync_request)
7029 return 0;
7030
7031 spin_lock_irq(&mddev->write_lock);
7032 if (mddev->in_sync) {
7033 mddev->in_sync = 0;
7034 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7035 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7036 if (mddev->safemode_delay &&
7037 mddev->safemode == 0)
7038 mddev->safemode = 1;
7039 spin_unlock_irq(&mddev->write_lock);
7040 md_update_sb(mddev, 0);
7041 sysfs_notify_dirent_safe(mddev->sysfs_state);
7042 } else
7043 spin_unlock_irq(&mddev->write_lock);
7044
7045 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7046 return -EAGAIN;
7047 else
7048 return 0;
7049 }
7050 EXPORT_SYMBOL_GPL(md_allow_write);
7051
7052 #define SYNC_MARKS 10
7053 #define SYNC_MARK_STEP (3*HZ)
7054 void md_do_sync(struct mddev *mddev)
7055 {
7056 struct mddev *mddev2;
7057 unsigned int currspeed = 0,
7058 window;
7059 sector_t max_sectors,j, io_sectors;
7060 unsigned long mark[SYNC_MARKS];
7061 sector_t mark_cnt[SYNC_MARKS];
7062 int last_mark,m;
7063 struct list_head *tmp;
7064 sector_t last_check;
7065 int skipped = 0;
7066 struct md_rdev *rdev;
7067 char *desc;
7068
7069 /* just incase thread restarts... */
7070 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7071 return;
7072 if (mddev->ro) /* never try to sync a read-only array */
7073 return;
7074
7075 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7076 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7077 desc = "data-check";
7078 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7079 desc = "requested-resync";
7080 else
7081 desc = "resync";
7082 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7083 desc = "reshape";
7084 else
7085 desc = "recovery";
7086
7087 /* we overload curr_resync somewhat here.
7088 * 0 == not engaged in resync at all
7089 * 2 == checking that there is no conflict with another sync
7090 * 1 == like 2, but have yielded to allow conflicting resync to
7091 * commense
7092 * other == active in resync - this many blocks
7093 *
7094 * Before starting a resync we must have set curr_resync to
7095 * 2, and then checked that every "conflicting" array has curr_resync
7096 * less than ours. When we find one that is the same or higher
7097 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7098 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7099 * This will mean we have to start checking from the beginning again.
7100 *
7101 */
7102
7103 do {
7104 mddev->curr_resync = 2;
7105
7106 try_again:
7107 if (kthread_should_stop())
7108 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7109
7110 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7111 goto skip;
7112 for_each_mddev(mddev2, tmp) {
7113 if (mddev2 == mddev)
7114 continue;
7115 if (!mddev->parallel_resync
7116 && mddev2->curr_resync
7117 && match_mddev_units(mddev, mddev2)) {
7118 DEFINE_WAIT(wq);
7119 if (mddev < mddev2 && mddev->curr_resync == 2) {
7120 /* arbitrarily yield */
7121 mddev->curr_resync = 1;
7122 wake_up(&resync_wait);
7123 }
7124 if (mddev > mddev2 && mddev->curr_resync == 1)
7125 /* no need to wait here, we can wait the next
7126 * time 'round when curr_resync == 2
7127 */
7128 continue;
7129 /* We need to wait 'interruptible' so as not to
7130 * contribute to the load average, and not to
7131 * be caught by 'softlockup'
7132 */
7133 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7134 if (!kthread_should_stop() &&
7135 mddev2->curr_resync >= mddev->curr_resync) {
7136 printk(KERN_INFO "md: delaying %s of %s"
7137 " until %s has finished (they"
7138 " share one or more physical units)\n",
7139 desc, mdname(mddev), mdname(mddev2));
7140 mddev_put(mddev2);
7141 if (signal_pending(current))
7142 flush_signals(current);
7143 schedule();
7144 finish_wait(&resync_wait, &wq);
7145 goto try_again;
7146 }
7147 finish_wait(&resync_wait, &wq);
7148 }
7149 }
7150 } while (mddev->curr_resync < 2);
7151
7152 j = 0;
7153 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7154 /* resync follows the size requested by the personality,
7155 * which defaults to physical size, but can be virtual size
7156 */
7157 max_sectors = mddev->resync_max_sectors;
7158 mddev->resync_mismatches = 0;
7159 /* we don't use the checkpoint if there's a bitmap */
7160 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7161 j = mddev->resync_min;
7162 else if (!mddev->bitmap)
7163 j = mddev->recovery_cp;
7164
7165 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7166 max_sectors = mddev->dev_sectors;
7167 else {
7168 /* recovery follows the physical size of devices */
7169 max_sectors = mddev->dev_sectors;
7170 j = MaxSector;
7171 rcu_read_lock();
7172 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7173 if (rdev->raid_disk >= 0 &&
7174 !test_bit(Faulty, &rdev->flags) &&
7175 !test_bit(In_sync, &rdev->flags) &&
7176 rdev->recovery_offset < j)
7177 j = rdev->recovery_offset;
7178 rcu_read_unlock();
7179 }
7180
7181 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7182 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7183 " %d KB/sec/disk.\n", speed_min(mddev));
7184 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7185 "(but not more than %d KB/sec) for %s.\n",
7186 speed_max(mddev), desc);
7187
7188 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7189
7190 io_sectors = 0;
7191 for (m = 0; m < SYNC_MARKS; m++) {
7192 mark[m] = jiffies;
7193 mark_cnt[m] = io_sectors;
7194 }
7195 last_mark = 0;
7196 mddev->resync_mark = mark[last_mark];
