Merge 4.14.43 into android-4.14
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / md / dm-verity-target.c
1 /*
2 * Copyright (C) 2012 Red Hat, Inc.
3 *
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
5 *
6 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
7 *
8 * This file is released under the GPLv2.
9 *
10 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12 * hash device. Setting this greatly improves performance when data and hash
13 * are on the same disk on different partitions on devices with poor random
14 * access behavior.
15 */
16
17 #include "dm-verity.h"
18 #include "dm-verity-fec.h"
19
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22
23 #define DM_MSG_PREFIX "verity"
24
25 #define DM_VERITY_ENV_LENGTH 42
26 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR"
27
28 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
29
30 #define DM_VERITY_MAX_CORRUPTED_ERRS 100
31
32 #define DM_VERITY_OPT_LOGGING "ignore_corruption"
33 #define DM_VERITY_OPT_RESTART "restart_on_corruption"
34 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks"
35 #define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once"
36
37 #define DM_VERITY_OPTS_MAX (2 + DM_VERITY_OPTS_FEC)
38
39 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
40
41 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
42
43 struct dm_verity_prefetch_work {
44 struct work_struct work;
45 struct dm_verity *v;
46 sector_t block;
47 unsigned n_blocks;
48 };
49
50 /*
51 * Auxiliary structure appended to each dm-bufio buffer. If the value
52 * hash_verified is nonzero, hash of the block has been verified.
53 *
54 * The variable hash_verified is set to 0 when allocating the buffer, then
55 * it can be changed to 1 and it is never reset to 0 again.
56 *
57 * There is no lock around this value, a race condition can at worst cause
58 * that multiple processes verify the hash of the same buffer simultaneously
59 * and write 1 to hash_verified simultaneously.
60 * This condition is harmless, so we don't need locking.
61 */
62 struct buffer_aux {
63 int hash_verified;
64 };
65
66 /*
67 * Initialize struct buffer_aux for a freshly created buffer.
68 */
69 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
70 {
71 struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
72
73 aux->hash_verified = 0;
74 }
75
76 /*
77 * Translate input sector number to the sector number on the target device.
78 */
79 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
80 {
81 return v->data_start + dm_target_offset(v->ti, bi_sector);
82 }
83
84 /*
85 * Return hash position of a specified block at a specified tree level
86 * (0 is the lowest level).
87 * The lowest "hash_per_block_bits"-bits of the result denote hash position
88 * inside a hash block. The remaining bits denote location of the hash block.
89 */
90 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
91 int level)
92 {
93 return block >> (level * v->hash_per_block_bits);
94 }
95
96 /*
97 * Callback function for asynchrnous crypto API completion notification
98 */
99 static void verity_op_done(struct crypto_async_request *base, int err)
100 {
101 struct verity_result *res = (struct verity_result *)base->data;
102
103 if (err == -EINPROGRESS)
104 return;
105
106 res->err = err;
107 complete(&res->completion);
108 }
109
110 /*
111 * Wait for async crypto API callback
112 */
113 static inline int verity_complete_op(struct verity_result *res, int ret)
114 {
115 switch (ret) {
116 case 0:
117 break;
118
119 case -EINPROGRESS:
120 case -EBUSY:
121 ret = wait_for_completion_interruptible(&res->completion);
122 if (!ret)
123 ret = res->err;
124 reinit_completion(&res->completion);
125 break;
126
127 default:
128 DMERR("verity_wait_hash: crypto op submission failed: %d", ret);
129 }
130
131 if (unlikely(ret < 0))
132 DMERR("verity_wait_hash: crypto op failed: %d", ret);
133
134 return ret;
135 }
136
137 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
138 const u8 *data, size_t len,
139 struct verity_result *res)
140 {
141 struct scatterlist sg;
142
143 sg_init_one(&sg, data, len);
144 ahash_request_set_crypt(req, &sg, NULL, len);
145
146 return verity_complete_op(res, crypto_ahash_update(req));
147 }
148
149 /*
150 * Wrapper for crypto_ahash_init, which handles verity salting.
