Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/net...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53 * For bio-based dm.
54 * One of these is allocated per bio.
55 */
56 struct dm_io {
57 struct mapped_device *md;
58 int error;
59 atomic_t io_count;
60 struct bio *bio;
61 unsigned long start_time;
62 spinlock_t endio_lock;
63 };
64
65 /*
66 * For request-based dm.
67 * One of these is allocated per request.
68 */
69 struct dm_rq_target_io {
70 struct mapped_device *md;
71 struct dm_target *ti;
72 struct request *orig, clone;
73 int error;
74 union map_info info;
75 };
76
77 /*
78 * For request-based dm - the bio clones we allocate are embedded in these
79 * structs.
80 *
81 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
82 * the bioset is created - this means the bio has to come at the end of the
83 * struct.
84 */
85 struct dm_rq_clone_bio_info {
86 struct bio *orig;
87 struct dm_rq_target_io *tio;
88 struct bio clone;
89 };
90
91 union map_info *dm_get_mapinfo(struct bio *bio)
92 {
93 if (bio && bio->bi_private)
94 return &((struct dm_target_io *)bio->bi_private)->info;
95 return NULL;
96 }
97
98 union map_info *dm_get_rq_mapinfo(struct request *rq)
99 {
100 if (rq && rq->end_io_data)
101 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
102 return NULL;
103 }
104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
105
106 #define MINOR_ALLOCED ((void *)-1)
107
108 /*
109 * Bits for the md->flags field.
110 */
111 #define DMF_BLOCK_IO_FOR_SUSPEND 0
112 #define DMF_SUSPENDED 1
113 #define DMF_FROZEN 2
114 #define DMF_FREEING 3
115 #define DMF_DELETING 4
116 #define DMF_NOFLUSH_SUSPENDING 5
117 #define DMF_MERGE_IS_OPTIONAL 6
118
119 /*
120 * Work processed by per-device workqueue.
121 */
122 struct mapped_device {
123 struct rw_semaphore io_lock;
124 struct mutex suspend_lock;
125 rwlock_t map_lock;
126 atomic_t holders;
127 atomic_t open_count;
128
129 unsigned long flags;
130
131 struct request_queue *queue;
132 unsigned type;
133 /* Protect queue and type against concurrent access. */
134 struct mutex type_lock;
135
136 struct target_type *immutable_target_type;
137
138 struct gendisk *disk;
139 char name[16];
140
141 void *interface_ptr;
142
143 /*
144 * A list of ios that arrived while we were suspended.
145 */
146 atomic_t pending[2];
147 wait_queue_head_t wait;
148 struct work_struct work;
149 struct bio_list deferred;
150 spinlock_t deferred_lock;
151
152 /*
153 * Processing queue (flush)
154 */
155 struct workqueue_struct *wq;
156
157 /*
158 * The current mapping.
159 */
160 struct dm_table *map;
161
162 /*
163 * io objects are allocated from here.
164 */
165 mempool_t *io_pool;
166
167 struct bio_set *bs;
168
169 /*
170 * Event handling.
171 */
172 atomic_t event_nr;
173 wait_queue_head_t eventq;
174 atomic_t uevent_seq;
175 struct list_head uevent_list;
176 spinlock_t uevent_lock; /* Protect access to uevent_list */
177
178 /*
179 * freeze/thaw support require holding onto a super block
180 */
181 struct super_block *frozen_sb;
182 struct block_device *bdev;
183
184 /* forced geometry settings */
185 struct hd_geometry geometry;
186
187 /* sysfs handle */
188 struct kobject kobj;
189
190 /* zero-length flush that will be cloned and submitted to targets */
191 struct bio flush_bio;
192 };
193
194 /*
195 * For mempools pre-allocation at the table loading time.
196 */
197 struct dm_md_mempools {
198 mempool_t *io_pool;
199 struct bio_set *bs;
200 };
201
202 #define MIN_IOS 256
203 static struct kmem_cache *_io_cache;
204 static struct kmem_cache *_rq_tio_cache;
205
206 static int __init local_init(void)
207 {
208 int r = -ENOMEM;
209
210 /* allocate a slab for the dm_ios */
211 _io_cache = KMEM_CACHE(dm_io, 0);
212 if (!_io_cache)
213 return r;
214
215 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
216 if (!_rq_tio_cache)
217 goto out_free_io_cache;
218
219 r = dm_uevent_init();
220 if (r)
221 goto out_free_rq_tio_cache;
222
223 _major = major;
224 r = register_blkdev(_major, _name);
225 if (r < 0)
226 goto out_uevent_exit;
227
228 if (!_major)
229 _major = r;
230
231 return 0;
232
233 out_uevent_exit:
234 dm_uevent_exit();
235 out_free_rq_tio_cache:
236 kmem_cache_destroy(_rq_tio_cache);
237 out_free_io_cache:
238 kmem_cache_destroy(_io_cache);
239
240 return r;
241 }
242
243 static void local_exit(void)
244 {
245 kmem_cache_destroy(_rq_tio_cache);
246 kmem_cache_destroy(_io_cache);
247 unregister_blkdev(_major, _name);
248 dm_uevent_exit();
249
250 _major = 0;
251
252 DMINFO("cleaned up");
253 }
254
255 static int (*_inits[])(void) __initdata = {
256 local_init,
257 dm_target_init,
258 dm_linear_init,
259 dm_stripe_init,
260 dm_io_init,
261 dm_kcopyd_init,
262 dm_interface_init,
263 };
264
265 static void (*_exits[])(void) = {
266 local_exit,
267 dm_target_exit,
268 dm_linear_exit,
269 dm_stripe_exit,
270 dm_io_exit,
271 dm_kcopyd_exit,
272 dm_interface_exit,
273 };
274
275 static int __init dm_init(void)
276 {
277 const int count = ARRAY_SIZE(_inits);
278
279 int r, i;
280
281 for (i = 0; i < count; i++) {
282 r = _inits[i]();
283 if (r)
284 goto bad;
285 }
286
287 return 0;
288
289 bad:
290 while (i--)
291 _exits[i]();
292
293 return r;
294 }
295
296 static void __exit dm_exit(void)
297 {
298 int i = ARRAY_SIZE(_exits);
299
300 while (i--)
301 _exits[i]();
302
303 /*
304 * Should be empty by this point.
305 */
306 idr_destroy(&_minor_idr);
307 }
308
309 /*
310 * Block device functions
311 */
312 int dm_deleting_md(struct mapped_device *md)
313 {
314 return test_bit(DMF_DELETING, &md->flags);
315 }
316
317 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
318 {
319 struct mapped_device *md;
320
321 spin_lock(&_minor_lock);
322
323 md = bdev->bd_disk->private_data;
324 if (!md)
325 goto out;
326
327 if (test_bit(DMF_FREEING, &md->flags) ||
328 dm_deleting_md(md)) {
329 md = NULL;
330 goto out;
331 }
332
333 dm_get(md);
334 atomic_inc(&md->open_count);
335
336 out:
337 spin_unlock(&_minor_lock);
338
339 return md ? 0 : -ENXIO;
340 }
341
342 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
343 {
344 struct mapped_device *md = disk->private_data;
345
346 spin_lock(&_minor_lock);
347
348 atomic_dec(&md->open_count);
349 dm_put(md);
350
351 spin_unlock(&_minor_lock);
352
353 return 0;
354 }
355
356 int dm_open_count(struct mapped_device *md)
357 {
358 return atomic_read(&md->open_count);
359 }
360
361 /*
362 * Guarantees nothing is using the device before it's deleted.
363 */
364 int dm_lock_for_deletion(struct mapped_device *md)
365 {
366 int r = 0;
367
368 spin_lock(&_minor_lock);
369
370 if (dm_open_count(md))
371 r = -EBUSY;
372 else
373 set_bit(DMF_DELETING, &md->flags);
374
375 spin_unlock(&_minor_lock);
376
377 return r;
378 }
379
380 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
381 {
382 struct mapped_device *md = bdev->bd_disk->private_data;
383
384 return dm_get_geometry(md, geo);
385 }
386
387 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
388 unsigned int cmd, unsigned long arg)
389 {
390 struct mapped_device *md = bdev->bd_disk->private_data;
391 struct dm_table *map = dm_get_live_table(md);
392 struct dm_target *tgt;
393 int r = -ENOTTY;
394
395 if (!map || !dm_table_get_size(map))
396 goto out;
397
398 /* We only support devices that have a single target */
399 if (dm_table_get_num_targets(map) != 1)
400 goto out;
401
402 tgt = dm_table_get_target(map, 0);
403
404 if (dm_suspended_md(md)) {
405 r = -EAGAIN;
406 goto out;
407 }
408
409 if (tgt->type->ioctl)
410 r = tgt->type->ioctl(tgt, cmd, arg);
411
412 out:
413 dm_table_put(map);
414
415 return r;
416 }
417
418 static struct dm_io *alloc_io(struct mapped_device *md)
419 {
420 return mempool_alloc(md->io_pool, GFP_NOIO);
421 }
422
423 static void free_io(struct mapped_device *md, struct dm_io *io)
424 {
425 mempool_free(io, md->io_pool);
426 }
427
428 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
429 {
430 bio_put(&tio->clone);
431 }
432
433 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
434 gfp_t gfp_mask)
435 {
436 return mempool_alloc(md->io_pool, gfp_mask);
437 }
438
439 static void free_rq_tio(struct dm_rq_target_io *tio)
440 {
441 mempool_free(tio, tio->md->io_pool);
442 }
443
444 static int md_in_flight(struct mapped_device *md)
445 {
446 return atomic_read(&md->pending[READ]) +
447 atomic_read(&md->pending[WRITE]);
448 }
449
450 static void start_io_acct(struct dm_io *io)
451 {
452 struct mapped_device *md = io->md;
453 int cpu;
454 int rw = bio_data_dir(io->bio);
455
456 io->start_time = jiffies;
457
458 cpu = part_stat_lock();
459 part_round_stats(cpu, &dm_disk(md)->part0);
460 part_stat_unlock();
461 atomic_set(&dm_disk(md)->part0.in_flight[rw],
462 atomic_inc_return(&md->pending[rw]));
463 }
464
465 static void end_io_acct(struct dm_io *io)
466 {
467 struct mapped_device *md = io->md;
468 struct bio *bio = io->bio;
469 unsigned long duration = jiffies - io->start_time;
470 int pending, cpu;
471 int rw = bio_data_dir(bio);
472
473 cpu = part_stat_lock();
474 part_round_stats(cpu, &dm_disk(md)->part0);
475 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
476 part_stat_unlock();
477
478 /*
479 * After this is decremented the bio must not be touched if it is
480 * a flush.