7197 mddev->resync_mark_cnt = mark_cnt[last_mark];
7198
7199 /*
7200 * Tune reconstruction:
7201 */
7202 window = 32*(PAGE_SIZE/512);
7203 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7204 window/2, (unsigned long long)max_sectors/2);
7205
7206 atomic_set(&mddev->recovery_active, 0);
7207 last_check = 0;
7208
7209 if (j>2) {
7210 printk(KERN_INFO
7211 "md: resuming %s of %s from checkpoint.\n",
7212 desc, mdname(mddev));
7213 mddev->curr_resync = j;
7214 }
7215 mddev->curr_resync_completed = j;
7216
7217 while (j < max_sectors) {
7218 sector_t sectors;
7219
7220 skipped = 0;
7221
7222 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7223 ((mddev->curr_resync > mddev->curr_resync_completed &&
7224 (mddev->curr_resync - mddev->curr_resync_completed)
7225 > (max_sectors >> 4)) ||
7226 (j - mddev->curr_resync_completed)*2
7227 >= mddev->resync_max - mddev->curr_resync_completed
7228 )) {
7229 /* time to update curr_resync_completed */
7230 wait_event(mddev->recovery_wait,
7231 atomic_read(&mddev->recovery_active) == 0);
7232 mddev->curr_resync_completed = j;
7233 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7234 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7235 }
7236
7237 while (j >= mddev->resync_max && !kthread_should_stop()) {
7238 /* As this condition is controlled by user-space,
7239 * we can block indefinitely, so use '_interruptible'
7240 * to avoid triggering warnings.
7241 */
7242 flush_signals(current); /* just in case */
7243 wait_event_interruptible(mddev->recovery_wait,
7244 mddev->resync_max > j
7245 || kthread_should_stop());
7246 }
7247
7248 if (kthread_should_stop())
7249 goto interrupted;
7250
7251 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7252 currspeed < speed_min(mddev));
7253 if (sectors == 0) {
7254 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7255 goto out;
7256 }
7257
7258 if (!skipped) { /* actual IO requested */
7259 io_sectors += sectors;
7260 atomic_add(sectors, &mddev->recovery_active);
7261 }
7262
7263 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7264 break;
7265
7266 j += sectors;
7267 if (j>1) mddev->curr_resync = j;
7268 mddev->curr_mark_cnt = io_sectors;
7269 if (last_check == 0)
7270 /* this is the earliest that rebuild will be
7271 * visible in /proc/mdstat
7272 */
7273 md_new_event(mddev);
7274
7275 if (last_check + window > io_sectors || j == max_sectors)
7276 continue;
7277
7278 last_check = io_sectors;
7279 repeat:
7280 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7281 /* step marks */
7282 int next = (last_mark+1) % SYNC_MARKS;
7283
7284 mddev->resync_mark = mark[next];
7285 mddev->resync_mark_cnt = mark_cnt[next];
7286 mark[next] = jiffies;
7287 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7288 last_mark = next;
7289 }
7290
7291
7292 if (kthread_should_stop())
7293 goto interrupted;
7294
7295
7296 /*
7297 * this loop exits only if either when we are slower than
7298 * the 'hard' speed limit, or the system was IO-idle for
7299 * a jiffy.
7300 * the system might be non-idle CPU-wise, but we only care
7301 * about not overloading the IO subsystem. (things like an
7302 * e2fsck being done on the RAID array should execute fast)
7303 */
7304 cond_resched();
7305
7306 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7307 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7308
7309 if (currspeed > speed_min(mddev)) {
7310 if ((currspeed > speed_max(mddev)) ||
7311 !is_mddev_idle(mddev, 0)) {
7312 msleep(500);
7313 goto repeat;
7314 }
7315 }
7316 }
7317 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7318 /*
7319 * this also signals 'finished resyncing' to md_stop
7320 */
7321 out:
7322 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7323
7324 /* tell personality that we are finished */
7325 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7326
7327 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7328 mddev->curr_resync > 2) {
7329 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7330 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7331 if (mddev->curr_resync >= mddev->recovery_cp) {
7332 printk(KERN_INFO
7333 "md: checkpointing %s of %s.\n",
7334 desc, mdname(mddev));
7335 mddev->recovery_cp = mddev->curr_resync;
7336 }
7337 } else
7338 mddev->recovery_cp = MaxSector;
7339 } else {
7340 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7341 mddev->curr_resync = MaxSector;
7342 rcu_read_lock();
7343 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7344 if (rdev->raid_disk >= 0 &&
7345 mddev->delta_disks >= 0 &&
7346 !test_bit(Faulty, &rdev->flags) &&
7347 !test_bit(In_sync, &rdev->flags) &&
7348 rdev->recovery_offset < mddev->curr_resync)
7349 rdev->recovery_offset = mddev->curr_resync;
7350 rcu_read_unlock();
7351 }
7352 }
7353 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7354
7355 skip:
7356 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7357 /* We completed so min/max setting can be forgotten if used. */
7358 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7359 mddev->resync_min = 0;
7360 mddev->resync_max = MaxSector;
7361 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7362 mddev->resync_min = mddev->curr_resync_completed;
7363 mddev->curr_resync = 0;
7364 wake_up(&resync_wait);
7365 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7366 md_wakeup_thread(mddev->thread);
7367 return;
7368
7369 interrupted:
7370 /*
7371 * got a signal, exit.
