Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/agpgart
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-bio-list.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/blkpg.h>
15 #include <linux/bio.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20
21 static const char *_name = DM_NAME;
22
23 static unsigned int major = 0;
24 static unsigned int _major = 0;
25
26 /*
27 * One of these is allocated per bio.
28 */
29 struct dm_io {
30 struct mapped_device *md;
31 int error;
32 struct bio *bio;
33 atomic_t io_count;
34 unsigned long start_time;
35 };
36
37 /*
38 * One of these is allocated per target within a bio. Hopefully
39 * this will be simplified out one day.
40 */
41 struct target_io {
42 struct dm_io *io;
43 struct dm_target *ti;
44 union map_info info;
45 };
46
47 union map_info *dm_get_mapinfo(struct bio *bio)
48 {
49 if (bio && bio->bi_private)
50 return &((struct target_io *)bio->bi_private)->info;
51 return NULL;
52 }
53
54 /*
55 * Bits for the md->flags field.
56 */
57 #define DMF_BLOCK_IO 0
58 #define DMF_SUSPENDED 1
59 #define DMF_FROZEN 2
60
61 struct mapped_device {
62 struct rw_semaphore io_lock;
63 struct semaphore suspend_lock;
64 rwlock_t map_lock;
65 atomic_t holders;
66
67 unsigned long flags;
68
69 request_queue_t *queue;
70 struct gendisk *disk;
71
72 void *interface_ptr;
73
74 /*
75 * A list of ios that arrived while we were suspended.
76 */
77 atomic_t pending;
78 wait_queue_head_t wait;
79 struct bio_list deferred;
80
81 /*
82 * The current mapping.
83 */
84 struct dm_table *map;
85
86 /*
87 * io objects are allocated from here.
88 */
89 mempool_t *io_pool;
90 mempool_t *tio_pool;
91
92 /*
93 * Event handling.
94 */
95 atomic_t event_nr;
96 wait_queue_head_t eventq;
97
98 /*
99 * freeze/thaw support require holding onto a super block
100 */
101 struct super_block *frozen_sb;
102 struct block_device *suspended_bdev;
103 };
104
105 #define MIN_IOS 256
106 static kmem_cache_t *_io_cache;
107 static kmem_cache_t *_tio_cache;
108
109 static struct bio_set *dm_set;
110
111 static int __init local_init(void)
112 {
113 int r;
114
115 dm_set = bioset_create(16, 16, 4);
116 if (!dm_set)
117 return -ENOMEM;
118
119 /* allocate a slab for the dm_ios */
120 _io_cache = kmem_cache_create("dm_io",
121 sizeof(struct dm_io), 0, 0, NULL, NULL);
122 if (!_io_cache)
123 return -ENOMEM;
124
125 /* allocate a slab for the target ios */
126 _tio_cache = kmem_cache_create("dm_tio", sizeof(struct target_io),
127 0, 0, NULL, NULL);
128 if (!_tio_cache) {
129 kmem_cache_destroy(_io_cache);
130 return -ENOMEM;
131 }
132
133 _major = major;
134 r = register_blkdev(_major, _name);
135 if (r < 0) {
136 kmem_cache_destroy(_tio_cache);
137 kmem_cache_destroy(_io_cache);
138 return r;
139 }
140
141 if (!_major)
142 _major = r;
143
144 return 0;
145 }
146
147 static void local_exit(void)
148 {
149 kmem_cache_destroy(_tio_cache);
150 kmem_cache_destroy(_io_cache);
151
152 bioset_free(dm_set);
153
154 if (unregister_blkdev(_major, _name) < 0)
155 DMERR("devfs_unregister_blkdev failed");
156
157 _major = 0;
158
159 DMINFO("cleaned up");
160 }
161
162 int (*_inits[])(void) __initdata = {
163 local_init,
164 dm_target_init,
165 dm_linear_init,
166 dm_stripe_init,
167 dm_interface_init,
168 };
169
170 void (*_exits[])(void) = {
171 local_exit,
172 dm_target_exit,
173 dm_linear_exit,
174 dm_stripe_exit,
175 dm_interface_exit,
176 };
177
178 static int __init dm_init(void)
179 {