151 */
152 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
153 struct verity_result *res)
154 {
155 int r;
156
157 ahash_request_set_tfm(req, v->tfm);
158 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
159 CRYPTO_TFM_REQ_MAY_BACKLOG,
160 verity_op_done, (void *)res);
161 init_completion(&res->completion);
162
163 r = verity_complete_op(res, crypto_ahash_init(req));
164
165 if (unlikely(r < 0)) {
166 DMERR("crypto_ahash_init failed: %d", r);
167 return r;
168 }
169
170 if (likely(v->salt_size && (v->version >= 1)))
171 r = verity_hash_update(v, req, v->salt, v->salt_size, res);
172
173 return r;
174 }
175
176 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
177 u8 *digest, struct verity_result *res)
178 {
179 int r;
180
181 if (unlikely(v->salt_size && (!v->version))) {
182 r = verity_hash_update(v, req, v->salt, v->salt_size, res);
183
184 if (r < 0) {
185 DMERR("verity_hash_final failed updating salt: %d", r);
186 goto out;
187 }
188 }
189
190 ahash_request_set_crypt(req, NULL, digest, 0);
191 r = verity_complete_op(res, crypto_ahash_final(req));
192 out:
193 return r;
194 }
195
196 int verity_hash(struct dm_verity *v, struct ahash_request *req,
197 const u8 *data, size_t len, u8 *digest)
198 {
199 int r;
200 struct verity_result res;
201
202 r = verity_hash_init(v, req, &res);
203 if (unlikely(r < 0))
204 goto out;
205
206 r = verity_hash_update(v, req, data, len, &res);
207 if (unlikely(r < 0))
208 goto out;
209
210 r = verity_hash_final(v, req, digest, &res);
211
212 out:
213 return r;
214 }
215
216 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
217 sector_t *hash_block, unsigned *offset)
218 {
219 sector_t position = verity_position_at_level(v, block, level);
220 unsigned idx;
221
222 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
223
224 if (!offset)
225 return;
226
227 idx = position & ((1 << v->hash_per_block_bits) - 1);
228 if (!v->version)
229 *offset = idx * v->digest_size;
230 else
231 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
232 }
233
234 /*
235 * Handle verification errors.
236 */
237 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
238 unsigned long long block)
239 {
240 char verity_env[DM_VERITY_ENV_LENGTH];
241 char *envp[] = { verity_env, NULL };
242 const char *type_str = "";
243 struct mapped_device *md = dm_table_get_md(v->ti->table);
244
245 /* Corruption should be visible in device status in all modes */
246 v->hash_failed = 1;
247
248 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
249 goto out;
250
251 v->corrupted_errs++;
252
253 switch (type) {
254 case DM_VERITY_BLOCK_TYPE_DATA:
255 type_str = "data";
256 break;
257 case DM_VERITY_BLOCK_TYPE_METADATA:
258 type_str = "metadata";
259 break;
260 default:
261 BUG();
262 }
263
264 DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str,
265 block);
266
267 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
268 DMERR("%s: reached maximum errors", v->data_dev->name);
269
270 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
271 DM_VERITY_ENV_VAR_NAME, type, block);
272
273 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
274
275 out:
276 if (v->mode == DM_VERITY_MODE_LOGGING)
277 return 0;
278
279 if (v->mode == DM_VERITY_MODE_RESTART)
280 kernel_restart("dm-verity device corrupted");
281
282 return 1;
283 }
284
285 /*
286 * Verify hash of a metadata block pertaining to the specified data block
287 * ("block" argument) at a specified level ("level" argument).
288 *
289 * On successful return, verity_io_want_digest(v, io) contains the hash value
290 * for a lower tree level or for the data block (if we're at the lowest level).
291 *
292 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
293 * If "skip_unverified" is false, unverified buffer is hashed and verified
294 * against current value of verity_io_want_digest(v, io).
