Merge branch 'for-next' of git://git.samba.org/sfrench/cifs-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm.h"
9
10 #include <linux/device-mapper.h>
11 #include <linux/dm-io.h>
12 #include <linux/dm-kcopyd.h>
13 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17
18 #define DM_MSG_PREFIX "thin"
19
20 /*
21 * Tunable constants
22 */
23 #define ENDIO_HOOK_POOL_SIZE 1024
24 #define DEFERRED_SET_SIZE 64
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 /*
30 * The block size of the device holding pool data must be
31 * between 64KB and 1GB.
32 */
33 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
34 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
35
36 /*
37 * Device id is restricted to 24 bits.
38 */
39 #define MAX_DEV_ID ((1 << 24) - 1)
40
41 /*
42 * How do we handle breaking sharing of data blocks?
43 * =================================================
44 *
45 * We use a standard copy-on-write btree to store the mappings for the
46 * devices (note I'm talking about copy-on-write of the metadata here, not
47 * the data). When you take an internal snapshot you clone the root node
48 * of the origin btree. After this there is no concept of an origin or a
49 * snapshot. They are just two device trees that happen to point to the
50 * same data blocks.
51 *
52 * When we get a write in we decide if it's to a shared data block using
53 * some timestamp magic. If it is, we have to break sharing.
54 *
55 * Let's say we write to a shared block in what was the origin. The
56 * steps are:
57 *
58 * i) plug io further to this physical block. (see bio_prison code).
59 *
60 * ii) quiesce any read io to that shared data block. Obviously
61 * including all devices that share this block. (see deferred_set code)
62 *
63 * iii) copy the data block to a newly allocate block. This step can be
64 * missed out if the io covers the block. (schedule_copy).
65 *
66 * iv) insert the new mapping into the origin's btree
67 * (process_prepared_mapping). This act of inserting breaks some
68 * sharing of btree nodes between the two devices. Breaking sharing only
69 * effects the btree of that specific device. Btrees for the other
70 * devices that share the block never change. The btree for the origin
71 * device as it was after the last commit is untouched, ie. we're using
72 * persistent data structures in the functional programming sense.
73 *
74 * v) unplug io to this physical block, including the io that triggered
75 * the breaking of sharing.
76 *
77 * Steps (ii) and (iii) occur in parallel.
78 *
79 * The metadata _doesn't_ need to be committed before the io continues. We
80 * get away with this because the io is always written to a _new_ block.
81 * If there's a crash, then:
82 *
83 * - The origin mapping will point to the old origin block (the shared
84 * one). This will contain the data as it was before the io that triggered
85 * the breaking of sharing came in.
86 *
87 * - The snap mapping still points to the old block. As it would after
88 * the commit.
89 *
90 * The downside of this scheme is the timestamp magic isn't perfect, and
91 * will continue to think that data block in the snapshot device is shared
92 * even after the write to the origin has broken sharing. I suspect data
93 * blocks will typically be shared by many different devices, so we're
94 * breaking sharing n + 1 times, rather than n, where n is the number of
95 * devices that reference this data block. At the moment I think the
96 * benefits far, far outweigh the disadvantages.
97 */
98
99 /*----------------------------------------------------------------*/
100
101 /*
102 * Sometimes we can't deal with a bio straight away. We put them in prison
103 * where they can't cause any mischief. Bios are put in a cell identified
104 * by a key, multiple bios can be in the same cell. When the cell is
105 * subsequently unlocked the bios become available.
106 */
107 struct bio_prison;
108
109 struct cell_key {
110 int virtual;
111 dm_thin_id dev;
112 dm_block_t block;
113 };
114
115 struct dm_bio_prison_cell {
116 struct hlist_node list;
117 struct bio_prison *prison;
118 struct cell_key key;
119 struct bio *holder;
120 struct bio_list bios;
121 };
122
123 struct bio_prison {
124 spinlock_t lock;
125 mempool_t *cell_pool;
126
127 unsigned nr_buckets;
128 unsigned hash_mask;
129 struct hlist_head *cells;
130 };
131
132 static uint32_t calc_nr_buckets(unsigned nr_cells)
133 {
134 uint32_t n = 128;
135
136 nr_cells /= 4;
137 nr_cells = min(nr_cells, 8192u);
138
139 while (n < nr_cells)
140 n <<= 1;
141
142 return n;
143 }
144
145 static struct kmem_cache *_cell_cache;
146
147 /*
148 * @nr_cells should be the number of cells you want in use _concurrently_.
149 * Don't confuse it with the number of distinct keys.
150 */
151 static struct bio_prison *prison_create(unsigned nr_cells)
152 {
153 unsigned i;
154 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
155 size_t len = sizeof(struct bio_prison) +
156 (sizeof(struct hlist_head) * nr_buckets);
157 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
158
159 if (!prison)
160 return NULL;
161
162 spin_lock_init(&prison->lock);
163 prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
164 if (!prison->cell_pool) {
165 kfree(prison);
166 return NULL;
167 }
168
169 prison->nr_buckets = nr_buckets;
170 prison->hash_mask = nr_buckets - 1;
171 prison->cells = (struct hlist_head *) (prison + 1);
172 for (i = 0; i < nr_buckets; i++)
173 INIT_HLIST_HEAD(prison->cells + i);
174
175 return prison;
176 }
177
178 static void prison_destroy(struct bio_prison *prison)
179 {
180 mempool_destroy(prison->cell_pool);
181 kfree(prison);
182 }
183
184 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
185 {
186 const unsigned long BIG_PRIME = 4294967291UL;
187 uint64_t hash = key->block * BIG_PRIME;
188
189 return (uint32_t) (hash & prison->hash_mask);
190 }
191
192 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
193 {
194 return (lhs->virtual == rhs->virtual) &&
195 (lhs->dev == rhs->dev) &&
196 (lhs->block == rhs->block);
197 }
198
199 static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
200 struct cell_key *key)
201 {
202 struct dm_bio_prison_cell *cell;
203 struct hlist_node *tmp;
204
205 hlist_for_each_entry(cell, tmp, bucket, list)
206 if (keys_equal(&cell->key, key))
207 return cell;
208
209 return NULL;
210 }
211
212 /*
213 * This may block if a new cell needs allocating. You must ensure that
214 * cells will be unlocked even if the calling thread is blocked.
215 *
216 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
217 */
218 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
219 struct bio *inmate, struct dm_bio_prison_cell **ref)
220 {
221 int r = 1;
222 unsigned long flags;
223 uint32_t hash = hash_key(prison, key);
224 struct dm_bio_prison_cell *cell, *cell2;
225
226 BUG_ON(hash > prison->nr_buckets);
227
228 spin_lock_irqsave(&prison->lock, flags);
229
230 cell = __search_bucket(prison->cells + hash, key);
231 if (cell) {
232 bio_list_add(&cell->bios, inmate);
233 goto out;
234 }
235
236 /*
237 * Allocate a new cell
238 */
239 spin_unlock_irqrestore(&prison->lock, flags);
240 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
241 spin_lock_irqsave(&prison->lock, flags);
242
243 /*
244 * We've been unlocked, so we have to double check that
245 * nobody else has inserted this cell in the meantime.
246 */
247 cell = __search_bucket(prison->cells + hash, key);
248 if (cell) {
249 mempool_free(cell2, prison->cell_pool);
250 bio_list_add(&cell->bios, inmate);
251 goto out;
252 }
253
254 /*
255 * Use new cell.
256 */
257 cell = cell2;
258
259 cell->prison = prison;
260 memcpy(&cell->key, key, sizeof(cell->key));
261 cell->holder = inmate;
262 bio_list_init(&cell->bios);
263 hlist_add_head(&cell->list, prison->cells + hash);
264
265 r = 0;
266
267 out:
268 spin_unlock_irqrestore(&prison->lock, flags);
269
270 *ref = cell;
271
272 return r;
273 }
274
275 /*
276 * @inmates must have been initialised prior to this call
277 */
278 static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
279 {
280 struct bio_prison *prison = cell->prison;
281
282 hlist_del(&cell->list);
283
284 if (inmates) {
285 bio_list_add(inmates, cell->holder);
286 bio_list_merge(inmates, &cell->bios);
287 }
288
289 mempool_free(cell, prison->cell_pool);
290 }
291
292 static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
293 {
294 unsigned long flags;
295 struct bio_prison *prison = cell->prison;
296
297 spin_lock_irqsave(&prison->lock, flags);
298 __cell_release(cell, bios);
299 spin_unlock_irqrestore(&prison->lock, flags);
300 }
301
302 /*
303 * There are a couple of places where we put a bio into a cell briefly
304 * before taking it out again. In these situations we know that no other
305 * bio may be in the cell. This function releases the cell, and also does
306 * a sanity check.
307 */
308 static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
309 {
310 BUG_ON(cell->holder != bio);
311 BUG_ON(!bio_list_empty(&cell->bios));
312
313 __cell_release(cell, NULL);
314 }
315
316 static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
317 {
318 unsigned long flags;
319 struct bio_prison *prison = cell->prison;
320
321 spin_lock_irqsave(&prison->lock, flags);
322 __cell_release_singleton(cell, bio);
323 spin_unlock_irqrestore(&prison->lock, flags);
324 }
325
326 /*
327 * Sometimes we don't want the holder, just the additional bios.
328 */
329 static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
330 struct bio_list *inmates)
331 {
332 struct bio_prison *prison = cell->prison;
333
334 hlist_del(&cell->list);
335 bio_list_merge(inmates, &cell->bios);
336
337 mempool_free(cell, prison->cell_pool);
338 }
339
340 static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
341 struct bio_list *inmates)
342 {
343 unsigned long flags;
344 struct bio_prison *prison = cell->prison;
345
346 spin_lock_irqsave(&prison->lock, flags);
347 __cell_release_no_holder(cell, inmates);
348 spin_unlock_irqrestore(&prison->lock, flags);
349 }
350
351 static void cell_error(struct dm_bio_prison_cell *cell)
352 {
353 struct bio_prison *prison = cell->prison;
354 struct bio_list bios;
355 struct bio *bio;
356 unsigned long flags;
357
358 bio_list_init(&bios);
359
360 spin_lock_irqsave(&prison->lock, flags);
361 __cell_release(cell, &bios);
362 spin_unlock_irqrestore(&prison->lock, flags);
363
364 while ((bio = bio_list_pop(&bios)))
365 bio_io_error(bio);
366 }
367
368 /*----------------------------------------------------------------*/
369
370 /*
371 * We use the deferred set to keep track of pending reads to shared blocks.
372 * We do this to ensure the new mapping caused by a write isn't performed
373 * until these prior reads have completed. Otherwise the insertion of the
374 * new mapping could free the old block that the read bios are mapped to.
