Merge tag 'ecryptfs-3.9-rc2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX "thin"
20
21 /*
22 * Tunable constants
23 */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
31
32 /*
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
35 */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40 * Device id is restricted to 24 bits.
41 */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
47 *
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
53 * same data blocks.
54 *
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
57 *
58 * Let's say we write to a shared block in what was the origin. The
59 * steps are:
60 *
61 * i) plug io further to this physical block. (see bio_prison code).
62 *
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
65 *
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
68 *
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
76 *
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
79 *
80 * Steps (ii) and (iii) occur in parallel.
81 *
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
85 *
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
89 *
90 * - The snap mapping still points to the old block. As it would after
91 * the commit.
92 *
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
100 */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105 * Key building.
106 */
107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
109 {
110 key->virtual = 0;
111 key->dev = dm_thin_dev_id(td);
112 key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
117 {
118 key->virtual = 1;
119 key->dev = dm_thin_dev_id(td);
120 key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
128 * devices.
129 */
130 struct dm_thin_new_mapping;
131
132 /*
133 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
134 */
135 enum pool_mode {
136 PM_WRITE, /* metadata may be changed */
137 PM_READ_ONLY, /* metadata may not be changed */
138 PM_FAIL, /* all I/O fails */
139 };
140
141 struct pool_features {
142 enum pool_mode mode;
143
144 bool zero_new_blocks:1;
145 bool discard_enabled:1;
146 bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154 struct list_head list;
155 struct dm_target *ti; /* Only set if a pool target is bound */
156
157 struct mapped_device *pool_md;
158 struct block_device *md_dev;
159 struct dm_pool_metadata *pmd;
160
161 dm_block_t low_water_blocks;
162 uint32_t sectors_per_block;
163 int sectors_per_block_shift;
164
165 struct pool_features pf;
166 unsigned low_water_triggered:1; /* A dm event has been sent */
167 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
168
169 struct dm_bio_prison *prison;
170 struct dm_kcopyd_client *copier;
171
172 struct workqueue_struct *wq;
173 struct work_struct worker;
174 struct delayed_work waker;
175
176 unsigned long last_commit_jiffies;
177 unsigned ref_count;
178
179 spinlock_t lock;
180 struct bio_list deferred_bios;
181 struct bio_list deferred_flush_bios;
182 struct list_head prepared_mappings;
183 struct list_head prepared_discards;
184
185 struct bio_list retry_on_resume_list;
186
187 struct dm_deferred_set *shared_read_ds;
188 struct dm_deferred_set *all_io_ds;
189
190 struct dm_thin_new_mapping *next_mapping;
191 mempool_t *mapping_pool;
192
193 process_bio_fn process_bio;
194 process_bio_fn process_discard;
195
196 process_mapping_fn process_prepared_mapping;
197 process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202
203 /*
204 * Target context for a pool.
205 */
206 struct pool_c {
207 struct dm_target *ti;
208 struct pool *pool;
209 struct dm_dev *data_dev;
210 struct dm_dev *metadata_dev;
211 struct dm_target_callbacks callbacks;
212
213 dm_block_t low_water_blocks;
214 struct pool_features requested_pf; /* Features requested during table load */
215 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219 * Target context for a thin.
220 */
221 struct thin_c {
222 struct dm_dev *pool_dev;
223 struct dm_dev *origin_dev;
224 dm_thin_id dev_id;
225
226 struct pool *pool;
227 struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 /*
233 * wake_worker() is used when new work is queued and when pool_resume is
234 * ready to continue deferred IO processing.
235 */
236 static void wake_worker(struct pool *pool)
237 {
238 queue_work(pool->wq, &pool->worker);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244 struct dm_bio_prison_cell **cell_result)
245 {
246 int r;
247 struct dm_bio_prison_cell *cell_prealloc;
248
249 /*
250 * Allocate a cell from the prison's mempool.
251 * This might block but it can't fail.
252 */
253 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254
255 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256 if (r)
257 /*
258 * We reused an old cell; we can get rid of
259 * the new one.
260 */
261 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262
263 return r;
264 }
265
266 static void cell_release(struct pool *pool,
267 struct dm_bio_prison_cell *cell,
268 struct bio_list *bios)
269 {
270 dm_cell_release(pool->prison, cell, bios);
271 dm_bio_prison_free_cell(pool->prison, cell);
272 }
273
274 static void cell_release_no_holder(struct pool *pool,
275 struct dm_bio_prison_cell *cell,
276 struct bio_list *bios)
277 {
278 dm_cell_release_no_holder(pool->prison, cell, bios);
279 dm_bio_prison_free_cell(pool->prison, cell);
280 }
281
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283 struct dm_bio_prison_cell *cell)
284 {
285 struct pool *pool = tc->pool;
286 unsigned long flags;
287
288 spin_lock_irqsave(&pool->lock, flags);
289 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290 spin_unlock_irqrestore(&pool->lock, flags);
291
292 wake_worker(pool);
293 }
294
295 static void cell_error(struct pool *pool,
296 struct dm_bio_prison_cell *cell)
297 {
298 dm_cell_error(pool->prison, cell);
299 dm_bio_prison_free_cell(pool->prison, cell);
300 }
301
302 /*----------------------------------------------------------------*/
303
304 /*
305 * A global list of pools that uses a struct mapped_device as a key.
306 */
307 static struct dm_thin_pool_table {
308 struct mutex mutex;
309 struct list_head pools;
310 } dm_thin_pool_table;
311
312 static void pool_table_init(void)
313 {
314 mutex_init(&dm_thin_pool_table.mutex);
315 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317
318 static void __pool_table_insert(struct pool *pool)
319 {
320 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321 list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323
324 static void __pool_table_remove(struct pool *pool)
325 {
326 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327 list_del(&pool->list);
328 }
329
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332 struct pool *pool = NULL, *tmp;
333
334 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335
336 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337 if (tmp->pool_md == md) {
338 pool = tmp;
339 break;
340 }
341 }
342
343 return pool;
344 }
345
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348 struct pool *pool = NULL, *tmp;
349
350 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353 if (tmp->md_dev == md_dev) {
354 pool = tmp;
355 break;
356 }
357 }
358
359 return pool;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 struct dm_thin_endio_hook {
365 struct thin_c *tc;
366 struct dm_deferred_entry *shared_read_entry;
367 struct dm_deferred_entry *all_io_entry;
368 struct dm_thin_new_mapping *overwrite_mapping;
369 };
370
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373 struct bio *bio;
374 struct bio_list bios;
375
376 bio_list_init(&bios);
377 bio_list_merge(&bios, master);
378 bio_list_init(master);
379
380 while ((bio = bio_list_pop(&bios))) {
381 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382
383 if (h->tc == tc)
384 bio_endio(bio, DM_ENDIO_REQUEUE);
385 else
386 bio_list_add(master, bio);
387 }
388 }
389
390 static void requeue_io(struct thin_c *tc)
391 {
392 struct pool *pool = tc->pool;
393 unsigned long flags;
394
395 spin_lock_irqsave(&pool->lock, flags);
396 __requeue_bio_list(tc, &pool->deferred_bios);
397 __requeue_bio_list(tc, &pool->retry_on_resume_list);
398 spin_unlock_irqrestore(&pool->lock, flags);
399 }
400
401 /*
402 * This section of code contains the logic for processing a thin device's IO.
403 * Much of the code depends on pool object resources (lists, workqueues, etc)
404 * but most is exclusively called from the thin target rather than the thin-pool
405 * target.
406 */
407
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410 return pool->sectors_per_block_shift >= 0;
411 }
412
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415 struct pool *pool = tc->pool;
416 sector_t block_nr = bio->bi_sector;
417
418 if (block_size_is_power_of_two(pool))
419 block_nr >>= pool->sectors_per_block_shift;
420 else
421 (void) sector_div(block_nr, pool->sectors_per_block);
422
423 return block_nr;
424 }
425
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428 struct pool *pool = tc->pool;
429 sector_t bi_sector = bio->bi_sector;
430
431 bio->bi_bdev = tc->pool_dev->bdev;
432 if (block_size_is_power_of_two(pool))
433 bio->bi_sector = (block << pool->sectors_per_block_shift) |
434 (bi_sector & (pool->sectors_per_block - 1));
435 else
436 bio->bi_sector = (block * pool->sectors_per_block) +
437 sector_div(bi_sector, pool->sectors_per_block);
438 }
439
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442 bio->bi_bdev = tc->origin_dev->bdev;
443 }
444
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448 dm_thin_changed_this_transaction(tc->td);
449 }
450
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453 struct dm_thin_endio_hook *h;
454
455 if (bio->bi_rw & REQ_DISCARD)
456 return;
457
458 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464 struct pool *pool = tc->pool;
465 unsigned long flags;
466
467 if (!bio_triggers_commit(tc, bio)) {
468 generic_make_request(bio);
469 return;
470 }
471
472 /*
473 * Complete bio with an error if earlier I/O caused changes to
474 * the metadata that can't be committed e.g, due to I/O errors
475 * on the metadata device.
476 */
477 if (dm_thin_aborted_changes(tc->td)) {
478 bio_io_error(bio);
479 return;
480 }
481
482 /*
483 * Batch together any bios that trigger commits and then issue a
484 * single commit for them in process_deferred_bios().
485 */
486 spin_lock_irqsave(&pool->lock, flags);
487 bio_list_add(&pool->deferred_flush_bios, bio);
488 spin_unlock_irqrestore(&pool->lock, flags);
489 }
490
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493 remap_to_origin(tc, bio);
494 issue(tc, bio);
495 }
496
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498 dm_block_t block)
499 {
500 remap(tc, bio, block);
501 issue(tc, bio);
502 }
503
504 /*----------------------------------------------------------------*/
505
506 /*
507 * Bio endio functions.