295 */
296 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
297 sector_t block, int level, bool skip_unverified,
298 u8 *want_digest)
299 {
300 struct dm_buffer *buf;
301 struct buffer_aux *aux;
302 u8 *data;
303 int r;
304 sector_t hash_block;
305 unsigned offset;
306
307 verity_hash_at_level(v, block, level, &hash_block, &offset);
308
309 data = dm_bufio_read(v->bufio, hash_block, &buf);
310 if (IS_ERR(data))
311 return PTR_ERR(data);
312
313 aux = dm_bufio_get_aux_data(buf);
314
315 if (!aux->hash_verified) {
316 if (skip_unverified) {
317 r = 1;
318 goto release_ret_r;
319 }
320
321 r = verity_hash(v, verity_io_hash_req(v, io),
322 data, 1 << v->hash_dev_block_bits,
323 verity_io_real_digest(v, io));
324 if (unlikely(r < 0))
325 goto release_ret_r;
326
327 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
328 v->digest_size) == 0))
329 aux->hash_verified = 1;
330 else if (verity_fec_decode(v, io,
331 DM_VERITY_BLOCK_TYPE_METADATA,
332 hash_block, data, NULL) == 0)
333 aux->hash_verified = 1;
334 else if (verity_handle_err(v,
335 DM_VERITY_BLOCK_TYPE_METADATA,
336 hash_block)) {
337 r = -EIO;
338 goto release_ret_r;
339 }
340 }
341
342 data += offset;
343 memcpy(want_digest, data, v->digest_size);
344 r = 0;
345
346 release_ret_r:
347 dm_bufio_release(buf);
348 return r;
349 }
350
351 /*
352 * Find a hash for a given block, write it to digest and verify the integrity
353 * of the hash tree if necessary.
354 */
355 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
356 sector_t block, u8 *digest, bool *is_zero)
357 {
358 int r = 0, i;
359
360 if (likely(v->levels)) {
361 /*
362 * First, we try to get the requested hash for
363 * the current block. If the hash block itself is
364 * verified, zero is returned. If it isn't, this
365 * function returns 1 and we fall back to whole
366 * chain verification.
367 */
368 r = verity_verify_level(v, io, block, 0, true, digest);
369 if (likely(r <= 0))
370 goto out;
371 }
372
373 memcpy(digest, v->root_digest, v->digest_size);
374
375 for (i = v->levels - 1; i >= 0; i--) {
376 r = verity_verify_level(v, io, block, i, false, digest);
377 if (unlikely(r))
378 goto out;
379 }
380 out:
381 if (!r && v->zero_digest)
382 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
383 else
384 *is_zero = false;
385
386 return r;
387 }
388
389 /*
390 * Calculates the digest for the given bio
391 */
392 int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
393 struct bvec_iter *iter, struct verity_result *res)
394 {
395 unsigned int todo = 1 << v->data_dev_block_bits;
396 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
397 struct scatterlist sg;
398 struct ahash_request *req = verity_io_hash_req(v, io);
399
400 do {
401 int r;
402 unsigned int len;
403 struct bio_vec bv = bio_iter_iovec(bio, *iter);
404
405 sg_init_table(&sg, 1);
406
407 len = bv.bv_len;
408
409 if (likely(len >= todo))
410 len = todo;
411 /*
412 * Operating on a single page at a time looks suboptimal
413 * until you consider the typical block size is 4,096B.
414 * Going through this loops twice should be very rare.
415 */
416 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
417 ahash_request_set_crypt(req, &sg, NULL, len);
418 r = verity_complete_op(res, crypto_ahash_update(req));
419
420 if (unlikely(r < 0)) {
421 DMERR("verity_for_io_block crypto op failed: %d", r);
422 return r;
423 }
424
425 bio_advance_iter(bio, iter, len);
426 todo -= len;
427 } while (todo);
428
429 return 0;
430 }
431
432 /*
433 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
434 * starting from iter.
435 */
436 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
437 struct bvec_iter *iter,
438 int (*process)(struct dm_verity *v,
439 struct dm_verity_io *io, u8 *data,
440 size_t len))
441 {
442 unsigned todo = 1 << v->data_dev_block_bits;
443 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
444
445 do {
446 int r;
447 u8 *page;
448 unsigned len;
449 struct bio_vec bv = bio_iter_iovec(bio, *iter);
450
451 page = kmap_atomic(bv.bv_page);
452 len = bv.bv_len;
453
454 if (likely(len >= todo))
455 len = todo;
456
457 r = process(v, io, page + bv.bv_offset, len);
458 kunmap_atomic(page);
459
460 if (r < 0)
461 return r;
462
463 bio_advance_iter(bio, iter, len);
464 todo -= len;
465 } while (todo);
466
467 return 0;
468 }
469
470 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
471 u8 *data, size_t len)
472 {
473 memset(data, 0, len);
474 return 0;
475 }
476
477 /*
478 * Moves the bio iter one data block forward.
