dm: simplify dm_request loop
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <trace/block.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 static const char *_name = DM_NAME;
29
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35 * For bio-based dm.
36 * One of these is allocated per bio.
37 */
38 struct dm_io {
39 struct mapped_device *md;
40 int error;
41 atomic_t io_count;
42 struct bio *bio;
43 unsigned long start_time;
44 };
45
46 /*
47 * For bio-based dm.
48 * One of these is allocated per target within a bio. Hopefully
49 * this will be simplified out one day.
50 */
51 struct dm_target_io {
52 struct dm_io *io;
53 struct dm_target *ti;
54 union map_info info;
55 };
56
57 DEFINE_TRACE(block_bio_complete);
58
59 /*
60 * For request-based dm.
61 * One of these is allocated per request.
62 */
63 struct dm_rq_target_io {
64 struct mapped_device *md;
65 struct dm_target *ti;
66 struct request *orig, clone;
67 int error;
68 union map_info info;
69 };
70
71 /*
72 * For request-based dm.
73 * One of these is allocated per bio.
74 */
75 struct dm_rq_clone_bio_info {
76 struct bio *orig;
77 struct request *rq;
78 };
79
80 union map_info *dm_get_mapinfo(struct bio *bio)
81 {
82 if (bio && bio->bi_private)
83 return &((struct dm_target_io *)bio->bi_private)->info;
84 return NULL;
85 }
86
87 #define MINOR_ALLOCED ((void *)-1)
88
89 /*
90 * Bits for the md->flags field.
91 */
92 #define DMF_BLOCK_IO_FOR_SUSPEND 0
93 #define DMF_SUSPENDED 1
94 #define DMF_FROZEN 2
95 #define DMF_FREEING 3
96 #define DMF_DELETING 4
97 #define DMF_NOFLUSH_SUSPENDING 5
98 #define DMF_QUEUE_IO_TO_THREAD 6
99
100 /*
101 * Work processed by per-device workqueue.
102 */
103 struct mapped_device {
104 struct rw_semaphore io_lock;
105 struct mutex suspend_lock;
106 rwlock_t map_lock;
107 atomic_t holders;
108 atomic_t open_count;
109
110 unsigned long flags;
111
112 struct request_queue *queue;
113 struct gendisk *disk;
114 char name[16];
115
116 void *interface_ptr;
117
118 /*
119 * A list of ios that arrived while we were suspended.
120 */
121 atomic_t pending;
122 wait_queue_head_t wait;
123 struct work_struct work;
124 struct bio_list deferred;
125 spinlock_t deferred_lock;
126
127 /*
128 * Processing queue (flush/barriers)
129 */
130 struct workqueue_struct *wq;
131
132 /*
133 * The current mapping.
134 */
135 struct dm_table *map;
136
137 /*
138 * io objects are allocated from here.
139 */
140 mempool_t *io_pool;
141 mempool_t *tio_pool;
142
143 struct bio_set *bs;
144
145 /*
146 * Event handling.
147 */
148 atomic_t event_nr;
149 wait_queue_head_t eventq;
150 atomic_t uevent_seq;
151 struct list_head uevent_list;
152 spinlock_t uevent_lock; /* Protect access to uevent_list */
153
154 /*
155 * freeze/thaw support require holding onto a super block
156 */
157 struct super_block *frozen_sb;
158 struct block_device *suspended_bdev;
159
160 /* forced geometry settings */
161 struct hd_geometry geometry;
162
163 /* sysfs handle */
164 struct kobject kobj;
165 };
166
167 #define MIN_IOS 256
168 static struct kmem_cache *_io_cache;
169 static struct kmem_cache *_tio_cache;
170 static struct kmem_cache *_rq_tio_cache;
171 static struct kmem_cache *_rq_bio_info_cache;
172
173 static int __init local_init(void)
174 {
175 int r = -ENOMEM;
176
177 /* allocate a slab for the dm_ios */
178 _io_cache = KMEM_CACHE(dm_io, 0);
179 if (!_io_cache)
180 return r;
181
182 /* allocate a slab for the target ios */
183 _tio_cache = KMEM_CACHE(dm_target_io, 0);
184 if (!_tio_cache)
185 goto out_free_io_cache;
186
187 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
188 if (!_rq_tio_cache)
189 goto out_free_tio_cache;
190
191 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
192 if (!_rq_bio_info_cache)
193 goto out_free_rq_tio_cache;
194
195 r = dm_uevent_init();
196 if (r)
197 goto out_free_rq_bio_info_cache;
198
199 _major = major;
200 r = register_blkdev(_major, _name);
201 if (r < 0)
202 goto out_uevent_exit;
203
204 if (!_major)
205 _major = r;
206
207 return 0;
208
209 out_uevent_exit:
210 dm_uevent_exit();
211 out_free_rq_bio_info_cache:
212 kmem_cache_destroy(_rq_bio_info_cache);
213 out_free_rq_tio_cache:
214 kmem_cache_destroy(_rq_tio_cache);
215 out_free_tio_cache:
216 kmem_cache_destroy(_tio_cache);
217 out_free_io_cache:
218 kmem_cache_destroy(_io_cache);
219
220 return r;
221 }
222
223 static void local_exit(void)
224 {
225 kmem_cache_destroy(_rq_bio_info_cache);
226 kmem_cache_destroy(_rq_tio_cache);
227 kmem_cache_destroy(_tio_cache);
228 kmem_cache_destroy(_io_cache);
229 unregister_blkdev(_major, _name);
230 dm_uevent_exit();
231
232 _major = 0;
233
234 DMINFO("cleaned up");
235 }
236
237 static int (*_inits[])(void) __initdata = {
238 local_init,
239 dm_target_init,
240 dm_linear_init,
241 dm_stripe_init,
242 dm_kcopyd_init,
243 dm_interface_init,
244 };
245
246 static void (*_exits[])(void) = {
247 local_exit,
248 dm_target_exit,
249 dm_linear_exit,
250 dm_stripe_exit,
251 dm_kcopyd_exit,
252 dm_interface_exit,
253 };
254
255 static int __init dm_init(void)
256 {
257 const int count = ARRAY_SIZE(_inits);
258
259 int r, i;
260
261 for (i = 0; i < count; i++) {
262 r = _inits[i]();
263 if (r)
264 goto bad;
265 }
266
267 return 0;
268
269 bad:
270 while (i--)
271 _exits[i]();
272
273 return r;
274 }
275
276 static void __exit dm_exit(void)
277 {
278 int i = ARRAY_SIZE(_exits);
279
280 while (i--)
281 _exits[i]();
282 }
283
284 /*
285 * Block device functions
286 */
287 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
288 {
289 struct mapped_device *md;
290
291 spin_lock(&_minor_lock);
292
293 md = bdev->bd_disk->private_data;
294 if (!md)
295 goto out;
296
297 if (test_bit(DMF_FREEING, &md->flags) ||
298 test_bit(DMF_DELETING, &md->flags)) {
299 md = NULL;
300 goto out;
301 }
302
303 dm_get(md);
304 atomic_inc(&md->open_count);
305
306 out:
307 spin_unlock(&_minor_lock);
308
309 return md ? 0 : -ENXIO;
310 }
311
312 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
313 {
314 struct mapped_device *md = disk->private_data;
315 atomic_dec(&md->open_count);
316 dm_put(md);
317 return 0;
318 }
319
320 int dm_open_count(struct mapped_device *md)
321 {
322 return atomic_read(&md->open_count);
323 }
324
325 /*
326 * Guarantees nothing is using the device before it's deleted.