180 const int count = ARRAY_SIZE(_inits);
181
182 int r, i;
183
184 for (i = 0; i < count; i++) {
185 r = _inits[i]();
186 if (r)
187 goto bad;
188 }
189
190 return 0;
191
192 bad:
193 while (i--)
194 _exits[i]();
195
196 return r;
197 }
198
199 static void __exit dm_exit(void)
200 {
201 int i = ARRAY_SIZE(_exits);
202
203 while (i--)
204 _exits[i]();
205 }
206
207 /*
208 * Block device functions
209 */
210 static int dm_blk_open(struct inode *inode, struct file *file)
211 {
212 struct mapped_device *md;
213
214 md = inode->i_bdev->bd_disk->private_data;
215 dm_get(md);
216 return 0;
217 }
218
219 static int dm_blk_close(struct inode *inode, struct file *file)
220 {
221 struct mapped_device *md;
222
223 md = inode->i_bdev->bd_disk->private_data;
224 dm_put(md);
225 return 0;
226 }
227
228 static inline struct dm_io *alloc_io(struct mapped_device *md)
229 {
230 return mempool_alloc(md->io_pool, GFP_NOIO);
231 }
232
233 static inline void free_io(struct mapped_device *md, struct dm_io *io)
234 {
235 mempool_free(io, md->io_pool);
236 }
237
238 static inline struct target_io *alloc_tio(struct mapped_device *md)
239 {
240 return mempool_alloc(md->tio_pool, GFP_NOIO);
241 }
242
243 static inline void free_tio(struct mapped_device *md, struct target_io *tio)
244 {
245 mempool_free(tio, md->tio_pool);
246 }
247
248 static void start_io_acct(struct dm_io *io)
249 {
250 struct mapped_device *md = io->md;
251
252 io->start_time = jiffies;
253
254 preempt_disable();
255 disk_round_stats(dm_disk(md));
256 preempt_enable();
257 dm_disk(md)->in_flight = atomic_inc_return(&md->pending);
258 }
259
260 static int end_io_acct(struct dm_io *io)
261 {
262 struct mapped_device *md = io->md;
263 struct bio *bio = io->bio;
264 unsigned long duration = jiffies - io->start_time;
265 int pending;
266 int rw = bio_data_dir(bio);
267
268 preempt_disable();
269 disk_round_stats(dm_disk(md));
270 preempt_enable();
271 dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending);
272
273 disk_stat_add(dm_disk(md), ticks[rw], duration);
274
275 return !pending;
276 }
277
278 /*
279 * Add the bio to the list of deferred io.
280 */
281 static int queue_io(struct mapped_device *md, struct bio *bio)
282 {
283 down_write(&md->io_lock);
284
285 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
286 up_write(&md->io_lock);
287 return 1;
288 }
289
290 bio_list_add(&md->deferred, bio);
291
292 up_write(&md->io_lock);
293 return 0; /* deferred successfully */
294 }
295
296 /*
297 * Everyone (including functions in this file), should use this
298 * function to access the md->map field, and make sure they call
299 * dm_table_put() when finished.
300 */
301 struct dm_table *dm_get_table(struct mapped_device *md)
302 {
303 struct dm_table *t;
304
305 read_lock(&md->map_lock);
306 t = md->map;
307 if (t)
308 dm_table_get(t);
309 read_unlock(&md->map_lock);
310
311 return t;
312 }
313
314 /*-----------------------------------------------------------------
315 * CRUD START:
316 * A more elegant soln is in the works that uses the queue
317 * merge fn, unfortunately there are a couple of changes to
318 * the block layer that I want to make for this. So in the
319 * interests of getting something for people to use I give
320 * you this clearly demarcated crap.
321 *---------------------------------------------------------------*/
322
323 /*
324 * Decrements the number of outstanding ios that a bio has been
325 * cloned into, completing the original io if necc.