481 */
482 pending = atomic_dec_return(&md->pending[rw]);
483 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
484 pending += atomic_read(&md->pending[rw^0x1]);
485
486 /* nudge anyone waiting on suspend queue */
487 if (!pending)
488 wake_up(&md->wait);
489 }
490
491 /*
492 * Add the bio to the list of deferred io.
493 */
494 static void queue_io(struct mapped_device *md, struct bio *bio)
495 {
496 unsigned long flags;
497
498 spin_lock_irqsave(&md->deferred_lock, flags);
499 bio_list_add(&md->deferred, bio);
500 spin_unlock_irqrestore(&md->deferred_lock, flags);
501 queue_work(md->wq, &md->work);
502 }
503
504 /*
505 * Everyone (including functions in this file), should use this
506 * function to access the md->map field, and make sure they call
507 * dm_table_put() when finished.
508 */
509 struct dm_table *dm_get_live_table(struct mapped_device *md)
510 {
511 struct dm_table *t;
512 unsigned long flags;
513
514 read_lock_irqsave(&md->map_lock, flags);
515 t = md->map;
516 if (t)
517 dm_table_get(t);
518 read_unlock_irqrestore(&md->map_lock, flags);
519
520 return t;
521 }
522
523 /*
524 * Get the geometry associated with a dm device
525 */
526 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
527 {
528 *geo = md->geometry;
529
530 return 0;
531 }
532
533 /*
534 * Set the geometry of a device.
535 */
536 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
537 {
538 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
539
540 if (geo->start > sz) {
541 DMWARN("Start sector is beyond the geometry limits.");
542 return -EINVAL;
543 }
544
545 md->geometry = *geo;
546
547 return 0;
548 }
549
550 /*-----------------------------------------------------------------
551 * CRUD START:
552 * A more elegant soln is in the works that uses the queue
553 * merge fn, unfortunately there are a couple of changes to
554 * the block layer that I want to make for this. So in the
555 * interests of getting something for people to use I give
556 * you this clearly demarcated crap.
557 *---------------------------------------------------------------*/
558
559 static int __noflush_suspending(struct mapped_device *md)
560 {
561 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
562 }
563
564 /*
565 * Decrements the number of outstanding ios that a bio has been
566 * cloned into, completing the original io if necc.
567 */
568 static void dec_pending(struct dm_io *io, int error)
569 {
570 unsigned long flags;
571 int io_error;
572 struct bio *bio;
573 struct mapped_device *md = io->md;
574
575 /* Push-back supersedes any I/O errors */
576 if (unlikely(error)) {
577 spin_lock_irqsave(&io->endio_lock, flags);
578 if (!(io->error > 0 && __noflush_suspending(md)))
579 io->error = error;
580 spin_unlock_irqrestore(&io->endio_lock, flags);
581 }
582
583 if (atomic_dec_and_test(&io->io_count)) {
584 if (io->error == DM_ENDIO_REQUEUE) {
585 /*
586 * Target requested pushing back the I/O.
587 */
588 spin_lock_irqsave(&md->deferred_lock, flags);
589 if (__noflush_suspending(md))
590 bio_list_add_head(&md->deferred, io->bio);
591 else
592 /* noflush suspend was interrupted. */
593 io->error = -EIO;
594 spin_unlock_irqrestore(&md->deferred_lock, flags);
595 }
596
597 io_error = io->error;
598 bio = io->bio;
599 end_io_acct(io);
600 free_io(md, io);
601
602 if (io_error == DM_ENDIO_REQUEUE)
603 return;
604
605 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
606 /*
607 * Preflush done for flush with data, reissue
608 * without REQ_FLUSH.
609 */
610 bio->bi_rw &= ~REQ_FLUSH;
611 queue_io(md, bio);
612 } else {
613 /* done with normal IO or empty flush */
614 bio_endio(bio, io_error);
615 }
616 }
617 }
618
619 static void clone_endio(struct bio *bio, int error)
620 {
621 int r = 0;
622 struct dm_target_io *tio = bio->bi_private;
623 struct dm_io *io = tio->io;
624 struct mapped_device *md = tio->io->md;
625 dm_endio_fn endio = tio->ti->type->end_io;
626
627 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
628 error = -EIO;
629
630 if (endio) {
631 r = endio(tio->ti, bio, error);
632 if (r < 0 || r == DM_ENDIO_REQUEUE)
633 /*
634 * error and requeue request are handled
635 * in dec_pending().
636 */
637 error = r;
638 else if (r == DM_ENDIO_INCOMPLETE)
639 /* The target will handle the io */
640 return;
641 else if (r) {
642 DMWARN("unimplemented target endio return value: %d", r);
643 BUG();
644 }
645 }
646
647 free_tio(md, tio);
648 dec_pending(io, error);
649 }
650
651 /*
652 * Partial completion handling for request-based dm
653 */
654 static void end_clone_bio(struct bio *clone, int error)
655 {
656 struct dm_rq_clone_bio_info *info = clone->bi_private;
657 struct dm_rq_target_io *tio = info->tio;
658 struct bio *bio = info->orig;
659 unsigned int nr_bytes = info->orig->bi_size;
660
661 bio_put(clone);
662
663 if (tio->error)
664 /*
665 * An error has already been detected on the request.
666 * Once error occurred, just let clone->end_io() handle
667 * the remainder.
668 */
669 return;
670 else if (error) {
671 /*
672 * Don't notice the error to the upper layer yet.
673 * The error handling decision is made by the target driver,
674 * when the request is completed.
675 */
676 tio->error = error;
677 return;
678 }
679
680 /*
681 * I/O for the bio successfully completed.
682 * Notice the data completion to the upper layer.
683 */
684
685 /*
686 * bios are processed from the head of the list.
687 * So the completing bio should always be rq->bio.
688 * If it's not, something wrong is happening.
689 */
690 if (tio->orig->bio != bio)
691 DMERR("bio completion is going in the middle of the request");
692
693 /*
694 * Update the original request.
695 * Do not use blk_end_request() here, because it may complete
696 * the original request before the clone, and break the ordering.
697 */
698 blk_update_request(tio->orig, 0, nr_bytes);
699 }
700
701 /*
702 * Don't touch any member of the md after calling this function because
703 * the md may be freed in dm_put() at the end of this function.
704 * Or do dm_get() before calling this function and dm_put() later.
705 */
706 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
707 {
708 atomic_dec(&md->pending[rw]);
709
710 /* nudge anyone waiting on suspend queue */
711 if (!md_in_flight(md))
712 wake_up(&md->wait);
713
714 /*
715 * Run this off this callpath, as drivers could invoke end_io while
716 * inside their request_fn (and holding the queue lock). Calling
717 * back into ->request_fn() could deadlock attempting to grab the
718 * queue lock again.
719 */
720 if (run_queue)
721 blk_run_queue_async(md->queue);
722
723 /*
724 * dm_put() must be at the end of this function. See the comment above
725 */
726 dm_put(md);
727 }
728
729 static void free_rq_clone(struct request *clone)
730 {
731 struct dm_rq_target_io *tio = clone->end_io_data;
732
733 blk_rq_unprep_clone(clone);
734 free_rq_tio(tio);
735 }
736
737 /*
738 * Complete the clone and the original request.
739 * Must be called without queue lock.
740 */
741 static void dm_end_request(struct request *clone, int error)
742 {
743 int rw = rq_data_dir(clone);
744 struct dm_rq_target_io *tio = clone->end_io_data;
745 struct mapped_device *md = tio->md;
746 struct request *rq = tio->orig;
747
748 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
749 rq->errors = clone->errors;
750 rq->resid_len = clone->resid_len;
751
752 if (rq->sense)
753 /*
754 * We are using the sense buffer of the original
755 * request.
756 * So setting the length of the sense data is enough.
757 */
758 rq->sense_len = clone->sense_len;
759 }
760
761 free_rq_clone(clone);
762 blk_end_request_all(rq, error);
763 rq_completed(md, rw, true);
764 }
765
766 static void dm_unprep_request(struct request *rq)
767 {
768 struct request *clone = rq->special;
769
770 rq->special = NULL;
771 rq->cmd_flags &= ~REQ_DONTPREP;
772
773 free_rq_clone(clone);
774 }
775
776 /*
777 * Requeue the original request of a clone.