327 */
328 int dm_lock_for_deletion(struct mapped_device *md)
329 {
330 int r = 0;
331
332 spin_lock(&_minor_lock);
333
334 if (dm_open_count(md))
335 r = -EBUSY;
336 else
337 set_bit(DMF_DELETING, &md->flags);
338
339 spin_unlock(&_minor_lock);
340
341 return r;
342 }
343
344 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
345 {
346 struct mapped_device *md = bdev->bd_disk->private_data;
347
348 return dm_get_geometry(md, geo);
349 }
350
351 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
352 unsigned int cmd, unsigned long arg)
353 {
354 struct mapped_device *md = bdev->bd_disk->private_data;
355 struct dm_table *map = dm_get_table(md);
356 struct dm_target *tgt;
357 int r = -ENOTTY;
358
359 if (!map || !dm_table_get_size(map))
360 goto out;
361
362 /* We only support devices that have a single target */
363 if (dm_table_get_num_targets(map) != 1)
364 goto out;
365
366 tgt = dm_table_get_target(map, 0);
367
368 if (dm_suspended(md)) {
369 r = -EAGAIN;
370 goto out;
371 }
372
373 if (tgt->type->ioctl)
374 r = tgt->type->ioctl(tgt, cmd, arg);
375
376 out:
377 dm_table_put(map);
378
379 return r;
380 }
381
382 static struct dm_io *alloc_io(struct mapped_device *md)
383 {
384 return mempool_alloc(md->io_pool, GFP_NOIO);
385 }
386
387 static void free_io(struct mapped_device *md, struct dm_io *io)
388 {
389 mempool_free(io, md->io_pool);
390 }
391
392 static struct dm_target_io *alloc_tio(struct mapped_device *md)
393 {
394 return mempool_alloc(md->tio_pool, GFP_NOIO);
395 }
396
397 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
398 {
399 mempool_free(tio, md->tio_pool);
400 }
401
402 static void start_io_acct(struct dm_io *io)
403 {
404 struct mapped_device *md = io->md;
405 int cpu;
406
407 io->start_time = jiffies;
408
409 cpu = part_stat_lock();
410 part_round_stats(cpu, &dm_disk(md)->part0);
411 part_stat_unlock();
412 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
413 }
414
415 static void end_io_acct(struct dm_io *io)
416 {
417 struct mapped_device *md = io->md;
418 struct bio *bio = io->bio;
419 unsigned long duration = jiffies - io->start_time;
420 int pending, cpu;
421 int rw = bio_data_dir(bio);
422
423 cpu = part_stat_lock();
424 part_round_stats(cpu, &dm_disk(md)->part0);
425 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
426 part_stat_unlock();
427
428 dm_disk(md)->part0.in_flight = pending =
429 atomic_dec_return(&md->pending);
430
431 /* nudge anyone waiting on suspend queue */
432 if (!pending)
433 wake_up(&md->wait);
434 }
435
436 /*
437 * Add the bio to the list of deferred io.
438 */
439 static int queue_io(struct mapped_device *md, struct bio *bio)
440 {
441 down_write(&md->io_lock);
442
443 if (!test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) {
444 up_write(&md->io_lock);
445 return 1;
446 }
447
448 spin_lock_irq(&md->deferred_lock);
449 bio_list_add(&md->deferred, bio);
450 spin_unlock_irq(&md->deferred_lock);
451
452 up_write(&md->io_lock);
453 return 0; /* deferred successfully */
454 }
455
456 /*
457 * Everyone (including functions in this file), should use this
458 * function to access the md->map field, and make sure they call
459 * dm_table_put() when finished.
460 */
461 struct dm_table *dm_get_table(struct mapped_device *md)
462 {
463 struct dm_table *t;
464
465 read_lock(&md->map_lock);
466 t = md->map;
467 if (t)
468 dm_table_get(t);
469 read_unlock(&md->map_lock);
470
471 return t;
472 }
473
474 /*
475 * Get the geometry associated with a dm device
476 */
477 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
478 {
479 *geo = md->geometry;
480
481 return 0;
482 }
483
484 /*
485 * Set the geometry of a device.