7372 */
7373 printk(KERN_INFO
7374 "md: md_do_sync() got signal ... exiting\n");
7375 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7376 goto out;
7377
7378 }
7379 EXPORT_SYMBOL_GPL(md_do_sync);
7380
7381 static int remove_and_add_spares(struct mddev *mddev)
7382 {
7383 struct md_rdev *rdev;
7384 int spares = 0;
7385 int removed = 0;
7386
7387 mddev->curr_resync_completed = 0;
7388
7389 list_for_each_entry(rdev, &mddev->disks, same_set)
7390 if (rdev->raid_disk >= 0 &&
7391 !test_bit(Blocked, &rdev->flags) &&
7392 (test_bit(Faulty, &rdev->flags) ||
7393 ! test_bit(In_sync, &rdev->flags)) &&
7394 atomic_read(&rdev->nr_pending)==0) {
7395 if (mddev->pers->hot_remove_disk(
7396 mddev, rdev) == 0) {
7397 sysfs_unlink_rdev(mddev, rdev);
7398 rdev->raid_disk = -1;
7399 removed++;
7400 }
7401 }
7402 if (removed)
7403 sysfs_notify(&mddev->kobj, NULL,
7404 "degraded");
7405
7406
7407 list_for_each_entry(rdev, &mddev->disks, same_set) {
7408 if (rdev->raid_disk >= 0 &&
7409 !test_bit(In_sync, &rdev->flags) &&
7410 !test_bit(Faulty, &rdev->flags))
7411 spares++;
7412 if (rdev->raid_disk < 0
7413 && !test_bit(Faulty, &rdev->flags)) {
7414 rdev->recovery_offset = 0;
7415 if (mddev->pers->
7416 hot_add_disk(mddev, rdev) == 0) {
7417 if (sysfs_link_rdev(mddev, rdev))
7418 /* failure here is OK */;
7419 spares++;
7420 md_new_event(mddev);
7421 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7422 }
7423 }
7424 }
7425 return spares;
7426 }
7427
7428 static void reap_sync_thread(struct mddev *mddev)
7429 {
7430 struct md_rdev *rdev;
7431
7432 /* resync has finished, collect result */
7433 md_unregister_thread(&mddev->sync_thread);
7434 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7435 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7436 /* success...*/
7437 /* activate any spares */
7438 if (mddev->pers->spare_active(mddev))
7439 sysfs_notify(&mddev->kobj, NULL,
7440 "degraded");
7441 }
7442 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7443 mddev->pers->finish_reshape)
7444 mddev->pers->finish_reshape(mddev);
7445
7446 /* If array is no-longer degraded, then any saved_raid_disk
7447 * information must be scrapped. Also if any device is now
7448 * In_sync we must scrape the saved_raid_disk for that device
7449 * do the superblock for an incrementally recovered device
7450 * written out.
7451 */
7452 list_for_each_entry(rdev, &mddev->disks, same_set)
7453 if (!mddev->degraded ||
7454 test_bit(In_sync, &rdev->flags))
7455 rdev->saved_raid_disk = -1;
7456
7457 md_update_sb(mddev, 1);
7458 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7459 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7460 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7461 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7462 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7463 /* flag recovery needed just to double check */
7464 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7465 sysfs_notify_dirent_safe(mddev->sysfs_action);
7466 md_new_event(mddev);
7467 if (mddev->event_work.func)
7468 queue_work(md_misc_wq, &mddev->event_work);
7469 }
7470
7471 /*
7472 * This routine is regularly called by all per-raid-array threads to
7473 * deal with generic issues like resync and super-block update.
7474 * Raid personalities that don't have a thread (linear/raid0) do not
7475 * need this as they never do any recovery or update the superblock.
7476 *
7477 * It does not do any resync itself, but rather "forks" off other threads
7478 * to do that as needed.
7479 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7480 * "->recovery" and create a thread at ->sync_thread.
7481 * When the thread finishes it sets MD_RECOVERY_DONE
7482 * and wakeups up this thread which will reap the thread and finish up.
7483 * This thread also removes any faulty devices (with nr_pending == 0).
7484 *
7485 * The overall approach is:
7486 * 1/ if the superblock needs updating, update it.
7487 * 2/ If a recovery thread is running, don't do anything else.
7488 * 3/ If recovery has finished, clean up, possibly marking spares active.
7489 * 4/ If there are any faulty devices, remove them.
7490 * 5/ If array is degraded, try to add spares devices
7491 * 6/ If array has spares or is not in-sync, start a resync thread.