375 */
376
377 struct deferred_set;
378 struct deferred_entry {
379 struct deferred_set *ds;
380 unsigned count;
381 struct list_head work_items;
382 };
383
384 struct deferred_set {
385 spinlock_t lock;
386 unsigned current_entry;
387 unsigned sweeper;
388 struct deferred_entry entries[DEFERRED_SET_SIZE];
389 };
390
391 static void ds_init(struct deferred_set *ds)
392 {
393 int i;
394
395 spin_lock_init(&ds->lock);
396 ds->current_entry = 0;
397 ds->sweeper = 0;
398 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
399 ds->entries[i].ds = ds;
400 ds->entries[i].count = 0;
401 INIT_LIST_HEAD(&ds->entries[i].work_items);
402 }
403 }
404
405 static struct deferred_entry *ds_inc(struct deferred_set *ds)
406 {
407 unsigned long flags;
408 struct deferred_entry *entry;
409
410 spin_lock_irqsave(&ds->lock, flags);
411 entry = ds->entries + ds->current_entry;
412 entry->count++;
413 spin_unlock_irqrestore(&ds->lock, flags);
414
415 return entry;
416 }
417
418 static unsigned ds_next(unsigned index)
419 {
420 return (index + 1) % DEFERRED_SET_SIZE;
421 }
422
423 static void __sweep(struct deferred_set *ds, struct list_head *head)
424 {
425 while ((ds->sweeper != ds->current_entry) &&
426 !ds->entries[ds->sweeper].count) {
427 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
428 ds->sweeper = ds_next(ds->sweeper);
429 }
430
431 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
432 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
433 }
434
435 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
436 {
437 unsigned long flags;
438
439 spin_lock_irqsave(&entry->ds->lock, flags);
440 BUG_ON(!entry->count);
441 --entry->count;
442 __sweep(entry->ds, head);
443 spin_unlock_irqrestore(&entry->ds->lock, flags);
444 }
445
446 /*
447 * Returns 1 if deferred or 0 if no pending items to delay job.
448 */
449 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
450 {
451 int r = 1;
452 unsigned long flags;
453 unsigned next_entry;
454
455 spin_lock_irqsave(&ds->lock, flags);
456 if ((ds->sweeper == ds->current_entry) &&
457 !ds->entries[ds->current_entry].count)
458 r = 0;
459 else {
460 list_add(work, &ds->entries[ds->current_entry].work_items);
461 next_entry = ds_next(ds->current_entry);
462 if (!ds->entries[next_entry].count)
463 ds->current_entry = next_entry;
464 }
465 spin_unlock_irqrestore(&ds->lock, flags);
466
467 return r;
468 }
469
470 /*----------------------------------------------------------------*/
471
472 /*
473 * Key building.
474 */
475 static void build_data_key(struct dm_thin_device *td,
476 dm_block_t b, struct cell_key *key)
477 {
478 key->virtual = 0;
479 key->dev = dm_thin_dev_id(td);
480 key->block = b;
481 }
482
483 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
484 struct cell_key *key)
485 {
486 key->virtual = 1;
487 key->dev = dm_thin_dev_id(td);
488 key->block = b;
489 }
490
491 /*----------------------------------------------------------------*/
492
493 /*
494 * A pool device ties together a metadata device and a data device. It
495 * also provides the interface for creating and destroying internal
496 * devices.
497 */
498 struct dm_thin_new_mapping;
499
500 /*
501 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
502 */
503 enum pool_mode {
504 PM_WRITE, /* metadata may be changed */
505 PM_READ_ONLY, /* metadata may not be changed */
506 PM_FAIL, /* all I/O fails */
507 };
508
509 struct pool_features {
510 enum pool_mode mode;
511
512 unsigned zero_new_blocks:1;
513 unsigned discard_enabled:1;
514 unsigned discard_passdown:1;
515 };
516
517 struct thin_c;
518 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
519 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
520
521 struct pool {
522 struct list_head list;
523 struct dm_target *ti; /* Only set if a pool target is bound */
524
525 struct mapped_device *pool_md;
526 struct block_device *md_dev;
527 struct dm_pool_metadata *pmd;
528
529 dm_block_t low_water_blocks;
530 uint32_t sectors_per_block;
531 int sectors_per_block_shift;
532
533 struct pool_features pf;
534 unsigned low_water_triggered:1; /* A dm event has been sent */
535 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
536
537 struct bio_prison *prison;
538 struct dm_kcopyd_client *copier;
539
540 struct workqueue_struct *wq;
541 struct work_struct worker;
542 struct delayed_work waker;
543
544 unsigned long last_commit_jiffies;
545 unsigned ref_count;
546
547 spinlock_t lock;
548 struct bio_list deferred_bios;
549 struct bio_list deferred_flush_bios;
550 struct list_head prepared_mappings;
551 struct list_head prepared_discards;
552
553 struct bio_list retry_on_resume_list;
554
555 struct deferred_set shared_read_ds;
556 struct deferred_set all_io_ds;
557
558 struct dm_thin_new_mapping *next_mapping;
559 mempool_t *mapping_pool;
560 mempool_t *endio_hook_pool;
561
562 process_bio_fn process_bio;
563 process_bio_fn process_discard;
564
565 process_mapping_fn process_prepared_mapping;
566 process_mapping_fn process_prepared_discard;
567 };
568
569 static enum pool_mode get_pool_mode(struct pool *pool);
570 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
571
572 /*
573 * Target context for a pool.
574 */
575 struct pool_c {
576 struct dm_target *ti;
577 struct pool *pool;
578 struct dm_dev *data_dev;
579 struct dm_dev *metadata_dev;
580 struct dm_target_callbacks callbacks;
581
582 dm_block_t low_water_blocks;
583 struct pool_features pf;
584 };
585
586 /*
587 * Target context for a thin.
588 */
589 struct thin_c {
590 struct dm_dev *pool_dev;
591 struct dm_dev *origin_dev;
592 dm_thin_id dev_id;
593
594 struct pool *pool;
595 struct dm_thin_device *td;
596 };
597
598 /*----------------------------------------------------------------*/
599
600 /*
601 * A global list of pools that uses a struct mapped_device as a key.
602 */
603 static struct dm_thin_pool_table {
604 struct mutex mutex;
605 struct list_head pools;
606 } dm_thin_pool_table;
607
608 static void pool_table_init(void)
609 {
610 mutex_init(&dm_thin_pool_table.mutex);
611 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
612 }
613
614 static void __pool_table_insert(struct pool *pool)
615 {
616 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
617 list_add(&pool->list, &dm_thin_pool_table.pools);
618 }
619
620 static void __pool_table_remove(struct pool *pool)
621 {
622 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
623 list_del(&pool->list);
624 }
625
626 static struct pool *__pool_table_lookup(struct mapped_device *md)
627 {
628 struct pool *pool = NULL, *tmp;
629
630 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
631
632 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
633 if (tmp->pool_md == md) {
634 pool = tmp;
635 break;
636 }
637 }
638
639 return pool;
640 }
641
642 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
643 {
644 struct pool *pool = NULL, *tmp;
645
646 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
647
648 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
649 if (tmp->md_dev == md_dev) {
650 pool = tmp;
651 break;
652 }
653 }
654
655 return pool;
656 }
657
658 /*----------------------------------------------------------------*/
659
660 struct dm_thin_endio_hook {
661 struct thin_c *tc;
662 struct deferred_entry *shared_read_entry;
663 struct deferred_entry *all_io_entry;
664 struct dm_thin_new_mapping *overwrite_mapping;
665 };
666
667 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
668 {
669 struct bio *bio;
670 struct bio_list bios;
671
672 bio_list_init(&bios);
673 bio_list_merge(&bios, master);
674 bio_list_init(master);
675
676 while ((bio = bio_list_pop(&bios))) {
677 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
678
679 if (h->tc == tc)
680 bio_endio(bio, DM_ENDIO_REQUEUE);
681 else
682 bio_list_add(master, bio);
683 }
684 }
685
686 static void requeue_io(struct thin_c *tc)
687 {
688 struct pool *pool = tc->pool;
689 unsigned long flags;
690
691 spin_lock_irqsave(&pool->lock, flags);
692 __requeue_bio_list(tc, &pool->deferred_bios);
693 __requeue_bio_list(tc, &pool->retry_on_resume_list);
694 spin_unlock_irqrestore(&pool->lock, flags);
695 }
696
697 /*
698 * This section of code contains the logic for processing a thin device's IO.
699 * Much of the code depends on pool object resources (lists, workqueues, etc)
700 * but most is exclusively called from the thin target rather than the thin-pool
701 * target.
702 */
703
704 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
705 {
706 sector_t block_nr = bio->bi_sector;
707
708 if (tc->pool->sectors_per_block_shift < 0)
709 (void) sector_div(block_nr, tc->pool->sectors_per_block);
710 else
711 block_nr >>= tc->pool->sectors_per_block_shift;
712
713 return block_nr;
714 }
715
716 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
717 {
718 struct pool *pool = tc->pool;
719 sector_t bi_sector = bio->bi_sector;
720
721 bio->bi_bdev = tc->pool_dev->bdev;
722 if (tc->pool->sectors_per_block_shift < 0)
723 bio->bi_sector = (block * pool->sectors_per_block) +
724 sector_div(bi_sector, pool->sectors_per_block);
725 else
726 bio->bi_sector = (block << pool->sectors_per_block_shift) |
727 (bi_sector & (pool->sectors_per_block - 1));
728 }
729
730 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
731 {
732 bio->bi_bdev = tc->origin_dev->bdev;
733 }
734
735 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
736 {
737 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
738 dm_thin_changed_this_transaction(tc->td);
739 }
740
741 static void issue(struct thin_c *tc, struct bio *bio)
742 {
743 struct pool *pool = tc->pool;
744 unsigned long flags;
745
746 if (!bio_triggers_commit(tc, bio)) {
747 generic_make_request(bio);
748 return;
749 }
750
751 /*
752 * Complete bio with an error if earlier I/O caused changes to
753 * the metadata that can't be committed e.g, due to I/O errors
754 * on the metadata device.
755 */
756 if (dm_thin_aborted_changes(tc->td)) {
757 bio_io_error(bio);
758 return;
759 }
760
761 /*
762 * Batch together any bios that trigger commits and then issue a
763 * single commit for them in process_deferred_bios().
764 */
765 spin_lock_irqsave(&pool->lock, flags);
766 bio_list_add(&pool->deferred_flush_bios, bio);
767 spin_unlock_irqrestore(&pool->lock, flags);
768 }
769
770 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
771 {
772 remap_to_origin(tc, bio);
773 issue(tc, bio);
774 }
775
776 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
777 dm_block_t block)
778 {
779 remap(tc, bio, block);
780 issue(tc, bio);
781 }
782
783 /*
784 * wake_worker() is used when new work is queued and when pool_resume is
785 * ready to continue deferred IO processing.
786 */
787 static void wake_worker(struct pool *pool)
788 {
789 queue_work(pool->wq, &pool->worker);
790 }
791
792 /*----------------------------------------------------------------*/
793
794 /*
795 * Bio endio functions.
796 */
797 struct dm_thin_new_mapping {
798 struct list_head list;
799
800 unsigned quiesced:1;
801 unsigned prepared:1;
802 unsigned pass_discard:1;
803
804 struct thin_c *tc;
805 dm_block_t virt_block;
806 dm_block_t data_block;
807 struct dm_bio_prison_cell *cell, *cell2;
808 int err;
809
810 /*
811 * If the bio covers the whole area of a block then we can avoid
812 * zeroing or copying. Instead this bio is hooked. The bio will
813 * still be in the cell, so care has to be taken to avoid issuing
814 * the bio twice.