486 */
487 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
488 {
489 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
490
491 if (geo->start > sz) {
492 DMWARN("Start sector is beyond the geometry limits.");
493 return -EINVAL;
494 }
495
496 md->geometry = *geo;
497
498 return 0;
499 }
500
501 /*-----------------------------------------------------------------
502 * CRUD START:
503 * A more elegant soln is in the works that uses the queue
504 * merge fn, unfortunately there are a couple of changes to
505 * the block layer that I want to make for this. So in the
506 * interests of getting something for people to use I give
507 * you this clearly demarcated crap.
508 *---------------------------------------------------------------*/
509
510 static int __noflush_suspending(struct mapped_device *md)
511 {
512 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
513 }
514
515 /*
516 * Decrements the number of outstanding ios that a bio has been
517 * cloned into, completing the original io if necc.
518 */
519 static void dec_pending(struct dm_io *io, int error)
520 {
521 unsigned long flags;
522 int io_error;
523 struct bio *bio;
524 struct mapped_device *md = io->md;
525
526 /* Push-back supersedes any I/O errors */
527 if (error && !(io->error > 0 && __noflush_suspending(md)))
528 io->error = error;
529
530 if (atomic_dec_and_test(&io->io_count)) {
531 if (io->error == DM_ENDIO_REQUEUE) {
532 /*
533 * Target requested pushing back the I/O.
534 */
535 spin_lock_irqsave(&md->deferred_lock, flags);
536 if (__noflush_suspending(md))
537 bio_list_add(&md->deferred, io->bio);
538 else
539 /* noflush suspend was interrupted. */
540 io->error = -EIO;
541 spin_unlock_irqrestore(&md->deferred_lock, flags);
542 }
543
544 end_io_acct(io);
545
546 io_error = io->error;
547 bio = io->bio;
548
549 free_io(md, io);
550
551 if (io_error != DM_ENDIO_REQUEUE) {
552 trace_block_bio_complete(md->queue, bio);
553
554 bio_endio(bio, io_error);
555 }
556 }
557 }
558
559 static void clone_endio(struct bio *bio, int error)
560 {
561 int r = 0;
562 struct dm_target_io *tio = bio->bi_private;
563 struct dm_io *io = tio->io;
564 struct mapped_device *md = tio->io->md;
565 dm_endio_fn endio = tio->ti->type->end_io;
566
567 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
568 error = -EIO;
569
570 if (endio) {
571 r = endio(tio->ti, bio, error, &tio->info);
572 if (r < 0 || r == DM_ENDIO_REQUEUE)
573 /*
574 * error and requeue request are handled
575 * in dec_pending().
576 */
577 error = r;
578 else if (r == DM_ENDIO_INCOMPLETE)
579 /* The target will handle the io */
580 return;
581 else if (r) {
582 DMWARN("unimplemented target endio return value: %d", r);
583 BUG();
584 }
585 }
586
587 /*
588 * Store md for cleanup instead of tio which is about to get freed.
589 */
590 bio->bi_private = md->bs;
591
592 free_tio(md, tio);
593 bio_put(bio);
594 dec_pending(io, error);
595 }
596
597 static sector_t max_io_len(struct mapped_device *md,
598 sector_t sector, struct dm_target *ti)
599 {
600 sector_t offset = sector - ti->begin;
601 sector_t len = ti->len - offset;
602
603 /*
604 * Does the target need to split even further ?
605 */
606 if (ti->split_io) {
607 sector_t boundary;
608 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
609 - offset;
610 if (len > boundary)
611 len = boundary;
612 }
613
614 return len;
615 }
616
617 static void __map_bio(struct dm_target *ti, struct bio *clone,
618 struct dm_target_io *tio)
619 {
620 int r;
621 sector_t sector;
622 struct mapped_device *md;
623
624 /*
625 * Sanity checks.
626 */
627 BUG_ON(!clone->bi_size);
628
629 clone->bi_end_io = clone_endio;
630 clone->bi_private = tio;
631
632 /*
633 * Map the clone. If r == 0 we don't need to do
634 * anything, the target has assumed ownership of
635 * this io.
636 */
637 atomic_inc(&tio->io->io_count);
638 sector = clone->bi_sector;
639 r = ti->type->map(ti, clone, &tio->info);
640 if (r == DM_MAPIO_REMAPPED) {
641 /* the bio has been remapped so dispatch it */
642
643 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
644 tio->io->bio->bi_bdev->bd_dev,
645 clone->bi_sector, sector);
646
647 generic_make_request(clone);
648 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
649 /* error the io and bail out, or requeue it if needed */
650 md = tio->io->md;
651 dec_pending(tio->io, r);
652 /*
653 * Store bio_set for cleanup.
654 */
655 clone->bi_private = md->bs;
656 bio_put(clone);
657 free_tio(md, tio);
658 } else if (r) {
659 DMWARN("unimplemented target map return value: %d", r);
660 BUG();
661 }
662 }
663
664 struct clone_info {
665 struct mapped_device *md;
666 struct dm_table *map;
667 struct bio *bio;
668 struct dm_io *io;
669 sector_t sector;
670 sector_t sector_count;
671 unsigned short idx;
672 };
673
674 static void dm_bio_destructor(struct bio *bio)
675 {
676 struct bio_set *bs = bio->bi_private;
677
678 bio_free(bio, bs);
679 }
680
681 /*
682 * Creates a little bio that is just does part of a bvec.
683 */
684 static struct bio *split_bvec(struct bio *bio, sector_t sector,
685 unsigned short idx, unsigned int offset,
686 unsigned int len, struct bio_set *bs)
687 {
688 struct bio *clone;
689 struct bio_vec *bv = bio->bi_io_vec + idx;
690
691 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
692 clone->bi_destructor = dm_bio_destructor;
693 *clone->bi_io_vec = *bv;
694
695 clone->bi_sector = sector;
696 clone->bi_bdev = bio->bi_bdev;
697 clone->bi_rw = bio->bi_rw;
698 clone->bi_vcnt = 1;
699 clone->bi_size = to_bytes(len);
700 clone->bi_io_vec->bv_offset = offset;
701 clone->bi_io_vec->bv_len = clone->bi_size;
702 clone->bi_flags |= 1 << BIO_CLONED;
703
704 if (bio_integrity(bio)) {
705 bio_integrity_clone(clone, bio, GFP_NOIO);
706 bio_integrity_trim(clone,
707 bio_sector_offset(bio, idx, offset), len);
708 }
709
710 return clone;
711 }
712
713 /*
714 * Creates a bio that consists of range of complete bvecs.