326 */
327 static void dec_pending(struct dm_io *io, int error)
328 {
329 if (error)
330 io->error = error;
331
332 if (atomic_dec_and_test(&io->io_count)) {
333 if (end_io_acct(io))
334 /* nudge anyone waiting on suspend queue */
335 wake_up(&io->md->wait);
336
337 bio_endio(io->bio, io->bio->bi_size, io->error);
338 free_io(io->md, io);
339 }
340 }
341
342 static int clone_endio(struct bio *bio, unsigned int done, int error)
343 {
344 int r = 0;
345 struct target_io *tio = bio->bi_private;
346 struct dm_io *io = tio->io;
347 dm_endio_fn endio = tio->ti->type->end_io;
348
349 if (bio->bi_size)
350 return 1;
351
352 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
353 error = -EIO;
354
355 if (endio) {
356 r = endio(tio->ti, bio, error, &tio->info);
357 if (r < 0)
358 error = r;
359
360 else if (r > 0)
361 /* the target wants another shot at the io */
362 return 1;
363 }
364
365 free_tio(io->md, tio);
366 dec_pending(io, error);
367 bio_put(bio);
368 return r;
369 }
370
371 static sector_t max_io_len(struct mapped_device *md,
372 sector_t sector, struct dm_target *ti)
373 {
374 sector_t offset = sector - ti->begin;
375 sector_t len = ti->len - offset;
376
377 /*
378 * Does the target need to split even further ?
379 */
380 if (ti->split_io) {
381 sector_t boundary;
382 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
383 - offset;
384 if (len > boundary)
385 len = boundary;
386 }
387
388 return len;
389 }
390
391 static void __map_bio(struct dm_target *ti, struct bio *clone,
392 struct target_io *tio)
393 {
394 int r;
395
396 /*
397 * Sanity checks.
398 */
399 BUG_ON(!clone->bi_size);
400
401 clone->bi_end_io = clone_endio;
402 clone->bi_private = tio;
403
404 /*
405 * Map the clone. If r == 0 we don't need to do
406 * anything, the target has assumed ownership of
407 * this io.
408 */
409 atomic_inc(&tio->io->io_count);
410 r = ti->type->map(ti, clone, &tio->info);
411 if (r > 0)
412 /* the bio has been remapped so dispatch it */
413 generic_make_request(clone);
414
415 else if (r < 0) {
416 /* error the io and bail out */
417 struct dm_io *io = tio->io;
418 free_tio(tio->io->md, tio);
419 dec_pending(io, r);
420 bio_put(clone);
421 }
422 }
423
424 struct clone_info {
425 struct mapped_device *md;
426 struct dm_table *map;
427 struct bio *bio;
428 struct dm_io *io;
429 sector_t sector;
430 sector_t sector_count;
431 unsigned short idx;
432 };
433
434 static void dm_bio_destructor(struct bio *bio)
435 {
436 bio_free(bio, dm_set);
437 }
438
439 /*
440 * Creates a little bio that is just does part of a bvec.
441 */
442 static struct bio *split_bvec(struct bio *bio, sector_t sector,
443 unsigned short idx, unsigned int offset,
444 unsigned int len)
445 {
446 struct bio *clone;
447 struct bio_vec *bv = bio->bi_io_vec + idx;
448
449 clone = bio_alloc_bioset(GFP_NOIO, 1, dm_set);
450 clone->bi_destructor = dm_bio_destructor;
451 *clone->bi_io_vec = *bv;
452
453 clone->bi_sector = sector;
454 clone->bi_bdev = bio->bi_bdev;
455 clone->bi_rw = bio->bi_rw;
456 clone->bi_vcnt = 1;
457 clone->bi_size = to_bytes(len);
458 clone->bi_io_vec->bv_offset = offset;
459 clone->bi_io_vec->bv_len = clone->bi_size;
460
461 return clone;
462 }
463
464 /*
465 * Creates a bio that consists of range of complete bvecs.
466 */
467 static struct bio *clone_bio(struct bio *bio, sector_t sector,
468 unsigned short idx, unsigned short bv_count,
469 unsigned int len)
470 {
471 struct bio *clone;
472
473 clone = bio_clone(bio, GFP_NOIO);
474 clone->bi_sector = sector;
475 clone->bi_idx = idx;
476 clone->bi_vcnt = idx + bv_count;
477 clone->bi_size = to_bytes(len);
478 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
479
480 return clone;
481 }
482
483 static void __clone_and_map(struct clone_info *ci)
484 {
485 struct bio *clone, *bio = ci->bio;
486 struct dm_target *ti = dm_table_find_target(ci->map, ci->sector);
487 sector_t len = 0, max = max_io_len(ci->md, ci->sector, ti);
488 struct target_io *tio;
489
490 /*
491 * Allocate a target io object.