7492 */
7493 void md_check_recovery(struct mddev *mddev)
7494 {
7495 if (mddev->suspended)
7496 return;
7497
7498 if (mddev->bitmap)
7499 bitmap_daemon_work(mddev);
7500
7501 if (signal_pending(current)) {
7502 if (mddev->pers->sync_request && !mddev->external) {
7503 printk(KERN_INFO "md: %s in immediate safe mode\n",
7504 mdname(mddev));
7505 mddev->safemode = 2;
7506 }
7507 flush_signals(current);
7508 }
7509
7510 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7511 return;
7512 if ( ! (
7513 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7514 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7515 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7516 (mddev->external == 0 && mddev->safemode == 1) ||
7517 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7518 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7519 ))
7520 return;
7521
7522 if (mddev_trylock(mddev)) {
7523 int spares = 0;
7524
7525 if (mddev->ro) {
7526 /* Only thing we do on a ro array is remove
7527 * failed devices.
7528 */
7529 struct md_rdev *rdev;
7530 list_for_each_entry(rdev, &mddev->disks, same_set)
7531 if (rdev->raid_disk >= 0 &&
7532 !test_bit(Blocked, &rdev->flags) &&
7533 test_bit(Faulty, &rdev->flags) &&
7534 atomic_read(&rdev->nr_pending)==0) {
7535 if (mddev->pers->hot_remove_disk(
7536 mddev, rdev) == 0) {
7537 sysfs_unlink_rdev(mddev, rdev);
7538 rdev->raid_disk = -1;
7539 }
7540 }
7541 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7542 goto unlock;
7543 }
7544
7545 if (!mddev->external) {
7546 int did_change = 0;
7547 spin_lock_irq(&mddev->write_lock);
7548 if (mddev->safemode &&
7549 !atomic_read(&mddev->writes_pending) &&
7550 !mddev->in_sync &&
7551 mddev->recovery_cp == MaxSector) {
7552 mddev->in_sync = 1;
7553 did_change = 1;
7554 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7555 }
7556 if (mddev->safemode == 1)
7557 mddev->safemode = 0;
7558 spin_unlock_irq(&mddev->write_lock);
7559 if (did_change)
7560 sysfs_notify_dirent_safe(mddev->sysfs_state);
7561 }
7562
7563 if (mddev->flags)
7564 md_update_sb(mddev, 0);
7565
7566 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7567 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7568 /* resync/recovery still happening */
7569 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7570 goto unlock;
7571 }
7572 if (mddev->sync_thread) {
7573 reap_sync_thread(mddev);
7574 goto unlock;
7575 }
7576 /* Set RUNNING before clearing NEEDED to avoid
7577 * any transients in the value of "sync_action".
7578 */
7579 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7580 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7581 /* Clear some bits that don't mean anything, but
7582 * might be left set
7583 */
7584 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7585 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7586
7587 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7588 goto unlock;
7589 /* no recovery is running.
7590 * remove any failed drives, then
7591 * add spares if possible.
7592 * Spare are also removed and re-added, to allow
7593 * the personality to fail the re-add.
7594 */
7595
7596 if (mddev->reshape_position != MaxSector) {
7597 if (mddev->pers->check_reshape == NULL ||
7598 mddev->pers->check_reshape(mddev) != 0)
7599 /* Cannot proceed */
7600 goto unlock;
7601 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7602 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7603 } else if ((spares = remove_and_add_spares(mddev))) {
7604 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7605 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7606 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7607 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7608 } else if (mddev->recovery_cp < MaxSector) {
7609 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7610 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7611 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7612 /* nothing to be done ... */
7613 goto unlock;
7614
7615 if (mddev->pers->sync_request) {
7616 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7617 /* We are adding a device or devices to an array
7618 * which has the bitmap stored on all devices.
7619 * So make sure all bitmap pages get written
7620 */
7621 bitmap_write_all(mddev->bitmap);
7622 }
7623 mddev->sync_thread = md_register_thread(md_do_sync,
7624 mddev,
7625 "resync");
7626 if (!mddev->sync_thread) {
7627 printk(KERN_ERR "%s: could not start resync"
7628 " thread...\n",
7629 mdname(mddev));
7630 /* leave the spares where they are, it shouldn't hurt */
7631 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7632 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7633 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7634 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7635 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7636 } else
7637 md_wakeup_thread(mddev->sync_thread);
7638 sysfs_notify_dirent_safe(mddev->sysfs_action);
7639 md_new_event(mddev);
7640 }
7641 unlock:
7642 if (!mddev->sync_thread) {
7643 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7644 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7645 &mddev->recovery))
7646 if (mddev->sysfs_action)
7647 sysfs_notify_dirent_safe(mddev->sysfs_action);
7648 }
7649 mddev_unlock(mddev);
7650 }
7651 }
7652
7653 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7654 {
7655 sysfs_notify_dirent_safe(rdev->sysfs_state);
7656 wait_event_timeout(rdev->blocked_wait,
7657 !test_bit(Blocked, &rdev->flags) &&
7658 !test_bit(BlockedBadBlocks, &rdev->flags),
7659 msecs_to_jiffies(5000));
7660 rdev_dec_pending(rdev, mddev);
7661 }
7662 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7663
7664
7665 /* Bad block management.
7666 * We can record which blocks on each device are 'bad' and so just
7667 * fail those blocks, or that stripe, rather than the whole device.
7668 * Entries in the bad-block table are 64bits wide. This comprises:
7669 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7670 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7671 * A 'shift' can be set so that larger blocks are tracked and
7672 * consequently larger devices can be covered.
7673 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7674 *
7675 * Locking of the bad-block table uses a seqlock so md_is_badblock
7676 * might need to retry if it is very unlucky.