479 */
480 static inline void verity_bv_skip_block(struct dm_verity *v,
481 struct dm_verity_io *io,
482 struct bvec_iter *iter)
483 {
484 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
485
486 bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
487 }
488
489 /*
490 * Verify one "dm_verity_io" structure.
491 */
492 static int verity_verify_io(struct dm_verity_io *io)
493 {
494 bool is_zero;
495 struct dm_verity *v = io->v;
496 struct bvec_iter start;
497 unsigned b;
498 struct verity_result res;
499
500 for (b = 0; b < io->n_blocks; b++) {
501 int r;
502 sector_t cur_block = io->block + b;
503 struct ahash_request *req = verity_io_hash_req(v, io);
504
505 if (v->validated_blocks &&
506 likely(test_bit(cur_block, v->validated_blocks))) {
507 verity_bv_skip_block(v, io, &io->iter);
508 continue;
509 }
510
511 r = verity_hash_for_block(v, io, cur_block,
512 verity_io_want_digest(v, io),
513 &is_zero);
514 if (unlikely(r < 0))
515 return r;
516
517 if (is_zero) {
518 /*
519 * If we expect a zero block, don't validate, just
520 * return zeros.
521 */
522 r = verity_for_bv_block(v, io, &io->iter,
523 verity_bv_zero);
524 if (unlikely(r < 0))
525 return r;
526
527 continue;
528 }
529
530 r = verity_hash_init(v, req, &res);
531 if (unlikely(r < 0))
532 return r;
533
534 start = io->iter;
535 r = verity_for_io_block(v, io, &io->iter, &res);
536 if (unlikely(r < 0))
537 return r;
538
539 r = verity_hash_final(v, req, verity_io_real_digest(v, io),
540 &res);
541 if (unlikely(r < 0))
542 return r;
543
544 if (likely(memcmp(verity_io_real_digest(v, io),
545 verity_io_want_digest(v, io), v->digest_size) == 0)) {
546 if (v->validated_blocks)
547 set_bit(cur_block, v->validated_blocks);
548 continue;
549 }
550 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
551 cur_block, NULL, &start) == 0)
552 continue;
553 else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
554 cur_block))
555 return -EIO;
556 }
557
558 return 0;
559 }
560
561 /*
562 * End one "io" structure with a given error.
563 */
564 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
565 {
566 struct dm_verity *v = io->v;
567 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
568
569 bio->bi_end_io = io->orig_bi_end_io;
570 bio->bi_status = status;
571
572 verity_fec_finish_io(io);
573
574 bio_endio(bio);
575 }
576
577 static void verity_work(struct work_struct *w)
578 {
579 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
580
581 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
582 }
583
584 static void verity_end_io(struct bio *bio)
585 {
586 struct dm_verity_io *io = bio->bi_private;
587
588 if (bio->bi_status && !verity_fec_is_enabled(io->v)) {
589 verity_finish_io(io, bio->bi_status);
590 return;
591 }
592
593 INIT_WORK(&io->work, verity_work);
594 queue_work(io->v->verify_wq, &io->work);
595 }
596
597 /*
598 * Prefetch buffers for the specified io.
599 * The root buffer is not prefetched, it is assumed that it will be cached
600 * all the time.