492 */
493 tio = alloc_tio(ci->md);
494 tio->io = ci->io;
495 tio->ti = ti;
496 memset(&tio->info, 0, sizeof(tio->info));
497
498 if (ci->sector_count <= max) {
499 /*
500 * Optimise for the simple case where we can do all of
501 * the remaining io with a single clone.
502 */
503 clone = clone_bio(bio, ci->sector, ci->idx,
504 bio->bi_vcnt - ci->idx, ci->sector_count);
505 __map_bio(ti, clone, tio);
506 ci->sector_count = 0;
507
508 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
509 /*
510 * There are some bvecs that don't span targets.
511 * Do as many of these as possible.
512 */
513 int i;
514 sector_t remaining = max;
515 sector_t bv_len;
516
517 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
518 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
519
520 if (bv_len > remaining)
521 break;
522
523 remaining -= bv_len;
524 len += bv_len;
525 }
526
527 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len);
528 __map_bio(ti, clone, tio);
529
530 ci->sector += len;
531 ci->sector_count -= len;
532 ci->idx = i;
533
534 } else {
535 /*
536 * Create two copy bios to deal with io that has
537 * been split across a target.
538 */
539 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
540
541 clone = split_bvec(bio, ci->sector, ci->idx,
542 bv->bv_offset, max);
543 __map_bio(ti, clone, tio);
544
545 ci->sector += max;
546 ci->sector_count -= max;
547 ti = dm_table_find_target(ci->map, ci->sector);
548
549 len = to_sector(bv->bv_len) - max;
550 clone = split_bvec(bio, ci->sector, ci->idx,
551 bv->bv_offset + to_bytes(max), len);
552 tio = alloc_tio(ci->md);
553 tio->io = ci->io;
554 tio->ti = ti;
555 memset(&tio->info, 0, sizeof(tio->info));
556 __map_bio(ti, clone, tio);
557
558 ci->sector += len;
559 ci->sector_count -= len;
560 ci->idx++;
561 }
562 }
563
564 /*
565 * Split the bio into several clones.
566 */
567 static void __split_bio(struct mapped_device *md, struct bio *bio)
568 {
569 struct clone_info ci;
570
571 ci.map = dm_get_table(md);
572 if (!ci.map) {
573 bio_io_error(bio, bio->bi_size);
574 return;
575 }
576
577 ci.md = md;
578 ci.bio = bio;
579 ci.io = alloc_io(md);
580 ci.io->error = 0;
581 atomic_set(&ci.io->io_count, 1);
582 ci.io->bio = bio;
583 ci.io->md = md;
584 ci.sector = bio->bi_sector;
585 ci.sector_count = bio_sectors(bio);
586 ci.idx = bio->bi_idx;
587
588 start_io_acct(ci.io);
589 while (ci.sector_count)
590 __clone_and_map(&ci);
591
592 /* drop the extra reference count */
593 dec_pending(ci.io, 0);
594 dm_table_put(ci.map);
595 }
596 /*-----------------------------------------------------------------
597 * CRUD END
598 *---------------------------------------------------------------*/
599
600 /*
601 * The request function that just remaps the bio built up by
602 * dm_merge_bvec.
603 */
604 static int dm_request(request_queue_t *q, struct bio *bio)
605 {
606 int r;
607 int rw = bio_data_dir(bio);
608 struct mapped_device *md = q->queuedata;
609
610 down_read(&md->io_lock);
611
612 disk_stat_inc(dm_disk(md), ios[rw]);
613 disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio));
614
615 /*
616 * If we're suspended we have to queue
617 * this io for later.
618 */
619 while (test_bit(DMF_BLOCK_IO, &md->flags)) {
620 up_read(&md->io_lock);
621
622 if (bio_rw(bio) == READA) {
623 bio_io_error(bio, bio->bi_size);
624 return 0;
625 }
626
627 r = queue_io(md, bio);
628 if (r < 0) {
629 bio_io_error(bio, bio->bi_size);
630 return 0;
631
632 } else if (r == 0)
633 return 0; /* deferred successfully */
634
635 /*
636 * We're in a while loop, because someone could suspend
637 * before we get to the following read lock.