815 */
816 struct bio *bio;
817 bio_end_io_t *saved_bi_end_io;
818 };
819
820 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
821 {
822 struct pool *pool = m->tc->pool;
823
824 if (m->quiesced && m->prepared) {
825 list_add(&m->list, &pool->prepared_mappings);
826 wake_worker(pool);
827 }
828 }
829
830 static void copy_complete(int read_err, unsigned long write_err, void *context)
831 {
832 unsigned long flags;
833 struct dm_thin_new_mapping *m = context;
834 struct pool *pool = m->tc->pool;
835
836 m->err = read_err || write_err ? -EIO : 0;
837
838 spin_lock_irqsave(&pool->lock, flags);
839 m->prepared = 1;
840 __maybe_add_mapping(m);
841 spin_unlock_irqrestore(&pool->lock, flags);
842 }
843
844 static void overwrite_endio(struct bio *bio, int err)
845 {
846 unsigned long flags;
847 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
848 struct dm_thin_new_mapping *m = h->overwrite_mapping;
849 struct pool *pool = m->tc->pool;
850
851 m->err = err;
852
853 spin_lock_irqsave(&pool->lock, flags);
854 m->prepared = 1;
855 __maybe_add_mapping(m);
856 spin_unlock_irqrestore(&pool->lock, flags);
857 }
858
859 /*----------------------------------------------------------------*/
860
861 /*
862 * Workqueue.
863 */
864
865 /*
866 * Prepared mapping jobs.
867 */
868
869 /*
870 * This sends the bios in the cell back to the deferred_bios list.
871 */
872 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
873 dm_block_t data_block)
874 {
875 struct pool *pool = tc->pool;
876 unsigned long flags;
877
878 spin_lock_irqsave(&pool->lock, flags);
879 cell_release(cell, &pool->deferred_bios);
880 spin_unlock_irqrestore(&tc->pool->lock, flags);
881
882 wake_worker(pool);
883 }
884
885 /*
886 * Same as cell_defer above, except it omits one particular detainee,
887 * a write bio that covers the block and has already been processed.
888 */
889 static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
890 {
891 struct bio_list bios;
892 struct pool *pool = tc->pool;
893 unsigned long flags;
894
895 bio_list_init(&bios);
896
897 spin_lock_irqsave(&pool->lock, flags);
898 cell_release_no_holder(cell, &pool->deferred_bios);
899 spin_unlock_irqrestore(&pool->lock, flags);
900
901 wake_worker(pool);
902 }
903
904 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
905 {
906 if (m->bio)
907 m->bio->bi_end_io = m->saved_bi_end_io;
908 cell_error(m->cell);
909 list_del(&m->list);
910 mempool_free(m, m->tc->pool->mapping_pool);
911 }
912 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
913 {
914 struct thin_c *tc = m->tc;
915 struct bio *bio;
916 int r;
917
918 bio = m->bio;
919 if (bio)
920 bio->bi_end_io = m->saved_bi_end_io;
921
922 if (m->err) {
923 cell_error(m->cell);
924 goto out;
925 }
926
927 /*
928 * Commit the prepared block into the mapping btree.
929 * Any I/O for this block arriving after this point will get
930 * remapped to it directly.
931 */
932 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
933 if (r) {
934 DMERR("dm_thin_insert_block() failed");
935 cell_error(m->cell);
936 goto out;
937 }
938
939 /*
940 * Release any bios held while the block was being provisioned.
941 * If we are processing a write bio that completely covers the block,
942 * we already processed it so can ignore it now when processing
943 * the bios in the cell.
944 */
945 if (bio) {
946 cell_defer_except(tc, m->cell);
947 bio_endio(bio, 0);
948 } else
949 cell_defer(tc, m->cell, m->data_block);
950
951 out:
952 list_del(&m->list);
953 mempool_free(m, tc->pool->mapping_pool);
954 }
955
956 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
957 {
958 struct thin_c *tc = m->tc;
959
960 bio_io_error(m->bio);
961 cell_defer_except(tc, m->cell);
962 cell_defer_except(tc, m->cell2);
963 mempool_free(m, tc->pool->mapping_pool);
964 }
965
966 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
967 {
968 struct thin_c *tc = m->tc;
969
970 if (m->pass_discard)
971 remap_and_issue(tc, m->bio, m->data_block);
972 else
973 bio_endio(m->bio, 0);
974
975 cell_defer_except(tc, m->cell);
976 cell_defer_except(tc, m->cell2);
977 mempool_free(m, tc->pool->mapping_pool);
978 }
979
980 static void process_prepared_discard(struct dm_thin_new_mapping *m)
981 {
982 int r;
983 struct thin_c *tc = m->tc;
984
985 r = dm_thin_remove_block(tc->td, m->virt_block);
986 if (r)
987 DMERR("dm_thin_remove_block() failed");
988
989 process_prepared_discard_passdown(m);
990 }
991
992 static void process_prepared(struct pool *pool, struct list_head *head,
993 process_mapping_fn *fn)
994 {
995 unsigned long flags;
996 struct list_head maps;
997 struct dm_thin_new_mapping *m, *tmp;
998
999 INIT_LIST_HEAD(&maps);
1000 spin_lock_irqsave(&pool->lock, flags);
1001 list_splice_init(head, &maps);
1002 spin_unlock_irqrestore(&pool->lock, flags);
1003
1004 list_for_each_entry_safe(m, tmp, &maps, list)
1005 (*fn)(m);
1006 }
1007
1008 /*
1009 * Deferred bio jobs.
1010 */
1011 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1012 {
1013 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
1014 }
1015
1016 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1017 {
1018 return (bio_data_dir(bio) == WRITE) &&
1019 io_overlaps_block(pool, bio);
1020 }
1021
1022 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1023 bio_end_io_t *fn)
1024 {
1025 *save = bio->bi_end_io;
1026 bio->bi_end_io = fn;
1027 }
1028
1029 static int ensure_next_mapping(struct pool *pool)
1030 {
1031 if (pool->next_mapping)
1032 return 0;
1033
1034 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1035
1036 return pool->next_mapping ? 0 : -ENOMEM;
1037 }
1038
1039 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1040 {
1041 struct dm_thin_new_mapping *r = pool->next_mapping;
1042
1043 BUG_ON(!pool->next_mapping);
1044
1045 pool->next_mapping = NULL;
1046
1047 return r;
1048 }
1049
1050 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1051 struct dm_dev *origin, dm_block_t data_origin,
1052 dm_block_t data_dest,
1053 struct dm_bio_prison_cell *cell, struct bio *bio)
1054 {
1055 int r;
1056 struct pool *pool = tc->pool;
1057 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1058
1059 INIT_LIST_HEAD(&m->list);
1060 m->quiesced = 0;
1061 m->prepared = 0;
1062 m->tc = tc;
1063 m->virt_block = virt_block;
1064 m->data_block = data_dest;
1065 m->cell = cell;
1066 m->err = 0;
1067 m->bio = NULL;
1068
1069 if (!ds_add_work(&pool->shared_read_ds, &m->list))
1070 m->quiesced = 1;
1071
1072 /*
1073 * IO to pool_dev remaps to the pool target's data_dev.
1074 *
1075 * If the whole block of data is being overwritten, we can issue the
1076 * bio immediately. Otherwise we use kcopyd to clone the data first.
1077 */
1078 if (io_overwrites_block(pool, bio)) {
1079 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1080
1081 h->overwrite_mapping = m;
1082 m->bio = bio;
1083 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1084 remap_and_issue(tc, bio, data_dest);
1085 } else {
1086 struct dm_io_region from, to;
1087
1088 from.bdev = origin->bdev;
1089 from.sector = data_origin * pool->sectors_per_block;
1090 from.count = pool->sectors_per_block;
1091
1092 to.bdev = tc->pool_dev->bdev;
1093 to.sector = data_dest * pool->sectors_per_block;
1094 to.count = pool->sectors_per_block;
1095
1096 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1097 0, copy_complete, m);
1098 if (r < 0) {
1099 mempool_free(m, pool->mapping_pool);
1100 DMERR("dm_kcopyd_copy() failed");
1101 cell_error(cell);
1102 }
1103 }
1104 }
1105
1106 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1107 dm_block_t data_origin, dm_block_t data_dest,
1108 struct dm_bio_prison_cell *cell, struct bio *bio)
1109 {
1110 schedule_copy(tc, virt_block, tc->pool_dev,
1111 data_origin, data_dest, cell, bio);
1112 }
1113
1114 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1115 dm_block_t data_dest,
1116 struct dm_bio_prison_cell *cell, struct bio *bio)
1117 {
1118 schedule_copy(tc, virt_block, tc->origin_dev,
1119 virt_block, data_dest, cell, bio);
1120 }
1121
1122 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1123 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1124 struct bio *bio)
1125 {
1126 struct pool *pool = tc->pool;
1127 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1128
1129 INIT_LIST_HEAD(&m->list);
1130 m->quiesced = 1;
1131 m->prepared = 0;
1132 m->tc = tc;
1133 m->virt_block = virt_block;
1134 m->data_block = data_block;
1135 m->cell = cell;
1136 m->err = 0;
1137 m->bio = NULL;
1138
1139 /*
1140 * If the whole block of data is being overwritten or we are not
1141 * zeroing pre-existing data, we can issue the bio immediately.
1142 * Otherwise we use kcopyd to zero the data first.
1143 */
1144 if (!pool->pf.zero_new_blocks)
1145 process_prepared_mapping(m);
1146
1147 else if (io_overwrites_block(pool, bio)) {
1148 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1149
1150 h->overwrite_mapping = m;
1151 m->bio = bio;
1152 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1153 remap_and_issue(tc, bio, data_block);
1154 } else {
1155 int r;
1156 struct dm_io_region to;
1157
1158 to.bdev = tc->pool_dev->bdev;
1159 to.sector = data_block * pool->sectors_per_block;
1160 to.count = pool->sectors_per_block;
1161
1162 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1163 if (r < 0) {
1164 mempool_free(m, pool->mapping_pool);
1165 DMERR("dm_kcopyd_zero() failed");
1166 cell_error(cell);
1167 }
1168 }
1169 }
1170
1171 static int commit(struct pool *pool)
1172 {
1173 int r;
1174
1175 r = dm_pool_commit_metadata(pool->pmd);
1176 if (r)
1177 DMERR("commit failed, error = %d", r);
1178
1179 return r;
1180 }
1181
1182 /*
1183 * A non-zero return indicates read_only or fail_io mode.
1184 * Many callers don't care about the return value.
1185 */
1186 static int commit_or_fallback(struct pool *pool)
1187 {
1188 int r;
1189
1190 if (get_pool_mode(pool) != PM_WRITE)
1191 return -EINVAL;
1192
1193 r = commit(pool);
1194 if (r)
1195 set_pool_mode(pool, PM_READ_ONLY);
1196
1197 return r;
1198 }
1199
1200 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1201 {
1202 int r;
1203 dm_block_t free_blocks;
1204 unsigned long flags;
1205 struct pool *pool = tc->pool;
1206
1207 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1208 if (r)
1209 return r;
1210
1211 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1212 DMWARN("%s: reached low water mark, sending event.",
1213 dm_device_name(pool->pool_md));
1214 spin_lock_irqsave(&pool->lock, flags);
1215 pool->low_water_triggered = 1;
1216 spin_unlock_irqrestore(&pool->lock, flags);
1217 dm_table_event(pool->ti->table);
1218 }
1219
1220 if (!free_blocks) {
1221 if (pool->no_free_space)
1222 return -ENOSPC;
1223 else {
1224 /*
1225 * Try to commit to see if that will free up some
1226 * more space.
