4843b004c55864233be8f2cc7d1eefe32d9e2c0b
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
81 */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
90 * idle IO detection.
91 *
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
94 */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113 {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
119 },
120 {
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
126 },
127 { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131 {
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = S_IRUGO|S_IXUGO,
135 .child = raid_table,
136 },
137 { }
138 };
139
140 static ctl_table raid_root_table[] = {
141 {
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
146 },
147 { }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155 * like bio_clone, but with a local bio set
156 */
157
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159 struct mddev *mddev)
160 {
161 struct bio *b;
162
163 if (!mddev || !mddev->bio_set)
164 return bio_alloc(gfp_mask, nr_iovecs);
165
166 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167 if (!b)
168 return NULL;
169 return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174 struct mddev *mddev)
175 {
176 if (!mddev || !mddev->bio_set)
177 return bio_clone(bio, gfp_mask);
178
179 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182
183 void md_trim_bio(struct bio *bio, int offset, int size)
184 {
185 /* 'bio' is a cloned bio which we need to trim to match
186 * the given offset and size.
187 * This requires adjusting bi_sector, bi_size, and bi_io_vec
188 */
189 int i;
190 struct bio_vec *bvec;
191 int sofar = 0;
192
193 size <<= 9;
194 if (offset == 0 && size == bio->bi_size)
195 return;
196
197 bio->bi_sector += offset;
198 bio->bi_size = size;
199 offset <<= 9;
200 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201
202 while (bio->bi_idx < bio->bi_vcnt &&
203 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
204 /* remove this whole bio_vec */
205 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
206 bio->bi_idx++;
207 }
208 if (bio->bi_idx < bio->bi_vcnt) {
209 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
210 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
211 }
212 /* avoid any complications with bi_idx being non-zero*/
213 if (bio->bi_idx) {
214 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
215 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
216 bio->bi_vcnt -= bio->bi_idx;
217 bio->bi_idx = 0;
218 }
219 /* Make sure vcnt and last bv are not too big */
220 bio_for_each_segment(bvec, bio, i) {
221 if (sofar + bvec->bv_len > size)
222 bvec->bv_len = size - sofar;
223 if (bvec->bv_len == 0) {
224 bio->bi_vcnt = i;
225 break;
226 }
227 sofar += bvec->bv_len;
228 }
229 }
230 EXPORT_SYMBOL_GPL(md_trim_bio);
231
232 /*
233 * We have a system wide 'event count' that is incremented
234 * on any 'interesting' event, and readers of /proc/mdstat
235 * can use 'poll' or 'select' to find out when the event
236 * count increases.
237 *
238 * Events are:
239 * start array, stop array, error, add device, remove device,
240 * start build, activate spare
241 */
242 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
243 static atomic_t md_event_count;
244 void md_new_event(struct mddev *mddev)
245 {
246 atomic_inc(&md_event_count);
247 wake_up(&md_event_waiters);
248 }
249 EXPORT_SYMBOL_GPL(md_new_event);
250
251 /* Alternate version that can be called from interrupts
252 * when calling sysfs_notify isn't needed.
253 */
254 static void md_new_event_inintr(struct mddev *mddev)
255 {
256 atomic_inc(&md_event_count);
257 wake_up(&md_event_waiters);
258 }
259
260 /*
261 * Enables to iterate over all existing md arrays
262 * all_mddevs_lock protects this list.
263 */
264 static LIST_HEAD(all_mddevs);
265 static DEFINE_SPINLOCK(all_mddevs_lock);
266
267
268 /*
269 * iterates through all used mddevs in the system.
270 * We take care to grab the all_mddevs_lock whenever navigating
271 * the list, and to always hold a refcount when unlocked.
272 * Any code which breaks out of this loop while own
273 * a reference to the current mddev and must mddev_put it.
274 */
275 #define for_each_mddev(_mddev,_tmp) \
276 \
277 for (({ spin_lock(&all_mddevs_lock); \
278 _tmp = all_mddevs.next; \
279 _mddev = NULL;}); \
280 ({ if (_tmp != &all_mddevs) \
281 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
282 spin_unlock(&all_mddevs_lock); \
283 if (_mddev) mddev_put(_mddev); \
284 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
285 _tmp != &all_mddevs;}); \
286 ({ spin_lock(&all_mddevs_lock); \
287 _tmp = _tmp->next;}) \
288 )
289
290
291 /* Rather than calling directly into the personality make_request function,
292 * IO requests come here first so that we can check if the device is
293 * being suspended pending a reconfiguration.
294 * We hold a refcount over the call to ->make_request. By the time that
295 * call has finished, the bio has been linked into some internal structure
296 * and so is visible to ->quiesce(), so we don't need the refcount any more.
297 */
298 static void md_make_request(struct request_queue *q, struct bio *bio)
299 {
300 const int rw = bio_data_dir(bio);
301 struct mddev *mddev = q->queuedata;
302 int cpu;
303 unsigned int sectors;
304
305 if (mddev == NULL || mddev->pers == NULL
306 || !mddev->ready) {
307 bio_io_error(bio);
308 return;
309 }
310 smp_rmb(); /* Ensure implications of 'active' are visible */
311 rcu_read_lock();
312 if (mddev->suspended) {
313 DEFINE_WAIT(__wait);
314 for (;;) {
315 prepare_to_wait(&mddev->sb_wait, &__wait,
316 TASK_UNINTERRUPTIBLE);
317 if (!mddev->suspended)
318 break;
319 rcu_read_unlock();
320 schedule();
321 rcu_read_lock();
322 }
323 finish_wait(&mddev->sb_wait, &__wait);
324 }
325 atomic_inc(&mddev->active_io);
326 rcu_read_unlock();
327
328 /*
329 * save the sectors now since our bio can
330 * go away inside make_request
331 */
332 sectors = bio_sectors(bio);
333 mddev->pers->make_request(mddev, bio);
334
335 cpu = part_stat_lock();
336 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
337 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
338 part_stat_unlock();
339
340 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
341 wake_up(&mddev->sb_wait);
342 }
343
344 /* mddev_suspend makes sure no new requests are submitted
345 * to the device, and that any requests that have been submitted
346 * are completely handled.
347 * Once ->stop is called and completes, the module will be completely
348 * unused.
349 */
350 void mddev_suspend(struct mddev *mddev)
351 {
352 BUG_ON(mddev->suspended);
353 mddev->suspended = 1;
354 synchronize_rcu();
355 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
356 mddev->pers->quiesce(mddev, 1);
357
358 del_timer_sync(&mddev->safemode_timer);
359 }
360 EXPORT_SYMBOL_GPL(mddev_suspend);
361
362 void mddev_resume(struct mddev *mddev)
363 {
364 mddev->suspended = 0;
365 wake_up(&mddev->sb_wait);
366 mddev->pers->quiesce(mddev, 0);
367
368 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
369 md_wakeup_thread(mddev->thread);
370 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
371 }
372 EXPORT_SYMBOL_GPL(mddev_resume);
373
374 int mddev_congested(struct mddev *mddev, int bits)
375 {
376 return mddev->suspended;
377 }
378 EXPORT_SYMBOL(mddev_congested);
379
380 /*
381 * Generic flush handling for md
382 */
383
384 static void md_end_flush(struct bio *bio, int err)
385 {
386 struct md_rdev *rdev = bio->bi_private;
387 struct mddev *mddev = rdev->mddev;
388
389 rdev_dec_pending(rdev, mddev);
390
391 if (atomic_dec_and_test(&mddev->flush_pending)) {
392 /* The pre-request flush has finished */
393 queue_work(md_wq, &mddev->flush_work);
394 }
395 bio_put(bio);
396 }
397
398 static void md_submit_flush_data(struct work_struct *ws);
399
400 static void submit_flushes(struct work_struct *ws)
401 {
402 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
403 struct md_rdev *rdev;
404
405 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
406 atomic_set(&mddev->flush_pending, 1);
407 rcu_read_lock();
408 rdev_for_each_rcu(rdev, mddev)
409 if (rdev->raid_disk >= 0 &&
410 !test_bit(Faulty, &rdev->flags)) {
411 /* Take two references, one is dropped
412 * when request finishes, one after
413 * we reclaim rcu_read_lock
414 */
415 struct bio *bi;
416 atomic_inc(&rdev->nr_pending);
417 atomic_inc(&rdev->nr_pending);
418 rcu_read_unlock();
419 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
420 bi->bi_end_io = md_end_flush;
421 bi->bi_private = rdev;
422 bi->bi_bdev = rdev->bdev;
423 atomic_inc(&mddev->flush_pending);
424 submit_bio(WRITE_FLUSH, bi);
425 rcu_read_lock();
426 rdev_dec_pending(rdev, mddev);
427 }
428 rcu_read_unlock();
429 if (atomic_dec_and_test(&mddev->flush_pending))
430 queue_work(md_wq, &mddev->flush_work);
431 }
432
433 static void md_submit_flush_data(struct work_struct *ws)
434 {
435 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
436 struct bio *bio = mddev->flush_bio;
437
438 if (bio->bi_size == 0)
439 /* an empty barrier - all done */
440 bio_endio(bio, 0);
441 else {
442 bio->bi_rw &= ~REQ_FLUSH;
443 mddev->pers->make_request(mddev, bio);
444 }
445
446 mddev->flush_bio = NULL;
447 wake_up(&mddev->sb_wait);
448 }
449
450 void md_flush_request(struct mddev *mddev, struct bio *bio)
451 {
452 spin_lock_irq(&mddev->write_lock);
453 wait_event_lock_irq(mddev->sb_wait,
454 !mddev->flush_bio,
455 mddev->write_lock);
456 mddev->flush_bio = bio;
457 spin_unlock_irq(&mddev->write_lock);
458
459 INIT_WORK(&mddev->flush_work, submit_flushes);
460 queue_work(md_wq, &mddev->flush_work);
461 }
462 EXPORT_SYMBOL(md_flush_request);
463
464 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
465 {
466 struct mddev *mddev = cb->data;
467 md_wakeup_thread(mddev->thread);
468 kfree(cb);
469 }
470 EXPORT_SYMBOL(md_unplug);
471
472 static inline struct mddev *mddev_get(struct mddev *mddev)
473 {
474 atomic_inc(&mddev->active);
475 return mddev;
476 }
477
478 static void mddev_delayed_delete(struct work_struct *ws);
479
480 static void mddev_put(struct mddev *mddev)
481 {
482 struct bio_set *bs = NULL;
483
484 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
485 return;
486 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
487 mddev->ctime == 0 && !mddev->hold_active) {
488 /* Array is not configured at all, and not held active,
489 * so destroy it */
490 list_del_init(&mddev->all_mddevs);
491 bs = mddev->bio_set;
492 mddev->bio_set = NULL;
493 if (mddev->gendisk) {
494 /* We did a probe so need to clean up. Call
495 * queue_work inside the spinlock so that
496 * flush_workqueue() after mddev_find will
497 * succeed in waiting for the work to be done.
498 */
499 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
500 queue_work(md_misc_wq, &mddev->del_work);
501 } else
502 kfree(mddev);
503 }
504 spin_unlock(&all_mddevs_lock);
505 if (bs)
506 bioset_free(bs);
507 }
508
509 void mddev_init(struct mddev *mddev)
510 {
511 mutex_init(&mddev->open_mutex);
512 mutex_init(&mddev->reconfig_mutex);
513 mutex_init(&mddev->bitmap_info.mutex);
514 INIT_LIST_HEAD(&mddev->disks);
515 INIT_LIST_HEAD(&mddev->all_mddevs);
516 init_timer(&mddev->safemode_timer);
517 atomic_set(&mddev->active, 1);
518 atomic_set(&mddev->openers, 0);
519 atomic_set(&mddev->active_io, 0);
520 spin_lock_init(&mddev->write_lock);
521 atomic_set(&mddev->flush_pending, 0);
522 init_waitqueue_head(&mddev->sb_wait);
523 init_waitqueue_head(&mddev->recovery_wait);
524 mddev->reshape_position = MaxSector;
525 mddev->reshape_backwards = 0;
526 mddev->resync_min = 0;
527 mddev->resync_max = MaxSector;
528 mddev->level = LEVEL_NONE;
529 }
530 EXPORT_SYMBOL_GPL(mddev_init);
531
532 static struct mddev * mddev_find(dev_t unit)
533 {
534 struct mddev *mddev, *new = NULL;
535
536 if (unit && MAJOR(unit) != MD_MAJOR)
537 unit &= ~((1<<MdpMinorShift)-1);
538
539 retry:
540 spin_lock(&all_mddevs_lock);
541
542 if (unit) {
543 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
544 if (mddev->unit == unit) {
545 mddev_get(mddev);
546 spin_unlock(&all_mddevs_lock);
547 kfree(new);
548 return mddev;
549 }
550
551 if (new) {
552 list_add(&new->all_mddevs, &all_mddevs);
553 spin_unlock(&all_mddevs_lock);
554 new->hold_active = UNTIL_IOCTL;
555 return new;
556 }
557 } else if (new) {
558 /* find an unused unit number */
559 static int next_minor = 512;
560 int start = next_minor;
561 int is_free = 0;
562 int dev = 0;
563 while (!is_free) {
564 dev = MKDEV(MD_MAJOR, next_minor);
565 next_minor++;
566 if (next_minor > MINORMASK)
567 next_minor = 0;
568 if (next_minor == start) {
569 /* Oh dear, all in use. */
570 spin_unlock(&all_mddevs_lock);
571 kfree(new);
572 return NULL;
573 }
574
575 is_free = 1;
576 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
577 if (mddev->unit == dev) {
578 is_free = 0;
579 break;
580 }
581 }
582 new->unit = dev;
583 new->md_minor = MINOR(dev);
584 new->hold_active = UNTIL_STOP;
585 list_add(&new->all_mddevs, &all_mddevs);
586 spin_unlock(&all_mddevs_lock);
587 return new;
588 }
589 spin_unlock(&all_mddevs_lock);
590
591 new = kzalloc(sizeof(*new), GFP_KERNEL);
592 if (!new)
593 return NULL;
594
595 new->unit = unit;
596 if (MAJOR(unit) == MD_MAJOR)
597 new->md_minor = MINOR(unit);
598 else
599 new->md_minor = MINOR(unit) >> MdpMinorShift;
600
601 mddev_init(new);
602
603 goto retry;
604 }
605
606 static inline int mddev_lock(struct mddev * mddev)
607 {
608 return mutex_lock_interruptible(&mddev->reconfig_mutex);
609 }
610
611 static inline int mddev_is_locked(struct mddev *mddev)
612 {
613 return mutex_is_locked(&mddev->reconfig_mutex);
614 }
615
616 static inline int mddev_trylock(struct mddev * mddev)
617 {
618 return mutex_trylock(&mddev->reconfig_mutex);
619 }
620
621 static struct attribute_group md_redundancy_group;
622
623 static void mddev_unlock(struct mddev * mddev)
624 {
625 if (mddev->to_remove) {
626 /* These cannot be removed under reconfig_mutex as
627 * an access to the files will try to take reconfig_mutex
628 * while holding the file unremovable, which leads to
629 * a deadlock.
630 * So hold set sysfs_active while the remove in happeing,
631 * and anything else which might set ->to_remove or my
632 * otherwise change the sysfs namespace will fail with
633 * -EBUSY if sysfs_active is still set.
634 * We set sysfs_active under reconfig_mutex and elsewhere
635 * test it under the same mutex to ensure its correct value
636 * is seen.
637 */
638 struct attribute_group *to_remove = mddev->to_remove;
639 mddev->to_remove = NULL;
640 mddev->sysfs_active = 1;
641 mutex_unlock(&mddev->reconfig_mutex);
642
643 if (mddev->kobj.sd) {
644 if (to_remove != &md_redundancy_group)
645 sysfs_remove_group(&mddev->kobj, to_remove);
646 if (mddev->pers == NULL ||
647 mddev->pers->sync_request == NULL) {
648 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
649 if (mddev->sysfs_action)
650 sysfs_put(mddev->sysfs_action);
651 mddev->sysfs_action = NULL;
652 }
653 }
654 mddev->sysfs_active = 0;
655 } else
656 mutex_unlock(&mddev->reconfig_mutex);
657
658 /* As we've dropped the mutex we need a spinlock to
659 * make sure the thread doesn't disappear
660 */
661 spin_lock(&pers_lock);
662 md_wakeup_thread(mddev->thread);
663 spin_unlock(&pers_lock);
664 }
665
666 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
667 {
668 struct md_rdev *rdev;
669
670 rdev_for_each(rdev, mddev)
671 if (rdev->desc_nr == nr)
672 return rdev;
673
674 return NULL;
675 }
676
677 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
678 {
679 struct md_rdev *rdev;
680
681 rdev_for_each_rcu(rdev, mddev)
682 if (rdev->desc_nr == nr)
683 return rdev;
684
685 return NULL;
686 }
687
688 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
689 {
690 struct md_rdev *rdev;
691
692 rdev_for_each(rdev, mddev)
693 if (rdev->bdev->bd_dev == dev)
694 return rdev;
695
696 return NULL;
697 }
698
699 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
700 {
701 struct md_rdev *rdev;
702
703 rdev_for_each_rcu(rdev, mddev)
704 if (rdev->bdev->bd_dev == dev)
705 return rdev;
706
707 return NULL;
708 }
709
710 static struct md_personality *find_pers(int level, char *clevel)
711 {
712 struct md_personality *pers;
713 list_for_each_entry(pers, &pers_list, list) {
714 if (level != LEVEL_NONE && pers->level == level)
715 return pers;
716 if (strcmp(pers->name, clevel)==0)
717 return pers;
718 }
719 return NULL;
720 }
721
722 /* return the offset of the super block in 512byte sectors */
723 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
724 {
725 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
726 return MD_NEW_SIZE_SECTORS(num_sectors);
727 }
728
729 static int alloc_disk_sb(struct md_rdev * rdev)
730 {
731 if (rdev->sb_page)
732 MD_BUG();
733
734 rdev->sb_page = alloc_page(GFP_KERNEL);
735 if (!rdev->sb_page) {
736 printk(KERN_ALERT "md: out of memory.\n");
737 return -ENOMEM;
738 }
739
740 return 0;
741 }
742
743 void md_rdev_clear(struct md_rdev *rdev)
744 {
745 if (rdev->sb_page) {
746 put_page(rdev->sb_page);
747 rdev->sb_loaded = 0;
748 rdev->sb_page = NULL;
749 rdev->sb_start = 0;
750 rdev->sectors = 0;
751 }
752 if (rdev->bb_page) {
753 put_page(rdev->bb_page);
754 rdev->bb_page = NULL;
755 }
756 kfree(rdev->badblocks.page);
757 rdev->badblocks.page = NULL;
758 }
759 EXPORT_SYMBOL_GPL(md_rdev_clear);
760
761 static void super_written(struct bio *bio, int error)
762 {
763 struct md_rdev *rdev = bio->bi_private;
764 struct mddev *mddev = rdev->mddev;
765
766 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
767 printk("md: super_written gets error=%d, uptodate=%d\n",
768 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
769 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
770 md_error(mddev, rdev);
771 }
772
773 if (atomic_dec_and_test(&mddev->pending_writes))
774 wake_up(&mddev->sb_wait);
775 bio_put(bio);
776 }
777
778 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
779 sector_t sector, int size, struct page *page)
780 {
781 /* write first size bytes of page to sector of rdev
782 * Increment mddev->pending_writes before returning
783 * and decrement it on completion, waking up sb_wait
784 * if zero is reached.
785 * If an error occurred, call md_error
786 */
787 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
788
789 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
790 bio->bi_sector = sector;
791 bio_add_page(bio, page, size, 0);
792 bio->bi_private = rdev;
793 bio->bi_end_io = super_written;
794
795 atomic_inc(&mddev->pending_writes);
796 submit_bio(WRITE_FLUSH_FUA, bio);
797 }
798
799 void md_super_wait(struct mddev *mddev)
800 {
801 /* wait for all superblock writes that were scheduled to complete */
802 DEFINE_WAIT(wq);
803 for(;;) {
804 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
805 if (atomic_read(&mddev->pending_writes)==0)
806 break;
807 schedule();
808 }
809 finish_wait(&mddev->sb_wait, &wq);
810 }
811
812 static void bi_complete(struct bio *bio, int error)
813 {
814 complete((struct completion*)bio->bi_private);
815 }
816
817 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
818 struct page *page, int rw, bool metadata_op)
819 {
820 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
821 struct completion event;
822 int ret;
823
824 rw |= REQ_SYNC;
825
826 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
827 rdev->meta_bdev : rdev->bdev;
828 if (metadata_op)
829 bio->bi_sector = sector + rdev->sb_start;
830 else if (rdev->mddev->reshape_position != MaxSector &&
831 (rdev->mddev->reshape_backwards ==
832 (sector >= rdev->mddev->reshape_position)))
833 bio->bi_sector = sector + rdev->new_data_offset;
834 else
835 bio->bi_sector = sector + rdev->data_offset;
836 bio_add_page(bio, page, size, 0);
837 init_completion(&event);
838 bio->bi_private = &event;
839 bio->bi_end_io = bi_complete;
840 submit_bio(rw, bio);
841 wait_for_completion(&event);
842
843 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
844 bio_put(bio);
845 return ret;
846 }
847 EXPORT_SYMBOL_GPL(sync_page_io);
848
849 static int read_disk_sb(struct md_rdev * rdev, int size)
850 {
851 char b[BDEVNAME_SIZE];
852 if (!rdev->sb_page) {
853 MD_BUG();
854 return -EINVAL;
855 }
856 if (rdev->sb_loaded)
857 return 0;
858
859
860 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
861 goto fail;
862 rdev->sb_loaded = 1;
863 return 0;
864
865 fail:
866 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
867 bdevname(rdev->bdev,b));
868 return -EINVAL;
869 }
870
871 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
872 {
873 return sb1->set_uuid0 == sb2->set_uuid0 &&
874 sb1->set_uuid1 == sb2->set_uuid1 &&
875 sb1->set_uuid2 == sb2->set_uuid2 &&
876 sb1->set_uuid3 == sb2->set_uuid3;
877 }
878
879 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
880 {
881 int ret;
882 mdp_super_t *tmp1, *tmp2;
883
884 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
885 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
886
887 if (!tmp1 || !tmp2) {
888 ret = 0;
889 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
890 goto abort;
891 }
892
893 *tmp1 = *sb1;
894 *tmp2 = *sb2;
895
896 /*
897 * nr_disks is not constant
898 */
899 tmp1->nr_disks = 0;
900 tmp2->nr_disks = 0;
901
902 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
903 abort:
904 kfree(tmp1);
905 kfree(tmp2);
906 return ret;
907 }
908
909
910 static u32 md_csum_fold(u32 csum)
911 {
912 csum = (csum & 0xffff) + (csum >> 16);
913 return (csum & 0xffff) + (csum >> 16);
914 }
915
916 static unsigned int calc_sb_csum(mdp_super_t * sb)
917 {
918 u64 newcsum = 0;
919 u32 *sb32 = (u32*)sb;
920 int i;
921 unsigned int disk_csum, csum;
922
923 disk_csum = sb->sb_csum;
924 sb->sb_csum = 0;
925
926 for (i = 0; i < MD_SB_BYTES/4 ; i++)
927 newcsum += sb32[i];
928 csum = (newcsum & 0xffffffff) + (newcsum>>32);
929
930
931 #ifdef CONFIG_ALPHA
932 /* This used to use csum_partial, which was wrong for several
933 * reasons including that different results are returned on
934 * different architectures. It isn't critical that we get exactly
935 * the same return value as before (we always csum_fold before
936 * testing, and that removes any differences). However as we
937 * know that csum_partial always returned a 16bit value on
938 * alphas, do a fold to maximise conformity to previous behaviour.
939 */
940 sb->sb_csum = md_csum_fold(disk_csum);
941 #else
942 sb->sb_csum = disk_csum;
943 #endif
944 return csum;
945 }
946
947
948 /*
949 * Handle superblock details.
950 * We want to be able to handle multiple superblock formats
951 * so we have a common interface to them all, and an array of
952 * different handlers.
953 * We rely on user-space to write the initial superblock, and support
954 * reading and updating of superblocks.
955 * Interface methods are:
956 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
957 * loads and validates a superblock on dev.
958 * if refdev != NULL, compare superblocks on both devices
959 * Return:
960 * 0 - dev has a superblock that is compatible with refdev
961 * 1 - dev has a superblock that is compatible and newer than refdev
962 * so dev should be used as the refdev in future
963 * -EINVAL superblock incompatible or invalid
964 * -othererror e.g. -EIO
965 *
966 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
967 * Verify that dev is acceptable into mddev.
968 * The first time, mddev->raid_disks will be 0, and data from
969 * dev should be merged in. Subsequent calls check that dev
970 * is new enough. Return 0 or -EINVAL
971 *
972 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
973 * Update the superblock for rdev with data in mddev
974 * This does not write to disc.
975 *
976 */
977
978 struct super_type {
979 char *name;
980 struct module *owner;
981 int (*load_super)(struct md_rdev *rdev,
982 struct md_rdev *refdev,
983 int minor_version);
984 int (*validate_super)(struct mddev *mddev,
985 struct md_rdev *rdev);
986 void (*sync_super)(struct mddev *mddev,
987 struct md_rdev *rdev);
988 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
989 sector_t num_sectors);
990 int (*allow_new_offset)(struct md_rdev *rdev,
991 unsigned long long new_offset);
992 };
993
994 /*
995 * Check that the given mddev has no bitmap.
996 *
997 * This function is called from the run method of all personalities that do not
998 * support bitmaps. It prints an error message and returns non-zero if mddev
999 * has a bitmap. Otherwise, it returns 0.
1000 *
1001 */
1002 int md_check_no_bitmap(struct mddev *mddev)
1003 {
1004 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1005 return 0;
1006 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1007 mdname(mddev), mddev->pers->name);
1008 return 1;
1009 }
1010 EXPORT_SYMBOL(md_check_no_bitmap);
1011
1012 /*
1013 * load_super for 0.90.0
1014 */
1015 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1016 {
1017 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1018 mdp_super_t *sb;
1019 int ret;
1020
1021 /*
1022 * Calculate the position of the superblock (512byte sectors),
1023 * it's at the end of the disk.
1024 *
1025 * It also happens to be a multiple of 4Kb.
1026 */
1027 rdev->sb_start = calc_dev_sboffset(rdev);
1028
1029 ret = read_disk_sb(rdev, MD_SB_BYTES);
1030 if (ret) return ret;
1031
1032 ret = -EINVAL;
1033
1034 bdevname(rdev->bdev, b);
1035 sb = page_address(rdev->sb_page);
1036
1037 if (sb->md_magic != MD_SB_MAGIC) {
1038 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1039 b);
1040 goto abort;
1041 }
1042
1043 if (sb->major_version != 0 ||
1044 sb->minor_version < 90 ||
1045 sb->minor_version > 91) {
1046 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1047 sb->major_version, sb->minor_version,
1048 b);
1049 goto abort;
1050 }
1051
1052 if (sb->raid_disks <= 0)
1053 goto abort;
1054
1055 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1056 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1057 b);
1058 goto abort;
1059 }
1060
1061 rdev->preferred_minor = sb->md_minor;
1062 rdev->data_offset = 0;
1063 rdev->new_data_offset = 0;
1064 rdev->sb_size = MD_SB_BYTES;
1065 rdev->badblocks.shift = -1;
1066
1067 if (sb->level == LEVEL_MULTIPATH)
1068 rdev->desc_nr = -1;
1069 else
1070 rdev->desc_nr = sb->this_disk.number;
1071
1072 if (!refdev) {
1073 ret = 1;
1074 } else {
1075 __u64 ev1, ev2;
1076 mdp_super_t *refsb = page_address(refdev->sb_page);
1077 if (!uuid_equal(refsb, sb)) {
1078 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1079 b, bdevname(refdev->bdev,b2));
1080 goto abort;
1081 }
1082 if (!sb_equal(refsb, sb)) {
1083 printk(KERN_WARNING "md: %s has same UUID"
1084 " but different superblock to %s\n",
1085 b, bdevname(refdev->bdev, b2));
1086 goto abort;
1087 }
1088 ev1 = md_event(sb);
1089 ev2 = md_event(refsb);
1090 if (ev1 > ev2)
1091 ret = 1;
1092 else
1093 ret = 0;
1094 }
1095 rdev->sectors = rdev->sb_start;
1096 /* Limit to 4TB as metadata cannot record more than that.
1097 * (not needed for Linear and RAID0 as metadata doesn't
1098 * record this size)
1099 */
1100 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1101 rdev->sectors = (2ULL << 32) - 2;
1102
1103 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1104 /* "this cannot possibly happen" ... */
1105 ret = -EINVAL;
1106
1107 abort:
1108 return ret;
1109 }
1110
1111 /*
1112 * validate_super for 0.90.0
1113 */
1114 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1115 {
1116 mdp_disk_t *desc;
1117 mdp_super_t *sb = page_address(rdev->sb_page);
1118 __u64 ev1 = md_event(sb);
1119
1120 rdev->raid_disk = -1;
1121 clear_bit(Faulty, &rdev->flags);
1122 clear_bit(In_sync, &rdev->flags);
1123 clear_bit(WriteMostly, &rdev->flags);
1124
1125 if (mddev->raid_disks == 0) {
1126 mddev->major_version = 0;
1127 mddev->minor_version = sb->minor_version;
1128 mddev->patch_version = sb->patch_version;
1129 mddev->external = 0;
1130 mddev->chunk_sectors = sb->chunk_size >> 9;
1131 mddev->ctime = sb->ctime;
1132 mddev->utime = sb->utime;
1133 mddev->level = sb->level;
1134 mddev->clevel[0] = 0;
1135 mddev->layout = sb->layout;
1136 mddev->raid_disks = sb->raid_disks;
1137 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1138 mddev->events = ev1;
1139 mddev->bitmap_info.offset = 0;
1140 mddev->bitmap_info.space = 0;
1141 /* bitmap can use 60 K after the 4K superblocks */
1142 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1143 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1144 mddev->reshape_backwards = 0;
1145
1146 if (mddev->minor_version >= 91) {
1147 mddev->reshape_position = sb->reshape_position;
1148 mddev->delta_disks = sb->delta_disks;
1149 mddev->new_level = sb->new_level;
1150 mddev->new_layout = sb->new_layout;
1151 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1152 if (mddev->delta_disks < 0)
1153 mddev->reshape_backwards = 1;
1154 } else {
1155 mddev->reshape_position = MaxSector;
1156 mddev->delta_disks = 0;
1157 mddev->new_level = mddev->level;
1158 mddev->new_layout = mddev->layout;
1159 mddev->new_chunk_sectors = mddev->chunk_sectors;
1160 }
1161
1162 if (sb->state & (1<<MD_SB_CLEAN))
1163 mddev->recovery_cp = MaxSector;
1164 else {
1165 if (sb->events_hi == sb->cp_events_hi &&
1166 sb->events_lo == sb->cp_events_lo) {
1167 mddev->recovery_cp = sb->recovery_cp;
1168 } else
1169 mddev->recovery_cp = 0;
1170 }
1171
1172 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1173 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1174 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1175 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1176
1177 mddev->max_disks = MD_SB_DISKS;
1178
1179 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1180 mddev->bitmap_info.file == NULL) {
1181 mddev->bitmap_info.offset =
1182 mddev->bitmap_info.default_offset;
1183 mddev->bitmap_info.space =
1184 mddev->bitmap_info.space;
1185 }
1186
1187 } else if (mddev->pers == NULL) {
1188 /* Insist on good event counter while assembling, except
1189 * for spares (which don't need an event count) */
1190 ++ev1;
1191 if (sb->disks[rdev->desc_nr].state & (
1192 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1193 if (ev1 < mddev->events)
1194 return -EINVAL;
1195 } else if (mddev->bitmap) {
1196 /* if adding to array with a bitmap, then we can accept an
1197 * older device ... but not too old.
1198 */
1199 if (ev1 < mddev->bitmap->events_cleared)
1200 return 0;
1201 } else {
1202 if (ev1 < mddev->events)
1203 /* just a hot-add of a new device, leave raid_disk at -1 */
1204 return 0;
1205 }
1206
1207 if (mddev->level != LEVEL_MULTIPATH) {
1208 desc = sb->disks + rdev->desc_nr;
1209
1210 if (desc->state & (1<<MD_DISK_FAULTY))
1211 set_bit(Faulty, &rdev->flags);
1212 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1213 desc->raid_disk < mddev->raid_disks */) {
1214 set_bit(In_sync, &rdev->flags);
1215 rdev->raid_disk = desc->raid_disk;
1216 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1217 /* active but not in sync implies recovery up to
1218 * reshape position. We don't know exactly where
1219 * that is, so set to zero for now */
1220 if (mddev->minor_version >= 91) {
1221 rdev->recovery_offset = 0;
1222 rdev->raid_disk = desc->raid_disk;
1223 }
1224 }
1225 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1226 set_bit(WriteMostly, &rdev->flags);
1227 } else /* MULTIPATH are always insync */
1228 set_bit(In_sync, &rdev->flags);
1229 return 0;
1230 }
1231
1232 /*
1233 * sync_super for 0.90.0
1234 */
1235 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1236 {
1237 mdp_super_t *sb;
1238 struct md_rdev *rdev2;
1239 int next_spare = mddev->raid_disks;
1240
1241
1242 /* make rdev->sb match mddev data..
