Merge tag 'renesas-soc-r8a7778-for-v3.10' of git://git.kernel.org/pub/scm/linux/kerne...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX "thin"
20
21 /*
22 * Tunable constants
23 */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
31
32 /*
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
35 */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40 * Device id is restricted to 24 bits.
41 */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
47 *
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
53 * same data blocks.
54 *
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
57 *
58 * Let's say we write to a shared block in what was the origin. The
59 * steps are:
60 *
61 * i) plug io further to this physical block. (see bio_prison code).
62 *
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
65 *
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
68 *
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
76 *
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
79 *
80 * Steps (ii) and (iii) occur in parallel.
81 *
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
85 *
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
89 *
90 * - The snap mapping still points to the old block. As it would after
91 * the commit.
92 *
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
100 */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105 * Key building.
106 */
107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
109 {
110 key->virtual = 0;
111 key->dev = dm_thin_dev_id(td);
112 key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
117 {
118 key->virtual = 1;
119 key->dev = dm_thin_dev_id(td);
120 key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
128 * devices.
129 */
130 struct dm_thin_new_mapping;
131
132 /*
133 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
134 */
135 enum pool_mode {
136 PM_WRITE, /* metadata may be changed */
137 PM_READ_ONLY, /* metadata may not be changed */
138 PM_FAIL, /* all I/O fails */
139 };
140
141 struct pool_features {
142 enum pool_mode mode;
143
144 bool zero_new_blocks:1;
145 bool discard_enabled:1;
146 bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154 struct list_head list;
155 struct dm_target *ti; /* Only set if a pool target is bound */
156
157 struct mapped_device *pool_md;
158 struct block_device *md_dev;
159 struct dm_pool_metadata *pmd;
160
161 dm_block_t low_water_blocks;
162 uint32_t sectors_per_block;
163 int sectors_per_block_shift;
164
165 struct pool_features pf;
166 unsigned low_water_triggered:1; /* A dm event has been sent */
167 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
168
169 struct dm_bio_prison *prison;
170 struct dm_kcopyd_client *copier;
171
172 struct workqueue_struct *wq;
173 struct work_struct worker;
174 struct delayed_work waker;
175
176 unsigned long last_commit_jiffies;
177 unsigned ref_count;
178
179 spinlock_t lock;
180 struct bio_list deferred_bios;
181 struct bio_list deferred_flush_bios;
182 struct list_head prepared_mappings;
183 struct list_head prepared_discards;
184
185 struct bio_list retry_on_resume_list;
186
187 struct dm_deferred_set *shared_read_ds;
188 struct dm_deferred_set *all_io_ds;
189
190 struct dm_thin_new_mapping *next_mapping;
191 mempool_t *mapping_pool;
192
193 process_bio_fn process_bio;
194 process_bio_fn process_discard;
195
196 process_mapping_fn process_prepared_mapping;
197 process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202
203 /*
204 * Target context for a pool.
205 */
206 struct pool_c {
207 struct dm_target *ti;
208 struct pool *pool;
209 struct dm_dev *data_dev;
210 struct dm_dev *metadata_dev;
211 struct dm_target_callbacks callbacks;
212
213 dm_block_t low_water_blocks;
214 struct pool_features requested_pf; /* Features requested during table load */
215 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219 * Target context for a thin.
220 */
221 struct thin_c {
222 struct dm_dev *pool_dev;
223 struct dm_dev *origin_dev;
224 dm_thin_id dev_id;
225
226 struct pool *pool;
227 struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 /*
233 * wake_worker() is used when new work is queued and when pool_resume is
234 * ready to continue deferred IO processing.
235 */
236 static void wake_worker(struct pool *pool)
237 {
238 queue_work(pool->wq, &pool->worker);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244 struct dm_bio_prison_cell **cell_result)
245 {
246 int r;
247 struct dm_bio_prison_cell *cell_prealloc;
248
249 /*
250 * Allocate a cell from the prison's mempool.
251 * This might block but it can't fail.
252 */
253 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254
255 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256 if (r)
257 /*
258 * We reused an old cell; we can get rid of
259 * the new one.
260 */
261 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262
263 return r;
264 }
265
266 static void cell_release(struct pool *pool,
267 struct dm_bio_prison_cell *cell,
268 struct bio_list *bios)
269 {
270 dm_cell_release(pool->prison, cell, bios);
271 dm_bio_prison_free_cell(pool->prison, cell);
272 }
273
274 static void cell_release_no_holder(struct pool *pool,
275 struct dm_bio_prison_cell *cell,
276 struct bio_list *bios)
277 {
278 dm_cell_release_no_holder(pool->prison, cell, bios);
279 dm_bio_prison_free_cell(pool->prison, cell);
280 }
281
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283 struct dm_bio_prison_cell *cell)
284 {
285 struct pool *pool = tc->pool;
286 unsigned long flags;
287
288 spin_lock_irqsave(&pool->lock, flags);
289 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290 spin_unlock_irqrestore(&pool->lock, flags);
291
292 wake_worker(pool);
293 }
294
295 static void cell_error(struct pool *pool,
296 struct dm_bio_prison_cell *cell)
297 {
298 dm_cell_error(pool->prison, cell);
299 dm_bio_prison_free_cell(pool->prison, cell);
300 }
301
302 /*----------------------------------------------------------------*/
303
304 /*
305 * A global list of pools that uses a struct mapped_device as a key.
306 */
307 static struct dm_thin_pool_table {
308 struct mutex mutex;
309 struct list_head pools;
310 } dm_thin_pool_table;
311
312 static void pool_table_init(void)
313 {
314 mutex_init(&dm_thin_pool_table.mutex);
315 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317
318 static void __pool_table_insert(struct pool *pool)
319 {
320 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321 list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323
324 static void __pool_table_remove(struct pool *pool)
325 {
326 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327 list_del(&pool->list);
328 }
329
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332 struct pool *pool = NULL, *tmp;
333
334 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335
336 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337 if (tmp->pool_md == md) {
338 pool = tmp;
339 break;
340 }
341 }
342
343 return pool;
344 }
345
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348 struct pool *pool = NULL, *tmp;
349
350 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353 if (tmp->md_dev == md_dev) {
354 pool = tmp;
355 break;
356 }
357 }
358
359 return pool;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 struct dm_thin_endio_hook {
365 struct thin_c *tc;
366 struct dm_deferred_entry *shared_read_entry;
367 struct dm_deferred_entry *all_io_entry;
368 struct dm_thin_new_mapping *overwrite_mapping;
369 };
370
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373 struct bio *bio;
374 struct bio_list bios;
375
376 bio_list_init(&bios);
377 bio_list_merge(&bios, master);
378 bio_list_init(master);
379
380 while ((bio = bio_list_pop(&bios))) {
381 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382
383 if (h->tc == tc)
384 bio_endio(bio, DM_ENDIO_REQUEUE);
385 else
386 bio_list_add(master, bio);
387 }
388 }
389
390 static void requeue_io(struct thin_c *tc)
391 {
392 struct pool *pool = tc->pool;
393 unsigned long flags;
394
395 spin_lock_irqsave(&pool->lock, flags);
396 __requeue_bio_list(tc, &pool->deferred_bios);
397 __requeue_bio_list(tc, &pool->retry_on_resume_list);
398 spin_unlock_irqrestore(&pool->lock, flags);
399 }
400
401 /*
402 * This section of code contains the logic for processing a thin device's IO.
403 * Much of the code depends on pool object resources (lists, workqueues, etc)
404 * but most is exclusively called from the thin target rather than the thin-pool
405 * target.
406 */
407
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410 return pool->sectors_per_block_shift >= 0;
411 }
412
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415 struct pool *pool = tc->pool;
416 sector_t block_nr = bio->bi_sector;
417
418 if (block_size_is_power_of_two(pool))
419 block_nr >>= pool->sectors_per_block_shift;
420 else
421 (void) sector_div(block_nr, pool->sectors_per_block);
422
423 return block_nr;
424 }
425
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428 struct pool *pool = tc->pool;
429 sector_t bi_sector = bio->bi_sector;
430
431 bio->bi_bdev = tc->pool_dev->bdev;
432 if (block_size_is_power_of_two(pool))
433 bio->bi_sector = (block << pool->sectors_per_block_shift) |
434 (bi_sector & (pool->sectors_per_block - 1));
435 else
436 bio->bi_sector = (block * pool->sectors_per_block) +
437 sector_div(bi_sector, pool->sectors_per_block);
438 }
439
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442 bio->bi_bdev = tc->origin_dev->bdev;
443 }
444
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448 dm_thin_changed_this_transaction(tc->td);
449 }
450
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453 struct dm_thin_endio_hook *h;
454
455 if (bio->bi_rw & REQ_DISCARD)
456 return;
457
458 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464 struct pool *pool = tc->pool;
465 unsigned long flags;
466
467 if (!bio_triggers_commit(tc, bio)) {
468 generic_make_request(bio);
469 return;
470 }
471
472 /*
473 * Complete bio with an error if earlier I/O caused changes to
474 * the metadata that can't be committed e.g, due to I/O errors
475 * on the metadata device.
476 */
477 if (dm_thin_aborted_changes(tc->td)) {
478 bio_io_error(bio);
479 return;
480 }
481
482 /*
483 * Batch together any bios that trigger commits and then issue a
484 * single commit for them in process_deferred_bios().
485 */
486 spin_lock_irqsave(&pool->lock, flags);
487 bio_list_add(&pool->deferred_flush_bios, bio);
488 spin_unlock_irqrestore(&pool->lock, flags);
489 }
490
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493 remap_to_origin(tc, bio);
494 issue(tc, bio);
495 }
496
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498 dm_block_t block)
499 {
500 remap(tc, bio, block);
501 issue(tc, bio);
502 }
503
504 /*----------------------------------------------------------------*/
505
506 /*
507 * Bio endio functions.