1227 */
1228 (void) commit_or_fallback(pool);
1229
1230 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1231 if (r)
1232 return r;
1233
1234 /*
1235 * If we still have no space we set a flag to avoid
1236 * doing all this checking and return -ENOSPC.
1237 */
1238 if (!free_blocks) {
1239 DMWARN("%s: no free space available.",
1240 dm_device_name(pool->pool_md));
1241 spin_lock_irqsave(&pool->lock, flags);
1242 pool->no_free_space = 1;
1243 spin_unlock_irqrestore(&pool->lock, flags);
1244 return -ENOSPC;
1245 }
1246 }
1247 }
1248
1249 r = dm_pool_alloc_data_block(pool->pmd, result);
1250 if (r)
1251 return r;
1252
1253 return 0;
1254 }
1255
1256 /*
1257 * If we have run out of space, queue bios until the device is
1258 * resumed, presumably after having been reloaded with more space.
1259 */
1260 static void retry_on_resume(struct bio *bio)
1261 {
1262 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1263 struct thin_c *tc = h->tc;
1264 struct pool *pool = tc->pool;
1265 unsigned long flags;
1266
1267 spin_lock_irqsave(&pool->lock, flags);
1268 bio_list_add(&pool->retry_on_resume_list, bio);
1269 spin_unlock_irqrestore(&pool->lock, flags);
1270 }
1271
1272 static void no_space(struct dm_bio_prison_cell *cell)
1273 {
1274 struct bio *bio;
1275 struct bio_list bios;
1276
1277 bio_list_init(&bios);
1278 cell_release(cell, &bios);
1279
1280 while ((bio = bio_list_pop(&bios)))
1281 retry_on_resume(bio);
1282 }
1283
1284 static void process_discard(struct thin_c *tc, struct bio *bio)
1285 {
1286 int r;
1287 unsigned long flags;
1288 struct pool *pool = tc->pool;
1289 struct dm_bio_prison_cell *cell, *cell2;
1290 struct cell_key key, key2;
1291 dm_block_t block = get_bio_block(tc, bio);
1292 struct dm_thin_lookup_result lookup_result;
1293 struct dm_thin_new_mapping *m;
1294
1295 build_virtual_key(tc->td, block, &key);
1296 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1297 return;
1298
1299 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1300 switch (r) {
1301 case 0:
1302 /*
1303 * Check nobody is fiddling with this pool block. This can
1304 * happen if someone's in the process of breaking sharing
1305 * on this block.
1306 */
1307 build_data_key(tc->td, lookup_result.block, &key2);
1308 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1309 cell_release_singleton(cell, bio);
1310 break;
1311 }
1312
1313 if (io_overlaps_block(pool, bio)) {
1314 /*
1315 * IO may still be going to the destination block. We must
1316 * quiesce before we can do the removal.
1317 */
1318 m = get_next_mapping(pool);
1319 m->tc = tc;
1320 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1321 m->virt_block = block;
1322 m->data_block = lookup_result.block;
1323 m->cell = cell;
1324 m->cell2 = cell2;
1325 m->err = 0;
1326 m->bio = bio;
1327
1328 if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1329 spin_lock_irqsave(&pool->lock, flags);
1330 list_add(&m->list, &pool->prepared_discards);
1331 spin_unlock_irqrestore(&pool->lock, flags);
1332 wake_worker(pool);
1333 }
1334 } else {
1335 /*
1336 * The DM core makes sure that the discard doesn't span
1337 * a block boundary. So we submit the discard of a
1338 * partial block appropriately.
1339 */
1340 cell_release_singleton(cell, bio);
1341 cell_release_singleton(cell2, bio);
1342 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1343 remap_and_issue(tc, bio, lookup_result.block);
1344 else
1345 bio_endio(bio, 0);
1346 }
1347 break;
1348
1349 case -ENODATA:
1350 /*
1351 * It isn't provisioned, just forget it.
1352 */
1353 cell_release_singleton(cell, bio);
1354 bio_endio(bio, 0);
1355 break;
1356
1357 default:
1358 DMERR("discard: find block unexpectedly returned %d", r);
1359 cell_release_singleton(cell, bio);
1360 bio_io_error(bio);
1361 break;
1362 }
1363 }
1364
1365 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1366 struct cell_key *key,
1367 struct dm_thin_lookup_result *lookup_result,
1368 struct dm_bio_prison_cell *cell)
1369 {
1370 int r;
1371 dm_block_t data_block;
1372
1373 r = alloc_data_block(tc, &data_block);
1374 switch (r) {
1375 case 0:
1376 schedule_internal_copy(tc, block, lookup_result->block,
1377 data_block, cell, bio);
1378 break;
1379
1380 case -ENOSPC:
1381 no_space(cell);
1382 break;
1383
1384 default:
1385 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1386 cell_error(cell);
1387 break;
1388 }
1389 }
1390
1391 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1392 dm_block_t block,
1393 struct dm_thin_lookup_result *lookup_result)
1394 {
1395 struct dm_bio_prison_cell *cell;
1396 struct pool *pool = tc->pool;
1397 struct cell_key key;
1398
1399 /*
1400 * If cell is already occupied, then sharing is already in the process
1401 * of being broken so we have nothing further to do here.
1402 */
1403 build_data_key(tc->td, lookup_result->block, &key);
1404 if (bio_detain(pool->prison, &key, bio, &cell))
1405 return;
1406
1407 if (bio_data_dir(bio) == WRITE && bio->bi_size)
1408 break_sharing(tc, bio, block, &key, lookup_result, cell);
1409 else {
1410 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1411
1412 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1413
1414 cell_release_singleton(cell, bio);
1415 remap_and_issue(tc, bio, lookup_result->block);
1416 }
1417 }
1418
1419 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1420 struct dm_bio_prison_cell *cell)
1421 {
1422 int r;
1423 dm_block_t data_block;
1424
1425 /*
1426 * Remap empty bios (flushes) immediately, without provisioning.
1427 */
1428 if (!bio->bi_size) {
1429 cell_release_singleton(cell, bio);
1430 remap_and_issue(tc, bio, 0);
1431 return;
1432 }
1433
1434 /*
1435 * Fill read bios with zeroes and complete them immediately.
1436 */
1437 if (bio_data_dir(bio) == READ) {
1438 zero_fill_bio(bio);
1439 cell_release_singleton(cell, bio);
1440 bio_endio(bio, 0);
1441 return;
1442 }
1443
1444 r = alloc_data_block(tc, &data_block);
1445 switch (r) {
1446 case 0:
1447 if (tc->origin_dev)
1448 schedule_external_copy(tc, block, data_block, cell, bio);
1449 else
1450 schedule_zero(tc, block, data_block, cell, bio);
1451 break;
1452
1453 case -ENOSPC:
1454 no_space(cell);
1455 break;
1456
1457 default:
1458 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1459 set_pool_mode(tc->pool, PM_READ_ONLY);
1460 cell_error(cell);
1461 break;
1462 }
1463 }
1464
1465 static void process_bio(struct thin_c *tc, struct bio *bio)
1466 {
1467 int r;
1468 dm_block_t block = get_bio_block(tc, bio);
1469 struct dm_bio_prison_cell *cell;
1470 struct cell_key key;
1471 struct dm_thin_lookup_result lookup_result;
1472
1473 /*
1474 * If cell is already occupied, then the block is already
1475 * being provisioned so we have nothing further to do here.
1476 */
1477 build_virtual_key(tc->td, block, &key);
1478 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1479 return;
1480
1481 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1482 switch (r) {
1483 case 0:
1484 /*
1485 * We can release this cell now. This thread is the only
1486 * one that puts bios into a cell, and we know there were
1487 * no preceding bios.
1488 */
1489 /*
1490 * TODO: this will probably have to change when discard goes
1491 * back in.
1492 */
1493 cell_release_singleton(cell, bio);
1494
1495 if (lookup_result.shared)
1496 process_shared_bio(tc, bio, block, &lookup_result);
1497 else
1498 remap_and_issue(tc, bio, lookup_result.block);
1499 break;
1500
1501 case -ENODATA:
1502 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1503 cell_release_singleton(cell, bio);
1504 remap_to_origin_and_issue(tc, bio);
1505 } else
1506 provision_block(tc, bio, block, cell);
1507 break;
1508
1509 default:
1510 DMERR("dm_thin_find_block() failed, error = %d", r);
1511 cell_release_singleton(cell, bio);
1512 bio_io_error(bio);
1513 break;
1514 }
1515 }
1516
1517 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1518 {
1519 int r;
1520 int rw = bio_data_dir(bio);
1521 dm_block_t block = get_bio_block(tc, bio);
1522 struct dm_thin_lookup_result lookup_result;
1523
1524 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1525 switch (r) {
1526 case 0:
1527 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1528 bio_io_error(bio);
1529 else
1530 remap_and_issue(tc, bio, lookup_result.block);
1531 break;
1532
1533 case -ENODATA:
1534 if (rw != READ) {
1535 bio_io_error(bio);
1536 break;
1537 }
1538
1539 if (tc->origin_dev) {
1540 remap_to_origin_and_issue(tc, bio);
1541 break;
1542 }
1543
1544 zero_fill_bio(bio);
1545 bio_endio(bio, 0);
1546 break;
1547
1548 default:
1549 DMERR("dm_thin_find_block() failed, error = %d", r);
1550 bio_io_error(bio);
1551 break;
1552 }
1553 }
1554
1555 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1556 {
1557 bio_io_error(bio);
1558 }
1559
1560 static int need_commit_due_to_time(struct pool *pool)
1561 {
1562 return jiffies < pool->last_commit_jiffies ||
1563 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1564 }
1565
1566 static void process_deferred_bios(struct pool *pool)
1567 {
1568 unsigned long flags;
1569 struct bio *bio;
1570 struct bio_list bios;
1571
1572 bio_list_init(&bios);
1573
1574 spin_lock_irqsave(&pool->lock, flags);
1575 bio_list_merge(&bios, &pool->deferred_bios);
1576 bio_list_init(&pool->deferred_bios);
1577 spin_unlock_irqrestore(&pool->lock, flags);
1578
1579 while ((bio = bio_list_pop(&bios))) {
1580 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1581 struct thin_c *tc = h->tc;
1582
1583 /*
1584 * If we've got no free new_mapping structs, and processing
1585 * this bio might require one, we pause until there are some
1586 * prepared mappings to process.
1587 */
1588 if (ensure_next_mapping(pool)) {
1589 spin_lock_irqsave(&pool->lock, flags);
1590 bio_list_merge(&pool->deferred_bios, &bios);
1591 spin_unlock_irqrestore(&pool->lock, flags);
1592
1593 break;
1594 }
1595
1596 if (bio->bi_rw & REQ_DISCARD)
1597 pool->process_discard(tc, bio);
1598 else
1599 pool->process_bio(tc, bio);
1600 }
1601
1602 /*
1603 * If there are any deferred flush bios, we must commit
1604 * the metadata before issuing them.