638 */
639 down_read(&md->io_lock);
640 }
641
642 __split_bio(md, bio);
643 up_read(&md->io_lock);
644 return 0;
645 }
646
647 static int dm_flush_all(request_queue_t *q, struct gendisk *disk,
648 sector_t *error_sector)
649 {
650 struct mapped_device *md = q->queuedata;
651 struct dm_table *map = dm_get_table(md);
652 int ret = -ENXIO;
653
654 if (map) {
655 ret = dm_table_flush_all(map);
656 dm_table_put(map);
657 }
658
659 return ret;
660 }
661
662 static void dm_unplug_all(request_queue_t *q)
663 {
664 struct mapped_device *md = q->queuedata;
665 struct dm_table *map = dm_get_table(md);
666
667 if (map) {
668 dm_table_unplug_all(map);
669 dm_table_put(map);
670 }
671 }
672
673 static int dm_any_congested(void *congested_data, int bdi_bits)
674 {
675 int r;
676 struct mapped_device *md = (struct mapped_device *) congested_data;
677 struct dm_table *map = dm_get_table(md);
678
679 if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
680 r = bdi_bits;
681 else
682 r = dm_table_any_congested(map, bdi_bits);
683
684 dm_table_put(map);
685 return r;
686 }
687
688 /*-----------------------------------------------------------------
689 * An IDR is used to keep track of allocated minor numbers.
690 *---------------------------------------------------------------*/
691 static DECLARE_MUTEX(_minor_lock);
692 static DEFINE_IDR(_minor_idr);
693
694 static void free_minor(unsigned int minor)
695 {
696 down(&_minor_lock);
697 idr_remove(&_minor_idr, minor);
698 up(&_minor_lock);
699 }
700
701 /*
702 * See if the device with a specific minor # is free.
703 */
704 static int specific_minor(struct mapped_device *md, unsigned int minor)
705 {
706 int r, m;
707
708 if (minor >= (1 << MINORBITS))
709 return -EINVAL;
710
711 down(&_minor_lock);
712
713 if (idr_find(&_minor_idr, minor)) {
714 r = -EBUSY;
715 goto out;
716 }
717
718 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
719 if (!r) {
720 r = -ENOMEM;
721 goto out;
722 }
723
724 r = idr_get_new_above(&_minor_idr, md, minor, &m);
725 if (r) {
726 goto out;
727 }
728
729 if (m != minor) {
730 idr_remove(&_minor_idr, m);
731 r = -EBUSY;
732 goto out;
733 }
734
735 out:
736 up(&_minor_lock);
737 return r;
738 }
739
740 static int next_free_minor(struct mapped_device *md, unsigned int *minor)
741 {
742 int r;
743 unsigned int m;
744
745 down(&_minor_lock);
746
747 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
748 if (!r) {
749 r = -ENOMEM;
750 goto out;
751 }
752
753 r = idr_get_new(&_minor_idr, md, &m);
754 if (r) {
755 goto out;
756 }
757
758 if (m >= (1 << MINORBITS)) {
759 idr_remove(&_minor_idr, m);
760 r = -ENOSPC;
761 goto out;
762 }
763
764 *minor = m;
765
766 out:
767 up(&_minor_lock);
768 return r;
769 }
770
771 static struct block_device_operations dm_blk_dops;
772
773 /*
774 * Allocate and initialise a blank device with a given minor.