508 */
509 struct dm_thin_new_mapping {
510 struct list_head list;
511
512 unsigned quiesced:1;
513 unsigned prepared:1;
514 unsigned pass_discard:1;
515
516 struct thin_c *tc;
517 dm_block_t virt_block;
518 dm_block_t data_block;
519 struct dm_bio_prison_cell *cell, *cell2;
520 int err;
521
522 /*
523 * If the bio covers the whole area of a block then we can avoid
524 * zeroing or copying. Instead this bio is hooked. The bio will
525 * still be in the cell, so care has to be taken to avoid issuing
526 * the bio twice.
527 */
528 struct bio *bio;
529 bio_end_io_t *saved_bi_end_io;
530 };
531
532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
533 {
534 struct pool *pool = m->tc->pool;
535
536 if (m->quiesced && m->prepared) {
537 list_add(&m->list, &pool->prepared_mappings);
538 wake_worker(pool);
539 }
540 }
541
542 static void copy_complete(int read_err, unsigned long write_err, void *context)
543 {
544 unsigned long flags;
545 struct dm_thin_new_mapping *m = context;
546 struct pool *pool = m->tc->pool;
547
548 m->err = read_err || write_err ? -EIO : 0;
549
550 spin_lock_irqsave(&pool->lock, flags);
551 m->prepared = 1;
552 __maybe_add_mapping(m);
553 spin_unlock_irqrestore(&pool->lock, flags);
554 }
555
556 static void overwrite_endio(struct bio *bio, int err)
557 {
558 unsigned long flags;
559 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
560 struct dm_thin_new_mapping *m = h->overwrite_mapping;
561 struct pool *pool = m->tc->pool;
562
563 m->err = err;
564
565 spin_lock_irqsave(&pool->lock, flags);
566 m->prepared = 1;
567 __maybe_add_mapping(m);
568 spin_unlock_irqrestore(&pool->lock, flags);
569 }
570
571 /*----------------------------------------------------------------*/
572
573 /*
574 * Workqueue.
575 */
576
577 /*
578 * Prepared mapping jobs.
579 */
580
581 /*
582 * This sends the bios in the cell back to the deferred_bios list.
583 */
584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
585 {
586 struct pool *pool = tc->pool;
587 unsigned long flags;
588
589 spin_lock_irqsave(&pool->lock, flags);
590 cell_release(pool, cell, &pool->deferred_bios);
591 spin_unlock_irqrestore(&tc->pool->lock, flags);
592
593 wake_worker(pool);
594 }
595
596 /*
597 * Same as cell_defer above, except it omits the original holder of the cell.
598 */
599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
600 {
601 struct pool *pool = tc->pool;
602 unsigned long flags;
603
604 spin_lock_irqsave(&pool->lock, flags);
605 cell_release_no_holder(pool, cell, &pool->deferred_bios);
606 spin_unlock_irqrestore(&pool->lock, flags);
607
608 wake_worker(pool);
609 }
610
611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
612 {
613 if (m->bio)
614 m->bio->bi_end_io = m->saved_bi_end_io;
615 cell_error(m->tc->pool, m->cell);
616 list_del(&m->list);
617 mempool_free(m, m->tc->pool->mapping_pool);
618 }
619
620 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
621 {
622 struct thin_c *tc = m->tc;
623 struct pool *pool = tc->pool;
624 struct bio *bio;
625 int r;
626
627 bio = m->bio;
628 if (bio)
629 bio->bi_end_io = m->saved_bi_end_io;
630
631 if (m->err) {
632 cell_error(pool, m->cell);
633 goto out;
634 }
635
636 /*
637 * Commit the prepared block into the mapping btree.
638 * Any I/O for this block arriving after this point will get
639 * remapped to it directly.
640 */
641 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
642 if (r) {
643 DMERR_LIMIT("dm_thin_insert_block() failed");
644 cell_error(pool, m->cell);
645 goto out;
646 }
647
648 /*
649 * Release any bios held while the block was being provisioned.
650 * If we are processing a write bio that completely covers the block,
651 * we already processed it so can ignore it now when processing
652 * the bios in the cell.
653 */
654 if (bio) {
655 cell_defer_no_holder(tc, m->cell);
656 bio_endio(bio, 0);
657 } else
658 cell_defer(tc, m->cell);
659
660 out:
661 list_del(&m->list);
662 mempool_free(m, pool->mapping_pool);
663 }
664
665 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
666 {
667 struct thin_c *tc = m->tc;
668
669 bio_io_error(m->bio);
670 cell_defer_no_holder(tc, m->cell);
671 cell_defer_no_holder(tc, m->cell2);
672 mempool_free(m, tc->pool->mapping_pool);
673 }
674
675 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
676 {
677 struct thin_c *tc = m->tc;
678
679 inc_all_io_entry(tc->pool, m->bio);
680 cell_defer_no_holder(tc, m->cell);
681 cell_defer_no_holder(tc, m->cell2);
682
683 if (m->pass_discard)
684 remap_and_issue(tc, m->bio, m->data_block);
685 else
686 bio_endio(m->bio, 0);
687
688 mempool_free(m, tc->pool->mapping_pool);
689 }
690
691 static void process_prepared_discard(struct dm_thin_new_mapping *m)
692 {
693 int r;
694 struct thin_c *tc = m->tc;
695
696 r = dm_thin_remove_block(tc->td, m->virt_block);
697 if (r)
698 DMERR_LIMIT("dm_thin_remove_block() failed");
699
700 process_prepared_discard_passdown(m);
701 }
702
703 static void process_prepared(struct pool *pool, struct list_head *head,
704 process_mapping_fn *fn)
705 {
706 unsigned long flags;
707 struct list_head maps;
708 struct dm_thin_new_mapping *m, *tmp;
709
710 INIT_LIST_HEAD(&maps);
711 spin_lock_irqsave(&pool->lock, flags);
712 list_splice_init(head, &maps);
713 spin_unlock_irqrestore(&pool->lock, flags);
714
715 list_for_each_entry_safe(m, tmp, &maps, list)
716 (*fn)(m);
717 }
718
719 /*
720 * Deferred bio jobs.
721 */
722 static int io_overlaps_block(struct pool *pool, struct bio *bio)
723 {
724 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
725 }
726
727 static int io_overwrites_block(struct pool *pool, struct bio *bio)
728 {
729 return (bio_data_dir(bio) == WRITE) &&
730 io_overlaps_block(pool, bio);
731 }
732
733 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
734 bio_end_io_t *fn)
735 {
736 *save = bio->bi_end_io;
737 bio->bi_end_io = fn;
738 }
739
740 static int ensure_next_mapping(struct pool *pool)
741 {
742 if (pool->next_mapping)
743 return 0;
744
745 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
746
747 return pool->next_mapping ? 0 : -ENOMEM;
748 }
749
750 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
751 {
752 struct dm_thin_new_mapping *r = pool->next_mapping;
753
754 BUG_ON(!pool->next_mapping);
755
756 pool->next_mapping = NULL;
757
758 return r;
759 }
760
761 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
762 struct dm_dev *origin, dm_block_t data_origin,
763 dm_block_t data_dest,
764 struct dm_bio_prison_cell *cell, struct bio *bio)
765 {
766 int r;
767 struct pool *pool = tc->pool;
768 struct dm_thin_new_mapping *m = get_next_mapping(pool);
769
770 INIT_LIST_HEAD(&m->list);
771 m->quiesced = 0;
772 m->prepared = 0;
773 m->tc = tc;
774 m->virt_block = virt_block;
775 m->data_block = data_dest;
776 m->cell = cell;
777 m->err = 0;
778 m->bio = NULL;
779
780 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
781 m->quiesced = 1;
782
783 /*
784 * IO to pool_dev remaps to the pool target's data_dev.
785 *
786 * If the whole block of data is being overwritten, we can issue the
787 * bio immediately. Otherwise we use kcopyd to clone the data first.
788 */
789 if (io_overwrites_block(pool, bio)) {
790 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
791
792 h->overwrite_mapping = m;
793 m->bio = bio;
794 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
795 inc_all_io_entry(pool, bio);
796 remap_and_issue(tc, bio, data_dest);
797 } else {
798 struct dm_io_region from, to;
799
800 from.bdev = origin->bdev;
801 from.sector = data_origin * pool->sectors_per_block;
802 from.count = pool->sectors_per_block;
803
804 to.bdev = tc->pool_dev->bdev;
805 to.sector = data_dest * pool->sectors_per_block;
806 to.count = pool->sectors_per_block;
807
808 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
809 0, copy_complete, m);
810 if (r < 0) {
811 mempool_free(m, pool->mapping_pool);
812 DMERR_LIMIT("dm_kcopyd_copy() failed");
813 cell_error(pool, cell);
814 }
815 }
816 }
817
818 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
819 dm_block_t data_origin, dm_block_t data_dest,
820 struct dm_bio_prison_cell *cell, struct bio *bio)
821 {
822 schedule_copy(tc, virt_block, tc->pool_dev,
823 data_origin, data_dest, cell, bio);
824 }
825
826 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
827 dm_block_t data_dest,
828 struct dm_bio_prison_cell *cell, struct bio *bio)
829 {
830 schedule_copy(tc, virt_block, tc->origin_dev,
831 virt_block, data_dest, cell, bio);
832 }
833
834 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
835 dm_block_t data_block, struct dm_bio_prison_cell *cell,
836 struct bio *bio)
837 {
838 struct pool *pool = tc->pool;
839 struct dm_thin_new_mapping *m = get_next_mapping(pool);
840
841 INIT_LIST_HEAD(&m->list);
842 m->quiesced = 1;
843 m->prepared = 0;
844 m->tc = tc;
845 m->virt_block = virt_block;
846 m->data_block = data_block;
847 m->cell = cell;
848 m->err = 0;
849 m->bio = NULL;
850
851 /*
852 * If the whole block of data is being overwritten or we are not
853 * zeroing pre-existing data, we can issue the bio immediately.