508 */
509 struct dm_thin_new_mapping {
510 struct list_head list;
511
512 unsigned quiesced:1;
513 unsigned prepared:1;
514 unsigned pass_discard:1;
515
516 struct thin_c *tc;
517 dm_block_t virt_block;
518 dm_block_t data_block;
519 struct dm_bio_prison_cell *cell, *cell2;
520 int err;
521
522 /*
523 * If the bio covers the whole area of a block then we can avoid
524 * zeroing or copying. Instead this bio is hooked. The bio will
525 * still be in the cell, so care has to be taken to avoid issuing
526 * the bio twice.
527 */
528 struct bio *bio;
529 bio_end_io_t *saved_bi_end_io;
530 };
531
532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
533 {
534 struct pool *pool = m->tc->pool;
535
536 if (m->quiesced && m->prepared) {
537 list_add(&m->list, &pool->prepared_mappings);
538 wake_worker(pool);
539 }
540 }
541
542 static void copy_complete(int read_err, unsigned long write_err, void *context)
543 {
544 unsigned long flags;
545 struct dm_thin_new_mapping *m = context;
546 struct pool *pool = m->tc->pool;
547
548 m->err = read_err || write_err ? -EIO : 0;
549
550 spin_lock_irqsave(&pool->lock, flags);
551 m->prepared = 1;
552 __maybe_add_mapping(m);
553 spin_unlock_irqrestore(&pool->lock, flags);
554 }
555
556 static void overwrite_endio(struct bio *bio, int err)
557 {
558 unsigned long flags;
559 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
560 struct dm_thin_new_mapping *m = h->overwrite_mapping;
561 struct pool *pool = m->tc->pool;
562
563 m->err = err;
564
565 spin_lock_irqsave(&pool->lock, flags);
566 m->prepared = 1;
567 __maybe_add_mapping(m);
568 spin_unlock_irqrestore(&pool->lock, flags);
569 }
570
571 /*----------------------------------------------------------------*/
572
573 /*
574 * Workqueue.
575 */
576
577 /*
578 * Prepared mapping jobs.
579 */
580
581 /*
582 * This sends the bios in the cell back to the deferred_bios list.
583 */
584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
585 {
586 struct pool *pool = tc->pool;
587 unsigned long flags;
588
589 spin_lock_irqsave(&pool->lock, flags);
590 cell_release(pool, cell, &pool->deferred_bios);
591 spin_unlock_irqrestore(&tc->pool->lock, flags);
592
593 wake_worker(pool);
594 }
595
596 /*
597 * Same as cell_defer above, except it omits the original holder of the cell.
598 */
599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
600 {
601 struct pool *pool = tc->pool;
602 unsigned long flags;
603
604 spin_lock_irqsave(&pool->lock, flags);
605 cell_release_no_holder(pool, cell, &pool->deferred_bios);
606 spin_unlock_irqrestore(&pool->lock, flags);
607
608 wake_worker(pool);
609 }
610
611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
612 {
613 if (m->bio)
614 m->bio->bi_end_io = m->saved_bi_end_io;
615 cell_error(m->tc->pool, m->cell);
616 list_del(&m->list);
617 mempool_free(m, m->tc->pool->mapping_pool);
618 }
619
620 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
621 {
622 struct thin_c *tc = m->tc;
623 struct pool *pool = tc->pool;
624 struct bio *bio;
625 int r;
626
627 bio = m->bio;
628 if (bio)
629 bio->bi_end_io = m->saved_bi_end_io;
630
631 if (m->err) {
632 cell_error(pool, m->cell);
633 goto out;
634 }
635
636 /*
637 * Commit the prepared block into the mapping btree.
638 * Any I/O for this block arriving after this point will get
639 * remapped to it directly.
640 */
641 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
642 if (r) {
643 DMERR_LIMIT("dm_thin_insert_block() failed");
644 cell_error(pool, m->cell);
645 goto out;
646 }
647
648 /*
649 * Release any bios held while the block was being provisioned.
650 * If we are processing a write bio that completely covers the block,
651 * we already processed it so can ignore it now when processing
652 * the bios in the cell.
653 */
654 if (bio) {
655 cell_defer_no_holder(tc, m->cell);
656 bio_endio(bio, 0);
657 } else
658 cell_defer(tc, m->cell);
659
660 out:
661 list_del(&m->list);
662 mempool_free(m, pool->mapping_pool);
663 }
664
665 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
666 {
667 struct thin_c *tc = m->tc;
668
669 bio_io_error(m->bio);
670 cell_defer_no_holder(tc, m->cell);
671 cell_defer_no_holder(tc, m->cell2);
672 mempool_free(m, tc->pool->mapping_pool);
673 }
674
675 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
676 {
677 struct thin_c *tc = m->tc;
678
679 inc_all_io_entry(tc->pool, m->bio);
680 cell_defer_no_holder(tc, m->cell);
681 cell_defer_no_holder(tc, m->cell2);
682
683 if (m->pass_discard)
684 remap_and_issue(tc, m->bio, m->data_block);
685 else
686 bio_endio(m->bio, 0);
687
688 mempool_free(m, tc->pool->mapping_pool);
689 }
690
691 static void process_prepared_discard(struct dm_thin_new_mapping *m)
692 {
693 int r;
694 struct thin_c *tc = m->tc;
695
696 r = dm_thin_remove_block(tc->td, m->virt_block);
697 if (r)
698 DMERR_LIMIT("dm_thin_remove_block() failed");
699
700 process_prepared_discard_passdown(m);
701 }
702
703 static void process_prepared(struct pool *pool, struct list_head *head,
704 process_mapping_fn *fn)
705 {
706 unsigned long flags;
707 struct list_head maps;
708 struct dm_thin_new_mapping *m, *tmp;
709
710 INIT_LIST_HEAD(&maps);
711 spin_lock_irqsave(&pool->lock, flags);
712 list_splice_init(head, &maps);
713 spin_unlock_irqrestore(&pool->lock, flags);
714
715 list_for_each_entry_safe(m, tmp, &maps, list)
716 (*fn)(m);
717 }
718
719 /*
720 * Deferred bio jobs.
721 */
722 static int io_overlaps_block(struct pool *pool, struct bio *bio)
723 {
724 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
725 }
726
727 static int io_overwrites_block(struct pool *pool, struct bio *bio)
728 {
729 return (bio_data_dir(bio) == WRITE) &&
730 io_overlaps_block(pool, bio);
731 }
732
733 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
734 bio_end_io_t *fn)
735 {
736 *save = bio->bi_end_io;
737 bio->bi_end_io = fn;
738 }
739
740 static int ensure_next_mapping(struct pool *pool)
741 {
742 if (pool->next_mapping)
743 return 0;
744
745 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
746
747 return pool->next_mapping ? 0 : -ENOMEM;
748 }
749
750 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
751 {
752 struct dm_thin_new_mapping *r = pool->next_mapping;
753
754 BUG_ON(!pool->next_mapping);
755
756 pool->next_mapping = NULL;
757
758 return r;
759 }
760
761 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
762 struct dm_dev *origin, dm_block_t data_origin,
763 dm_block_t data_dest,
764 struct dm_bio_prison_cell *cell, struct bio *bio)
765 {
766 int r;
767 struct pool *pool = tc->pool;
768 struct dm_thin_new_mapping *m = get_next_mapping(pool);
769
770 INIT_LIST_HEAD(&m->list);
771 m->quiesced = 0;
772 m->prepared = 0;
773 m->tc = tc;
774 m->virt_block = virt_block;
775 m->data_block = data_dest;
776 m->cell = cell;
777 m->err = 0;
778 m->bio = NULL;
779
780 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
781 m->quiesced = 1;
782
783 /*
784 * IO to pool_dev remaps to the pool target's data_dev.
785 *
786 * If the whole block of data is being overwritten, we can issue the
787 * bio immediately. Otherwise we use kcopyd to clone the data first.
788 */
789 if (io_overwrites_block(pool, bio)) {
790 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
791
792 h->overwrite_mapping = m;
793 m->bio = bio;
794 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
795 inc_all_io_entry(pool, bio);
796 remap_and_issue(tc, bio, data_dest);
797 } else {
798 struct dm_io_region from, to;
799
800 from.bdev = origin->bdev;
801 from.sector = data_origin * pool->sectors_per_block;
802 from.count = pool->sectors_per_block;
803
804 to.bdev = tc->pool_dev->bdev;
805 to.sector = data_dest * pool->sectors_per_block;
806 to.count = pool->sectors_per_block;
807
808 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
809 0, copy_complete, m);
810 if (r < 0) {
811 mempool_free(m, pool->mapping_pool);
812 DMERR_LIMIT("dm_kcopyd_copy() failed");
813 cell_error(pool, cell);
814 }
815 }
816 }
817
818 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
819 dm_block_t data_origin, dm_block_t data_dest,
820 struct dm_bio_prison_cell *cell, struct bio *bio)
821 {
822 schedule_copy(tc, virt_block, tc->pool_dev,
823 data_origin, data_dest, cell, bio);
824 }
825
826 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
827 dm_block_t data_dest,
828 struct dm_bio_prison_cell *cell, struct bio *bio)
829 {
830 schedule_copy(tc, virt_block, tc->origin_dev,
831 virt_block, data_dest, cell, bio);
832 }
833
834 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
835 dm_block_t data_block, struct dm_bio_prison_cell *cell,
836 struct bio *bio)
837 {
838 struct pool *pool = tc->pool;
839 struct dm_thin_new_mapping *m = get_next_mapping(pool);
840
841 INIT_LIST_HEAD(&m->list);
842 m->quiesced = 1;
843 m->prepared = 0;
844 m->tc = tc;
845 m->virt_block = virt_block;
846 m->data_block = data_block;
847 m->cell = cell;
848 m->err = 0;
849 m->bio = NULL;
850
851 /*
852 * If the whole block of data is being overwritten or we are not
853 * zeroing pre-existing data, we can issue the bio immediately.