1605 */
1606 bio_list_init(&bios);
1607 spin_lock_irqsave(&pool->lock, flags);
1608 bio_list_merge(&bios, &pool->deferred_flush_bios);
1609 bio_list_init(&pool->deferred_flush_bios);
1610 spin_unlock_irqrestore(&pool->lock, flags);
1611
1612 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1613 return;
1614
1615 if (commit_or_fallback(pool)) {
1616 while ((bio = bio_list_pop(&bios)))
1617 bio_io_error(bio);
1618 return;
1619 }
1620 pool->last_commit_jiffies = jiffies;
1621
1622 while ((bio = bio_list_pop(&bios)))
1623 generic_make_request(bio);
1624 }
1625
1626 static void do_worker(struct work_struct *ws)
1627 {
1628 struct pool *pool = container_of(ws, struct pool, worker);
1629
1630 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1631 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1632 process_deferred_bios(pool);
1633 }
1634
1635 /*
1636 * We want to commit periodically so that not too much
1637 * unwritten data builds up.
1638 */
1639 static void do_waker(struct work_struct *ws)
1640 {
1641 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1642 wake_worker(pool);
1643 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1644 }
1645
1646 /*----------------------------------------------------------------*/
1647
1648 static enum pool_mode get_pool_mode(struct pool *pool)
1649 {
1650 return pool->pf.mode;
1651 }
1652
1653 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1654 {
1655 int r;
1656
1657 pool->pf.mode = mode;
1658
1659 switch (mode) {
1660 case PM_FAIL:
1661 DMERR("switching pool to failure mode");
1662 pool->process_bio = process_bio_fail;
1663 pool->process_discard = process_bio_fail;
1664 pool->process_prepared_mapping = process_prepared_mapping_fail;
1665 pool->process_prepared_discard = process_prepared_discard_fail;
1666 break;
1667
1668 case PM_READ_ONLY:
1669 DMERR("switching pool to read-only mode");
1670 r = dm_pool_abort_metadata(pool->pmd);
1671 if (r) {
1672 DMERR("aborting transaction failed");
1673 set_pool_mode(pool, PM_FAIL);
1674 } else {
1675 dm_pool_metadata_read_only(pool->pmd);
1676 pool->process_bio = process_bio_read_only;
1677 pool->process_discard = process_discard;
1678 pool->process_prepared_mapping = process_prepared_mapping_fail;
1679 pool->process_prepared_discard = process_prepared_discard_passdown;
1680 }
1681 break;
1682
1683 case PM_WRITE:
1684 pool->process_bio = process_bio;
1685 pool->process_discard = process_discard;
1686 pool->process_prepared_mapping = process_prepared_mapping;
1687 pool->process_prepared_discard = process_prepared_discard;
1688 break;
1689 }
1690 }
1691
1692 /*----------------------------------------------------------------*/
1693
1694 /*
1695 * Mapping functions.
1696 */
1697
1698 /*
1699 * Called only while mapping a thin bio to hand it over to the workqueue.
1700 */
1701 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1702 {
1703 unsigned long flags;
1704 struct pool *pool = tc->pool;
1705
1706 spin_lock_irqsave(&pool->lock, flags);
1707 bio_list_add(&pool->deferred_bios, bio);
1708 spin_unlock_irqrestore(&pool->lock, flags);
1709
1710 wake_worker(pool);
1711 }
1712
1713 static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1714 {
1715 struct pool *pool = tc->pool;
1716 struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1717
1718 h->tc = tc;
1719 h->shared_read_entry = NULL;
1720 h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1721 h->overwrite_mapping = NULL;
1722
1723 return h;
1724 }
1725
1726 /*
1727 * Non-blocking function called from the thin target's map function.
1728 */
1729 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1730 union map_info *map_context)
1731 {
1732 int r;
1733 struct thin_c *tc = ti->private;
1734 dm_block_t block = get_bio_block(tc, bio);
1735 struct dm_thin_device *td = tc->td;
1736 struct dm_thin_lookup_result result;
1737
1738 map_context->ptr = thin_hook_bio(tc, bio);
1739
1740 if (get_pool_mode(tc->pool) == PM_FAIL) {
1741 bio_io_error(bio);
1742 return DM_MAPIO_SUBMITTED;
1743 }
1744
1745 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1746 thin_defer_bio(tc, bio);
1747 return DM_MAPIO_SUBMITTED;
1748 }
1749
1750 r = dm_thin_find_block(td, block, 0, &result);
1751
1752 /*
1753 * Note that we defer readahead too.
1754 */
1755 switch (r) {
1756 case 0:
1757 if (unlikely(result.shared)) {
1758 /*
1759 * We have a race condition here between the
1760 * result.shared value returned by the lookup and
1761 * snapshot creation, which may cause new
1762 * sharing.
1763 *
1764 * To avoid this always quiesce the origin before
1765 * taking the snap. You want to do this anyway to
1766 * ensure a consistent application view
1767 * (i.e. lockfs).
1768 *
1769 * More distant ancestors are irrelevant. The
1770 * shared flag will be set in their case.
1771 */
1772 thin_defer_bio(tc, bio);
1773 r = DM_MAPIO_SUBMITTED;
1774 } else {
1775 remap(tc, bio, result.block);
1776 r = DM_MAPIO_REMAPPED;
1777 }
1778 break;
1779
1780 case -ENODATA:
1781 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1782 /*
1783 * This block isn't provisioned, and we have no way
1784 * of doing so. Just error it.
1785 */
1786 bio_io_error(bio);
1787 r = DM_MAPIO_SUBMITTED;
1788 break;
1789 }
1790 /* fall through */
1791
1792 case -EWOULDBLOCK:
1793 /*
1794 * In future, the failed dm_thin_find_block above could
1795 * provide the hint to load the metadata into cache.
1796 */
1797 thin_defer_bio(tc, bio);
1798 r = DM_MAPIO_SUBMITTED;
1799 break;
1800
1801 default:
1802 /*
1803 * Must always call bio_io_error on failure.
1804 * dm_thin_find_block can fail with -EINVAL if the
1805 * pool is switched to fail-io mode.
1806 */
1807 bio_io_error(bio);
1808 r = DM_MAPIO_SUBMITTED;
1809 break;
1810 }
1811
1812 return r;
1813 }
1814
1815 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1816 {
1817 int r;
1818 unsigned long flags;
1819 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1820
1821 spin_lock_irqsave(&pt->pool->lock, flags);
1822 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1823 spin_unlock_irqrestore(&pt->pool->lock, flags);
1824
1825 if (!r) {
1826 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1827 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1828 }
1829
1830 return r;
1831 }
1832
1833 static void __requeue_bios(struct pool *pool)
1834 {
1835 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1836 bio_list_init(&pool->retry_on_resume_list);
1837 }
1838
1839 /*----------------------------------------------------------------
1840 * Binding of control targets to a pool object
1841 *--------------------------------------------------------------*/
1842 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1843 {
1844 struct pool_c *pt = ti->private;
1845
1846 /*
1847 * We want to make sure that degraded pools are never upgraded.
1848 */
1849 enum pool_mode old_mode = pool->pf.mode;
1850 enum pool_mode new_mode = pt->pf.mode;
1851
1852 if (old_mode > new_mode)
1853 new_mode = old_mode;
1854
1855 pool->ti = ti;
1856 pool->low_water_blocks = pt->low_water_blocks;
1857 pool->pf = pt->pf;
1858 set_pool_mode(pool, new_mode);
1859
1860 /*
1861 * If discard_passdown was enabled verify that the data device
1862 * supports discards. Disable discard_passdown if not; otherwise
1863 * -EOPNOTSUPP will be returned.
1864 */
1865 /* FIXME: pull this out into a sep fn. */
1866 if (pt->pf.discard_passdown) {
1867 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1868 if (!q || !blk_queue_discard(q)) {
1869 char buf[BDEVNAME_SIZE];
1870 DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1871 bdevname(pt->data_dev->bdev, buf));
1872 pool->pf.discard_passdown = 0;
1873 }
1874 }
1875
1876 return 0;
1877 }
1878
1879 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1880 {
1881 if (pool->ti == ti)
1882 pool->ti = NULL;
1883 }
1884
1885 /*----------------------------------------------------------------
1886 * Pool creation
1887 *--------------------------------------------------------------*/
1888 /* Initialize pool features. */
1889 static void pool_features_init(struct pool_features *pf)
1890 {
1891 pf->mode = PM_WRITE;
1892 pf->zero_new_blocks = 1;
1893 pf->discard_enabled = 1;
1894 pf->discard_passdown = 1;
1895 }
1896
1897 static void __pool_destroy(struct pool *pool)
1898 {
1899 __pool_table_remove(pool);
1900
1901 if (dm_pool_metadata_close(pool->pmd) < 0)
1902 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1903
1904 prison_destroy(pool->prison);
1905 dm_kcopyd_client_destroy(pool->copier);
1906
1907 if (pool->wq)
1908 destroy_workqueue(pool->wq);
1909
1910 if (pool->next_mapping)
1911 mempool_free(pool->next_mapping, pool->mapping_pool);
1912 mempool_destroy(pool->mapping_pool);
1913 mempool_destroy(pool->endio_hook_pool);
1914 kfree(pool);
1915 }
1916
1917 static struct kmem_cache *_new_mapping_cache;
1918 static struct kmem_cache *_endio_hook_cache;
1919
1920 static struct pool *pool_create(struct mapped_device *pool_md,
1921 struct block_device *metadata_dev,
1922 unsigned long block_size,
1923 int read_only, char **error)
1924 {
1925 int r;
1926 void *err_p;
1927 struct pool *pool;
1928 struct dm_pool_metadata *pmd;
1929 bool format_device = read_only ? false : true;
1930
1931 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1932 if (IS_ERR(pmd)) {
1933 *error = "Error creating metadata object";
1934 return (struct pool *)pmd;
1935 }
1936
1937 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1938 if (!pool) {
1939 *error = "Error allocating memory for pool";
1940 err_p = ERR_PTR(-ENOMEM);
1941 goto bad_pool;
1942 }
1943
1944 pool->pmd = pmd;
1945 pool->sectors_per_block = block_size;
1946 if (block_size & (block_size - 1))
1947 pool->sectors_per_block_shift = -1;
1948 else
1949 pool->sectors_per_block_shift = __ffs(block_size);
1950 pool->low_water_blocks = 0;
1951 pool_features_init(&pool->pf);
1952 pool->prison = prison_create(PRISON_CELLS);
1953 if (!pool->prison) {
1954 *error = "Error creating pool's bio prison";
1955 err_p = ERR_PTR(-ENOMEM);
1956 goto bad_prison;
1957 }
1958
1959 pool->copier = dm_kcopyd_client_create();
1960 if (IS_ERR(pool->copier)) {
1961 r = PTR_ERR(pool->copier);
1962 *error = "Error creating pool's kcopyd client";
1963 err_p = ERR_PTR(r);
1964 goto bad_kcopyd_client;
1965 }
1966
1967 /*
1968 * Create singlethreaded workqueue that will service all devices
1969 * that use this metadata.