854 * Otherwise we use kcopyd to zero the data first.
855 */
856 if (!pool->pf.zero_new_blocks)
857 process_prepared_mapping(m);
858
859 else if (io_overwrites_block(pool, bio)) {
860 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
861
862 h->overwrite_mapping = m;
863 m->bio = bio;
864 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
865 inc_all_io_entry(pool, bio);
866 remap_and_issue(tc, bio, data_block);
867 } else {
868 int r;
869 struct dm_io_region to;
870
871 to.bdev = tc->pool_dev->bdev;
872 to.sector = data_block * pool->sectors_per_block;
873 to.count = pool->sectors_per_block;
874
875 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
876 if (r < 0) {
877 mempool_free(m, pool->mapping_pool);
878 DMERR_LIMIT("dm_kcopyd_zero() failed");
879 cell_error(pool, cell);
880 }
881 }
882 }
883
884 static int commit(struct pool *pool)
885 {
886 int r;
887
888 r = dm_pool_commit_metadata(pool->pmd);
889 if (r)
890 DMERR_LIMIT("commit failed: error = %d", r);
891
892 return r;
893 }
894
895 /*
896 * A non-zero return indicates read_only or fail_io mode.
897 * Many callers don't care about the return value.
898 */
899 static int commit_or_fallback(struct pool *pool)
900 {
901 int r;
902
903 if (get_pool_mode(pool) != PM_WRITE)
904 return -EINVAL;
905
906 r = commit(pool);
907 if (r)
908 set_pool_mode(pool, PM_READ_ONLY);
909
910 return r;
911 }
912
913 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
914 {
915 int r;
916 dm_block_t free_blocks;
917 unsigned long flags;
918 struct pool *pool = tc->pool;
919
920 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
921 if (r)
922 return r;
923
924 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
925 DMWARN("%s: reached low water mark, sending event.",
926 dm_device_name(pool->pool_md));
927 spin_lock_irqsave(&pool->lock, flags);
928 pool->low_water_triggered = 1;
929 spin_unlock_irqrestore(&pool->lock, flags);
930 dm_table_event(pool->ti->table);
931 }
932
933 if (!free_blocks) {
934 if (pool->no_free_space)
935 return -ENOSPC;
936 else {
937 /*
938 * Try to commit to see if that will free up some
939 * more space.
940 */
941 (void) commit_or_fallback(pool);
942
943 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
944 if (r)
945 return r;
946
947 /*
948 * If we still have no space we set a flag to avoid
949 * doing all this checking and return -ENOSPC.
950 */
951 if (!free_blocks) {
952 DMWARN("%s: no free space available.",
953 dm_device_name(pool->pool_md));
954 spin_lock_irqsave(&pool->lock, flags);
955 pool->no_free_space = 1;
956 spin_unlock_irqrestore(&pool->lock, flags);
957 return -ENOSPC;
958 }
959 }
960 }
961
962 r = dm_pool_alloc_data_block(pool->pmd, result);
963 if (r)
964 return r;
965
966 return 0;
967 }
968
969 /*
970 * If we have run out of space, queue bios until the device is
971 * resumed, presumably after having been reloaded with more space.
972 */
973 static void retry_on_resume(struct bio *bio)
974 {
975 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
976 struct thin_c *tc = h->tc;
977 struct pool *pool = tc->pool;
978 unsigned long flags;
979
980 spin_lock_irqsave(&pool->lock, flags);
981 bio_list_add(&pool->retry_on_resume_list, bio);
982 spin_unlock_irqrestore(&pool->lock, flags);
983 }
984
985 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
986 {
987 struct bio *bio;
988 struct bio_list bios;
989
990 bio_list_init(&bios);
991 cell_release(pool, cell, &bios);
992
993 while ((bio = bio_list_pop(&bios)))
994 retry_on_resume(bio);
995 }
996
997 static void process_discard(struct thin_c *tc, struct bio *bio)
998 {
999 int r;
1000 unsigned long flags;
1001 struct pool *pool = tc->pool;
1002 struct dm_bio_prison_cell *cell, *cell2;
1003 struct dm_cell_key key, key2;
1004 dm_block_t block = get_bio_block(tc, bio);
1005 struct dm_thin_lookup_result lookup_result;
1006 struct dm_thin_new_mapping *m;
1007
1008 build_virtual_key(tc->td, block, &key);
1009 if (bio_detain(tc->pool, &key, bio, &cell))
1010 return;
1011
1012 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1013 switch (r) {
1014 case 0:
1015 /*
1016 * Check nobody is fiddling with this pool block. This can
1017 * happen if someone's in the process of breaking sharing
1018 * on this block.
1019 */
1020 build_data_key(tc->td, lookup_result.block, &key2);
1021 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1022 cell_defer_no_holder(tc, cell);
1023 break;
1024 }
1025
1026 if (io_overlaps_block(pool, bio)) {
1027 /*
1028 * IO may still be going to the destination block. We must
1029 * quiesce before we can do the removal.
1030 */
1031 m = get_next_mapping(pool);
1032 m->tc = tc;
1033 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1034 m->virt_block = block;
1035 m->data_block = lookup_result.block;
1036 m->cell = cell;
1037 m->cell2 = cell2;
1038 m->err = 0;
1039 m->bio = bio;
1040
1041 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1042 spin_lock_irqsave(&pool->lock, flags);
1043 list_add(&m->list, &pool->prepared_discards);
1044 spin_unlock_irqrestore(&pool->lock, flags);
1045 wake_worker(pool);
1046 }
1047 } else {
1048 inc_all_io_entry(pool, bio);
1049 cell_defer_no_holder(tc, cell);
1050 cell_defer_no_holder(tc, cell2);
1051
1052 /*
1053 * The DM core makes sure that the discard doesn't span
1054 * a block boundary. So we submit the discard of a
1055 * partial block appropriately.
1056 */
1057 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1058 remap_and_issue(tc, bio, lookup_result.block);
1059 else
1060 bio_endio(bio, 0);
1061 }
1062 break;
1063
1064 case -ENODATA:
1065 /*
1066 * It isn't provisioned, just forget it.
1067 */
1068 cell_defer_no_holder(tc, cell);
1069 bio_endio(bio, 0);
1070 break;
1071
1072 default:
1073 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1074 __func__, r);
1075 cell_defer_no_holder(tc, cell);
1076 bio_io_error(bio);
1077 break;
1078 }
1079 }
1080
1081 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1082 struct dm_cell_key *key,
1083 struct dm_thin_lookup_result *lookup_result,
1084 struct dm_bio_prison_cell *cell)
1085 {
1086 int r;
1087 dm_block_t data_block;
1088
1089 r = alloc_data_block(tc, &data_block);
1090 switch (r) {
1091 case 0:
1092 schedule_internal_copy(tc, block, lookup_result->block,
1093 data_block, cell, bio);
1094 break;
1095
1096 case -ENOSPC:
1097 no_space(tc->pool, cell);
1098 break;
1099
1100 default:
1101 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1102 __func__, r);
1103 cell_error(tc->pool, cell);
1104 break;
1105 }
1106 }
1107
1108 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1109 dm_block_t block,
1110 struct dm_thin_lookup_result *lookup_result)
1111 {
1112 struct dm_bio_prison_cell *cell;
1113 struct pool *pool = tc->pool;
1114 struct dm_cell_key key;
1115
1116 /*
1117 * If cell is already occupied, then sharing is already in the process
1118 * of being broken so we have nothing further to do here.
1119 */
1120 build_data_key(tc->td, lookup_result->block, &key);
1121 if (bio_detain(pool, &key, bio, &cell))
1122 return;
1123
1124 if (bio_data_dir(bio) == WRITE && bio->bi_size)
1125 break_sharing(tc, bio, block, &key, lookup_result, cell);
1126 else {
1127 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1128
1129 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1130 inc_all_io_entry(pool, bio);
1131 cell_defer_no_holder(tc, cell);
1132
1133 remap_and_issue(tc, bio, lookup_result->block);
1134 }
1135 }
1136
1137 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1138 struct dm_bio_prison_cell *cell)
1139 {
1140 int r;
1141 dm_block_t data_block;
1142 struct pool *pool = tc->pool;
1143
1144 /*
1145 * Remap empty bios (flushes) immediately, without provisioning.
1146 */
1147 if (!bio->bi_size) {
1148 inc_all_io_entry(pool, bio);
1149 cell_defer_no_holder(tc, cell);
1150
1151 remap_and_issue(tc, bio, 0);
1152 return;
1153 }
1154
1155 /*
1156 * Fill read bios with zeroes and complete them immediately.
1157 */
1158 if (bio_data_dir(bio) == READ) {
1159 zero_fill_bio(bio);
1160 cell_defer_no_holder(tc, cell);
1161 bio_endio(bio, 0);
1162 return;
1163 }
1164
1165 r = alloc_data_block(tc, &data_block);
1166 switch (r) {
1167 case 0:
1168 if (tc->origin_dev)
1169 schedule_external_copy(tc, block, data_block, cell, bio);
1170 else
1171 schedule_zero(tc, block, data_block, cell, bio);
1172 break;
1173
1174 case -ENOSPC:
1175 no_space(pool, cell);
1176 break;
1177
1178 default:
1179 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1180 __func__, r);
1181 set_pool_mode(pool, PM_READ_ONLY);
1182 cell_error(pool, cell);
1183 break;
1184 }
1185 }
1186
1187 static void process_bio(struct thin_c *tc, struct bio *bio)
1188 {
1189 int r;
1190 struct pool *pool = tc->pool;
1191 dm_block_t block = get_bio_block(tc, bio);
1192 struct dm_bio_prison_cell *cell;
1193 struct dm_cell_key key;
1194 struct dm_thin_lookup_result lookup_result;
1195
1196 /*
1197 * If cell is already occupied, then the block is already
1198 * being provisioned so we have nothing further to do here.