715 */
716 static struct bio *clone_bio(struct bio *bio, sector_t sector,
717 unsigned short idx, unsigned short bv_count,
718 unsigned int len, struct bio_set *bs)
719 {
720 struct bio *clone;
721
722 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
723 __bio_clone(clone, bio);
724 clone->bi_destructor = dm_bio_destructor;
725 clone->bi_sector = sector;
726 clone->bi_idx = idx;
727 clone->bi_vcnt = idx + bv_count;
728 clone->bi_size = to_bytes(len);
729 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
730
731 if (bio_integrity(bio)) {
732 bio_integrity_clone(clone, bio, GFP_NOIO);
733
734 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
735 bio_integrity_trim(clone,
736 bio_sector_offset(bio, idx, 0), len);
737 }
738
739 return clone;
740 }
741
742 static int __clone_and_map(struct clone_info *ci)
743 {
744 struct bio *clone, *bio = ci->bio;
745 struct dm_target *ti;
746 sector_t len = 0, max;
747 struct dm_target_io *tio;
748
749 ti = dm_table_find_target(ci->map, ci->sector);
750 if (!dm_target_is_valid(ti))
751 return -EIO;
752
753 max = max_io_len(ci->md, ci->sector, ti);
754
755 /*
756 * Allocate a target io object.
757 */
758 tio = alloc_tio(ci->md);
759 tio->io = ci->io;
760 tio->ti = ti;
761 memset(&tio->info, 0, sizeof(tio->info));
762
763 if (ci->sector_count <= max) {
764 /*
765 * Optimise for the simple case where we can do all of
766 * the remaining io with a single clone.
767 */
768 clone = clone_bio(bio, ci->sector, ci->idx,
769 bio->bi_vcnt - ci->idx, ci->sector_count,
770 ci->md->bs);
771 __map_bio(ti, clone, tio);
772 ci->sector_count = 0;
773
774 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
775 /*
776 * There are some bvecs that don't span targets.
777 * Do as many of these as possible.
778 */
779 int i;
780 sector_t remaining = max;
781 sector_t bv_len;
782
783 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
784 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
785
786 if (bv_len > remaining)
787 break;
788
789 remaining -= bv_len;
790 len += bv_len;
791 }
792
793 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
794 ci->md->bs);
795 __map_bio(ti, clone, tio);
796
797 ci->sector += len;
798 ci->sector_count -= len;
799 ci->idx = i;
800
801 } else {
802 /*
803 * Handle a bvec that must be split between two or more targets.
804 */
805 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
806 sector_t remaining = to_sector(bv->bv_len);
807 unsigned int offset = 0;
808
809 do {
810 if (offset) {
811 ti = dm_table_find_target(ci->map, ci->sector);
812 if (!dm_target_is_valid(ti))
813 return -EIO;
814
815 max = max_io_len(ci->md, ci->sector, ti);
816
817 tio = alloc_tio(ci->md);
818 tio->io = ci->io;
819 tio->ti = ti;
820 memset(&tio->info, 0, sizeof(tio->info));
821 }
822
823 len = min(remaining, max);
824
825 clone = split_bvec(bio, ci->sector, ci->idx,
826 bv->bv_offset + offset, len,
827 ci->md->bs);
828
829 __map_bio(ti, clone, tio);
830
831 ci->sector += len;
832 ci->sector_count -= len;
833 offset += to_bytes(len);
834 } while (remaining -= len);
835
836 ci->idx++;
837 }
838
839 return 0;
840 }
841
842 /*
843 * Split the bio into several clones and submit it to targets.
844 */
845 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
846 {
847 struct clone_info ci;
848 int error = 0;
849
850 ci.map = dm_get_table(md);
851 if (unlikely(!ci.map)) {
852 bio_io_error(bio);
853 return;
854 }
855
856 ci.md = md;
857 ci.bio = bio;
858 ci.io = alloc_io(md);
859 ci.io->error = 0;
860 atomic_set(&ci.io->io_count, 1);
861 ci.io->bio = bio;
862 ci.io->md = md;
863 ci.sector = bio->bi_sector;
864 ci.sector_count = bio_sectors(bio);
865 ci.idx = bio->bi_idx;
866
867 start_io_acct(ci.io);
868 while (ci.sector_count && !error)
869 error = __clone_and_map(&ci);
870
871 /* drop the extra reference count */
872 dec_pending(ci.io, error);
873 dm_table_put(ci.map);
874 }
875 /*-----------------------------------------------------------------
876 * CRUD END
877 *---------------------------------------------------------------*/
878
879 static int dm_merge_bvec(struct request_queue *q,
880 struct bvec_merge_data *bvm,
881 struct bio_vec *biovec)
882 {
883 struct mapped_device *md = q->queuedata;
884 struct dm_table *map = dm_get_table(md);
885 struct dm_target *ti;
886 sector_t max_sectors;
887 int max_size = 0;
888
889 if (unlikely(!map))
890 goto out;
891
892 ti = dm_table_find_target(map, bvm->bi_sector);
893 if (!dm_target_is_valid(ti))
894 goto out_table;
895
896 /*
897 * Find maximum amount of I/O that won't need splitting
898 */
899 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
900 (sector_t) BIO_MAX_SECTORS);
901 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
902 if (max_size < 0)
903 max_size = 0;
904
905 /*
906 * merge_bvec_fn() returns number of bytes
907 * it can accept at this offset
908 * max is precomputed maximal io size
909 */
910 if (max_size && ti->type->merge)
911 max_size = ti->type->merge(ti, bvm, biovec, max_size);
912
913 out_table:
914 dm_table_put(map);
915
916 out:
917 /*
918 * Always allow an entire first page
919 */
920 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
921 max_size = biovec->bv_len;
922
923 return max_size;
924 }
925
926 /*
927 * The request function that just remaps the bio built up by
928 * dm_merge_bvec.