601 */
602 static void verity_prefetch_io(struct work_struct *work)
603 {
604 struct dm_verity_prefetch_work *pw =
605 container_of(work, struct dm_verity_prefetch_work, work);
606 struct dm_verity *v = pw->v;
607 int i;
608 sector_t prefetch_size;
609
610 for (i = v->levels - 2; i >= 0; i--) {
611 sector_t hash_block_start;
612 sector_t hash_block_end;
613 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
614 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
615 if (!i) {
616 unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster);
617
618 cluster >>= v->data_dev_block_bits;
619 if (unlikely(!cluster))
620 goto no_prefetch_cluster;
621
622 if (unlikely(cluster & (cluster - 1)))
623 cluster = 1 << __fls(cluster);
624
625 hash_block_start &= ~(sector_t)(cluster - 1);
626 hash_block_end |= cluster - 1;
627 if (unlikely(hash_block_end >= v->hash_blocks))
628 hash_block_end = v->hash_blocks - 1;
629 }
630 no_prefetch_cluster:
631 // for emmc, it is more efficient to send bigger read
632 prefetch_size = max((sector_t)CONFIG_DM_VERITY_HASH_PREFETCH_MIN_SIZE,
633 hash_block_end - hash_block_start + 1);
634 if ((hash_block_start + prefetch_size) >= (v->hash_start + v->hash_blocks)) {
635 prefetch_size = hash_block_end - hash_block_start + 1;
636 }
637 dm_bufio_prefetch(v->bufio, hash_block_start,
638 prefetch_size);
639 }
640
641 kfree(pw);
642 }
643
644 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
645 {
646 struct dm_verity_prefetch_work *pw;
647
648 pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
649 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
650
651 if (!pw)
652 return;
653
654 INIT_WORK(&pw->work, verity_prefetch_io);
655 pw->v = v;
656 pw->block = io->block;
657 pw->n_blocks = io->n_blocks;
658 queue_work(v->verify_wq, &pw->work);
659 }
660
661 /*
662 * Bio map function. It allocates dm_verity_io structure and bio vector and
663 * fills them. Then it issues prefetches and the I/O.
664 */
665 int verity_map(struct dm_target *ti, struct bio *bio)
666 {
667 struct dm_verity *v = ti->private;
668 struct dm_verity_io *io;
669
670 bio_set_dev(bio, v->data_dev->bdev);
671 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
672
673 if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
674 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
675 DMERR_LIMIT("unaligned io");
676 return DM_MAPIO_KILL;
677 }
678
679 if (bio_end_sector(bio) >>
680 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
681 DMERR_LIMIT("io out of range");
682 return DM_MAPIO_KILL;
683 }
684
685 if (bio_data_dir(bio) == WRITE)
686 return DM_MAPIO_KILL;
687
688 io = dm_per_bio_data(bio, ti->per_io_data_size);
689 io->v = v;
690 io->orig_bi_end_io = bio->bi_end_io;
691 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
692 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
693
694 bio->bi_end_io = verity_end_io;
695 bio->bi_private = io;
696 io->iter = bio->bi_iter;
697
698 verity_fec_init_io(io);
699
700 verity_submit_prefetch(v, io);
701
702 generic_make_request(bio);
703
704 return DM_MAPIO_SUBMITTED;
705 }
706
707 /*
708 * Status: V (valid) or C (corruption found)
709 */
710 void verity_status(struct dm_target *ti, status_type_t type,
711 unsigned status_flags, char *result, unsigned maxlen)
712 {
713 struct dm_verity *v = ti->private;
714 unsigned args = 0;
715 unsigned sz = 0;
716 unsigned x;
717
718 switch (type) {
719 case STATUSTYPE_INFO:
720 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
721 break;
722 case STATUSTYPE_TABLE:
723 DMEMIT("%u %s %s %u %u %llu %llu %s ",
724 v->version,
725 v->data_dev->name,
726 v->hash_dev->name,
727 1 << v->data_dev_block_bits,
728 1 << v->hash_dev_block_bits,
729 (unsigned long long)v->data_blocks,
730 (unsigned long long)v->hash_start,
731 v->alg_name
732 );
733 for (x = 0; x < v->digest_size; x++)
734 DMEMIT("%02x", v->root_digest[x]);
735 DMEMIT(" ");
736 if (!v->salt_size)
737 DMEMIT("-");
738 else
739 for (x = 0; x < v->salt_size; x++)
740 DMEMIT("%02x", v->salt[x]);
741 if (v->mode != DM_VERITY_MODE_EIO)
742 args++;
743 if (verity_fec_is_enabled(v))
744 args += DM_VERITY_OPTS_FEC;
745 if (v->zero_digest)
746 args++;
747 if (v->validated_blocks)
748 args++;
749 if (!args)
750 return;
751 DMEMIT(" %u", args);
752 if (v->mode != DM_VERITY_MODE_EIO) {
753 DMEMIT(" ");
754 switch (v->mode) {
755 case DM_VERITY_MODE_LOGGING:
756 DMEMIT(DM_VERITY_OPT_LOGGING);
757 break;
758 case DM_VERITY_MODE_RESTART:
759 DMEMIT(DM_VERITY_OPT_RESTART);
760 break;
761 default:
762 BUG();
763 }
764 }
765 if (v->zero_digest)
766 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
767 if (v->validated_blocks)
768 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
769 sz = verity_fec_status_table(v, sz, result, maxlen);
770 break;
771 }
772 }
773
774 int verity_prepare_ioctl(struct dm_target *ti,
775 struct block_device **bdev, fmode_t *mode)
776 {
777 struct dm_verity *v = ti->private;
778
779 *bdev = v->data_dev->bdev;
780
781 if (v->data_start ||
782 ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
783 return 1;
784 return 0;
785 }
786
787 int verity_iterate_devices(struct dm_target *ti,
788 iterate_devices_callout_fn fn, void *data)
789 {
790 struct dm_verity *v = ti->private;
791
792 return fn(ti, v->data_dev, v->data_start, ti->len, data);
793 }
794
795 void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
796 {
797 struct dm_verity *v = ti->private;
798
799 if (limits->logical_block_size < 1 << v->data_dev_block_bits)
800 limits->logical_block_size = 1 << v->data_dev_block_bits;
801
802 if (limits->physical_block_size < 1 << v->data_dev_block_bits)
803 limits->physical_block_size = 1 << v->data_dev_block_bits;
804
805 blk_limits_io_min(limits, limits->logical_block_size);
806 }
807
808 void verity_dtr(struct dm_target *ti)
809 {
810 struct dm_verity *v = ti->private;
811
812 if (v->verify_wq)
813 destroy_workqueue(v->verify_wq);
814
815 if (v->bufio)
816 dm_bufio_client_destroy(v->bufio);
817
818 kvfree(v->validated_blocks);
819 kfree(v->salt);
820 kfree(v->root_digest);
821 kfree(v->zero_digest);
822
823 if (v->tfm)
824 crypto_free_ahash(v->tfm);
825
826 kfree(v->alg_name);
827
828 if (v->hash_dev)
829 dm_put_device(ti, v->hash_dev);
830
831 if (v->data_dev)
832 dm_put_device(ti, v->data_dev);
833
834 verity_fec_dtr(v);
835
836 kfree(v);
837 }
838
839 static int verity_alloc_most_once(struct dm_verity *v)
840 {
841 struct dm_target *ti = v->ti;
842
843 /* the bitset can only handle INT_MAX blocks */
844 if (v->data_blocks > INT_MAX) {
845 ti->error = "device too large to use check_at_most_once";
846 return -E2BIG;
847 }
848
849 v->validated_blocks = kvzalloc(BITS_TO_LONGS(v->data_blocks) *
850 sizeof(unsigned long), GFP_KERNEL);
851 if (!v->validated_blocks) {
852 ti->error = "failed to allocate bitset for check_at_most_once";
853 return -ENOMEM;
854 }
855
856 return 0;
857 }
858
859 static int verity_alloc_zero_digest(struct dm_verity *v)
860 {
861 int r = -ENOMEM;
862 struct ahash_request *req;
863 u8 *zero_data;
864
865 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
866
867 if (!v->zero_digest)
868 return r;
869
870 req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
871
872 if (!req)
873 return r; /* verity_dtr will free zero_digest */
874
875 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
876
877 if (!zero_data)
878 goto out;
879
880 r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
881 v->zero_digest);
882
883 out:
884 kfree(req);
885 kfree(zero_data);
886
887 return r;
888 }
889
890 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
891 {
892 int r;
893 unsigned argc;
894 struct dm_target *ti = v->ti;
895 const char *arg_name;
896
897 static const struct dm_arg _args[] = {
898 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
899 };
900
901 r = dm_read_arg_group(_args, as, &argc, &ti->error);
902 if (r)
903 return -EINVAL;
904
905 if (!argc)
906 return 0;
907
908 do {
909 arg_name = dm_shift_arg(as);
910 argc--;
911
912 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
913 v->mode = DM_VERITY_MODE_LOGGING;
914 continue;
915
916 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
917 v->mode = DM_VERITY_MODE_RESTART;
918 continue;
919
920 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
921 r = verity_alloc_zero_digest(v);
922 if (r) {
923 ti->error = "Cannot allocate zero digest";
924 return r;
925 }
926 continue;
927
928 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
929 r = verity_alloc_most_once(v);
930 if (r)
931 return r;
932 continue;
933
934 } else if (verity_is_fec_opt_arg(arg_name)) {
935 r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
936 if (r)
937 return r;
938 continue;
939 }
940
941 ti->error = "Unrecognized verity feature request";
942 return -EINVAL;
943 } while (argc && !r);
944
945 return r;
946 }
947
948 /*
949 * Target parameters:
950 * <version> The current format is version 1.