1199 */
1200 build_virtual_key(tc->td, block, &key);
1201 if (bio_detain(pool, &key, bio, &cell))
1202 return;
1203
1204 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1205 switch (r) {
1206 case 0:
1207 if (lookup_result.shared) {
1208 process_shared_bio(tc, bio, block, &lookup_result);
1209 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1210 } else {
1211 inc_all_io_entry(pool, bio);
1212 cell_defer_no_holder(tc, cell);
1213
1214 remap_and_issue(tc, bio, lookup_result.block);
1215 }
1216 break;
1217
1218 case -ENODATA:
1219 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1220 inc_all_io_entry(pool, bio);
1221 cell_defer_no_holder(tc, cell);
1222
1223 remap_to_origin_and_issue(tc, bio);
1224 } else
1225 provision_block(tc, bio, block, cell);
1226 break;
1227
1228 default:
1229 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1230 __func__, r);
1231 cell_defer_no_holder(tc, cell);
1232 bio_io_error(bio);
1233 break;
1234 }
1235 }
1236
1237 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1238 {
1239 int r;
1240 int rw = bio_data_dir(bio);
1241 dm_block_t block = get_bio_block(tc, bio);
1242 struct dm_thin_lookup_result lookup_result;
1243
1244 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1245 switch (r) {
1246 case 0:
1247 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1248 bio_io_error(bio);
1249 else {
1250 inc_all_io_entry(tc->pool, bio);
1251 remap_and_issue(tc, bio, lookup_result.block);
1252 }
1253 break;
1254
1255 case -ENODATA:
1256 if (rw != READ) {
1257 bio_io_error(bio);
1258 break;
1259 }
1260
1261 if (tc->origin_dev) {
1262 inc_all_io_entry(tc->pool, bio);
1263 remap_to_origin_and_issue(tc, bio);
1264 break;
1265 }
1266
1267 zero_fill_bio(bio);
1268 bio_endio(bio, 0);
1269 break;
1270
1271 default:
1272 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1273 __func__, r);
1274 bio_io_error(bio);
1275 break;
1276 }
1277 }
1278
1279 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1280 {
1281 bio_io_error(bio);
1282 }
1283
1284 static int need_commit_due_to_time(struct pool *pool)
1285 {
1286 return jiffies < pool->last_commit_jiffies ||
1287 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1288 }
1289
1290 static void process_deferred_bios(struct pool *pool)
1291 {
1292 unsigned long flags;
1293 struct bio *bio;
1294 struct bio_list bios;
1295
1296 bio_list_init(&bios);
1297
1298 spin_lock_irqsave(&pool->lock, flags);
1299 bio_list_merge(&bios, &pool->deferred_bios);
1300 bio_list_init(&pool->deferred_bios);
1301 spin_unlock_irqrestore(&pool->lock, flags);
1302
1303 while ((bio = bio_list_pop(&bios))) {
1304 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1305 struct thin_c *tc = h->tc;
1306
1307 /*
1308 * If we've got no free new_mapping structs, and processing
1309 * this bio might require one, we pause until there are some
1310 * prepared mappings to process.
1311 */
1312 if (ensure_next_mapping(pool)) {
1313 spin_lock_irqsave(&pool->lock, flags);
1314 bio_list_merge(&pool->deferred_bios, &bios);
1315 spin_unlock_irqrestore(&pool->lock, flags);
1316
1317 break;
1318 }
1319
1320 if (bio->bi_rw & REQ_DISCARD)
1321 pool->process_discard(tc, bio);
1322 else
1323 pool->process_bio(tc, bio);
1324 }
1325
1326 /*
1327 * If there are any deferred flush bios, we must commit
1328 * the metadata before issuing them.
1329 */
1330 bio_list_init(&bios);
1331 spin_lock_irqsave(&pool->lock, flags);
1332 bio_list_merge(&bios, &pool->deferred_flush_bios);
1333 bio_list_init(&pool->deferred_flush_bios);
1334 spin_unlock_irqrestore(&pool->lock, flags);
1335
1336 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1337 return;
1338
1339 if (commit_or_fallback(pool)) {
1340 while ((bio = bio_list_pop(&bios)))
1341 bio_io_error(bio);
1342 return;
1343 }
1344 pool->last_commit_jiffies = jiffies;
1345
1346 while ((bio = bio_list_pop(&bios)))
1347 generic_make_request(bio);
1348 }
1349
1350 static void do_worker(struct work_struct *ws)
1351 {
1352 struct pool *pool = container_of(ws, struct pool, worker);
1353
1354 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1355 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1356 process_deferred_bios(pool);
1357 }
1358
1359 /*
1360 * We want to commit periodically so that not too much
1361 * unwritten data builds up.
1362 */
1363 static void do_waker(struct work_struct *ws)
1364 {
1365 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1366 wake_worker(pool);
1367 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1368 }
1369
1370 /*----------------------------------------------------------------*/
1371
1372 static enum pool_mode get_pool_mode(struct pool *pool)
1373 {
1374 return pool->pf.mode;
1375 }
1376
1377 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1378 {
1379 int r;
1380
1381 pool->pf.mode = mode;
1382
1383 switch (mode) {
1384 case PM_FAIL:
1385 DMERR("switching pool to failure mode");
1386 pool->process_bio = process_bio_fail;
1387 pool->process_discard = process_bio_fail;
1388 pool->process_prepared_mapping = process_prepared_mapping_fail;
1389 pool->process_prepared_discard = process_prepared_discard_fail;
1390 break;
1391
1392 case PM_READ_ONLY:
1393 DMERR("switching pool to read-only mode");
1394 r = dm_pool_abort_metadata(pool->pmd);
1395 if (r) {
1396 DMERR("aborting transaction failed");
1397 set_pool_mode(pool, PM_FAIL);
1398 } else {
1399 dm_pool_metadata_read_only(pool->pmd);
1400 pool->process_bio = process_bio_read_only;
1401 pool->process_discard = process_discard;
1402 pool->process_prepared_mapping = process_prepared_mapping_fail;
1403 pool->process_prepared_discard = process_prepared_discard_passdown;
1404 }
1405 break;
1406
1407 case PM_WRITE:
1408 pool->process_bio = process_bio;
1409 pool->process_discard = process_discard;
1410 pool->process_prepared_mapping = process_prepared_mapping;
1411 pool->process_prepared_discard = process_prepared_discard;
1412 break;
1413 }
1414 }
1415
1416 /*----------------------------------------------------------------*/
1417
1418 /*
1419 * Mapping functions.
1420 */
1421
1422 /*
1423 * Called only while mapping a thin bio to hand it over to the workqueue.
1424 */
1425 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1426 {
1427 unsigned long flags;
1428 struct pool *pool = tc->pool;
1429
1430 spin_lock_irqsave(&pool->lock, flags);
1431 bio_list_add(&pool->deferred_bios, bio);
1432 spin_unlock_irqrestore(&pool->lock, flags);
1433
1434 wake_worker(pool);
1435 }
1436
1437 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1438 {
1439 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1440
1441 h->tc = tc;
1442 h->shared_read_entry = NULL;
1443 h->all_io_entry = NULL;
1444 h->overwrite_mapping = NULL;
1445 }
1446
1447 /*
1448 * Non-blocking function called from the thin target's map function.
1449 */
1450 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1451 {
1452 int r;
1453 struct thin_c *tc = ti->private;
1454 dm_block_t block = get_bio_block(tc, bio);
1455 struct dm_thin_device *td = tc->td;
1456 struct dm_thin_lookup_result result;
1457 struct dm_bio_prison_cell cell1, cell2;
1458 struct dm_bio_prison_cell *cell_result;
1459 struct dm_cell_key key;
1460
1461 thin_hook_bio(tc, bio);
1462
1463 if (get_pool_mode(tc->pool) == PM_FAIL) {
1464 bio_io_error(bio);
1465 return DM_MAPIO_SUBMITTED;
1466 }
1467
1468 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1469 thin_defer_bio(tc, bio);
1470 return DM_MAPIO_SUBMITTED;
1471 }
1472
1473 r = dm_thin_find_block(td, block, 0, &result);
1474
1475 /*
1476 * Note that we defer readahead too.
1477 */
1478 switch (r) {
1479 case 0:
1480 if (unlikely(result.shared)) {
1481 /*
1482 * We have a race condition here between the
1483 * result.shared value returned by the lookup and
1484 * snapshot creation, which may cause new
1485 * sharing.
1486 *
1487 * To avoid this always quiesce the origin before
1488 * taking the snap. You want to do this anyway to
1489 * ensure a consistent application view
1490 * (i.e. lockfs).
1491 *
1492 * More distant ancestors are irrelevant. The
1493 * shared flag will be set in their case.
1494 */
1495 thin_defer_bio(tc, bio);
1496 return DM_MAPIO_SUBMITTED;
1497 }
1498
1499 build_virtual_key(tc->td, block, &key);
1500 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1501 return DM_MAPIO_SUBMITTED;
1502
1503 build_data_key(tc->td, result.block, &key);
1504 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1505 cell_defer_no_holder_no_free(tc, &cell1);
1506 return DM_MAPIO_SUBMITTED;
1507 }
1508
1509 inc_all_io_entry(tc->pool, bio);
1510 cell_defer_no_holder_no_free(tc, &cell2);
1511 cell_defer_no_holder_no_free(tc, &cell1);
1512
1513 remap(tc, bio, result.block);
1514 return DM_MAPIO_REMAPPED;
1515
1516 case -ENODATA:
1517 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1518 /*
1519 * This block isn't provisioned, and we have no way
1520 * of doing so. Just error it.
1521 */
1522 bio_io_error(bio);
1523 return DM_MAPIO_SUBMITTED;
1524 }
1525 /* fall through */
1526
1527 case -EWOULDBLOCK:
1528 /*
1529 * In future, the failed dm_thin_find_block above could
1530 * provide the hint to load the metadata into cache.