929 */
930 static int dm_request(struct request_queue *q, struct bio *bio)
931 {
932 int rw = bio_data_dir(bio);
933 struct mapped_device *md = q->queuedata;
934 int cpu;
935
936 /*
937 * There is no use in forwarding any barrier request since we can't
938 * guarantee it is (or can be) handled by the targets correctly.
939 */
940 if (unlikely(bio_barrier(bio))) {
941 bio_endio(bio, -EOPNOTSUPP);
942 return 0;
943 }
944
945 down_read(&md->io_lock);
946
947 cpu = part_stat_lock();
948 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
949 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
950 part_stat_unlock();
951
952 /*
953 * If we're suspended or the thread is processing barriers
954 * we have to queue this io for later.
955 */
956 while (test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) {
957 up_read(&md->io_lock);
958
959 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
960 bio_rw(bio) == READA) {
961 bio_io_error(bio);
962 return 0;
963 }
964
965 if (!queue_io(md, bio))
966 return 0;
967
968 /*
969 * We're in a while loop, because someone could suspend
970 * before we get to the following read lock.
971 */
972 down_read(&md->io_lock);
973 }
974
975 __split_and_process_bio(md, bio);
976 up_read(&md->io_lock);
977 return 0;
978 }
979
980 static void dm_unplug_all(struct request_queue *q)
981 {
982 struct mapped_device *md = q->queuedata;
983 struct dm_table *map = dm_get_table(md);
984
985 if (map) {
986 dm_table_unplug_all(map);
987 dm_table_put(map);
988 }
989 }
990
991 static int dm_any_congested(void *congested_data, int bdi_bits)
992 {
993 int r = bdi_bits;
994 struct mapped_device *md = congested_data;
995 struct dm_table *map;
996
997 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
998 map = dm_get_table(md);
999 if (map) {
1000 r = dm_table_any_congested(map, bdi_bits);
1001 dm_table_put(map);
1002 }
1003 }
1004
1005 return r;
1006 }
1007
1008 /*-----------------------------------------------------------------
1009 * An IDR is used to keep track of allocated minor numbers.
1010 *---------------------------------------------------------------*/
1011 static DEFINE_IDR(_minor_idr);
1012
1013 static void free_minor(int minor)
1014 {
1015 spin_lock(&_minor_lock);
1016 idr_remove(&_minor_idr, minor);
1017 spin_unlock(&_minor_lock);
1018 }
1019
1020 /*
1021 * See if the device with a specific minor # is free.
1022 */
1023 static int specific_minor(int minor)
1024 {
1025 int r, m;
1026
1027 if (minor >= (1 << MINORBITS))
1028 return -EINVAL;
1029
1030 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1031 if (!r)
1032 return -ENOMEM;
1033
1034 spin_lock(&_minor_lock);
1035
1036 if (idr_find(&_minor_idr, minor)) {
1037 r = -EBUSY;
1038 goto out;
1039 }
1040
1041 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1042 if (r)
1043 goto out;
1044
1045 if (m != minor) {
1046 idr_remove(&_minor_idr, m);
1047 r = -EBUSY;
1048 goto out;
1049 }
1050
1051 out:
1052 spin_unlock(&_minor_lock);
1053 return r;
1054 }
1055
1056 static int next_free_minor(int *minor)
1057 {
1058 int r, m;
1059
1060 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1061 if (!r)
1062 return -ENOMEM;
1063
1064 spin_lock(&_minor_lock);
1065
1066 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1067 if (r)
1068 goto out;
1069
1070 if (m >= (1 << MINORBITS)) {
1071 idr_remove(&_minor_idr, m);
1072 r = -ENOSPC;
1073 goto out;
1074 }
1075
1076 *minor = m;
1077
1078 out:
1079 spin_unlock(&_minor_lock);
1080 return r;
1081 }
1082
1083 static struct block_device_operations dm_blk_dops;
1084
1085 static void dm_wq_work(struct work_struct *work);
1086
1087 /*
1088 * Allocate and initialise a blank device with a given minor.