854 * Otherwise we use kcopyd to zero the data first.
855 */
856 if (!pool->pf.zero_new_blocks)
857 process_prepared_mapping(m);
858
859 else if (io_overwrites_block(pool, bio)) {
860 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
861
862 h->overwrite_mapping = m;
863 m->bio = bio;
864 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
865 inc_all_io_entry(pool, bio);
866 remap_and_issue(tc, bio, data_block);
867 } else {
868 int r;
869 struct dm_io_region to;
870
871 to.bdev = tc->pool_dev->bdev;
872 to.sector = data_block * pool->sectors_per_block;
873 to.count = pool->sectors_per_block;
874
875 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
876 if (r < 0) {
877 mempool_free(m, pool->mapping_pool);
878 DMERR_LIMIT("dm_kcopyd_zero() failed");
879 cell_error(pool, cell);
880 }
881 }
882 }
883
884 static int commit(struct pool *pool)
885 {
886 int r;
887
888 r = dm_pool_commit_metadata(pool->pmd);
889 if (r)
890 DMERR_LIMIT("commit failed: error = %d", r);
891
892 return r;
893 }
894
895 /*
896 * A non-zero return indicates read_only or fail_io mode.
897 * Many callers don't care about the return value.
898 */
899 static int commit_or_fallback(struct pool *pool)
900 {
901 int r;
902
903 if (get_pool_mode(pool) != PM_WRITE)
904 return -EINVAL;
905
906 r = commit(pool);
907 if (r)
908 set_pool_mode(pool, PM_READ_ONLY);
909
910 return r;
911 }
912
913 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
914 {
915 int r;
916 dm_block_t free_blocks;
917 unsigned long flags;
918 struct pool *pool = tc->pool;
919
920 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
921 if (r)
922 return r;
923
924 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
925 DMWARN("%s: reached low water mark, sending event.",
926 dm_device_name(pool->pool_md));
927 spin_lock_irqsave(&pool->lock, flags);
928 pool->low_water_triggered = 1;
929 spin_unlock_irqrestore(&pool->lock, flags);
930 dm_table_event(pool->ti->table);
931 }
932
933 if (!free_blocks) {
934 if (pool->no_free_space)
935 return -ENOSPC;
936 else {
937 /*
938 * Try to commit to see if that will free up some
939 * more space.
940 */
941 (void) commit_or_fallback(pool);
942
943 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
944 if (r)
945 return r;
946
947 /*
948 * If we still have no space we set a flag to avoid
949 * doing all this checking and return -ENOSPC.
950 */
951 if (!free_blocks) {
952 DMWARN("%s: no free space available.",
953 dm_device_name(pool->pool_md));
954 spin_lock_irqsave(&pool->lock, flags);
955 pool->no_free_space = 1;
956 spin_unlock_irqrestore(&pool->lock, flags);
957 return -ENOSPC;
958 }
959 }
960 }
961
962 r = dm_pool_alloc_data_block(pool->pmd, result);
963 if (r)
964 return r;
965
966 return 0;
967 }
968
969 /*
970 * If we have run out of space, queue bios until the device is
971 * resumed, presumably after having been reloaded with more space.
972 */
973 static void retry_on_resume(struct bio *bio)
974 {
975 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
976 struct thin_c *tc = h->tc;
977 struct pool *pool = tc->pool;
978 unsigned long flags;
979
980 spin_lock_irqsave(&pool->lock, flags);
981 bio_list_add(&pool->retry_on_resume_list, bio);
982 spin_unlock_irqrestore(&pool->lock, flags);
983 }
984
985 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
986 {
987 struct bio *bio;
988 struct bio_list bios;
989
990 bio_list_init(&bios);
991 cell_release(pool, cell, &bios);
992
993 while ((bio = bio_list_pop(&bios)))
994 retry_on_resume(bio);
995 }
996
997 static void process_discard(struct thin_c *tc, struct bio *bio)
998 {
999 int r;
1000 unsigned long flags;
1001 struct pool *pool = tc->pool;
1002 struct dm_bio_prison_cell *cell, *cell2;
1003 struct dm_cell_key key, key2;
1004 dm_block_t block = get_bio_block(tc, bio);
1005 struct dm_thin_lookup_result lookup_result;
1006 struct dm_thin_new_mapping *m;
1007
1008 build_virtual_key(tc->td, block, &key);
1009 if (bio_detain(tc->pool, &key, bio, &cell))
1010 return;
1011
1012 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1013 switch (r) {
1014 case 0:
1015 /*
1016 * Check nobody is fiddling with this pool block. This can
1017 * happen if someone's in the process of breaking sharing
1018 * on this block.
1019 */
1020 build_data_key(tc->td, lookup_result.block, &key2);
1021 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1022 cell_defer_no_holder(tc, cell);
1023 break;
1024 }
1025
1026 if (io_overlaps_block(pool, bio)) {
1027 /*
1028 * IO may still be going to the destination block. We must
1029 * quiesce before we can do the removal.
1030 */
1031 m = get_next_mapping(pool);
1032 m->tc = tc;
1033 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1034 m->virt_block = block;
1035 m->data_block = lookup_result.block;
1036 m->cell = cell;
1037 m->cell2 = cell2;
1038 m->err = 0;
1039 m->bio = bio;
1040
1041 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1042 spin_lock_irqsave(&pool->lock, flags);
1043 list_add(&m->list, &pool->prepared_discards);
1044 spin_unlock_irqrestore(&pool->lock, flags);
1045 wake_worker(pool);
1046 }
1047 } else {
1048 inc_all_io_entry(pool, bio);
1049 cell_defer_no_holder(tc, cell);
1050 cell_defer_no_holder(tc, cell2);
1051
1052 /*
1053 * The DM core makes sure that the discard doesn't span
1054 * a block boundary. So we submit the discard of a
1055 * partial block appropriately.
1056 */
1057 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1058 remap_and_issue(tc, bio, lookup_result.block);
1059 else
1060 bio_endio(bio, 0);
1061 }
1062 break;
1063
1064 case -ENODATA:
1065 /*
1066 * It isn't provisioned, just forget it.
1067 */
1068 cell_defer_no_holder(tc, cell);
1069 bio_endio(bio, 0);
1070 break;
1071
1072 default:
1073 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1074 __func__, r);
1075 cell_defer_no_holder(tc, cell);
1076 bio_io_error(bio);
1077 break;
1078 }
1079 }
1080
1081 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1082 struct dm_cell_key *key,
1083 struct dm_thin_lookup_result *lookup_result,
1084 struct dm_bio_prison_cell *cell)
1085 {
1086 int r;
1087 dm_block_t data_block;
1088
1089 r = alloc_data_block(tc, &data_block);
1090 switch (r) {
1091 case 0:
1092 schedule_internal_copy(tc, block, lookup_result->block,
1093 data_block, cell, bio);
1094 break;
1095
1096 case -ENOSPC:
1097 no_space(tc->pool, cell);
1098 break;
1099
1100 default:
1101 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1102 __func__, r);
1103 cell_error(tc->pool, cell);
1104 break;
1105 }
1106 }
1107
1108 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1109 dm_block_t block,
1110 struct dm_thin_lookup_result *lookup_result)
1111 {
1112 struct dm_bio_prison_cell *cell;
1113 struct pool *pool = tc->pool;
1114 struct dm_cell_key key;
1115
1116 /*
1117 * If cell is already occupied, then sharing is already in the process
1118 * of being broken so we have nothing further to do here.
1119 */
1120 build_data_key(tc->td, lookup_result->block, &key);
1121 if (bio_detain(pool, &key, bio, &cell))
1122 return;
1123
1124 if (bio_data_dir(bio) == WRITE && bio->bi_size)
1125 break_sharing(tc, bio, block, &key, lookup_result, cell);
1126 else {
1127 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1128
1129 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1130 inc_all_io_entry(pool, bio);
1131 cell_defer_no_holder(tc, cell);
1132
1133 remap_and_issue(tc, bio, lookup_result->block);
1134 }
1135 }
1136
1137 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1138 struct dm_bio_prison_cell *cell)
1139 {
1140 int r;
1141 dm_block_t data_block;
1142 struct pool *pool = tc->pool;
1143
1144 /*
1145 * Remap empty bios (flushes) immediately, without provisioning.
1146 */
1147 if (!bio->bi_size) {
1148 inc_all_io_entry(pool, bio);
1149 cell_defer_no_holder(tc, cell);
1150
1151 remap_and_issue(tc, bio, 0);
1152 return;
1153 }
1154
1155 /*
1156 * Fill read bios with zeroes and complete them immediately.
1157 */
1158 if (bio_data_dir(bio) == READ) {
1159 zero_fill_bio(bio);
1160 cell_defer_no_holder(tc, cell);
1161 bio_endio(bio, 0);
1162 return;
1163 }
1164
1165 r = alloc_data_block(tc, &data_block);
1166 switch (r) {
1167 case 0:
1168 if (tc->origin_dev)
1169 schedule_external_copy(tc, block, data_block, cell, bio);
1170 else
1171 schedule_zero(tc, block, data_block, cell, bio);
1172 break;
1173
1174 case -ENOSPC:
1175 no_space(pool, cell);
1176 break;
1177
1178 default:
1179 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1180 __func__, r);
1181 set_pool_mode(pool, PM_READ_ONLY);
1182 cell_error(pool, cell);
1183 break;
1184 }
1185 }
1186
1187 static void process_bio(struct thin_c *tc, struct bio *bio)
1188 {
1189 int r;
1190 struct pool *pool = tc->pool;
1191 dm_block_t block = get_bio_block(tc, bio);
1192 struct dm_bio_prison_cell *cell;
1193 struct dm_cell_key key;
1194 struct dm_thin_lookup_result lookup_result;
1195
1196 /*
1197 * If cell is already occupied, then the block is already
1198 * being provisioned so we have nothing further to do here.