1531 */
1532 thin_defer_bio(tc, bio);
1533 return DM_MAPIO_SUBMITTED;
1534
1535 default:
1536 /*
1537 * Must always call bio_io_error on failure.
1538 * dm_thin_find_block can fail with -EINVAL if the
1539 * pool is switched to fail-io mode.
1540 */
1541 bio_io_error(bio);
1542 return DM_MAPIO_SUBMITTED;
1543 }
1544 }
1545
1546 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1547 {
1548 int r;
1549 unsigned long flags;
1550 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1551
1552 spin_lock_irqsave(&pt->pool->lock, flags);
1553 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1554 spin_unlock_irqrestore(&pt->pool->lock, flags);
1555
1556 if (!r) {
1557 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1558 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1559 }
1560
1561 return r;
1562 }
1563
1564 static void __requeue_bios(struct pool *pool)
1565 {
1566 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1567 bio_list_init(&pool->retry_on_resume_list);
1568 }
1569
1570 /*----------------------------------------------------------------
1571 * Binding of control targets to a pool object
1572 *--------------------------------------------------------------*/
1573 static bool data_dev_supports_discard(struct pool_c *pt)
1574 {
1575 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1576
1577 return q && blk_queue_discard(q);
1578 }
1579
1580 static bool is_factor(sector_t block_size, uint32_t n)
1581 {
1582 return !sector_div(block_size, n);
1583 }
1584
1585 /*
1586 * If discard_passdown was enabled verify that the data device
1587 * supports discards. Disable discard_passdown if not.
1588 */
1589 static void disable_passdown_if_not_supported(struct pool_c *pt)
1590 {
1591 struct pool *pool = pt->pool;
1592 struct block_device *data_bdev = pt->data_dev->bdev;
1593 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1594 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1595 const char *reason = NULL;
1596 char buf[BDEVNAME_SIZE];
1597
1598 if (!pt->adjusted_pf.discard_passdown)
1599 return;
1600
1601 if (!data_dev_supports_discard(pt))
1602 reason = "discard unsupported";
1603
1604 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1605 reason = "max discard sectors smaller than a block";
1606
1607 else if (data_limits->discard_granularity > block_size)
1608 reason = "discard granularity larger than a block";
1609
1610 else if (!is_factor(block_size, data_limits->discard_granularity))
1611 reason = "discard granularity not a factor of block size";
1612
1613 if (reason) {
1614 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1615 pt->adjusted_pf.discard_passdown = false;
1616 }
1617 }
1618
1619 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1620 {
1621 struct pool_c *pt = ti->private;
1622
1623 /*
1624 * We want to make sure that degraded pools are never upgraded.
1625 */
1626 enum pool_mode old_mode = pool->pf.mode;
1627 enum pool_mode new_mode = pt->adjusted_pf.mode;
1628
1629 if (old_mode > new_mode)
1630 new_mode = old_mode;
1631
1632 pool->ti = ti;
1633 pool->low_water_blocks = pt->low_water_blocks;
1634 pool->pf = pt->adjusted_pf;
1635
1636 set_pool_mode(pool, new_mode);
1637
1638 return 0;
1639 }
1640
1641 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1642 {
1643 if (pool->ti == ti)
1644 pool->ti = NULL;
1645 }
1646
1647 /*----------------------------------------------------------------
1648 * Pool creation
1649 *--------------------------------------------------------------*/
1650 /* Initialize pool features. */
1651 static void pool_features_init(struct pool_features *pf)
1652 {
1653 pf->mode = PM_WRITE;
1654 pf->zero_new_blocks = true;
1655 pf->discard_enabled = true;
1656 pf->discard_passdown = true;
1657 }
1658
1659 static void __pool_destroy(struct pool *pool)
1660 {
1661 __pool_table_remove(pool);
1662
1663 if (dm_pool_metadata_close(pool->pmd) < 0)
1664 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1665
1666 dm_bio_prison_destroy(pool->prison);
1667 dm_kcopyd_client_destroy(pool->copier);
1668
1669 if (pool->wq)
1670 destroy_workqueue(pool->wq);
1671
1672 if (pool->next_mapping)
1673 mempool_free(pool->next_mapping, pool->mapping_pool);
1674 mempool_destroy(pool->mapping_pool);
1675 dm_deferred_set_destroy(pool->shared_read_ds);
1676 dm_deferred_set_destroy(pool->all_io_ds);
1677 kfree(pool);
1678 }
1679
1680 static struct kmem_cache *_new_mapping_cache;
1681
1682 static struct pool *pool_create(struct mapped_device *pool_md,
1683 struct block_device *metadata_dev,
1684 unsigned long block_size,
1685 int read_only, char **error)
1686 {
1687 int r;
1688 void *err_p;
1689 struct pool *pool;
1690 struct dm_pool_metadata *pmd;
1691 bool format_device = read_only ? false : true;
1692
1693 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1694 if (IS_ERR(pmd)) {
1695 *error = "Error creating metadata object";
1696 return (struct pool *)pmd;
1697 }
1698
1699 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1700 if (!pool) {
1701 *error = "Error allocating memory for pool";
1702 err_p = ERR_PTR(-ENOMEM);
1703 goto bad_pool;
1704 }
1705
1706 pool->pmd = pmd;
1707 pool->sectors_per_block = block_size;
1708 if (block_size & (block_size - 1))
1709 pool->sectors_per_block_shift = -1;
1710 else
1711 pool->sectors_per_block_shift = __ffs(block_size);
1712 pool->low_water_blocks = 0;
1713 pool_features_init(&pool->pf);
1714 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1715 if (!pool->prison) {
1716 *error = "Error creating pool's bio prison";
1717 err_p = ERR_PTR(-ENOMEM);
1718 goto bad_prison;
1719 }
1720
1721 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1722 if (IS_ERR(pool->copier)) {
1723 r = PTR_ERR(pool->copier);
1724 *error = "Error creating pool's kcopyd client";
1725 err_p = ERR_PTR(r);
1726 goto bad_kcopyd_client;
1727 }
1728
1729 /*
1730 * Create singlethreaded workqueue that will service all devices
1731 * that use this metadata.
1732 */
1733 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1734 if (!pool->wq) {
1735 *error = "Error creating pool's workqueue";
1736 err_p = ERR_PTR(-ENOMEM);
1737 goto bad_wq;
1738 }
1739
1740 INIT_WORK(&pool->worker, do_worker);
1741 INIT_DELAYED_WORK(&pool->waker, do_waker);
1742 spin_lock_init(&pool->lock);
1743 bio_list_init(&pool->deferred_bios);
1744 bio_list_init(&pool->deferred_flush_bios);
1745 INIT_LIST_HEAD(&pool->prepared_mappings);
1746 INIT_LIST_HEAD(&pool->prepared_discards);
1747 pool->low_water_triggered = 0;
1748 pool->no_free_space = 0;
1749 bio_list_init(&pool->retry_on_resume_list);
1750
1751 pool->shared_read_ds = dm_deferred_set_create();
1752 if (!pool->shared_read_ds) {
1753 *error = "Error creating pool's shared read deferred set";
1754 err_p = ERR_PTR(-ENOMEM);
1755 goto bad_shared_read_ds;
1756 }
1757
1758 pool->all_io_ds = dm_deferred_set_create();
1759 if (!pool->all_io_ds) {
1760 *error = "Error creating pool's all io deferred set";
1761 err_p = ERR_PTR(-ENOMEM);
1762 goto bad_all_io_ds;
1763 }
1764
1765 pool->next_mapping = NULL;
1766 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1767 _new_mapping_cache);
1768 if (!pool->mapping_pool) {
1769 *error = "Error creating pool's mapping mempool";
1770 err_p = ERR_PTR(-ENOMEM);
1771 goto bad_mapping_pool;
1772 }
1773
1774 pool->ref_count = 1;
1775 pool->last_commit_jiffies = jiffies;
1776 pool->pool_md = pool_md;
1777 pool->md_dev = metadata_dev;
1778 __pool_table_insert(pool);
1779
1780 return pool;
1781
1782 bad_mapping_pool:
1783 dm_deferred_set_destroy(pool->all_io_ds);
1784 bad_all_io_ds:
1785 dm_deferred_set_destroy(pool->shared_read_ds);
1786 bad_shared_read_ds:
1787 destroy_workqueue(pool->wq);
1788 bad_wq:
1789 dm_kcopyd_client_destroy(pool->copier);
1790 bad_kcopyd_client:
1791 dm_bio_prison_destroy(pool->prison);
1792 bad_prison:
1793 kfree(pool);
1794 bad_pool:
1795 if (dm_pool_metadata_close(pmd))
1796 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1797
1798 return err_p;
1799 }
1800
1801 static void __pool_inc(struct pool *pool)
1802 {
1803 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1804 pool->ref_count++;
1805 }
1806
1807 static void __pool_dec(struct pool *pool)
1808 {
1809 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1810 BUG_ON(!pool->ref_count);
1811 if (!--pool->ref_count)
1812 __pool_destroy(pool);
1813 }
1814
1815 static struct pool *__pool_find(struct mapped_device *pool_md,
1816 struct block_device *metadata_dev,
1817 unsigned long block_size, int read_only,
1818 char **error, int *created)
1819 {
1820 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1821
1822 if (pool) {
1823 if (pool->pool_md != pool_md) {
1824 *error = "metadata device already in use by a pool";
1825 return ERR_PTR(-EBUSY);
1826 }
1827 __pool_inc(pool);
1828
1829 } else {
1830 pool = __pool_table_lookup(pool_md);
1831 if (pool) {
1832 if (pool->md_dev != metadata_dev) {
1833 *error = "different pool cannot replace a pool";
1834 return ERR_PTR(-EINVAL);
1835 }
1836 __pool_inc(pool);
1837
1838 } else {
1839 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1840 *created = 1;
1841 }
1842 }
1843
1844 return pool;
1845 }
1846
1847 /*----------------------------------------------------------------
1848 * Pool target methods
1849 *--------------------------------------------------------------*/
1850 static void pool_dtr(struct dm_target *ti)
1851 {
1852 struct pool_c *pt = ti->private;
1853
1854 mutex_lock(&dm_thin_pool_table.mutex);
1855
1856 unbind_control_target(pt->pool, ti);
1857 __pool_dec(pt->pool);
1858 dm_put_device(ti, pt->metadata_dev);
1859 dm_put_device(ti, pt->data_dev);
1860 kfree(pt);
1861
1862 mutex_unlock(&dm_thin_pool_table.mutex);
1863 }
1864
1865 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1866 struct dm_target *ti)
1867 {
1868 int r;
1869 unsigned argc;
1870 const char *arg_name;
1871
1872 static struct dm_arg _args[] = {
1873 {0, 3, "Invalid number of pool feature arguments"},
1874 };
1875
1876 /*
1877 * No feature arguments supplied.