775 */
776 static struct mapped_device *alloc_dev(unsigned int minor, int persistent)
777 {
778 int r;
779 struct mapped_device *md = kmalloc(sizeof(*md), GFP_KERNEL);
780
781 if (!md) {
782 DMWARN("unable to allocate device, out of memory.");
783 return NULL;
784 }
785
786 /* get a minor number for the dev */
787 r = persistent ? specific_minor(md, minor) : next_free_minor(md, &minor);
788 if (r < 0)
789 goto bad1;
790
791 memset(md, 0, sizeof(*md));
792 init_rwsem(&md->io_lock);
793 init_MUTEX(&md->suspend_lock);
794 rwlock_init(&md->map_lock);
795 atomic_set(&md->holders, 1);
796 atomic_set(&md->event_nr, 0);
797
798 md->queue = blk_alloc_queue(GFP_KERNEL);
799 if (!md->queue)
800 goto bad1;
801
802 md->queue->queuedata = md;
803 md->queue->backing_dev_info.congested_fn = dm_any_congested;
804 md->queue->backing_dev_info.congested_data = md;
805 blk_queue_make_request(md->queue, dm_request);
806 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
807 md->queue->unplug_fn = dm_unplug_all;
808 md->queue->issue_flush_fn = dm_flush_all;
809
810 md->io_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
811 mempool_free_slab, _io_cache);
812 if (!md->io_pool)
813 goto bad2;
814
815 md->tio_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
816 mempool_free_slab, _tio_cache);
817 if (!md->tio_pool)
818 goto bad3;
819
820 md->disk = alloc_disk(1);
821 if (!md->disk)
822 goto bad4;
823
824 md->disk->major = _major;
825 md->disk->first_minor = minor;
826 md->disk->fops = &dm_blk_dops;
827 md->disk->queue = md->queue;
828 md->disk->private_data = md;
829 sprintf(md->disk->disk_name, "dm-%d", minor);
830 add_disk(md->disk);
831
832 atomic_set(&md->pending, 0);
833 init_waitqueue_head(&md->wait);
834 init_waitqueue_head(&md->eventq);
835
836 return md;
837
838 bad4:
839 mempool_destroy(md->tio_pool);
840 bad3:
841 mempool_destroy(md->io_pool);
842 bad2:
843 blk_put_queue(md->queue);
844 free_minor(minor);
845 bad1:
846 kfree(md);
847 return NULL;
848 }
849
850 static void free_dev(struct mapped_device *md)
851 {
852 free_minor(md->disk->first_minor);
853 mempool_destroy(md->tio_pool);
854 mempool_destroy(md->io_pool);
855 del_gendisk(md->disk);
856 put_disk(md->disk);
857 blk_put_queue(md->queue);
858 kfree(md);
859 }
860
861 /*
862 * Bind a table to the device.
863 */
864 static void event_callback(void *context)
865 {
866 struct mapped_device *md = (struct mapped_device *) context;
867
868 atomic_inc(&md->event_nr);
869 wake_up(&md->eventq);
870 }
871
872 static void __set_size(struct mapped_device *md, sector_t size)
873 {
874 set_capacity(md->disk, size);
875
876 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
877 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
878 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
879 }
880
881 static int __bind(struct mapped_device *md, struct dm_table *t)
882 {
883 request_queue_t *q = md->queue;
884 sector_t size;
885
886 size = dm_table_get_size(t);
887 __set_size(md, size);
888 if (size == 0)
889 return 0;
890
891 dm_table_get(t);
892 dm_table_event_callback(t, event_callback, md);
893
894 write_lock(&md->map_lock);
895 md->map = t;
896 dm_table_set_restrictions(t, q);
897 write_unlock(&md->map_lock);
898
899 return 0;
900 }
901
902 static void __unbind(struct mapped_device *md)
903 {
904 struct dm_table *map = md->map;
905
906 if (!map)
907 return;
908
909 dm_table_event_callback(map, NULL, NULL);
910 write_lock(&md->map_lock);
911 md->map = NULL;
912 write_unlock(&md->map_lock);
913 dm_table_put(map);
914 }
915
916 /*
917 * Constructor for a new device.