778 */
779 void dm_requeue_unmapped_request(struct request *clone)
780 {
781 int rw = rq_data_dir(clone);
782 struct dm_rq_target_io *tio = clone->end_io_data;
783 struct mapped_device *md = tio->md;
784 struct request *rq = tio->orig;
785 struct request_queue *q = rq->q;
786 unsigned long flags;
787
788 dm_unprep_request(rq);
789
790 spin_lock_irqsave(q->queue_lock, flags);
791 blk_requeue_request(q, rq);
792 spin_unlock_irqrestore(q->queue_lock, flags);
793
794 rq_completed(md, rw, 0);
795 }
796 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
797
798 static void __stop_queue(struct request_queue *q)
799 {
800 blk_stop_queue(q);
801 }
802
803 static void stop_queue(struct request_queue *q)
804 {
805 unsigned long flags;
806
807 spin_lock_irqsave(q->queue_lock, flags);
808 __stop_queue(q);
809 spin_unlock_irqrestore(q->queue_lock, flags);
810 }
811
812 static void __start_queue(struct request_queue *q)
813 {
814 if (blk_queue_stopped(q))
815 blk_start_queue(q);
816 }
817
818 static void start_queue(struct request_queue *q)
819 {
820 unsigned long flags;
821
822 spin_lock_irqsave(q->queue_lock, flags);
823 __start_queue(q);
824 spin_unlock_irqrestore(q->queue_lock, flags);
825 }
826
827 static void dm_done(struct request *clone, int error, bool mapped)
828 {
829 int r = error;
830 struct dm_rq_target_io *tio = clone->end_io_data;
831 dm_request_endio_fn rq_end_io = NULL;
832
833 if (tio->ti) {
834 rq_end_io = tio->ti->type->rq_end_io;
835
836 if (mapped && rq_end_io)
837 r = rq_end_io(tio->ti, clone, error, &tio->info);
838 }
839
840 if (r <= 0)
841 /* The target wants to complete the I/O */
842 dm_end_request(clone, r);
843 else if (r == DM_ENDIO_INCOMPLETE)
844 /* The target will handle the I/O */
845 return;
846 else if (r == DM_ENDIO_REQUEUE)
847 /* The target wants to requeue the I/O */
848 dm_requeue_unmapped_request(clone);
849 else {
850 DMWARN("unimplemented target endio return value: %d", r);
851 BUG();
852 }
853 }
854
855 /*
856 * Request completion handler for request-based dm
857 */
858 static void dm_softirq_done(struct request *rq)
859 {
860 bool mapped = true;
861 struct request *clone = rq->completion_data;
862 struct dm_rq_target_io *tio = clone->end_io_data;
863
864 if (rq->cmd_flags & REQ_FAILED)
865 mapped = false;
866
867 dm_done(clone, tio->error, mapped);
868 }
869
870 /*
871 * Complete the clone and the original request with the error status
872 * through softirq context.
873 */
874 static void dm_complete_request(struct request *clone, int error)
875 {
876 struct dm_rq_target_io *tio = clone->end_io_data;
877 struct request *rq = tio->orig;
878
879 tio->error = error;
880 rq->completion_data = clone;
881 blk_complete_request(rq);
882 }
883
884 /*
885 * Complete the not-mapped clone and the original request with the error status
886 * through softirq context.
887 * Target's rq_end_io() function isn't called.
888 * This may be used when the target's map_rq() function fails.
889 */
890 void dm_kill_unmapped_request(struct request *clone, int error)
891 {
892 struct dm_rq_target_io *tio = clone->end_io_data;
893 struct request *rq = tio->orig;
894
895 rq->cmd_flags |= REQ_FAILED;
896 dm_complete_request(clone, error);
897 }
898 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
899
900 /*
901 * Called with the queue lock held
902 */
903 static void end_clone_request(struct request *clone, int error)
904 {
905 /*
906 * For just cleaning up the information of the queue in which
907 * the clone was dispatched.
908 * The clone is *NOT* freed actually here because it is alloced from
909 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
910 */
911 __blk_put_request(clone->q, clone);
912
913 /*
914 * Actual request completion is done in a softirq context which doesn't
915 * hold the queue lock. Otherwise, deadlock could occur because:
916 * - another request may be submitted by the upper level driver
917 * of the stacking during the completion
918 * - the submission which requires queue lock may be done
919 * against this queue
920 */
921 dm_complete_request(clone, error);
922 }
923
924 /*
925 * Return maximum size of I/O possible at the supplied sector up to the current
926 * target boundary.
927 */
928 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
929 {
930 sector_t target_offset = dm_target_offset(ti, sector);
931
932 return ti->len - target_offset;
933 }
934
935 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
936 {
937 sector_t len = max_io_len_target_boundary(sector, ti);
938 sector_t offset, max_len;
939
940 /*
941 * Does the target need to split even further?
942 */
943 if (ti->max_io_len) {
944 offset = dm_target_offset(ti, sector);
945 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
946 max_len = sector_div(offset, ti->max_io_len);
947 else
948 max_len = offset & (ti->max_io_len - 1);
949 max_len = ti->max_io_len - max_len;
950
951 if (len > max_len)
952 len = max_len;
953 }
954
955 return len;
956 }
957
958 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
959 {
960 if (len > UINT_MAX) {
961 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
962 (unsigned long long)len, UINT_MAX);
963 ti->error = "Maximum size of target IO is too large";
964 return -EINVAL;
965 }
966
967 ti->max_io_len = (uint32_t) len;
968
969 return 0;
970 }
971 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
972
973 static void __map_bio(struct dm_target_io *tio)
974 {
975 int r;
976 sector_t sector;
977 struct mapped_device *md;
978 struct bio *clone = &tio->clone;
979 struct dm_target *ti = tio->ti;
980
981 clone->bi_end_io = clone_endio;
982 clone->bi_private = tio;
983
984 /*
985 * Map the clone. If r == 0 we don't need to do
986 * anything, the target has assumed ownership of
987 * this io.
988 */
989 atomic_inc(&tio->io->io_count);
990 sector = clone->bi_sector;
991 r = ti->type->map(ti, clone);
992 if (r == DM_MAPIO_REMAPPED) {
993 /* the bio has been remapped so dispatch it */
994
995 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
996 tio->io->bio->bi_bdev->bd_dev, sector);
997
998 generic_make_request(clone);
999 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1000 /* error the io and bail out, or requeue it if needed */
1001 md = tio->io->md;
1002 dec_pending(tio->io, r);
1003 free_tio(md, tio);
1004 } else if (r) {
1005 DMWARN("unimplemented target map return value: %d", r);
1006 BUG();
1007 }
1008 }
1009
1010 struct clone_info {
1011 struct mapped_device *md;
1012 struct dm_table *map;
1013 struct bio *bio;
1014 struct dm_io *io;
1015 sector_t sector;
1016 sector_t sector_count;
1017 unsigned short idx;
1018 };
1019
1020 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
1021 {
1022 bio->bi_sector = sector;
1023 bio->bi_size = to_bytes(len);
1024 }
1025
1026 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count)
1027 {
1028 bio->bi_idx = idx;
1029 bio->bi_vcnt = idx + bv_count;
1030 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
1031 }
1032
1033 static void clone_bio_integrity(struct bio *bio, struct bio *clone,
1034 unsigned short idx, unsigned len, unsigned offset,
1035 unsigned trim)
1036 {
1037 if (!bio_integrity(bio))
1038 return;
1039
1040 bio_integrity_clone(clone, bio, GFP_NOIO);
1041
1042 if (trim)
1043 bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len);
1044 }
1045
1046 /*
1047 * Creates a little bio that just does part of a bvec.
1048 */
1049 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio,
1050 sector_t sector, unsigned short idx,
1051 unsigned offset, unsigned len)
1052 {
1053 struct bio *clone = &tio->clone;
1054 struct bio_vec *bv = bio->bi_io_vec + idx;
1055
1056 *clone->bi_io_vec = *bv;
1057
1058 bio_setup_sector(clone, sector, len);
1059
1060 clone->bi_bdev = bio->bi_bdev;
1061 clone->bi_rw = bio->bi_rw;
1062 clone->bi_vcnt = 1;
1063 clone->bi_io_vec->bv_offset = offset;
1064 clone->bi_io_vec->bv_len = clone->bi_size;
1065 clone->bi_flags |= 1 << BIO_CLONED;
1066
1067 clone_bio_integrity(bio, clone, idx, len, offset, 1);
1068 }
1069
1070 /*
1071 * Creates a bio that consists of range of complete bvecs.
1072 */
1073 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1074 sector_t sector, unsigned short idx,
1075 unsigned short bv_count, unsigned len)
1076 {
1077 struct bio *clone = &tio->clone;
1078 unsigned trim = 0;
1079
1080 __bio_clone(clone, bio);
1081 bio_setup_sector(clone, sector, len);
1082 bio_setup_bv(clone, idx, bv_count);
1083
1084 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1085 trim = 1;
1086 clone_bio_integrity(bio, clone, idx, len, 0, trim);
1087 }
1088
1089 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1090 struct dm_target *ti, int nr_iovecs,
1091 unsigned target_bio_nr)
1092 {
1093 struct dm_target_io *tio;
1094 struct bio *clone;
1095
1096 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1097 tio = container_of(clone, struct dm_target_io, clone);
1098
1099 tio->io = ci->io;
1100 tio->ti = ti;
1101 memset(&tio->info, 0, sizeof(tio->info));
1102 tio->target_bio_nr = target_bio_nr;
1103
1104 return tio;
1105 }
1106
1107 static void __clone_and_map_simple_bio(struct clone_info *ci,
1108 struct dm_target *ti,
1109 unsigned target_bio_nr, sector_t len)
1110 {
1111 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1112 struct bio *clone = &tio->clone;
1113
1114 /*
1115 * Discard requests require the bio's inline iovecs be initialized.
1116 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1117 * and discard, so no need for concern about wasted bvec allocations.