1878 */
1879 if (!as->argc)
1880 return 0;
1881
1882 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1883 if (r)
1884 return -EINVAL;
1885
1886 while (argc && !r) {
1887 arg_name = dm_shift_arg(as);
1888 argc--;
1889
1890 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1891 pf->zero_new_blocks = false;
1892
1893 else if (!strcasecmp(arg_name, "ignore_discard"))
1894 pf->discard_enabled = false;
1895
1896 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1897 pf->discard_passdown = false;
1898
1899 else if (!strcasecmp(arg_name, "read_only"))
1900 pf->mode = PM_READ_ONLY;
1901
1902 else {
1903 ti->error = "Unrecognised pool feature requested";
1904 r = -EINVAL;
1905 break;
1906 }
1907 }
1908
1909 return r;
1910 }
1911
1912 /*
1913 * thin-pool <metadata dev> <data dev>
1914 * <data block size (sectors)>
1915 * <low water mark (blocks)>
1916 * [<#feature args> [<arg>]*]
1917 *
1918 * Optional feature arguments are:
1919 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1920 * ignore_discard: disable discard
1921 * no_discard_passdown: don't pass discards down to the data device
1922 */
1923 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1924 {
1925 int r, pool_created = 0;
1926 struct pool_c *pt;
1927 struct pool *pool;
1928 struct pool_features pf;
1929 struct dm_arg_set as;
1930 struct dm_dev *data_dev;
1931 unsigned long block_size;
1932 dm_block_t low_water_blocks;
1933 struct dm_dev *metadata_dev;
1934 sector_t metadata_dev_size;
1935 char b[BDEVNAME_SIZE];
1936
1937 /*
1938 * FIXME Remove validation from scope of lock.
1939 */
1940 mutex_lock(&dm_thin_pool_table.mutex);
1941
1942 if (argc < 4) {
1943 ti->error = "Invalid argument count";
1944 r = -EINVAL;
1945 goto out_unlock;
1946 }
1947 as.argc = argc;
1948 as.argv = argv;
1949
1950 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1951 if (r) {
1952 ti->error = "Error opening metadata block device";
1953 goto out_unlock;
1954 }
1955
1956 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1957 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1958 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1959 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1960
1961 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1962 if (r) {
1963 ti->error = "Error getting data device";
1964 goto out_metadata;
1965 }
1966
1967 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1968 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1969 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1970 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1971 ti->error = "Invalid block size";
1972 r = -EINVAL;
1973 goto out;
1974 }
1975
1976 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1977 ti->error = "Invalid low water mark";
1978 r = -EINVAL;
1979 goto out;
1980 }
1981
1982 /*
1983 * Set default pool features.
1984 */
1985 pool_features_init(&pf);
1986
1987 dm_consume_args(&as, 4);
1988 r = parse_pool_features(&as, &pf, ti);
1989 if (r)
1990 goto out;
1991
1992 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1993 if (!pt) {
1994 r = -ENOMEM;
1995 goto out;
1996 }
1997
1998 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1999 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2000 if (IS_ERR(pool)) {
2001 r = PTR_ERR(pool);
2002 goto out_free_pt;
2003 }
2004
2005 /*
2006 * 'pool_created' reflects whether this is the first table load.
2007 * Top level discard support is not allowed to be changed after
2008 * initial load. This would require a pool reload to trigger thin
2009 * device changes.
2010 */
2011 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2012 ti->error = "Discard support cannot be disabled once enabled";
2013 r = -EINVAL;
2014 goto out_flags_changed;
2015 }
2016
2017 pt->pool = pool;
2018 pt->ti = ti;
2019 pt->metadata_dev = metadata_dev;
2020 pt->data_dev = data_dev;
2021 pt->low_water_blocks = low_water_blocks;
2022 pt->adjusted_pf = pt->requested_pf = pf;
2023 ti->num_flush_bios = 1;
2024
2025 /*
2026 * Only need to enable discards if the pool should pass
2027 * them down to the data device. The thin device's discard
2028 * processing will cause mappings to be removed from the btree.
2029 */
2030 if (pf.discard_enabled && pf.discard_passdown) {
2031 ti->num_discard_bios = 1;
2032
2033 /*
2034 * Setting 'discards_supported' circumvents the normal
2035 * stacking of discard limits (this keeps the pool and
2036 * thin devices' discard limits consistent).
2037 */
2038 ti->discards_supported = true;
2039 ti->discard_zeroes_data_unsupported = true;
2040 }
2041 ti->private = pt;
2042
2043 pt->callbacks.congested_fn = pool_is_congested;
2044 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2045
2046 mutex_unlock(&dm_thin_pool_table.mutex);
2047
2048 return 0;
2049
2050 out_flags_changed:
2051 __pool_dec(pool);
2052 out_free_pt:
2053 kfree(pt);
2054 out:
2055 dm_put_device(ti, data_dev);
2056 out_metadata:
2057 dm_put_device(ti, metadata_dev);
2058 out_unlock:
2059 mutex_unlock(&dm_thin_pool_table.mutex);
2060
2061 return r;
2062 }
2063
2064 static int pool_map(struct dm_target *ti, struct bio *bio)
2065 {
2066 int r;
2067 struct pool_c *pt = ti->private;
2068 struct pool *pool = pt->pool;
2069 unsigned long flags;
2070
2071 /*
2072 * As this is a singleton target, ti->begin is always zero.
2073 */
2074 spin_lock_irqsave(&pool->lock, flags);
2075 bio->bi_bdev = pt->data_dev->bdev;
2076 r = DM_MAPIO_REMAPPED;
2077 spin_unlock_irqrestore(&pool->lock, flags);
2078
2079 return r;
2080 }
2081
2082 /*
2083 * Retrieves the number of blocks of the data device from
2084 * the superblock and compares it to the actual device size,
2085 * thus resizing the data device in case it has grown.
2086 *
2087 * This both copes with opening preallocated data devices in the ctr
2088 * being followed by a resume
2089 * -and-
2090 * calling the resume method individually after userspace has
2091 * grown the data device in reaction to a table event.
2092 */
2093 static int pool_preresume(struct dm_target *ti)
2094 {
2095 int r;
2096 struct pool_c *pt = ti->private;
2097 struct pool *pool = pt->pool;
2098 sector_t data_size = ti->len;
2099 dm_block_t sb_data_size;
2100
2101 /*
2102 * Take control of the pool object.