1243 *
1244 * 1/ zero out disks
1245 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1246 * 3/ any empty disks < next_spare become removed
1247 *
1248 * disks[0] gets initialised to REMOVED because
1249 * we cannot be sure from other fields if it has
1250 * been initialised or not.
1251 */
1252 int i;
1253 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1254
1255 rdev->sb_size = MD_SB_BYTES;
1256
1257 sb = page_address(rdev->sb_page);
1258
1259 memset(sb, 0, sizeof(*sb));
1260
1261 sb->md_magic = MD_SB_MAGIC;
1262 sb->major_version = mddev->major_version;
1263 sb->patch_version = mddev->patch_version;
1264 sb->gvalid_words = 0; /* ignored */
1265 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1266 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1267 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1268 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1269
1270 sb->ctime = mddev->ctime;
1271 sb->level = mddev->level;
1272 sb->size = mddev->dev_sectors / 2;
1273 sb->raid_disks = mddev->raid_disks;
1274 sb->md_minor = mddev->md_minor;
1275 sb->not_persistent = 0;
1276 sb->utime = mddev->utime;
1277 sb->state = 0;
1278 sb->events_hi = (mddev->events>>32);
1279 sb->events_lo = (u32)mddev->events;
1280
1281 if (mddev->reshape_position == MaxSector)
1282 sb->minor_version = 90;
1283 else {
1284 sb->minor_version = 91;
1285 sb->reshape_position = mddev->reshape_position;
1286 sb->new_level = mddev->new_level;
1287 sb->delta_disks = mddev->delta_disks;
1288 sb->new_layout = mddev->new_layout;
1289 sb->new_chunk = mddev->new_chunk_sectors << 9;
1290 }
1291 mddev->minor_version = sb->minor_version;
1292 if (mddev->in_sync)
1293 {
1294 sb->recovery_cp = mddev->recovery_cp;
1295 sb->cp_events_hi = (mddev->events>>32);
1296 sb->cp_events_lo = (u32)mddev->events;
1297 if (mddev->recovery_cp == MaxSector)
1298 sb->state = (1<< MD_SB_CLEAN);
1299 } else
1300 sb->recovery_cp = 0;
1301
1302 sb->layout = mddev->layout;
1303 sb->chunk_size = mddev->chunk_sectors << 9;
1304
1305 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1306 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1307
1308 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1309 rdev_for_each(rdev2, mddev) {
1310 mdp_disk_t *d;
1311 int desc_nr;
1312 int is_active = test_bit(In_sync, &rdev2->flags);
1313
1314 if (rdev2->raid_disk >= 0 &&
1315 sb->minor_version >= 91)
1316 /* we have nowhere to store the recovery_offset,
1317 * but if it is not below the reshape_position,
1318 * we can piggy-back on that.
1319 */
1320 is_active = 1;
1321 if (rdev2->raid_disk < 0 ||
1322 test_bit(Faulty, &rdev2->flags))
1323 is_active = 0;
1324 if (is_active)
1325 desc_nr = rdev2->raid_disk;
1326 else
1327 desc_nr = next_spare++;
1328 rdev2->desc_nr = desc_nr;
1329 d = &sb->disks[rdev2->desc_nr];
1330 nr_disks++;
1331 d->number = rdev2->desc_nr;
1332 d->major = MAJOR(rdev2->bdev->bd_dev);
1333 d->minor = MINOR(rdev2->bdev->bd_dev);
1334 if (is_active)
1335 d->raid_disk = rdev2->raid_disk;
1336 else
1337 d->raid_disk = rdev2->desc_nr; /* compatibility */
1338 if (test_bit(Faulty, &rdev2->flags))
1339 d->state = (1<<MD_DISK_FAULTY);
1340 else if (is_active) {
1341 d->state = (1<<MD_DISK_ACTIVE);
1342 if (test_bit(In_sync, &rdev2->flags))
1343 d->state |= (1<<MD_DISK_SYNC);
1344 active++;
1345 working++;
1346 } else {
1347 d->state = 0;
1348 spare++;
1349 working++;
1350 }
1351 if (test_bit(WriteMostly, &rdev2->flags))
1352 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1353 }
1354 /* now set the "removed" and "faulty" bits on any missing devices */
1355 for (i=0 ; i < mddev->raid_disks ; i++) {
1356 mdp_disk_t *d = &sb->disks[i];
1357 if (d->state == 0 && d->number == 0) {
1358 d->number = i;
1359 d->raid_disk = i;
1360 d->state = (1<<MD_DISK_REMOVED);
1361 d->state |= (1<<MD_DISK_FAULTY);
1362 failed++;
1363 }
1364 }
1365 sb->nr_disks = nr_disks;
1366 sb->active_disks = active;
1367 sb->working_disks = working;
1368 sb->failed_disks = failed;
1369 sb->spare_disks = spare;
1370
1371 sb->this_disk = sb->disks[rdev->desc_nr];
1372 sb->sb_csum = calc_sb_csum(sb);
1373 }
1374
1375 /*
1376 * rdev_size_change for 0.90.0
1377 */
1378 static unsigned long long
1379 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1380 {
1381 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1382 return 0; /* component must fit device */
1383 if (rdev->mddev->bitmap_info.offset)
1384 return 0; /* can't move bitmap */
1385 rdev->sb_start = calc_dev_sboffset(rdev);
1386 if (!num_sectors || num_sectors > rdev->sb_start)
1387 num_sectors = rdev->sb_start;
1388 /* Limit to 4TB as metadata cannot record more than that.
1389 * 4TB == 2^32 KB, or 2*2^32 sectors.
1390 */
1391 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1392 num_sectors = (2ULL << 32) - 2;
1393 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1394 rdev->sb_page);
1395 md_super_wait(rdev->mddev);
1396 return num_sectors;
1397 }
1398
1399 static int
1400 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1401 {
1402 /* non-zero offset changes not possible with v0.90 */
1403 return new_offset == 0;
1404 }
1405
1406 /*
1407 * version 1 superblock
1408 */
1409
1410 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1411 {
1412 __le32 disk_csum;
1413 u32 csum;
1414 unsigned long long newcsum;
1415 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1416 __le32 *isuper = (__le32*)sb;
1417 int i;
1418
1419 disk_csum = sb->sb_csum;
1420 sb->sb_csum = 0;
1421 newcsum = 0;
1422 for (i=0; size>=4; size -= 4 )
1423 newcsum += le32_to_cpu(*isuper++);
1424
1425 if (size == 2)
1426 newcsum += le16_to_cpu(*(__le16*) isuper);
1427
1428 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1429 sb->sb_csum = disk_csum;
1430 return cpu_to_le32(csum);
1431 }
1432
1433 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1434 int acknowledged);
1435 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1436 {
1437 struct mdp_superblock_1 *sb;
1438 int ret;
1439 sector_t sb_start;
1440 sector_t sectors;
1441 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1442 int bmask;
1443
1444 /*
1445 * Calculate the position of the superblock in 512byte sectors.
1446 * It is always aligned to a 4K boundary and
1447 * depeding on minor_version, it can be:
1448 * 0: At least 8K, but less than 12K, from end of device
1449 * 1: At start of device
1450 * 2: 4K from start of device.
1451 */
1452 switch(minor_version) {
1453 case 0:
1454 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1455 sb_start -= 8*2;
1456 sb_start &= ~(sector_t)(4*2-1);
1457 break;
1458 case 1:
1459 sb_start = 0;
1460 break;
1461 case 2:
1462 sb_start = 8;
1463 break;
1464 default:
1465 return -EINVAL;
1466 }
1467 rdev->sb_start = sb_start;
1468
1469 /* superblock is rarely larger than 1K, but it can be larger,
1470 * and it is safe to read 4k, so we do that
1471 */
1472 ret = read_disk_sb(rdev, 4096);
1473 if (ret) return ret;
1474
1475
1476 sb = page_address(rdev->sb_page);
1477
1478 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1479 sb->major_version != cpu_to_le32(1) ||
1480 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1481 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1482 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1483 return -EINVAL;
1484
1485 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1486 printk("md: invalid superblock checksum on %s\n",
1487 bdevname(rdev->bdev,b));
1488 return -EINVAL;
1489 }
1490 if (le64_to_cpu(sb->data_size) < 10) {
1491 printk("md: data_size too small on %s\n",
1492 bdevname(rdev->bdev,b));
1493 return -EINVAL;
1494 }
1495 if (sb->pad0 ||
1496 sb->pad3[0] ||
1497 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1498 /* Some padding is non-zero, might be a new feature */
1499 return -EINVAL;
1500
1501 rdev->preferred_minor = 0xffff;
1502 rdev->data_offset = le64_to_cpu(sb->data_offset);
1503 rdev->new_data_offset = rdev->data_offset;
1504 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1505 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1506 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1507 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1508
1509 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1510 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1511 if (rdev->sb_size & bmask)
1512 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1513
1514 if (minor_version
1515 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1516 return -EINVAL;
1517 if (minor_version
1518 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1519 return -EINVAL;
1520
1521 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1522 rdev->desc_nr = -1;
1523 else
1524 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1525
1526 if (!rdev->bb_page) {
1527 rdev->bb_page = alloc_page(GFP_KERNEL);
1528 if (!rdev->bb_page)
1529 return -ENOMEM;
1530 }
1531 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1532 rdev->badblocks.count == 0) {
1533 /* need to load the bad block list.
1534 * Currently we limit it to one page.
1535 */
1536 s32 offset;
1537 sector_t bb_sector;
1538 u64 *bbp;
1539 int i;
1540 int sectors = le16_to_cpu(sb->bblog_size);
1541 if (sectors > (PAGE_SIZE / 512))
1542 return -EINVAL;
1543 offset = le32_to_cpu(sb->bblog_offset);
1544 if (offset == 0)
1545 return -EINVAL;
1546 bb_sector = (long long)offset;
1547 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1548 rdev->bb_page, READ, true))
1549 return -EIO;
1550 bbp = (u64 *)page_address(rdev->bb_page);
1551 rdev->badblocks.shift = sb->bblog_shift;
1552 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1553 u64 bb = le64_to_cpu(*bbp);
1554 int count = bb & (0x3ff);
1555 u64 sector = bb >> 10;
1556 sector <<= sb->bblog_shift;
1557 count <<= sb->bblog_shift;
1558 if (bb + 1 == 0)
1559 break;
1560 if (md_set_badblocks(&rdev->badblocks,
1561 sector, count, 1) == 0)
1562 return -EINVAL;
1563 }
1564 } else if (sb->bblog_offset == 0)
1565 rdev->badblocks.shift = -1;
1566
1567 if (!refdev) {
1568 ret = 1;
1569 } else {
1570 __u64 ev1, ev2;
1571 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1572
1573 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1574 sb->level != refsb->level ||
1575 sb->layout != refsb->layout ||
1576 sb->chunksize != refsb->chunksize) {
1577 printk(KERN_WARNING "md: %s has strangely different"
1578 " superblock to %s\n",
1579 bdevname(rdev->bdev,b),
1580 bdevname(refdev->bdev,b2));
1581 return -EINVAL;
1582 }
1583 ev1 = le64_to_cpu(sb->events);
1584 ev2 = le64_to_cpu(refsb->events);
1585
1586 if (ev1 > ev2)
1587 ret = 1;
1588 else
1589 ret = 0;
1590 }
1591 if (minor_version) {
1592 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1593 sectors -= rdev->data_offset;
1594 } else
1595 sectors = rdev->sb_start;
1596 if (sectors < le64_to_cpu(sb->data_size))
1597 return -EINVAL;
1598 rdev->sectors = le64_to_cpu(sb->data_size);
1599 return ret;
1600 }
1601
1602 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1603 {
1604 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1605 __u64 ev1 = le64_to_cpu(sb->events);
1606
1607 rdev->raid_disk = -1;
1608 clear_bit(Faulty, &rdev->flags);
1609 clear_bit(In_sync, &rdev->flags);
1610 clear_bit(WriteMostly, &rdev->flags);
1611
1612 if (mddev->raid_disks == 0) {
1613 mddev->major_version = 1;
1614 mddev->patch_version = 0;
1615 mddev->external = 0;
1616 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1617 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1618 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1619 mddev->level = le32_to_cpu(sb->level);
1620 mddev->clevel[0] = 0;
1621 mddev->layout = le32_to_cpu(sb->layout);
1622 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1623 mddev->dev_sectors = le64_to_cpu(sb->size);
1624 mddev->events = ev1;
1625 mddev->bitmap_info.offset = 0;
1626 mddev->bitmap_info.space = 0;
1627 /* Default location for bitmap is 1K after superblock
1628 * using 3K - total of 4K
1629 */
1630 mddev->bitmap_info.default_offset = 1024 >> 9;
1631 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1632 mddev->reshape_backwards = 0;
1633
1634 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1635 memcpy(mddev->uuid, sb->set_uuid, 16);
1636
1637 mddev->max_disks = (4096-256)/2;
1638
1639 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1640 mddev->bitmap_info.file == NULL) {
1641 mddev->bitmap_info.offset =
1642 (__s32)le32_to_cpu(sb->bitmap_offset);
1643 /* Metadata doesn't record how much space is available.
1644 * For 1.0, we assume we can use up to the superblock
1645 * if before, else to 4K beyond superblock.
1646 * For others, assume no change is possible.
1647 */
1648 if (mddev->minor_version > 0)
1649 mddev->bitmap_info.space = 0;
1650 else if (mddev->bitmap_info.offset > 0)
1651 mddev->bitmap_info.space =
1652 8 - mddev->bitmap_info.offset;
1653 else
1654 mddev->bitmap_info.space =
1655 -mddev->bitmap_info.offset;
1656 }
1657
1658 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1659 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1660 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1661 mddev->new_level = le32_to_cpu(sb->new_level);
1662 mddev->new_layout = le32_to_cpu(sb->new_layout);
1663 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1664 if (mddev->delta_disks < 0 ||
1665 (mddev->delta_disks == 0 &&
1666 (le32_to_cpu(sb->feature_map)
1667 & MD_FEATURE_RESHAPE_BACKWARDS)))
1668 mddev->reshape_backwards = 1;
1669 } else {
1670 mddev->reshape_position = MaxSector;
1671 mddev->delta_disks = 0;
1672 mddev->new_level = mddev->level;
1673 mddev->new_layout = mddev->layout;
1674 mddev->new_chunk_sectors = mddev->chunk_sectors;
1675 }
1676
1677 } else if (mddev->pers == NULL) {
1678 /* Insist of good event counter while assembling, except for
1679 * spares (which don't need an event count) */
1680 ++ev1;
1681 if (rdev->desc_nr >= 0 &&
1682 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1683 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1684 if (ev1 < mddev->events)
1685 return -EINVAL;
1686 } else if (mddev->bitmap) {
1687 /* If adding to array with a bitmap, then we can accept an
1688 * older device, but not too old.
1689 */
1690 if (ev1 < mddev->bitmap->events_cleared)
1691 return 0;
1692 } else {
1693 if (ev1 < mddev->events)
1694 /* just a hot-add of a new device, leave raid_disk at -1 */
1695 return 0;
1696 }
1697 if (mddev->level != LEVEL_MULTIPATH) {
1698 int role;
1699 if (rdev->desc_nr < 0 ||
1700 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1701 role = 0xffff;
1702 rdev->desc_nr = -1;
1703 } else
1704 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1705 switch(role) {
1706 case 0xffff: /* spare */
1707 break;
1708 case 0xfffe: /* faulty */
1709 set_bit(Faulty, &rdev->flags);
1710 break;
1711 default:
1712 if ((le32_to_cpu(sb->feature_map) &
1713 MD_FEATURE_RECOVERY_OFFSET))
1714 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1715 else
1716 set_bit(In_sync, &rdev->flags);
1717 rdev->raid_disk = role;
1718 break;
1719 }
1720 if (sb->devflags & WriteMostly1)
1721 set_bit(WriteMostly, &rdev->flags);
1722 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1723 set_bit(Replacement, &rdev->flags);
1724 } else /* MULTIPATH are always insync */
1725 set_bit(In_sync, &rdev->flags);
1726
1727 return 0;
1728 }
1729
1730 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1731 {
1732 struct mdp_superblock_1 *sb;
1733 struct md_rdev *rdev2;
1734 int max_dev, i;
1735 /* make rdev->sb match mddev and rdev data. */
1736
1737 sb = page_address(rdev->sb_page);
1738
1739 sb->feature_map = 0;
1740 sb->pad0 = 0;
1741 sb->recovery_offset = cpu_to_le64(0);
1742 memset(sb->pad3, 0, sizeof(sb->pad3));
1743
1744 sb->utime = cpu_to_le64((__u64)mddev->utime);
1745 sb->events = cpu_to_le64(mddev->events);
1746 if (mddev->in_sync)
1747 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1748 else
1749 sb->resync_offset = cpu_to_le64(0);
1750
1751 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1752
1753 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1754 sb->size = cpu_to_le64(mddev->dev_sectors);
1755 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1756 sb->level = cpu_to_le32(mddev->level);
1757 sb->layout = cpu_to_le32(mddev->layout);
1758
1759 if (test_bit(WriteMostly, &rdev->flags))
1760 sb->devflags |= WriteMostly1;
1761 else
1762 sb->devflags &= ~WriteMostly1;
1763 sb->data_offset = cpu_to_le64(rdev->data_offset);
1764 sb->data_size = cpu_to_le64(rdev->sectors);
1765
1766 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1767 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1768 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1769 }
1770
1771 if (rdev->raid_disk >= 0 &&
1772 !test_bit(In_sync, &rdev->flags)) {
1773 sb->feature_map |=
1774 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1775 sb->recovery_offset =
1776 cpu_to_le64(rdev->recovery_offset);
1777 }
1778 if (test_bit(Replacement, &rdev->flags))
1779 sb->feature_map |=
1780 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1781
1782 if (mddev->reshape_position != MaxSector) {
1783 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1784 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1785 sb->new_layout = cpu_to_le32(mddev->new_layout);
1786 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1787 sb->new_level = cpu_to_le32(mddev->new_level);
1788 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1789 if (mddev->delta_disks == 0 &&
1790 mddev->reshape_backwards)
1791 sb->feature_map
1792 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1793 if (rdev->new_data_offset != rdev->data_offset) {
1794 sb->feature_map
1795 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1796 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1797 - rdev->data_offset));
1798 }
1799 }
1800
1801 if (rdev->badblocks.count == 0)
1802 /* Nothing to do for bad blocks*/ ;
1803 else if (sb->bblog_offset == 0)
1804 /* Cannot record bad blocks on this device */
1805 md_error(mddev, rdev);
1806 else {
1807 struct badblocks *bb = &rdev->badblocks;
1808 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1809 u64 *p = bb->page;
1810 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1811 if (bb->changed) {
1812 unsigned seq;
1813
1814 retry:
1815 seq = read_seqbegin(&bb->lock);
1816
1817 memset(bbp, 0xff, PAGE_SIZE);
1818
1819 for (i = 0 ; i < bb->count ; i++) {
1820 u64 internal_bb = p[i];
1821 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1822 | BB_LEN(internal_bb));
1823 bbp[i] = cpu_to_le64(store_bb);
1824 }
1825 bb->changed = 0;
1826 if (read_seqretry(&bb->lock, seq))
1827 goto retry;
1828
1829 bb->sector = (rdev->sb_start +
1830 (int)le32_to_cpu(sb->bblog_offset));
1831 bb->size = le16_to_cpu(sb->bblog_size);
1832 }
1833 }
1834
1835 max_dev = 0;
1836 rdev_for_each(rdev2, mddev)
1837 if (rdev2->desc_nr+1 > max_dev)
1838 max_dev = rdev2->desc_nr+1;
1839
1840 if (max_dev > le32_to_cpu(sb->max_dev)) {
1841 int bmask;
1842 sb->max_dev = cpu_to_le32(max_dev);
1843 rdev->sb_size = max_dev * 2 + 256;
1844 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1845 if (rdev->sb_size & bmask)
1846 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1847 } else
1848 max_dev = le32_to_cpu(sb->max_dev);
1849
1850 for (i=0; i<max_dev;i++)
1851 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1852
1853 rdev_for_each(rdev2, mddev) {
1854 i = rdev2->desc_nr;
1855 if (test_bit(Faulty, &rdev2->flags))
1856 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1857 else if (test_bit(In_sync, &rdev2->flags))
1858 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1859 else if (rdev2->raid_disk >= 0)
1860 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1861 else
1862 sb->dev_roles[i] = cpu_to_le16(0xffff);
1863 }
1864
1865 sb->sb_csum = calc_sb_1_csum(sb);
1866 }
1867
1868 static unsigned long long
1869 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1870 {
1871 struct mdp_superblock_1 *sb;
1872 sector_t max_sectors;
1873 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1874 return 0; /* component must fit device */
1875 if (rdev->data_offset != rdev->new_data_offset)
1876 return 0; /* too confusing */
1877 if (rdev->sb_start < rdev->data_offset) {
1878 /* minor versions 1 and 2; superblock before data */
1879 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1880 max_sectors -= rdev->data_offset;
1881 if (!num_sectors || num_sectors > max_sectors)
1882 num_sectors = max_sectors;
1883 } else if (rdev->mddev->bitmap_info.offset) {
1884 /* minor version 0 with bitmap we can't move */
1885 return 0;
1886 } else {
1887 /* minor version 0; superblock after data */
1888 sector_t sb_start;
1889 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1890 sb_start &= ~(sector_t)(4*2 - 1);
1891 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1892 if (!num_sectors || num_sectors > max_sectors)
1893 num_sectors = max_sectors;
1894 rdev->sb_start = sb_start;
1895 }
1896 sb = page_address(rdev->sb_page);
1897 sb->data_size = cpu_to_le64(num_sectors);
1898 sb->super_offset = rdev->sb_start;
1899 sb->sb_csum = calc_sb_1_csum(sb);
1900 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1901 rdev->sb_page);
1902 md_super_wait(rdev->mddev);
1903 return num_sectors;
1904
1905 }
1906
1907 static int
1908 super_1_allow_new_offset(struct md_rdev *rdev,
1909 unsigned long long new_offset)
1910 {
1911 /* All necessary checks on new >= old have been done */
1912 struct bitmap *bitmap;
1913 if (new_offset >= rdev->data_offset)
1914 return 1;
1915
1916 /* with 1.0 metadata, there is no metadata to tread on
1917 * so we can always move back */
1918 if (rdev->mddev->minor_version == 0)
1919 return 1;
1920
1921 /* otherwise we must be sure not to step on
1922 * any metadata, so stay:
1923 * 36K beyond start of superblock
1924 * beyond end of badblocks
1925 * beyond write-intent bitmap
1926 */
1927 if (rdev->sb_start + (32+4)*2 > new_offset)
1928 return 0;
1929 bitmap = rdev->mddev->bitmap;
1930 if (bitmap && !rdev->mddev->bitmap_info.file &&
1931 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1932 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1933 return 0;
1934 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1935 return 0;
1936
1937 return 1;
1938 }
1939
1940 static struct super_type super_types[] = {
1941 [0] = {
1942 .name = "0.90.0",
1943 .owner = THIS_MODULE,
1944 .load_super = super_90_load,
1945 .validate_super = super_90_validate,
1946 .sync_super = super_90_sync,
1947 .rdev_size_change = super_90_rdev_size_change,
1948 .allow_new_offset = super_90_allow_new_offset,
1949 },
1950 [1] = {
1951 .name = "md-1",
1952 .owner = THIS_MODULE,
1953 .load_super = super_1_load,
1954 .validate_super = super_1_validate,
1955 .sync_super = super_1_sync,
1956 .rdev_size_change = super_1_rdev_size_change,
1957 .allow_new_offset = super_1_allow_new_offset,
1958 },
1959 };
1960
1961 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1962 {
1963 if (mddev->sync_super) {
1964 mddev->sync_super(mddev, rdev);
1965 return;
1966 }
1967
1968 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1969
1970 super_types[mddev->major_version].sync_super(mddev, rdev);
1971 }
1972
1973 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1974 {
1975 struct md_rdev *rdev, *rdev2;
1976
1977 rcu_read_lock();
1978 rdev_for_each_rcu(rdev, mddev1)
1979 rdev_for_each_rcu(rdev2, mddev2)
1980 if (rdev->bdev->bd_contains ==
1981 rdev2->bdev->bd_contains) {
1982 rcu_read_unlock();
1983 return 1;
1984 }
1985 rcu_read_unlock();
1986 return 0;
1987 }
1988
1989 static LIST_HEAD(pending_raid_disks);
1990
1991 /*
1992 * Try to register data integrity profile for an mddev
1993 *
1994 * This is called when an array is started and after a disk has been kicked
1995 * from the array. It only succeeds if all working and active component devices
1996 * are integrity capable with matching profiles.
1997 */
1998 int md_integrity_register(struct mddev *mddev)
1999 {
2000 struct md_rdev *rdev, *reference = NULL;
2001
2002 if (list_empty(&mddev->disks))
2003 return 0; /* nothing to do */
2004 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2005 return 0; /* shouldn't register, or already is */
2006 rdev_for_each(rdev, mddev) {
2007 /* skip spares and non-functional disks */
2008 if (test_bit(Faulty, &rdev->flags))
2009 continue;
2010 if (rdev->raid_disk < 0)
2011 continue;
2012 if (!reference) {
2013 /* Use the first rdev as the reference */
2014 reference = rdev;
2015 continue;
2016 }
2017 /* does this rdev's profile match the reference profile? */
2018 if (blk_integrity_compare(reference->bdev->bd_disk,
2019 rdev->bdev->bd_disk) < 0)
2020 return -EINVAL;
2021 }
2022 if (!reference || !bdev_get_integrity(reference->bdev))
2023 return 0;
2024 /*
2025 * All component devices are integrity capable and have matching
2026 * profiles, register the common profile for the md device.
2027 */
2028 if (blk_integrity_register(mddev->gendisk,
2029 bdev_get_integrity(reference->bdev)) != 0) {
2030 printk(KERN_ERR "md: failed to register integrity for %s\n",
2031 mdname(mddev));
2032 return -EINVAL;
2033 }
2034 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2035 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2036 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2037 mdname(mddev));
2038 return -EINVAL;
2039 }
2040 return 0;
2041 }
2042 EXPORT_SYMBOL(md_integrity_register);
2043
2044 /* Disable data integrity if non-capable/non-matching disk is being added */
2045 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2046 {
2047 struct blk_integrity *bi_rdev;
2048 struct blk_integrity *bi_mddev;
2049
2050 if (!mddev->gendisk)
2051 return;
2052
2053 bi_rdev = bdev_get_integrity(rdev->bdev);
2054 bi_mddev = blk_get_integrity(mddev->gendisk);
2055
2056 if (!bi_mddev) /* nothing to do */
2057 return;
2058 if (rdev->raid_disk < 0) /* skip spares */
2059 return;
2060 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2061 rdev->bdev->bd_disk) >= 0)
2062 return;
2063 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2064 blk_integrity_unregister(mddev->gendisk);
2065 }
2066 EXPORT_SYMBOL(md_integrity_add_rdev);
2067
2068 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2069 {
2070 char b[BDEVNAME_SIZE];
2071 struct kobject *ko;
2072 char *s;
2073 int err;
2074
2075 if (rdev->mddev) {
2076 MD_BUG();
2077 return -EINVAL;
2078 }
2079
2080 /* prevent duplicates */
2081 if (find_rdev(mddev, rdev->bdev->bd_dev))
2082 return -EEXIST;
2083
2084 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2085 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2086 rdev->sectors < mddev->dev_sectors)) {
2087 if (mddev->pers) {
2088 /* Cannot change size, so fail
2089 * If mddev->level <= 0, then we don't care
2090 * about aligning sizes (e.g. linear)
2091 */
2092 if (mddev->level > 0)
2093 return -ENOSPC;
2094 } else
2095 mddev->dev_sectors = rdev->sectors;
2096 }
2097
2098 /* Verify rdev->desc_nr is unique.
2099 * If it is -1, assign a free number, else
2100 * check number is not in use
2101 */
2102 if (rdev->desc_nr < 0) {
2103 int choice = 0;
2104 if (mddev->pers) choice = mddev->raid_disks;
2105 while (find_rdev_nr(mddev, choice))
2106 choice++;
2107 rdev->desc_nr = choice;
2108 } else {
2109 if (find_rdev_nr(mddev, rdev->desc_nr))
2110 return -EBUSY;
2111 }
2112 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2113 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2114 mdname(mddev), mddev->max_disks);
2115 return -EBUSY;
2116 }
2117 bdevname(rdev->bdev,b);
2118 while ( (s=strchr(b, '/')) != NULL)
2119 *s = '!';
2120
2121 rdev->mddev = mddev;
2122 printk(KERN_INFO "md: bind<%s>\n", b);
2123
2124 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2125 goto fail;
2126
2127 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2128 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2129 /* failure here is OK */;
2130 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2131
2132 list_add_rcu(&rdev->same_set, &mddev->disks);
2133 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2134
2135 /* May as well allow recovery to be retried once */
2136 mddev->recovery_disabled++;
2137
2138 return 0;
2139
2140 fail:
2141 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2142 b, mdname(mddev));
2143 return err;
2144 }
2145
2146 static void md_delayed_delete(struct work_struct *ws)
2147 {
2148 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2149 kobject_del(&rdev->kobj);
2150 kobject_put(&rdev->kobj);
2151 }
2152
2153 static void unbind_rdev_from_array(struct md_rdev * rdev)
2154 {
2155 char b[BDEVNAME_SIZE];
2156 if (!rdev->mddev) {
2157 MD_BUG();
2158 return;
2159 }
2160 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2161 list_del_rcu(&rdev->same_set);
2162 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2163 rdev->mddev = NULL;
2164 sysfs_remove_link(&rdev->kobj, "block");
2165 sysfs_put(rdev->sysfs_state);
2166 rdev->sysfs_state = NULL;
2167 rdev->badblocks.count = 0;
2168 /* We need to delay this, otherwise we can deadlock when
2169 * writing to 'remove' to "dev/state". We also need
2170 * to delay it due to rcu usage.
2171 */
2172 synchronize_rcu();
2173 INIT_WORK(&rdev->del_work, md_delayed_delete);
2174 kobject_get(&rdev->kobj);
2175 queue_work(md_misc_wq, &rdev->del_work);
2176 }
2177
2178 /*
2179 * prevent the device from being mounted, repartitioned or
2180 * otherwise reused by a RAID array (or any other kernel
2181 * subsystem), by bd_claiming the device.