951 * Vsn 0 is compatible with original Chromium OS releases.
952 * <data device>
953 * <hash device>
954 * <data block size>
955 * <hash block size>
956 * <the number of data blocks>
957 * <hash start block>
958 * <algorithm>
959 * <digest>
960 * <salt> Hex string or "-" if no salt.
961 */
962 int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
963 {
964 struct dm_verity *v;
965 struct dm_arg_set as;
966 unsigned int num;
967 unsigned long long num_ll;
968 int r;
969 int i;
970 sector_t hash_position;
971 char dummy;
972
973 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
974 if (!v) {
975 ti->error = "Cannot allocate verity structure";
976 return -ENOMEM;
977 }
978 ti->private = v;
979 v->ti = ti;
980
981 r = verity_fec_ctr_alloc(v);
982 if (r)
983 goto bad;
984
985 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
986 ti->error = "Device must be readonly";
987 r = -EINVAL;
988 goto bad;
989 }
990
991 if (argc < 10) {
992 ti->error = "Not enough arguments";
993 r = -EINVAL;
994 goto bad;
995 }
996
997 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
998 num > 1) {
999 ti->error = "Invalid version";
1000 r = -EINVAL;
1001 goto bad;
1002 }
1003 v->version = num;
1004
1005 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
1006 if (r) {
1007 ti->error = "Data device lookup failed";
1008 goto bad;
1009 }
1010
1011 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
1012 if (r) {
1013 ti->error = "Hash device lookup failed";
1014 goto bad;
1015 }
1016
1017 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1018 !num || (num & (num - 1)) ||
1019 num < bdev_logical_block_size(v->data_dev->bdev) ||
1020 num > PAGE_SIZE) {
1021 ti->error = "Invalid data device block size";
1022 r = -EINVAL;
1023 goto bad;
1024 }
1025 v->data_dev_block_bits = __ffs(num);
1026
1027 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1028 !num || (num & (num - 1)) ||
1029 num < bdev_logical_block_size(v->hash_dev->bdev) ||
1030 num > INT_MAX) {
1031 ti->error = "Invalid hash device block size";
1032 r = -EINVAL;
1033 goto bad;
1034 }
1035 v->hash_dev_block_bits = __ffs(num);
1036
1037 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1038 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1039 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1040 ti->error = "Invalid data blocks";
1041 r = -EINVAL;
1042 goto bad;
1043 }
1044 v->data_blocks = num_ll;
1045
1046 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1047 ti->error = "Data device is too small";
1048 r = -EINVAL;
1049 goto bad;
1050 }
1051
1052 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1053 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1054 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1055 ti->error = "Invalid hash start";
1056 r = -EINVAL;
1057 goto bad;
1058 }
1059 v->hash_start = num_ll;
1060
1061 v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1062 if (!v->alg_name) {
1063 ti->error = "Cannot allocate algorithm name";
1064 r = -ENOMEM;
1065 goto bad;
1066 }
1067
1068 v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1069 if (IS_ERR(v->tfm)) {
1070 ti->error = "Cannot initialize hash function";
1071 r = PTR_ERR(v->tfm);
1072 v->tfm = NULL;
1073 goto bad;
1074 }
1075 v->digest_size = crypto_ahash_digestsize(v->tfm);
1076 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1077 ti->error = "Digest size too big";
1078 r = -EINVAL;
1079 goto bad;
1080 }
1081 v->ahash_reqsize = sizeof(struct ahash_request) +
1082 crypto_ahash_reqsize(v->tfm);
1083
1084 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1085 if (!v->root_digest) {
1086 ti->error = "Cannot allocate root digest";
1087 r = -ENOMEM;
1088 goto bad;
1089 }
1090 if (strlen(argv[8]) != v->digest_size * 2 ||