1199 */
1200 build_virtual_key(tc->td, block, &key);
1201 if (bio_detain(pool, &key, bio, &cell))
1202 return;
1203
1204 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1205 switch (r) {
1206 case 0:
1207 if (lookup_result.shared) {
1208 process_shared_bio(tc, bio, block, &lookup_result);
1209 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1210 } else {
1211 inc_all_io_entry(pool, bio);
1212 cell_defer_no_holder(tc, cell);
1213
1214 remap_and_issue(tc, bio, lookup_result.block);
1215 }
1216 break;
1217
1218 case -ENODATA:
1219 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1220 inc_all_io_entry(pool, bio);
1221 cell_defer_no_holder(tc, cell);
1222
1223 remap_to_origin_and_issue(tc, bio);
1224 } else
1225 provision_block(tc, bio, block, cell);
1226 break;
1227
1228 default:
1229 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1230 __func__, r);
1231 cell_defer_no_holder(tc, cell);
1232 bio_io_error(bio);
1233 break;
1234 }
1235 }
1236
1237 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1238 {
1239 int r;
1240 int rw = bio_data_dir(bio);
1241 dm_block_t block = get_bio_block(tc, bio);
1242 struct dm_thin_lookup_result lookup_result;
1243
1244 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1245 switch (r) {
1246 case 0:
1247 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1248 bio_io_error(bio);
1249 else {
1250 inc_all_io_entry(tc->pool, bio);
1251 remap_and_issue(tc, bio, lookup_result.block);
1252 }
1253 break;
1254
1255 case -ENODATA:
1256 if (rw != READ) {
1257 bio_io_error(bio);
1258 break;
1259 }
1260
1261 if (tc->origin_dev) {
1262 inc_all_io_entry(tc->pool, bio);
1263 remap_to_origin_and_issue(tc, bio);
1264 break;
1265 }
1266
1267 zero_fill_bio(bio);
1268 bio_endio(bio, 0);
1269 break;
1270
1271 default:
1272 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1273 __func__, r);
1274 bio_io_error(bio);
1275 break;
1276 }
1277 }
1278
1279 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1280 {
1281 bio_io_error(bio);
1282 }
1283
1284 static int need_commit_due_to_time(struct pool *pool)
1285 {
1286 return jiffies < pool->last_commit_jiffies ||
1287 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1288 }
1289
1290 static void process_deferred_bios(struct pool *pool)
1291 {
1292 unsigned long flags;
1293 struct bio *bio;
1294 struct bio_list bios;
1295
1296 bio_list_init(&bios);
1297
1298 spin_lock_irqsave(&pool->lock, flags);
1299 bio_list_merge(&bios, &pool->deferred_bios);
1300 bio_list_init(&pool->deferred_bios);
1301 spin_unlock_irqrestore(&pool->lock, flags);
1302
1303 while ((bio = bio_list_pop(&bios))) {
1304 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1305 struct thin_c *tc = h->tc;
1306
1307 /*
1308 * If we've got no free new_mapping structs, and processing
1309 * this bio might require one, we pause until there are some
1310 * prepared mappings to process.
1311 */
1312 if (ensure_next_mapping(pool)) {
1313 spin_lock_irqsave(&pool->lock, flags);
1314 bio_list_merge(&pool->deferred_bios, &bios);
1315 spin_unlock_irqrestore(&pool->lock, flags);
1316
1317 break;
1318 }
1319
1320 if (bio->bi_rw & REQ_DISCARD)
1321 pool->process_discard(tc, bio);
1322 else
1323 pool->process_bio(tc, bio);
1324 }
1325
1326 /*
1327 * If there are any deferred flush bios, we must commit
1328 * the metadata before issuing them.
1329 */
1330 bio_list_init(&bios);
1331 spin_lock_irqsave(&pool->lock, flags);
1332 bio_list_merge(&bios, &pool->deferred_flush_bios);
1333 bio_list_init(&pool->deferred_flush_bios);
1334 spin_unlock_irqrestore(&pool->lock, flags);
1335
1336 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1337 return;
1338
1339 if (commit_or_fallback(pool)) {
1340 while ((bio = bio_list_pop(&bios)))
1341 bio_io_error(bio);
1342 return;
1343 }
1344 pool->last_commit_jiffies = jiffies;
1345
1346 while ((bio = bio_list_pop(&bios)))
1347 generic_make_request(bio);
1348 }
1349
1350 static void do_worker(struct work_struct *ws)
1351 {
1352 struct pool *pool = container_of(ws, struct pool, worker);
1353
1354 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1355 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1356 process_deferred_bios(pool);
1357 }
1358
1359 /*
1360 * We want to commit periodically so that not too much
1361 * unwritten data builds up.
1362 */
1363 static void do_waker(struct work_struct *ws)
1364 {
1365 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1366 wake_worker(pool);
1367 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1368 }
1369
1370 /*----------------------------------------------------------------*/
1371
1372 static enum pool_mode get_pool_mode(struct pool *pool)
1373 {
1374 return pool->pf.mode;
1375 }
1376
1377 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1378 {
1379 int r;
1380
1381 pool->pf.mode = mode;
1382
1383 switch (mode) {
1384 case PM_FAIL:
1385 DMERR("switching pool to failure mode");
1386 pool->process_bio = process_bio_fail;
1387 pool->process_discard = process_bio_fail;
1388 pool->process_prepared_mapping = process_prepared_mapping_fail;
1389 pool->process_prepared_discard = process_prepared_discard_fail;
1390 break;
1391
1392 case PM_READ_ONLY:
1393 DMERR("switching pool to read-only mode");
1394 r = dm_pool_abort_metadata(pool->pmd);
1395 if (r) {
1396 DMERR("aborting transaction failed");
1397 set_pool_mode(pool, PM_FAIL);
1398 } else {
1399 dm_pool_metadata_read_only(pool->pmd);
1400 pool->process_bio = process_bio_read_only;
1401 pool->process_discard = process_discard;
1402 pool->process_prepared_mapping = process_prepared_mapping_fail;
1403 pool->process_prepared_discard = process_prepared_discard_passdown;
1404 }
1405 break;
1406
1407 case PM_WRITE:
1408 pool->process_bio = process_bio;
1409 pool->process_discard = process_discard;
1410 pool->process_prepared_mapping = process_prepared_mapping;
1411 pool->process_prepared_discard = process_prepared_discard;
1412 break;
1413 }
1414 }
1415
1416 /*----------------------------------------------------------------*/
1417
1418 /*
1419 * Mapping functions.
1420 */
1421
1422 /*
1423 * Called only while mapping a thin bio to hand it over to the workqueue.
1424 */
1425 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1426 {
1427 unsigned long flags;
1428 struct pool *pool = tc->pool;
1429
1430 spin_lock_irqsave(&pool->lock, flags);
1431 bio_list_add(&pool->deferred_bios, bio);
1432 spin_unlock_irqrestore(&pool->lock, flags);
1433
1434 wake_worker(pool);
1435 }
1436
1437 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1438 {
1439 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1440
1441 h->tc = tc;
1442 h->shared_read_entry = NULL;
1443 h->all_io_entry = NULL;
1444 h->overwrite_mapping = NULL;
1445 }
1446
1447 /*
1448 * Non-blocking function called from the thin target's map function.
1449 */
1450 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1451 {
1452 int r;
1453 struct thin_c *tc = ti->private;
1454 dm_block_t block = get_bio_block(tc, bio);
1455 struct dm_thin_device *td = tc->td;
1456 struct dm_thin_lookup_result result;
1457 struct dm_bio_prison_cell cell1, cell2;
1458 struct dm_bio_prison_cell *cell_result;
1459 struct dm_cell_key key;
1460
1461 thin_hook_bio(tc, bio);
1462
1463 if (get_pool_mode(tc->pool) == PM_FAIL) {
1464 bio_io_error(bio);
1465 return DM_MAPIO_SUBMITTED;
1466 }
1467
1468 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1469 thin_defer_bio(tc, bio);
1470 return DM_MAPIO_SUBMITTED;
1471 }
1472
1473 r = dm_thin_find_block(td, block, 0, &result);
1474
1475 /*
1476 * Note that we defer readahead too.
1477 */
1478 switch (r) {
1479 case 0:
1480 if (unlikely(result.shared)) {
1481 /*
1482 * We have a race condition here between the
1483 * result.shared value returned by the lookup and
1484 * snapshot creation, which may cause new
1485 * sharing.
1486 *
1487 * To avoid this always quiesce the origin before
1488 * taking the snap. You want to do this anyway to
1489 * ensure a consistent application view
1490 * (i.e. lockfs).
1491 *
1492 * More distant ancestors are irrelevant. The
1493 * shared flag will be set in their case.
1494 */
1495 thin_defer_bio(tc, bio);
1496 return DM_MAPIO_SUBMITTED;
1497 }
1498
1499 build_virtual_key(tc->td, block, &key);
1500 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1501 return DM_MAPIO_SUBMITTED;
1502
1503 build_data_key(tc->td, result.block, &key);
1504 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1505 cell_defer_no_holder_no_free(tc, &cell1);
1506 return DM_MAPIO_SUBMITTED;
1507 }
1508
1509 inc_all_io_entry(tc->pool, bio);
1510 cell_defer_no_holder_no_free(tc, &cell2);
1511 cell_defer_no_holder_no_free(tc, &cell1);
1512
1513 remap(tc, bio, result.block);
1514 return DM_MAPIO_REMAPPED;
1515
1516 case -ENODATA:
1517 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1518 /*
1519 * This block isn't provisioned, and we have no way
1520 * of doing so. Just error it.
1521 */
1522 bio_io_error(bio);
1523 return DM_MAPIO_SUBMITTED;
1524 }
1525 /* fall through */
1526
1527 case -EWOULDBLOCK:
1528 /*
1529 * In future, the failed dm_thin_find_block above could
1530 * provide the hint to load the metadata into cache.