1970 */
1971 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1972 if (!pool->wq) {
1973 *error = "Error creating pool's workqueue";
1974 err_p = ERR_PTR(-ENOMEM);
1975 goto bad_wq;
1976 }
1977
1978 INIT_WORK(&pool->worker, do_worker);
1979 INIT_DELAYED_WORK(&pool->waker, do_waker);
1980 spin_lock_init(&pool->lock);
1981 bio_list_init(&pool->deferred_bios);
1982 bio_list_init(&pool->deferred_flush_bios);
1983 INIT_LIST_HEAD(&pool->prepared_mappings);
1984 INIT_LIST_HEAD(&pool->prepared_discards);
1985 pool->low_water_triggered = 0;
1986 pool->no_free_space = 0;
1987 bio_list_init(&pool->retry_on_resume_list);
1988 ds_init(&pool->shared_read_ds);
1989 ds_init(&pool->all_io_ds);
1990
1991 pool->next_mapping = NULL;
1992 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1993 _new_mapping_cache);
1994 if (!pool->mapping_pool) {
1995 *error = "Error creating pool's mapping mempool";
1996 err_p = ERR_PTR(-ENOMEM);
1997 goto bad_mapping_pool;
1998 }
1999
2000 pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
2001 _endio_hook_cache);
2002 if (!pool->endio_hook_pool) {
2003 *error = "Error creating pool's endio_hook mempool";
2004 err_p = ERR_PTR(-ENOMEM);
2005 goto bad_endio_hook_pool;
2006 }
2007 pool->ref_count = 1;
2008 pool->last_commit_jiffies = jiffies;
2009 pool->pool_md = pool_md;
2010 pool->md_dev = metadata_dev;
2011 __pool_table_insert(pool);
2012
2013 return pool;
2014
2015 bad_endio_hook_pool:
2016 mempool_destroy(pool->mapping_pool);
2017 bad_mapping_pool:
2018 destroy_workqueue(pool->wq);
2019 bad_wq:
2020 dm_kcopyd_client_destroy(pool->copier);
2021 bad_kcopyd_client:
2022 prison_destroy(pool->prison);
2023 bad_prison:
2024 kfree(pool);
2025 bad_pool:
2026 if (dm_pool_metadata_close(pmd))
2027 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2028
2029 return err_p;
2030 }
2031
2032 static void __pool_inc(struct pool *pool)
2033 {
2034 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2035 pool->ref_count++;
2036 }
2037
2038 static void __pool_dec(struct pool *pool)
2039 {
2040 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2041 BUG_ON(!pool->ref_count);
2042 if (!--pool->ref_count)
2043 __pool_destroy(pool);
2044 }
2045
2046 static struct pool *__pool_find(struct mapped_device *pool_md,
2047 struct block_device *metadata_dev,
2048 unsigned long block_size, int read_only,
2049 char **error, int *created)
2050 {
2051 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2052
2053 if (pool) {
2054 if (pool->pool_md != pool_md) {
2055 *error = "metadata device already in use by a pool";
2056 return ERR_PTR(-EBUSY);
2057 }
2058 __pool_inc(pool);
2059
2060 } else {
2061 pool = __pool_table_lookup(pool_md);
2062 if (pool) {
2063 if (pool->md_dev != metadata_dev) {
2064 *error = "different pool cannot replace a pool";
2065 return ERR_PTR(-EINVAL);
2066 }
2067 __pool_inc(pool);
2068
2069 } else {
2070 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2071 *created = 1;
2072 }
2073 }
2074
2075 return pool;
2076 }
2077
2078 /*----------------------------------------------------------------
2079 * Pool target methods
2080 *--------------------------------------------------------------*/
2081 static void pool_dtr(struct dm_target *ti)
2082 {
2083 struct pool_c *pt = ti->private;
2084
2085 mutex_lock(&dm_thin_pool_table.mutex);
2086
2087 unbind_control_target(pt->pool, ti);
2088 __pool_dec(pt->pool);
2089 dm_put_device(ti, pt->metadata_dev);
2090 dm_put_device(ti, pt->data_dev);
2091 kfree(pt);
2092
2093 mutex_unlock(&dm_thin_pool_table.mutex);
2094 }
2095
2096 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2097 struct dm_target *ti)
2098 {
2099 int r;
2100 unsigned argc;
2101 const char *arg_name;
2102
2103 static struct dm_arg _args[] = {
2104 {0, 3, "Invalid number of pool feature arguments"},
2105 };
2106
2107 /*
2108 * No feature arguments supplied.
2109 */
2110 if (!as->argc)
2111 return 0;
2112
2113 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2114 if (r)
2115 return -EINVAL;
2116
2117 while (argc && !r) {
2118 arg_name = dm_shift_arg(as);
2119 argc--;
2120
2121 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2122 pf->zero_new_blocks = 0;
2123
2124 else if (!strcasecmp(arg_name, "ignore_discard"))
2125 pf->discard_enabled = 0;
2126
2127 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2128 pf->discard_passdown = 0;
2129
2130 else if (!strcasecmp(arg_name, "read_only"))
2131 pf->mode = PM_READ_ONLY;
2132
2133 else {
2134 ti->error = "Unrecognised pool feature requested";
2135 r = -EINVAL;
2136 break;
2137 }
2138 }
2139
2140 return r;
2141 }
2142
2143 /*
2144 * thin-pool <metadata dev> <data dev>
2145 * <data block size (sectors)>
2146 * <low water mark (blocks)>
2147 * [<#feature args> [<arg>]*]
2148 *
2149 * Optional feature arguments are:
2150 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2151 * ignore_discard: disable discard
2152 * no_discard_passdown: don't pass discards down to the data device
2153 */
2154 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2155 {
2156 int r, pool_created = 0;
2157 struct pool_c *pt;
2158 struct pool *pool;
2159 struct pool_features pf;
2160 struct dm_arg_set as;
2161 struct dm_dev *data_dev;
2162 unsigned long block_size;
2163 dm_block_t low_water_blocks;
2164 struct dm_dev *metadata_dev;
2165 sector_t metadata_dev_size;
2166 char b[BDEVNAME_SIZE];
2167
2168 /*
2169 * FIXME Remove validation from scope of lock.
2170 */
2171 mutex_lock(&dm_thin_pool_table.mutex);
2172
2173 if (argc < 4) {
2174 ti->error = "Invalid argument count";
2175 r = -EINVAL;
2176 goto out_unlock;
2177 }
2178 as.argc = argc;
2179 as.argv = argv;
2180
2181 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
2182 if (r) {
2183 ti->error = "Error opening metadata block device";
2184 goto out_unlock;
2185 }
2186
2187 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
2188 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2189 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2190 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2191
2192 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2193 if (r) {
2194 ti->error = "Error getting data device";
2195 goto out_metadata;
2196 }
2197
2198 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2199 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2200 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2201 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2202 ti->error = "Invalid block size";
2203 r = -EINVAL;
2204 goto out;
2205 }
2206
2207 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2208 ti->error = "Invalid low water mark";
2209 r = -EINVAL;
2210 goto out;
2211 }
2212
2213 /*
2214 * Set default pool features.
2215 */
2216 pool_features_init(&pf);
2217
2218 dm_consume_args(&as, 4);
2219 r = parse_pool_features(&as, &pf, ti);
2220 if (r)
2221 goto out;
2222
2223 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2224 if (!pt) {
2225 r = -ENOMEM;
2226 goto out;
2227 }
2228
2229 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2230 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2231 if (IS_ERR(pool)) {
2232 r = PTR_ERR(pool);
2233 goto out_free_pt;
2234 }
2235
2236 /*
2237 * 'pool_created' reflects whether this is the first table load.
2238 * Top level discard support is not allowed to be changed after
2239 * initial load. This would require a pool reload to trigger thin
2240 * device changes.
2241 */
2242 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2243 ti->error = "Discard support cannot be disabled once enabled";
2244 r = -EINVAL;
2245 goto out_flags_changed;
2246 }
2247
2248 /*
2249 * The block layer requires discard_granularity to be a power of 2.
2250 */
2251 if (pf.discard_enabled && !is_power_of_2(block_size)) {
2252 ti->error = "Discard support must be disabled when the block size is not a power of 2";
2253 r = -EINVAL;
2254 goto out_flags_changed;
2255 }
2256
2257 pt->pool = pool;
2258 pt->ti = ti;
2259 pt->metadata_dev = metadata_dev;
2260 pt->data_dev = data_dev;
2261 pt->low_water_blocks = low_water_blocks;
2262 pt->pf = pf;
2263 ti->num_flush_requests = 1;
2264 /*
2265 * Only need to enable discards if the pool should pass
2266 * them down to the data device. The thin device's discard
2267 * processing will cause mappings to be removed from the btree.
2268 */
2269 if (pf.discard_enabled && pf.discard_passdown) {
2270 ti->num_discard_requests = 1;
2271 /*
2272 * Setting 'discards_supported' circumvents the normal
2273 * stacking of discard limits (this keeps the pool and
2274 * thin devices' discard limits consistent).
2275 */
2276 ti->discards_supported = true;
2277 }
2278 ti->private = pt;
2279
2280 pt->callbacks.congested_fn = pool_is_congested;
2281 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2282
2283 mutex_unlock(&dm_thin_pool_table.mutex);
2284
2285 return 0;
2286
2287 out_flags_changed:
2288 __pool_dec(pool);
2289 out_free_pt:
2290 kfree(pt);
2291 out:
2292 dm_put_device(ti, data_dev);
2293 out_metadata:
2294 dm_put_device(ti, metadata_dev);
2295 out_unlock:
2296 mutex_unlock(&dm_thin_pool_table.mutex);
2297
2298 return r;
2299 }
2300
2301 static int pool_map(struct dm_target *ti, struct bio *bio,
2302 union map_info *map_context)
2303 {
2304 int r;
2305 struct pool_c *pt = ti->private;
2306 struct pool *pool = pt->pool;
2307 unsigned long flags;
2308
2309 /*
2310 * As this is a singleton target, ti->begin is always zero.
2311 */
2312 spin_lock_irqsave(&pool->lock, flags);
2313 bio->bi_bdev = pt->data_dev->bdev;
2314 r = DM_MAPIO_REMAPPED;
2315 spin_unlock_irqrestore(&pool->lock, flags);
2316
2317 return r;
2318 }
2319
2320 /*
2321 * Retrieves the number of blocks of the data device from
2322 * the superblock and compares it to the actual device size,
2323 * thus resizing the data device in case it has grown.
2324 *
2325 * This both copes with opening preallocated data devices in the ctr
2326 * being followed by a resume
2327 * -and-
2328 * calling the resume method individually after userspace has
2329 * grown the data device in reaction to a table event.
2330 */
2331 static int pool_preresume(struct dm_target *ti)
2332 {
2333 int r;
2334 struct pool_c *pt = ti->private;
2335 struct pool *pool = pt->pool;
2336 sector_t data_size = ti->len;
2337 dm_block_t sb_data_size;
2338
2339 /*
2340 * Take control of the pool object.