7677 * We will sometimes want to check for bad blocks in a bi_end_io function,
7678 * so we use the write_seqlock_irq variant.
7679 *
7680 * When looking for a bad block we specify a range and want to
7681 * know if any block in the range is bad. So we binary-search
7682 * to the last range that starts at-or-before the given endpoint,
7683 * (or "before the sector after the target range")
7684 * then see if it ends after the given start.
7685 * We return
7686 * 0 if there are no known bad blocks in the range
7687 * 1 if there are known bad block which are all acknowledged
7688 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7689 * plus the start/length of the first bad section we overlap.
7690 */
7691 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7692 sector_t *first_bad, int *bad_sectors)
7693 {
7694 int hi;
7695 int lo = 0;
7696 u64 *p = bb->page;
7697 int rv = 0;
7698 sector_t target = s + sectors;
7699 unsigned seq;
7700
7701 if (bb->shift > 0) {
7702 /* round the start down, and the end up */
7703 s >>= bb->shift;
7704 target += (1<<bb->shift) - 1;
7705 target >>= bb->shift;
7706 sectors = target - s;
7707 }
7708 /* 'target' is now the first block after the bad range */
7709
7710 retry:
7711 seq = read_seqbegin(&bb->lock);
7712
7713 hi = bb->count;
7714
7715 /* Binary search between lo and hi for 'target'
7716 * i.e. for the last range that starts before 'target'
7717 */
7718 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7719 * are known not to be the last range before target.
7720 * VARIANT: hi-lo is the number of possible
7721 * ranges, and decreases until it reaches 1
7722 */
7723 while (hi - lo > 1) {
7724 int mid = (lo + hi) / 2;
7725 sector_t a = BB_OFFSET(p[mid]);
7726 if (a < target)
7727 /* This could still be the one, earlier ranges
7728 * could not. */
7729 lo = mid;
7730 else
7731 /* This and later ranges are definitely out. */
7732 hi = mid;
7733 }
7734 /* 'lo' might be the last that started before target, but 'hi' isn't */
7735 if (hi > lo) {
7736 /* need to check all range that end after 's' to see if
7737 * any are unacknowledged.
7738 */
7739 while (lo >= 0 &&
7740 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7741 if (BB_OFFSET(p[lo]) < target) {
7742 /* starts before the end, and finishes after
7743 * the start, so they must overlap
7744 */
7745 if (rv != -1 && BB_ACK(p[lo]))
7746 rv = 1;
7747 else
7748 rv = -1;
7749 *first_bad = BB_OFFSET(p[lo]);
7750 *bad_sectors = BB_LEN(p[lo]);
7751 }
7752 lo--;
7753 }
7754 }
7755
7756 if (read_seqretry(&bb->lock, seq))
7757 goto retry;
7758
7759 return rv;
7760 }
7761 EXPORT_SYMBOL_GPL(md_is_badblock);
7762
7763 /*
7764 * Add a range of bad blocks to the table.
7765 * This might extend the table, or might contract it
7766 * if two adjacent ranges can be merged.
7767 * We binary-search to find the 'insertion' point, then
7768 * decide how best to handle it.
7769 */
7770 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7771 int acknowledged)
7772 {
7773 u64 *p;
7774 int lo, hi;
7775 int rv = 1;
7776
7777 if (bb->shift < 0)
7778 /* badblocks are disabled */
7779 return 0;
7780
7781 if (bb->shift) {
7782 /* round the start down, and the end up */
7783 sector_t next = s + sectors;
7784 s >>= bb->shift;
7785 next += (1<<bb->shift) - 1;
7786 next >>= bb->shift;
7787 sectors = next - s;
7788 }
7789
7790 write_seqlock_irq(&bb->lock);
7791
7792 p = bb->page;
7793 lo = 0;
7794 hi = bb->count;
7795 /* Find the last range that starts at-or-before 's' */
7796 while (hi - lo > 1) {
7797 int mid = (lo + hi) / 2;
7798 sector_t a = BB_OFFSET(p[mid]);
7799 if (a <= s)
7800 lo = mid;
7801 else
7802 hi = mid;
7803 }
7804 if (hi > lo && BB_OFFSET(p[lo]) > s)
7805 hi = lo;
7806
7807 if (hi > lo) {
7808 /* we found a range that might merge with the start
7809 * of our new range
7810 */
7811 sector_t a = BB_OFFSET(p[lo]);
7812 sector_t e = a + BB_LEN(p[lo]);
7813 int ack = BB_ACK(p[lo]);
7814 if (e >= s) {
7815 /* Yes, we can merge with a previous range */
7816 if (s == a && s + sectors >= e)
7817 /* new range covers old */
7818 ack = acknowledged;
7819 else
7820 ack = ack && acknowledged;
7821
7822 if (e < s + sectors)
7823 e = s + sectors;
7824 if (e - a <= BB_MAX_LEN) {
7825 p[lo] = BB_MAKE(a, e-a, ack);
7826 s = e;
7827 } else {
7828 /* does not all fit in one range,
7829 * make p[lo] maximal
7830 */
7831 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7832 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7833 s = a + BB_MAX_LEN;
7834 }
7835 sectors = e - s;
7836 }
7837 }
7838 if (sectors && hi < bb->count) {
7839 /* 'hi' points to the first range that starts after 's'.