1089 */
1090 static struct mapped_device *alloc_dev(int minor)
1091 {
1092 int r;
1093 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1094 void *old_md;
1095
1096 if (!md) {
1097 DMWARN("unable to allocate device, out of memory.");
1098 return NULL;
1099 }
1100
1101 if (!try_module_get(THIS_MODULE))
1102 goto bad_module_get;
1103
1104 /* get a minor number for the dev */
1105 if (minor == DM_ANY_MINOR)
1106 r = next_free_minor(&minor);
1107 else
1108 r = specific_minor(minor);
1109 if (r < 0)
1110 goto bad_minor;
1111
1112 init_rwsem(&md->io_lock);
1113 mutex_init(&md->suspend_lock);
1114 spin_lock_init(&md->deferred_lock);
1115 rwlock_init(&md->map_lock);
1116 atomic_set(&md->holders, 1);
1117 atomic_set(&md->open_count, 0);
1118 atomic_set(&md->event_nr, 0);
1119 atomic_set(&md->uevent_seq, 0);
1120 INIT_LIST_HEAD(&md->uevent_list);
1121 spin_lock_init(&md->uevent_lock);
1122
1123 md->queue = blk_alloc_queue(GFP_KERNEL);
1124 if (!md->queue)
1125 goto bad_queue;
1126
1127 md->queue->queuedata = md;
1128 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1129 md->queue->backing_dev_info.congested_data = md;
1130 blk_queue_make_request(md->queue, dm_request);
1131 blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
1132 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1133 md->queue->unplug_fn = dm_unplug_all;
1134 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1135
1136 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1137 if (!md->io_pool)
1138 goto bad_io_pool;
1139
1140 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1141 if (!md->tio_pool)
1142 goto bad_tio_pool;
1143
1144 md->bs = bioset_create(16, 0);
1145 if (!md->bs)
1146 goto bad_no_bioset;
1147
1148 md->disk = alloc_disk(1);
1149 if (!md->disk)
1150 goto bad_disk;
1151
1152 atomic_set(&md->pending, 0);
1153 init_waitqueue_head(&md->wait);
1154 INIT_WORK(&md->work, dm_wq_work);
1155 init_waitqueue_head(&md->eventq);
1156
1157 md->disk->major = _major;
1158 md->disk->first_minor = minor;
1159 md->disk->fops = &dm_blk_dops;
1160 md->disk->queue = md->queue;
1161 md->disk->private_data = md;
1162 sprintf(md->disk->disk_name, "dm-%d", minor);
1163 add_disk(md->disk);
1164 format_dev_t(md->name, MKDEV(_major, minor));
1165
1166 md->wq = create_singlethread_workqueue("kdmflush");
1167 if (!md->wq)
1168 goto bad_thread;
1169
1170 /* Populate the mapping, nobody knows we exist yet */
1171 spin_lock(&_minor_lock);
1172 old_md = idr_replace(&_minor_idr, md, minor);
1173 spin_unlock(&_minor_lock);
1174
1175 BUG_ON(old_md != MINOR_ALLOCED);
1176
1177 return md;
1178
1179 bad_thread:
1180 put_disk(md->disk);
1181 bad_disk:
1182 bioset_free(md->bs);
1183 bad_no_bioset:
1184 mempool_destroy(md->tio_pool);
1185 bad_tio_pool:
1186 mempool_destroy(md->io_pool);
1187 bad_io_pool:
1188 blk_cleanup_queue(md->queue);
1189 bad_queue:
1190 free_minor(minor);
1191 bad_minor:
1192 module_put(THIS_MODULE);
1193 bad_module_get:
1194 kfree(md);
1195 return NULL;
1196 }
1197
1198 static void unlock_fs(struct mapped_device *md);
1199
1200 static void free_dev(struct mapped_device *md)
1201 {
1202 int minor = MINOR(disk_devt(md->disk));
1203
1204 if (md->suspended_bdev) {
1205 unlock_fs(md);
1206 bdput(md->suspended_bdev);
1207 }
1208 destroy_workqueue(md->wq);
1209 mempool_destroy(md->tio_pool);
1210 mempool_destroy(md->io_pool);
1211 bioset_free(md->bs);
1212 blk_integrity_unregister(md->disk);
1213 del_gendisk(md->disk);
1214 free_minor(minor);
1215
1216 spin_lock(&_minor_lock);
1217 md->disk->private_data = NULL;
1218 spin_unlock(&_minor_lock);
1219
1220 put_disk(md->disk);
1221 blk_cleanup_queue(md->queue);
1222 module_put(THIS_MODULE);
1223 kfree(md);
1224 }
1225
1226 /*
1227 * Bind a table to the device.
1228 */
1229 static void event_callback(void *context)
1230 {
1231 unsigned long flags;
1232 LIST_HEAD(uevents);
1233 struct mapped_device *md = (struct mapped_device *) context;
1234
1235 spin_lock_irqsave(&md->uevent_lock, flags);
1236 list_splice_init(&md->uevent_list, &uevents);
1237 spin_unlock_irqrestore(&md->uevent_lock, flags);
1238
1239 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1240
1241 atomic_inc(&md->event_nr);
1242 wake_up(&md->eventq);
1243 }
1244
1245 static void __set_size(struct mapped_device *md, sector_t size)
1246 {
1247 set_capacity(md->disk, size);
1248
1249 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1250 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1251 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1252 }
1253
1254 static int __bind(struct mapped_device *md, struct dm_table *t)
1255 {
1256 struct request_queue *q = md->queue;
1257 sector_t size;
1258
1259 size = dm_table_get_size(t);
1260
1261 /*
1262 * Wipe any geometry if the size of the table changed.
1263 */
1264 if (size != get_capacity(md->disk))
1265 memset(&md->geometry, 0, sizeof(md->geometry));
1266
1267 if (md->suspended_bdev)
1268 __set_size(md, size);
1269
1270 if (!size) {
1271 dm_table_destroy(t);
1272 return 0;
1273 }
1274
1275 dm_table_event_callback(t, event_callback, md);
1276
1277 write_lock(&md->map_lock);
1278 md->map = t;
1279 dm_table_set_restrictions(t, q);
1280 write_unlock(&md->map_lock);
1281
1282 return 0;
1283 }
1284
1285 static void __unbind(struct mapped_device *md)
1286 {
1287 struct dm_table *map = md->map;
1288
1289 if (!map)
1290 return;
1291
1292 dm_table_event_callback(map, NULL, NULL);
1293 write_lock(&md->map_lock);
1294 md->map = NULL;
1295 write_unlock(&md->map_lock);
1296 dm_table_destroy(map);
1297 }
1298
1299 /*
1300 * Constructor for a new device.