1118 */
1119 __bio_clone(clone, ci->bio);
1120 if (len)
1121 bio_setup_sector(clone, ci->sector, len);
1122
1123 __map_bio(tio);
1124 }
1125
1126 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1127 unsigned num_bios, sector_t len)
1128 {
1129 unsigned target_bio_nr;
1130
1131 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1132 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1133 }
1134
1135 static int __send_empty_flush(struct clone_info *ci)
1136 {
1137 unsigned target_nr = 0;
1138 struct dm_target *ti;
1139
1140 BUG_ON(bio_has_data(ci->bio));
1141 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1142 __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0);
1143
1144 return 0;
1145 }
1146
1147 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1148 sector_t sector, int nr_iovecs,
1149 unsigned short idx, unsigned short bv_count,
1150 unsigned offset, unsigned len,
1151 unsigned split_bvec)
1152 {
1153 struct bio *bio = ci->bio;
1154 struct dm_target_io *tio;
1155 unsigned target_bio_nr;
1156 unsigned num_target_bios = 1;
1157
1158 /*
1159 * Does the target want to receive duplicate copies of the bio?
1160 */
1161 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1162 num_target_bios = ti->num_write_bios(ti, bio);
1163
1164 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1165 tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr);
1166 if (split_bvec)
1167 clone_split_bio(tio, bio, sector, idx, offset, len);
1168 else
1169 clone_bio(tio, bio, sector, idx, bv_count, len);
1170 __map_bio(tio);
1171 }
1172 }
1173
1174 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1175
1176 static unsigned get_num_discard_bios(struct dm_target *ti)
1177 {
1178 return ti->num_discard_bios;
1179 }
1180
1181 static unsigned get_num_write_same_bios(struct dm_target *ti)
1182 {
1183 return ti->num_write_same_bios;
1184 }
1185
1186 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1187
1188 static bool is_split_required_for_discard(struct dm_target *ti)
1189 {
1190 return ti->split_discard_bios;
1191 }
1192
1193 static int __send_changing_extent_only(struct clone_info *ci,
1194 get_num_bios_fn get_num_bios,
1195 is_split_required_fn is_split_required)
1196 {
1197 struct dm_target *ti;
1198 sector_t len;
1199 unsigned num_bios;
1200
1201 do {
1202 ti = dm_table_find_target(ci->map, ci->sector);
1203 if (!dm_target_is_valid(ti))
1204 return -EIO;
1205
1206 /*
1207 * Even though the device advertised support for this type of
1208 * request, that does not mean every target supports it, and
1209 * reconfiguration might also have changed that since the
1210 * check was performed.
1211 */
1212 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1213 if (!num_bios)
1214 return -EOPNOTSUPP;
1215
1216 if (is_split_required && !is_split_required(ti))
1217 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1218 else
1219 len = min(ci->sector_count, max_io_len(ci->sector, ti));
1220
1221 __send_duplicate_bios(ci, ti, num_bios, len);
1222
1223 ci->sector += len;
1224 } while (ci->sector_count -= len);
1225
1226 return 0;
1227 }
1228
1229 static int __send_discard(struct clone_info *ci)
1230 {
1231 return __send_changing_extent_only(ci, get_num_discard_bios,
1232 is_split_required_for_discard);
1233 }
1234
1235 static int __send_write_same(struct clone_info *ci)
1236 {
1237 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1238 }
1239
1240 /*
1241 * Find maximum number of sectors / bvecs we can process with a single bio.
1242 */
1243 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx)
1244 {
1245 struct bio *bio = ci->bio;
1246 sector_t bv_len, total_len = 0;
1247
1248 for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) {
1249 bv_len = to_sector(bio->bi_io_vec[*idx].bv_len);
1250
1251 if (bv_len > max)
1252 break;
1253
1254 max -= bv_len;
1255 total_len += bv_len;
1256 }
1257
1258 return total_len;
1259 }
1260
1261 static int __split_bvec_across_targets(struct clone_info *ci,
1262 struct dm_target *ti, sector_t max)
1263 {
1264 struct bio *bio = ci->bio;
1265 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1266 sector_t remaining = to_sector(bv->bv_len);
1267 unsigned offset = 0;
1268 sector_t len;
1269
1270 do {
1271 if (offset) {
1272 ti = dm_table_find_target(ci->map, ci->sector);
1273 if (!dm_target_is_valid(ti))
1274 return -EIO;
1275
1276 max = max_io_len(ci->sector, ti);
1277 }
1278
1279 len = min(remaining, max);
1280
1281 __clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0,
1282 bv->bv_offset + offset, len, 1);
1283
1284 ci->sector += len;
1285 ci->sector_count -= len;
1286 offset += to_bytes(len);
1287 } while (remaining -= len);
1288
1289 ci->idx++;
1290
1291 return 0;
1292 }
1293
1294 /*
1295 * Select the correct strategy for processing a non-flush bio.
1296 */
1297 static int __split_and_process_non_flush(struct clone_info *ci)
1298 {
1299 struct bio *bio = ci->bio;
1300 struct dm_target *ti;
1301 sector_t len, max;
1302 int idx;
1303
1304 if (unlikely(bio->bi_rw & REQ_DISCARD))
1305 return __send_discard(ci);
1306 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1307 return __send_write_same(ci);
1308
1309 ti = dm_table_find_target(ci->map, ci->sector);
1310 if (!dm_target_is_valid(ti))
1311 return -EIO;
1312
1313 max = max_io_len(ci->sector, ti);
1314
1315 /*
1316 * Optimise for the simple case where we can do all of
1317 * the remaining io with a single clone.
1318 */
1319 if (ci->sector_count <= max) {
1320 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1321 ci->idx, bio->bi_vcnt - ci->idx, 0,
1322 ci->sector_count, 0);
1323 ci->sector_count = 0;
1324 return 0;
1325 }
1326
1327 /*
1328 * There are some bvecs that don't span targets.
1329 * Do as many of these as possible.
1330 */
1331 if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1332 len = __len_within_target(ci, max, &idx);
1333
1334 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1335 ci->idx, idx - ci->idx, 0, len, 0);
1336
1337 ci->sector += len;
1338 ci->sector_count -= len;
1339 ci->idx = idx;
1340
1341 return 0;
1342 }
1343
1344 /*
1345 * Handle a bvec that must be split between two or more targets.
1346 */
1347 return __split_bvec_across_targets(ci, ti, max);
1348 }
1349
1350 /*
1351 * Entry point to split a bio into clones and submit them to the targets.
1352 */
1353 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1354 {
1355 struct clone_info ci;
1356 int error = 0;
1357
1358 ci.map = dm_get_live_table(md);
1359 if (unlikely(!ci.map)) {
1360 bio_io_error(bio);
1361 return;
1362 }
1363
1364 ci.md = md;
1365 ci.io = alloc_io(md);
1366 ci.io->error = 0;
1367 atomic_set(&ci.io->io_count, 1);
1368 ci.io->bio = bio;
1369 ci.io->md = md;
1370 spin_lock_init(&ci.io->endio_lock);
1371 ci.sector = bio->bi_sector;
1372 ci.idx = bio->bi_idx;
1373
1374 start_io_acct(ci.io);
1375
1376 if (bio->bi_rw & REQ_FLUSH) {
1377 ci.bio = &ci.md->flush_bio;
1378 ci.sector_count = 0;
1379 error = __send_empty_flush(&ci);
1380 /* dec_pending submits any data associated with flush */
1381 } else {
1382 ci.bio = bio;
1383 ci.sector_count = bio_sectors(bio);
1384 while (ci.sector_count && !error)
1385 error = __split_and_process_non_flush(&ci);
1386 }
1387
1388 /* drop the extra reference count */
1389 dec_pending(ci.io, error);
1390 dm_table_put(ci.map);
1391 }
1392 /*-----------------------------------------------------------------
1393 * CRUD END
1394 *---------------------------------------------------------------*/
1395
1396 static int dm_merge_bvec(struct request_queue *q,
1397 struct bvec_merge_data *bvm,
1398 struct bio_vec *biovec)
1399 {
1400 struct mapped_device *md = q->queuedata;
1401 struct dm_table *map = dm_get_live_table(md);
1402 struct dm_target *ti;
1403 sector_t max_sectors;
1404 int max_size = 0;
1405
1406 if (unlikely(!map))
1407 goto out;
1408
1409 ti = dm_table_find_target(map, bvm->bi_sector);
1410 if (!dm_target_is_valid(ti))
1411 goto out_table;
1412
1413 /*
1414 * Find maximum amount of I/O that won't need splitting
1415 */
1416 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1417 (sector_t) BIO_MAX_SECTORS);
1418 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1419 if (max_size < 0)
1420 max_size = 0;
1421
1422 /*
1423 * merge_bvec_fn() returns number of bytes
1424 * it can accept at this offset
1425 * max is precomputed maximal io size
1426 */
1427 if (max_size && ti->type->merge)
1428 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1429 /*
1430 * If the target doesn't support merge method and some of the devices
1431 * provided their merge_bvec method (we know this by looking at
1432 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1433 * entries. So always set max_size to 0, and the code below allows
1434 * just one page.
1435 */
1436 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1437
1438 max_size = 0;
1439
1440 out_table:
1441 dm_table_put(map);
1442
1443 out:
1444 /*
1445 * Always allow an entire first page
1446 */
1447 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1448 max_size = biovec->bv_len;
1449
1450 return max_size;
1451 }
1452
1453 /*
1454 * The request function that just remaps the bio built up by
1455 * dm_merge_bvec.