7840 * Maybe we can merge with the start of that range */
7841 sector_t a = BB_OFFSET(p[hi]);
7842 sector_t e = a + BB_LEN(p[hi]);
7843 int ack = BB_ACK(p[hi]);
7844 if (a <= s + sectors) {
7845 /* merging is possible */
7846 if (e <= s + sectors) {
7847 /* full overlap */
7848 e = s + sectors;
7849 ack = acknowledged;
7850 } else
7851 ack = ack && acknowledged;
7852
7853 a = s;
7854 if (e - a <= BB_MAX_LEN) {
7855 p[hi] = BB_MAKE(a, e-a, ack);
7856 s = e;
7857 } else {
7858 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7859 s = a + BB_MAX_LEN;
7860 }
7861 sectors = e - s;
7862 lo = hi;
7863 hi++;
7864 }
7865 }
7866 if (sectors == 0 && hi < bb->count) {
7867 /* we might be able to combine lo and hi */
7868 /* Note: 's' is at the end of 'lo' */
7869 sector_t a = BB_OFFSET(p[hi]);
7870 int lolen = BB_LEN(p[lo]);
7871 int hilen = BB_LEN(p[hi]);
7872 int newlen = lolen + hilen - (s - a);
7873 if (s >= a && newlen < BB_MAX_LEN) {
7874 /* yes, we can combine them */
7875 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7876 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7877 memmove(p + hi, p + hi + 1,
7878 (bb->count - hi - 1) * 8);
7879 bb->count--;
7880 }
7881 }
7882 while (sectors) {
7883 /* didn't merge (it all).
7884 * Need to add a range just before 'hi' */
7885 if (bb->count >= MD_MAX_BADBLOCKS) {
7886 /* No room for more */
7887 rv = 0;
7888 break;
7889 } else {
7890 int this_sectors = sectors;
7891 memmove(p + hi + 1, p + hi,
7892 (bb->count - hi) * 8);
7893 bb->count++;
7894
7895 if (this_sectors > BB_MAX_LEN)
7896 this_sectors = BB_MAX_LEN;
7897 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7898 sectors -= this_sectors;
7899 s += this_sectors;
7900 }
7901 }
7902
7903 bb->changed = 1;
7904 if (!acknowledged)
7905 bb->unacked_exist = 1;
7906 write_sequnlock_irq(&bb->lock);
7907
7908 return rv;
7909 }
7910
7911 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7912 int acknowledged)
7913 {
7914 int rv = md_set_badblocks(&rdev->badblocks,
7915 s + rdev->data_offset, sectors, acknowledged);
7916 if (rv) {
7917 /* Make sure they get written out promptly */
7918 sysfs_notify_dirent_safe(rdev->sysfs_state);
7919 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7920 md_wakeup_thread(rdev->mddev->thread);
7921 }
7922 return rv;
7923 }
7924 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7925
7926 /*
7927 * Remove a range of bad blocks from the table.
7928 * This may involve extending the table if we spilt a region,
7929 * but it must not fail. So if the table becomes full, we just
7930 * drop the remove request.
7931 */
7932 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7933 {
7934 u64 *p;
7935 int lo, hi;
7936 sector_t target = s + sectors;
7937 int rv = 0;
7938
7939 if (bb->shift > 0) {
7940 /* When clearing we round the start up and the end down.
7941 * This should not matter as the shift should align with
7942 * the block size and no rounding should ever be needed.
7943 * However it is better the think a block is bad when it
7944 * isn't than to think a block is not bad when it is.
7945 */
7946 s += (1<<bb->shift) - 1;
7947 s >>= bb->shift;
7948 target >>= bb->shift;
7949 sectors = target - s;
7950 }
7951
7952 write_seqlock_irq(&bb->lock);
7953
7954 p = bb->page;
7955 lo = 0;
7956 hi = bb->count;
7957 /* Find the last range that starts before 'target' */
7958 while (hi - lo > 1) {
7959 int mid = (lo + hi) / 2;
7960 sector_t a = BB_OFFSET(p[mid]);
7961 if (a < target)
7962 lo = mid;
7963 else
7964 hi = mid;
7965 }
7966 if (hi > lo) {
7967 /* p[lo] is the last range that could overlap the
7968 * current range. Earlier ranges could also overlap,
7969 * but only this one can overlap the end of the range.
7970 */
7971 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7972 /* Partial overlap, leave the tail of this range */
7973 int ack = BB_ACK(p[lo]);
7974 sector_t a = BB_OFFSET(p[lo]);
7975 sector_t end = a + BB_LEN(p[lo]);
7976
7977 if (a < s) {
7978 /* we need to split this range */
7979 if (bb->count >= MD_MAX_BADBLOCKS) {
7980 rv = 0;
7981 goto out;
7982 }
7983 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7984 bb->count++;
7985 p[lo] = BB_MAKE(a, s-a, ack);
7986 lo++;
7987 }
7988 p[lo] = BB_MAKE(target, end - target, ack);
7989 /* there is no longer an overlap */
7990 hi = lo;
7991 lo--;
7992 }
7993 while (lo >= 0 &&
7994 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7995 /* This range does overlap */
7996 if (BB_OFFSET(p[lo]) < s) {
7997 /* Keep the early parts of this range. */
7998 int ack = BB_ACK(p[lo]);
7999 sector_t start = BB_OFFSET(p[lo]);
8000 p[lo] = BB_MAKE(start, s - start, ack);
8001 /* now low doesn't overlap, so.. */
8002 break;
8003 }
8004 lo--;
8005 }
8006 /* 'lo' is strictly before, 'hi' is strictly after,
8007 * anything between needs to be discarded
8008 */
8009 if (hi - lo > 1) {
8010 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8011 bb->count -= (hi - lo - 1);
8012 }
8013 }
8014
8015 bb->changed = 1;
8016 out:
8017 write_sequnlock_irq(&bb->lock);
8018 return rv;
8019 }
8020
8021 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
8022 {
8023 return md_clear_badblocks(&rdev->badblocks,
8024 s + rdev->data_offset,
8025 sectors);
8026 }
8027 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8028
8029 /*
8030 * Acknowledge all bad blocks in a list.