918 */
919 static int create_aux(unsigned int minor, int persistent,
920 struct mapped_device **result)
921 {
922 struct mapped_device *md;
923
924 md = alloc_dev(minor, persistent);
925 if (!md)
926 return -ENXIO;
927
928 *result = md;
929 return 0;
930 }
931
932 int dm_create(struct mapped_device **result)
933 {
934 return create_aux(0, 0, result);
935 }
936
937 int dm_create_with_minor(unsigned int minor, struct mapped_device **result)
938 {
939 return create_aux(minor, 1, result);
940 }
941
942 static struct mapped_device *dm_find_md(dev_t dev)
943 {
944 struct mapped_device *md;
945 unsigned minor = MINOR(dev);
946
947 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
948 return NULL;
949
950 down(&_minor_lock);
951
952 md = idr_find(&_minor_idr, minor);
953 if (!md || (dm_disk(md)->first_minor != minor))
954 md = NULL;
955
956 up(&_minor_lock);
957
958 return md;
959 }
960
961 struct mapped_device *dm_get_md(dev_t dev)
962 {
963 struct mapped_device *md = dm_find_md(dev);
964
965 if (md)
966 dm_get(md);
967
968 return md;
969 }
970
971 void *dm_get_mdptr(dev_t dev)
972 {
973 struct mapped_device *md;
974 void *mdptr = NULL;
975
976 md = dm_find_md(dev);
977 if (md)
978 mdptr = md->interface_ptr;
979 return mdptr;
980 }
981
982 void dm_set_mdptr(struct mapped_device *md, void *ptr)
983 {
984 md->interface_ptr = ptr;
985 }
986
987 void dm_get(struct mapped_device *md)
988 {
989 atomic_inc(&md->holders);
990 }
991
992 void dm_put(struct mapped_device *md)
993 {
994 struct dm_table *map = dm_get_table(md);
995
996 if (atomic_dec_and_test(&md->holders)) {
997 if (!dm_suspended(md)) {
998 dm_table_presuspend_targets(map);
999 dm_table_postsuspend_targets(map);
1000 }
1001 __unbind(md);
1002 free_dev(md);
1003 }
1004
1005 dm_table_put(map);
1006 }
1007
1008 /*
1009 * Process the deferred bios
1010 */
1011 static void __flush_deferred_io(struct mapped_device *md, struct bio *c)
1012 {
1013 struct bio *n;
1014
1015 while (c) {
1016 n = c->bi_next;
1017 c->bi_next = NULL;
1018 __split_bio(md, c);
1019 c = n;
1020 }
1021 }
1022
1023 /*
1024 * Swap in a new table (destroying old one).
1025 */
1026 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1027 {
1028 int r = -EINVAL;
1029
1030 down(&md->suspend_lock);
1031
1032 /* device must be suspended */
1033 if (!dm_suspended(md))
1034 goto out;
1035
1036 __unbind(md);
1037 r = __bind(md, table);
1038
1039 out:
1040 up(&md->suspend_lock);
1041 return r;
1042 }
1043
1044 /*
1045 * Functions to lock and unlock any filesystem running on the
1046 * device.
1047 */
1048 static int lock_fs(struct mapped_device *md)
1049 {
1050 int r;
1051
1052 WARN_ON(md->frozen_sb);
1053
1054 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1055 if (IS_ERR(md->frozen_sb)) {
1056 r = PTR_ERR(md->frozen_sb);
1057 md->frozen_sb = NULL;
1058 return r;
1059 }
1060
1061 set_bit(DMF_FROZEN, &md->flags);
1062
1063 /* don't bdput right now, we don't want the bdev
1064 * to go away while it is locked.
1065 */
1066 return 0;
1067 }
1068
1069 static void unlock_fs(struct mapped_device *md)
1070 {
1071 if (!test_bit(DMF_FROZEN, &md->flags))
1072 return;
1073
1074 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1075 md->frozen_sb = NULL;
1076 clear_bit(DMF_FROZEN, &md->flags);
1077 }
1078
1079 /*
1080 * We need to be able to change a mapping table under a mounted
1081 * filesystem. For example we might want to move some data in
1082 * the background. Before the table can be swapped with
1083 * dm_bind_table, dm_suspend must be called to flush any in
1084 * flight bios and ensure that any further io gets deferred.
1085 */
1086 int dm_suspend(struct mapped_device *md, int do_lockfs)
1087 {
1088 struct dm_table *map = NULL;
1089 DECLARE_WAITQUEUE(wait, current);
1090 int r = -EINVAL;
1091
1092 down(&md->suspend_lock);
1093
1094 if (dm_suspended(md))
1095 goto out;
1096
1097 map = dm_get_table(md);
1098
1099 /* This does not get reverted if there's an error later. */
1100 dm_table_presuspend_targets(map);
1101
1102 md->suspended_bdev = bdget_disk(md->disk, 0);
1103 if (!md->suspended_bdev) {
1104 DMWARN("bdget failed in dm_suspend");
1105 r = -ENOMEM;
1106 goto out;
1107 }
1108
1109 /* Flush I/O to the device. */
1110 if (do_lockfs) {
1111 r = lock_fs(md);
1112 if (r)
1113 goto out;
1114 }
1115
1116 /*
1117 * First we set the BLOCK_IO flag so no more ios will be mapped.