1531 */
1532 thin_defer_bio(tc, bio);
1533 return DM_MAPIO_SUBMITTED;
1534
1535 default:
1536 /*
1537 * Must always call bio_io_error on failure.
1538 * dm_thin_find_block can fail with -EINVAL if the
1539 * pool is switched to fail-io mode.
1540 */
1541 bio_io_error(bio);
1542 return DM_MAPIO_SUBMITTED;
1543 }
1544 }
1545
1546 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1547 {
1548 int r;
1549 unsigned long flags;
1550 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1551
1552 spin_lock_irqsave(&pt->pool->lock, flags);
1553 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1554 spin_unlock_irqrestore(&pt->pool->lock, flags);
1555
1556 if (!r) {
1557 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1558 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1559 }
1560
1561 return r;
1562 }
1563
1564 static void __requeue_bios(struct pool *pool)
1565 {
1566 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1567 bio_list_init(&pool->retry_on_resume_list);
1568 }
1569
1570 /*----------------------------------------------------------------
1571 * Binding of control targets to a pool object
1572 *--------------------------------------------------------------*/
1573 static bool data_dev_supports_discard(struct pool_c *pt)
1574 {
1575 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1576
1577 return q && blk_queue_discard(q);
1578 }
1579
1580 /*
1581 * If discard_passdown was enabled verify that the data device
1582 * supports discards. Disable discard_passdown if not.
1583 */
1584 static void disable_passdown_if_not_supported(struct pool_c *pt)
1585 {
1586 struct pool *pool = pt->pool;
1587 struct block_device *data_bdev = pt->data_dev->bdev;
1588 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1589 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1590 const char *reason = NULL;
1591 char buf[BDEVNAME_SIZE];
1592
1593 if (!pt->adjusted_pf.discard_passdown)
1594 return;
1595
1596 if (!data_dev_supports_discard(pt))
1597 reason = "discard unsupported";
1598
1599 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1600 reason = "max discard sectors smaller than a block";
1601
1602 else if (data_limits->discard_granularity > block_size)
1603 reason = "discard granularity larger than a block";
1604
1605 else if (block_size & (data_limits->discard_granularity - 1))
1606 reason = "discard granularity not a factor of block size";
1607
1608 if (reason) {
1609 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1610 pt->adjusted_pf.discard_passdown = false;
1611 }
1612 }
1613
1614 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1615 {
1616 struct pool_c *pt = ti->private;
1617
1618 /*
1619 * We want to make sure that degraded pools are never upgraded.
1620 */
1621 enum pool_mode old_mode = pool->pf.mode;
1622 enum pool_mode new_mode = pt->adjusted_pf.mode;
1623
1624 if (old_mode > new_mode)
1625 new_mode = old_mode;
1626
1627 pool->ti = ti;
1628 pool->low_water_blocks = pt->low_water_blocks;
1629 pool->pf = pt->adjusted_pf;
1630
1631 set_pool_mode(pool, new_mode);
1632
1633 return 0;
1634 }
1635
1636 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1637 {
1638 if (pool->ti == ti)
1639 pool->ti = NULL;
1640 }
1641
1642 /*----------------------------------------------------------------
1643 * Pool creation
1644 *--------------------------------------------------------------*/
1645 /* Initialize pool features. */
1646 static void pool_features_init(struct pool_features *pf)
1647 {
1648 pf->mode = PM_WRITE;
1649 pf->zero_new_blocks = true;
1650 pf->discard_enabled = true;
1651 pf->discard_passdown = true;
1652 }
1653
1654 static void __pool_destroy(struct pool *pool)
1655 {
1656 __pool_table_remove(pool);
1657
1658 if (dm_pool_metadata_close(pool->pmd) < 0)
1659 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1660
1661 dm_bio_prison_destroy(pool->prison);
1662 dm_kcopyd_client_destroy(pool->copier);
1663
1664 if (pool->wq)
1665 destroy_workqueue(pool->wq);
1666
1667 if (pool->next_mapping)
1668 mempool_free(pool->next_mapping, pool->mapping_pool);
1669 mempool_destroy(pool->mapping_pool);
1670 dm_deferred_set_destroy(pool->shared_read_ds);
1671 dm_deferred_set_destroy(pool->all_io_ds);
1672 kfree(pool);
1673 }
1674
1675 static struct kmem_cache *_new_mapping_cache;
1676
1677 static struct pool *pool_create(struct mapped_device *pool_md,
1678 struct block_device *metadata_dev,
1679 unsigned long block_size,
1680 int read_only, char **error)
1681 {
1682 int r;
1683 void *err_p;
1684 struct pool *pool;
1685 struct dm_pool_metadata *pmd;
1686 bool format_device = read_only ? false : true;
1687
1688 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1689 if (IS_ERR(pmd)) {
1690 *error = "Error creating metadata object";
1691 return (struct pool *)pmd;
1692 }
1693
1694 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1695 if (!pool) {
1696 *error = "Error allocating memory for pool";
1697 err_p = ERR_PTR(-ENOMEM);
1698 goto bad_pool;
1699 }
1700
1701 pool->pmd = pmd;
1702 pool->sectors_per_block = block_size;
1703 if (block_size & (block_size - 1))
1704 pool->sectors_per_block_shift = -1;
1705 else
1706 pool->sectors_per_block_shift = __ffs(block_size);
1707 pool->low_water_blocks = 0;
1708 pool_features_init(&pool->pf);
1709 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1710 if (!pool->prison) {
1711 *error = "Error creating pool's bio prison";
1712 err_p = ERR_PTR(-ENOMEM);
1713 goto bad_prison;
1714 }
1715
1716 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1717 if (IS_ERR(pool->copier)) {
1718 r = PTR_ERR(pool->copier);
1719 *error = "Error creating pool's kcopyd client";
1720 err_p = ERR_PTR(r);
1721 goto bad_kcopyd_client;
1722 }
1723
1724 /*
1725 * Create singlethreaded workqueue that will service all devices
1726 * that use this metadata.
1727 */
1728 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1729 if (!pool->wq) {
1730 *error = "Error creating pool's workqueue";
1731 err_p = ERR_PTR(-ENOMEM);
1732 goto bad_wq;
1733 }
1734
1735 INIT_WORK(&pool->worker, do_worker);
1736 INIT_DELAYED_WORK(&pool->waker, do_waker);
1737 spin_lock_init(&pool->lock);
1738 bio_list_init(&pool->deferred_bios);
1739 bio_list_init(&pool->deferred_flush_bios);
1740 INIT_LIST_HEAD(&pool->prepared_mappings);
1741 INIT_LIST_HEAD(&pool->prepared_discards);
1742 pool->low_water_triggered = 0;
1743 pool->no_free_space = 0;
1744 bio_list_init(&pool->retry_on_resume_list);
1745
1746 pool->shared_read_ds = dm_deferred_set_create();
1747 if (!pool->shared_read_ds) {
1748 *error = "Error creating pool's shared read deferred set";
1749 err_p = ERR_PTR(-ENOMEM);
1750 goto bad_shared_read_ds;
1751 }
1752
1753 pool->all_io_ds = dm_deferred_set_create();
1754 if (!pool->all_io_ds) {
1755 *error = "Error creating pool's all io deferred set";
1756 err_p = ERR_PTR(-ENOMEM);
1757 goto bad_all_io_ds;
1758 }
1759
1760 pool->next_mapping = NULL;
1761 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1762 _new_mapping_cache);
1763 if (!pool->mapping_pool) {
1764 *error = "Error creating pool's mapping mempool";
1765 err_p = ERR_PTR(-ENOMEM);
1766 goto bad_mapping_pool;
1767 }
1768
1769 pool->ref_count = 1;
1770 pool->last_commit_jiffies = jiffies;
1771 pool->pool_md = pool_md;
1772 pool->md_dev = metadata_dev;
1773 __pool_table_insert(pool);
1774
1775 return pool;
1776
1777 bad_mapping_pool:
1778 dm_deferred_set_destroy(pool->all_io_ds);
1779 bad_all_io_ds:
1780 dm_deferred_set_destroy(pool->shared_read_ds);
1781 bad_shared_read_ds:
1782 destroy_workqueue(pool->wq);
1783 bad_wq:
1784 dm_kcopyd_client_destroy(pool->copier);
1785 bad_kcopyd_client:
1786 dm_bio_prison_destroy(pool->prison);
1787 bad_prison:
1788 kfree(pool);
1789 bad_pool:
1790 if (dm_pool_metadata_close(pmd))
1791 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1792
1793 return err_p;
1794 }
1795
1796 static void __pool_inc(struct pool *pool)
1797 {
1798 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1799 pool->ref_count++;
1800 }
1801
1802 static void __pool_dec(struct pool *pool)
1803 {
1804 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1805 BUG_ON(!pool->ref_count);
1806 if (!--pool->ref_count)
1807 __pool_destroy(pool);
1808 }
1809
1810 static struct pool *__pool_find(struct mapped_device *pool_md,
1811 struct block_device *metadata_dev,
1812 unsigned long block_size, int read_only,
1813 char **error, int *created)
1814 {
1815 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1816
1817 if (pool) {
1818 if (pool->pool_md != pool_md) {
1819 *error = "metadata device already in use by a pool";
1820 return ERR_PTR(-EBUSY);
1821 }
1822 __pool_inc(pool);
1823
1824 } else {
1825 pool = __pool_table_lookup(pool_md);
1826 if (pool) {
1827 if (pool->md_dev != metadata_dev) {
1828 *error = "different pool cannot replace a pool";
1829 return ERR_PTR(-EINVAL);
1830 }
1831 __pool_inc(pool);
1832
1833 } else {
1834 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1835 *created = 1;
1836 }
1837 }
1838
1839 return pool;
1840 }
1841
1842 /*----------------------------------------------------------------
1843 * Pool target methods
1844 *--------------------------------------------------------------*/
1845 static void pool_dtr(struct dm_target *ti)
1846 {
1847 struct pool_c *pt = ti->private;
1848
1849 mutex_lock(&dm_thin_pool_table.mutex);
1850
1851 unbind_control_target(pt->pool, ti);
1852 __pool_dec(pt->pool);
1853 dm_put_device(ti, pt->metadata_dev);
1854 dm_put_device(ti, pt->data_dev);
1855 kfree(pt);
1856
1857 mutex_unlock(&dm_thin_pool_table.mutex);
1858 }
1859
1860 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1861 struct dm_target *ti)
1862 {
1863 int r;
1864 unsigned argc;
1865 const char *arg_name;
1866
1867 static struct dm_arg _args[] = {
1868 {0, 3, "Invalid number of pool feature arguments"},
1869 };
1870
1871 /*
1872 * No feature arguments supplied.