1091 hex2bin(v->root_digest, argv[8], v->digest_size)) {
1092 ti->error = "Invalid root digest";
1093 r = -EINVAL;
1094 goto bad;
1095 }
1096
1097 if (strcmp(argv[9], "-")) {
1098 v->salt_size = strlen(argv[9]) / 2;
1099 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1100 if (!v->salt) {
1101 ti->error = "Cannot allocate salt";
1102 r = -ENOMEM;
1103 goto bad;
1104 }
1105 if (strlen(argv[9]) != v->salt_size * 2 ||
1106 hex2bin(v->salt, argv[9], v->salt_size)) {
1107 ti->error = "Invalid salt";
1108 r = -EINVAL;
1109 goto bad;
1110 }
1111 }
1112
1113 argv += 10;
1114 argc -= 10;
1115
1116 /* Optional parameters */
1117 if (argc) {
1118 as.argc = argc;
1119 as.argv = argv;
1120
1121 r = verity_parse_opt_args(&as, v);
1122 if (r < 0)
1123 goto bad;
1124 }
1125
1126 v->hash_per_block_bits =
1127 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1128
1129 v->levels = 0;
1130 if (v->data_blocks)
1131 while (v->hash_per_block_bits * v->levels < 64 &&
1132 (unsigned long long)(v->data_blocks - 1) >>
1133 (v->hash_per_block_bits * v->levels))
1134 v->levels++;
1135
1136 if (v->levels > DM_VERITY_MAX_LEVELS) {
1137 ti->error = "Too many tree levels";
1138 r = -E2BIG;
1139 goto bad;
1140 }
1141
1142 hash_position = v->hash_start;
1143 for (i = v->levels - 1; i >= 0; i--) {
1144 sector_t s;
1145 v->hash_level_block[i] = hash_position;
1146 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1147 >> ((i + 1) * v->hash_per_block_bits);
1148 if (hash_position + s < hash_position) {
1149 ti->error = "Hash device offset overflow";
1150 r = -E2BIG;
1151 goto bad;
1152 }
1153 hash_position += s;
1154 }
1155 v->hash_blocks = hash_position;
1156
1157 v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1158 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1159 dm_bufio_alloc_callback, NULL);
1160 if (IS_ERR(v->bufio)) {
1161 ti->error = "Cannot initialize dm-bufio";
1162 r = PTR_ERR(v->bufio);
1163 v->bufio = NULL;
1164 goto bad;
1165 }
1166
1167 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1168 ti->error = "Hash device is too small";
1169 r = -E2BIG;
1170 goto bad;
1171 }
1172
1173 /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1174 v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1175 if (!v->verify_wq) {
1176 ti->error = "Cannot allocate workqueue";
1177 r = -ENOMEM;
1178 goto bad;
1179 }
1180
1181 ti->per_io_data_size = sizeof(struct dm_verity_io) +
1182 v->ahash_reqsize + v->digest_size * 2;
1183
1184 r = verity_fec_ctr(v);
1185 if (r)
1186 goto bad;
1187
1188 ti->per_io_data_size = roundup(ti->per_io_data_size,
1189 __alignof__(struct dm_verity_io));
1190
1191 return 0;
1192
1193 bad:
1194 verity_dtr(ti);
1195
1196 return r;
1197 }
1198
1199 static struct target_type verity_target = {
1200 .name = "verity",
1201 .version = {1, 4, 0},
1202 .module = THIS_MODULE,
1203 .ctr = verity_ctr,
1204 .dtr = verity_dtr,
1205 .map = verity_map,
1206 .status = verity_status,
1207 .prepare_ioctl = verity_prepare_ioctl,
1208 .iterate_devices = verity_iterate_devices,
1209 .io_hints = verity_io_hints,
1210 };
1211
1212 static int __init dm_verity_init(void)
1213 {
1214 int r;
1215
1216 r = dm_register_target(&verity_target);
1217 if (r < 0)
1218 DMERR("register failed %d", r);
1219
1220 return r;
1221 }
1222
1223 static void __exit dm_verity_exit(void)
1224 {
1225 dm_unregister_target(&verity_target);
1226 }
1227
1228 module_init(dm_verity_init);
1229 module_exit(dm_verity_exit);
1230
1231 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1232 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1233 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1234 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1235 MODULE_LICENSE("GPL");