2182 */
2183 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2184 {
2185 int err = 0;
2186 struct block_device *bdev;
2187 char b[BDEVNAME_SIZE];
2188
2189 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2190 shared ? (struct md_rdev *)lock_rdev : rdev);
2191 if (IS_ERR(bdev)) {
2192 printk(KERN_ERR "md: could not open %s.\n",
2193 __bdevname(dev, b));
2194 return PTR_ERR(bdev);
2195 }
2196 rdev->bdev = bdev;
2197 return err;
2198 }
2199
2200 static void unlock_rdev(struct md_rdev *rdev)
2201 {
2202 struct block_device *bdev = rdev->bdev;
2203 rdev->bdev = NULL;
2204 if (!bdev)
2205 MD_BUG();
2206 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2207 }
2208
2209 void md_autodetect_dev(dev_t dev);
2210
2211 static void export_rdev(struct md_rdev * rdev)
2212 {
2213 char b[BDEVNAME_SIZE];
2214 printk(KERN_INFO "md: export_rdev(%s)\n",
2215 bdevname(rdev->bdev,b));
2216 if (rdev->mddev)
2217 MD_BUG();
2218 md_rdev_clear(rdev);
2219 #ifndef MODULE
2220 if (test_bit(AutoDetected, &rdev->flags))
2221 md_autodetect_dev(rdev->bdev->bd_dev);
2222 #endif
2223 unlock_rdev(rdev);
2224 kobject_put(&rdev->kobj);
2225 }
2226
2227 static void kick_rdev_from_array(struct md_rdev * rdev)
2228 {
2229 unbind_rdev_from_array(rdev);
2230 export_rdev(rdev);
2231 }
2232
2233 static void export_array(struct mddev *mddev)
2234 {
2235 struct md_rdev *rdev, *tmp;
2236
2237 rdev_for_each_safe(rdev, tmp, mddev) {
2238 if (!rdev->mddev) {
2239 MD_BUG();
2240 continue;
2241 }
2242 kick_rdev_from_array(rdev);
2243 }
2244 if (!list_empty(&mddev->disks))
2245 MD_BUG();
2246 mddev->raid_disks = 0;
2247 mddev->major_version = 0;
2248 }
2249
2250 static void print_desc(mdp_disk_t *desc)
2251 {
2252 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2253 desc->major,desc->minor,desc->raid_disk,desc->state);
2254 }
2255
2256 static void print_sb_90(mdp_super_t *sb)
2257 {
2258 int i;
2259
2260 printk(KERN_INFO
2261 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2262 sb->major_version, sb->minor_version, sb->patch_version,
2263 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2264 sb->ctime);
2265 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2266 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2267 sb->md_minor, sb->layout, sb->chunk_size);
2268 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2269 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2270 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2271 sb->failed_disks, sb->spare_disks,
2272 sb->sb_csum, (unsigned long)sb->events_lo);
2273
2274 printk(KERN_INFO);
2275 for (i = 0; i < MD_SB_DISKS; i++) {
2276 mdp_disk_t *desc;
2277
2278 desc = sb->disks + i;
2279 if (desc->number || desc->major || desc->minor ||
2280 desc->raid_disk || (desc->state && (desc->state != 4))) {
2281 printk(" D %2d: ", i);
2282 print_desc(desc);
2283 }
2284 }
2285 printk(KERN_INFO "md: THIS: ");
2286 print_desc(&sb->this_disk);
2287 }
2288
2289 static void print_sb_1(struct mdp_superblock_1 *sb)
2290 {
2291 __u8 *uuid;
2292
2293 uuid = sb->set_uuid;
2294 printk(KERN_INFO
2295 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2296 "md: Name: \"%s\" CT:%llu\n",
2297 le32_to_cpu(sb->major_version),
2298 le32_to_cpu(sb->feature_map),
2299 uuid,
2300 sb->set_name,
2301 (unsigned long long)le64_to_cpu(sb->ctime)
2302 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2303
2304 uuid = sb->device_uuid;
2305 printk(KERN_INFO
2306 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2307 " RO:%llu\n"
2308 "md: Dev:%08x UUID: %pU\n"
2309 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2310 "md: (MaxDev:%u) \n",
2311 le32_to_cpu(sb->level),
2312 (unsigned long long)le64_to_cpu(sb->size),
2313 le32_to_cpu(sb->raid_disks),
2314 le32_to_cpu(sb->layout),
2315 le32_to_cpu(sb->chunksize),
2316 (unsigned long long)le64_to_cpu(sb->data_offset),
2317 (unsigned long long)le64_to_cpu(sb->data_size),
2318 (unsigned long long)le64_to_cpu(sb->super_offset),
2319 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2320 le32_to_cpu(sb->dev_number),
2321 uuid,
2322 sb->devflags,
2323 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2324 (unsigned long long)le64_to_cpu(sb->events),
2325 (unsigned long long)le64_to_cpu(sb->resync_offset),
2326 le32_to_cpu(sb->sb_csum),
2327 le32_to_cpu(sb->max_dev)
2328 );
2329 }
2330
2331 static void print_rdev(struct md_rdev *rdev, int major_version)
2332 {
2333 char b[BDEVNAME_SIZE];
2334 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2335 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2336 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2337 rdev->desc_nr);
2338 if (rdev->sb_loaded) {
2339 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2340 switch (major_version) {
2341 case 0:
2342 print_sb_90(page_address(rdev->sb_page));
2343 break;
2344 case 1:
2345 print_sb_1(page_address(rdev->sb_page));
2346 break;
2347 }
2348 } else
2349 printk(KERN_INFO "md: no rdev superblock!\n");
2350 }
2351
2352 static void md_print_devices(void)
2353 {
2354 struct list_head *tmp;
2355 struct md_rdev *rdev;
2356 struct mddev *mddev;
2357 char b[BDEVNAME_SIZE];
2358
2359 printk("\n");
2360 printk("md: **********************************\n");
2361 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2362 printk("md: **********************************\n");
2363 for_each_mddev(mddev, tmp) {
2364
2365 if (mddev->bitmap)
2366 bitmap_print_sb(mddev->bitmap);
2367 else
2368 printk("%s: ", mdname(mddev));
2369 rdev_for_each(rdev, mddev)
2370 printk("<%s>", bdevname(rdev->bdev,b));
2371 printk("\n");
2372
2373 rdev_for_each(rdev, mddev)
2374 print_rdev(rdev, mddev->major_version);
2375 }
2376 printk("md: **********************************\n");
2377 printk("\n");
2378 }
2379
2380
2381 static void sync_sbs(struct mddev * mddev, int nospares)
2382 {
2383 /* Update each superblock (in-memory image), but
2384 * if we are allowed to, skip spares which already
2385 * have the right event counter, or have one earlier
2386 * (which would mean they aren't being marked as dirty
2387 * with the rest of the array)
2388 */
2389 struct md_rdev *rdev;
2390 rdev_for_each(rdev, mddev) {
2391 if (rdev->sb_events == mddev->events ||
2392 (nospares &&
2393 rdev->raid_disk < 0 &&
2394 rdev->sb_events+1 == mddev->events)) {
2395 /* Don't update this superblock */
2396 rdev->sb_loaded = 2;
2397 } else {
2398 sync_super(mddev, rdev);
2399 rdev->sb_loaded = 1;
2400 }
2401 }
2402 }
2403
2404 static void md_update_sb(struct mddev * mddev, int force_change)
2405 {
2406 struct md_rdev *rdev;
2407 int sync_req;
2408 int nospares = 0;
2409 int any_badblocks_changed = 0;
2410
2411 repeat:
2412 /* First make sure individual recovery_offsets are correct */
2413 rdev_for_each(rdev, mddev) {
2414 if (rdev->raid_disk >= 0 &&
2415 mddev->delta_disks >= 0 &&
2416 !test_bit(In_sync, &rdev->flags) &&
2417 mddev->curr_resync_completed > rdev->recovery_offset)
2418 rdev->recovery_offset = mddev->curr_resync_completed;
2419
2420 }
2421 if (!mddev->persistent) {
2422 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2423 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2424 if (!mddev->external) {
2425 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2426 rdev_for_each(rdev, mddev) {
2427 if (rdev->badblocks.changed) {
2428 rdev->badblocks.changed = 0;
2429 md_ack_all_badblocks(&rdev->badblocks);
2430 md_error(mddev, rdev);
2431 }
2432 clear_bit(Blocked, &rdev->flags);
2433 clear_bit(BlockedBadBlocks, &rdev->flags);
2434 wake_up(&rdev->blocked_wait);
2435 }
2436 }
2437 wake_up(&mddev->sb_wait);
2438 return;
2439 }
2440
2441 spin_lock_irq(&mddev->write_lock);
2442
2443 mddev->utime = get_seconds();
2444
2445 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2446 force_change = 1;
2447 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2448 /* just a clean<-> dirty transition, possibly leave spares alone,
2449 * though if events isn't the right even/odd, we will have to do
2450 * spares after all
2451 */
2452 nospares = 1;
2453 if (force_change)
2454 nospares = 0;
2455 if (mddev->degraded)
2456 /* If the array is degraded, then skipping spares is both
2457 * dangerous and fairly pointless.
2458 * Dangerous because a device that was removed from the array
2459 * might have a event_count that still looks up-to-date,
2460 * so it can be re-added without a resync.
2461 * Pointless because if there are any spares to skip,
2462 * then a recovery will happen and soon that array won't
2463 * be degraded any more and the spare can go back to sleep then.
2464 */
2465 nospares = 0;
2466
2467 sync_req = mddev->in_sync;
2468
2469 /* If this is just a dirty<->clean transition, and the array is clean
2470 * and 'events' is odd, we can roll back to the previous clean state */
2471 if (nospares
2472 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2473 && mddev->can_decrease_events
2474 && mddev->events != 1) {
2475 mddev->events--;
2476 mddev->can_decrease_events = 0;
2477 } else {
2478 /* otherwise we have to go forward and ... */
2479 mddev->events ++;
2480 mddev->can_decrease_events = nospares;
2481 }
2482
2483 if (!mddev->events) {
2484 /*
2485 * oops, this 64-bit counter should never wrap.
2486 * Either we are in around ~1 trillion A.C., assuming
2487 * 1 reboot per second, or we have a bug:
2488 */
2489 MD_BUG();
2490 mddev->events --;
2491 }
2492
2493 rdev_for_each(rdev, mddev) {
2494 if (rdev->badblocks.changed)
2495 any_badblocks_changed++;
2496 if (test_bit(Faulty, &rdev->flags))
2497 set_bit(FaultRecorded, &rdev->flags);
2498 }
2499
2500 sync_sbs(mddev, nospares);
2501 spin_unlock_irq(&mddev->write_lock);
2502
2503 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2504 mdname(mddev), mddev->in_sync);
2505
2506 bitmap_update_sb(mddev->bitmap);
2507 rdev_for_each(rdev, mddev) {
2508 char b[BDEVNAME_SIZE];
2509
2510 if (rdev->sb_loaded != 1)
2511 continue; /* no noise on spare devices */
2512
2513 if (!test_bit(Faulty, &rdev->flags) &&
2514 rdev->saved_raid_disk == -1) {
2515 md_super_write(mddev,rdev,
2516 rdev->sb_start, rdev->sb_size,
2517 rdev->sb_page);
2518 pr_debug("md: (write) %s's sb offset: %llu\n",
2519 bdevname(rdev->bdev, b),
2520 (unsigned long long)rdev->sb_start);
2521 rdev->sb_events = mddev->events;
2522 if (rdev->badblocks.size) {
2523 md_super_write(mddev, rdev,
2524 rdev->badblocks.sector,
2525 rdev->badblocks.size << 9,
2526 rdev->bb_page);
2527 rdev->badblocks.size = 0;
2528 }
2529
2530 } else if (test_bit(Faulty, &rdev->flags))
2531 pr_debug("md: %s (skipping faulty)\n",
2532 bdevname(rdev->bdev, b));
2533 else
2534 pr_debug("(skipping incremental s/r ");
2535
2536 if (mddev->level == LEVEL_MULTIPATH)
2537 /* only need to write one superblock... */
2538 break;
2539 }
2540 md_super_wait(mddev);
2541 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2542
2543 spin_lock_irq(&mddev->write_lock);
2544 if (mddev->in_sync != sync_req ||
2545 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2546 /* have to write it out again */
2547 spin_unlock_irq(&mddev->write_lock);
2548 goto repeat;
2549 }
2550 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2551 spin_unlock_irq(&mddev->write_lock);
2552 wake_up(&mddev->sb_wait);
2553 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2554 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2555
2556 rdev_for_each(rdev, mddev) {
2557 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2558 clear_bit(Blocked, &rdev->flags);
2559
2560 if (any_badblocks_changed)
2561 md_ack_all_badblocks(&rdev->badblocks);
2562 clear_bit(BlockedBadBlocks, &rdev->flags);
2563 wake_up(&rdev->blocked_wait);
2564 }
2565 }
2566
2567 /* words written to sysfs files may, or may not, be \n terminated.
2568 * We want to accept with case. For this we use cmd_match.
2569 */
2570 static int cmd_match(const char *cmd, const char *str)
2571 {
2572 /* See if cmd, written into a sysfs file, matches
2573 * str. They must either be the same, or cmd can
2574 * have a trailing newline
2575 */
2576 while (*cmd && *str && *cmd == *str) {
2577 cmd++;
2578 str++;
2579 }
2580 if (*cmd == '\n')
2581 cmd++;
2582 if (*str || *cmd)
2583 return 0;
2584 return 1;
2585 }
2586
2587 struct rdev_sysfs_entry {
2588 struct attribute attr;
2589 ssize_t (*show)(struct md_rdev *, char *);
2590 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2591 };
2592
2593 static ssize_t
2594 state_show(struct md_rdev *rdev, char *page)
2595 {
2596 char *sep = "";
2597 size_t len = 0;
2598
2599 if (test_bit(Faulty, &rdev->flags) ||
2600 rdev->badblocks.unacked_exist) {
2601 len+= sprintf(page+len, "%sfaulty",sep);
2602 sep = ",";
2603 }
2604 if (test_bit(In_sync, &rdev->flags)) {
2605 len += sprintf(page+len, "%sin_sync",sep);
2606 sep = ",";
2607 }
2608 if (test_bit(WriteMostly, &rdev->flags)) {
2609 len += sprintf(page+len, "%swrite_mostly",sep);
2610 sep = ",";
2611 }
2612 if (test_bit(Blocked, &rdev->flags) ||
2613 (rdev->badblocks.unacked_exist
2614 && !test_bit(Faulty, &rdev->flags))) {
2615 len += sprintf(page+len, "%sblocked", sep);
2616 sep = ",";
2617 }
2618 if (!test_bit(Faulty, &rdev->flags) &&
2619 !test_bit(In_sync, &rdev->flags)) {
2620 len += sprintf(page+len, "%sspare", sep);
2621 sep = ",";
2622 }
2623 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2624 len += sprintf(page+len, "%swrite_error", sep);
2625 sep = ",";
2626 }
2627 if (test_bit(WantReplacement, &rdev->flags)) {
2628 len += sprintf(page+len, "%swant_replacement", sep);
2629 sep = ",";
2630 }
2631 if (test_bit(Replacement, &rdev->flags)) {
2632 len += sprintf(page+len, "%sreplacement", sep);
2633 sep = ",";
2634 }
2635
2636 return len+sprintf(page+len, "\n");
2637 }
2638
2639 static ssize_t
2640 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2641 {
2642 /* can write
2643 * faulty - simulates an error
2644 * remove - disconnects the device
2645 * writemostly - sets write_mostly
2646 * -writemostly - clears write_mostly
2647 * blocked - sets the Blocked flags
2648 * -blocked - clears the Blocked and possibly simulates an error
2649 * insync - sets Insync providing device isn't active
2650 * write_error - sets WriteErrorSeen
2651 * -write_error - clears WriteErrorSeen
2652 */
2653 int err = -EINVAL;
2654 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2655 md_error(rdev->mddev, rdev);
2656 if (test_bit(Faulty, &rdev->flags))
2657 err = 0;
2658 else
2659 err = -EBUSY;
2660 } else if (cmd_match(buf, "remove")) {
2661 if (rdev->raid_disk >= 0)
2662 err = -EBUSY;
2663 else {
2664 struct mddev *mddev = rdev->mddev;
2665 kick_rdev_from_array(rdev);
2666 if (mddev->pers)
2667 md_update_sb(mddev, 1);
2668 md_new_event(mddev);
2669 err = 0;
2670 }
2671 } else if (cmd_match(buf, "writemostly")) {
2672 set_bit(WriteMostly, &rdev->flags);
2673 err = 0;
2674 } else if (cmd_match(buf, "-writemostly")) {
2675 clear_bit(WriteMostly, &rdev->flags);
2676 err = 0;
2677 } else if (cmd_match(buf, "blocked")) {
2678 set_bit(Blocked, &rdev->flags);
2679 err = 0;
2680 } else if (cmd_match(buf, "-blocked")) {
2681 if (!test_bit(Faulty, &rdev->flags) &&
2682 rdev->badblocks.unacked_exist) {
2683 /* metadata handler doesn't understand badblocks,
2684 * so we need to fail the device
2685 */
2686 md_error(rdev->mddev, rdev);
2687 }
2688 clear_bit(Blocked, &rdev->flags);
2689 clear_bit(BlockedBadBlocks, &rdev->flags);
2690 wake_up(&rdev->blocked_wait);
2691 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2692 md_wakeup_thread(rdev->mddev->thread);
2693
2694 err = 0;
2695 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2696 set_bit(In_sync, &rdev->flags);
2697 err = 0;
2698 } else if (cmd_match(buf, "write_error")) {
2699 set_bit(WriteErrorSeen, &rdev->flags);
2700 err = 0;
2701 } else if (cmd_match(buf, "-write_error")) {
2702 clear_bit(WriteErrorSeen, &rdev->flags);
2703 err = 0;
2704 } else if (cmd_match(buf, "want_replacement")) {
2705 /* Any non-spare device that is not a replacement can
2706 * become want_replacement at any time, but we then need to
2707 * check if recovery is needed.
2708 */
2709 if (rdev->raid_disk >= 0 &&
2710 !test_bit(Replacement, &rdev->flags))
2711 set_bit(WantReplacement, &rdev->flags);
2712 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2713 md_wakeup_thread(rdev->mddev->thread);
2714 err = 0;
2715 } else if (cmd_match(buf, "-want_replacement")) {
2716 /* Clearing 'want_replacement' is always allowed.
2717 * Once replacements starts it is too late though.
2718 */
2719 err = 0;
2720 clear_bit(WantReplacement, &rdev->flags);
2721 } else if (cmd_match(buf, "replacement")) {
2722 /* Can only set a device as a replacement when array has not
2723 * yet been started. Once running, replacement is automatic
2724 * from spares, or by assigning 'slot'.
2725 */
2726 if (rdev->mddev->pers)
2727 err = -EBUSY;
2728 else {
2729 set_bit(Replacement, &rdev->flags);
2730 err = 0;
2731 }
2732 } else if (cmd_match(buf, "-replacement")) {
2733 /* Similarly, can only clear Replacement before start */
2734 if (rdev->mddev->pers)
2735 err = -EBUSY;
2736 else {
2737 clear_bit(Replacement, &rdev->flags);
2738 err = 0;
2739 }
2740 }
2741 if (!err)
2742 sysfs_notify_dirent_safe(rdev->sysfs_state);
2743 return err ? err : len;
2744 }
2745 static struct rdev_sysfs_entry rdev_state =
2746 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2747
2748 static ssize_t
2749 errors_show(struct md_rdev *rdev, char *page)
2750 {
2751 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2752 }
2753
2754 static ssize_t
2755 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2756 {
2757 char *e;
2758 unsigned long n = simple_strtoul(buf, &e, 10);
2759 if (*buf && (*e == 0 || *e == '\n')) {
2760 atomic_set(&rdev->corrected_errors, n);
2761 return len;
2762 }
2763 return -EINVAL;
2764 }
2765 static struct rdev_sysfs_entry rdev_errors =
2766 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2767
2768 static ssize_t
2769 slot_show(struct md_rdev *rdev, char *page)
2770 {
2771 if (rdev->raid_disk < 0)
2772 return sprintf(page, "none\n");
2773 else
2774 return sprintf(page, "%d\n", rdev->raid_disk);
2775 }
2776
2777 static ssize_t
2778 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2779 {
2780 char *e;
2781 int err;
2782 int slot = simple_strtoul(buf, &e, 10);
2783 if (strncmp(buf, "none", 4)==0)
2784 slot = -1;
2785 else if (e==buf || (*e && *e!= '\n'))
2786 return -EINVAL;
2787 if (rdev->mddev->pers && slot == -1) {
2788 /* Setting 'slot' on an active array requires also
2789 * updating the 'rd%d' link, and communicating
2790 * with the personality with ->hot_*_disk.
2791 * For now we only support removing
2792 * failed/spare devices. This normally happens automatically,
2793 * but not when the metadata is externally managed.
2794 */
2795 if (rdev->raid_disk == -1)
2796 return -EEXIST;
2797 /* personality does all needed checks */
2798 if (rdev->mddev->pers->hot_remove_disk == NULL)
2799 return -EINVAL;
2800 err = rdev->mddev->pers->
2801 hot_remove_disk(rdev->mddev, rdev);
2802 if (err)
2803 return err;
2804 sysfs_unlink_rdev(rdev->mddev, rdev);
2805 rdev->raid_disk = -1;
2806 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2807 md_wakeup_thread(rdev->mddev->thread);
2808 } else if (rdev->mddev->pers) {
2809 /* Activating a spare .. or possibly reactivating
2810 * if we ever get bitmaps working here.
2811 */
2812
2813 if (rdev->raid_disk != -1)
2814 return -EBUSY;
2815
2816 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2817 return -EBUSY;
2818
2819 if (rdev->mddev->pers->hot_add_disk == NULL)
2820 return -EINVAL;
2821
2822 if (slot >= rdev->mddev->raid_disks &&
2823 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2824 return -ENOSPC;
2825
2826 rdev->raid_disk = slot;
2827 if (test_bit(In_sync, &rdev->flags))
2828 rdev->saved_raid_disk = slot;
2829 else
2830 rdev->saved_raid_disk = -1;
2831 clear_bit(In_sync, &rdev->flags);
2832 err = rdev->mddev->pers->
2833 hot_add_disk(rdev->mddev, rdev);
2834 if (err) {
2835 rdev->raid_disk = -1;
2836 return err;
2837 } else
2838 sysfs_notify_dirent_safe(rdev->sysfs_state);
2839 if (sysfs_link_rdev(rdev->mddev, rdev))
2840 /* failure here is OK */;
2841 /* don't wakeup anyone, leave that to userspace. */
2842 } else {
2843 if (slot >= rdev->mddev->raid_disks &&
2844 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2845 return -ENOSPC;
2846 rdev->raid_disk = slot;
2847 /* assume it is working */
2848 clear_bit(Faulty, &rdev->flags);
2849 clear_bit(WriteMostly, &rdev->flags);
2850 set_bit(In_sync, &rdev->flags);
2851 sysfs_notify_dirent_safe(rdev->sysfs_state);
2852 }
2853 return len;
2854 }
2855
2856
2857 static struct rdev_sysfs_entry rdev_slot =
2858 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2859
2860 static ssize_t
2861 offset_show(struct md_rdev *rdev, char *page)
2862 {
2863 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2864 }
2865
2866 static ssize_t
2867 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2868 {
2869 unsigned long long offset;
2870 if (strict_strtoull(buf, 10, &offset) < 0)
2871 return -EINVAL;
2872 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2873 return -EBUSY;
2874 if (rdev->sectors && rdev->mddev->external)
2875 /* Must set offset before size, so overlap checks
2876 * can be sane */
2877 return -EBUSY;
2878 rdev->data_offset = offset;
2879 rdev->new_data_offset = offset;
2880 return len;
2881 }
2882
2883 static struct rdev_sysfs_entry rdev_offset =
2884 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2885
2886 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2887 {
2888 return sprintf(page, "%llu\n",
2889 (unsigned long long)rdev->new_data_offset);
2890 }
2891
2892 static ssize_t new_offset_store(struct md_rdev *rdev,
2893 const char *buf, size_t len)
2894 {
2895 unsigned long long new_offset;
2896 struct mddev *mddev = rdev->mddev;
2897
2898 if (strict_strtoull(buf, 10, &new_offset) < 0)
2899 return -EINVAL;
2900
2901 if (mddev->sync_thread)
2902 return -EBUSY;
2903 if (new_offset == rdev->data_offset)
2904 /* reset is always permitted */
2905 ;
2906 else if (new_offset > rdev->data_offset) {
2907 /* must not push array size beyond rdev_sectors */
2908 if (new_offset - rdev->data_offset
2909 + mddev->dev_sectors > rdev->sectors)
2910 return -E2BIG;
2911 }
2912 /* Metadata worries about other space details. */
2913
2914 /* decreasing the offset is inconsistent with a backwards
2915 * reshape.
2916 */
2917 if (new_offset < rdev->data_offset &&
2918 mddev->reshape_backwards)
2919 return -EINVAL;
2920 /* Increasing offset is inconsistent with forwards
2921 * reshape. reshape_direction should be set to
2922 * 'backwards' first.
2923 */
2924 if (new_offset > rdev->data_offset &&
2925 !mddev->reshape_backwards)
2926 return -EINVAL;
2927
2928 if (mddev->pers && mddev->persistent &&
2929 !super_types[mddev->major_version]
2930 .allow_new_offset(rdev, new_offset))
2931 return -E2BIG;
2932 rdev->new_data_offset = new_offset;
2933 if (new_offset > rdev->data_offset)
2934 mddev->reshape_backwards = 1;
2935 else if (new_offset < rdev->data_offset)
2936 mddev->reshape_backwards = 0;
2937
2938 return len;
2939 }
2940 static struct rdev_sysfs_entry rdev_new_offset =
2941 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2942
2943 static ssize_t
2944 rdev_size_show(struct md_rdev *rdev, char *page)
2945 {
2946 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2947 }
2948
2949 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2950 {
2951 /* check if two start/length pairs overlap */
2952 if (s1+l1 <= s2)
2953 return 0;
2954 if (s2+l2 <= s1)
2955 return 0;
2956 return 1;
2957 }
2958
2959 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2960 {
2961 unsigned long long blocks;
2962 sector_t new;
2963
2964 if (strict_strtoull(buf, 10, &blocks) < 0)
2965 return -EINVAL;
2966
2967 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2968 return -EINVAL; /* sector conversion overflow */
2969
2970 new = blocks * 2;
2971 if (new != blocks * 2)
2972 return -EINVAL; /* unsigned long long to sector_t overflow */
2973
2974 *sectors = new;
2975 return 0;
2976 }
2977
2978 static ssize_t
2979 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2980 {
2981 struct mddev *my_mddev = rdev->mddev;
2982 sector_t oldsectors = rdev->sectors;
2983 sector_t sectors;
2984
2985 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2986 return -EINVAL;
2987 if (rdev->data_offset != rdev->new_data_offset)
2988 return -EINVAL; /* too confusing */
2989 if (my_mddev->pers && rdev->raid_disk >= 0) {
2990 if (my_mddev->persistent) {
2991 sectors = super_types[my_mddev->major_version].
2992 rdev_size_change(rdev, sectors);
2993 if (!sectors)
2994 return -EBUSY;
2995 } else if (!sectors)
2996 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2997 rdev->data_offset;
2998 }
2999 if (sectors < my_mddev->dev_sectors)
3000 return -EINVAL; /* component must fit device */
3001
3002 rdev->sectors = sectors;
3003 if (sectors > oldsectors && my_mddev->external) {
3004 /* need to check that all other rdevs with the same ->bdev
3005 * do not overlap. We need to unlock the mddev to avoid
3006 * a deadlock. We have already changed rdev->sectors, and if
3007 * we have to change it back, we will have the lock again.
3008 */
3009 struct mddev *mddev;
3010 int overlap = 0;
3011 struct list_head *tmp;
3012
3013 mddev_unlock(my_mddev);
3014 for_each_mddev(mddev, tmp) {
3015 struct md_rdev *rdev2;
3016
3017 mddev_lock(mddev);
3018 rdev_for_each(rdev2, mddev)
3019 if (rdev->bdev == rdev2->bdev &&
3020 rdev != rdev2 &&
3021 overlaps(rdev->data_offset, rdev->sectors,
3022 rdev2->data_offset,
3023 rdev2->sectors)) {
3024 overlap = 1;
3025 break;
3026 }
3027 mddev_unlock(mddev);
3028 if (overlap) {
3029 mddev_put(mddev);
3030 break;
3031 }
3032 }
3033 mddev_lock(my_mddev);
3034 if (overlap) {
3035 /* Someone else could have slipped in a size
3036 * change here, but doing so is just silly.
3037 * We put oldsectors back because we *know* it is
3038 * safe, and trust userspace not to race with
3039 * itself
3040 */
3041 rdev->sectors = oldsectors;
3042 return -EBUSY;
3043 }
3044 }
3045 return len;
3046 }
3047
3048 static struct rdev_sysfs_entry rdev_size =
3049 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3050
3051
3052 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3053 {
3054 unsigned long long recovery_start = rdev->recovery_offset;
3055
3056 if (test_bit(In_sync, &rdev->flags) ||
3057 recovery_start == MaxSector)
3058 return sprintf(page, "none\n");
3059
3060 return sprintf(page, "%llu\n", recovery_start);
3061 }
3062
3063 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3064 {
3065 unsigned long long recovery_start;
3066
3067 if (cmd_match(buf, "none"))
3068 recovery_start = MaxSector;
3069 else if (strict_strtoull(buf, 10, &recovery_start))
3070 return -EINVAL;
3071
3072 if (rdev->mddev->pers &&
3073 rdev->raid_disk >= 0)
3074 return -EBUSY;
3075
3076 rdev->recovery_offset = recovery_start;
3077 if (recovery_start == MaxSector)
3078 set_bit(In_sync, &rdev->flags);
3079 else
3080 clear_bit(In_sync, &rdev->flags);
3081 return len;
3082 }
3083
3084 static struct rdev_sysfs_entry rdev_recovery_start =
3085 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3086
3087
3088 static ssize_t
3089 badblocks_show(struct badblocks *bb, char *page, int unack);
3090 static ssize_t
3091 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3092
3093 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3094 {
3095 return badblocks_show(&rdev->badblocks, page, 0);
3096 }
3097 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3098 {
3099 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3100 /* Maybe that ack was all we needed */
3101 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3102 wake_up(&rdev->blocked_wait);
3103 return rv;
3104 }
3105 static struct rdev_sysfs_entry rdev_bad_blocks =
3106 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3107
3108
3109 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3110 {
3111 return badblocks_show(&rdev->badblocks, page, 1);
3112 }
3113 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3114 {
3115 return badblocks_store(&rdev->badblocks, page, len, 1);
3116 }
3117 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3118 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3119
3120 static struct attribute *rdev_default_attrs[] = {
3121 &rdev_state.attr,
3122 &rdev_errors.attr,
3123 &rdev_slot.attr,
3124 &rdev_offset.attr,
3125 &rdev_new_offset.attr,
3126 &rdev_size.attr,
3127 &rdev_recovery_start.attr,
3128 &rdev_bad_blocks.attr,
3129 &rdev_unack_bad_blocks.attr,
3130 NULL,
3131 };
3132 static ssize_t
3133 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3134 {
3135 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3136 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3137 struct mddev *mddev = rdev->mddev;
3138 ssize_t rv;
3139
3140 if (!entry->show)
3141 return -EIO;
3142
3143 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3144 if (!rv) {
3145 if (rdev->mddev == NULL)
3146 rv = -EBUSY;
3147 else
3148 rv = entry->show(rdev, page);
3149 mddev_unlock(mddev);
3150 }
3151 return rv;
3152 }
3153
3154 static ssize_t
3155 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3156 const char *page, size_t length)
3157 {
3158 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3159 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3160 ssize_t rv;
3161 struct mddev *mddev = rdev->mddev;
3162
3163 if (!entry->store)
3164 return -EIO;
3165 if (!capable(CAP_SYS_ADMIN))
3166 return -EACCES;
3167 rv = mddev ? mddev_lock(mddev): -EBUSY;
3168 if (!rv) {
3169 if (rdev->mddev == NULL)
3170 rv = -EBUSY;
3171 else
3172 rv = entry->store(rdev, page, length);
3173 mddev_unlock(mddev);
3174 }
3175 return rv;
3176 }
3177
3178 static void rdev_free(struct kobject *ko)
3179 {
3180 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3181 kfree(rdev);
3182 }
3183 static const struct sysfs_ops rdev_sysfs_ops = {
3184 .show = rdev_attr_show,
3185 .store = rdev_attr_store,
3186 };
3187 static struct kobj_type rdev_ktype = {
3188 .release = rdev_free,
3189 .sysfs_ops = &rdev_sysfs_ops,
3190 .default_attrs = rdev_default_attrs,
3191 };
3192
3193 int md_rdev_init(struct md_rdev *rdev)
3194 {
3195 rdev->desc_nr = -1;
3196 rdev->saved_raid_disk = -1;
3197 rdev->raid_disk = -1;
3198 rdev->flags = 0;
3199 rdev->data_offset = 0;
3200 rdev->new_data_offset = 0;
3201 rdev->sb_events = 0;
3202 rdev->last_read_error.tv_sec = 0;
3203 rdev->last_read_error.tv_nsec = 0;
3204 rdev->sb_loaded = 0;
3205 rdev->bb_page = NULL;
3206 atomic_set(&rdev->nr_pending, 0);
3207 atomic_set(&rdev->read_errors, 0);
3208 atomic_set(&rdev->corrected_errors, 0);
3209
3210 INIT_LIST_HEAD(&rdev->same_set);
3211 init_waitqueue_head(&rdev->blocked_wait);
3212
3213 /* Add space to store bad block list.
3214 * This reserves the space even on arrays where it cannot
3215 * be used - I wonder if that matters
3216 */
3217 rdev->badblocks.count = 0;
3218 rdev->badblocks.shift = 0;
3219 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3220 seqlock_init(&rdev->badblocks.lock);
3221 if (rdev->badblocks.page == NULL)
3222 return -ENOMEM;
3223
3224 return 0;
3225 }
3226 EXPORT_SYMBOL_GPL(md_rdev_init);
3227 /*
3228 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3229 *
3230 * mark the device faulty if:
3231 *
3232 * - the device is nonexistent (zero size)
3233 * - the device has no valid superblock
3234 *
3235 * a faulty rdev _never_ has rdev->sb set.
3236 */
3237 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3238 {
3239 char b[BDEVNAME_SIZE];
3240 int err;
3241 struct md_rdev *rdev;
3242 sector_t size;
3243
3244 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3245 if (!rdev) {
3246 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3247 return ERR_PTR(-ENOMEM);
3248 }
3249
3250 err = md_rdev_init(rdev);
3251 if (err)
3252 goto abort_free;
3253 err = alloc_disk_sb(rdev);
3254 if (err)
3255 goto abort_free;
3256
3257 err = lock_rdev(rdev, newdev, super_format == -2);
3258 if (err)
3259 goto abort_free;
3260
3261 kobject_init(&rdev->kobj, &rdev_ktype);
3262
3263 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3264 if (!size) {
3265 printk(KERN_WARNING
3266 "md: %s has zero or unknown size, marking faulty!\n",
3267 bdevname(rdev->bdev,b));
3268 err = -EINVAL;
3269 goto abort_free;
3270 }
3271
3272 if (super_format >= 0) {
3273 err = super_types[super_format].