1301 */
1302 int dm_create(int minor, struct mapped_device **result)
1303 {
1304 struct mapped_device *md;
1305
1306 md = alloc_dev(minor);
1307 if (!md)
1308 return -ENXIO;
1309
1310 dm_sysfs_init(md);
1311
1312 *result = md;
1313 return 0;
1314 }
1315
1316 static struct mapped_device *dm_find_md(dev_t dev)
1317 {
1318 struct mapped_device *md;
1319 unsigned minor = MINOR(dev);
1320
1321 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1322 return NULL;
1323
1324 spin_lock(&_minor_lock);
1325
1326 md = idr_find(&_minor_idr, minor);
1327 if (md && (md == MINOR_ALLOCED ||
1328 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1329 test_bit(DMF_FREEING, &md->flags))) {
1330 md = NULL;
1331 goto out;
1332 }
1333
1334 out:
1335 spin_unlock(&_minor_lock);
1336
1337 return md;
1338 }
1339
1340 struct mapped_device *dm_get_md(dev_t dev)
1341 {
1342 struct mapped_device *md = dm_find_md(dev);
1343
1344 if (md)
1345 dm_get(md);
1346
1347 return md;
1348 }
1349
1350 void *dm_get_mdptr(struct mapped_device *md)
1351 {
1352 return md->interface_ptr;
1353 }
1354
1355 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1356 {
1357 md->interface_ptr = ptr;
1358 }
1359
1360 void dm_get(struct mapped_device *md)
1361 {
1362 atomic_inc(&md->holders);
1363 }
1364
1365 const char *dm_device_name(struct mapped_device *md)
1366 {
1367 return md->name;
1368 }
1369 EXPORT_SYMBOL_GPL(dm_device_name);
1370
1371 void dm_put(struct mapped_device *md)
1372 {
1373 struct dm_table *map;
1374
1375 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1376
1377 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1378 map = dm_get_table(md);
1379 idr_replace(&_minor_idr, MINOR_ALLOCED,
1380 MINOR(disk_devt(dm_disk(md))));
1381 set_bit(DMF_FREEING, &md->flags);
1382 spin_unlock(&_minor_lock);
1383 if (!dm_suspended(md)) {
1384 dm_table_presuspend_targets(map);
1385 dm_table_postsuspend_targets(map);
1386 }
1387 dm_sysfs_exit(md);
1388 dm_table_put(map);
1389 __unbind(md);
1390 free_dev(md);
1391 }
1392 }
1393 EXPORT_SYMBOL_GPL(dm_put);
1394
1395 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1396 {
1397 int r = 0;
1398 DECLARE_WAITQUEUE(wait, current);
1399
1400 dm_unplug_all(md->queue);
1401
1402 add_wait_queue(&md->wait, &wait);
1403
1404 while (1) {
1405 set_current_state(interruptible);
1406
1407 smp_mb();
1408 if (!atomic_read(&md->pending))
1409 break;
1410
1411 if (interruptible == TASK_INTERRUPTIBLE &&
1412 signal_pending(current)) {
1413 r = -EINTR;
1414 break;
1415 }
1416
1417 io_schedule();
1418 }
1419 set_current_state(TASK_RUNNING);
1420
1421 remove_wait_queue(&md->wait, &wait);
1422
1423 return r;
1424 }
1425
1426 /*
1427 * Process the deferred bios
1428 */
1429 static void dm_wq_work(struct work_struct *work)
1430 {
1431 struct mapped_device *md = container_of(work, struct mapped_device,
1432 work);
1433 struct bio *c;
1434
1435 down_write(&md->io_lock);
1436
1437 while (1) {
1438 spin_lock_irq(&md->deferred_lock);
1439 c = bio_list_pop(&md->deferred);
1440 spin_unlock_irq(&md->deferred_lock);
1441
1442 if (!c) {
1443 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1444 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1445 break;
1446 }
1447
1448 __split_and_process_bio(md, c);
1449 }
1450
1451 up_write(&md->io_lock);
1452 }
1453
1454 static void dm_queue_flush(struct mapped_device *md)
1455 {
1456 queue_work(md->wq, &md->work);
1457 flush_workqueue(md->wq);
1458 }
1459
1460 /*
1461 * Swap in a new table (destroying old one).
1462 */
1463 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1464 {
1465 int r = -EINVAL;
1466
1467 mutex_lock(&md->suspend_lock);
1468
1469 /* device must be suspended */
1470 if (!dm_suspended(md))
1471 goto out;
1472
1473 /* without bdev, the device size cannot be changed */
1474 if (!md->suspended_bdev)
1475 if (get_capacity(md->disk) != dm_table_get_size(table))
1476 goto out;
1477
1478 __unbind(md);
1479 r = __bind(md, table);
1480
1481 out:
1482 mutex_unlock(&md->suspend_lock);
1483 return r;
1484 }
1485
1486 /*
1487 * Functions to lock and unlock any filesystem running on the
1488 * device.
1489 */
1490 static int lock_fs(struct mapped_device *md)
1491 {
1492 int r;
1493
1494 WARN_ON(md->frozen_sb);
1495
1496 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1497 if (IS_ERR(md->frozen_sb)) {
1498 r = PTR_ERR(md->frozen_sb);
1499 md->frozen_sb = NULL;
1500 return r;
1501 }
1502
1503 set_bit(DMF_FROZEN, &md->flags);
1504
1505 /* don't bdput right now, we don't want the bdev
1506 * to go away while it is locked.
1507 */
1508 return 0;
1509 }
1510
1511 static void unlock_fs(struct mapped_device *md)
1512 {
1513 if (!test_bit(DMF_FROZEN, &md->flags))
1514 return;
1515
1516 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1517 md->frozen_sb = NULL;
1518 clear_bit(DMF_FROZEN, &md->flags);
1519 }
1520
1521 /*
1522 * We need to be able to change a mapping table under a mounted
1523 * filesystem. For example we might want to move some data in
1524 * the background. Before the table can be swapped with
1525 * dm_bind_table, dm_suspend must be called to flush any in
1526 * flight bios and ensure that any further io gets deferred.
1527 */
1528 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1529 {
1530 struct dm_table *map = NULL;
1531 int r = 0;
1532 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1533 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1534
1535 mutex_lock(&md->suspend_lock);
1536
1537 if (dm_suspended(md)) {
1538 r = -EINVAL;
1539 goto out_unlock;
1540 }
1541
1542 map = dm_get_table(md);
1543
1544 /*
1545 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1546 * This flag is cleared before dm_suspend returns.