1873 */
1874 if (!as->argc)
1875 return 0;
1876
1877 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1878 if (r)
1879 return -EINVAL;
1880
1881 while (argc && !r) {
1882 arg_name = dm_shift_arg(as);
1883 argc--;
1884
1885 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1886 pf->zero_new_blocks = false;
1887
1888 else if (!strcasecmp(arg_name, "ignore_discard"))
1889 pf->discard_enabled = false;
1890
1891 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1892 pf->discard_passdown = false;
1893
1894 else if (!strcasecmp(arg_name, "read_only"))
1895 pf->mode = PM_READ_ONLY;
1896
1897 else {
1898 ti->error = "Unrecognised pool feature requested";
1899 r = -EINVAL;
1900 break;
1901 }
1902 }
1903
1904 return r;
1905 }
1906
1907 /*
1908 * thin-pool <metadata dev> <data dev>
1909 * <data block size (sectors)>
1910 * <low water mark (blocks)>
1911 * [<#feature args> [<arg>]*]
1912 *
1913 * Optional feature arguments are:
1914 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1915 * ignore_discard: disable discard
1916 * no_discard_passdown: don't pass discards down to the data device
1917 */
1918 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1919 {
1920 int r, pool_created = 0;
1921 struct pool_c *pt;
1922 struct pool *pool;
1923 struct pool_features pf;
1924 struct dm_arg_set as;
1925 struct dm_dev *data_dev;
1926 unsigned long block_size;
1927 dm_block_t low_water_blocks;
1928 struct dm_dev *metadata_dev;
1929 sector_t metadata_dev_size;
1930 char b[BDEVNAME_SIZE];
1931
1932 /*
1933 * FIXME Remove validation from scope of lock.
1934 */
1935 mutex_lock(&dm_thin_pool_table.mutex);
1936
1937 if (argc < 4) {
1938 ti->error = "Invalid argument count";
1939 r = -EINVAL;
1940 goto out_unlock;
1941 }
1942 as.argc = argc;
1943 as.argv = argv;
1944
1945 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1946 if (r) {
1947 ti->error = "Error opening metadata block device";
1948 goto out_unlock;
1949 }
1950
1951 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1952 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1953 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1954 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1955
1956 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1957 if (r) {
1958 ti->error = "Error getting data device";
1959 goto out_metadata;
1960 }
1961
1962 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1963 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1964 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1965 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1966 ti->error = "Invalid block size";
1967 r = -EINVAL;
1968 goto out;
1969 }
1970
1971 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1972 ti->error = "Invalid low water mark";
1973 r = -EINVAL;
1974 goto out;
1975 }
1976
1977 /*
1978 * Set default pool features.
1979 */
1980 pool_features_init(&pf);
1981
1982 dm_consume_args(&as, 4);
1983 r = parse_pool_features(&as, &pf, ti);
1984 if (r)
1985 goto out;
1986
1987 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1988 if (!pt) {
1989 r = -ENOMEM;
1990 goto out;
1991 }
1992
1993 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1994 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
1995 if (IS_ERR(pool)) {
1996 r = PTR_ERR(pool);
1997 goto out_free_pt;
1998 }
1999
2000 /*
2001 * 'pool_created' reflects whether this is the first table load.
2002 * Top level discard support is not allowed to be changed after
2003 * initial load. This would require a pool reload to trigger thin
2004 * device changes.
2005 */
2006 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2007 ti->error = "Discard support cannot be disabled once enabled";
2008 r = -EINVAL;
2009 goto out_flags_changed;
2010 }
2011
2012 pt->pool = pool;
2013 pt->ti = ti;
2014 pt->metadata_dev = metadata_dev;
2015 pt->data_dev = data_dev;
2016 pt->low_water_blocks = low_water_blocks;
2017 pt->adjusted_pf = pt->requested_pf = pf;
2018 ti->num_flush_bios = 1;
2019
2020 /*
2021 * Only need to enable discards if the pool should pass
2022 * them down to the data device. The thin device's discard
2023 * processing will cause mappings to be removed from the btree.
2024 */
2025 if (pf.discard_enabled && pf.discard_passdown) {
2026 ti->num_discard_bios = 1;
2027
2028 /*
2029 * Setting 'discards_supported' circumvents the normal
2030 * stacking of discard limits (this keeps the pool and
2031 * thin devices' discard limits consistent).
2032 */
2033 ti->discards_supported = true;
2034 ti->discard_zeroes_data_unsupported = true;
2035 }
2036 ti->private = pt;
2037
2038 pt->callbacks.congested_fn = pool_is_congested;
2039 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2040
2041 mutex_unlock(&dm_thin_pool_table.mutex);
2042
2043 return 0;
2044
2045 out_flags_changed:
2046 __pool_dec(pool);
2047 out_free_pt:
2048 kfree(pt);
2049 out:
2050 dm_put_device(ti, data_dev);
2051 out_metadata:
2052 dm_put_device(ti, metadata_dev);
2053 out_unlock:
2054 mutex_unlock(&dm_thin_pool_table.mutex);
2055
2056 return r;
2057 }
2058
2059 static int pool_map(struct dm_target *ti, struct bio *bio)
2060 {
2061 int r;
2062 struct pool_c *pt = ti->private;
2063 struct pool *pool = pt->pool;
2064 unsigned long flags;
2065
2066 /*
2067 * As this is a singleton target, ti->begin is always zero.
2068 */
2069 spin_lock_irqsave(&pool->lock, flags);
2070 bio->bi_bdev = pt->data_dev->bdev;
2071 r = DM_MAPIO_REMAPPED;
2072 spin_unlock_irqrestore(&pool->lock, flags);
2073
2074 return r;
2075 }
2076
2077 /*
2078 * Retrieves the number of blocks of the data device from
2079 * the superblock and compares it to the actual device size,
2080 * thus resizing the data device in case it has grown.
2081 *
2082 * This both copes with opening preallocated data devices in the ctr
2083 * being followed by a resume
2084 * -and-
2085 * calling the resume method individually after userspace has
2086 * grown the data device in reaction to a table event.
2087 */
2088 static int pool_preresume(struct dm_target *ti)
2089 {
2090 int r;
2091 struct pool_c *pt = ti->private;
2092 struct pool *pool = pt->pool;
2093 sector_t data_size = ti->len;
2094 dm_block_t sb_data_size;
2095
2096 /*
2097 * Take control of the pool object.