3274 load_super(rdev, NULL, super_minor);
3275 if (err == -EINVAL) {
3276 printk(KERN_WARNING
3277 "md: %s does not have a valid v%d.%d "
3278 "superblock, not importing!\n",
3279 bdevname(rdev->bdev,b),
3280 super_format, super_minor);
3281 goto abort_free;
3282 }
3283 if (err < 0) {
3284 printk(KERN_WARNING
3285 "md: could not read %s's sb, not importing!\n",
3286 bdevname(rdev->bdev,b));
3287 goto abort_free;
3288 }
3289 }
3290 if (super_format == -1)
3291 /* hot-add for 0.90, or non-persistent: so no badblocks */
3292 rdev->badblocks.shift = -1;
3293
3294 return rdev;
3295
3296 abort_free:
3297 if (rdev->bdev)
3298 unlock_rdev(rdev);
3299 md_rdev_clear(rdev);
3300 kfree(rdev);
3301 return ERR_PTR(err);
3302 }
3303
3304 /*
3305 * Check a full RAID array for plausibility
3306 */
3307
3308
3309 static void analyze_sbs(struct mddev * mddev)
3310 {
3311 int i;
3312 struct md_rdev *rdev, *freshest, *tmp;
3313 char b[BDEVNAME_SIZE];
3314
3315 freshest = NULL;
3316 rdev_for_each_safe(rdev, tmp, mddev)
3317 switch (super_types[mddev->major_version].
3318 load_super(rdev, freshest, mddev->minor_version)) {
3319 case 1:
3320 freshest = rdev;
3321 break;
3322 case 0:
3323 break;
3324 default:
3325 printk( KERN_ERR \
3326 "md: fatal superblock inconsistency in %s"
3327 " -- removing from array\n",
3328 bdevname(rdev->bdev,b));
3329 kick_rdev_from_array(rdev);
3330 }
3331
3332
3333 super_types[mddev->major_version].
3334 validate_super(mddev, freshest);
3335
3336 i = 0;
3337 rdev_for_each_safe(rdev, tmp, mddev) {
3338 if (mddev->max_disks &&
3339 (rdev->desc_nr >= mddev->max_disks ||
3340 i > mddev->max_disks)) {
3341 printk(KERN_WARNING
3342 "md: %s: %s: only %d devices permitted\n",
3343 mdname(mddev), bdevname(rdev->bdev, b),
3344 mddev->max_disks);
3345 kick_rdev_from_array(rdev);
3346 continue;
3347 }
3348 if (rdev != freshest)
3349 if (super_types[mddev->major_version].
3350 validate_super(mddev, rdev)) {
3351 printk(KERN_WARNING "md: kicking non-fresh %s"
3352 " from array!\n",
3353 bdevname(rdev->bdev,b));
3354 kick_rdev_from_array(rdev);
3355 continue;
3356 }
3357 if (mddev->level == LEVEL_MULTIPATH) {
3358 rdev->desc_nr = i++;
3359 rdev->raid_disk = rdev->desc_nr;
3360 set_bit(In_sync, &rdev->flags);
3361 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3362 rdev->raid_disk = -1;
3363 clear_bit(In_sync, &rdev->flags);
3364 }
3365 }
3366 }
3367
3368 /* Read a fixed-point number.
3369 * Numbers in sysfs attributes should be in "standard" units where
3370 * possible, so time should be in seconds.
3371 * However we internally use a a much smaller unit such as
3372 * milliseconds or jiffies.
3373 * This function takes a decimal number with a possible fractional
3374 * component, and produces an integer which is the result of
3375 * multiplying that number by 10^'scale'.
3376 * all without any floating-point arithmetic.
3377 */
3378 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3379 {
3380 unsigned long result = 0;
3381 long decimals = -1;
3382 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3383 if (*cp == '.')
3384 decimals = 0;
3385 else if (decimals < scale) {
3386 unsigned int value;
3387 value = *cp - '0';
3388 result = result * 10 + value;
3389 if (decimals >= 0)
3390 decimals++;
3391 }
3392 cp++;
3393 }
3394 if (*cp == '\n')
3395 cp++;
3396 if (*cp)
3397 return -EINVAL;
3398 if (decimals < 0)
3399 decimals = 0;
3400 while (decimals < scale) {
3401 result *= 10;
3402 decimals ++;
3403 }
3404 *res = result;
3405 return 0;
3406 }
3407
3408
3409 static void md_safemode_timeout(unsigned long data);
3410
3411 static ssize_t
3412 safe_delay_show(struct mddev *mddev, char *page)
3413 {
3414 int msec = (mddev->safemode_delay*1000)/HZ;
3415 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3416 }
3417 static ssize_t
3418 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3419 {
3420 unsigned long msec;
3421
3422 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3423 return -EINVAL;
3424 if (msec == 0)
3425 mddev->safemode_delay = 0;
3426 else {
3427 unsigned long old_delay = mddev->safemode_delay;
3428 mddev->safemode_delay = (msec*HZ)/1000;
3429 if (mddev->safemode_delay == 0)
3430 mddev->safemode_delay = 1;
3431 if (mddev->safemode_delay < old_delay)
3432 md_safemode_timeout((unsigned long)mddev);
3433 }
3434 return len;
3435 }
3436 static struct md_sysfs_entry md_safe_delay =
3437 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3438
3439 static ssize_t
3440 level_show(struct mddev *mddev, char *page)
3441 {
3442 struct md_personality *p = mddev->pers;
3443 if (p)
3444 return sprintf(page, "%s\n", p->name);
3445 else if (mddev->clevel[0])
3446 return sprintf(page, "%s\n", mddev->clevel);
3447 else if (mddev->level != LEVEL_NONE)
3448 return sprintf(page, "%d\n", mddev->level);
3449 else
3450 return 0;
3451 }
3452
3453 static ssize_t
3454 level_store(struct mddev *mddev, const char *buf, size_t len)
3455 {
3456 char clevel[16];
3457 ssize_t rv = len;
3458 struct md_personality *pers;
3459 long level;
3460 void *priv;
3461 struct md_rdev *rdev;
3462
3463 if (mddev->pers == NULL) {
3464 if (len == 0)
3465 return 0;
3466 if (len >= sizeof(mddev->clevel))
3467 return -ENOSPC;
3468 strncpy(mddev->clevel, buf, len);
3469 if (mddev->clevel[len-1] == '\n')
3470 len--;
3471 mddev->clevel[len] = 0;
3472 mddev->level = LEVEL_NONE;
3473 return rv;
3474 }
3475
3476 /* request to change the personality. Need to ensure:
3477 * - array is not engaged in resync/recovery/reshape
3478 * - old personality can be suspended
3479 * - new personality will access other array.
3480 */
3481
3482 if (mddev->sync_thread ||
3483 mddev->reshape_position != MaxSector ||
3484 mddev->sysfs_active)
3485 return -EBUSY;
3486
3487 if (!mddev->pers->quiesce) {
3488 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3489 mdname(mddev), mddev->pers->name);
3490 return -EINVAL;
3491 }
3492
3493 /* Now find the new personality */
3494 if (len == 0 || len >= sizeof(clevel))
3495 return -EINVAL;
3496 strncpy(clevel, buf, len);
3497 if (clevel[len-1] == '\n')
3498 len--;
3499 clevel[len] = 0;
3500 if (strict_strtol(clevel, 10, &level))
3501 level = LEVEL_NONE;
3502
3503 if (request_module("md-%s", clevel) != 0)
3504 request_module("md-level-%s", clevel);
3505 spin_lock(&pers_lock);
3506 pers = find_pers(level, clevel);
3507 if (!pers || !try_module_get(pers->owner)) {
3508 spin_unlock(&pers_lock);
3509 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3510 return -EINVAL;
3511 }
3512 spin_unlock(&pers_lock);
3513
3514 if (pers == mddev->pers) {
3515 /* Nothing to do! */
3516 module_put(pers->owner);
3517 return rv;
3518 }
3519 if (!pers->takeover) {
3520 module_put(pers->owner);
3521 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3522 mdname(mddev), clevel);
3523 return -EINVAL;
3524 }
3525
3526 rdev_for_each(rdev, mddev)
3527 rdev->new_raid_disk = rdev->raid_disk;
3528
3529 /* ->takeover must set new_* and/or delta_disks
3530 * if it succeeds, and may set them when it fails.
3531 */
3532 priv = pers->takeover(mddev);
3533 if (IS_ERR(priv)) {
3534 mddev->new_level = mddev->level;
3535 mddev->new_layout = mddev->layout;
3536 mddev->new_chunk_sectors = mddev->chunk_sectors;
3537 mddev->raid_disks -= mddev->delta_disks;
3538 mddev->delta_disks = 0;
3539 mddev->reshape_backwards = 0;
3540 module_put(pers->owner);
3541 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3542 mdname(mddev), clevel);
3543 return PTR_ERR(priv);
3544 }
3545
3546 /* Looks like we have a winner */
3547 mddev_suspend(mddev);
3548 mddev->pers->stop(mddev);
3549
3550 if (mddev->pers->sync_request == NULL &&
3551 pers->sync_request != NULL) {
3552 /* need to add the md_redundancy_group */
3553 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3554 printk(KERN_WARNING
3555 "md: cannot register extra attributes for %s\n",
3556 mdname(mddev));
3557 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3558 }
3559 if (mddev->pers->sync_request != NULL &&
3560 pers->sync_request == NULL) {
3561 /* need to remove the md_redundancy_group */
3562 if (mddev->to_remove == NULL)
3563 mddev->to_remove = &md_redundancy_group;
3564 }
3565
3566 if (mddev->pers->sync_request == NULL &&
3567 mddev->external) {
3568 /* We are converting from a no-redundancy array
3569 * to a redundancy array and metadata is managed
3570 * externally so we need to be sure that writes
3571 * won't block due to a need to transition
3572 * clean->dirty
3573 * until external management is started.
3574 */
3575 mddev->in_sync = 0;
3576 mddev->safemode_delay = 0;
3577 mddev->safemode = 0;
3578 }
3579
3580 rdev_for_each(rdev, mddev) {
3581 if (rdev->raid_disk < 0)
3582 continue;
3583 if (rdev->new_raid_disk >= mddev->raid_disks)
3584 rdev->new_raid_disk = -1;
3585 if (rdev->new_raid_disk == rdev->raid_disk)
3586 continue;
3587 sysfs_unlink_rdev(mddev, rdev);
3588 }
3589 rdev_for_each(rdev, mddev) {
3590 if (rdev->raid_disk < 0)
3591 continue;
3592 if (rdev->new_raid_disk == rdev->raid_disk)
3593 continue;
3594 rdev->raid_disk = rdev->new_raid_disk;
3595 if (rdev->raid_disk < 0)
3596 clear_bit(In_sync, &rdev->flags);
3597 else {
3598 if (sysfs_link_rdev(mddev, rdev))
3599 printk(KERN_WARNING "md: cannot register rd%d"
3600 " for %s after level change\n",
3601 rdev->raid_disk, mdname(mddev));
3602 }
3603 }
3604
3605 module_put(mddev->pers->owner);
3606 mddev->pers = pers;
3607 mddev->private = priv;
3608 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3609 mddev->level = mddev->new_level;
3610 mddev->layout = mddev->new_layout;
3611 mddev->chunk_sectors = mddev->new_chunk_sectors;
3612 mddev->delta_disks = 0;
3613 mddev->reshape_backwards = 0;
3614 mddev->degraded = 0;
3615 if (mddev->pers->sync_request == NULL) {
3616 /* this is now an array without redundancy, so
3617 * it must always be in_sync
3618 */
3619 mddev->in_sync = 1;
3620 del_timer_sync(&mddev->safemode_timer);
3621 }
3622 pers->run(mddev);
3623 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3624 mddev_resume(mddev);
3625 sysfs_notify(&mddev->kobj, NULL, "level");
3626 md_new_event(mddev);
3627 return rv;
3628 }
3629
3630 static struct md_sysfs_entry md_level =
3631 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3632
3633
3634 static ssize_t
3635 layout_show(struct mddev *mddev, char *page)
3636 {
3637 /* just a number, not meaningful for all levels */
3638 if (mddev->reshape_position != MaxSector &&
3639 mddev->layout != mddev->new_layout)
3640 return sprintf(page, "%d (%d)\n",
3641 mddev->new_layout, mddev->layout);
3642 return sprintf(page, "%d\n", mddev->layout);
3643 }
3644
3645 static ssize_t
3646 layout_store(struct mddev *mddev, const char *buf, size_t len)
3647 {
3648 char *e;
3649 unsigned long n = simple_strtoul(buf, &e, 10);
3650
3651 if (!*buf || (*e && *e != '\n'))
3652 return -EINVAL;
3653
3654 if (mddev->pers) {
3655 int err;
3656 if (mddev->pers->check_reshape == NULL)
3657 return -EBUSY;
3658 mddev->new_layout = n;
3659 err = mddev->pers->check_reshape(mddev);
3660 if (err) {
3661 mddev->new_layout = mddev->layout;
3662 return err;
3663 }
3664 } else {
3665 mddev->new_layout = n;
3666 if (mddev->reshape_position == MaxSector)
3667 mddev->layout = n;
3668 }
3669 return len;
3670 }
3671 static struct md_sysfs_entry md_layout =
3672 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3673
3674
3675 static ssize_t
3676 raid_disks_show(struct mddev *mddev, char *page)
3677 {
3678 if (mddev->raid_disks == 0)
3679 return 0;
3680 if (mddev->reshape_position != MaxSector &&
3681 mddev->delta_disks != 0)
3682 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3683 mddev->raid_disks - mddev->delta_disks);
3684 return sprintf(page, "%d\n", mddev->raid_disks);
3685 }
3686
3687 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3688
3689 static ssize_t
3690 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3691 {
3692 char *e;
3693 int rv = 0;
3694 unsigned long n = simple_strtoul(buf, &e, 10);
3695
3696 if (!*buf || (*e && *e != '\n'))
3697 return -EINVAL;
3698
3699 if (mddev->pers)
3700 rv = update_raid_disks(mddev, n);
3701 else if (mddev->reshape_position != MaxSector) {
3702 struct md_rdev *rdev;
3703 int olddisks = mddev->raid_disks - mddev->delta_disks;
3704
3705 rdev_for_each(rdev, mddev) {
3706 if (olddisks < n &&
3707 rdev->data_offset < rdev->new_data_offset)
3708 return -EINVAL;
3709 if (olddisks > n &&
3710 rdev->data_offset > rdev->new_data_offset)
3711 return -EINVAL;
3712 }
3713 mddev->delta_disks = n - olddisks;
3714 mddev->raid_disks = n;
3715 mddev->reshape_backwards = (mddev->delta_disks < 0);
3716 } else
3717 mddev->raid_disks = n;
3718 return rv ? rv : len;
3719 }
3720 static struct md_sysfs_entry md_raid_disks =
3721 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3722
3723 static ssize_t
3724 chunk_size_show(struct mddev *mddev, char *page)
3725 {
3726 if (mddev->reshape_position != MaxSector &&
3727 mddev->chunk_sectors != mddev->new_chunk_sectors)
3728 return sprintf(page, "%d (%d)\n",
3729 mddev->new_chunk_sectors << 9,
3730 mddev->chunk_sectors << 9);
3731 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3732 }
3733
3734 static ssize_t
3735 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3736 {
3737 char *e;
3738 unsigned long n = simple_strtoul(buf, &e, 10);
3739
3740 if (!*buf || (*e && *e != '\n'))
3741 return -EINVAL;
3742
3743 if (mddev->pers) {
3744 int err;
3745 if (mddev->pers->check_reshape == NULL)
3746 return -EBUSY;
3747 mddev->new_chunk_sectors = n >> 9;
3748 err = mddev->pers->check_reshape(mddev);
3749 if (err) {
3750 mddev->new_chunk_sectors = mddev->chunk_sectors;
3751 return err;
3752 }
3753 } else {
3754 mddev->new_chunk_sectors = n >> 9;
3755 if (mddev->reshape_position == MaxSector)
3756 mddev->chunk_sectors = n >> 9;
3757 }
3758 return len;
3759 }
3760 static struct md_sysfs_entry md_chunk_size =
3761 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3762
3763 static ssize_t
3764 resync_start_show(struct mddev *mddev, char *page)
3765 {
3766 if (mddev->recovery_cp == MaxSector)
3767 return sprintf(page, "none\n");
3768 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3769 }
3770
3771 static ssize_t
3772 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3773 {
3774 char *e;
3775 unsigned long long n = simple_strtoull(buf, &e, 10);
3776
3777 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3778 return -EBUSY;
3779 if (cmd_match(buf, "none"))
3780 n = MaxSector;
3781 else if (!*buf || (*e && *e != '\n'))
3782 return -EINVAL;
3783
3784 mddev->recovery_cp = n;
3785 if (mddev->pers)
3786 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3787 return len;
3788 }
3789 static struct md_sysfs_entry md_resync_start =
3790 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3791
3792 /*
3793 * The array state can be:
3794 *
3795 * clear
3796 * No devices, no size, no level
3797 * Equivalent to STOP_ARRAY ioctl
3798 * inactive
3799 * May have some settings, but array is not active
3800 * all IO results in error
3801 * When written, doesn't tear down array, but just stops it
3802 * suspended (not supported yet)
3803 * All IO requests will block. The array can be reconfigured.
3804 * Writing this, if accepted, will block until array is quiescent
3805 * readonly
3806 * no resync can happen. no superblocks get written.
3807 * write requests fail
3808 * read-auto
3809 * like readonly, but behaves like 'clean' on a write request.
3810 *
3811 * clean - no pending writes, but otherwise active.
3812 * When written to inactive array, starts without resync
3813 * If a write request arrives then
3814 * if metadata is known, mark 'dirty' and switch to 'active'.
3815 * if not known, block and switch to write-pending
3816 * If written to an active array that has pending writes, then fails.
3817 * active
3818 * fully active: IO and resync can be happening.
3819 * When written to inactive array, starts with resync
3820 *
3821 * write-pending
3822 * clean, but writes are blocked waiting for 'active' to be written.
3823 *
3824 * active-idle
3825 * like active, but no writes have been seen for a while (100msec).
3826 *
3827 */
3828 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3829 write_pending, active_idle, bad_word};
3830 static char *array_states[] = {
3831 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3832 "write-pending", "active-idle", NULL };
3833
3834 static int match_word(const char *word, char **list)
3835 {
3836 int n;
3837 for (n=0; list[n]; n++)
3838 if (cmd_match(word, list[n]))
3839 break;
3840 return n;
3841 }
3842
3843 static ssize_t
3844 array_state_show(struct mddev *mddev, char *page)
3845 {
3846 enum array_state st = inactive;
3847
3848 if (mddev->pers)
3849 switch(mddev->ro) {
3850 case 1:
3851 st = readonly;
3852 break;
3853 case 2:
3854 st = read_auto;
3855 break;
3856 case 0:
3857 if (mddev->in_sync)
3858 st = clean;
3859 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3860 st = write_pending;
3861 else if (mddev->safemode)
3862 st = active_idle;
3863 else
3864 st = active;
3865 }
3866 else {
3867 if (list_empty(&mddev->disks) &&
3868 mddev->raid_disks == 0 &&
3869 mddev->dev_sectors == 0)
3870 st = clear;
3871 else
3872 st = inactive;
3873 }
3874 return sprintf(page, "%s\n", array_states[st]);
3875 }
3876
3877 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3878 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3879 static int do_md_run(struct mddev * mddev);
3880 static int restart_array(struct mddev *mddev);
3881
3882 static ssize_t
3883 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3884 {
3885 int err = -EINVAL;
3886 enum array_state st = match_word(buf, array_states);
3887 switch(st) {
3888 case bad_word:
3889 break;
3890 case clear:
3891 /* stopping an active array */
3892 err = do_md_stop(mddev, 0, NULL);
3893 break;
3894 case inactive:
3895 /* stopping an active array */
3896 if (mddev->pers)
3897 err = do_md_stop(mddev, 2, NULL);
3898 else
3899 err = 0; /* already inactive */
3900 break;
3901 case suspended:
3902 break; /* not supported yet */
3903 case readonly:
3904 if (mddev->pers)
3905 err = md_set_readonly(mddev, NULL);
3906 else {
3907 mddev->ro = 1;
3908 set_disk_ro(mddev->gendisk, 1);
3909 err = do_md_run(mddev);
3910 }
3911 break;
3912 case read_auto:
3913 if (mddev->pers) {
3914 if (mddev->ro == 0)
3915 err = md_set_readonly(mddev, NULL);
3916 else if (mddev->ro == 1)
3917 err = restart_array(mddev);
3918 if (err == 0) {
3919 mddev->ro = 2;
3920 set_disk_ro(mddev->gendisk, 0);
3921 }
3922 } else {
3923 mddev->ro = 2;
3924 err = do_md_run(mddev);
3925 }
3926 break;
3927 case clean:
3928 if (mddev->pers) {
3929 restart_array(mddev);
3930 spin_lock_irq(&mddev->write_lock);
3931 if (atomic_read(&mddev->writes_pending) == 0) {
3932 if (mddev->in_sync == 0) {
3933 mddev->in_sync = 1;
3934 if (mddev->safemode == 1)
3935 mddev->safemode = 0;
3936 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3937 }
3938 err = 0;
3939 } else
3940 err = -EBUSY;
3941 spin_unlock_irq(&mddev->write_lock);
3942 } else
3943 err = -EINVAL;
3944 break;
3945 case active:
3946 if (mddev->pers) {
3947 restart_array(mddev);
3948 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3949 wake_up(&mddev->sb_wait);
3950 err = 0;
3951 } else {
3952 mddev->ro = 0;
3953 set_disk_ro(mddev->gendisk, 0);
3954 err = do_md_run(mddev);
3955 }
3956 break;
3957 case write_pending:
3958 case active_idle:
3959 /* these cannot be set */
3960 break;
3961 }
3962 if (err)
3963 return err;
3964 else {
3965 if (mddev->hold_active == UNTIL_IOCTL)
3966 mddev->hold_active = 0;
3967 sysfs_notify_dirent_safe(mddev->sysfs_state);
3968 return len;
3969 }
3970 }
3971 static struct md_sysfs_entry md_array_state =
3972 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3973
3974 static ssize_t
3975 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3976 return sprintf(page, "%d\n",
3977 atomic_read(&mddev->max_corr_read_errors));
3978 }
3979
3980 static ssize_t
3981 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3982 {
3983 char *e;
3984 unsigned long n = simple_strtoul(buf, &e, 10);
3985
3986 if (*buf && (*e == 0 || *e == '\n')) {
3987 atomic_set(&mddev->max_corr_read_errors, n);
3988 return len;
3989 }
3990 return -EINVAL;
3991 }
3992
3993 static struct md_sysfs_entry max_corr_read_errors =
3994 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3995 max_corrected_read_errors_store);
3996
3997 static ssize_t
3998 null_show(struct mddev *mddev, char *page)
3999 {
4000 return -EINVAL;
4001 }
4002
4003 static ssize_t
4004 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4005 {
4006 /* buf must be %d:%d\n? giving major and minor numbers */
4007 /* The new device is added to the array.
4008 * If the array has a persistent superblock, we read the
4009 * superblock to initialise info and check validity.
4010 * Otherwise, only checking done is that in bind_rdev_to_array,
4011 * which mainly checks size.
4012 */
4013 char *e;
4014 int major = simple_strtoul(buf, &e, 10);
4015 int minor;
4016 dev_t dev;
4017 struct md_rdev *rdev;
4018 int err;
4019
4020 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4021 return -EINVAL;
4022 minor = simple_strtoul(e+1, &e, 10);
4023 if (*e && *e != '\n')
4024 return -EINVAL;
4025 dev = MKDEV(major, minor);
4026 if (major != MAJOR(dev) ||
4027 minor != MINOR(dev))
4028 return -EOVERFLOW;
4029
4030
4031 if (mddev->persistent) {
4032 rdev = md_import_device(dev, mddev->major_version,
4033 mddev->minor_version);
4034 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4035 struct md_rdev *rdev0
4036 = list_entry(mddev->disks.next,
4037 struct md_rdev, same_set);
4038 err = super_types[mddev->major_version]
4039 .load_super(rdev, rdev0, mddev->minor_version);
4040 if (err < 0)
4041 goto out;
4042 }
4043 } else if (mddev->external)
4044 rdev = md_import_device(dev, -2, -1);
4045 else
4046 rdev = md_import_device(dev, -1, -1);
4047
4048 if (IS_ERR(rdev))
4049 return PTR_ERR(rdev);
4050 err = bind_rdev_to_array(rdev, mddev);
4051 out:
4052 if (err)
4053 export_rdev(rdev);
4054 return err ? err : len;
4055 }
4056
4057 static struct md_sysfs_entry md_new_device =
4058 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4059
4060 static ssize_t
4061 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4062 {
4063 char *end;
4064 unsigned long chunk, end_chunk;
4065
4066 if (!mddev->bitmap)
4067 goto out;
4068 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4069 while (*buf) {
4070 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4071 if (buf == end) break;
4072 if (*end == '-') { /* range */
4073 buf = end + 1;
4074 end_chunk = simple_strtoul(buf, &end, 0);
4075 if (buf == end) break;
4076 }
4077 if (*end && !isspace(*end)) break;
4078 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4079 buf = skip_spaces(end);
4080 }
4081 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4082 out:
4083 return len;
4084 }
4085
4086 static struct md_sysfs_entry md_bitmap =
4087 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4088
4089 static ssize_t
4090 size_show(struct mddev *mddev, char *page)
4091 {
4092 return sprintf(page, "%llu\n",
4093 (unsigned long long)mddev->dev_sectors / 2);
4094 }
4095
4096 static int update_size(struct mddev *mddev, sector_t num_sectors);
4097
4098 static ssize_t
4099 size_store(struct mddev *mddev, const char *buf, size_t len)
4100 {
4101 /* If array is inactive, we can reduce the component size, but
4102 * not increase it (except from 0).
4103 * If array is active, we can try an on-line resize
4104 */
4105 sector_t sectors;
4106 int err = strict_blocks_to_sectors(buf, &sectors);
4107
4108 if (err < 0)
4109 return err;
4110 if (mddev->pers) {
4111 err = update_size(mddev, sectors);
4112 md_update_sb(mddev, 1);
4113 } else {
4114 if (mddev->dev_sectors == 0 ||
4115 mddev->dev_sectors > sectors)
4116 mddev->dev_sectors = sectors;
4117 else
4118 err = -ENOSPC;
4119 }
4120 return err ? err : len;
4121 }
4122
4123 static struct md_sysfs_entry md_size =
4124 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4125
4126
4127 /* Metadata version.
4128 * This is one of
4129 * 'none' for arrays with no metadata (good luck...)
4130 * 'external' for arrays with externally managed metadata,
4131 * or N.M for internally known formats
4132 */
4133 static ssize_t
4134 metadata_show(struct mddev *mddev, char *page)
4135 {
4136 if (mddev->persistent)
4137 return sprintf(page, "%d.%d\n",
4138 mddev->major_version, mddev->minor_version);
4139 else if (mddev->external)
4140 return sprintf(page, "external:%s\n", mddev->metadata_type);
4141 else
4142 return sprintf(page, "none\n");
4143 }
4144
4145 static ssize_t
4146 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4147 {
4148 int major, minor;
4149 char *e;
4150 /* Changing the details of 'external' metadata is
4151 * always permitted. Otherwise there must be
4152 * no devices attached to the array.
4153 */
4154 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4155 ;
4156 else if (!list_empty(&mddev->disks))
4157 return -EBUSY;
4158
4159 if (cmd_match(buf, "none")) {
4160 mddev->persistent = 0;
4161 mddev->external = 0;
4162 mddev->major_version = 0;
4163 mddev->minor_version = 90;
4164 return len;
4165 }
4166 if (strncmp(buf, "external:", 9) == 0) {
4167 size_t namelen = len-9;
4168 if (namelen >= sizeof(mddev->metadata_type))
4169 namelen = sizeof(mddev->metadata_type)-1;
4170 strncpy(mddev->metadata_type, buf+9, namelen);
4171 mddev->metadata_type[namelen] = 0;
4172 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4173 mddev->metadata_type[--namelen] = 0;
4174 mddev->persistent = 0;
4175 mddev->external = 1;
4176 mddev->major_version = 0;
4177 mddev->minor_version = 90;
4178 return len;
4179 }
4180 major = simple_strtoul(buf, &e, 10);
4181 if (e==buf || *e != '.')