2341 */
2342 r = bind_control_target(pool, ti);
2343 if (r)
2344 return r;
2345
2346 (void) sector_div(data_size, pool->sectors_per_block);
2347
2348 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2349 if (r) {
2350 DMERR("failed to retrieve data device size");
2351 return r;
2352 }
2353
2354 if (data_size < sb_data_size) {
2355 DMERR("pool target too small, is %llu blocks (expected %llu)",
2356 (unsigned long long)data_size, sb_data_size);
2357 return -EINVAL;
2358
2359 } else if (data_size > sb_data_size) {
2360 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2361 if (r) {
2362 DMERR("failed to resize data device");
2363 /* FIXME Stricter than necessary: Rollback transaction instead here */
2364 set_pool_mode(pool, PM_READ_ONLY);
2365 return r;
2366 }
2367
2368 (void) commit_or_fallback(pool);
2369 }
2370
2371 return 0;
2372 }
2373
2374 static void pool_resume(struct dm_target *ti)
2375 {
2376 struct pool_c *pt = ti->private;
2377 struct pool *pool = pt->pool;
2378 unsigned long flags;
2379
2380 spin_lock_irqsave(&pool->lock, flags);
2381 pool->low_water_triggered = 0;
2382 pool->no_free_space = 0;
2383 __requeue_bios(pool);
2384 spin_unlock_irqrestore(&pool->lock, flags);
2385
2386 do_waker(&pool->waker.work);
2387 }
2388
2389 static void pool_postsuspend(struct dm_target *ti)
2390 {
2391 struct pool_c *pt = ti->private;
2392 struct pool *pool = pt->pool;
2393
2394 cancel_delayed_work(&pool->waker);
2395 flush_workqueue(pool->wq);
2396 (void) commit_or_fallback(pool);
2397 }
2398
2399 static int check_arg_count(unsigned argc, unsigned args_required)
2400 {
2401 if (argc != args_required) {
2402 DMWARN("Message received with %u arguments instead of %u.",
2403 argc, args_required);
2404 return -EINVAL;
2405 }
2406
2407 return 0;
2408 }
2409
2410 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2411 {
2412 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2413 *dev_id <= MAX_DEV_ID)
2414 return 0;
2415
2416 if (warning)
2417 DMWARN("Message received with invalid device id: %s", arg);
2418
2419 return -EINVAL;
2420 }
2421
2422 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2423 {
2424 dm_thin_id dev_id;
2425 int r;
2426
2427 r = check_arg_count(argc, 2);
2428 if (r)
2429 return r;
2430
2431 r = read_dev_id(argv[1], &dev_id, 1);
2432 if (r)
2433 return r;
2434
2435 r = dm_pool_create_thin(pool->pmd, dev_id);
2436 if (r) {
2437 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2438 argv[1]);
2439 return r;
2440 }
2441
2442 return 0;
2443 }
2444
2445 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2446 {
2447 dm_thin_id dev_id;
2448 dm_thin_id origin_dev_id;
2449 int r;
2450
2451 r = check_arg_count(argc, 3);
2452 if (r)
2453 return r;
2454
2455 r = read_dev_id(argv[1], &dev_id, 1);
2456 if (r)
2457 return r;
2458
2459 r = read_dev_id(argv[2], &origin_dev_id, 1);
2460 if (r)
2461 return r;
2462
2463 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2464 if (r) {
2465 DMWARN("Creation of new snapshot %s of device %s failed.",
2466 argv[1], argv[2]);
2467 return r;
2468 }
2469
2470 return 0;
2471 }
2472
2473 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2474 {
2475 dm_thin_id dev_id;
2476 int r;
2477
2478 r = check_arg_count(argc, 2);
2479 if (r)
2480 return r;
2481
2482 r = read_dev_id(argv[1], &dev_id, 1);
2483 if (r)
2484 return r;
2485
2486 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2487 if (r)
2488 DMWARN("Deletion of thin device %s failed.", argv[1]);
2489
2490 return r;
2491 }
2492
2493 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2494 {
2495 dm_thin_id old_id, new_id;
2496 int r;
2497
2498 r = check_arg_count(argc, 3);
2499 if (r)
2500 return r;
2501
2502 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2503 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2504 return -EINVAL;
2505 }
2506
2507 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2508 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2509 return -EINVAL;
2510 }
2511
2512 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2513 if (r) {
2514 DMWARN("Failed to change transaction id from %s to %s.",
2515 argv[1], argv[2]);
2516 return r;
2517 }
2518
2519 return 0;
2520 }
2521
2522 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2523 {
2524 int r;
2525
2526 r = check_arg_count(argc, 1);
2527 if (r)
2528 return r;
2529
2530 (void) commit_or_fallback(pool);
2531
2532 r = dm_pool_reserve_metadata_snap(pool->pmd);
2533 if (r)
2534 DMWARN("reserve_metadata_snap message failed.");
2535
2536 return r;
2537 }
2538
2539 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2540 {
2541 int r;
2542
2543 r = check_arg_count(argc, 1);
2544 if (r)
2545 return r;
2546
2547 r = dm_pool_release_metadata_snap(pool->pmd);
2548 if (r)
2549 DMWARN("release_metadata_snap message failed.");
2550
2551 return r;
2552 }
2553
2554 /*
2555 * Messages supported:
2556 * create_thin <dev_id>
2557 * create_snap <dev_id> <origin_id>
2558 * delete <dev_id>
2559 * trim <dev_id> <new_size_in_sectors>
2560 * set_transaction_id <current_trans_id> <new_trans_id>
2561 * reserve_metadata_snap
2562 * release_metadata_snap
2563 */
2564 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2565 {
2566 int r = -EINVAL;
2567 struct pool_c *pt = ti->private;
2568 struct pool *pool = pt->pool;
2569
2570 if (!strcasecmp(argv[0], "create_thin"))
2571 r = process_create_thin_mesg(argc, argv, pool);
2572
2573 else if (!strcasecmp(argv[0], "create_snap"))
2574 r = process_create_snap_mesg(argc, argv, pool);
2575
2576 else if (!strcasecmp(argv[0], "delete"))
2577 r = process_delete_mesg(argc, argv, pool);
2578
2579 else if (!strcasecmp(argv[0], "set_transaction_id"))
2580 r = process_set_transaction_id_mesg(argc, argv, pool);
2581
2582 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2583 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2584
2585 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2586 r = process_release_metadata_snap_mesg(argc, argv, pool);
2587
2588 else
2589 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2590
2591 if (!r)
2592 (void) commit_or_fallback(pool);
2593
2594 return r;
2595 }
2596
2597 static void emit_flags(struct pool_features *pf, char *result,
2598 unsigned sz, unsigned maxlen)
2599 {
2600 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2601 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2602 DMEMIT("%u ", count);
2603
2604 if (!pf->zero_new_blocks)
2605 DMEMIT("skip_block_zeroing ");
2606
2607 if (!pf->discard_enabled)
2608 DMEMIT("ignore_discard ");
2609
2610 if (!pf->discard_passdown)
2611 DMEMIT("no_discard_passdown ");
2612
2613 if (pf->mode == PM_READ_ONLY)
2614 DMEMIT("read_only ");
2615 }
2616
2617 /*
2618 * Status line is:
2619 * <transaction id> <used metadata sectors>/<total metadata sectors>
2620 * <used data sectors>/<total data sectors> <held metadata root>
2621 */
2622 static int pool_status(struct dm_target *ti, status_type_t type,
2623 unsigned status_flags, char *result, unsigned maxlen)
2624 {
2625 int r;
2626 unsigned sz = 0;
2627 uint64_t transaction_id;
2628 dm_block_t nr_free_blocks_data;
2629 dm_block_t nr_free_blocks_metadata;
2630 dm_block_t nr_blocks_data;
2631 dm_block_t nr_blocks_metadata;
2632 dm_block_t held_root;
2633 char buf[BDEVNAME_SIZE];
2634 char buf2[BDEVNAME_SIZE];
2635 struct pool_c *pt = ti->private;
2636 struct pool *pool = pt->pool;
2637
2638 switch (type) {
2639 case STATUSTYPE_INFO:
2640 if (get_pool_mode(pool) == PM_FAIL) {
2641 DMEMIT("Fail");
2642 break;
2643 }
2644
2645 /* Commit to ensure statistics aren't out-of-date */
2646 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2647 (void) commit_or_fallback(pool);
2648
2649 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2650 &transaction_id);
2651 if (r)
2652 return r;
2653
2654 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2655 &nr_free_blocks_metadata);
2656 if (r)
2657 return r;
2658
2659 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2660 if (r)
2661 return r;
2662
2663 r = dm_pool_get_free_block_count(pool->pmd,
2664 &nr_free_blocks_data);
2665 if (r)
2666 return r;
2667
2668 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2669 if (r)
2670 return r;
2671
2672 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2673 if (r)
2674 return r;
2675
2676 DMEMIT("%llu %llu/%llu %llu/%llu ",
2677 (unsigned long long)transaction_id,
2678 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2679 (unsigned long long)nr_blocks_metadata,
2680 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2681 (unsigned long long)nr_blocks_data);
2682
2683 if (held_root)
2684 DMEMIT("%llu ", held_root);
2685 else
2686 DMEMIT("- ");
2687
2688 if (pool->pf.mode == PM_READ_ONLY)
2689 DMEMIT("ro ");
2690 else
2691 DMEMIT("rw ");
2692
2693 if (pool->pf.discard_enabled && pool->pf.discard_passdown)
2694 DMEMIT("discard_passdown");
2695 else
2696 DMEMIT("no_discard_passdown");
2697
2698 break;
2699
2700 case STATUSTYPE_TABLE:
2701 DMEMIT("%s %s %lu %llu ",
2702 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2703 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2704 (unsigned long)pool->sectors_per_block,
2705 (unsigned long long)pt->low_water_blocks);
2706 emit_flags(&pt->pf, result, sz, maxlen);
2707 break;
2708 }
2709
2710 return 0;
2711 }
2712
2713 static int pool_iterate_devices(struct dm_target *ti,
2714 iterate_devices_callout_fn fn, void *data)
2715 {
2716 struct pool_c *pt = ti->private;
2717
2718 return fn(ti, pt->data_dev, 0, ti->len, data);
2719 }
2720
2721 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2722 struct bio_vec *biovec, int max_size)
2723 {
2724 struct pool_c *pt = ti->private;
2725 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2726
2727 if (!q->merge_bvec_fn)
2728 return max_size;
2729
2730 bvm->bi_bdev = pt->data_dev->bdev;
2731
2732 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2733 }
2734
2735 static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2736 {
2737 /*
2738 * FIXME: these limits may be incompatible with the pool's data device
2739 */
2740 limits->max_discard_sectors = pool->sectors_per_block;
2741
2742 /*
2743 * This is just a hint, and not enforced. We have to cope with
2744 * bios that cover a block partially. A discard that spans a block
2745 * boundary is not sent to this target.