2098 */
2099 r = bind_control_target(pool, ti);
2100 if (r)
2101 return r;
2102
2103 (void) sector_div(data_size, pool->sectors_per_block);
2104
2105 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2106 if (r) {
2107 DMERR("failed to retrieve data device size");
2108 return r;
2109 }
2110
2111 if (data_size < sb_data_size) {
2112 DMERR("pool target too small, is %llu blocks (expected %llu)",
2113 (unsigned long long)data_size, sb_data_size);
2114 return -EINVAL;
2115
2116 } else if (data_size > sb_data_size) {
2117 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2118 if (r) {
2119 DMERR("failed to resize data device");
2120 /* FIXME Stricter than necessary: Rollback transaction instead here */
2121 set_pool_mode(pool, PM_READ_ONLY);
2122 return r;
2123 }
2124
2125 (void) commit_or_fallback(pool);
2126 }
2127
2128 return 0;
2129 }
2130
2131 static void pool_resume(struct dm_target *ti)
2132 {
2133 struct pool_c *pt = ti->private;
2134 struct pool *pool = pt->pool;
2135 unsigned long flags;
2136
2137 spin_lock_irqsave(&pool->lock, flags);
2138 pool->low_water_triggered = 0;
2139 pool->no_free_space = 0;
2140 __requeue_bios(pool);
2141 spin_unlock_irqrestore(&pool->lock, flags);
2142
2143 do_waker(&pool->waker.work);
2144 }
2145
2146 static void pool_postsuspend(struct dm_target *ti)
2147 {
2148 struct pool_c *pt = ti->private;
2149 struct pool *pool = pt->pool;
2150
2151 cancel_delayed_work(&pool->waker);
2152 flush_workqueue(pool->wq);
2153 (void) commit_or_fallback(pool);
2154 }
2155
2156 static int check_arg_count(unsigned argc, unsigned args_required)
2157 {
2158 if (argc != args_required) {
2159 DMWARN("Message received with %u arguments instead of %u.",
2160 argc, args_required);
2161 return -EINVAL;
2162 }
2163
2164 return 0;
2165 }
2166
2167 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2168 {
2169 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2170 *dev_id <= MAX_DEV_ID)
2171 return 0;
2172
2173 if (warning)
2174 DMWARN("Message received with invalid device id: %s", arg);
2175
2176 return -EINVAL;
2177 }
2178
2179 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2180 {
2181 dm_thin_id dev_id;
2182 int r;
2183
2184 r = check_arg_count(argc, 2);
2185 if (r)
2186 return r;
2187
2188 r = read_dev_id(argv[1], &dev_id, 1);
2189 if (r)
2190 return r;
2191
2192 r = dm_pool_create_thin(pool->pmd, dev_id);
2193 if (r) {
2194 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2195 argv[1]);
2196 return r;
2197 }
2198
2199 return 0;
2200 }
2201
2202 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2203 {
2204 dm_thin_id dev_id;
2205 dm_thin_id origin_dev_id;
2206 int r;
2207
2208 r = check_arg_count(argc, 3);
2209 if (r)
2210 return r;
2211
2212 r = read_dev_id(argv[1], &dev_id, 1);
2213 if (r)
2214 return r;
2215
2216 r = read_dev_id(argv[2], &origin_dev_id, 1);
2217 if (r)
2218 return r;
2219
2220 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2221 if (r) {
2222 DMWARN("Creation of new snapshot %s of device %s failed.",
2223 argv[1], argv[2]);
2224 return r;
2225 }
2226
2227 return 0;
2228 }
2229
2230 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2231 {
2232 dm_thin_id dev_id;
2233 int r;
2234
2235 r = check_arg_count(argc, 2);
2236 if (r)
2237 return r;
2238
2239 r = read_dev_id(argv[1], &dev_id, 1);
2240 if (r)
2241 return r;
2242
2243 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2244 if (r)
2245 DMWARN("Deletion of thin device %s failed.", argv[1]);
2246
2247 return r;
2248 }
2249
2250 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2251 {
2252 dm_thin_id old_id, new_id;
2253 int r;
2254
2255 r = check_arg_count(argc, 3);
2256 if (r)
2257 return r;
2258
2259 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2260 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2261 return -EINVAL;
2262 }
2263
2264 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2265 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2266 return -EINVAL;
2267 }
2268
2269 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2270 if (r) {
2271 DMWARN("Failed to change transaction id from %s to %s.",
2272 argv[1], argv[2]);
2273 return r;
2274 }
2275
2276 return 0;
2277 }
2278
2279 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2280 {
2281 int r;
2282
2283 r = check_arg_count(argc, 1);
2284 if (r)
2285 return r;
2286
2287 (void) commit_or_fallback(pool);
2288
2289 r = dm_pool_reserve_metadata_snap(pool->pmd);
2290 if (r)
2291 DMWARN("reserve_metadata_snap message failed.");
2292
2293 return r;
2294 }
2295
2296 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2297 {
2298 int r;
2299
2300 r = check_arg_count(argc, 1);
2301 if (r)
2302 return r;
2303
2304 r = dm_pool_release_metadata_snap(pool->pmd);
2305 if (r)
2306 DMWARN("release_metadata_snap message failed.");
2307
2308 return r;
2309 }
2310
2311 /*
2312 * Messages supported:
2313 * create_thin <dev_id>
2314 * create_snap <dev_id> <origin_id>
2315 * delete <dev_id>
2316 * trim <dev_id> <new_size_in_sectors>
2317 * set_transaction_id <current_trans_id> <new_trans_id>
2318 * reserve_metadata_snap
2319 * release_metadata_snap
2320 */
2321 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2322 {
2323 int r = -EINVAL;
2324 struct pool_c *pt = ti->private;
2325 struct pool *pool = pt->pool;
2326
2327 if (!strcasecmp(argv[0], "create_thin"))
2328 r = process_create_thin_mesg(argc, argv, pool);
2329
2330 else if (!strcasecmp(argv[0], "create_snap"))
2331 r = process_create_snap_mesg(argc, argv, pool);
2332
2333 else if (!strcasecmp(argv[0], "delete"))
2334 r = process_delete_mesg(argc, argv, pool);
2335
2336 else if (!strcasecmp(argv[0], "set_transaction_id"))
2337 r = process_set_transaction_id_mesg(argc, argv, pool);
2338
2339 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2340 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2341
2342 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2343 r = process_release_metadata_snap_mesg(argc, argv, pool);
2344
2345 else
2346 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2347
2348 if (!r)
2349 (void) commit_or_fallback(pool);
2350
2351 return r;
2352 }
2353
2354 static void emit_flags(struct pool_features *pf, char *result,
2355 unsigned sz, unsigned maxlen)
2356 {
2357 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2358 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2359 DMEMIT("%u ", count);
2360
2361 if (!pf->zero_new_blocks)
2362 DMEMIT("skip_block_zeroing ");
2363
2364 if (!pf->discard_enabled)
2365 DMEMIT("ignore_discard ");
2366
2367 if (!pf->discard_passdown)
2368 DMEMIT("no_discard_passdown ");
2369
2370 if (pf->mode == PM_READ_ONLY)
2371 DMEMIT("read_only ");
2372 }
2373
2374 /*
2375 * Status line is:
2376 * <transaction id> <used metadata sectors>/<total metadata sectors>
2377 * <used data sectors>/<total data sectors> <held metadata root>
2378 */
2379 static void pool_status(struct dm_target *ti, status_type_t type,
2380 unsigned status_flags, char *result, unsigned maxlen)
2381 {
2382 int r;
2383 unsigned sz = 0;
2384 uint64_t transaction_id;
2385 dm_block_t nr_free_blocks_data;
2386 dm_block_t nr_free_blocks_metadata;
2387 dm_block_t nr_blocks_data;
2388 dm_block_t nr_blocks_metadata;
2389 dm_block_t held_root;
2390 char buf[BDEVNAME_SIZE];
2391 char buf2[BDEVNAME_SIZE];
2392 struct pool_c *pt = ti->private;
2393 struct pool *pool = pt->pool;
2394
2395 switch (type) {
2396 case STATUSTYPE_INFO:
2397 if (get_pool_mode(pool) == PM_FAIL) {
2398 DMEMIT("Fail");
2399 break;
2400 }
2401
2402 /* Commit to ensure statistics aren't out-of-date */
2403 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2404 (void) commit_or_fallback(pool);
2405
2406 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2407 if (r) {
2408 DMERR("dm_pool_get_metadata_transaction_id returned %d", r);
2409 goto err;
2410 }
2411
2412 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2413 if (r) {
2414 DMERR("dm_pool_get_free_metadata_block_count returned %d", r);
2415 goto err;
2416 }
2417
2418 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2419 if (r) {
2420 DMERR("dm_pool_get_metadata_dev_size returned %d", r);
2421 goto err;
2422 }
2423
2424 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2425 if (r) {
2426 DMERR("dm_pool_get_free_block_count returned %d", r);
2427 goto err;
2428 }
2429
2430 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2431 if (r) {
2432 DMERR("dm_pool_get_data_dev_size returned %d", r);
2433 goto err;
2434 }
2435
2436 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2437 if (r) {
2438 DMERR("dm_pool_get_metadata_snap returned %d", r);
2439 goto err;
2440 }
2441
2442 DMEMIT("%llu %llu/%llu %llu/%llu ",
2443 (unsigned long long)transaction_id,
2444 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2445 (unsigned long long)nr_blocks_metadata,
2446 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2447 (unsigned long long)nr_blocks_data);
2448
2449 if (held_root)
2450 DMEMIT("%llu ", held_root);
2451 else
2452 DMEMIT("- ");
2453
2454 if (pool->pf.mode == PM_READ_ONLY)
2455 DMEMIT("ro ");
2456 else
2457 DMEMIT("rw ");
2458
2459 if (!pool->pf.discard_enabled)
2460 DMEMIT("ignore_discard");
2461 else if (pool->pf.discard_passdown)
2462 DMEMIT("discard_passdown");
2463 else
2464 DMEMIT("no_discard_passdown");
2465
2466 break;
2467
2468 case STATUSTYPE_TABLE:
2469 DMEMIT("%s %s %lu %llu ",
2470 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2471 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2472 (unsigned long)pool->sectors_per_block,
2473 (unsigned long long)pt->low_water_blocks);
2474 emit_flags(&pt->requested_pf, result, sz, maxlen);
2475 break;
2476 }
2477 return;
2478
2479 err:
2480 DMEMIT("Error");
2481 }
2482
2483 static int pool_iterate_devices(struct dm_target *ti,
2484 iterate_devices_callout_fn fn, void *data)
2485 {
2486 struct pool_c *pt = ti->private;
2487
2488 return fn(ti, pt->data_dev, 0, ti->len, data);
2489 }
2490
2491 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2492 struct bio_vec *biovec, int max_size)
2493 {
2494 struct pool_c *pt = ti->private;
2495 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2496
2497 if (!q->merge_bvec_fn)
2498 return max_size;
2499
2500 bvm->bi_bdev = pt->data_dev->bdev;
2501
2502 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2503 }
2504
2505 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2506 {
2507 struct pool *pool = pt->pool;
2508 struct queue_limits *data_limits;
2509
2510 limits->max_discard_sectors = pool->sectors_per_block;
2511
2512 /*
2513 * discard_granularity is just a hint, and not enforced.
2514 */
2515 if (pt->adjusted_pf.discard_passdown) {
2516 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2517 limits->discard_granularity = data_limits->discard_granularity;
2518 } else
2519 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2520 }
2521
2522 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2523 {
2524 struct pool_c *pt = ti->private;
2525 struct pool *pool = pt->pool;
2526
2527 blk_limits_io_min(limits, 0);
2528 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2529
2530 /*
2531 * pt->adjusted_pf is a staging area for the actual features to use.
2532 * They get transferred to the live pool in bind_control_target()
2533 * called from pool_preresume().