4182 return -EINVAL;
4183 buf = e+1;
4184 minor = simple_strtoul(buf, &e, 10);
4185 if (e==buf || (*e && *e != '\n') )
4186 return -EINVAL;
4187 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4188 return -ENOENT;
4189 mddev->major_version = major;
4190 mddev->minor_version = minor;
4191 mddev->persistent = 1;
4192 mddev->external = 0;
4193 return len;
4194 }
4195
4196 static struct md_sysfs_entry md_metadata =
4197 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4198
4199 static ssize_t
4200 action_show(struct mddev *mddev, char *page)
4201 {
4202 char *type = "idle";
4203 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4204 type = "frozen";
4205 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4206 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4207 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4208 type = "reshape";
4209 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4210 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4211 type = "resync";
4212 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4213 type = "check";
4214 else
4215 type = "repair";
4216 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4217 type = "recover";
4218 }
4219 return sprintf(page, "%s\n", type);
4220 }
4221
4222 static void reap_sync_thread(struct mddev *mddev);
4223
4224 static ssize_t
4225 action_store(struct mddev *mddev, const char *page, size_t len)
4226 {
4227 if (!mddev->pers || !mddev->pers->sync_request)
4228 return -EINVAL;
4229
4230 if (cmd_match(page, "frozen"))
4231 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4232 else
4233 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4234
4235 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4236 if (mddev->sync_thread) {
4237 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4238 reap_sync_thread(mddev);
4239 }
4240 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4241 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4242 return -EBUSY;
4243 else if (cmd_match(page, "resync"))
4244 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4245 else if (cmd_match(page, "recover")) {
4246 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4247 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4248 } else if (cmd_match(page, "reshape")) {
4249 int err;
4250 if (mddev->pers->start_reshape == NULL)
4251 return -EINVAL;
4252 err = mddev->pers->start_reshape(mddev);
4253 if (err)
4254 return err;
4255 sysfs_notify(&mddev->kobj, NULL, "degraded");
4256 } else {
4257 if (cmd_match(page, "check"))
4258 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4259 else if (!cmd_match(page, "repair"))
4260 return -EINVAL;
4261 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4262 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4263 }
4264 if (mddev->ro == 2) {
4265 /* A write to sync_action is enough to justify
4266 * canceling read-auto mode
4267 */
4268 mddev->ro = 0;
4269 md_wakeup_thread(mddev->sync_thread);
4270 }
4271 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4272 md_wakeup_thread(mddev->thread);
4273 sysfs_notify_dirent_safe(mddev->sysfs_action);
4274 return len;
4275 }
4276
4277 static ssize_t
4278 mismatch_cnt_show(struct mddev *mddev, char *page)
4279 {
4280 return sprintf(page, "%llu\n",
4281 (unsigned long long)
4282 atomic64_read(&mddev->resync_mismatches));
4283 }
4284
4285 static struct md_sysfs_entry md_scan_mode =
4286 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4287
4288
4289 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4290
4291 static ssize_t
4292 sync_min_show(struct mddev *mddev, char *page)
4293 {
4294 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4295 mddev->sync_speed_min ? "local": "system");
4296 }
4297
4298 static ssize_t
4299 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4300 {
4301 int min;
4302 char *e;
4303 if (strncmp(buf, "system", 6)==0) {
4304 mddev->sync_speed_min = 0;
4305 return len;
4306 }
4307 min = simple_strtoul(buf, &e, 10);
4308 if (buf == e || (*e && *e != '\n') || min <= 0)
4309 return -EINVAL;
4310 mddev->sync_speed_min = min;
4311 return len;
4312 }
4313
4314 static struct md_sysfs_entry md_sync_min =
4315 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4316
4317 static ssize_t
4318 sync_max_show(struct mddev *mddev, char *page)
4319 {
4320 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4321 mddev->sync_speed_max ? "local": "system");
4322 }
4323
4324 static ssize_t
4325 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4326 {
4327 int max;
4328 char *e;
4329 if (strncmp(buf, "system", 6)==0) {
4330 mddev->sync_speed_max = 0;
4331 return len;
4332 }
4333 max = simple_strtoul(buf, &e, 10);
4334 if (buf == e || (*e && *e != '\n') || max <= 0)
4335 return -EINVAL;
4336 mddev->sync_speed_max = max;
4337 return len;
4338 }
4339
4340 static struct md_sysfs_entry md_sync_max =
4341 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4342
4343 static ssize_t
4344 degraded_show(struct mddev *mddev, char *page)
4345 {
4346 return sprintf(page, "%d\n", mddev->degraded);
4347 }
4348 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4349
4350 static ssize_t
4351 sync_force_parallel_show(struct mddev *mddev, char *page)
4352 {
4353 return sprintf(page, "%d\n", mddev->parallel_resync);
4354 }
4355
4356 static ssize_t
4357 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4358 {
4359 long n;
4360
4361 if (strict_strtol(buf, 10, &n))
4362 return -EINVAL;
4363
4364 if (n != 0 && n != 1)
4365 return -EINVAL;
4366
4367 mddev->parallel_resync = n;
4368
4369 if (mddev->sync_thread)
4370 wake_up(&resync_wait);
4371
4372 return len;
4373 }
4374
4375 /* force parallel resync, even with shared block devices */
4376 static struct md_sysfs_entry md_sync_force_parallel =
4377 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4378 sync_force_parallel_show, sync_force_parallel_store);
4379
4380 static ssize_t
4381 sync_speed_show(struct mddev *mddev, char *page)
4382 {
4383 unsigned long resync, dt, db;
4384 if (mddev->curr_resync == 0)
4385 return sprintf(page, "none\n");
4386 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4387 dt = (jiffies - mddev->resync_mark) / HZ;
4388 if (!dt) dt++;
4389 db = resync - mddev->resync_mark_cnt;
4390 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4391 }
4392
4393 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4394
4395 static ssize_t
4396 sync_completed_show(struct mddev *mddev, char *page)
4397 {
4398 unsigned long long max_sectors, resync;
4399
4400 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4401 return sprintf(page, "none\n");
4402
4403 if (mddev->curr_resync == 1 ||
4404 mddev->curr_resync == 2)
4405 return sprintf(page, "delayed\n");
4406
4407 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4408 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4409 max_sectors = mddev->resync_max_sectors;
4410 else
4411 max_sectors = mddev->dev_sectors;
4412
4413 resync = mddev->curr_resync_completed;
4414 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4415 }
4416
4417 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4418
4419 static ssize_t
4420 min_sync_show(struct mddev *mddev, char *page)
4421 {
4422 return sprintf(page, "%llu\n",
4423 (unsigned long long)mddev->resync_min);
4424 }
4425 static ssize_t
4426 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4427 {
4428 unsigned long long min;
4429 if (strict_strtoull(buf, 10, &min))
4430 return -EINVAL;
4431 if (min > mddev->resync_max)
4432 return -EINVAL;
4433 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4434 return -EBUSY;
4435
4436 /* Must be a multiple of chunk_size */
4437 if (mddev->chunk_sectors) {
4438 sector_t temp = min;
4439 if (sector_div(temp, mddev->chunk_sectors))
4440 return -EINVAL;
4441 }
4442 mddev->resync_min = min;
4443
4444 return len;
4445 }
4446
4447 static struct md_sysfs_entry md_min_sync =
4448 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4449
4450 static ssize_t
4451 max_sync_show(struct mddev *mddev, char *page)
4452 {
4453 if (mddev->resync_max == MaxSector)
4454 return sprintf(page, "max\n");
4455 else
4456 return sprintf(page, "%llu\n",
4457 (unsigned long long)mddev->resync_max);
4458 }
4459 static ssize_t
4460 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4461 {
4462 if (strncmp(buf, "max", 3) == 0)
4463 mddev->resync_max = MaxSector;
4464 else {
4465 unsigned long long max;
4466 if (strict_strtoull(buf, 10, &max))
4467 return -EINVAL;
4468 if (max < mddev->resync_min)
4469 return -EINVAL;
4470 if (max < mddev->resync_max &&
4471 mddev->ro == 0 &&
4472 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4473 return -EBUSY;
4474
4475 /* Must be a multiple of chunk_size */
4476 if (mddev->chunk_sectors) {
4477 sector_t temp = max;
4478 if (sector_div(temp, mddev->chunk_sectors))
4479 return -EINVAL;
4480 }
4481 mddev->resync_max = max;
4482 }
4483 wake_up(&mddev->recovery_wait);
4484 return len;
4485 }
4486
4487 static struct md_sysfs_entry md_max_sync =
4488 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4489
4490 static ssize_t
4491 suspend_lo_show(struct mddev *mddev, char *page)
4492 {
4493 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4494 }
4495
4496 static ssize_t
4497 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4498 {
4499 char *e;
4500 unsigned long long new = simple_strtoull(buf, &e, 10);
4501 unsigned long long old = mddev->suspend_lo;
4502
4503 if (mddev->pers == NULL ||
4504 mddev->pers->quiesce == NULL)
4505 return -EINVAL;
4506 if (buf == e || (*e && *e != '\n'))
4507 return -EINVAL;
4508
4509 mddev->suspend_lo = new;
4510 if (new >= old)
4511 /* Shrinking suspended region */
4512 mddev->pers->quiesce(mddev, 2);
4513 else {
4514 /* Expanding suspended region - need to wait */
4515 mddev->pers->quiesce(mddev, 1);
4516 mddev->pers->quiesce(mddev, 0);
4517 }
4518 return len;
4519 }
4520 static struct md_sysfs_entry md_suspend_lo =
4521 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4522
4523
4524 static ssize_t
4525 suspend_hi_show(struct mddev *mddev, char *page)
4526 {
4527 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4528 }
4529
4530 static ssize_t
4531 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4532 {
4533 char *e;
4534 unsigned long long new = simple_strtoull(buf, &e, 10);
4535 unsigned long long old = mddev->suspend_hi;
4536
4537 if (mddev->pers == NULL ||
4538 mddev->pers->quiesce == NULL)
4539 return -EINVAL;
4540 if (buf == e || (*e && *e != '\n'))
4541 return -EINVAL;
4542
4543 mddev->suspend_hi = new;
4544 if (new <= old)
4545 /* Shrinking suspended region */
4546 mddev->pers->quiesce(mddev, 2);
4547 else {
4548 /* Expanding suspended region - need to wait */
4549 mddev->pers->quiesce(mddev, 1);
4550 mddev->pers->quiesce(mddev, 0);
4551 }
4552 return len;
4553 }
4554 static struct md_sysfs_entry md_suspend_hi =
4555 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4556
4557 static ssize_t
4558 reshape_position_show(struct mddev *mddev, char *page)
4559 {
4560 if (mddev->reshape_position != MaxSector)
4561 return sprintf(page, "%llu\n",
4562 (unsigned long long)mddev->reshape_position);
4563 strcpy(page, "none\n");
4564 return 5;
4565 }
4566
4567 static ssize_t
4568 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4569 {
4570 struct md_rdev *rdev;
4571 char *e;
4572 unsigned long long new = simple_strtoull(buf, &e, 10);
4573 if (mddev->pers)
4574 return -EBUSY;
4575 if (buf == e || (*e && *e != '\n'))
4576 return -EINVAL;
4577 mddev->reshape_position = new;
4578 mddev->delta_disks = 0;
4579 mddev->reshape_backwards = 0;
4580 mddev->new_level = mddev->level;
4581 mddev->new_layout = mddev->layout;
4582 mddev->new_chunk_sectors = mddev->chunk_sectors;
4583 rdev_for_each(rdev, mddev)
4584 rdev->new_data_offset = rdev->data_offset;
4585 return len;
4586 }
4587
4588 static struct md_sysfs_entry md_reshape_position =
4589 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4590 reshape_position_store);
4591
4592 static ssize_t
4593 reshape_direction_show(struct mddev *mddev, char *page)
4594 {
4595 return sprintf(page, "%s\n",
4596 mddev->reshape_backwards ? "backwards" : "forwards");
4597 }
4598
4599 static ssize_t
4600 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4601 {
4602 int backwards = 0;
4603 if (cmd_match(buf, "forwards"))
4604 backwards = 0;
4605 else if (cmd_match(buf, "backwards"))
4606 backwards = 1;
4607 else
4608 return -EINVAL;
4609 if (mddev->reshape_backwards == backwards)
4610 return len;
4611
4612 /* check if we are allowed to change */
4613 if (mddev->delta_disks)
4614 return -EBUSY;
4615
4616 if (mddev->persistent &&
4617 mddev->major_version == 0)
4618 return -EINVAL;
4619
4620 mddev->reshape_backwards = backwards;
4621 return len;
4622 }
4623
4624 static struct md_sysfs_entry md_reshape_direction =
4625 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4626 reshape_direction_store);
4627
4628 static ssize_t
4629 array_size_show(struct mddev *mddev, char *page)
4630 {
4631 if (mddev->external_size)
4632 return sprintf(page, "%llu\n",
4633 (unsigned long long)mddev->array_sectors/2);
4634 else
4635 return sprintf(page, "default\n");
4636 }
4637
4638 static ssize_t
4639 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4640 {
4641 sector_t sectors;
4642
4643 if (strncmp(buf, "default", 7) == 0) {
4644 if (mddev->pers)
4645 sectors = mddev->pers->size(mddev, 0, 0);
4646 else
4647 sectors = mddev->array_sectors;
4648
4649 mddev->external_size = 0;
4650 } else {
4651 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4652 return -EINVAL;
4653 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4654 return -E2BIG;
4655
4656 mddev->external_size = 1;
4657 }
4658
4659 mddev->array_sectors = sectors;
4660 if (mddev->pers) {
4661 set_capacity(mddev->gendisk, mddev->array_sectors);
4662 revalidate_disk(mddev->gendisk);
4663 }
4664 return len;
4665 }
4666
4667 static struct md_sysfs_entry md_array_size =
4668 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4669 array_size_store);
4670
4671 static struct attribute *md_default_attrs[] = {
4672 &md_level.attr,
4673 &md_layout.attr,
4674 &md_raid_disks.attr,
4675 &md_chunk_size.attr,
4676 &md_size.attr,
4677 &md_resync_start.attr,
4678 &md_metadata.attr,
4679 &md_new_device.attr,
4680 &md_safe_delay.attr,
4681 &md_array_state.attr,
4682 &md_reshape_position.attr,
4683 &md_reshape_direction.attr,
4684 &md_array_size.attr,
4685 &max_corr_read_errors.attr,
4686 NULL,
4687 };
4688
4689 static struct attribute *md_redundancy_attrs[] = {
4690 &md_scan_mode.attr,
4691 &md_mismatches.attr,
4692 &md_sync_min.attr,
4693 &md_sync_max.attr,
4694 &md_sync_speed.attr,
4695 &md_sync_force_parallel.attr,
4696 &md_sync_completed.attr,
4697 &md_min_sync.attr,
4698 &md_max_sync.attr,
4699 &md_suspend_lo.attr,
4700 &md_suspend_hi.attr,
4701 &md_bitmap.attr,
4702 &md_degraded.attr,
4703 NULL,
4704 };
4705 static struct attribute_group md_redundancy_group = {
4706 .name = NULL,
4707 .attrs = md_redundancy_attrs,
4708 };
4709
4710
4711 static ssize_t
4712 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4713 {
4714 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4715 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4716 ssize_t rv;
4717
4718 if (!entry->show)
4719 return -EIO;
4720 spin_lock(&all_mddevs_lock);
4721 if (list_empty(&mddev->all_mddevs)) {
4722 spin_unlock(&all_mddevs_lock);
4723 return -EBUSY;
4724 }
4725 mddev_get(mddev);
4726 spin_unlock(&all_mddevs_lock);
4727
4728 rv = mddev_lock(mddev);
4729 if (!rv) {
4730 rv = entry->show(mddev, page);
4731 mddev_unlock(mddev);
4732 }
4733 mddev_put(mddev);
4734 return rv;
4735 }
4736
4737 static ssize_t
4738 md_attr_store(struct kobject *kobj, struct attribute *attr,
4739 const char *page, size_t length)
4740 {
4741 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4742 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4743 ssize_t rv;
4744
4745 if (!entry->store)
4746 return -EIO;
4747 if (!capable(CAP_SYS_ADMIN))
4748 return -EACCES;
4749 spin_lock(&all_mddevs_lock);
4750 if (list_empty(&mddev->all_mddevs)) {
4751 spin_unlock(&all_mddevs_lock);
4752 return -EBUSY;
4753 }
4754 mddev_get(mddev);
4755 spin_unlock(&all_mddevs_lock);
4756 rv = mddev_lock(mddev);
4757 if (!rv) {
4758 rv = entry->store(mddev, page, length);
4759 mddev_unlock(mddev);
4760 }
4761 mddev_put(mddev);
4762 return rv;
4763 }
4764
4765 static void md_free(struct kobject *ko)
4766 {
4767 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4768
4769 if (mddev->sysfs_state)
4770 sysfs_put(mddev->sysfs_state);
4771
4772 if (mddev->gendisk) {
4773 del_gendisk(mddev->gendisk);
4774 put_disk(mddev->gendisk);
4775 }
4776 if (mddev->queue)
4777 blk_cleanup_queue(mddev->queue);
4778
4779 kfree(mddev);
4780 }
4781
4782 static const struct sysfs_ops md_sysfs_ops = {
4783 .show = md_attr_show,
4784 .store = md_attr_store,
4785 };
4786 static struct kobj_type md_ktype = {
4787 .release = md_free,
4788 .sysfs_ops = &md_sysfs_ops,
4789 .default_attrs = md_default_attrs,
4790 };
4791
4792 int mdp_major = 0;
4793
4794 static void mddev_delayed_delete(struct work_struct *ws)
4795 {
4796 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4797
4798 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4799 kobject_del(&mddev->kobj);
4800 kobject_put(&mddev->kobj);
4801 }
4802
4803 static int md_alloc(dev_t dev, char *name)
4804 {
4805 static DEFINE_MUTEX(disks_mutex);
4806 struct mddev *mddev = mddev_find(dev);
4807 struct gendisk *disk;
4808 int partitioned;
4809 int shift;
4810 int unit;
4811 int error;
4812
4813 if (!mddev)
4814 return -ENODEV;
4815
4816 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4817 shift = partitioned ? MdpMinorShift : 0;
4818 unit = MINOR(mddev->unit) >> shift;
4819
4820 /* wait for any previous instance of this device to be
4821 * completely removed (mddev_delayed_delete).
4822 */
4823 flush_workqueue(md_misc_wq);
4824
4825 mutex_lock(&disks_mutex);
4826 error = -EEXIST;
4827 if (mddev->gendisk)
4828 goto abort;
4829
4830 if (name) {
4831 /* Need to ensure that 'name' is not a duplicate.
4832 */
4833 struct mddev *mddev2;
4834 spin_lock(&all_mddevs_lock);
4835
4836 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4837 if (mddev2->gendisk &&
4838 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4839 spin_unlock(&all_mddevs_lock);
4840 goto abort;
4841 }
4842 spin_unlock(&all_mddevs_lock);
4843 }
4844
4845 error = -ENOMEM;
4846 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4847 if (!mddev->queue)
4848 goto abort;
4849 mddev->queue->queuedata = mddev;
4850
4851 blk_queue_make_request(mddev->queue, md_make_request);
4852 blk_set_stacking_limits(&mddev->queue->limits);
4853
4854 disk = alloc_disk(1 << shift);
4855 if (!disk) {
4856 blk_cleanup_queue(mddev->queue);
4857 mddev->queue = NULL;
4858 goto abort;
4859 }
4860 disk->major = MAJOR(mddev->unit);
4861 disk->first_minor = unit << shift;
4862 if (name)
4863 strcpy(disk->disk_name, name);
4864 else if (partitioned)
4865 sprintf(disk->disk_name, "md_d%d", unit);
4866 else
4867 sprintf(disk->disk_name, "md%d", unit);
4868 disk->fops = &md_fops;
4869 disk->private_data = mddev;
4870 disk->queue = mddev->queue;
4871 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4872 /* Allow extended partitions. This makes the
4873 * 'mdp' device redundant, but we can't really
4874 * remove it now.
4875 */
4876 disk->flags |= GENHD_FL_EXT_DEVT;
4877 mddev->gendisk = disk;
4878 /* As soon as we call add_disk(), another thread could get
4879 * through to md_open, so make sure it doesn't get too far
4880 */
4881 mutex_lock(&mddev->open_mutex);
4882 add_disk(disk);
4883
4884 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4885 &disk_to_dev(disk)->kobj, "%s", "md");
4886 if (error) {
4887 /* This isn't possible, but as kobject_init_and_add is marked
4888 * __must_check, we must do something with the result
4889 */
4890 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4891 disk->disk_name);
4892 error = 0;
4893 }
4894 if (mddev->kobj.sd &&
4895 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4896 printk(KERN_DEBUG "pointless warning\n");
4897 mutex_unlock(&mddev->open_mutex);
4898 abort:
4899 mutex_unlock(&disks_mutex);
4900 if (!error && mddev->kobj.sd) {
4901 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4902 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4903 }
4904 mddev_put(mddev);
4905 return error;
4906 }
4907
4908 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4909 {
4910 md_alloc(dev, NULL);
4911 return NULL;
4912 }
4913
4914 static int add_named_array(const char *val, struct kernel_param *kp)
4915 {
4916 /* val must be "md_*" where * is not all digits.
4917 * We allocate an array with a large free minor number, and
4918 * set the name to val. val must not already be an active name.
4919 */
4920 int len = strlen(val);
4921 char buf[DISK_NAME_LEN];
4922
4923 while (len && val[len-1] == '\n')
4924 len--;
4925 if (len >= DISK_NAME_LEN)
4926 return -E2BIG;
4927 strlcpy(buf, val, len+1);
4928 if (strncmp(buf, "md_", 3) != 0)
4929 return -EINVAL;
4930 return md_alloc(0, buf);
4931 }
4932
4933 static void md_safemode_timeout(unsigned long data)
4934 {
4935 struct mddev *mddev = (struct mddev *) data;
4936
4937 if (!atomic_read(&mddev->writes_pending)) {
4938 mddev->safemode = 1;
4939 if (mddev->external)
4940 sysfs_notify_dirent_safe(mddev->sysfs_state);
4941 }
4942 md_wakeup_thread(mddev->thread);
4943 }
4944
4945 static int start_dirty_degraded;
4946
4947 int md_run(struct mddev *mddev)
4948 {
4949 int err;
4950 struct md_rdev *rdev;
4951 struct md_personality *pers;
4952
4953 if (list_empty(&mddev->disks))
4954 /* cannot run an array with no devices.. */
4955 return -EINVAL;
4956
4957 if (mddev->pers)
4958 return -EBUSY;
4959 /* Cannot run until previous stop completes properly */
4960 if (mddev->sysfs_active)
4961 return -EBUSY;
4962
4963 /*
4964 * Analyze all RAID superblock(s)
4965 */
4966 if (!mddev->raid_disks) {
4967 if (!mddev->persistent)
4968 return -EINVAL;
4969 analyze_sbs(mddev);
4970 }
4971
4972 if (mddev->level != LEVEL_NONE)
4973 request_module("md-level-%d", mddev->level);
4974 else if (mddev->clevel[0])
4975 request_module("md-%s", mddev->clevel);
4976
4977 /*
4978 * Drop all container device buffers, from now on
4979 * the only valid external interface is through the md
4980 * device.
4981 */
4982 rdev_for_each(rdev, mddev) {
4983 if (test_bit(Faulty, &rdev->flags))
4984 continue;
4985 sync_blockdev(rdev->bdev);
4986 invalidate_bdev(rdev->bdev);
4987
4988 /* perform some consistency tests on the device.
4989 * We don't want the data to overlap the metadata,
4990 * Internal Bitmap issues have been handled elsewhere.
4991 */
4992 if (rdev->meta_bdev) {
4993 /* Nothing to check */;
4994 } else if (rdev->data_offset < rdev->sb_start) {
4995 if (mddev->dev_sectors &&
4996 rdev->data_offset + mddev->dev_sectors
4997 > rdev->sb_start) {
4998 printk("md: %s: data overlaps metadata\n",
4999 mdname(mddev));
5000 return -EINVAL;
5001 }
5002 } else {
5003 if (rdev->sb_start + rdev->sb_size/512
5004 > rdev->data_offset) {
5005 printk("md: %s: metadata overlaps data\n",
5006 mdname(mddev));
5007 return -EINVAL;
5008 }
5009 }
5010 sysfs_notify_dirent_safe(rdev->sysfs_state);
5011 }
5012
5013 if (mddev->bio_set == NULL)
5014 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5015
5016 spin_lock(&pers_lock);
5017 pers = find_pers(mddev->level, mddev->clevel);
5018 if (!pers || !try_module_get(pers->owner)) {
5019 spin_unlock(&pers_lock);
5020 if (mddev->level != LEVEL_NONE)
5021 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5022 mddev->level);
5023 else
5024 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5025 mddev->clevel);
5026 return -EINVAL;
5027 }
5028 mddev->pers = pers;
5029 spin_unlock(&pers_lock);
5030 if (mddev->level != pers->level) {
5031 mddev->level = pers->level;
5032 mddev->new_level = pers->level;
5033 }
5034 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5035
5036 if (mddev->reshape_position != MaxSector &&
5037 pers->start_reshape == NULL) {
5038 /* This personality cannot handle reshaping... */
5039 mddev->pers = NULL;
5040 module_put(pers->owner);
5041 return -EINVAL;
5042 }
5043
5044 if (pers->sync_request) {
5045 /* Warn if this is a potentially silly
5046 * configuration.
5047 */
5048 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5049 struct md_rdev *rdev2;
5050 int warned = 0;
5051
5052 rdev_for_each(rdev, mddev)
5053 rdev_for_each(rdev2, mddev) {
5054 if (rdev < rdev2 &&
5055 rdev->bdev->bd_contains ==
5056 rdev2->bdev->bd_contains) {
5057 printk(KERN_WARNING
5058 "%s: WARNING: %s appears to be"
5059 " on the same physical disk as"
5060 " %s.\n",
5061 mdname(mddev),
5062 bdevname(rdev->bdev,b),
5063 bdevname(rdev2->bdev,b2));
5064 warned = 1;
5065 }
5066 }
5067
5068 if (warned)
5069 printk(KERN_WARNING
5070 "True protection against single-disk"
5071 " failure might be compromised.\n");
5072 }
5073
5074 mddev->recovery = 0;
5075 /* may be over-ridden by personality */
5076 mddev->resync_max_sectors = mddev->dev_sectors;
5077
5078 mddev->ok_start_degraded = start_dirty_degraded;
5079
5080 if (start_readonly && mddev->ro == 0)
5081 mddev->ro = 2; /* read-only, but switch on first write */
5082
5083 err = mddev->pers->run(mddev);
5084 if (err)
5085 printk(KERN_ERR "md: pers->run() failed ...\n");
5086 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5087 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5088 " but 'external_size' not in effect?\n", __func__);
5089 printk(KERN_ERR
5090 "md: invalid array_size %llu > default size %llu\n",
5091 (unsigned long long)mddev->array_sectors / 2,
5092 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5093 err = -EINVAL;
5094 mddev->pers->stop(mddev);
5095 }
5096 if (err == 0 && mddev->pers->sync_request &&
5097 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5098 err = bitmap_create(mddev);
5099 if (err) {
5100 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5101 mdname(mddev), err);
5102 mddev->pers->stop(mddev);
5103 }
5104 }
5105 if (err) {
5106 module_put(mddev->pers->owner);
5107 mddev->pers = NULL;
5108 bitmap_destroy(mddev);
5109 return err;
5110 }
5111 if (mddev->pers->sync_request) {
5112 if (mddev->kobj.sd &&
5113 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5114 printk(KERN_WARNING
5115 "md: cannot register extra attributes for %s\n",
5116 mdname(mddev));
5117 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5118 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5119 mddev->ro = 0;
5120
5121 atomic_set(&mddev->writes_pending,0);
5122 atomic_set(&mddev->max_corr_read_errors,
5123 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5124 mddev->safemode = 0;
5125 mddev->safemode_timer.function = md_safemode_timeout;
5126 mddev->safemode_timer.data = (unsigned long) mddev;
5127 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5128 mddev->in_sync = 1;
5129 smp_wmb();
5130 mddev->ready = 1;
5131 rdev_for_each(rdev, mddev)
5132 if (rdev->raid_disk >= 0)
5133 if (sysfs_link_rdev(mddev, rdev))
5134 /* failure here is OK */;
5135
5136 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5137
5138 if (mddev->flags)
5139 md_update_sb(mddev, 0);
5140
5141 md_new_event(mddev);
5142 sysfs_notify_dirent_safe(mddev->sysfs_state);
5143 sysfs_notify_dirent_safe(mddev->sysfs_action);
5144 sysfs_notify(&mddev->kobj, NULL, "degraded");
5145 return 0;
5146 }
5147 EXPORT_SYMBOL_GPL(md_run);
5148
5149 static int do_md_run(struct mddev *mddev)
5150 {
5151 int err;
5152
5153 err = md_run(mddev);
5154 if (err)
5155 goto out;
5156 err = bitmap_load(mddev);
5157 if (err) {
5158 bitmap_destroy(mddev);
5159 goto out;
5160 }
5161
5162 md_wakeup_thread(mddev->thread);
5163 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5164
5165 set_capacity(mddev->gendisk, mddev->array_sectors);
5166 revalidate_disk(mddev->gendisk);
5167 mddev->changed = 1;
5168 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5169 out:
5170 return err;
5171 }
5172
5173 static int restart_array(struct mddev *mddev)
5174 {
5175 struct gendisk *disk = mddev->gendisk;
5176
5177 /* Complain if it has no devices */
5178 if (list_empty(&mddev->disks))
5179 return -ENXIO;
5180 if (!mddev->pers)
5181 return -EINVAL;
5182 if (!mddev->ro)
5183 return -EBUSY;
5184 mddev->safemode = 0;
5185 mddev->ro = 0;
5186 set_disk_ro(disk, 0);
5187 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5188 mdname(mddev));
5189 /* Kick recovery or resync if necessary */
5190 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5191 md_wakeup_thread(mddev->thread);
5192 md_wakeup_thread(mddev->sync_thread);
5193 sysfs_notify_dirent_safe(mddev->sysfs_state);
5194 return 0;
5195 }
5196
5197 /* similar to deny_write_access, but accounts for our holding a reference
5198 * to the file ourselves */
5199 static int deny_bitmap_write_access(struct file * file)
5200 {
5201 struct inode *inode = file->f_mapping->host;
5202
5203 spin_lock(&inode->i_lock);
5204 if (atomic_read(&inode->i_writecount) > 1) {
5205 spin_unlock(&inode->i_lock);
5206 return -ETXTBSY;
5207 }
5208 atomic_set(&inode->i_writecount, -1);
5209 spin_unlock(&inode->i_lock);
5210
5211 return 0;
5212 }
5213
5214 void restore_bitmap_write_access(struct file *file)
5215 {
5216 struct inode *inode = file->f_mapping->host;
5217
5218 spin_lock(&inode->i_lock);
5219 atomic_set(&inode->i_writecount, 1);
5220 spin_unlock(&inode->i_lock);
5221 }
5222
5223 static void md_clean(struct mddev *mddev)
5224 {
5225 mddev->array_sectors = 0;
5226 mddev->external_size = 0;
5227 mddev->dev_sectors = 0;
5228 mddev->raid_disks = 0;
5229 mddev->recovery_cp = 0;
5230 mddev->resync_min = 0;
5231 mddev->resync_max = MaxSector;
5232 mddev->reshape_position = MaxSector;
5233 mddev->external = 0;
5234 mddev->persistent = 0;
5235 mddev->level = LEVEL_NONE;
5236 mddev->clevel[0] = 0;
5237 mddev->flags = 0;
5238 mddev->ro = 0;
5239 mddev->metadata_type[0] = 0;
5240 mddev->chunk_sectors = 0;
5241 mddev->ctime = mddev->utime = 0;
5242 mddev->layout = 0;
5243 mddev->max_disks = 0;
5244 mddev->events = 0;
5245 mddev->can_decrease_events = 0;
5246 mddev->delta_disks = 0;
5247 mddev->reshape_backwards = 0;
5248 mddev->new_level = LEVEL_NONE;
5249 mddev->new_layout = 0;
5250 mddev->new_chunk_sectors = 0;
5251 mddev->curr_resync = 0;
5252 atomic64_set(&mddev->resync_mismatches, 0);
5253 mddev->suspend_lo = mddev->suspend_hi = 0;
5254 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5255 mddev->recovery = 0;
5256 mddev->in_sync = 0;
5257 mddev->changed = 0;
5258 mddev->degraded = 0;
5259 mddev->safemode = 0;
5260 mddev->merge_check_needed = 0;
5261 mddev->bitmap_info.offset = 0;
5262 mddev->bitmap_info.default_offset = 0;
5263 mddev->bitmap_info.default_space = 0;
5264 mddev->bitmap_info.chunksize = 0;
5265 mddev->bitmap_info.daemon_sleep = 0;
5266 mddev->bitmap_info.max_write_behind = 0;
5267 }
5268
5269 static void __md_stop_writes(struct mddev *mddev)
5270 {
5271 if (mddev->sync_thread) {
5272 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5273 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5274 reap_sync_thread(mddev);
5275 }
5276
5277 del_timer_sync(&mddev->safemode_timer);
5278
5279 bitmap_flush(mddev);
5280 md_super_wait(mddev);
5281
5282 if (!mddev->in_sync || mddev->flags) {
5283 /* mark array as shutdown cleanly */
5284 mddev->in_sync = 1;
5285 md_update_sb(mddev, 1);
5286 }
5287 }
5288
5289 void md_stop_writes(struct mddev *mddev)
5290 {
5291 mddev_lock(mddev);
5292 __md_stop_writes(mddev);
5293 mddev_unlock(mddev);
5294 }
5295 EXPORT_SYMBOL_GPL(md_stop_writes);
5296
5297 static void __md_stop(struct mddev *mddev)
5298 {
5299 mddev->ready = 0;
5300 mddev->pers->stop(mddev);
5301 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5302 mddev->to_remove = &md_redundancy_group;
5303 module_put(mddev->pers->owner);
5304 mddev->pers = NULL;
5305 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5306 }
5307
5308 void md_stop(struct mddev *mddev)
5309 {
5310 /* stop the array and free an attached data structures.
5311 * This is called from dm-raid
5312 */
5313 __md_stop(mddev);
5314 bitmap_destroy(mddev);
5315 if (mddev->bio_set)
5316 bioset_free(mddev->bio_set);
5317 }
5318
5319 EXPORT_SYMBOL_GPL(md_stop);
5320
5321 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5322 {
5323 int err = 0;
5324 mutex_lock(&mddev->open_mutex);
5325 if (atomic_read(&mddev->openers) > !!bdev) {
5326 printk("md: %s still in use.\n",mdname(mddev));
5327 err = -EBUSY;
5328 goto out;
5329 }
5330 if (bdev)
5331 sync_blockdev(bdev);
5332 if (mddev->pers) {
5333 __md_stop_writes(mddev);
5334
5335 err = -ENXIO;
5336 if (mddev->ro==1)
5337 goto out;
5338 mddev->ro = 1;
5339 set_disk_ro(mddev->gendisk, 1);
5340 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5341 sysfs_notify_dirent_safe(mddev->sysfs_state);
5342 err = 0;
5343 }
5344 out:
5345 mutex_unlock(&mddev->open_mutex);
5346 return err;
5347 }
5348
5349 /* mode:
5350 * 0 - completely stop and dis-assemble array
5351 * 2 - stop but do not disassemble array
5352 */
5353 static int do_md_stop(struct mddev * mddev, int mode,
5354 struct block_device *bdev)
5355 {
5356 struct gendisk *disk = mddev->gendisk;
5357 struct md_rdev *rdev;
5358
5359 mutex_lock(&mddev->open_mutex);
5360 if (atomic_read(&mddev->openers) > !!bdev ||
5361 mddev->sysfs_active) {
5362 printk("md: %s still in use.\n",mdname(mddev));
5363 mutex_unlock(&mddev->open_mutex);
5364 return -EBUSY;
5365 }
5366 if (bdev)
5367 /* It is possible IO was issued on some other
5368 * open file which was closed before we took ->open_mutex.
5369 * As that was not the last close __blkdev_put will not
5370 * have called sync_blockdev, so we must.
5371 */
5372 sync_blockdev(bdev);
5373
5374 if (mddev->pers) {
5375 if (mddev->ro)
5376 set_disk_ro(disk, 0);
5377
5378 __md_stop_writes(mddev);
5379 __md_stop(mddev);
5380 mddev->queue->merge_bvec_fn = NULL;
5381 mddev->queue->backing_dev_info.congested_fn = NULL;
5382
5383 /* tell userspace to handle 'inactive' */
5384 sysfs_notify_dirent_safe(mddev->sysfs_state);
5385
5386 rdev_for_each(rdev, mddev)
5387 if (rdev->raid_disk >= 0)
5388 sysfs_unlink_rdev(mddev, rdev);
5389
5390 set_capacity(disk, 0);
5391 mutex_unlock(&mddev->open_mutex);
5392 mddev->changed = 1;
5393 revalidate_disk(disk);
5394
5395 if (mddev->ro)
5396 mddev->ro = 0;
5397 } else
5398 mutex_unlock(&mddev->open_mutex);
5399 /*
5400 * Free resources if final stop
5401 */
5402 if (mode == 0) {
5403 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5404
5405 bitmap_destroy(mddev);
5406 if (mddev->bitmap_info.file) {
5407 restore_bitmap_write_access(mddev->bitmap_info.file);
5408 fput(mddev->bitmap_info.file);
5409 mddev->bitmap_info.file = NULL;
5410 }
5411 mddev->bitmap_info.offset = 0;
5412
5413 export_array(mddev);
5414
5415 md_clean(mddev);
5416 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5417 if (mddev->hold_active == UNTIL_STOP)
5418 mddev->hold_active = 0;
5419 }
5420 blk_integrity_unregister(disk);
5421 md_new_event(mddev);
5422 sysfs_notify_dirent_safe(mddev->sysfs_state);
5423 return 0;
5424 }
5425
5426 #ifndef MODULE
5427 static void autorun_array(struct mddev *mddev)
5428 {
5429 struct md_rdev *rdev;
5430 int err;
5431
5432 if (list_empty(&mddev->disks))
5433 return;
5434
5435 printk(KERN_INFO "md: running: ");
5436
5437 rdev_for_each(rdev, mddev) {
5438 char b[BDEVNAME_SIZE];
5439 printk("<%s>", bdevname(rdev->bdev,b));
5440 }
5441 printk("\n");
5442
5443 err = do_md_run(mddev);
5444 if (err) {
5445 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5446 do_md_stop(mddev, 0, NULL);
5447 }
5448 }
5449
5450 /*
5451 * lets try to run arrays based on all disks that have arrived
5452 * until now. (those are in pending_raid_disks)
5453 *
5454 * the method: pick the first pending disk, collect all disks with
5455 * the same UUID, remove all from the pending list and put them into
5456 * the 'same_array' list. Then order this list based on superblock
5457 * update time (freshest comes first), kick out 'old' disks and
5458 * compare superblocks. If everything's fine then run it.