1456 */
1457 static void _dm_request(struct request_queue *q, struct bio *bio)
1458 {
1459 int rw = bio_data_dir(bio);
1460 struct mapped_device *md = q->queuedata;
1461 int cpu;
1462
1463 down_read(&md->io_lock);
1464
1465 cpu = part_stat_lock();
1466 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1467 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1468 part_stat_unlock();
1469
1470 /* if we're suspended, we have to queue this io for later */
1471 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1472 up_read(&md->io_lock);
1473
1474 if (bio_rw(bio) != READA)
1475 queue_io(md, bio);
1476 else
1477 bio_io_error(bio);
1478 return;
1479 }
1480
1481 __split_and_process_bio(md, bio);
1482 up_read(&md->io_lock);
1483 return;
1484 }
1485
1486 static int dm_request_based(struct mapped_device *md)
1487 {
1488 return blk_queue_stackable(md->queue);
1489 }
1490
1491 static void dm_request(struct request_queue *q, struct bio *bio)
1492 {
1493 struct mapped_device *md = q->queuedata;
1494
1495 if (dm_request_based(md))
1496 blk_queue_bio(q, bio);
1497 else
1498 _dm_request(q, bio);
1499 }
1500
1501 void dm_dispatch_request(struct request *rq)
1502 {
1503 int r;
1504
1505 if (blk_queue_io_stat(rq->q))
1506 rq->cmd_flags |= REQ_IO_STAT;
1507
1508 rq->start_time = jiffies;
1509 r = blk_insert_cloned_request(rq->q, rq);
1510 if (r)
1511 dm_complete_request(rq, r);
1512 }
1513 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1514
1515 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1516 void *data)
1517 {
1518 struct dm_rq_target_io *tio = data;
1519 struct dm_rq_clone_bio_info *info =
1520 container_of(bio, struct dm_rq_clone_bio_info, clone);
1521
1522 info->orig = bio_orig;
1523 info->tio = tio;
1524 bio->bi_end_io = end_clone_bio;
1525 bio->bi_private = info;
1526
1527 return 0;
1528 }
1529
1530 static int setup_clone(struct request *clone, struct request *rq,
1531 struct dm_rq_target_io *tio)
1532 {
1533 int r;
1534
1535 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1536 dm_rq_bio_constructor, tio);
1537 if (r)
1538 return r;
1539
1540 clone->cmd = rq->cmd;
1541 clone->cmd_len = rq->cmd_len;
1542 clone->sense = rq->sense;
1543 clone->buffer = rq->buffer;
1544 clone->end_io = end_clone_request;
1545 clone->end_io_data = tio;
1546
1547 return 0;
1548 }
1549
1550 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1551 gfp_t gfp_mask)
1552 {
1553 struct request *clone;
1554 struct dm_rq_target_io *tio;
1555
1556 tio = alloc_rq_tio(md, gfp_mask);
1557 if (!tio)
1558 return NULL;
1559
1560 tio->md = md;
1561 tio->ti = NULL;
1562 tio->orig = rq;
1563 tio->error = 0;
1564 memset(&tio->info, 0, sizeof(tio->info));
1565
1566 clone = &tio->clone;
1567 if (setup_clone(clone, rq, tio)) {
1568 /* -ENOMEM */
1569 free_rq_tio(tio);
1570 return NULL;
1571 }
1572
1573 return clone;
1574 }
1575
1576 /*
1577 * Called with the queue lock held.
1578 */
1579 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1580 {
1581 struct mapped_device *md = q->queuedata;
1582 struct request *clone;
1583
1584 if (unlikely(rq->special)) {
1585 DMWARN("Already has something in rq->special.");
1586 return BLKPREP_KILL;
1587 }
1588
1589 clone = clone_rq(rq, md, GFP_ATOMIC);
1590 if (!clone)
1591 return BLKPREP_DEFER;
1592
1593 rq->special = clone;
1594 rq->cmd_flags |= REQ_DONTPREP;
1595
1596 return BLKPREP_OK;
1597 }
1598
1599 /*
1600 * Returns:
1601 * 0 : the request has been processed (not requeued)
1602 * !0 : the request has been requeued
1603 */
1604 static int map_request(struct dm_target *ti, struct request *clone,
1605 struct mapped_device *md)
1606 {
1607 int r, requeued = 0;
1608 struct dm_rq_target_io *tio = clone->end_io_data;
1609
1610 tio->ti = ti;
1611 r = ti->type->map_rq(ti, clone, &tio->info);
1612 switch (r) {
1613 case DM_MAPIO_SUBMITTED:
1614 /* The target has taken the I/O to submit by itself later */
1615 break;
1616 case DM_MAPIO_REMAPPED:
1617 /* The target has remapped the I/O so dispatch it */
1618 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1619 blk_rq_pos(tio->orig));
1620 dm_dispatch_request(clone);
1621 break;
1622 case DM_MAPIO_REQUEUE:
1623 /* The target wants to requeue the I/O */
1624 dm_requeue_unmapped_request(clone);
1625 requeued = 1;
1626 break;
1627 default:
1628 if (r > 0) {
1629 DMWARN("unimplemented target map return value: %d", r);
1630 BUG();
1631 }
1632
1633 /* The target wants to complete the I/O */
1634 dm_kill_unmapped_request(clone, r);
1635 break;
1636 }
1637
1638 return requeued;
1639 }
1640
1641 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1642 {
1643 struct request *clone;
1644
1645 blk_start_request(orig);
1646 clone = orig->special;
1647 atomic_inc(&md->pending[rq_data_dir(clone)]);
1648
1649 /*
1650 * Hold the md reference here for the in-flight I/O.
1651 * We can't rely on the reference count by device opener,
1652 * because the device may be closed during the request completion
1653 * when all bios are completed.
1654 * See the comment in rq_completed() too.
1655 */
1656 dm_get(md);
1657
1658 return clone;
1659 }
1660
1661 /*
1662 * q->request_fn for request-based dm.
1663 * Called with the queue lock held.
1664 */
1665 static void dm_request_fn(struct request_queue *q)
1666 {
1667 struct mapped_device *md = q->queuedata;
1668 struct dm_table *map = dm_get_live_table(md);
1669 struct dm_target *ti;
1670 struct request *rq, *clone;
1671 sector_t pos;
1672
1673 /*
1674 * For suspend, check blk_queue_stopped() and increment
1675 * ->pending within a single queue_lock not to increment the
1676 * number of in-flight I/Os after the queue is stopped in
1677 * dm_suspend().
1678 */
1679 while (!blk_queue_stopped(q)) {
1680 rq = blk_peek_request(q);
1681 if (!rq)
1682 goto delay_and_out;
1683
1684 /* always use block 0 to find the target for flushes for now */
1685 pos = 0;
1686 if (!(rq->cmd_flags & REQ_FLUSH))
1687 pos = blk_rq_pos(rq);
1688
1689 ti = dm_table_find_target(map, pos);
1690 if (!dm_target_is_valid(ti)) {
1691 /*
1692 * Must perform setup, that dm_done() requires,
1693 * before calling dm_kill_unmapped_request
1694 */
1695 DMERR_LIMIT("request attempted access beyond the end of device");
1696 clone = dm_start_request(md, rq);
1697 dm_kill_unmapped_request(clone, -EIO);
1698 continue;
1699 }
1700
1701 if (ti->type->busy && ti->type->busy(ti))
1702 goto delay_and_out;
1703
1704 clone = dm_start_request(md, rq);
1705
1706 spin_unlock(q->queue_lock);
1707 if (map_request(ti, clone, md))
1708 goto requeued;
1709
1710 BUG_ON(!irqs_disabled());
1711 spin_lock(q->queue_lock);
1712 }
1713
1714 goto out;
1715
1716 requeued:
1717 BUG_ON(!irqs_disabled());
1718 spin_lock(q->queue_lock);
1719
1720 delay_and_out:
1721 blk_delay_queue(q, HZ / 10);
1722 out:
1723 dm_table_put(map);
1724 }
1725
1726 int dm_underlying_device_busy(struct request_queue *q)
1727 {
1728 return blk_lld_busy(q);
1729 }
1730 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1731
1732 static int dm_lld_busy(struct request_queue *q)
1733 {
1734 int r;
1735 struct mapped_device *md = q->queuedata;
1736 struct dm_table *map = dm_get_live_table(md);
1737
1738 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1739 r = 1;
1740 else
1741 r = dm_table_any_busy_target(map);
1742
1743 dm_table_put(map);
1744
1745 return r;
1746 }
1747
1748 static int dm_any_congested(void *congested_data, int bdi_bits)
1749 {
1750 int r = bdi_bits;
1751 struct mapped_device *md = congested_data;
1752 struct dm_table *map;
1753
1754 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1755 map = dm_get_live_table(md);
1756 if (map) {
1757 /*
1758 * Request-based dm cares about only own queue for
1759 * the query about congestion status of request_queue
1760 */
1761 if (dm_request_based(md))
1762 r = md->queue->backing_dev_info.state &
1763 bdi_bits;
1764 else
1765 r = dm_table_any_congested(map, bdi_bits);
1766
1767 dm_table_put(map);
1768 }
1769 }
1770
1771 return r;
1772 }
1773
1774 /*-----------------------------------------------------------------
1775 * An IDR is used to keep track of allocated minor numbers.
1776 *---------------------------------------------------------------*/
1777 static void free_minor(int minor)
1778 {
1779 spin_lock(&_minor_lock);
1780 idr_remove(&_minor_idr, minor);
1781 spin_unlock(&_minor_lock);
1782 }
1783
1784 /*
1785 * See if the device with a specific minor # is free.
1786 */
1787 static int specific_minor(int minor)
1788 {
1789 int r;
1790
1791 if (minor >= (1 << MINORBITS))
1792 return -EINVAL;
1793
1794 idr_preload(GFP_KERNEL);
1795 spin_lock(&_minor_lock);
1796
1797 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1798
1799 spin_unlock(&_minor_lock);
1800 idr_preload_end();
1801 if (r < 0)
1802 return r == -ENOSPC ? -EBUSY : r;
1803 return 0;
1804 }
1805
1806 static int next_free_minor(int *minor)
1807 {
1808 int r;
1809
1810 idr_preload(GFP_KERNEL);
1811 spin_lock(&_minor_lock);
1812
1813 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1814
1815 spin_unlock(&_minor_lock);
1816 idr_preload_end();
1817 if (r < 0)
1818 return r;
1819 *minor = r;
1820 return 0;
1821 }
1822
1823 static const struct block_device_operations dm_blk_dops;
1824
1825 static void dm_wq_work(struct work_struct *work);
1826
1827 static void dm_init_md_queue(struct mapped_device *md)
1828 {
1829 /*
1830 * Request-based dm devices cannot be stacked on top of bio-based dm
1831 * devices. The type of this dm device has not been decided yet.