2534 */
2535 if (!pt->adjusted_pf.discard_enabled)
2536 return;
2537
2538 disable_passdown_if_not_supported(pt);
2539
2540 set_discard_limits(pt, limits);
2541 }
2542
2543 static struct target_type pool_target = {
2544 .name = "thin-pool",
2545 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2546 DM_TARGET_IMMUTABLE,
2547 .version = {1, 6, 1},
2548 .module = THIS_MODULE,
2549 .ctr = pool_ctr,
2550 .dtr = pool_dtr,
2551 .map = pool_map,
2552 .postsuspend = pool_postsuspend,
2553 .preresume = pool_preresume,
2554 .resume = pool_resume,
2555 .message = pool_message,
2556 .status = pool_status,
2557 .merge = pool_merge,
2558 .iterate_devices = pool_iterate_devices,
2559 .io_hints = pool_io_hints,
2560 };
2561
2562 /*----------------------------------------------------------------
2563 * Thin target methods
2564 *--------------------------------------------------------------*/
2565 static void thin_dtr(struct dm_target *ti)
2566 {
2567 struct thin_c *tc = ti->private;
2568
2569 mutex_lock(&dm_thin_pool_table.mutex);
2570
2571 __pool_dec(tc->pool);
2572 dm_pool_close_thin_device(tc->td);
2573 dm_put_device(ti, tc->pool_dev);
2574 if (tc->origin_dev)
2575 dm_put_device(ti, tc->origin_dev);
2576 kfree(tc);
2577
2578 mutex_unlock(&dm_thin_pool_table.mutex);
2579 }
2580
2581 /*
2582 * Thin target parameters:
2583 *
2584 * <pool_dev> <dev_id> [origin_dev]
2585 *
2586 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2587 * dev_id: the internal device identifier
2588 * origin_dev: a device external to the pool that should act as the origin
2589 *
2590 * If the pool device has discards disabled, they get disabled for the thin
2591 * device as well.
2592 */
2593 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2594 {
2595 int r;
2596 struct thin_c *tc;
2597 struct dm_dev *pool_dev, *origin_dev;
2598 struct mapped_device *pool_md;
2599
2600 mutex_lock(&dm_thin_pool_table.mutex);
2601
2602 if (argc != 2 && argc != 3) {
2603 ti->error = "Invalid argument count";
2604 r = -EINVAL;
2605 goto out_unlock;
2606 }
2607
2608 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2609 if (!tc) {
2610 ti->error = "Out of memory";
2611 r = -ENOMEM;
2612 goto out_unlock;
2613 }
2614
2615 if (argc == 3) {
2616 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2617 if (r) {
2618 ti->error = "Error opening origin device";
2619 goto bad_origin_dev;
2620 }
2621 tc->origin_dev = origin_dev;
2622 }
2623
2624 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2625 if (r) {
2626 ti->error = "Error opening pool device";
2627 goto bad_pool_dev;
2628 }
2629 tc->pool_dev = pool_dev;
2630
2631 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2632 ti->error = "Invalid device id";
2633 r = -EINVAL;
2634 goto bad_common;
2635 }
2636
2637 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2638 if (!pool_md) {
2639 ti->error = "Couldn't get pool mapped device";
2640 r = -EINVAL;
2641 goto bad_common;
2642 }
2643
2644 tc->pool = __pool_table_lookup(pool_md);
2645 if (!tc->pool) {
2646 ti->error = "Couldn't find pool object";
2647 r = -EINVAL;
2648 goto bad_pool_lookup;
2649 }
2650 __pool_inc(tc->pool);
2651
2652 if (get_pool_mode(tc->pool) == PM_FAIL) {
2653 ti->error = "Couldn't open thin device, Pool is in fail mode";
2654 goto bad_thin_open;
2655 }
2656
2657 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2658 if (r) {
2659 ti->error = "Couldn't open thin internal device";
2660 goto bad_thin_open;
2661 }
2662
2663 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2664 if (r)
2665 goto bad_thin_open;
2666
2667 ti->num_flush_bios = 1;
2668 ti->flush_supported = true;
2669 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2670
2671 /* In case the pool supports discards, pass them on. */
2672 if (tc->pool->pf.discard_enabled) {
2673 ti->discards_supported = true;
2674 ti->num_discard_bios = 1;
2675 ti->discard_zeroes_data_unsupported = true;
2676 /* Discard bios must be split on a block boundary */
2677 ti->split_discard_bios = true;
2678 }
2679
2680 dm_put(pool_md);
2681
2682 mutex_unlock(&dm_thin_pool_table.mutex);
2683
2684 return 0;
2685
2686 bad_thin_open:
2687 __pool_dec(tc->pool);
2688 bad_pool_lookup:
2689 dm_put(pool_md);
2690 bad_common:
2691 dm_put_device(ti, tc->pool_dev);
2692 bad_pool_dev:
2693 if (tc->origin_dev)
2694 dm_put_device(ti, tc->origin_dev);
2695 bad_origin_dev:
2696 kfree(tc);
2697 out_unlock:
2698 mutex_unlock(&dm_thin_pool_table.mutex);
2699
2700 return r;
2701 }
2702
2703 static int thin_map(struct dm_target *ti, struct bio *bio)
2704 {
2705 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2706
2707 return thin_bio_map(ti, bio);
2708 }
2709
2710 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2711 {
2712 unsigned long flags;
2713 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2714 struct list_head work;
2715 struct dm_thin_new_mapping *m, *tmp;
2716 struct pool *pool = h->tc->pool;
2717
2718 if (h->shared_read_entry) {
2719 INIT_LIST_HEAD(&work);
2720 dm_deferred_entry_dec(h->shared_read_entry, &work);
2721
2722 spin_lock_irqsave(&pool->lock, flags);
2723 list_for_each_entry_safe(m, tmp, &work, list) {
2724 list_del(&m->list);
2725 m->quiesced = 1;
2726 __maybe_add_mapping(m);
2727 }
2728 spin_unlock_irqrestore(&pool->lock, flags);
2729 }
2730
2731 if (h->all_io_entry) {
2732 INIT_LIST_HEAD(&work);
2733 dm_deferred_entry_dec(h->all_io_entry, &work);
2734 if (!list_empty(&work)) {
2735 spin_lock_irqsave(&pool->lock, flags);
2736 list_for_each_entry_safe(m, tmp, &work, list)
2737 list_add(&m->list, &pool->prepared_discards);
2738 spin_unlock_irqrestore(&pool->lock, flags);
2739 wake_worker(pool);
2740 }
2741 }
2742
2743 return 0;
2744 }
2745
2746 static void thin_postsuspend(struct dm_target *ti)
2747 {
2748 if (dm_noflush_suspending(ti))
2749 requeue_io((struct thin_c *)ti->private);
2750 }
2751
2752 /*
2753 * <nr mapped sectors> <highest mapped sector>
2754 */
2755 static void thin_status(struct dm_target *ti, status_type_t type,
2756 unsigned status_flags, char *result, unsigned maxlen)
2757 {
2758 int r;
2759 ssize_t sz = 0;
2760 dm_block_t mapped, highest;
2761 char buf[BDEVNAME_SIZE];
2762 struct thin_c *tc = ti->private;
2763
2764 if (get_pool_mode(tc->pool) == PM_FAIL) {
2765 DMEMIT("Fail");
2766 return;
2767 }
2768
2769 if (!tc->td)
2770 DMEMIT("-");
2771 else {
2772 switch (type) {
2773 case STATUSTYPE_INFO:
2774 r = dm_thin_get_mapped_count(tc->td, &mapped);
2775 if (r) {
2776 DMERR("dm_thin_get_mapped_count returned %d", r);
2777 goto err;
2778 }
2779
2780 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2781 if (r < 0) {
2782 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2783 goto err;
2784 }
2785
2786 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2787 if (r)
2788 DMEMIT("%llu", ((highest + 1) *
2789 tc->pool->sectors_per_block) - 1);
2790 else
2791 DMEMIT("-");
2792 break;
2793
2794 case STATUSTYPE_TABLE:
2795 DMEMIT("%s %lu",
2796 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2797 (unsigned long) tc->dev_id);
2798 if (tc->origin_dev)
2799 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2800 break;
2801 }
2802 }
2803
2804 return;
2805
2806 err:
2807 DMEMIT("Error");
2808 }
2809
2810 static int thin_iterate_devices(struct dm_target *ti,
2811 iterate_devices_callout_fn fn, void *data)
2812 {
2813 sector_t blocks;
2814 struct thin_c *tc = ti->private;
2815 struct pool *pool = tc->pool;
2816
2817 /*
2818 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2819 * we follow a more convoluted path through to the pool's target.
2820 */
2821 if (!pool->ti)
2822 return 0; /* nothing is bound */
2823
2824 blocks = pool->ti->len;
2825 (void) sector_div(blocks, pool->sectors_per_block);
2826 if (blocks)
2827 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2828
2829 return 0;
2830 }
2831
2832 static struct target_type thin_target = {
2833 .name = "thin",
2834 .version = {1, 7, 1},
2835 .module = THIS_MODULE,
2836 .ctr = thin_ctr,
2837 .dtr = thin_dtr,
2838 .map = thin_map,
2839 .end_io = thin_endio,
2840 .postsuspend = thin_postsuspend,
2841 .status = thin_status,
2842 .iterate_devices = thin_iterate_devices,
2843 };
2844
2845 /*----------------------------------------------------------------*/
2846
2847 static int __init dm_thin_init(void)
2848 {
2849 int r;
2850
2851 pool_table_init();
2852
2853 r = dm_register_target(&thin_target);
2854 if (r)
2855 return r;
2856
2857 r = dm_register_target(&pool_target);
2858 if (r)
2859 goto bad_pool_target;
2860
2861 r = -ENOMEM;
2862
2863 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2864 if (!_new_mapping_cache)
2865 goto bad_new_mapping_cache;
2866
2867 return 0;
2868
2869 bad_new_mapping_cache:
2870 dm_unregister_target(&pool_target);
2871 bad_pool_target:
2872 dm_unregister_target(&thin_target);
2873
2874 return r;
2875 }
2876
2877 static void dm_thin_exit(void)
2878 {
2879 dm_unregister_target(&thin_target);
2880 dm_unregister_target(&pool_target);
2881
2882 kmem_cache_destroy(_new_mapping_cache);
2883 }
2884
2885 module_init(dm_thin_init);
2886 module_exit(dm_thin_exit);
2887
2888 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2889 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2890 MODULE_LICENSE("GPL");