5459 *
5460 * If "unit" is allocated, then bump its reference count
5461 */
5462 static void autorun_devices(int part)
5463 {
5464 struct md_rdev *rdev0, *rdev, *tmp;
5465 struct mddev *mddev;
5466 char b[BDEVNAME_SIZE];
5467
5468 printk(KERN_INFO "md: autorun ...\n");
5469 while (!list_empty(&pending_raid_disks)) {
5470 int unit;
5471 dev_t dev;
5472 LIST_HEAD(candidates);
5473 rdev0 = list_entry(pending_raid_disks.next,
5474 struct md_rdev, same_set);
5475
5476 printk(KERN_INFO "md: considering %s ...\n",
5477 bdevname(rdev0->bdev,b));
5478 INIT_LIST_HEAD(&candidates);
5479 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5480 if (super_90_load(rdev, rdev0, 0) >= 0) {
5481 printk(KERN_INFO "md: adding %s ...\n",
5482 bdevname(rdev->bdev,b));
5483 list_move(&rdev->same_set, &candidates);
5484 }
5485 /*
5486 * now we have a set of devices, with all of them having
5487 * mostly sane superblocks. It's time to allocate the
5488 * mddev.
5489 */
5490 if (part) {
5491 dev = MKDEV(mdp_major,
5492 rdev0->preferred_minor << MdpMinorShift);
5493 unit = MINOR(dev) >> MdpMinorShift;
5494 } else {
5495 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5496 unit = MINOR(dev);
5497 }
5498 if (rdev0->preferred_minor != unit) {
5499 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5500 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5501 break;
5502 }
5503
5504 md_probe(dev, NULL, NULL);
5505 mddev = mddev_find(dev);
5506 if (!mddev || !mddev->gendisk) {
5507 if (mddev)
5508 mddev_put(mddev);
5509 printk(KERN_ERR
5510 "md: cannot allocate memory for md drive.\n");
5511 break;
5512 }
5513 if (mddev_lock(mddev))
5514 printk(KERN_WARNING "md: %s locked, cannot run\n",
5515 mdname(mddev));
5516 else if (mddev->raid_disks || mddev->major_version
5517 || !list_empty(&mddev->disks)) {
5518 printk(KERN_WARNING
5519 "md: %s already running, cannot run %s\n",
5520 mdname(mddev), bdevname(rdev0->bdev,b));
5521 mddev_unlock(mddev);
5522 } else {
5523 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5524 mddev->persistent = 1;
5525 rdev_for_each_list(rdev, tmp, &candidates) {
5526 list_del_init(&rdev->same_set);
5527 if (bind_rdev_to_array(rdev, mddev))
5528 export_rdev(rdev);
5529 }
5530 autorun_array(mddev);
5531 mddev_unlock(mddev);
5532 }
5533 /* on success, candidates will be empty, on error
5534 * it won't...
5535 */
5536 rdev_for_each_list(rdev, tmp, &candidates) {
5537 list_del_init(&rdev->same_set);
5538 export_rdev(rdev);
5539 }
5540 mddev_put(mddev);
5541 }
5542 printk(KERN_INFO "md: ... autorun DONE.\n");
5543 }
5544 #endif /* !MODULE */
5545
5546 static int get_version(void __user * arg)
5547 {
5548 mdu_version_t ver;
5549
5550 ver.major = MD_MAJOR_VERSION;
5551 ver.minor = MD_MINOR_VERSION;
5552 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5553
5554 if (copy_to_user(arg, &ver, sizeof(ver)))
5555 return -EFAULT;
5556
5557 return 0;
5558 }
5559
5560 static int get_array_info(struct mddev * mddev, void __user * arg)
5561 {
5562 mdu_array_info_t info;
5563 int nr,working,insync,failed,spare;
5564 struct md_rdev *rdev;
5565
5566 nr = working = insync = failed = spare = 0;
5567 rcu_read_lock();
5568 rdev_for_each_rcu(rdev, mddev) {
5569 nr++;
5570 if (test_bit(Faulty, &rdev->flags))
5571 failed++;
5572 else {
5573 working++;
5574 if (test_bit(In_sync, &rdev->flags))
5575 insync++;
5576 else
5577 spare++;
5578 }
5579 }
5580 rcu_read_unlock();
5581
5582 info.major_version = mddev->major_version;
5583 info.minor_version = mddev->minor_version;
5584 info.patch_version = MD_PATCHLEVEL_VERSION;
5585 info.ctime = mddev->ctime;
5586 info.level = mddev->level;
5587 info.size = mddev->dev_sectors / 2;
5588 if (info.size != mddev->dev_sectors / 2) /* overflow */
5589 info.size = -1;
5590 info.nr_disks = nr;
5591 info.raid_disks = mddev->raid_disks;
5592 info.md_minor = mddev->md_minor;
5593 info.not_persistent= !mddev->persistent;
5594
5595 info.utime = mddev->utime;
5596 info.state = 0;
5597 if (mddev->in_sync)
5598 info.state = (1<<MD_SB_CLEAN);
5599 if (mddev->bitmap && mddev->bitmap_info.offset)
5600 info.state = (1<<MD_SB_BITMAP_PRESENT);
5601 info.active_disks = insync;
5602 info.working_disks = working;
5603 info.failed_disks = failed;
5604 info.spare_disks = spare;
5605
5606 info.layout = mddev->layout;
5607 info.chunk_size = mddev->chunk_sectors << 9;
5608
5609 if (copy_to_user(arg, &info, sizeof(info)))
5610 return -EFAULT;
5611
5612 return 0;
5613 }
5614
5615 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5616 {
5617 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5618 char *ptr, *buf = NULL;
5619 int err = -ENOMEM;
5620
5621 if (md_allow_write(mddev))
5622 file = kmalloc(sizeof(*file), GFP_NOIO);
5623 else
5624 file = kmalloc(sizeof(*file), GFP_KERNEL);
5625
5626 if (!file)
5627 goto out;
5628
5629 /* bitmap disabled, zero the first byte and copy out */
5630 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5631 file->pathname[0] = '\0';
5632 goto copy_out;
5633 }
5634
5635 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5636 if (!buf)
5637 goto out;
5638
5639 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5640 buf, sizeof(file->pathname));
5641 if (IS_ERR(ptr))
5642 goto out;
5643
5644 strcpy(file->pathname, ptr);
5645
5646 copy_out:
5647 err = 0;
5648 if (copy_to_user(arg, file, sizeof(*file)))
5649 err = -EFAULT;
5650 out:
5651 kfree(buf);
5652 kfree(file);
5653 return err;
5654 }
5655
5656 static int get_disk_info(struct mddev * mddev, void __user * arg)
5657 {
5658 mdu_disk_info_t info;
5659 struct md_rdev *rdev;
5660
5661 if (copy_from_user(&info, arg, sizeof(info)))
5662 return -EFAULT;
5663
5664 rcu_read_lock();
5665 rdev = find_rdev_nr_rcu(mddev, info.number);
5666 if (rdev) {
5667 info.major = MAJOR(rdev->bdev->bd_dev);
5668 info.minor = MINOR(rdev->bdev->bd_dev);
5669 info.raid_disk = rdev->raid_disk;
5670 info.state = 0;
5671 if (test_bit(Faulty, &rdev->flags))
5672 info.state |= (1<<MD_DISK_FAULTY);
5673 else if (test_bit(In_sync, &rdev->flags)) {
5674 info.state |= (1<<MD_DISK_ACTIVE);
5675 info.state |= (1<<MD_DISK_SYNC);
5676 }
5677 if (test_bit(WriteMostly, &rdev->flags))
5678 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5679 } else {
5680 info.major = info.minor = 0;
5681 info.raid_disk = -1;
5682 info.state = (1<<MD_DISK_REMOVED);
5683 }
5684 rcu_read_unlock();
5685
5686 if (copy_to_user(arg, &info, sizeof(info)))
5687 return -EFAULT;
5688
5689 return 0;
5690 }
5691
5692 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5693 {
5694 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5695 struct md_rdev *rdev;
5696 dev_t dev = MKDEV(info->major,info->minor);
5697
5698 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5699 return -EOVERFLOW;
5700
5701 if (!mddev->raid_disks) {
5702 int err;
5703 /* expecting a device which has a superblock */
5704 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5705 if (IS_ERR(rdev)) {
5706 printk(KERN_WARNING
5707 "md: md_import_device returned %ld\n",
5708 PTR_ERR(rdev));
5709 return PTR_ERR(rdev);
5710 }
5711 if (!list_empty(&mddev->disks)) {
5712 struct md_rdev *rdev0
5713 = list_entry(mddev->disks.next,
5714 struct md_rdev, same_set);
5715 err = super_types[mddev->major_version]
5716 .load_super(rdev, rdev0, mddev->minor_version);
5717 if (err < 0) {
5718 printk(KERN_WARNING
5719 "md: %s has different UUID to %s\n",
5720 bdevname(rdev->bdev,b),
5721 bdevname(rdev0->bdev,b2));
5722 export_rdev(rdev);
5723 return -EINVAL;
5724 }
5725 }
5726 err = bind_rdev_to_array(rdev, mddev);
5727 if (err)
5728 export_rdev(rdev);
5729 return err;
5730 }
5731
5732 /*
5733 * add_new_disk can be used once the array is assembled
5734 * to add "hot spares". They must already have a superblock
5735 * written
5736 */
5737 if (mddev->pers) {
5738 int err;
5739 if (!mddev->pers->hot_add_disk) {
5740 printk(KERN_WARNING
5741 "%s: personality does not support diskops!\n",
5742 mdname(mddev));
5743 return -EINVAL;
5744 }
5745 if (mddev->persistent)
5746 rdev = md_import_device(dev, mddev->major_version,
5747 mddev->minor_version);
5748 else
5749 rdev = md_import_device(dev, -1, -1);
5750 if (IS_ERR(rdev)) {
5751 printk(KERN_WARNING
5752 "md: md_import_device returned %ld\n",
5753 PTR_ERR(rdev));
5754 return PTR_ERR(rdev);
5755 }
5756 /* set saved_raid_disk if appropriate */
5757 if (!mddev->persistent) {
5758 if (info->state & (1<<MD_DISK_SYNC) &&
5759 info->raid_disk < mddev->raid_disks) {
5760 rdev->raid_disk = info->raid_disk;
5761 set_bit(In_sync, &rdev->flags);
5762 } else
5763 rdev->raid_disk = -1;
5764 } else
5765 super_types[mddev->major_version].
5766 validate_super(mddev, rdev);
5767 if ((info->state & (1<<MD_DISK_SYNC)) &&
5768 rdev->raid_disk != info->raid_disk) {
5769 /* This was a hot-add request, but events doesn't
5770 * match, so reject it.
5771 */
5772 export_rdev(rdev);
5773 return -EINVAL;
5774 }
5775
5776 if (test_bit(In_sync, &rdev->flags))
5777 rdev->saved_raid_disk = rdev->raid_disk;
5778 else
5779 rdev->saved_raid_disk = -1;
5780
5781 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5782 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5783 set_bit(WriteMostly, &rdev->flags);
5784 else
5785 clear_bit(WriteMostly, &rdev->flags);
5786
5787 rdev->raid_disk = -1;
5788 err = bind_rdev_to_array(rdev, mddev);
5789 if (!err && !mddev->pers->hot_remove_disk) {
5790 /* If there is hot_add_disk but no hot_remove_disk
5791 * then added disks for geometry changes,
5792 * and should be added immediately.
5793 */
5794 super_types[mddev->major_version].
5795 validate_super(mddev, rdev);
5796 err = mddev->pers->hot_add_disk(mddev, rdev);
5797 if (err)
5798 unbind_rdev_from_array(rdev);
5799 }
5800 if (err)
5801 export_rdev(rdev);
5802 else
5803 sysfs_notify_dirent_safe(rdev->sysfs_state);
5804
5805 md_update_sb(mddev, 1);
5806 if (mddev->degraded)
5807 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5808 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5809 if (!err)
5810 md_new_event(mddev);
5811 md_wakeup_thread(mddev->thread);
5812 return err;
5813 }
5814
5815 /* otherwise, add_new_disk is only allowed
5816 * for major_version==0 superblocks
5817 */
5818 if (mddev->major_version != 0) {
5819 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5820 mdname(mddev));
5821 return -EINVAL;
5822 }
5823
5824 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5825 int err;
5826 rdev = md_import_device(dev, -1, 0);
5827 if (IS_ERR(rdev)) {
5828 printk(KERN_WARNING
5829 "md: error, md_import_device() returned %ld\n",
5830 PTR_ERR(rdev));
5831 return PTR_ERR(rdev);
5832 }
5833 rdev->desc_nr = info->number;
5834 if (info->raid_disk < mddev->raid_disks)
5835 rdev->raid_disk = info->raid_disk;
5836 else
5837 rdev->raid_disk = -1;
5838
5839 if (rdev->raid_disk < mddev->raid_disks)
5840 if (info->state & (1<<MD_DISK_SYNC))
5841 set_bit(In_sync, &rdev->flags);
5842
5843 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5844 set_bit(WriteMostly, &rdev->flags);
5845
5846 if (!mddev->persistent) {
5847 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5848 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5849 } else
5850 rdev->sb_start = calc_dev_sboffset(rdev);
5851 rdev->sectors = rdev->sb_start;
5852
5853 err = bind_rdev_to_array(rdev, mddev);
5854 if (err) {
5855 export_rdev(rdev);
5856 return err;
5857 }
5858 }
5859
5860 return 0;
5861 }
5862
5863 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5864 {
5865 char b[BDEVNAME_SIZE];
5866 struct md_rdev *rdev;
5867
5868 rdev = find_rdev(mddev, dev);
5869 if (!rdev)
5870 return -ENXIO;
5871
5872 if (rdev->raid_disk >= 0)
5873 goto busy;
5874
5875 kick_rdev_from_array(rdev);
5876 md_update_sb(mddev, 1);
5877 md_new_event(mddev);
5878
5879 return 0;
5880 busy:
5881 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5882 bdevname(rdev->bdev,b), mdname(mddev));
5883 return -EBUSY;
5884 }
5885
5886 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5887 {
5888 char b[BDEVNAME_SIZE];
5889 int err;
5890 struct md_rdev *rdev;
5891
5892 if (!mddev->pers)
5893 return -ENODEV;
5894
5895 if (mddev->major_version != 0) {
5896 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5897 " version-0 superblocks.\n",
5898 mdname(mddev));
5899 return -EINVAL;
5900 }
5901 if (!mddev->pers->hot_add_disk) {
5902 printk(KERN_WARNING
5903 "%s: personality does not support diskops!\n",
5904 mdname(mddev));
5905 return -EINVAL;
5906 }
5907
5908 rdev = md_import_device(dev, -1, 0);
5909 if (IS_ERR(rdev)) {
5910 printk(KERN_WARNING
5911 "md: error, md_import_device() returned %ld\n",
5912 PTR_ERR(rdev));
5913 return -EINVAL;
5914 }
5915
5916 if (mddev->persistent)
5917 rdev->sb_start = calc_dev_sboffset(rdev);
5918 else
5919 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5920
5921 rdev->sectors = rdev->sb_start;
5922
5923 if (test_bit(Faulty, &rdev->flags)) {
5924 printk(KERN_WARNING
5925 "md: can not hot-add faulty %s disk to %s!\n",
5926 bdevname(rdev->bdev,b), mdname(mddev));
5927 err = -EINVAL;
5928 goto abort_export;
5929 }
5930 clear_bit(In_sync, &rdev->flags);
5931 rdev->desc_nr = -1;
5932 rdev->saved_raid_disk = -1;
5933 err = bind_rdev_to_array(rdev, mddev);
5934 if (err)
5935 goto abort_export;
5936
5937 /*
5938 * The rest should better be atomic, we can have disk failures
5939 * noticed in interrupt contexts ...
5940 */
5941
5942 rdev->raid_disk = -1;
5943
5944 md_update_sb(mddev, 1);
5945
5946 /*
5947 * Kick recovery, maybe this spare has to be added to the
5948 * array immediately.
5949 */
5950 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5951 md_wakeup_thread(mddev->thread);
5952 md_new_event(mddev);
5953 return 0;
5954
5955 abort_export:
5956 export_rdev(rdev);
5957 return err;
5958 }
5959
5960 static int set_bitmap_file(struct mddev *mddev, int fd)
5961 {
5962 int err;
5963
5964 if (mddev->pers) {
5965 if (!mddev->pers->quiesce)
5966 return -EBUSY;
5967 if (mddev->recovery || mddev->sync_thread)
5968 return -EBUSY;
5969 /* we should be able to change the bitmap.. */
5970 }
5971
5972
5973 if (fd >= 0) {
5974 if (mddev->bitmap)
5975 return -EEXIST; /* cannot add when bitmap is present */
5976 mddev->bitmap_info.file = fget(fd);
5977
5978 if (mddev->bitmap_info.file == NULL) {
5979 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5980 mdname(mddev));
5981 return -EBADF;
5982 }
5983
5984 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5985 if (err) {
5986 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5987 mdname(mddev));
5988 fput(mddev->bitmap_info.file);
5989 mddev->bitmap_info.file = NULL;
5990 return err;
5991 }
5992 mddev->bitmap_info.offset = 0; /* file overrides offset */
5993 } else if (mddev->bitmap == NULL)
5994 return -ENOENT; /* cannot remove what isn't there */
5995 err = 0;
5996 if (mddev->pers) {
5997 mddev->pers->quiesce(mddev, 1);
5998 if (fd >= 0) {
5999 err = bitmap_create(mddev);
6000 if (!err)
6001 err = bitmap_load(mddev);
6002 }
6003 if (fd < 0 || err) {
6004 bitmap_destroy(mddev);
6005 fd = -1; /* make sure to put the file */
6006 }
6007 mddev->pers->quiesce(mddev, 0);
6008 }
6009 if (fd < 0) {
6010 if (mddev->bitmap_info.file) {
6011 restore_bitmap_write_access(mddev->bitmap_info.file);
6012 fput(mddev->bitmap_info.file);
6013 }
6014 mddev->bitmap_info.file = NULL;
6015 }
6016
6017 return err;
6018 }
6019
6020 /*
6021 * set_array_info is used two different ways
6022 * The original usage is when creating a new array.
6023 * In this usage, raid_disks is > 0 and it together with
6024 * level, size, not_persistent,layout,chunksize determine the
6025 * shape of the array.
6026 * This will always create an array with a type-0.90.0 superblock.
6027 * The newer usage is when assembling an array.
6028 * In this case raid_disks will be 0, and the major_version field is
6029 * use to determine which style super-blocks are to be found on the devices.
6030 * The minor and patch _version numbers are also kept incase the
6031 * super_block handler wishes to interpret them.
6032 */
6033 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6034 {
6035
6036 if (info->raid_disks == 0) {
6037 /* just setting version number for superblock loading */
6038 if (info->major_version < 0 ||
6039 info->major_version >= ARRAY_SIZE(super_types) ||
6040 super_types[info->major_version].name == NULL) {
6041 /* maybe try to auto-load a module? */
6042 printk(KERN_INFO
6043 "md: superblock version %d not known\n",
6044 info->major_version);
6045 return -EINVAL;
6046 }
6047 mddev->major_version = info->major_version;
6048 mddev->minor_version = info->minor_version;
6049 mddev->patch_version = info->patch_version;
6050 mddev->persistent = !info->not_persistent;
6051 /* ensure mddev_put doesn't delete this now that there
6052 * is some minimal configuration.
6053 */
6054 mddev->ctime = get_seconds();
6055 return 0;
6056 }
6057 mddev->major_version = MD_MAJOR_VERSION;
6058 mddev->minor_version = MD_MINOR_VERSION;
6059 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6060 mddev->ctime = get_seconds();
6061
6062 mddev->level = info->level;
6063 mddev->clevel[0] = 0;
6064 mddev->dev_sectors = 2 * (sector_t)info->size;
6065 mddev->raid_disks = info->raid_disks;
6066 /* don't set md_minor, it is determined by which /dev/md* was
6067 * openned
6068 */
6069 if (info->state & (1<<MD_SB_CLEAN))
6070 mddev->recovery_cp = MaxSector;
6071 else
6072 mddev->recovery_cp = 0;
6073 mddev->persistent = ! info->not_persistent;
6074 mddev->external = 0;
6075
6076 mddev->layout = info->layout;
6077 mddev->chunk_sectors = info->chunk_size >> 9;
6078
6079 mddev->max_disks = MD_SB_DISKS;
6080
6081 if (mddev->persistent)
6082 mddev->flags = 0;
6083 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6084
6085 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6086 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6087 mddev->bitmap_info.offset = 0;
6088
6089 mddev->reshape_position = MaxSector;
6090
6091 /*
6092 * Generate a 128 bit UUID
6093 */
6094 get_random_bytes(mddev->uuid, 16);
6095
6096 mddev->new_level = mddev->level;
6097 mddev->new_chunk_sectors = mddev->chunk_sectors;
6098 mddev->new_layout = mddev->layout;
6099 mddev->delta_disks = 0;
6100 mddev->reshape_backwards = 0;
6101
6102 return 0;
6103 }
6104
6105 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6106 {
6107 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6108
6109 if (mddev->external_size)
6110 return;
6111
6112 mddev->array_sectors = array_sectors;
6113 }
6114 EXPORT_SYMBOL(md_set_array_sectors);
6115
6116 static int update_size(struct mddev *mddev, sector_t num_sectors)
6117 {
6118 struct md_rdev *rdev;
6119 int rv;
6120 int fit = (num_sectors == 0);
6121
6122 if (mddev->pers->resize == NULL)
6123 return -EINVAL;
6124 /* The "num_sectors" is the number of sectors of each device that
6125 * is used. This can only make sense for arrays with redundancy.
6126 * linear and raid0 always use whatever space is available. We can only
6127 * consider changing this number if no resync or reconstruction is
6128 * happening, and if the new size is acceptable. It must fit before the
6129 * sb_start or, if that is <data_offset, it must fit before the size
6130 * of each device. If num_sectors is zero, we find the largest size
6131 * that fits.
6132 */
6133 if (mddev->sync_thread)
6134 return -EBUSY;
6135
6136 rdev_for_each(rdev, mddev) {
6137 sector_t avail = rdev->sectors;
6138
6139 if (fit && (num_sectors == 0 || num_sectors > avail))
6140 num_sectors = avail;
6141 if (avail < num_sectors)
6142 return -ENOSPC;
6143 }
6144 rv = mddev->pers->resize(mddev, num_sectors);
6145 if (!rv)
6146 revalidate_disk(mddev->gendisk);
6147 return rv;
6148 }
6149
6150 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6151 {
6152 int rv;
6153 struct md_rdev *rdev;
6154 /* change the number of raid disks */
6155 if (mddev->pers->check_reshape == NULL)
6156 return -EINVAL;
6157 if (raid_disks <= 0 ||
6158 (mddev->max_disks && raid_disks >= mddev->max_disks))
6159 return -EINVAL;
6160 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6161 return -EBUSY;
6162
6163 rdev_for_each(rdev, mddev) {
6164 if (mddev->raid_disks < raid_disks &&
6165 rdev->data_offset < rdev->new_data_offset)
6166 return -EINVAL;
6167 if (mddev->raid_disks > raid_disks &&
6168 rdev->data_offset > rdev->new_data_offset)
6169 return -EINVAL;
6170 }
6171
6172 mddev->delta_disks = raid_disks - mddev->raid_disks;
6173 if (mddev->delta_disks < 0)
6174 mddev->reshape_backwards = 1;
6175 else if (mddev->delta_disks > 0)
6176 mddev->reshape_backwards = 0;
6177
6178 rv = mddev->pers->check_reshape(mddev);
6179 if (rv < 0) {
6180 mddev->delta_disks = 0;
6181 mddev->reshape_backwards = 0;
6182 }
6183 return rv;
6184 }
6185
6186
6187 /*
6188 * update_array_info is used to change the configuration of an
6189 * on-line array.
6190 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6191 * fields in the info are checked against the array.
6192 * Any differences that cannot be handled will cause an error.
6193 * Normally, only one change can be managed at a time.
6194 */
6195 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6196 {
6197 int rv = 0;
6198 int cnt = 0;
6199 int state = 0;
6200
6201 /* calculate expected state,ignoring low bits */
6202 if (mddev->bitmap && mddev->bitmap_info.offset)
6203 state |= (1 << MD_SB_BITMAP_PRESENT);
6204
6205 if (mddev->major_version != info->major_version ||
6206 mddev->minor_version != info->minor_version ||
6207 /* mddev->patch_version != info->patch_version || */
6208 mddev->ctime != info->ctime ||
6209 mddev->level != info->level ||
6210 /* mddev->layout != info->layout || */
6211 !mddev->persistent != info->not_persistent||
6212 mddev->chunk_sectors != info->chunk_size >> 9 ||
6213 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6214 ((state^info->state) & 0xfffffe00)
6215 )
6216 return -EINVAL;
6217 /* Check there is only one change */
6218 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6219 cnt++;
6220 if (mddev->raid_disks != info->raid_disks)
6221 cnt++;
6222 if (mddev->layout != info->layout)
6223 cnt++;
6224 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6225 cnt++;
6226 if (cnt == 0)
6227 return 0;
6228 if (cnt > 1)
6229 return -EINVAL;
6230
6231 if (mddev->layout != info->layout) {
6232 /* Change layout
6233 * we don't need to do anything at the md level, the
6234 * personality will take care of it all.
6235 */
6236 if (mddev->pers->check_reshape == NULL)
6237 return -EINVAL;
6238 else {
6239 mddev->new_layout = info->layout;
6240 rv = mddev->pers->check_reshape(mddev);
6241 if (rv)
6242 mddev->new_layout = mddev->layout;
6243 return rv;
6244 }
6245 }
6246 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6247 rv = update_size(mddev, (sector_t)info->size * 2);
6248
6249 if (mddev->raid_disks != info->raid_disks)
6250 rv = update_raid_disks(mddev, info->raid_disks);
6251
6252 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6253 if (mddev->pers->quiesce == NULL)
6254 return -EINVAL;
6255 if (mddev->recovery || mddev->sync_thread)
6256 return -EBUSY;
6257 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6258 /* add the bitmap */
6259 if (mddev->bitmap)
6260 return -EEXIST;
6261 if (mddev->bitmap_info.default_offset == 0)
6262 return -EINVAL;
6263 mddev->bitmap_info.offset =
6264 mddev->bitmap_info.default_offset;
6265 mddev->bitmap_info.space =
6266 mddev->bitmap_info.default_space;
6267 mddev->pers->quiesce(mddev, 1);
6268 rv = bitmap_create(mddev);
6269 if (!rv)
6270 rv = bitmap_load(mddev);
6271 if (rv)
6272 bitmap_destroy(mddev);
6273 mddev->pers->quiesce(mddev, 0);
6274 } else {
6275 /* remove the bitmap */
6276 if (!mddev->bitmap)
6277 return -ENOENT;
6278 if (mddev->bitmap->storage.file)
6279 return -EINVAL;
6280 mddev->pers->quiesce(mddev, 1);
6281 bitmap_destroy(mddev);
6282 mddev->pers->quiesce(mddev, 0);
6283 mddev->bitmap_info.offset = 0;
6284 }
6285 }
6286 md_update_sb(mddev, 1);
6287 return rv;
6288 }
6289
6290 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6291 {
6292 struct md_rdev *rdev;
6293 int err = 0;
6294
6295 if (mddev->pers == NULL)
6296 return -ENODEV;
6297
6298 rcu_read_lock();
6299 rdev = find_rdev_rcu(mddev, dev);
6300 if (!rdev)
6301 err = -ENODEV;
6302 else {
6303 md_error(mddev, rdev);
6304 if (!test_bit(Faulty, &rdev->flags))
6305 err = -EBUSY;
6306 }
6307 rcu_read_unlock();
6308 return err;
6309 }
6310
6311 /*
6312 * We have a problem here : there is no easy way to give a CHS
6313 * virtual geometry. We currently pretend that we have a 2 heads
6314 * 4 sectors (with a BIG number of cylinders...). This drives
6315 * dosfs just mad... ;-)
6316 */
6317 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6318 {
6319 struct mddev *mddev = bdev->bd_disk->private_data;
6320
6321 geo->heads = 2;
6322 geo->sectors = 4;
6323 geo->cylinders = mddev->array_sectors / 8;
6324 return 0;
6325 }
6326
6327 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6328 unsigned int cmd, unsigned long arg)
6329 {
6330 int err = 0;
6331 void __user *argp = (void __user *)arg;
6332 struct mddev *mddev = NULL;
6333 int ro;
6334
6335 switch (cmd) {
6336 case RAID_VERSION:
6337 case GET_ARRAY_INFO:
6338 case GET_DISK_INFO:
6339 break;
6340 default:
6341 if (!capable(CAP_SYS_ADMIN))
6342 return -EACCES;
6343 }
6344
6345 /*
6346 * Commands dealing with the RAID driver but not any
6347 * particular array:
6348 */
6349 switch (cmd)
6350 {
6351 case RAID_VERSION:
6352 err = get_version(argp);
6353 goto done;
6354
6355 case PRINT_RAID_DEBUG:
6356 err = 0;
6357 md_print_devices();
6358 goto done;
6359
6360 #ifndef MODULE
6361 case RAID_AUTORUN:
6362 err = 0;
6363 autostart_arrays(arg);
6364 goto done;
6365 #endif
6366 default:;
6367 }
6368
6369 /*
6370 * Commands creating/starting a new array:
6371 */
6372
6373 mddev = bdev->bd_disk->private_data;
6374
6375 if (!mddev) {
6376 BUG();
6377 goto abort;
6378 }
6379
6380 /* Some actions do not requires the mutex */
6381 switch (cmd) {
6382 case GET_ARRAY_INFO:
6383 if (!mddev->raid_disks && !mddev->external)
6384 err = -ENODEV;
6385 else
6386 err = get_array_info(mddev, argp);
6387 goto abort;
6388
6389 case GET_DISK_INFO:
6390 if (!mddev->raid_disks && !mddev->external)
6391 err = -ENODEV;
6392 else
6393 err = get_disk_info(mddev, argp);
6394 goto abort;
6395
6396 case SET_DISK_FAULTY:
6397 err = set_disk_faulty(mddev, new_decode_dev(arg));
6398 goto abort;
6399 }
6400
6401 err = mddev_lock(mddev);
6402 if (err) {
6403 printk(KERN_INFO
6404 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6405 err, cmd);
6406 goto abort;
6407 }
6408
6409 switch (cmd)
6410 {
6411 case SET_ARRAY_INFO:
6412 {
6413 mdu_array_info_t info;
6414 if (!arg)
6415 memset(&info, 0, sizeof(info));
6416 else if (copy_from_user(&info, argp, sizeof(info))) {
6417 err = -EFAULT;
6418 goto abort_unlock;
6419 }
6420 if (mddev->pers) {
6421 err = update_array_info(mddev, &info);
6422 if (err) {
6423 printk(KERN_WARNING "md: couldn't update"
6424 " array info. %d\n", err);
6425 goto abort_unlock;
6426 }
6427 goto done_unlock;
6428 }
6429 if (!list_empty(&mddev->disks)) {
6430 printk(KERN_WARNING
6431 "md: array %s already has disks!\n",
6432 mdname(mddev));
6433 err = -EBUSY;
6434 goto abort_unlock;
6435 }
6436 if (mddev->raid_disks) {
6437 printk(KERN_WARNING
6438 "md: array %s already initialised!\n",
6439 mdname(mddev));
6440 err = -EBUSY;
6441 goto abort_unlock;
6442 }
6443 err = set_array_info(mddev, &info);
6444 if (err) {
6445 printk(KERN_WARNING "md: couldn't set"
6446 " array info. %d\n", err);
6447 goto abort_unlock;
6448 }
6449 }
6450 goto done_unlock;
6451
6452 default:;
6453 }
6454
6455 /*
6456 * Commands querying/configuring an existing array:
6457 */
6458 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6459 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6460 if ((!mddev->raid_disks && !mddev->external)
6461 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6462 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6463 && cmd != GET_BITMAP_FILE) {
6464 err = -ENODEV;
6465 goto abort_unlock;
6466 }
6467
6468 /*
6469 * Commands even a read-only array can execute:
6470 */
6471 switch (cmd)
6472 {
6473 case GET_BITMAP_FILE:
6474 err = get_bitmap_file(mddev, argp);
6475 goto done_unlock;
6476
6477 case RESTART_ARRAY_RW:
6478 err = restart_array(mddev);
6479 goto done_unlock;
6480
6481 case STOP_ARRAY:
6482 err = do_md_stop(mddev, 0, bdev);
6483 goto done_unlock;
6484
6485 case STOP_ARRAY_RO:
6486 err = md_set_readonly(mddev, bdev);
6487 goto done_unlock;
6488
6489 case BLKROSET:
6490 if (get_user(ro, (int __user *)(arg))) {
6491 err = -EFAULT;
6492 goto done_unlock;
6493 }
6494 err = -EINVAL;
6495
6496 /* if the bdev is going readonly the value of mddev->ro
6497 * does not matter, no writes are coming
6498 */
6499 if (ro)
6500 goto done_unlock;
6501
6502 /* are we are already prepared for writes? */
6503 if (mddev->ro != 1)
6504 goto done_unlock;
6505
6506 /* transitioning to readauto need only happen for
6507 * arrays that call md_write_start
6508 */
6509 if (mddev->pers) {
6510 err = restart_array(mddev);
6511 if (err == 0) {
6512 mddev->ro = 2;
6513 set_disk_ro(mddev->gendisk, 0);
6514 }
6515 }
6516 goto done_unlock;
6517 }
6518
6519 /*
6520 * The remaining ioctls are changing the state of the
6521 * superblock, so we do not allow them on read-only arrays.