8031 * This only succeeds if ->changed is clear. It is used by
8032 * in-kernel metadata updates
8033 */
8034 void md_ack_all_badblocks(struct badblocks *bb)
8035 {
8036 if (bb->page == NULL || bb->changed)
8037 /* no point even trying */
8038 return;
8039 write_seqlock_irq(&bb->lock);
8040
8041 if (bb->changed == 0) {
8042 u64 *p = bb->page;
8043 int i;
8044 for (i = 0; i < bb->count ; i++) {
8045 if (!BB_ACK(p[i])) {
8046 sector_t start = BB_OFFSET(p[i]);
8047 int len = BB_LEN(p[i]);
8048 p[i] = BB_MAKE(start, len, 1);
8049 }
8050 }
8051 bb->unacked_exist = 0;
8052 }
8053 write_sequnlock_irq(&bb->lock);
8054 }
8055 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8056
8057 /* sysfs access to bad-blocks list.
8058 * We present two files.
8059 * 'bad-blocks' lists sector numbers and lengths of ranges that
8060 * are recorded as bad. The list is truncated to fit within
8061 * the one-page limit of sysfs.
8062 * Writing "sector length" to this file adds an acknowledged
8063 * bad block list.
8064 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8065 * been acknowledged. Writing to this file adds bad blocks
8066 * without acknowledging them. This is largely for testing.
8067 */
8068
8069 static ssize_t
8070 badblocks_show(struct badblocks *bb, char *page, int unack)
8071 {
8072 size_t len;
8073 int i;
8074 u64 *p = bb->page;
8075 unsigned seq;
8076
8077 if (bb->shift < 0)
8078 return 0;
8079
8080 retry:
8081 seq = read_seqbegin(&bb->lock);
8082
8083 len = 0;
8084 i = 0;
8085
8086 while (len < PAGE_SIZE && i < bb->count) {
8087 sector_t s = BB_OFFSET(p[i]);
8088 unsigned int length = BB_LEN(p[i]);
8089 int ack = BB_ACK(p[i]);
8090 i++;
8091
8092 if (unack && ack)
8093 continue;
8094
8095 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8096 (unsigned long long)s << bb->shift,
8097 length << bb->shift);
8098 }
8099 if (unack && len == 0)
8100 bb->unacked_exist = 0;
8101
8102 if (read_seqretry(&bb->lock, seq))
8103 goto retry;
8104
8105 return len;
8106 }
8107
8108 #define DO_DEBUG 1
8109
8110 static ssize_t
8111 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8112 {
8113 unsigned long long sector;
8114 int length;
8115 char newline;
8116 #ifdef DO_DEBUG
8117 /* Allow clearing via sysfs *only* for testing/debugging.
8118 * Normally only a successful write may clear a badblock
8119 */
8120 int clear = 0;
8121 if (page[0] == '-') {
8122 clear = 1;
8123 page++;
8124 }
8125 #endif /* DO_DEBUG */
8126
8127 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8128 case 3:
8129 if (newline != '\n')
8130 return -EINVAL;
8131 case 2:
8132 if (length <= 0)
8133 return -EINVAL;
8134 break;
8135 default:
8136 return -EINVAL;
8137 }
8138
8139 #ifdef DO_DEBUG
8140 if (clear) {
8141 md_clear_badblocks(bb, sector, length);
8142 return len;
8143 }
8144 #endif /* DO_DEBUG */
8145 if (md_set_badblocks(bb, sector, length, !unack))
8146 return len;
8147 else
8148 return -ENOSPC;
8149 }
8150
8151 static int md_notify_reboot(struct notifier_block *this,
8152 unsigned long code, void *x)
8153 {
8154 struct list_head *tmp;
8155 struct mddev *mddev;
8156 int need_delay = 0;
8157
8158 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8159
8160 printk(KERN_INFO "md: stopping all md devices.\n");
8161
8162 for_each_mddev(mddev, tmp) {
8163 if (mddev_trylock(mddev)) {
8164 /* Force a switch to readonly even array
8165 * appears to still be in use. Hence
8166 * the '100'.
8167 */
8168 md_set_readonly(mddev, 100);
8169 mddev_unlock(mddev);
8170 }
8171 need_delay = 1;
8172 }
8173 /*
8174 * certain more exotic SCSI devices are known to be
8175 * volatile wrt too early system reboots. While the
8176 * right place to handle this issue is the given
8177 * driver, we do want to have a safe RAID driver ...