1547 */
1548 if (noflush)
1549 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1550
1551 /* This does not get reverted if there's an error later. */
1552 dm_table_presuspend_targets(map);
1553
1554 /* bdget() can stall if the pending I/Os are not flushed */
1555 if (!noflush) {
1556 md->suspended_bdev = bdget_disk(md->disk, 0);
1557 if (!md->suspended_bdev) {
1558 DMWARN("bdget failed in dm_suspend");
1559 r = -ENOMEM;
1560 goto out;
1561 }
1562
1563 /*
1564 * Flush I/O to the device. noflush supersedes do_lockfs,
1565 * because lock_fs() needs to flush I/Os.
1566 */
1567 if (do_lockfs) {
1568 r = lock_fs(md);
1569 if (r)
1570 goto out;
1571 }
1572 }
1573
1574 /*
1575 * First we set the DMF_QUEUE_IO_TO_THREAD flag so no more ios
1576 * will be mapped.
1577 */
1578 down_write(&md->io_lock);
1579 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1580 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1581
1582 up_write(&md->io_lock);
1583
1584 /*
1585 * Wait for the already-mapped ios to complete.
1586 */
1587 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1588
1589 down_write(&md->io_lock);
1590
1591 if (noflush)
1592 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1593 up_write(&md->io_lock);
1594
1595 /* were we interrupted ? */
1596 if (r < 0) {
1597 dm_queue_flush(md);
1598
1599 unlock_fs(md);
1600 goto out; /* pushback list is already flushed, so skip flush */
1601 }
1602
1603 dm_table_postsuspend_targets(map);
1604
1605 set_bit(DMF_SUSPENDED, &md->flags);
1606
1607 out:
1608 if (r && md->suspended_bdev) {
1609 bdput(md->suspended_bdev);
1610 md->suspended_bdev = NULL;
1611 }
1612
1613 dm_table_put(map);
1614
1615 out_unlock:
1616 mutex_unlock(&md->suspend_lock);
1617 return r;
1618 }
1619
1620 int dm_resume(struct mapped_device *md)
1621 {
1622 int r = -EINVAL;
1623 struct dm_table *map = NULL;
1624
1625 mutex_lock(&md->suspend_lock);
1626 if (!dm_suspended(md))
1627 goto out;
1628
1629 map = dm_get_table(md);
1630 if (!map || !dm_table_get_size(map))
1631 goto out;
1632
1633 r = dm_table_resume_targets(map);
1634 if (r)
1635 goto out;
1636
1637 dm_queue_flush(md);
1638
1639 unlock_fs(md);
1640
1641 if (md->suspended_bdev) {
1642 bdput(md->suspended_bdev);
1643 md->suspended_bdev = NULL;
1644 }
1645
1646 clear_bit(DMF_SUSPENDED, &md->flags);
1647
1648 dm_table_unplug_all(map);
1649
1650 dm_kobject_uevent(md);
1651
1652 r = 0;
1653
1654 out:
1655 dm_table_put(map);
1656 mutex_unlock(&md->suspend_lock);
1657
1658 return r;
1659 }
1660
1661 /*-----------------------------------------------------------------
1662 * Event notification.
1663 *---------------------------------------------------------------*/
1664 void dm_kobject_uevent(struct mapped_device *md)
1665 {
1666 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1667 }
1668
1669 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1670 {
1671 return atomic_add_return(1, &md->uevent_seq);
1672 }
1673
1674 uint32_t dm_get_event_nr(struct mapped_device *md)
1675 {
1676 return atomic_read(&md->event_nr);
1677 }
1678
1679 int dm_wait_event(struct mapped_device *md, int event_nr)
1680 {
1681 return wait_event_interruptible(md->eventq,
1682 (event_nr != atomic_read(&md->event_nr)));
1683 }
1684
1685 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1686 {
1687 unsigned long flags;
1688
1689 spin_lock_irqsave(&md->uevent_lock, flags);
1690 list_add(elist, &md->uevent_list);
1691 spin_unlock_irqrestore(&md->uevent_lock, flags);
1692 }
1693
1694 /*
1695 * The gendisk is only valid as long as you have a reference
1696 * count on 'md'.
1697 */
1698 struct gendisk *dm_disk(struct mapped_device *md)
1699 {
1700 return md->disk;
1701 }
1702
1703 struct kobject *dm_kobject(struct mapped_device *md)
1704 {
1705 return &md->kobj;
1706 }
1707
1708 /*
1709 * struct mapped_device should not be exported outside of dm.c
1710 * so use this check to verify that kobj is part of md structure
1711 */
1712 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1713 {
1714 struct mapped_device *md;
1715
1716 md = container_of(kobj, struct mapped_device, kobj);
1717 if (&md->kobj != kobj)
1718 return NULL;
1719
1720 dm_get(md);
1721 return md;
1722 }
1723
1724 int dm_suspended(struct mapped_device *md)
1725 {
1726 return test_bit(DMF_SUSPENDED, &md->flags);
1727 }
1728
1729 int dm_noflush_suspending(struct dm_target *ti)
1730 {
1731 struct mapped_device *md = dm_table_get_md(ti->table);
1732 int r = __noflush_suspending(md);
1733
1734 dm_put(md);
1735
1736 return r;
1737 }
1738 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1739
1740 static struct block_device_operations dm_blk_dops = {
1741 .open = dm_blk_open,
1742 .release = dm_blk_close,
1743 .ioctl = dm_blk_ioctl,
1744 .getgeo = dm_blk_getgeo,
1745 .owner = THIS_MODULE
1746 };
1747
1748 EXPORT_SYMBOL(dm_get_mapinfo);
1749
1750 /*
1751 * module hooks
1752 */
1753 module_init(dm_init);
1754 module_exit(dm_exit);
1755
1756 module_param(major, uint, 0);
1757 MODULE_PARM_DESC(major, "The major number of the device mapper");
1758 MODULE_DESCRIPTION(DM_NAME " driver");
1759 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1760 MODULE_LICENSE("GPL");