6522 * However non-MD ioctls (e.g. get-size) will still come through
6523 * here and hit the 'default' below, so only disallow
6524 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6525 */
6526 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6527 if (mddev->ro == 2) {
6528 mddev->ro = 0;
6529 sysfs_notify_dirent_safe(mddev->sysfs_state);
6530 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6531 md_wakeup_thread(mddev->thread);
6532 } else {
6533 err = -EROFS;
6534 goto abort_unlock;
6535 }
6536 }
6537
6538 switch (cmd)
6539 {
6540 case ADD_NEW_DISK:
6541 {
6542 mdu_disk_info_t info;
6543 if (copy_from_user(&info, argp, sizeof(info)))
6544 err = -EFAULT;
6545 else
6546 err = add_new_disk(mddev, &info);
6547 goto done_unlock;
6548 }
6549
6550 case HOT_REMOVE_DISK:
6551 err = hot_remove_disk(mddev, new_decode_dev(arg));
6552 goto done_unlock;
6553
6554 case HOT_ADD_DISK:
6555 err = hot_add_disk(mddev, new_decode_dev(arg));
6556 goto done_unlock;
6557
6558 case RUN_ARRAY:
6559 err = do_md_run(mddev);
6560 goto done_unlock;
6561
6562 case SET_BITMAP_FILE:
6563 err = set_bitmap_file(mddev, (int)arg);
6564 goto done_unlock;
6565
6566 default:
6567 err = -EINVAL;
6568 goto abort_unlock;
6569 }
6570
6571 done_unlock:
6572 abort_unlock:
6573 if (mddev->hold_active == UNTIL_IOCTL &&
6574 err != -EINVAL)
6575 mddev->hold_active = 0;
6576 mddev_unlock(mddev);
6577
6578 return err;
6579 done:
6580 if (err)
6581 MD_BUG();
6582 abort:
6583 return err;
6584 }
6585 #ifdef CONFIG_COMPAT
6586 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6587 unsigned int cmd, unsigned long arg)
6588 {
6589 switch (cmd) {
6590 case HOT_REMOVE_DISK:
6591 case HOT_ADD_DISK:
6592 case SET_DISK_FAULTY:
6593 case SET_BITMAP_FILE:
6594 /* These take in integer arg, do not convert */
6595 break;
6596 default:
6597 arg = (unsigned long)compat_ptr(arg);
6598 break;
6599 }
6600
6601 return md_ioctl(bdev, mode, cmd, arg);
6602 }
6603 #endif /* CONFIG_COMPAT */
6604
6605 static int md_open(struct block_device *bdev, fmode_t mode)
6606 {
6607 /*
6608 * Succeed if we can lock the mddev, which confirms that
6609 * it isn't being stopped right now.
6610 */
6611 struct mddev *mddev = mddev_find(bdev->bd_dev);
6612 int err;
6613
6614 if (!mddev)
6615 return -ENODEV;
6616
6617 if (mddev->gendisk != bdev->bd_disk) {
6618 /* we are racing with mddev_put which is discarding this
6619 * bd_disk.
6620 */
6621 mddev_put(mddev);
6622 /* Wait until bdev->bd_disk is definitely gone */
6623 flush_workqueue(md_misc_wq);
6624 /* Then retry the open from the top */
6625 return -ERESTARTSYS;
6626 }
6627 BUG_ON(mddev != bdev->bd_disk->private_data);
6628
6629 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6630 goto out;
6631
6632 err = 0;
6633 atomic_inc(&mddev->openers);
6634 mutex_unlock(&mddev->open_mutex);
6635
6636 check_disk_change(bdev);
6637 out:
6638 return err;
6639 }
6640
6641 static int md_release(struct gendisk *disk, fmode_t mode)
6642 {
6643 struct mddev *mddev = disk->private_data;
6644
6645 BUG_ON(!mddev);
6646 atomic_dec(&mddev->openers);
6647 mddev_put(mddev);
6648
6649 return 0;
6650 }
6651
6652 static int md_media_changed(struct gendisk *disk)
6653 {
6654 struct mddev *mddev = disk->private_data;
6655
6656 return mddev->changed;
6657 }
6658
6659 static int md_revalidate(struct gendisk *disk)
6660 {
6661 struct mddev *mddev = disk->private_data;
6662
6663 mddev->changed = 0;
6664 return 0;
6665 }
6666 static const struct block_device_operations md_fops =
6667 {
6668 .owner = THIS_MODULE,
6669 .open = md_open,
6670 .release = md_release,
6671 .ioctl = md_ioctl,
6672 #ifdef CONFIG_COMPAT
6673 .compat_ioctl = md_compat_ioctl,
6674 #endif
6675 .getgeo = md_getgeo,
6676 .media_changed = md_media_changed,
6677 .revalidate_disk= md_revalidate,
6678 };
6679
6680 static int md_thread(void * arg)
6681 {
6682 struct md_thread *thread = arg;
6683
6684 /*
6685 * md_thread is a 'system-thread', it's priority should be very
6686 * high. We avoid resource deadlocks individually in each
6687 * raid personality. (RAID5 does preallocation) We also use RR and
6688 * the very same RT priority as kswapd, thus we will never get
6689 * into a priority inversion deadlock.
6690 *
6691 * we definitely have to have equal or higher priority than
6692 * bdflush, otherwise bdflush will deadlock if there are too
6693 * many dirty RAID5 blocks.
6694 */
6695
6696 allow_signal(SIGKILL);
6697 while (!kthread_should_stop()) {
6698
6699 /* We need to wait INTERRUPTIBLE so that
6700 * we don't add to the load-average.
6701 * That means we need to be sure no signals are
6702 * pending
6703 */
6704 if (signal_pending(current))
6705 flush_signals(current);
6706
6707 wait_event_interruptible_timeout
6708 (thread->wqueue,
6709 test_bit(THREAD_WAKEUP, &thread->flags)
6710 || kthread_should_stop(),
6711 thread->timeout);
6712
6713 clear_bit(THREAD_WAKEUP, &thread->flags);
6714 if (!kthread_should_stop())
6715 thread->run(thread);
6716 }
6717
6718 return 0;
6719 }
6720
6721 void md_wakeup_thread(struct md_thread *thread)
6722 {
6723 if (thread) {
6724 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6725 set_bit(THREAD_WAKEUP, &thread->flags);
6726 wake_up(&thread->wqueue);
6727 }
6728 }
6729
6730 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6731 struct mddev *mddev, const char *name)
6732 {
6733 struct md_thread *thread;
6734
6735 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6736 if (!thread)
6737 return NULL;
6738
6739 init_waitqueue_head(&thread->wqueue);
6740
6741 thread->run = run;
6742 thread->mddev = mddev;
6743 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6744 thread->tsk = kthread_run(md_thread, thread,
6745 "%s_%s",
6746 mdname(thread->mddev),
6747 name);
6748 if (IS_ERR(thread->tsk)) {
6749 kfree(thread);
6750 return NULL;
6751 }
6752 return thread;
6753 }
6754
6755 void md_unregister_thread(struct md_thread **threadp)
6756 {
6757 struct md_thread *thread = *threadp;
6758 if (!thread)
6759 return;
6760 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6761 /* Locking ensures that mddev_unlock does not wake_up a
6762 * non-existent thread
6763 */
6764 spin_lock(&pers_lock);
6765 *threadp = NULL;
6766 spin_unlock(&pers_lock);
6767
6768 kthread_stop(thread->tsk);
6769 kfree(thread);
6770 }
6771
6772 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6773 {
6774 if (!mddev) {
6775 MD_BUG();
6776 return;
6777 }
6778
6779 if (!rdev || test_bit(Faulty, &rdev->flags))
6780 return;
6781
6782 if (!mddev->pers || !mddev->pers->error_handler)
6783 return;
6784 mddev->pers->error_handler(mddev,rdev);
6785 if (mddev->degraded)
6786 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6787 sysfs_notify_dirent_safe(rdev->sysfs_state);
6788 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6789 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6790 md_wakeup_thread(mddev->thread);
6791 if (mddev->event_work.func)
6792 queue_work(md_misc_wq, &mddev->event_work);
6793 md_new_event_inintr(mddev);
6794 }
6795
6796 /* seq_file implementation /proc/mdstat */
6797
6798 static void status_unused(struct seq_file *seq)
6799 {
6800 int i = 0;
6801 struct md_rdev *rdev;
6802
6803 seq_printf(seq, "unused devices: ");
6804
6805 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6806 char b[BDEVNAME_SIZE];
6807 i++;
6808 seq_printf(seq, "%s ",
6809 bdevname(rdev->bdev,b));
6810 }
6811 if (!i)
6812 seq_printf(seq, "<none>");
6813
6814 seq_printf(seq, "\n");
6815 }
6816
6817
6818 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6819 {
6820 sector_t max_sectors, resync, res;
6821 unsigned long dt, db;
6822 sector_t rt;
6823 int scale;
6824 unsigned int per_milli;
6825
6826 if (mddev->curr_resync <= 3)
6827 resync = 0;
6828 else
6829 resync = mddev->curr_resync
6830 - atomic_read(&mddev->recovery_active);
6831
6832 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6833 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6834 max_sectors = mddev->resync_max_sectors;
6835 else
6836 max_sectors = mddev->dev_sectors;
6837
6838 /*
6839 * Should not happen.
6840 */
6841 if (!max_sectors) {
6842 MD_BUG();
6843 return;
6844 }
6845 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6846 * in a sector_t, and (max_sectors>>scale) will fit in a
6847 * u32, as those are the requirements for sector_div.
6848 * Thus 'scale' must be at least 10
6849 */
6850 scale = 10;
6851 if (sizeof(sector_t) > sizeof(unsigned long)) {
6852 while ( max_sectors/2 > (1ULL<<(scale+32)))
6853 scale++;
6854 }
6855 res = (resync>>scale)*1000;
6856 sector_div(res, (u32)((max_sectors>>scale)+1));
6857
6858 per_milli = res;
6859 {
6860 int i, x = per_milli/50, y = 20-x;
6861 seq_printf(seq, "[");
6862 for (i = 0; i < x; i++)
6863 seq_printf(seq, "=");
6864 seq_printf(seq, ">");
6865 for (i = 0; i < y; i++)
6866 seq_printf(seq, ".");
6867 seq_printf(seq, "] ");
6868 }
6869 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6870 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6871 "reshape" :
6872 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6873 "check" :
6874 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6875 "resync" : "recovery"))),
6876 per_milli/10, per_milli % 10,
6877 (unsigned long long) resync/2,
6878 (unsigned long long) max_sectors/2);
6879
6880 /*
6881 * dt: time from mark until now
6882 * db: blocks written from mark until now
6883 * rt: remaining time
6884 *
6885 * rt is a sector_t, so could be 32bit or 64bit.
6886 * So we divide before multiply in case it is 32bit and close
6887 * to the limit.
6888 * We scale the divisor (db) by 32 to avoid losing precision
6889 * near the end of resync when the number of remaining sectors
6890 * is close to 'db'.
6891 * We then divide rt by 32 after multiplying by db to compensate.
6892 * The '+1' avoids division by zero if db is very small.
6893 */
6894 dt = ((jiffies - mddev->resync_mark) / HZ);
6895 if (!dt) dt++;
6896 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6897 - mddev->resync_mark_cnt;
6898
6899 rt = max_sectors - resync; /* number of remaining sectors */
6900 sector_div(rt, db/32+1);
6901 rt *= dt;
6902 rt >>= 5;
6903
6904 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6905 ((unsigned long)rt % 60)/6);
6906
6907 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6908 }
6909
6910 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6911 {
6912 struct list_head *tmp;
6913 loff_t l = *pos;
6914 struct mddev *mddev;
6915
6916 if (l >= 0x10000)
6917 return NULL;
6918 if (!l--)
6919 /* header */
6920 return (void*)1;
6921
6922 spin_lock(&all_mddevs_lock);
6923 list_for_each(tmp,&all_mddevs)
6924 if (!l--) {
6925 mddev = list_entry(tmp, struct mddev, all_mddevs);
6926 mddev_get(mddev);
6927 spin_unlock(&all_mddevs_lock);
6928 return mddev;
6929 }
6930 spin_unlock(&all_mddevs_lock);
6931 if (!l--)
6932 return (void*)2;/* tail */
6933 return NULL;
6934 }
6935
6936 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6937 {
6938 struct list_head *tmp;
6939 struct mddev *next_mddev, *mddev = v;
6940
6941 ++*pos;
6942 if (v == (void*)2)
6943 return NULL;
6944
6945 spin_lock(&all_mddevs_lock);
6946 if (v == (void*)1)
6947 tmp = all_mddevs.next;
6948 else
6949 tmp = mddev->all_mddevs.next;
6950 if (tmp != &all_mddevs)
6951 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6952 else {
6953 next_mddev = (void*)2;
6954 *pos = 0x10000;
6955 }
6956 spin_unlock(&all_mddevs_lock);
6957
6958 if (v != (void*)1)
6959 mddev_put(mddev);
6960 return next_mddev;
6961
6962 }
6963
6964 static void md_seq_stop(struct seq_file *seq, void *v)
6965 {
6966 struct mddev *mddev = v;
6967
6968 if (mddev && v != (void*)1 && v != (void*)2)
6969 mddev_put(mddev);
6970 }
6971
6972 static int md_seq_show(struct seq_file *seq, void *v)
6973 {
6974 struct mddev *mddev = v;
6975 sector_t sectors;
6976 struct md_rdev *rdev;
6977
6978 if (v == (void*)1) {
6979 struct md_personality *pers;
6980 seq_printf(seq, "Personalities : ");
6981 spin_lock(&pers_lock);
6982 list_for_each_entry(pers, &pers_list, list)
6983 seq_printf(seq, "[%s] ", pers->name);
6984
6985 spin_unlock(&pers_lock);
6986 seq_printf(seq, "\n");
6987 seq->poll_event = atomic_read(&md_event_count);
6988 return 0;
6989 }
6990 if (v == (void*)2) {
6991 status_unused(seq);
6992 return 0;
6993 }
6994
6995 if (mddev_lock(mddev) < 0)
6996 return -EINTR;
6997
6998 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6999 seq_printf(seq, "%s : %sactive", mdname(mddev),
7000 mddev->pers ? "" : "in");
7001 if (mddev->pers) {
7002 if (mddev->ro==1)
7003 seq_printf(seq, " (read-only)");
7004 if (mddev->ro==2)
7005 seq_printf(seq, " (auto-read-only)");
7006 seq_printf(seq, " %s", mddev->pers->name);
7007 }
7008
7009 sectors = 0;
7010 rdev_for_each(rdev, mddev) {
7011 char b[BDEVNAME_SIZE];
7012 seq_printf(seq, " %s[%d]",
7013 bdevname(rdev->bdev,b), rdev->desc_nr);
7014 if (test_bit(WriteMostly, &rdev->flags))
7015 seq_printf(seq, "(W)");
7016 if (test_bit(Faulty, &rdev->flags)) {
7017 seq_printf(seq, "(F)");
7018 continue;
7019 }
7020 if (rdev->raid_disk < 0)
7021 seq_printf(seq, "(S)"); /* spare */
7022 if (test_bit(Replacement, &rdev->flags))
7023 seq_printf(seq, "(R)");
7024 sectors += rdev->sectors;
7025 }
7026
7027 if (!list_empty(&mddev->disks)) {
7028 if (mddev->pers)
7029 seq_printf(seq, "\n %llu blocks",
7030 (unsigned long long)
7031 mddev->array_sectors / 2);
7032 else
7033 seq_printf(seq, "\n %llu blocks",
7034 (unsigned long long)sectors / 2);
7035 }
7036 if (mddev->persistent) {
7037 if (mddev->major_version != 0 ||
7038 mddev->minor_version != 90) {
7039 seq_printf(seq," super %d.%d",
7040 mddev->major_version,
7041 mddev->minor_version);
7042 }
7043 } else if (mddev->external)
7044 seq_printf(seq, " super external:%s",
7045 mddev->metadata_type);
7046 else
7047 seq_printf(seq, " super non-persistent");
7048
7049 if (mddev->pers) {
7050 mddev->pers->status(seq, mddev);
7051 seq_printf(seq, "\n ");
7052 if (mddev->pers->sync_request) {
7053 if (mddev->curr_resync > 2) {
7054 status_resync(seq, mddev);
7055 seq_printf(seq, "\n ");
7056 } else if (mddev->curr_resync >= 1)
7057 seq_printf(seq, "\tresync=DELAYED\n ");
7058 else if (mddev->recovery_cp < MaxSector)
7059 seq_printf(seq, "\tresync=PENDING\n ");
7060 }
7061 } else
7062 seq_printf(seq, "\n ");
7063
7064 bitmap_status(seq, mddev->bitmap);
7065
7066 seq_printf(seq, "\n");
7067 }
7068 mddev_unlock(mddev);
7069
7070 return 0;
7071 }
7072
7073 static const struct seq_operations md_seq_ops = {
7074 .start = md_seq_start,
7075 .next = md_seq_next,
7076 .stop = md_seq_stop,
7077 .show = md_seq_show,
7078 };
7079
7080 static int md_seq_open(struct inode *inode, struct file *file)
7081 {
7082 struct seq_file *seq;
7083 int error;
7084
7085 error = seq_open(file, &md_seq_ops);
7086 if (error)
7087 return error;
7088
7089 seq = file->private_data;
7090 seq->poll_event = atomic_read(&md_event_count);
7091 return error;
7092 }
7093
7094 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7095 {
7096 struct seq_file *seq = filp->private_data;
7097 int mask;
7098
7099 poll_wait(filp, &md_event_waiters, wait);
7100
7101 /* always allow read */
7102 mask = POLLIN | POLLRDNORM;
7103
7104 if (seq->poll_event != atomic_read(&md_event_count))
7105 mask |= POLLERR | POLLPRI;
7106 return mask;
7107 }
7108
7109 static const struct file_operations md_seq_fops = {
7110 .owner = THIS_MODULE,
7111 .open = md_seq_open,
7112 .read = seq_read,
7113 .llseek = seq_lseek,
7114 .release = seq_release_private,
7115 .poll = mdstat_poll,
7116 };
7117
7118 int register_md_personality(struct md_personality *p)
7119 {
7120 spin_lock(&pers_lock);
7121 list_add_tail(&p->list, &pers_list);
7122 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7123 spin_unlock(&pers_lock);
7124 return 0;
7125 }
7126
7127 int unregister_md_personality(struct md_personality *p)
7128 {
7129 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7130 spin_lock(&pers_lock);
7131 list_del_init(&p->list);
7132 spin_unlock(&pers_lock);
7133 return 0;
7134 }
7135
7136 static int is_mddev_idle(struct mddev *mddev, int init)
7137 {
7138 struct md_rdev * rdev;
7139 int idle;
7140 int curr_events;
7141
7142 idle = 1;
7143 rcu_read_lock();
7144 rdev_for_each_rcu(rdev, mddev) {
7145 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7146 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7147 (int)part_stat_read(&disk->part0, sectors[1]) -
7148 atomic_read(&disk->sync_io);
7149 /* sync IO will cause sync_io to increase before the disk_stats
7150 * as sync_io is counted when a request starts, and
7151 * disk_stats is counted when it completes.
7152 * So resync activity will cause curr_events to be smaller than
7153 * when there was no such activity.
7154 * non-sync IO will cause disk_stat to increase without
7155 * increasing sync_io so curr_events will (eventually)
7156 * be larger than it was before. Once it becomes
7157 * substantially larger, the test below will cause
7158 * the array to appear non-idle, and resync will slow
7159 * down.
7160 * If there is a lot of outstanding resync activity when
7161 * we set last_event to curr_events, then all that activity
7162 * completing might cause the array to appear non-idle
7163 * and resync will be slowed down even though there might
7164 * not have been non-resync activity. This will only
7165 * happen once though. 'last_events' will soon reflect
7166 * the state where there is little or no outstanding
7167 * resync requests, and further resync activity will
7168 * always make curr_events less than last_events.
7169 *
7170 */
7171 if (init || curr_events - rdev->last_events > 64) {
7172 rdev->last_events = curr_events;
7173 idle = 0;
7174 }
7175 }
7176 rcu_read_unlock();
7177 return idle;
7178 }
7179
7180 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7181 {
7182 /* another "blocks" (512byte) blocks have been synced */
7183 atomic_sub(blocks, &mddev->recovery_active);
7184 wake_up(&mddev->recovery_wait);
7185 if (!ok) {
7186 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7187 md_wakeup_thread(mddev->thread);
7188 // stop recovery, signal do_sync ....
7189 }
7190 }
7191
7192
7193 /* md_write_start(mddev, bi)
7194 * If we need to update some array metadata (e.g. 'active' flag
7195 * in superblock) before writing, schedule a superblock update
7196 * and wait for it to complete.
7197 */
7198 void md_write_start(struct mddev *mddev, struct bio *bi)
7199 {
7200 int did_change = 0;
7201 if (bio_data_dir(bi) != WRITE)
7202 return;
7203
7204 BUG_ON(mddev->ro == 1);
7205 if (mddev->ro == 2) {
7206 /* need to switch to read/write */
7207 mddev->ro = 0;
7208 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7209 md_wakeup_thread(mddev->thread);
7210 md_wakeup_thread(mddev->sync_thread);
7211 did_change = 1;
7212 }
7213 atomic_inc(&mddev->writes_pending);
7214 if (mddev->safemode == 1)
7215 mddev->safemode = 0;
7216 if (mddev->in_sync) {
7217 spin_lock_irq(&mddev->write_lock);
7218 if (mddev->in_sync) {
7219 mddev->in_sync = 0;
7220 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7221 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7222 md_wakeup_thread(mddev->thread);
7223 did_change = 1;
7224 }
7225 spin_unlock_irq(&mddev->write_lock);
7226 }
7227 if (did_change)
7228 sysfs_notify_dirent_safe(mddev->sysfs_state);
7229 wait_event(mddev->sb_wait,
7230 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7231 }
7232
7233 void md_write_end(struct mddev *mddev)
7234 {
7235 if (atomic_dec_and_test(&mddev->writes_pending)) {
7236 if (mddev->safemode == 2)
7237 md_wakeup_thread(mddev->thread);
7238 else if (mddev->safemode_delay)
7239 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7240 }
7241 }
7242
7243 /* md_allow_write(mddev)
7244 * Calling this ensures that the array is marked 'active' so that writes
7245 * may proceed without blocking. It is important to call this before
7246 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7247 * Must be called with mddev_lock held.
7248 *
7249 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7250 * is dropped, so return -EAGAIN after notifying userspace.
7251 */
7252 int md_allow_write(struct mddev *mddev)
7253 {
7254 if (!mddev->pers)
7255 return 0;
7256 if (mddev->ro)
7257 return 0;
7258 if (!mddev->pers->sync_request)
7259 return 0;
7260
7261 spin_lock_irq(&mddev->write_lock);
7262 if (mddev->in_sync) {
7263 mddev->in_sync = 0;
7264 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7265 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7266 if (mddev->safemode_delay &&
7267 mddev->safemode == 0)
7268 mddev->safemode = 1;
7269 spin_unlock_irq(&mddev->write_lock);
7270 md_update_sb(mddev, 0);
7271 sysfs_notify_dirent_safe(mddev->sysfs_state);
7272 } else
7273 spin_unlock_irq(&mddev->write_lock);
7274
7275 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7276 return -EAGAIN;
7277 else
7278 return 0;
7279 }
7280 EXPORT_SYMBOL_GPL(md_allow_write);
7281
7282 #define SYNC_MARKS 10
7283 #define SYNC_MARK_STEP (3*HZ)
7284 void md_do_sync(struct md_thread *thread)
7285 {
7286 struct mddev *mddev = thread->mddev;
7287 struct mddev *mddev2;
7288 unsigned int currspeed = 0,
7289 window;
7290 sector_t max_sectors,j, io_sectors;
7291 unsigned long mark[SYNC_MARKS];
7292 sector_t mark_cnt[SYNC_MARKS];
7293 int last_mark,m;
7294 struct list_head *tmp;
7295 sector_t last_check;
7296 int skipped = 0;
7297 struct md_rdev *rdev;
7298 char *desc;
7299 struct blk_plug plug;
7300
7301 /* just incase thread restarts... */
7302 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7303 return;
7304 if (mddev->ro) /* never try to sync a read-only array */
7305 return;
7306
7307 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7308 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7309 desc = "data-check";
7310 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7311 desc = "requested-resync";
7312 else
7313 desc = "resync";
7314 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7315 desc = "reshape";
7316 else
7317 desc = "recovery";
7318
7319 /* we overload curr_resync somewhat here.
7320 * 0 == not engaged in resync at all
7321 * 2 == checking that there is no conflict with another sync
7322 * 1 == like 2, but have yielded to allow conflicting resync to
7323 * commense
7324 * other == active in resync - this many blocks
7325 *
7326 * Before starting a resync we must have set curr_resync to
7327 * 2, and then checked that every "conflicting" array has curr_resync
7328 * less than ours. When we find one that is the same or higher
7329 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7330 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7331 * This will mean we have to start checking from the beginning again.
7332 *
7333 */
7334
7335 do {
7336 mddev->curr_resync = 2;
7337
7338 try_again:
7339 if (kthread_should_stop())
7340 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7341
7342 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7343 goto skip;
7344 for_each_mddev(mddev2, tmp) {
7345 if (mddev2 == mddev)
7346 continue;
7347 if (!mddev->parallel_resync
7348 && mddev2->curr_resync
7349 && match_mddev_units(mddev, mddev2)) {
7350 DEFINE_WAIT(wq);
7351 if (mddev < mddev2 && mddev->curr_resync == 2) {
7352 /* arbitrarily yield */
7353 mddev->curr_resync = 1;
7354 wake_up(&resync_wait);
7355 }
7356 if (mddev > mddev2 && mddev->curr_resync == 1)
7357 /* no need to wait here, we can wait the next
7358 * time 'round when curr_resync == 2
7359 */
7360 continue;
7361 /* We need to wait 'interruptible' so as not to
7362 * contribute to the load average, and not to
7363 * be caught by 'softlockup'
7364 */
7365 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7366 if (!kthread_should_stop() &&
7367 mddev2->curr_resync >= mddev->curr_resync) {
7368 printk(KERN_INFO "md: delaying %s of %s"
7369 " until %s has finished (they"
7370 " share one or more physical units)\n",
7371 desc, mdname(mddev), mdname(mddev2));
7372 mddev_put(mddev2);
7373 if (signal_pending(current))
7374 flush_signals(current);
7375 schedule();
7376 finish_wait(&resync_wait, &wq);
7377 goto try_again;
7378 }
7379 finish_wait(&resync_wait, &wq);
7380 }
7381 }
7382 } while (mddev->curr_resync < 2);
7383
7384 j = 0;
7385 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7386 /* resync follows the size requested by the personality,
7387 * which defaults to physical size, but can be virtual size
7388 */
7389 max_sectors = mddev->resync_max_sectors;
7390 atomic64_set(&mddev->resync_mismatches, 0);
7391 /* we don't use the checkpoint if there's a bitmap */
7392 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7393 j = mddev->resync_min;
7394 else if (!mddev->bitmap)
7395 j = mddev->recovery_cp;
7396
7397 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7398 max_sectors = mddev->resync_max_sectors;
7399 else {
7400 /* recovery follows the physical size of devices */
7401 max_sectors = mddev->dev_sectors;
7402 j = MaxSector;
7403 rcu_read_lock();
7404 rdev_for_each_rcu(rdev, mddev)
7405 if (rdev->raid_disk >= 0 &&
7406 !test_bit(Faulty, &rdev->flags) &&
7407 !test_bit(In_sync, &rdev->flags) &&
7408 rdev->recovery_offset < j)
7409 j = rdev->recovery_offset;
7410 rcu_read_unlock();
7411 }
7412
7413 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7414 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7415 " %d KB/sec/disk.\n", speed_min(mddev));
7416 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7417 "(but not more than %d KB/sec) for %s.\n",
7418 speed_max(mddev), desc);
7419
7420 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7421
7422 io_sectors = 0;
7423 for (m = 0; m < SYNC_MARKS; m++) {
7424 mark[m] = jiffies;
7425 mark_cnt[m] = io_sectors;
7426 }
7427 last_mark = 0;
7428 mddev->resync_mark = mark[last_mark];
7429 mddev->resync_mark_cnt = mark_cnt[last_mark];
7430
7431 /*
7432 * Tune reconstruction:
7433 */
7434 window = 32*(PAGE_SIZE/512);
7435 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7436 window/2, (unsigned long long)max_sectors/2);
7437
7438 atomic_set(&mddev->recovery_active, 0);
7439 last_check = 0;
7440
7441 if (j>2) {
7442 printk(KERN_INFO
7443 "md: resuming %s of %s from checkpoint.\n",
7444 desc, mdname(mddev));
7445 mddev->curr_resync = j;
7446 } else
7447 mddev->curr_resync = 3; /* no longer delayed */
7448 mddev->curr_resync_completed = j;
7449 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7450 md_new_event(mddev);
7451
7452 blk_start_plug(&plug);
7453 while (j < max_sectors) {
7454 sector_t sectors;
7455
7456 skipped = 0;
7457
7458 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7459 ((mddev->curr_resync > mddev->curr_resync_completed &&
7460 (mddev->curr_resync - mddev->curr_resync_completed)
7461 > (max_sectors >> 4)) ||
7462 (j - mddev->curr_resync_completed)*2
7463 >= mddev->resync_max - mddev->curr_resync_completed
7464 )) {
7465 /* time to update curr_resync_completed */
7466 wait_event(mddev->recovery_wait,
7467 atomic_read(&mddev->recovery_active) == 0);
7468 mddev->curr_resync_completed = j;
7469 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7470 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7471 }
7472
7473 while (j >= mddev->resync_max && !kthread_should_stop()) {
7474 /* As this condition is controlled by user-space,
7475 * we can block indefinitely, so use '_interruptible'
7476 * to avoid triggering warnings.
7477 */
7478 flush_signals(current); /* just in case */
7479 wait_event_interruptible(mddev->recovery_wait,
7480 mddev->resync_max > j
7481 || kthread_should_stop());
7482 }
7483
7484 if (kthread_should_stop())
7485 goto interrupted;
7486
7487 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7488 currspeed < speed_min(mddev));
7489 if (sectors == 0) {
7490 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7491 goto out;
7492 }
7493
7494 if (!skipped) { /* actual IO requested */
7495 io_sectors += sectors;
7496 atomic_add(sectors, &mddev->recovery_active);
7497 }
7498
7499 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7500 break;
7501
7502 j += sectors;
7503 if (j > 2)
7504 mddev->curr_resync = j;
7505 mddev->curr_mark_cnt = io_sectors;
7506 if (last_check == 0)
7507 /* this is the earliest that rebuild will be
7508 * visible in /proc/mdstat
7509 */
7510 md_new_event(mddev);
7511
7512 if (last_check + window > io_sectors || j == max_sectors)
7513 continue;
7514
7515 last_check = io_sectors;
7516 repeat:
7517 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7518 /* step marks */
7519 int next = (last_mark+1) % SYNC_MARKS;
7520
7521 mddev->resync_mark = mark[next];
7522 mddev->resync_mark_cnt = mark_cnt[next];
7523 mark[next] = jiffies;
7524 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7525 last_mark = next;
7526 }
7527
7528
7529 if (kthread_should_stop())
7530 goto interrupted;
7531
7532
7533 /*
7534 * this loop exits only if either when we are slower than
7535 * the 'hard' speed limit, or the system was IO-idle for
7536 * a jiffy.