8178 */
8179 if (need_delay)
8180 mdelay(1000*1);
8181 }
8182 return NOTIFY_DONE;
8183 }
8184
8185 static struct notifier_block md_notifier = {
8186 .notifier_call = md_notify_reboot,
8187 .next = NULL,
8188 .priority = INT_MAX, /* before any real devices */
8189 };
8190
8191 static void md_geninit(void)
8192 {
8193 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8194
8195 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8196 }
8197
8198 static int __init md_init(void)
8199 {
8200 int ret = -ENOMEM;
8201
8202 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8203 if (!md_wq)
8204 goto err_wq;
8205
8206 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8207 if (!md_misc_wq)
8208 goto err_misc_wq;
8209
8210 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8211 goto err_md;
8212
8213 if ((ret = register_blkdev(0, "mdp")) < 0)
8214 goto err_mdp;
8215 mdp_major = ret;
8216
8217 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8218 md_probe, NULL, NULL);
8219 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8220 md_probe, NULL, NULL);
8221
8222 register_reboot_notifier(&md_notifier);
8223 raid_table_header = register_sysctl_table(raid_root_table);
8224
8225 md_geninit();
8226 return 0;
8227
8228 err_mdp:
8229 unregister_blkdev(MD_MAJOR, "md");
8230 err_md:
8231 destroy_workqueue(md_misc_wq);
8232 err_misc_wq:
8233 destroy_workqueue(md_wq);
8234 err_wq:
8235 return ret;
8236 }
8237
8238 #ifndef MODULE
8239
8240 /*
8241 * Searches all registered partitions for autorun RAID arrays
8242 * at boot time.
8243 */
8244
8245 static LIST_HEAD(all_detected_devices);
8246 struct detected_devices_node {
8247 struct list_head list;
8248 dev_t dev;
8249 };
8250
8251 void md_autodetect_dev(dev_t dev)
8252 {
8253 struct detected_devices_node *node_detected_dev;
8254
8255 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8256 if (node_detected_dev) {
8257 node_detected_dev->dev = dev;
8258 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8259 } else {
8260 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8261 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8262 }
8263 }
8264
8265
8266 static void autostart_arrays(int part)
8267 {
8268 struct md_rdev *rdev;
8269 struct detected_devices_node *node_detected_dev;
8270 dev_t dev;
8271 int i_scanned, i_passed;
8272
8273 i_scanned = 0;
8274 i_passed = 0;
8275
8276 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8277
8278 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8279 i_scanned++;
8280 node_detected_dev = list_entry(all_detected_devices.next,
8281 struct detected_devices_node, list);
8282 list_del(&node_detected_dev->list);
8283 dev = node_detected_dev->dev;
8284 kfree(node_detected_dev);
8285 rdev = md_import_device(dev,0, 90);
8286 if (IS_ERR(rdev))
8287 continue;
8288
8289 if (test_bit(Faulty, &rdev->flags)) {
8290 MD_BUG();
8291 continue;
8292 }
8293 set_bit(AutoDetected, &rdev->flags);
8294 list_add(&rdev->same_set, &pending_raid_disks);
8295 i_passed++;
8296 }
8297
8298 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8299 i_scanned, i_passed);
8300
8301 autorun_devices(part);
8302 }
8303
8304 #endif /* !MODULE */
8305
8306 static __exit void md_exit(void)
8307 {
8308 struct mddev *mddev;
8309 struct list_head *tmp;
8310
8311 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8312 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8313
8314 unregister_blkdev(MD_MAJOR,"md");
8315 unregister_blkdev(mdp_major, "mdp");
8316 unregister_reboot_notifier(&md_notifier);
8317 unregister_sysctl_table(raid_table_header);
8318 remove_proc_entry("mdstat", NULL);
8319 for_each_mddev(mddev, tmp) {
8320 export_array(mddev);
8321 mddev->hold_active = 0;
8322 }
8323 destroy_workqueue(md_misc_wq);
8324 destroy_workqueue(md_wq);
8325 }
8326
8327 subsys_initcall(md_init);
8328 module_exit(md_exit)
8329
8330 static int get_ro(char *buffer, struct kernel_param *kp)
8331 {
8332 return sprintf(buffer, "%d", start_readonly);
8333 }
8334 static int set_ro(const char *val, struct kernel_param *kp)
8335 {
8336 char *e;
8337 int num = simple_strtoul(val, &e, 10);
8338 if (*val && (*e == '\0' || *e == '\n')) {
8339 start_readonly = num;
8340 return 0;
8341 }
8342 return -EINVAL;
8343 }
8344
8345 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8346 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8347
8348 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8349
8350 EXPORT_SYMBOL(register_md_personality);
8351 EXPORT_SYMBOL(unregister_md_personality);
8352 EXPORT_SYMBOL(md_error);
8353 EXPORT_SYMBOL(md_done_sync);
8354 EXPORT_SYMBOL(md_write_start);
8355 EXPORT_SYMBOL(md_write_end);
8356 EXPORT_SYMBOL(md_register_thread);
8357 EXPORT_SYMBOL(md_unregister_thread);
8358 EXPORT_SYMBOL(md_wakeup_thread);
8359 EXPORT_SYMBOL(md_check_recovery);
8360 MODULE_LICENSE("GPL");
8361 MODULE_DESCRIPTION("MD RAID framework");
8362 MODULE_ALIAS("md");
8363 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);