1832 * The type is decided at the first table loading time.
1833 * To prevent problematic device stacking, clear the queue flag
1834 * for request stacking support until then.
1835 *
1836 * This queue is new, so no concurrency on the queue_flags.
1837 */
1838 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1839
1840 md->queue->queuedata = md;
1841 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1842 md->queue->backing_dev_info.congested_data = md;
1843 blk_queue_make_request(md->queue, dm_request);
1844 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1845 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1846 }
1847
1848 /*
1849 * Allocate and initialise a blank device with a given minor.
1850 */
1851 static struct mapped_device *alloc_dev(int minor)
1852 {
1853 int r;
1854 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1855 void *old_md;
1856
1857 if (!md) {
1858 DMWARN("unable to allocate device, out of memory.");
1859 return NULL;
1860 }
1861
1862 if (!try_module_get(THIS_MODULE))
1863 goto bad_module_get;
1864
1865 /* get a minor number for the dev */
1866 if (minor == DM_ANY_MINOR)
1867 r = next_free_minor(&minor);
1868 else
1869 r = specific_minor(minor);
1870 if (r < 0)
1871 goto bad_minor;
1872
1873 md->type = DM_TYPE_NONE;
1874 init_rwsem(&md->io_lock);
1875 mutex_init(&md->suspend_lock);
1876 mutex_init(&md->type_lock);
1877 spin_lock_init(&md->deferred_lock);
1878 rwlock_init(&md->map_lock);
1879 atomic_set(&md->holders, 1);
1880 atomic_set(&md->open_count, 0);
1881 atomic_set(&md->event_nr, 0);
1882 atomic_set(&md->uevent_seq, 0);
1883 INIT_LIST_HEAD(&md->uevent_list);
1884 spin_lock_init(&md->uevent_lock);
1885
1886 md->queue = blk_alloc_queue(GFP_KERNEL);
1887 if (!md->queue)
1888 goto bad_queue;
1889
1890 dm_init_md_queue(md);
1891
1892 md->disk = alloc_disk(1);
1893 if (!md->disk)
1894 goto bad_disk;
1895
1896 atomic_set(&md->pending[0], 0);
1897 atomic_set(&md->pending[1], 0);
1898 init_waitqueue_head(&md->wait);
1899 INIT_WORK(&md->work, dm_wq_work);
1900 init_waitqueue_head(&md->eventq);
1901
1902 md->disk->major = _major;
1903 md->disk->first_minor = minor;
1904 md->disk->fops = &dm_blk_dops;
1905 md->disk->queue = md->queue;
1906 md->disk->private_data = md;
1907 sprintf(md->disk->disk_name, "dm-%d", minor);
1908 add_disk(md->disk);
1909 format_dev_t(md->name, MKDEV(_major, minor));
1910
1911 md->wq = alloc_workqueue("kdmflush",
1912 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1913 if (!md->wq)
1914 goto bad_thread;
1915
1916 md->bdev = bdget_disk(md->disk, 0);
1917 if (!md->bdev)
1918 goto bad_bdev;
1919
1920 bio_init(&md->flush_bio);
1921 md->flush_bio.bi_bdev = md->bdev;
1922 md->flush_bio.bi_rw = WRITE_FLUSH;
1923
1924 /* Populate the mapping, nobody knows we exist yet */
1925 spin_lock(&_minor_lock);
1926 old_md = idr_replace(&_minor_idr, md, minor);
1927 spin_unlock(&_minor_lock);
1928
1929 BUG_ON(old_md != MINOR_ALLOCED);
1930
1931 return md;
1932
1933 bad_bdev:
1934 destroy_workqueue(md->wq);
1935 bad_thread:
1936 del_gendisk(md->disk);
1937 put_disk(md->disk);
1938 bad_disk:
1939 blk_cleanup_queue(md->queue);
1940 bad_queue:
1941 free_minor(minor);
1942 bad_minor:
1943 module_put(THIS_MODULE);
1944 bad_module_get:
1945 kfree(md);
1946 return NULL;
1947 }
1948
1949 static void unlock_fs(struct mapped_device *md);
1950
1951 static void free_dev(struct mapped_device *md)
1952 {
1953 int minor = MINOR(disk_devt(md->disk));
1954
1955 unlock_fs(md);
1956 bdput(md->bdev);
1957 destroy_workqueue(md->wq);
1958 if (md->io_pool)
1959 mempool_destroy(md->io_pool);
1960 if (md->bs)
1961 bioset_free(md->bs);
1962 blk_integrity_unregister(md->disk);
1963 del_gendisk(md->disk);
1964 free_minor(minor);
1965
1966 spin_lock(&_minor_lock);
1967 md->disk->private_data = NULL;
1968 spin_unlock(&_minor_lock);
1969
1970 put_disk(md->disk);
1971 blk_cleanup_queue(md->queue);
1972 module_put(THIS_MODULE);
1973 kfree(md);
1974 }
1975
1976 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1977 {
1978 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1979
1980 if (md->io_pool && md->bs) {
1981 /* The md already has necessary mempools. */
1982 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
1983 /*
1984 * Reload bioset because front_pad may have changed
1985 * because a different table was loaded.
1986 */
1987 bioset_free(md->bs);
1988 md->bs = p->bs;
1989 p->bs = NULL;
1990 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
1991 /*
1992 * There's no need to reload with request-based dm
1993 * because the size of front_pad doesn't change.
1994 * Note for future: If you are to reload bioset,
1995 * prep-ed requests in the queue may refer
1996 * to bio from the old bioset, so you must walk
1997 * through the queue to unprep.
1998 */
1999 }
2000 goto out;
2001 }
2002
2003 BUG_ON(!p || md->io_pool || md->bs);
2004
2005 md->io_pool = p->io_pool;
2006 p->io_pool = NULL;
2007 md->bs = p->bs;
2008 p->bs = NULL;
2009
2010 out:
2011 /* mempool bind completed, now no need any mempools in the table */
2012 dm_table_free_md_mempools(t);
2013 }
2014
2015 /*
2016 * Bind a table to the device.
2017 */
2018 static void event_callback(void *context)
2019 {
2020 unsigned long flags;
2021 LIST_HEAD(uevents);
2022 struct mapped_device *md = (struct mapped_device *) context;
2023
2024 spin_lock_irqsave(&md->uevent_lock, flags);
2025 list_splice_init(&md->uevent_list, &uevents);
2026 spin_unlock_irqrestore(&md->uevent_lock, flags);
2027
2028 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2029
2030 atomic_inc(&md->event_nr);
2031 wake_up(&md->eventq);
2032 }
2033
2034 /*
2035 * Protected by md->suspend_lock obtained by dm_swap_table().
2036 */
2037 static void __set_size(struct mapped_device *md, sector_t size)
2038 {
2039 set_capacity(md->disk, size);
2040
2041 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2042 }
2043
2044 /*
2045 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2046 *
2047 * If this function returns 0, then the device is either a non-dm
2048 * device without a merge_bvec_fn, or it is a dm device that is
2049 * able to split any bios it receives that are too big.
2050 */
2051 int dm_queue_merge_is_compulsory(struct request_queue *q)
2052 {
2053 struct mapped_device *dev_md;
2054
2055 if (!q->merge_bvec_fn)
2056 return 0;
2057
2058 if (q->make_request_fn == dm_request) {
2059 dev_md = q->queuedata;
2060 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2061 return 0;
2062 }
2063
2064 return 1;
2065 }
2066
2067 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2068 struct dm_dev *dev, sector_t start,
2069 sector_t len, void *data)
2070 {
2071 struct block_device *bdev = dev->bdev;
2072 struct request_queue *q = bdev_get_queue(bdev);
2073
2074 return dm_queue_merge_is_compulsory(q);
2075 }
2076
2077 /*
2078 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2079 * on the properties of the underlying devices.
2080 */
2081 static int dm_table_merge_is_optional(struct dm_table *table)
2082 {
2083 unsigned i = 0;
2084 struct dm_target *ti;
2085
2086 while (i < dm_table_get_num_targets(table)) {
2087 ti = dm_table_get_target(table, i++);
2088
2089 if (ti->type->iterate_devices &&
2090 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2091 return 0;
2092 }
2093
2094 return 1;
2095 }
2096
2097 /*
2098 * Returns old map, which caller must destroy.
2099 */
2100 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2101 struct queue_limits *limits)
2102 {
2103 struct dm_table *old_map;
2104 struct request_queue *q = md->queue;
2105 sector_t size;
2106 unsigned long flags;
2107 int merge_is_optional;
2108
2109 size = dm_table_get_size(t);
2110
2111 /*
2112 * Wipe any geometry if the size of the table changed.
2113 */
2114 if (size != get_capacity(md->disk))
2115 memset(&md->geometry, 0, sizeof(md->geometry));
2116
2117 __set_size(md, size);
2118
2119 dm_table_event_callback(t, event_callback, md);
2120
2121 /*
2122 * The queue hasn't been stopped yet, if the old table type wasn't
2123 * for request-based during suspension. So stop it to prevent
2124 * I/O mapping before resume.
2125 * This must be done before setting the queue restrictions,
2126 * because request-based dm may be run just after the setting.
2127 */
2128 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2129 stop_queue(q);
2130
2131 __bind_mempools(md, t);
2132
2133 merge_is_optional = dm_table_merge_is_optional(t);
2134
2135 write_lock_irqsave(&md->map_lock, flags);
2136 old_map = md->map;
2137 md->map = t;
2138 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2139
2140 dm_table_set_restrictions(t, q, limits);
2141 if (merge_is_optional)
2142 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2143 else
2144 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2145 write_unlock_irqrestore(&md->map_lock, flags);
2146
2147 return old_map;
2148 }
2149
2150 /*
2151 * Returns unbound table for the caller to free.