7537 * the system might be non-idle CPU-wise, but we only care
7538 * about not overloading the IO subsystem. (things like an
7539 * e2fsck being done on the RAID array should execute fast)
7540 */
7541 cond_resched();
7542
7543 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7544 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7545
7546 if (currspeed > speed_min(mddev)) {
7547 if ((currspeed > speed_max(mddev)) ||
7548 !is_mddev_idle(mddev, 0)) {
7549 msleep(500);
7550 goto repeat;
7551 }
7552 }
7553 }
7554 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7555 /*
7556 * this also signals 'finished resyncing' to md_stop
7557 */
7558 out:
7559 blk_finish_plug(&plug);
7560 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7561
7562 /* tell personality that we are finished */
7563 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7564
7565 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7566 mddev->curr_resync > 2) {
7567 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7568 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7569 if (mddev->curr_resync >= mddev->recovery_cp) {
7570 printk(KERN_INFO
7571 "md: checkpointing %s of %s.\n",
7572 desc, mdname(mddev));
7573 mddev->recovery_cp =
7574 mddev->curr_resync_completed;
7575 }
7576 } else
7577 mddev->recovery_cp = MaxSector;
7578 } else {
7579 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7580 mddev->curr_resync = MaxSector;
7581 rcu_read_lock();
7582 rdev_for_each_rcu(rdev, mddev)
7583 if (rdev->raid_disk >= 0 &&
7584 mddev->delta_disks >= 0 &&
7585 !test_bit(Faulty, &rdev->flags) &&
7586 !test_bit(In_sync, &rdev->flags) &&
7587 rdev->recovery_offset < mddev->curr_resync)
7588 rdev->recovery_offset = mddev->curr_resync;
7589 rcu_read_unlock();
7590 }
7591 }
7592 skip:
7593 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7594
7595 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7596 /* We completed so min/max setting can be forgotten if used. */
7597 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7598 mddev->resync_min = 0;
7599 mddev->resync_max = MaxSector;
7600 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7601 mddev->resync_min = mddev->curr_resync_completed;
7602 mddev->curr_resync = 0;
7603 wake_up(&resync_wait);
7604 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7605 md_wakeup_thread(mddev->thread);
7606 return;
7607
7608 interrupted:
7609 /*
7610 * got a signal, exit.
7611 */
7612 printk(KERN_INFO
7613 "md: md_do_sync() got signal ... exiting\n");
7614 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7615 goto out;
7616
7617 }
7618 EXPORT_SYMBOL_GPL(md_do_sync);
7619
7620 static int remove_and_add_spares(struct mddev *mddev)
7621 {
7622 struct md_rdev *rdev;
7623 int spares = 0;
7624 int removed = 0;
7625
7626 rdev_for_each(rdev, mddev)
7627 if (rdev->raid_disk >= 0 &&
7628 !test_bit(Blocked, &rdev->flags) &&
7629 (test_bit(Faulty, &rdev->flags) ||
7630 ! test_bit(In_sync, &rdev->flags)) &&
7631 atomic_read(&rdev->nr_pending)==0) {
7632 if (mddev->pers->hot_remove_disk(
7633 mddev, rdev) == 0) {
7634 sysfs_unlink_rdev(mddev, rdev);
7635 rdev->raid_disk = -1;
7636 removed++;
7637 }
7638 }
7639 if (removed)
7640 sysfs_notify(&mddev->kobj, NULL,
7641 "degraded");
7642
7643
7644 rdev_for_each(rdev, mddev) {
7645 if (rdev->raid_disk >= 0 &&
7646 !test_bit(In_sync, &rdev->flags) &&
7647 !test_bit(Faulty, &rdev->flags))
7648 spares++;
7649 if (rdev->raid_disk < 0
7650 && !test_bit(Faulty, &rdev->flags)) {
7651 rdev->recovery_offset = 0;
7652 if (mddev->pers->
7653 hot_add_disk(mddev, rdev) == 0) {
7654 if (sysfs_link_rdev(mddev, rdev))
7655 /* failure here is OK */;
7656 spares++;
7657 md_new_event(mddev);
7658 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7659 }
7660 }
7661 }
7662 if (removed)
7663 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7664 return spares;
7665 }
7666
7667 static void reap_sync_thread(struct mddev *mddev)
7668 {
7669 struct md_rdev *rdev;
7670
7671 /* resync has finished, collect result */
7672 md_unregister_thread(&mddev->sync_thread);
7673 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7674 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7675 /* success...*/
7676 /* activate any spares */
7677 if (mddev->pers->spare_active(mddev)) {
7678 sysfs_notify(&mddev->kobj, NULL,
7679 "degraded");
7680 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7681 }
7682 }
7683 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7684 mddev->pers->finish_reshape)
7685 mddev->pers->finish_reshape(mddev);
7686
7687 /* If array is no-longer degraded, then any saved_raid_disk
7688 * information must be scrapped. Also if any device is now
7689 * In_sync we must scrape the saved_raid_disk for that device
7690 * do the superblock for an incrementally recovered device
7691 * written out.
7692 */
7693 rdev_for_each(rdev, mddev)
7694 if (!mddev->degraded ||
7695 test_bit(In_sync, &rdev->flags))
7696 rdev->saved_raid_disk = -1;
7697
7698 md_update_sb(mddev, 1);
7699 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7700 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7701 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7702 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7703 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7704 /* flag recovery needed just to double check */
7705 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7706 sysfs_notify_dirent_safe(mddev->sysfs_action);
7707 md_new_event(mddev);
7708 if (mddev->event_work.func)
7709 queue_work(md_misc_wq, &mddev->event_work);
7710 }
7711
7712 /*
7713 * This routine is regularly called by all per-raid-array threads to
7714 * deal with generic issues like resync and super-block update.
7715 * Raid personalities that don't have a thread (linear/raid0) do not
7716 * need this as they never do any recovery or update the superblock.
7717 *
7718 * It does not do any resync itself, but rather "forks" off other threads
7719 * to do that as needed.
7720 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7721 * "->recovery" and create a thread at ->sync_thread.
7722 * When the thread finishes it sets MD_RECOVERY_DONE
7723 * and wakeups up this thread which will reap the thread and finish up.
7724 * This thread also removes any faulty devices (with nr_pending == 0).
7725 *
7726 * The overall approach is:
7727 * 1/ if the superblock needs updating, update it.
7728 * 2/ If a recovery thread is running, don't do anything else.
7729 * 3/ If recovery has finished, clean up, possibly marking spares active.
7730 * 4/ If there are any faulty devices, remove them.
7731 * 5/ If array is degraded, try to add spares devices
7732 * 6/ If array has spares or is not in-sync, start a resync thread.
7733 */
7734 void md_check_recovery(struct mddev *mddev)
7735 {
7736 if (mddev->suspended)
7737 return;
7738
7739 if (mddev->bitmap)
7740 bitmap_daemon_work(mddev);
7741
7742 if (signal_pending(current)) {
7743 if (mddev->pers->sync_request && !mddev->external) {
7744 printk(KERN_INFO "md: %s in immediate safe mode\n",
7745 mdname(mddev));
7746 mddev->safemode = 2;
7747 }
7748 flush_signals(current);
7749 }
7750
7751 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7752 return;
7753 if ( ! (
7754 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7755 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7756 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7757 (mddev->external == 0 && mddev->safemode == 1) ||
7758 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7759 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7760 ))
7761 return;
7762
7763 if (mddev_trylock(mddev)) {
7764 int spares = 0;
7765
7766 if (mddev->ro) {
7767 /* Only thing we do on a ro array is remove
7768 * failed devices.
7769 */
7770 struct md_rdev *rdev;
7771 rdev_for_each(rdev, mddev)
7772 if (rdev->raid_disk >= 0 &&
7773 !test_bit(Blocked, &rdev->flags) &&
7774 test_bit(Faulty, &rdev->flags) &&
7775 atomic_read(&rdev->nr_pending)==0) {
7776 if (mddev->pers->hot_remove_disk(
7777 mddev, rdev) == 0) {
7778 sysfs_unlink_rdev(mddev, rdev);
7779 rdev->raid_disk = -1;
7780 }
7781 }
7782 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7783 goto unlock;
7784 }
7785
7786 if (!mddev->external) {
7787 int did_change = 0;
7788 spin_lock_irq(&mddev->write_lock);
7789 if (mddev->safemode &&
7790 !atomic_read(&mddev->writes_pending) &&
7791 !mddev->in_sync &&
7792 mddev->recovery_cp == MaxSector) {
7793 mddev->in_sync = 1;
7794 did_change = 1;
7795 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7796 }
7797 if (mddev->safemode == 1)
7798 mddev->safemode = 0;
7799 spin_unlock_irq(&mddev->write_lock);
7800 if (did_change)
7801 sysfs_notify_dirent_safe(mddev->sysfs_state);
7802 }
7803
7804 if (mddev->flags)
7805 md_update_sb(mddev, 0);
7806
7807 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7808 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7809 /* resync/recovery still happening */
7810 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7811 goto unlock;
7812 }
7813 if (mddev->sync_thread) {
7814 reap_sync_thread(mddev);
7815 goto unlock;
7816 }
7817 /* Set RUNNING before clearing NEEDED to avoid
7818 * any transients in the value of "sync_action".
7819 */
7820 mddev->curr_resync_completed = 0;
7821 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7822 /* Clear some bits that don't mean anything, but
7823 * might be left set
7824 */
7825 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7826 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7827
7828 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7829 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7830 goto unlock;
7831 /* no recovery is running.
7832 * remove any failed drives, then
7833 * add spares if possible.
7834 * Spares are also removed and re-added, to allow
7835 * the personality to fail the re-add.
7836 */
7837
7838 if (mddev->reshape_position != MaxSector) {
7839 if (mddev->pers->check_reshape == NULL ||
7840 mddev->pers->check_reshape(mddev) != 0)
7841 /* Cannot proceed */
7842 goto unlock;
7843 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7844 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7845 } else if ((spares = remove_and_add_spares(mddev))) {
7846 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7847 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7848 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7849 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7850 } else if (mddev->recovery_cp < MaxSector) {
7851 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7852 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7853 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7854 /* nothing to be done ... */
7855 goto unlock;
7856
7857 if (mddev->pers->sync_request) {
7858 if (spares) {
7859 /* We are adding a device or devices to an array
7860 * which has the bitmap stored on all devices.
7861 * So make sure all bitmap pages get written
7862 */
7863 bitmap_write_all(mddev->bitmap);
7864 }
7865 mddev->sync_thread = md_register_thread(md_do_sync,
7866 mddev,
7867 "resync");
7868 if (!mddev->sync_thread) {
7869 printk(KERN_ERR "%s: could not start resync"
7870 " thread...\n",
7871 mdname(mddev));
7872 /* leave the spares where they are, it shouldn't hurt */
7873 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7874 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7875 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7876 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7877 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7878 } else
7879 md_wakeup_thread(mddev->sync_thread);
7880 sysfs_notify_dirent_safe(mddev->sysfs_action);
7881 md_new_event(mddev);
7882 }
7883 unlock:
7884 if (!mddev->sync_thread) {
7885 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7886 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7887 &mddev->recovery))
7888 if (mddev->sysfs_action)
7889 sysfs_notify_dirent_safe(mddev->sysfs_action);
7890 }
7891 mddev_unlock(mddev);
7892 }
7893 }
7894
7895 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7896 {
7897 sysfs_notify_dirent_safe(rdev->sysfs_state);
7898 wait_event_timeout(rdev->blocked_wait,
7899 !test_bit(Blocked, &rdev->flags) &&
7900 !test_bit(BlockedBadBlocks, &rdev->flags),
7901 msecs_to_jiffies(5000));
7902 rdev_dec_pending(rdev, mddev);
7903 }
7904 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7905
7906 void md_finish_reshape(struct mddev *mddev)
7907 {
7908 /* called be personality module when reshape completes. */
7909 struct md_rdev *rdev;
7910
7911 rdev_for_each(rdev, mddev) {
7912 if (rdev->data_offset > rdev->new_data_offset)
7913 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7914 else
7915 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7916 rdev->data_offset = rdev->new_data_offset;
7917 }
7918 }
7919 EXPORT_SYMBOL(md_finish_reshape);
7920
7921 /* Bad block management.
7922 * We can record which blocks on each device are 'bad' and so just
7923 * fail those blocks, or that stripe, rather than the whole device.
7924 * Entries in the bad-block table are 64bits wide. This comprises:
7925 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7926 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7927 * A 'shift' can be set so that larger blocks are tracked and
7928 * consequently larger devices can be covered.
7929 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7930 *
7931 * Locking of the bad-block table uses a seqlock so md_is_badblock
7932 * might need to retry if it is very unlucky.
7933 * We will sometimes want to check for bad blocks in a bi_end_io function,
7934 * so we use the write_seqlock_irq variant.
7935 *
7936 * When looking for a bad block we specify a range and want to
7937 * know if any block in the range is bad. So we binary-search
7938 * to the last range that starts at-or-before the given endpoint,
7939 * (or "before the sector after the target range")
7940 * then see if it ends after the given start.
7941 * We return
7942 * 0 if there are no known bad blocks in the range
7943 * 1 if there are known bad block which are all acknowledged
7944 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7945 * plus the start/length of the first bad section we overlap.
7946 */
7947 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7948 sector_t *first_bad, int *bad_sectors)
7949 {
7950 int hi;
7951 int lo;
7952 u64 *p = bb->page;
7953 int rv;
7954 sector_t target = s + sectors;
7955 unsigned seq;
7956
7957 if (bb->shift > 0) {
7958 /* round the start down, and the end up */
7959 s >>= bb->shift;
7960 target += (1<<bb->shift) - 1;
7961 target >>= bb->shift;
7962 sectors = target - s;
7963 }
7964 /* 'target' is now the first block after the bad range */
7965
7966 retry:
7967 seq = read_seqbegin(&bb->lock);
7968 lo = 0;
7969 rv = 0;
7970 hi = bb->count;
7971
7972 /* Binary search between lo and hi for 'target'
7973 * i.e. for the last range that starts before 'target'
7974 */
7975 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7976 * are known not to be the last range before target.
7977 * VARIANT: hi-lo is the number of possible
7978 * ranges, and decreases until it reaches 1
7979 */
7980 while (hi - lo > 1) {
7981 int mid = (lo + hi) / 2;
7982 sector_t a = BB_OFFSET(p[mid]);
7983 if (a < target)
7984 /* This could still be the one, earlier ranges
7985 * could not. */
7986 lo = mid;
7987 else
7988 /* This and later ranges are definitely out. */
7989 hi = mid;
7990 }
7991 /* 'lo' might be the last that started before target, but 'hi' isn't */
7992 if (hi > lo) {
7993 /* need to check all range that end after 's' to see if
7994 * any are unacknowledged.
7995 */
7996 while (lo >= 0 &&
7997 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7998 if (BB_OFFSET(p[lo]) < target) {
7999 /* starts before the end, and finishes after
8000 * the start, so they must overlap
8001 */
8002 if (rv != -1 && BB_ACK(p[lo]))
8003 rv = 1;
8004 else
8005 rv = -1;
8006 *first_bad = BB_OFFSET(p[lo]);
8007 *bad_sectors = BB_LEN(p[lo]);
8008 }
8009 lo--;
8010 }
8011 }
8012
8013 if (read_seqretry(&bb->lock, seq))
8014 goto retry;
8015
8016 return rv;
8017 }
8018 EXPORT_SYMBOL_GPL(md_is_badblock);
8019
8020 /*
8021 * Add a range of bad blocks to the table.
8022 * This might extend the table, or might contract it
8023 * if two adjacent ranges can be merged.
8024 * We binary-search to find the 'insertion' point, then
8025 * decide how best to handle it.
8026 */
8027 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8028 int acknowledged)
8029 {
8030 u64 *p;
8031 int lo, hi;
8032 int rv = 1;
8033
8034 if (bb->shift < 0)
8035 /* badblocks are disabled */
8036 return 0;
8037
8038 if (bb->shift) {
8039 /* round the start down, and the end up */
8040 sector_t next = s + sectors;
8041 s >>= bb->shift;
8042 next += (1<<bb->shift) - 1;
8043 next >>= bb->shift;
8044 sectors = next - s;
8045 }
8046
8047 write_seqlock_irq(&bb->lock);
8048
8049 p = bb->page;
8050 lo = 0;
8051 hi = bb->count;
8052 /* Find the last range that starts at-or-before 's' */
8053 while (hi - lo > 1) {
8054 int mid = (lo + hi) / 2;
8055 sector_t a = BB_OFFSET(p[mid]);
8056 if (a <= s)
8057 lo = mid;
8058 else
8059 hi = mid;
8060 }
8061 if (hi > lo && BB_OFFSET(p[lo]) > s)
8062 hi = lo;
8063
8064 if (hi > lo) {
8065 /* we found a range that might merge with the start
8066 * of our new range
8067 */
8068 sector_t a = BB_OFFSET(p[lo]);
8069 sector_t e = a + BB_LEN(p[lo]);
8070 int ack = BB_ACK(p[lo]);
8071 if (e >= s) {
8072 /* Yes, we can merge with a previous range */
8073 if (s == a && s + sectors >= e)
8074 /* new range covers old */
8075 ack = acknowledged;
8076 else
8077 ack = ack && acknowledged;
8078
8079 if (e < s + sectors)
8080 e = s + sectors;
8081 if (e - a <= BB_MAX_LEN) {
8082 p[lo] = BB_MAKE(a, e-a, ack);
8083 s = e;
8084 } else {
8085 /* does not all fit in one range,
8086 * make p[lo] maximal
8087 */
8088 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8089 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8090 s = a + BB_MAX_LEN;
8091 }
8092 sectors = e - s;
8093 }
8094 }
8095 if (sectors && hi < bb->count) {
8096 /* 'hi' points to the first range that starts after 's'.
8097 * Maybe we can merge with the start of that range */
8098 sector_t a = BB_OFFSET(p[hi]);
8099 sector_t e = a + BB_LEN(p[hi]);
8100 int ack = BB_ACK(p[hi]);
8101 if (a <= s + sectors) {
8102 /* merging is possible */
8103 if (e <= s + sectors) {
8104 /* full overlap */
8105 e = s + sectors;
8106 ack = acknowledged;
8107 } else
8108 ack = ack && acknowledged;
8109
8110 a = s;
8111 if (e - a <= BB_MAX_LEN) {
8112 p[hi] = BB_MAKE(a, e-a, ack);
8113 s = e;
8114 } else {
8115 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8116 s = a + BB_MAX_LEN;
8117 }
8118 sectors = e - s;
8119 lo = hi;
8120 hi++;
8121 }
8122 }
8123 if (sectors == 0 && hi < bb->count) {
8124 /* we might be able to combine lo and hi */
8125 /* Note: 's' is at the end of 'lo' */
8126 sector_t a = BB_OFFSET(p[hi]);
8127 int lolen = BB_LEN(p[lo]);
8128 int hilen = BB_LEN(p[hi]);
8129 int newlen = lolen + hilen - (s - a);
8130 if (s >= a && newlen < BB_MAX_LEN) {
8131 /* yes, we can combine them */
8132 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8133 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8134 memmove(p + hi, p + hi + 1,
8135 (bb->count - hi - 1) * 8);
8136 bb->count--;
8137 }
8138 }
8139 while (sectors) {
8140 /* didn't merge (it all).
8141 * Need to add a range just before 'hi' */
8142 if (bb->count >= MD_MAX_BADBLOCKS) {
8143 /* No room for more */
8144 rv = 0;
8145 break;
8146 } else {
8147 int this_sectors = sectors;
8148 memmove(p + hi + 1, p + hi,
8149 (bb->count - hi) * 8);
8150 bb->count++;
8151
8152 if (this_sectors > BB_MAX_LEN)
8153 this_sectors = BB_MAX_LEN;
8154 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8155 sectors -= this_sectors;
8156 s += this_sectors;
8157 }
8158 }
8159
8160 bb->changed = 1;
8161 if (!acknowledged)
8162 bb->unacked_exist = 1;
8163 write_sequnlock_irq(&bb->lock);
8164
8165 return rv;
8166 }
8167
8168 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8169 int is_new)
8170 {
8171 int rv;
8172 if (is_new)
8173 s += rdev->new_data_offset;
8174 else
8175 s += rdev->data_offset;
8176 rv = md_set_badblocks(&rdev->badblocks,
8177 s, sectors, 0);
8178 if (rv) {
8179 /* Make sure they get written out promptly */
8180 sysfs_notify_dirent_safe(rdev->sysfs_state);
8181 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8182 md_wakeup_thread(rdev->mddev->thread);
8183 }
8184 return rv;
8185 }
8186 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8187
8188 /*
8189 * Remove a range of bad blocks from the table.
8190 * This may involve extending the table if we spilt a region,
8191 * but it must not fail. So if the table becomes full, we just
8192 * drop the remove request.
8193 */
8194 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8195 {
8196 u64 *p;
8197 int lo, hi;
8198 sector_t target = s + sectors;
8199 int rv = 0;
8200
8201 if (bb->shift > 0) {
8202 /* When clearing we round the start up and the end down.
8203 * This should not matter as the shift should align with
8204 * the block size and no rounding should ever be needed.
8205 * However it is better the think a block is bad when it
8206 * isn't than to think a block is not bad when it is.
8207 */
8208 s += (1<<bb->shift) - 1;
8209 s >>= bb->shift;
8210 target >>= bb->shift;
8211 sectors = target - s;
8212 }
8213
8214 write_seqlock_irq(&bb->lock);
8215
8216 p = bb->page;
8217 lo = 0;
8218 hi = bb->count;
8219 /* Find the last range that starts before 'target' */
8220 while (hi - lo > 1) {
8221 int mid = (lo + hi) / 2;
8222 sector_t a = BB_OFFSET(p[mid]);
8223 if (a < target)
8224 lo = mid;
8225 else
8226 hi = mid;
8227 }
8228 if (hi > lo) {
8229 /* p[lo] is the last range that could overlap the
8230 * current range. Earlier ranges could also overlap,
8231 * but only this one can overlap the end of the range.
8232 */
8233 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8234 /* Partial overlap, leave the tail of this range */
8235 int ack = BB_ACK(p[lo]);
8236 sector_t a = BB_OFFSET(p[lo]);
8237 sector_t end = a + BB_LEN(p[lo]);
8238
8239 if (a < s) {
8240 /* we need to split this range */
8241 if (bb->count >= MD_MAX_BADBLOCKS) {
8242 rv = 0;
8243 goto out;
8244 }
8245 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8246 bb->count++;
8247 p[lo] = BB_MAKE(a, s-a, ack);
8248 lo++;
8249 }
8250 p[lo] = BB_MAKE(target, end - target, ack);
8251 /* there is no longer an overlap */
8252 hi = lo;
8253 lo--;
8254 }
8255 while (lo >= 0 &&
8256 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8257 /* This range does overlap */
8258 if (BB_OFFSET(p[lo]) < s) {
8259 /* Keep the early parts of this range. */
8260 int ack = BB_ACK(p[lo]);
8261 sector_t start = BB_OFFSET(p[lo]);
8262 p[lo] = BB_MAKE(start, s - start, ack);
8263 /* now low doesn't overlap, so.. */
8264 break;
8265 }
8266 lo--;
8267 }
8268 /* 'lo' is strictly before, 'hi' is strictly after,
8269 * anything between needs to be discarded
8270 */
8271 if (hi - lo > 1) {
8272 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8273 bb->count -= (hi - lo - 1);
8274 }
8275 }
8276
8277 bb->changed = 1;
8278 out:
8279 write_sequnlock_irq(&bb->lock);
8280 return rv;
8281 }
8282
8283 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8284 int is_new)
8285 {
8286 if (is_new)
8287 s += rdev->new_data_offset;
8288 else
8289 s += rdev->data_offset;
8290 return md_clear_badblocks(&rdev->badblocks,
8291 s, sectors);
8292 }
8293 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8294
8295 /*
8296 * Acknowledge all bad blocks in a list.
8297 * This only succeeds if ->changed is clear. It is used by
8298 * in-kernel metadata updates
8299 */
8300 void md_ack_all_badblocks(struct badblocks *bb)
8301 {
8302 if (bb->page == NULL || bb->changed)
8303 /* no point even trying */
8304 return;
8305 write_seqlock_irq(&bb->lock);
8306
8307 if (bb->changed == 0 && bb->unacked_exist) {
8308 u64 *p = bb->page;
8309 int i;
8310 for (i = 0; i < bb->count ; i++) {
8311 if (!BB_ACK(p[i])) {
8312 sector_t start = BB_OFFSET(p[i]);
8313 int len = BB_LEN(p[i]);
8314 p[i] = BB_MAKE(start, len, 1);
8315 }
8316 }
8317 bb->unacked_exist = 0;
8318 }
8319 write_sequnlock_irq(&bb->lock);
8320 }
8321 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8322
8323 /* sysfs access to bad-blocks list.
8324 * We present two files.
8325 * 'bad-blocks' lists sector numbers and lengths of ranges that
8326 * are recorded as bad. The list is truncated to fit within
8327 * the one-page limit of sysfs.
8328 * Writing "sector length" to this file adds an acknowledged
8329 * bad block list.
8330 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8331 * been acknowledged. Writing to this file adds bad blocks
8332 * without acknowledging them. This is largely for testing.
8333 */
8334
8335 static ssize_t
8336 badblocks_show(struct badblocks *bb, char *page, int unack)
8337 {
8338 size_t len;
8339 int i;
8340 u64 *p = bb->page;
8341 unsigned seq;
8342
8343 if (bb->shift < 0)
8344 return 0;
8345
8346 retry:
8347 seq = read_seqbegin(&bb->lock);
8348
8349 len = 0;
8350 i = 0;
8351
8352 while (len < PAGE_SIZE && i < bb->count) {
8353 sector_t s = BB_OFFSET(p[i]);
8354 unsigned int length = BB_LEN(p[i]);
8355 int ack = BB_ACK(p[i]);
8356 i++;
8357
8358 if (unack && ack)
8359 continue;
8360
8361 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8362 (unsigned long long)s << bb->shift,
8363 length << bb->shift);
8364 }
8365 if (unack && len == 0)
8366 bb->unacked_exist = 0;
8367
8368 if (read_seqretry(&bb->lock, seq))
8369 goto retry;
8370
8371 return len;
8372 }
8373
8374 #define DO_DEBUG 1
8375
8376 static ssize_t
8377 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8378 {
8379 unsigned long long sector;
8380 int length;
8381 char newline;
8382 #ifdef DO_DEBUG
8383 /* Allow clearing via sysfs *only* for testing/debugging.
8384 * Normally only a successful write may clear a badblock
8385 */
8386 int clear = 0;
8387 if (page[0] == '-') {
8388 clear = 1;
8389 page++;
8390 }
8391 #endif /* DO_DEBUG */
8392
8393 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8394 case 3:
8395 if (newline != '\n')
8396 return -EINVAL;
8397 case 2:
8398 if (length <= 0)
8399 return -EINVAL;
8400 break;
8401 default:
8402 return -EINVAL;
8403 }
8404
8405 #ifdef DO_DEBUG
8406 if (clear) {
8407 md_clear_badblocks(bb, sector, length);
8408 return len;
8409 }
8410 #endif /* DO_DEBUG */
8411 if (md_set_badblocks(bb, sector, length, !unack))
8412 return len;
8413 else
8414 return -ENOSPC;
8415 }
8416
8417 static int md_notify_reboot(struct notifier_block *this,
8418 unsigned long code, void *x)
8419 {
8420 struct list_head *tmp;
8421 struct mddev *mddev;
8422 int need_delay = 0;
8423
8424 for_each_mddev(mddev, tmp) {
8425 if (mddev_trylock(mddev)) {
8426 if (mddev->pers)
8427 __md_stop_writes(mddev);
8428 mddev->safemode = 2;
8429 mddev_unlock(mddev);
8430 }
8431 need_delay = 1;
8432 }
8433 /*
8434 * certain more exotic SCSI devices are known to be
8435 * volatile wrt too early system reboots. While the
8436 * right place to handle this issue is the given
8437 * driver, we do want to have a safe RAID driver ...
8438 */
8439 if (need_delay)
8440 mdelay(1000*1);
8441
8442 return NOTIFY_DONE;
8443 }
8444
8445 static struct notifier_block md_notifier = {
8446 .notifier_call = md_notify_reboot,
8447 .next = NULL,
8448 .priority = INT_MAX, /* before any real devices */
8449 };
8450
8451 static void md_geninit(void)
8452 {
8453 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8454
8455 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8456 }
8457
8458 static int __init md_init(void)
8459 {
8460 int ret = -ENOMEM;
8461
8462 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8463 if (!md_wq)
8464 goto err_wq;
8465
8466 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8467 if (!md_misc_wq)
8468 goto err_misc_wq;
8469
8470 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8471 goto err_md;
8472
8473 if ((ret = register_blkdev(0, "mdp")) < 0)
8474 goto err_mdp;
8475 mdp_major = ret;
8476
8477 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8478 md_probe, NULL, NULL);
8479 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8480 md_probe, NULL, NULL);
8481
8482 register_reboot_notifier(&md_notifier);
8483 raid_table_header = register_sysctl_table(raid_root_table);
8484
8485 md_geninit();
8486 return 0;
8487
8488 err_mdp:
8489 unregister_blkdev(MD_MAJOR, "md");
8490 err_md:
8491 destroy_workqueue(md_misc_wq);
8492 err_misc_wq:
8493 destroy_workqueue(md_wq);
8494 err_wq:
8495 return ret;
8496 }
8497
8498 #ifndef MODULE
8499
8500 /*
8501 * Searches all registered partitions for autorun RAID arrays
8502 * at boot time.
8503 */
8504
8505 static LIST_HEAD(all_detected_devices);
8506 struct detected_devices_node {
8507 struct list_head list;
8508 dev_t dev;
8509 };
8510
8511 void md_autodetect_dev(dev_t dev)
8512 {
8513 struct detected_devices_node *node_detected_dev;
8514
8515 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8516 if (node_detected_dev) {
8517 node_detected_dev->dev = dev;
8518 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8519 } else {
8520 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8521 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8522 }
8523 }
8524
8525
8526 static void autostart_arrays(int part)
8527 {
8528 struct md_rdev *rdev;
8529 struct detected_devices_node *node_detected_dev;
8530 dev_t dev;
8531 int i_scanned, i_passed;
8532
8533 i_scanned = 0;
8534 i_passed = 0;
8535
8536 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8537
8538 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8539 i_scanned++;
8540 node_detected_dev = list_entry(all_detected_devices.next,
8541 struct detected_devices_node, list);
8542 list_del(&node_detected_dev->list);
8543 dev = node_detected_dev->dev;
8544 kfree(node_detected_dev);
8545 rdev = md_import_device(dev,0, 90);
8546 if (IS_ERR(rdev))
8547 continue;
8548
8549 if (test_bit(Faulty, &rdev->flags)) {
8550 MD_BUG();
8551 continue;
8552 }
8553 set_bit(AutoDetected, &rdev->flags);
8554 list_add(&rdev->same_set, &pending_raid_disks);
8555 i_passed++;
8556 }
8557
8558 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8559 i_scanned, i_passed);
8560
8561 autorun_devices(part);
8562 }
8563
8564 #endif /* !MODULE */
8565
8566 static __exit void md_exit(void)
8567 {
8568 struct mddev *mddev;
8569 struct list_head *tmp;
8570
8571 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8572 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8573
8574 unregister_blkdev(MD_MAJOR,"md");
8575 unregister_blkdev(mdp_major, "mdp");
8576 unregister_reboot_notifier(&md_notifier);
8577 unregister_sysctl_table(raid_table_header);
8578 remove_proc_entry("mdstat", NULL);
8579 for_each_mddev(mddev, tmp) {
8580 export_array(mddev);
8581 mddev->hold_active = 0;
8582 }
8583 destroy_workqueue(md_misc_wq);
8584 destroy_workqueue(md_wq);
8585 }
8586
8587 subsys_initcall(md_init);
8588 module_exit(md_exit)
8589
8590 static int get_ro(char *buffer, struct kernel_param *kp)
8591 {
8592 return sprintf(buffer, "%d", start_readonly);
8593 }
8594 static int set_ro(const char *val, struct kernel_param *kp)
8595 {
8596 char *e;
8597 int num = simple_strtoul(val, &e, 10);
8598 if (*val && (*e == '\0' || *e == '\n')) {
8599 start_readonly = num;
8600 return 0;
8601 }
8602 return -EINVAL;
8603 }
8604
8605 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8606 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8607
8608 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8609
8610 EXPORT_SYMBOL(register_md_personality);
8611 EXPORT_SYMBOL(unregister_md_personality);
8612 EXPORT_SYMBOL(md_error);
8613 EXPORT_SYMBOL(md_done_sync);
8614 EXPORT_SYMBOL(md_write_start);
8615 EXPORT_SYMBOL(md_write_end);
8616 EXPORT_SYMBOL(md_register_thread);
8617 EXPORT_SYMBOL(md_unregister_thread);
8618 EXPORT_SYMBOL(md_wakeup_thread);
8619 EXPORT_SYMBOL(md_check_recovery);
8620 MODULE_LICENSE("GPL");
8621 MODULE_DESCRIPTION("MD RAID framework");
8622 MODULE_ALIAS("md");
8623 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);