2103 */
2104 r = bind_control_target(pool, ti);
2105 if (r)
2106 return r;
2107
2108 (void) sector_div(data_size, pool->sectors_per_block);
2109
2110 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2111 if (r) {
2112 DMERR("failed to retrieve data device size");
2113 return r;
2114 }
2115
2116 if (data_size < sb_data_size) {
2117 DMERR("pool target too small, is %llu blocks (expected %llu)",
2118 (unsigned long long)data_size, sb_data_size);
2119 return -EINVAL;
2120
2121 } else if (data_size > sb_data_size) {
2122 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2123 if (r) {
2124 DMERR("failed to resize data device");
2125 /* FIXME Stricter than necessary: Rollback transaction instead here */
2126 set_pool_mode(pool, PM_READ_ONLY);
2127 return r;
2128 }
2129
2130 (void) commit_or_fallback(pool);
2131 }
2132
2133 return 0;
2134 }
2135
2136 static void pool_resume(struct dm_target *ti)
2137 {
2138 struct pool_c *pt = ti->private;
2139 struct pool *pool = pt->pool;
2140 unsigned long flags;
2141
2142 spin_lock_irqsave(&pool->lock, flags);
2143 pool->low_water_triggered = 0;
2144 pool->no_free_space = 0;
2145 __requeue_bios(pool);
2146 spin_unlock_irqrestore(&pool->lock, flags);
2147
2148 do_waker(&pool->waker.work);
2149 }
2150
2151 static void pool_postsuspend(struct dm_target *ti)
2152 {
2153 struct pool_c *pt = ti->private;
2154 struct pool *pool = pt->pool;
2155
2156 cancel_delayed_work(&pool->waker);
2157 flush_workqueue(pool->wq);
2158 (void) commit_or_fallback(pool);
2159 }
2160
2161 static int check_arg_count(unsigned argc, unsigned args_required)
2162 {
2163 if (argc != args_required) {
2164 DMWARN("Message received with %u arguments instead of %u.",
2165 argc, args_required);
2166 return -EINVAL;
2167 }
2168
2169 return 0;
2170 }
2171
2172 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2173 {
2174 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2175 *dev_id <= MAX_DEV_ID)
2176 return 0;
2177
2178 if (warning)
2179 DMWARN("Message received with invalid device id: %s", arg);
2180
2181 return -EINVAL;
2182 }
2183
2184 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2185 {
2186 dm_thin_id dev_id;
2187 int r;
2188
2189 r = check_arg_count(argc, 2);
2190 if (r)
2191 return r;
2192
2193 r = read_dev_id(argv[1], &dev_id, 1);
2194 if (r)
2195 return r;
2196
2197 r = dm_pool_create_thin(pool->pmd, dev_id);
2198 if (r) {
2199 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2200 argv[1]);
2201 return r;
2202 }
2203
2204 return 0;
2205 }
2206
2207 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2208 {
2209 dm_thin_id dev_id;
2210 dm_thin_id origin_dev_id;
2211 int r;
2212
2213 r = check_arg_count(argc, 3);
2214 if (r)
2215 return r;
2216
2217 r = read_dev_id(argv[1], &dev_id, 1);
2218 if (r)
2219 return r;
2220
2221 r = read_dev_id(argv[2], &origin_dev_id, 1);
2222 if (r)
2223 return r;
2224
2225 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2226 if (r) {
2227 DMWARN("Creation of new snapshot %s of device %s failed.",
2228 argv[1], argv[2]);
2229 return r;
2230 }
2231
2232 return 0;
2233 }
2234
2235 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2236 {
2237 dm_thin_id dev_id;
2238 int r;
2239
2240 r = check_arg_count(argc, 2);
2241 if (r)
2242 return r;
2243
2244 r = read_dev_id(argv[1], &dev_id, 1);
2245 if (r)
2246 return r;
2247
2248 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2249 if (r)
2250 DMWARN("Deletion of thin device %s failed.", argv[1]);
2251
2252 return r;
2253 }
2254
2255 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2256 {
2257 dm_thin_id old_id, new_id;
2258 int r;
2259
2260 r = check_arg_count(argc, 3);
2261 if (r)
2262 return r;
2263
2264 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2265 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2266 return -EINVAL;
2267 }
2268
2269 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2270 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2271 return -EINVAL;
2272 }
2273
2274 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2275 if (r) {
2276 DMWARN("Failed to change transaction id from %s to %s.",
2277 argv[1], argv[2]);
2278 return r;
2279 }
2280
2281 return 0;
2282 }
2283
2284 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2285 {
2286 int r;
2287
2288 r = check_arg_count(argc, 1);
2289 if (r)
2290 return r;
2291
2292 (void) commit_or_fallback(pool);
2293
2294 r = dm_pool_reserve_metadata_snap(pool->pmd);
2295 if (r)
2296 DMWARN("reserve_metadata_snap message failed.");
2297
2298 return r;
2299 }
2300
2301 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2302 {
2303 int r;
2304
2305 r = check_arg_count(argc, 1);
2306 if (r)
2307 return r;
2308
2309 r = dm_pool_release_metadata_snap(pool->pmd);
2310 if (r)
2311 DMWARN("release_metadata_snap message failed.");
2312
2313 return r;
2314 }
2315
2316 /*
2317 * Messages supported:
2318 * create_thin <dev_id>
2319 * create_snap <dev_id> <origin_id>
2320 * delete <dev_id>
2321 * trim <dev_id> <new_size_in_sectors>
2322 * set_transaction_id <current_trans_id> <new_trans_id>
2323 * reserve_metadata_snap
2324 * release_metadata_snap
2325 */
2326 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2327 {
2328 int r = -EINVAL;
2329 struct pool_c *pt = ti->private;
2330 struct pool *pool = pt->pool;
2331
2332 if (!strcasecmp(argv[0], "create_thin"))
2333 r = process_create_thin_mesg(argc, argv, pool);
2334
2335 else if (!strcasecmp(argv[0], "create_snap"))
2336 r = process_create_snap_mesg(argc, argv, pool);
2337
2338 else if (!strcasecmp(argv[0], "delete"))
2339 r = process_delete_mesg(argc, argv, pool);
2340
2341 else if (!strcasecmp(argv[0], "set_transaction_id"))
2342 r = process_set_transaction_id_mesg(argc, argv, pool);
2343
2344 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2345 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2346
2347 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2348 r = process_release_metadata_snap_mesg(argc, argv, pool);
2349
2350 else
2351 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2352
2353 if (!r)
2354 (void) commit_or_fallback(pool);
2355
2356 return r;
2357 }
2358
2359 static void emit_flags(struct pool_features *pf, char *result,
2360 unsigned sz, unsigned maxlen)
2361 {
2362 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2363 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2364 DMEMIT("%u ", count);
2365
2366 if (!pf->zero_new_blocks)
2367 DMEMIT("skip_block_zeroing ");
2368
2369 if (!pf->discard_enabled)
2370 DMEMIT("ignore_discard ");
2371
2372 if (!pf->discard_passdown)
2373 DMEMIT("no_discard_passdown ");
2374
2375 if (pf->mode == PM_READ_ONLY)
2376 DMEMIT("read_only ");
2377 }
2378
2379 /*
2380 * Status line is:
2381 * <transaction id> <used metadata sectors>/<total metadata sectors>
2382 * <used data sectors>/<total data sectors> <held metadata root>
2383 */
2384 static void pool_status(struct dm_target *ti, status_type_t type,
2385 unsigned status_flags, char *result, unsigned maxlen)
2386 {
2387 int r;
2388 unsigned sz = 0;
2389 uint64_t transaction_id;
2390 dm_block_t nr_free_blocks_data;
2391 dm_block_t nr_free_blocks_metadata;
2392 dm_block_t nr_blocks_data;
2393 dm_block_t nr_blocks_metadata;
2394 dm_block_t held_root;
2395 char buf[BDEVNAME_SIZE];
2396 char buf2[BDEVNAME_SIZE];
2397 struct pool_c *pt = ti->private;
2398 struct pool *pool = pt->pool;
2399
2400 switch (type) {
2401 case STATUSTYPE_INFO:
2402 if (get_pool_mode(pool) == PM_FAIL) {
2403 DMEMIT("Fail");
2404 break;
2405 }
2406
2407 /* Commit to ensure statistics aren't out-of-date */
2408 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2409 (void) commit_or_fallback(pool);
2410
2411 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2412 if (r) {
2413 DMERR("dm_pool_get_metadata_transaction_id returned %d", r);
2414 goto err;
2415 }
2416
2417 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2418 if (r) {
2419 DMERR("dm_pool_get_free_metadata_block_count returned %d", r);
2420 goto err;
2421 }
2422
2423 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2424 if (r) {
2425 DMERR("dm_pool_get_metadata_dev_size returned %d", r);
2426 goto err;
2427 }
2428
2429 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2430 if (r) {
2431 DMERR("dm_pool_get_free_block_count returned %d", r);
2432 goto err;
2433 }
2434
2435 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2436 if (r) {
2437 DMERR("dm_pool_get_data_dev_size returned %d", r);
2438 goto err;
2439 }
2440
2441 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2442 if (r) {
2443 DMERR("dm_pool_get_metadata_snap returned %d", r);
2444 goto err;
2445 }
2446
2447 DMEMIT("%llu %llu/%llu %llu/%llu ",
2448 (unsigned long long)transaction_id,
2449 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2450 (unsigned long long)nr_blocks_metadata,
2451 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2452 (unsigned long long)nr_blocks_data);
2453
2454 if (held_root)
2455 DMEMIT("%llu ", held_root);
2456 else
2457 DMEMIT("- ");
2458
2459 if (pool->pf.mode == PM_READ_ONLY)
2460 DMEMIT("ro ");
2461 else
2462 DMEMIT("rw ");
2463
2464 if (!pool->pf.discard_enabled)
2465 DMEMIT("ignore_discard");
2466 else if (pool->pf.discard_passdown)
2467 DMEMIT("discard_passdown");
2468 else
2469 DMEMIT("no_discard_passdown");
2470
2471 break;
2472
2473 case STATUSTYPE_TABLE:
2474 DMEMIT("%s %s %lu %llu ",
2475 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2476 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2477 (unsigned long)pool->sectors_per_block,
2478 (unsigned long long)pt->low_water_blocks);
2479 emit_flags(&pt->requested_pf, result, sz, maxlen);
2480 break;
2481 }
2482 return;
2483
2484 err:
2485 DMEMIT("Error");
2486 }
2487
2488 static int pool_iterate_devices(struct dm_target *ti,
2489 iterate_devices_callout_fn fn, void *data)
2490 {
2491 struct pool_c *pt = ti->private;
2492
2493 return fn(ti, pt->data_dev, 0, ti->len, data);
2494 }
2495
2496 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2497 struct bio_vec *biovec, int max_size)
2498 {
2499 struct pool_c *pt = ti->private;
2500 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2501
2502 if (!q->merge_bvec_fn)
2503 return max_size;
2504
2505 bvm->bi_bdev = pt->data_dev->bdev;
2506
2507 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2508 }
2509
2510 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2511 {
2512 struct pool *pool = pt->pool;
2513 struct queue_limits *data_limits;
2514
2515 limits->max_discard_sectors = pool->sectors_per_block;
2516
2517 /*
2518 * discard_granularity is just a hint, and not enforced.
2519 */
2520 if (pt->adjusted_pf.discard_passdown) {
2521 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2522 limits->discard_granularity = data_limits->discard_granularity;
2523 } else
2524 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2525 }
2526
2527 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2528 {
2529 struct pool_c *pt = ti->private;
2530 struct pool *pool = pt->pool;
2531
2532 blk_limits_io_min(limits, 0);
2533 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2534
2535 /*
2536 * pt->adjusted_pf is a staging area for the actual features to use.
2537 * They get transferred to the live pool in bind_control_target()
2538 * called from pool_preresume().