2152 */
2153 static struct dm_table *__unbind(struct mapped_device *md)
2154 {
2155 struct dm_table *map = md->map;
2156 unsigned long flags;
2157
2158 if (!map)
2159 return NULL;
2160
2161 dm_table_event_callback(map, NULL, NULL);
2162 write_lock_irqsave(&md->map_lock, flags);
2163 md->map = NULL;
2164 write_unlock_irqrestore(&md->map_lock, flags);
2165
2166 return map;
2167 }
2168
2169 /*
2170 * Constructor for a new device.
2171 */
2172 int dm_create(int minor, struct mapped_device **result)
2173 {
2174 struct mapped_device *md;
2175
2176 md = alloc_dev(minor);
2177 if (!md)
2178 return -ENXIO;
2179
2180 dm_sysfs_init(md);
2181
2182 *result = md;
2183 return 0;
2184 }
2185
2186 /*
2187 * Functions to manage md->type.
2188 * All are required to hold md->type_lock.
2189 */
2190 void dm_lock_md_type(struct mapped_device *md)
2191 {
2192 mutex_lock(&md->type_lock);
2193 }
2194
2195 void dm_unlock_md_type(struct mapped_device *md)
2196 {
2197 mutex_unlock(&md->type_lock);
2198 }
2199
2200 void dm_set_md_type(struct mapped_device *md, unsigned type)
2201 {
2202 md->type = type;
2203 }
2204
2205 unsigned dm_get_md_type(struct mapped_device *md)
2206 {
2207 return md->type;
2208 }
2209
2210 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2211 {
2212 return md->immutable_target_type;
2213 }
2214
2215 /*
2216 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2217 */
2218 static int dm_init_request_based_queue(struct mapped_device *md)
2219 {
2220 struct request_queue *q = NULL;
2221
2222 if (md->queue->elevator)
2223 return 1;
2224
2225 /* Fully initialize the queue */
2226 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2227 if (!q)
2228 return 0;
2229
2230 md->queue = q;
2231 dm_init_md_queue(md);
2232 blk_queue_softirq_done(md->queue, dm_softirq_done);
2233 blk_queue_prep_rq(md->queue, dm_prep_fn);
2234 blk_queue_lld_busy(md->queue, dm_lld_busy);
2235
2236 elv_register_queue(md->queue);
2237
2238 return 1;
2239 }
2240
2241 /*
2242 * Setup the DM device's queue based on md's type
2243 */
2244 int dm_setup_md_queue(struct mapped_device *md)
2245 {
2246 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2247 !dm_init_request_based_queue(md)) {
2248 DMWARN("Cannot initialize queue for request-based mapped device");
2249 return -EINVAL;
2250 }
2251
2252 return 0;
2253 }
2254
2255 static struct mapped_device *dm_find_md(dev_t dev)
2256 {
2257 struct mapped_device *md;
2258 unsigned minor = MINOR(dev);
2259
2260 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2261 return NULL;
2262
2263 spin_lock(&_minor_lock);
2264
2265 md = idr_find(&_minor_idr, minor);
2266 if (md && (md == MINOR_ALLOCED ||
2267 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2268 dm_deleting_md(md) ||
2269 test_bit(DMF_FREEING, &md->flags))) {
2270 md = NULL;
2271 goto out;
2272 }
2273
2274 out:
2275 spin_unlock(&_minor_lock);
2276
2277 return md;
2278 }
2279
2280 struct mapped_device *dm_get_md(dev_t dev)
2281 {
2282 struct mapped_device *md = dm_find_md(dev);
2283
2284 if (md)
2285 dm_get(md);
2286
2287 return md;
2288 }
2289 EXPORT_SYMBOL_GPL(dm_get_md);
2290
2291 void *dm_get_mdptr(struct mapped_device *md)
2292 {
2293 return md->interface_ptr;
2294 }
2295
2296 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2297 {
2298 md->interface_ptr = ptr;
2299 }
2300
2301 void dm_get(struct mapped_device *md)
2302 {
2303 atomic_inc(&md->holders);
2304 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2305 }
2306
2307 const char *dm_device_name(struct mapped_device *md)
2308 {
2309 return md->name;
2310 }
2311 EXPORT_SYMBOL_GPL(dm_device_name);
2312
2313 static void __dm_destroy(struct mapped_device *md, bool wait)
2314 {
2315 struct dm_table *map;
2316
2317 might_sleep();
2318
2319 spin_lock(&_minor_lock);
2320 map = dm_get_live_table(md);
2321 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2322 set_bit(DMF_FREEING, &md->flags);
2323 spin_unlock(&_minor_lock);
2324
2325 if (!dm_suspended_md(md)) {
2326 dm_table_presuspend_targets(map);
2327 dm_table_postsuspend_targets(map);
2328 }
2329
2330 /*
2331 * Rare, but there may be I/O requests still going to complete,
2332 * for example. Wait for all references to disappear.
2333 * No one should increment the reference count of the mapped_device,
2334 * after the mapped_device state becomes DMF_FREEING.
2335 */
2336 if (wait)
2337 while (atomic_read(&md->holders))
2338 msleep(1);
2339 else if (atomic_read(&md->holders))
2340 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2341 dm_device_name(md), atomic_read(&md->holders));
2342
2343 dm_sysfs_exit(md);
2344 dm_table_put(map);
2345 dm_table_destroy(__unbind(md));
2346 free_dev(md);
2347 }
2348
2349 void dm_destroy(struct mapped_device *md)
2350 {
2351 __dm_destroy(md, true);
2352 }
2353
2354 void dm_destroy_immediate(struct mapped_device *md)
2355 {
2356 __dm_destroy(md, false);
2357 }
2358
2359 void dm_put(struct mapped_device *md)
2360 {
2361 atomic_dec(&md->holders);
2362 }
2363 EXPORT_SYMBOL_GPL(dm_put);
2364
2365 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2366 {
2367 int r = 0;
2368 DECLARE_WAITQUEUE(wait, current);
2369
2370 add_wait_queue(&md->wait, &wait);
2371
2372 while (1) {
2373 set_current_state(interruptible);
2374
2375 if (!md_in_flight(md))
2376 break;
2377
2378 if (interruptible == TASK_INTERRUPTIBLE &&
2379 signal_pending(current)) {
2380 r = -EINTR;
2381 break;
2382 }
2383
2384 io_schedule();
2385 }
2386 set_current_state(TASK_RUNNING);
2387
2388 remove_wait_queue(&md->wait, &wait);
2389
2390 return r;
2391 }
2392
2393 /*
2394 * Process the deferred bios
2395 */
2396 static void dm_wq_work(struct work_struct *work)
2397 {
2398 struct mapped_device *md = container_of(work, struct mapped_device,
2399 work);
2400 struct bio *c;
2401
2402 down_read(&md->io_lock);
2403
2404 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2405 spin_lock_irq(&md->deferred_lock);
2406 c = bio_list_pop(&md->deferred);
2407 spin_unlock_irq(&md->deferred_lock);
2408
2409 if (!c)
2410 break;
2411
2412 up_read(&md->io_lock);
2413
2414 if (dm_request_based(md))
2415 generic_make_request(c);
2416 else
2417 __split_and_process_bio(md, c);
2418
2419 down_read(&md->io_lock);
2420 }
2421
2422 up_read(&md->io_lock);
2423 }
2424
2425 static void dm_queue_flush(struct mapped_device *md)
2426 {
2427 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2428 smp_mb__after_clear_bit();
2429 queue_work(md->wq, &md->work);
2430 }
2431
2432 /*
2433 * Swap in a new table, returning the old one for the caller to destroy.
2434 */
2435 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2436 {
2437 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2438 struct queue_limits limits;
2439 int r;
2440
2441 mutex_lock(&md->suspend_lock);
2442
2443 /* device must be suspended */
2444 if (!dm_suspended_md(md))
2445 goto out;
2446
2447 /*
2448 * If the new table has no data devices, retain the existing limits.
2449 * This helps multipath with queue_if_no_path if all paths disappear,
2450 * then new I/O is queued based on these limits, and then some paths
2451 * reappear.
2452 */
2453 if (dm_table_has_no_data_devices(table)) {
2454 live_map = dm_get_live_table(md);
2455 if (live_map)
2456 limits = md->queue->limits;
2457 dm_table_put(live_map);
2458 }
2459
2460 if (!live_map) {
2461 r = dm_calculate_queue_limits(table, &limits);
2462 if (r) {
2463 map = ERR_PTR(r);
2464 goto out;
2465 }
2466 }
2467
2468 map = __bind(md, table, &limits);
2469
2470 out:
2471 mutex_unlock(&md->suspend_lock);
2472 return map;
2473 }
2474
2475 /*
2476 * Functions to lock and unlock any filesystem running on the
2477 * device.
2478 */
2479 static int lock_fs(struct mapped_device *md)
2480 {
2481 int r;
2482
2483 WARN_ON(md->frozen_sb);
2484
2485 md->frozen_sb = freeze_bdev(md->bdev);
2486 if (IS_ERR(md->frozen_sb)) {
2487 r = PTR_ERR(md->frozen_sb);
2488 md->frozen_sb = NULL;
2489 return r;
2490 }
2491
2492 set_bit(DMF_FROZEN, &md->flags);
2493
2494 return 0;
2495 }
2496
2497 static void unlock_fs(struct mapped_device *md)
2498 {
2499 if (!test_bit(DMF_FROZEN, &md->flags))
2500 return;
2501
2502 thaw_bdev(md->bdev, md->frozen_sb);
2503 md->frozen_sb = NULL;
2504 clear_bit(DMF_FROZEN, &md->flags);
2505 }
2506
2507 /*
2508 * We need to be able to change a mapping table under a mounted
2509 * filesystem. For example we might want to move some data in
2510 * the background. Before the table can be swapped with
2511 * dm_bind_table, dm_suspend must be called to flush any in
2512 * flight bios and ensure that any further io gets deferred.