2746 */
2747 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2748 limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2749 }
2750
2751 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2752 {
2753 struct pool_c *pt = ti->private;
2754 struct pool *pool = pt->pool;
2755
2756 blk_limits_io_min(limits, 0);
2757 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2758 if (pool->pf.discard_enabled)
2759 set_discard_limits(pool, limits);
2760 }
2761
2762 static struct target_type pool_target = {
2763 .name = "thin-pool",
2764 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2765 DM_TARGET_IMMUTABLE,
2766 .version = {1, 3, 0},
2767 .module = THIS_MODULE,
2768 .ctr = pool_ctr,
2769 .dtr = pool_dtr,
2770 .map = pool_map,
2771 .postsuspend = pool_postsuspend,
2772 .preresume = pool_preresume,
2773 .resume = pool_resume,
2774 .message = pool_message,
2775 .status = pool_status,
2776 .merge = pool_merge,
2777 .iterate_devices = pool_iterate_devices,
2778 .io_hints = pool_io_hints,
2779 };
2780
2781 /*----------------------------------------------------------------
2782 * Thin target methods
2783 *--------------------------------------------------------------*/
2784 static void thin_dtr(struct dm_target *ti)
2785 {
2786 struct thin_c *tc = ti->private;
2787
2788 mutex_lock(&dm_thin_pool_table.mutex);
2789
2790 __pool_dec(tc->pool);
2791 dm_pool_close_thin_device(tc->td);
2792 dm_put_device(ti, tc->pool_dev);
2793 if (tc->origin_dev)
2794 dm_put_device(ti, tc->origin_dev);
2795 kfree(tc);
2796
2797 mutex_unlock(&dm_thin_pool_table.mutex);
2798 }
2799
2800 /*
2801 * Thin target parameters:
2802 *
2803 * <pool_dev> <dev_id> [origin_dev]
2804 *
2805 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2806 * dev_id: the internal device identifier
2807 * origin_dev: a device external to the pool that should act as the origin
2808 *
2809 * If the pool device has discards disabled, they get disabled for the thin
2810 * device as well.
2811 */
2812 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2813 {
2814 int r;
2815 struct thin_c *tc;
2816 struct dm_dev *pool_dev, *origin_dev;
2817 struct mapped_device *pool_md;
2818
2819 mutex_lock(&dm_thin_pool_table.mutex);
2820
2821 if (argc != 2 && argc != 3) {
2822 ti->error = "Invalid argument count";
2823 r = -EINVAL;
2824 goto out_unlock;
2825 }
2826
2827 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2828 if (!tc) {
2829 ti->error = "Out of memory";
2830 r = -ENOMEM;
2831 goto out_unlock;
2832 }
2833
2834 if (argc == 3) {
2835 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2836 if (r) {
2837 ti->error = "Error opening origin device";
2838 goto bad_origin_dev;
2839 }
2840 tc->origin_dev = origin_dev;
2841 }
2842
2843 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2844 if (r) {
2845 ti->error = "Error opening pool device";
2846 goto bad_pool_dev;
2847 }
2848 tc->pool_dev = pool_dev;
2849
2850 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2851 ti->error = "Invalid device id";
2852 r = -EINVAL;
2853 goto bad_common;
2854 }
2855
2856 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2857 if (!pool_md) {
2858 ti->error = "Couldn't get pool mapped device";
2859 r = -EINVAL;
2860 goto bad_common;
2861 }
2862
2863 tc->pool = __pool_table_lookup(pool_md);
2864 if (!tc->pool) {
2865 ti->error = "Couldn't find pool object";
2866 r = -EINVAL;
2867 goto bad_pool_lookup;
2868 }
2869 __pool_inc(tc->pool);
2870
2871 if (get_pool_mode(tc->pool) == PM_FAIL) {
2872 ti->error = "Couldn't open thin device, Pool is in fail mode";
2873 goto bad_thin_open;
2874 }
2875
2876 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2877 if (r) {
2878 ti->error = "Couldn't open thin internal device";
2879 goto bad_thin_open;
2880 }
2881
2882 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2883 if (r)
2884 goto bad_thin_open;
2885
2886 ti->num_flush_requests = 1;
2887 ti->flush_supported = true;
2888
2889 /* In case the pool supports discards, pass them on. */
2890 if (tc->pool->pf.discard_enabled) {
2891 ti->discards_supported = true;
2892 ti->num_discard_requests = 1;
2893 ti->discard_zeroes_data_unsupported = true;
2894 /* Discard requests must be split on a block boundary */
2895 ti->split_discard_requests = true;
2896 }
2897
2898 dm_put(pool_md);
2899
2900 mutex_unlock(&dm_thin_pool_table.mutex);
2901
2902 return 0;
2903
2904 bad_thin_open:
2905 __pool_dec(tc->pool);
2906 bad_pool_lookup:
2907 dm_put(pool_md);
2908 bad_common:
2909 dm_put_device(ti, tc->pool_dev);
2910 bad_pool_dev:
2911 if (tc->origin_dev)
2912 dm_put_device(ti, tc->origin_dev);
2913 bad_origin_dev:
2914 kfree(tc);
2915 out_unlock:
2916 mutex_unlock(&dm_thin_pool_table.mutex);
2917
2918 return r;
2919 }
2920
2921 static int thin_map(struct dm_target *ti, struct bio *bio,
2922 union map_info *map_context)
2923 {
2924 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2925
2926 return thin_bio_map(ti, bio, map_context);
2927 }
2928
2929 static int thin_endio(struct dm_target *ti,
2930 struct bio *bio, int err,
2931 union map_info *map_context)
2932 {
2933 unsigned long flags;
2934 struct dm_thin_endio_hook *h = map_context->ptr;
2935 struct list_head work;
2936 struct dm_thin_new_mapping *m, *tmp;
2937 struct pool *pool = h->tc->pool;
2938
2939 if (h->shared_read_entry) {
2940 INIT_LIST_HEAD(&work);
2941 ds_dec(h->shared_read_entry, &work);
2942
2943 spin_lock_irqsave(&pool->lock, flags);
2944 list_for_each_entry_safe(m, tmp, &work, list) {
2945 list_del(&m->list);
2946 m->quiesced = 1;
2947 __maybe_add_mapping(m);
2948 }
2949 spin_unlock_irqrestore(&pool->lock, flags);
2950 }
2951
2952 if (h->all_io_entry) {
2953 INIT_LIST_HEAD(&work);
2954 ds_dec(h->all_io_entry, &work);
2955 spin_lock_irqsave(&pool->lock, flags);
2956 list_for_each_entry_safe(m, tmp, &work, list)
2957 list_add(&m->list, &pool->prepared_discards);
2958 spin_unlock_irqrestore(&pool->lock, flags);
2959 }
2960
2961 mempool_free(h, pool->endio_hook_pool);
2962
2963 return 0;
2964 }
2965
2966 static void thin_postsuspend(struct dm_target *ti)
2967 {
2968 if (dm_noflush_suspending(ti))
2969 requeue_io((struct thin_c *)ti->private);
2970 }
2971
2972 /*
2973 * <nr mapped sectors> <highest mapped sector>
2974 */
2975 static int thin_status(struct dm_target *ti, status_type_t type,
2976 unsigned status_flags, char *result, unsigned maxlen)
2977 {
2978 int r;
2979 ssize_t sz = 0;
2980 dm_block_t mapped, highest;
2981 char buf[BDEVNAME_SIZE];
2982 struct thin_c *tc = ti->private;
2983
2984 if (get_pool_mode(tc->pool) == PM_FAIL) {
2985 DMEMIT("Fail");
2986 return 0;
2987 }
2988
2989 if (!tc->td)
2990 DMEMIT("-");
2991 else {
2992 switch (type) {
2993 case STATUSTYPE_INFO:
2994 r = dm_thin_get_mapped_count(tc->td, &mapped);
2995 if (r)
2996 return r;
2997
2998 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2999 if (r < 0)
3000 return r;
3001
3002 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3003 if (r)
3004 DMEMIT("%llu", ((highest + 1) *
3005 tc->pool->sectors_per_block) - 1);
3006 else
3007 DMEMIT("-");
3008 break;
3009
3010 case STATUSTYPE_TABLE:
3011 DMEMIT("%s %lu",
3012 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3013 (unsigned long) tc->dev_id);
3014 if (tc->origin_dev)
3015 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3016 break;
3017 }
3018 }
3019
3020 return 0;
3021 }
3022
3023 static int thin_iterate_devices(struct dm_target *ti,
3024 iterate_devices_callout_fn fn, void *data)
3025 {
3026 sector_t blocks;
3027 struct thin_c *tc = ti->private;
3028 struct pool *pool = tc->pool;
3029
3030 /*
3031 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3032 * we follow a more convoluted path through to the pool's target.
3033 */
3034 if (!pool->ti)
3035 return 0; /* nothing is bound */
3036
3037 blocks = pool->ti->len;
3038 (void) sector_div(blocks, pool->sectors_per_block);
3039 if (blocks)
3040 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3041
3042 return 0;
3043 }
3044
3045 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
3046 {
3047 struct thin_c *tc = ti->private;
3048 struct pool *pool = tc->pool;
3049
3050 blk_limits_io_min(limits, 0);
3051 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3052 set_discard_limits(pool, limits);
3053 }
3054
3055 static struct target_type thin_target = {
3056 .name = "thin",
3057 .version = {1, 3, 0},
3058 .module = THIS_MODULE,
3059 .ctr = thin_ctr,
3060 .dtr = thin_dtr,
3061 .map = thin_map,
3062 .end_io = thin_endio,
3063 .postsuspend = thin_postsuspend,
3064 .status = thin_status,
3065 .iterate_devices = thin_iterate_devices,
3066 .io_hints = thin_io_hints,
3067 };
3068
3069 /*----------------------------------------------------------------*/
3070
3071 static int __init dm_thin_init(void)
3072 {
3073 int r;
3074
3075 pool_table_init();
3076
3077 r = dm_register_target(&thin_target);
3078 if (r)
3079 return r;
3080
3081 r = dm_register_target(&pool_target);
3082 if (r)
3083 goto bad_pool_target;
3084
3085 r = -ENOMEM;
3086
3087 _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
3088 if (!_cell_cache)
3089 goto bad_cell_cache;
3090
3091 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3092 if (!_new_mapping_cache)
3093 goto bad_new_mapping_cache;
3094
3095 _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
3096 if (!_endio_hook_cache)
3097 goto bad_endio_hook_cache;
3098
3099 return 0;
3100
3101 bad_endio_hook_cache:
3102 kmem_cache_destroy(_new_mapping_cache);
3103 bad_new_mapping_cache:
3104 kmem_cache_destroy(_cell_cache);
3105 bad_cell_cache:
3106 dm_unregister_target(&pool_target);
3107 bad_pool_target:
3108 dm_unregister_target(&thin_target);
3109
3110 return r;
3111 }
3112
3113 static void dm_thin_exit(void)
3114 {
3115 dm_unregister_target(&thin_target);
3116 dm_unregister_target(&pool_target);
3117
3118 kmem_cache_destroy(_cell_cache);
3119 kmem_cache_destroy(_new_mapping_cache);
3120 kmem_cache_destroy(_endio_hook_cache);
3121 }
3122
3123 module_init(dm_thin_init);
3124 module_exit(dm_thin_exit);
3125
3126 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3127 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3128 MODULE_LICENSE("GPL");