2539 */
2540 if (!pt->adjusted_pf.discard_enabled)
2541 return;
2542
2543 disable_passdown_if_not_supported(pt);
2544
2545 set_discard_limits(pt, limits);
2546 }
2547
2548 static struct target_type pool_target = {
2549 .name = "thin-pool",
2550 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2551 DM_TARGET_IMMUTABLE,
2552 .version = {1, 7, 0},
2553 .module = THIS_MODULE,
2554 .ctr = pool_ctr,
2555 .dtr = pool_dtr,
2556 .map = pool_map,
2557 .postsuspend = pool_postsuspend,
2558 .preresume = pool_preresume,
2559 .resume = pool_resume,
2560 .message = pool_message,
2561 .status = pool_status,
2562 .merge = pool_merge,
2563 .iterate_devices = pool_iterate_devices,
2564 .io_hints = pool_io_hints,
2565 };
2566
2567 /*----------------------------------------------------------------
2568 * Thin target methods
2569 *--------------------------------------------------------------*/
2570 static void thin_dtr(struct dm_target *ti)
2571 {
2572 struct thin_c *tc = ti->private;
2573
2574 mutex_lock(&dm_thin_pool_table.mutex);
2575
2576 __pool_dec(tc->pool);
2577 dm_pool_close_thin_device(tc->td);
2578 dm_put_device(ti, tc->pool_dev);
2579 if (tc->origin_dev)
2580 dm_put_device(ti, tc->origin_dev);
2581 kfree(tc);
2582
2583 mutex_unlock(&dm_thin_pool_table.mutex);
2584 }
2585
2586 /*
2587 * Thin target parameters:
2588 *
2589 * <pool_dev> <dev_id> [origin_dev]
2590 *
2591 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2592 * dev_id: the internal device identifier
2593 * origin_dev: a device external to the pool that should act as the origin
2594 *
2595 * If the pool device has discards disabled, they get disabled for the thin
2596 * device as well.
2597 */
2598 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2599 {
2600 int r;
2601 struct thin_c *tc;
2602 struct dm_dev *pool_dev, *origin_dev;
2603 struct mapped_device *pool_md;
2604
2605 mutex_lock(&dm_thin_pool_table.mutex);
2606
2607 if (argc != 2 && argc != 3) {
2608 ti->error = "Invalid argument count";
2609 r = -EINVAL;
2610 goto out_unlock;
2611 }
2612
2613 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2614 if (!tc) {
2615 ti->error = "Out of memory";
2616 r = -ENOMEM;
2617 goto out_unlock;
2618 }
2619
2620 if (argc == 3) {
2621 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2622 if (r) {
2623 ti->error = "Error opening origin device";
2624 goto bad_origin_dev;
2625 }
2626 tc->origin_dev = origin_dev;
2627 }
2628
2629 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2630 if (r) {
2631 ti->error = "Error opening pool device";
2632 goto bad_pool_dev;
2633 }
2634 tc->pool_dev = pool_dev;
2635
2636 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2637 ti->error = "Invalid device id";
2638 r = -EINVAL;
2639 goto bad_common;
2640 }
2641
2642 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2643 if (!pool_md) {
2644 ti->error = "Couldn't get pool mapped device";
2645 r = -EINVAL;
2646 goto bad_common;
2647 }
2648
2649 tc->pool = __pool_table_lookup(pool_md);
2650 if (!tc->pool) {
2651 ti->error = "Couldn't find pool object";
2652 r = -EINVAL;
2653 goto bad_pool_lookup;
2654 }
2655 __pool_inc(tc->pool);
2656
2657 if (get_pool_mode(tc->pool) == PM_FAIL) {
2658 ti->error = "Couldn't open thin device, Pool is in fail mode";
2659 goto bad_thin_open;
2660 }
2661
2662 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2663 if (r) {
2664 ti->error = "Couldn't open thin internal device";
2665 goto bad_thin_open;
2666 }
2667
2668 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2669 if (r)
2670 goto bad_thin_open;
2671
2672 ti->num_flush_bios = 1;
2673 ti->flush_supported = true;
2674 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2675
2676 /* In case the pool supports discards, pass them on. */
2677 if (tc->pool->pf.discard_enabled) {
2678 ti->discards_supported = true;
2679 ti->num_discard_bios = 1;
2680 ti->discard_zeroes_data_unsupported = true;
2681 /* Discard bios must be split on a block boundary */
2682 ti->split_discard_bios = true;
2683 }
2684
2685 dm_put(pool_md);
2686
2687 mutex_unlock(&dm_thin_pool_table.mutex);
2688
2689 return 0;
2690
2691 bad_thin_open:
2692 __pool_dec(tc->pool);
2693 bad_pool_lookup:
2694 dm_put(pool_md);
2695 bad_common:
2696 dm_put_device(ti, tc->pool_dev);
2697 bad_pool_dev:
2698 if (tc->origin_dev)
2699 dm_put_device(ti, tc->origin_dev);
2700 bad_origin_dev:
2701 kfree(tc);
2702 out_unlock:
2703 mutex_unlock(&dm_thin_pool_table.mutex);
2704
2705 return r;
2706 }
2707
2708 static int thin_map(struct dm_target *ti, struct bio *bio)
2709 {
2710 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2711
2712 return thin_bio_map(ti, bio);
2713 }
2714
2715 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2716 {
2717 unsigned long flags;
2718 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2719 struct list_head work;
2720 struct dm_thin_new_mapping *m, *tmp;
2721 struct pool *pool = h->tc->pool;
2722
2723 if (h->shared_read_entry) {
2724 INIT_LIST_HEAD(&work);
2725 dm_deferred_entry_dec(h->shared_read_entry, &work);
2726
2727 spin_lock_irqsave(&pool->lock, flags);
2728 list_for_each_entry_safe(m, tmp, &work, list) {
2729 list_del(&m->list);
2730 m->quiesced = 1;
2731 __maybe_add_mapping(m);
2732 }
2733 spin_unlock_irqrestore(&pool->lock, flags);
2734 }
2735
2736 if (h->all_io_entry) {
2737 INIT_LIST_HEAD(&work);
2738 dm_deferred_entry_dec(h->all_io_entry, &work);
2739 if (!list_empty(&work)) {
2740 spin_lock_irqsave(&pool->lock, flags);
2741 list_for_each_entry_safe(m, tmp, &work, list)
2742 list_add(&m->list, &pool->prepared_discards);
2743 spin_unlock_irqrestore(&pool->lock, flags);
2744 wake_worker(pool);
2745 }
2746 }
2747
2748 return 0;
2749 }
2750
2751 static void thin_postsuspend(struct dm_target *ti)
2752 {
2753 if (dm_noflush_suspending(ti))
2754 requeue_io((struct thin_c *)ti->private);
2755 }
2756
2757 /*
2758 * <nr mapped sectors> <highest mapped sector>
2759 */
2760 static void thin_status(struct dm_target *ti, status_type_t type,
2761 unsigned status_flags, char *result, unsigned maxlen)
2762 {
2763 int r;
2764 ssize_t sz = 0;
2765 dm_block_t mapped, highest;
2766 char buf[BDEVNAME_SIZE];
2767 struct thin_c *tc = ti->private;
2768
2769 if (get_pool_mode(tc->pool) == PM_FAIL) {
2770 DMEMIT("Fail");
2771 return;
2772 }
2773
2774 if (!tc->td)
2775 DMEMIT("-");
2776 else {
2777 switch (type) {
2778 case STATUSTYPE_INFO:
2779 r = dm_thin_get_mapped_count(tc->td, &mapped);
2780 if (r) {
2781 DMERR("dm_thin_get_mapped_count returned %d", r);
2782 goto err;
2783 }
2784
2785 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2786 if (r < 0) {
2787 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2788 goto err;
2789 }
2790
2791 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2792 if (r)
2793 DMEMIT("%llu", ((highest + 1) *
2794 tc->pool->sectors_per_block) - 1);
2795 else
2796 DMEMIT("-");
2797 break;
2798
2799 case STATUSTYPE_TABLE:
2800 DMEMIT("%s %lu",
2801 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2802 (unsigned long) tc->dev_id);
2803 if (tc->origin_dev)
2804 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2805 break;
2806 }
2807 }
2808
2809 return;
2810
2811 err:
2812 DMEMIT("Error");
2813 }
2814
2815 static int thin_iterate_devices(struct dm_target *ti,
2816 iterate_devices_callout_fn fn, void *data)
2817 {
2818 sector_t blocks;
2819 struct thin_c *tc = ti->private;
2820 struct pool *pool = tc->pool;
2821
2822 /*
2823 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2824 * we follow a more convoluted path through to the pool's target.
2825 */
2826 if (!pool->ti)
2827 return 0; /* nothing is bound */
2828
2829 blocks = pool->ti->len;
2830 (void) sector_div(blocks, pool->sectors_per_block);
2831 if (blocks)
2832 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2833
2834 return 0;
2835 }
2836
2837 static struct target_type thin_target = {
2838 .name = "thin",
2839 .version = {1, 8, 0},
2840 .module = THIS_MODULE,
2841 .ctr = thin_ctr,
2842 .dtr = thin_dtr,
2843 .map = thin_map,
2844 .end_io = thin_endio,
2845 .postsuspend = thin_postsuspend,
2846 .status = thin_status,
2847 .iterate_devices = thin_iterate_devices,
2848 };
2849
2850 /*----------------------------------------------------------------*/
2851
2852 static int __init dm_thin_init(void)
2853 {
2854 int r;
2855
2856 pool_table_init();
2857
2858 r = dm_register_target(&thin_target);
2859 if (r)
2860 return r;
2861
2862 r = dm_register_target(&pool_target);
2863 if (r)
2864 goto bad_pool_target;
2865
2866 r = -ENOMEM;
2867
2868 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2869 if (!_new_mapping_cache)
2870 goto bad_new_mapping_cache;
2871
2872 return 0;
2873
2874 bad_new_mapping_cache:
2875 dm_unregister_target(&pool_target);
2876 bad_pool_target:
2877 dm_unregister_target(&thin_target);
2878
2879 return r;
2880 }
2881
2882 static void dm_thin_exit(void)
2883 {
2884 dm_unregister_target(&thin_target);
2885 dm_unregister_target(&pool_target);
2886
2887 kmem_cache_destroy(_new_mapping_cache);
2888 }
2889
2890 module_init(dm_thin_init);
2891 module_exit(dm_thin_exit);
2892
2893 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2894 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2895 MODULE_LICENSE("GPL");