2513 */
2514 /*
2515 * Suspend mechanism in request-based dm.
2516 *
2517 * 1. Flush all I/Os by lock_fs() if needed.
2518 * 2. Stop dispatching any I/O by stopping the request_queue.
2519 * 3. Wait for all in-flight I/Os to be completed or requeued.
2520 *
2521 * To abort suspend, start the request_queue.
2522 */
2523 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2524 {
2525 struct dm_table *map = NULL;
2526 int r = 0;
2527 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2528 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2529
2530 mutex_lock(&md->suspend_lock);
2531
2532 if (dm_suspended_md(md)) {
2533 r = -EINVAL;
2534 goto out_unlock;
2535 }
2536
2537 map = dm_get_live_table(md);
2538
2539 /*
2540 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2541 * This flag is cleared before dm_suspend returns.
2542 */
2543 if (noflush)
2544 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2545
2546 /* This does not get reverted if there's an error later. */
2547 dm_table_presuspend_targets(map);
2548
2549 /*
2550 * Flush I/O to the device.
2551 * Any I/O submitted after lock_fs() may not be flushed.
2552 * noflush takes precedence over do_lockfs.
2553 * (lock_fs() flushes I/Os and waits for them to complete.)
2554 */
2555 if (!noflush && do_lockfs) {
2556 r = lock_fs(md);
2557 if (r)
2558 goto out;
2559 }
2560
2561 /*
2562 * Here we must make sure that no processes are submitting requests
2563 * to target drivers i.e. no one may be executing
2564 * __split_and_process_bio. This is called from dm_request and
2565 * dm_wq_work.
2566 *
2567 * To get all processes out of __split_and_process_bio in dm_request,
2568 * we take the write lock. To prevent any process from reentering
2569 * __split_and_process_bio from dm_request and quiesce the thread
2570 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2571 * flush_workqueue(md->wq).
2572 */
2573 down_write(&md->io_lock);
2574 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2575 up_write(&md->io_lock);
2576
2577 /*
2578 * Stop md->queue before flushing md->wq in case request-based
2579 * dm defers requests to md->wq from md->queue.
2580 */
2581 if (dm_request_based(md))
2582 stop_queue(md->queue);
2583
2584 flush_workqueue(md->wq);
2585
2586 /*
2587 * At this point no more requests are entering target request routines.
2588 * We call dm_wait_for_completion to wait for all existing requests
2589 * to finish.
2590 */
2591 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2592
2593 down_write(&md->io_lock);
2594 if (noflush)
2595 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2596 up_write(&md->io_lock);
2597
2598 /* were we interrupted ? */
2599 if (r < 0) {
2600 dm_queue_flush(md);
2601
2602 if (dm_request_based(md))
2603 start_queue(md->queue);
2604
2605 unlock_fs(md);
2606 goto out; /* pushback list is already flushed, so skip flush */
2607 }
2608
2609 /*
2610 * If dm_wait_for_completion returned 0, the device is completely
2611 * quiescent now. There is no request-processing activity. All new
2612 * requests are being added to md->deferred list.
2613 */
2614
2615 set_bit(DMF_SUSPENDED, &md->flags);
2616
2617 dm_table_postsuspend_targets(map);
2618
2619 out:
2620 dm_table_put(map);
2621
2622 out_unlock:
2623 mutex_unlock(&md->suspend_lock);
2624 return r;
2625 }
2626
2627 int dm_resume(struct mapped_device *md)
2628 {
2629 int r = -EINVAL;
2630 struct dm_table *map = NULL;
2631
2632 mutex_lock(&md->suspend_lock);
2633 if (!dm_suspended_md(md))
2634 goto out;
2635
2636 map = dm_get_live_table(md);
2637 if (!map || !dm_table_get_size(map))
2638 goto out;
2639
2640 r = dm_table_resume_targets(map);
2641 if (r)
2642 goto out;
2643
2644 dm_queue_flush(md);
2645
2646 /*
2647 * Flushing deferred I/Os must be done after targets are resumed
2648 * so that mapping of targets can work correctly.
2649 * Request-based dm is queueing the deferred I/Os in its request_queue.
2650 */
2651 if (dm_request_based(md))
2652 start_queue(md->queue);
2653
2654 unlock_fs(md);
2655
2656 clear_bit(DMF_SUSPENDED, &md->flags);
2657
2658 r = 0;
2659 out:
2660 dm_table_put(map);
2661 mutex_unlock(&md->suspend_lock);
2662
2663 return r;
2664 }
2665
2666 /*-----------------------------------------------------------------
2667 * Event notification.
2668 *---------------------------------------------------------------*/
2669 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2670 unsigned cookie)
2671 {
2672 char udev_cookie[DM_COOKIE_LENGTH];
2673 char *envp[] = { udev_cookie, NULL };
2674
2675 if (!cookie)
2676 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2677 else {
2678 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2679 DM_COOKIE_ENV_VAR_NAME, cookie);
2680 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2681 action, envp);
2682 }
2683 }
2684
2685 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2686 {
2687 return atomic_add_return(1, &md->uevent_seq);
2688 }
2689
2690 uint32_t dm_get_event_nr(struct mapped_device *md)
2691 {
2692 return atomic_read(&md->event_nr);
2693 }
2694
2695 int dm_wait_event(struct mapped_device *md, int event_nr)
2696 {
2697 return wait_event_interruptible(md->eventq,
2698 (event_nr != atomic_read(&md->event_nr)));
2699 }
2700
2701 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2702 {
2703 unsigned long flags;
2704
2705 spin_lock_irqsave(&md->uevent_lock, flags);
2706 list_add(elist, &md->uevent_list);
2707 spin_unlock_irqrestore(&md->uevent_lock, flags);
2708 }
2709
2710 /*
2711 * The gendisk is only valid as long as you have a reference
2712 * count on 'md'.
2713 */
2714 struct gendisk *dm_disk(struct mapped_device *md)
2715 {
2716 return md->disk;
2717 }
2718
2719 struct kobject *dm_kobject(struct mapped_device *md)
2720 {
2721 return &md->kobj;
2722 }
2723
2724 /*
2725 * struct mapped_device should not be exported outside of dm.c
2726 * so use this check to verify that kobj is part of md structure
2727 */
2728 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2729 {
2730 struct mapped_device *md;
2731
2732 md = container_of(kobj, struct mapped_device, kobj);
2733 if (&md->kobj != kobj)
2734 return NULL;
2735
2736 if (test_bit(DMF_FREEING, &md->flags) ||
2737 dm_deleting_md(md))
2738 return NULL;
2739
2740 dm_get(md);
2741 return md;
2742 }
2743
2744 int dm_suspended_md(struct mapped_device *md)
2745 {
2746 return test_bit(DMF_SUSPENDED, &md->flags);
2747 }
2748
2749 int dm_suspended(struct dm_target *ti)
2750 {
2751 return dm_suspended_md(dm_table_get_md(ti->table));
2752 }
2753 EXPORT_SYMBOL_GPL(dm_suspended);
2754
2755 int dm_noflush_suspending(struct dm_target *ti)
2756 {
2757 return __noflush_suspending(dm_table_get_md(ti->table));
2758 }
2759 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2760
2761 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2762 {
2763 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2764 struct kmem_cache *cachep;
2765 unsigned int pool_size;
2766 unsigned int front_pad;
2767
2768 if (!pools)
2769 return NULL;
2770
2771 if (type == DM_TYPE_BIO_BASED) {
2772 cachep = _io_cache;
2773 pool_size = 16;
2774 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2775 } else if (type == DM_TYPE_REQUEST_BASED) {
2776 cachep = _rq_tio_cache;
2777 pool_size = MIN_IOS;
2778 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2779 /* per_bio_data_size is not used. See __bind_mempools(). */
2780 WARN_ON(per_bio_data_size != 0);
2781 } else
2782 goto out;
2783
2784 pools->io_pool = mempool_create_slab_pool(MIN_IOS, cachep);
2785 if (!pools->io_pool)
2786 goto out;
2787
2788 pools->bs = bioset_create(pool_size, front_pad);
2789 if (!pools->bs)
2790 goto out;
2791
2792 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2793 goto out;
2794
2795 return pools;
2796
2797 out:
2798 dm_free_md_mempools(pools);
2799
2800 return NULL;
2801 }
2802
2803 void dm_free_md_mempools(struct dm_md_mempools *pools)
2804 {
2805 if (!pools)
2806 return;
2807
2808 if (pools->io_pool)
2809 mempool_destroy(pools->io_pool);
2810
2811 if (pools->bs)
2812 bioset_free(pools->bs);
2813
2814 kfree(pools);
2815 }
2816
2817 static const struct block_device_operations dm_blk_dops = {
2818 .open = dm_blk_open,
2819 .release = dm_blk_close,
2820 .ioctl = dm_blk_ioctl,
2821 .getgeo = dm_blk_getgeo,
2822 .owner = THIS_MODULE
2823 };
2824
2825 EXPORT_SYMBOL(dm_get_mapinfo);
2826
2827 /*
2828 * module hooks
2829 */
2830 module_init(dm_init);
2831 module_exit(dm_exit);
2832
2833 module_param(major, uint, 0);
2834 MODULE_PARM_DESC(major, "The major number of the device mapper");
2835 MODULE_DESCRIPTION(DM_NAME " driver");
2836 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2837 MODULE_LICENSE("GPL");