1118 */
1119 down_write(&md->io_lock);
1120 set_bit(DMF_BLOCK_IO, &md->flags);
1121
1122 add_wait_queue(&md->wait, &wait);
1123 up_write(&md->io_lock);
1124
1125 /* unplug */
1126 if (map)
1127 dm_table_unplug_all(map);
1128
1129 /*
1130 * Then we wait for the already mapped ios to
1131 * complete.
1132 */
1133 while (1) {
1134 set_current_state(TASK_INTERRUPTIBLE);
1135
1136 if (!atomic_read(&md->pending) || signal_pending(current))
1137 break;
1138
1139 io_schedule();
1140 }
1141 set_current_state(TASK_RUNNING);
1142
1143 down_write(&md->io_lock);
1144 remove_wait_queue(&md->wait, &wait);
1145
1146 /* were we interrupted ? */
1147 r = -EINTR;
1148 if (atomic_read(&md->pending)) {
1149 up_write(&md->io_lock);
1150 unlock_fs(md);
1151 clear_bit(DMF_BLOCK_IO, &md->flags);
1152 goto out;
1153 }
1154 up_write(&md->io_lock);
1155
1156 dm_table_postsuspend_targets(map);
1157
1158 set_bit(DMF_SUSPENDED, &md->flags);
1159
1160 r = 0;
1161
1162 out:
1163 if (r && md->suspended_bdev) {
1164 bdput(md->suspended_bdev);
1165 md->suspended_bdev = NULL;
1166 }
1167
1168 dm_table_put(map);
1169 up(&md->suspend_lock);
1170 return r;
1171 }
1172
1173 int dm_resume(struct mapped_device *md)
1174 {
1175 int r = -EINVAL;
1176 struct bio *def;
1177 struct dm_table *map = NULL;
1178
1179 down(&md->suspend_lock);
1180 if (!dm_suspended(md))
1181 goto out;
1182
1183 map = dm_get_table(md);
1184 if (!map || !dm_table_get_size(map))
1185 goto out;
1186
1187 dm_table_resume_targets(map);
1188
1189 down_write(&md->io_lock);
1190 clear_bit(DMF_BLOCK_IO, &md->flags);
1191
1192 def = bio_list_get(&md->deferred);
1193 __flush_deferred_io(md, def);
1194 up_write(&md->io_lock);
1195
1196 unlock_fs(md);
1197
1198 bdput(md->suspended_bdev);
1199 md->suspended_bdev = NULL;
1200
1201 clear_bit(DMF_SUSPENDED, &md->flags);
1202
1203 dm_table_unplug_all(map);
1204
1205 r = 0;
1206
1207 out:
1208 dm_table_put(map);
1209 up(&md->suspend_lock);
1210
1211 return r;
1212 }
1213
1214 /*-----------------------------------------------------------------
1215 * Event notification.
1216 *---------------------------------------------------------------*/
1217 uint32_t dm_get_event_nr(struct mapped_device *md)
1218 {
1219 return atomic_read(&md->event_nr);
1220 }
1221
1222 int dm_wait_event(struct mapped_device *md, int event_nr)
1223 {
1224 return wait_event_interruptible(md->eventq,
1225 (event_nr != atomic_read(&md->event_nr)));
1226 }
1227
1228 /*
1229 * The gendisk is only valid as long as you have a reference
1230 * count on 'md'.
1231 */
1232 struct gendisk *dm_disk(struct mapped_device *md)
1233 {
1234 return md->disk;
1235 }
1236
1237 int dm_suspended(struct mapped_device *md)
1238 {
1239 return test_bit(DMF_SUSPENDED, &md->flags);
1240 }
1241
1242 static struct block_device_operations dm_blk_dops = {
1243 .open = dm_blk_open,
1244 .release = dm_blk_close,
1245 .owner = THIS_MODULE
1246 };
1247
1248 EXPORT_SYMBOL(dm_get_mapinfo);
1249
1250 /*
1251 * module hooks
1252 */
1253 module_init(dm_init);
1254 module_exit(dm_exit);
1255
1256 module_param(major, uint, 0);
1257 MODULE_PARM_DESC(major, "The major number of the device mapper");
1258 MODULE_DESCRIPTION(DM_NAME " driver");
1259 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1260 MODULE_LICENSE("GPL");