Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm-thin-metadata.c
1 /*
2 * Copyright (C) 2011 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
19 *
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
22 *
23 * - A space map managing the metadata blocks.
24 *
25 * - A space map managing the data blocks.
26 *
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28 *
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
32 * bits.
33 *
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
41 *
42 * Space maps have 2 btrees:
43 *
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
47 *
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
50 *
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
55 *
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
59 *
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
65 *
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
70 *
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 1
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
82
83 /* This should be plenty */
84 #define SPACE_MAP_ROOT_SIZE 128
85
86 /*
87 * Little endian on-disk superblock and device details.
88 */
89 struct thin_disk_superblock {
90 __le32 csum; /* Checksum of superblock except for this field. */
91 __le32 flags;
92 __le64 blocknr; /* This block number, dm_block_t. */
93
94 __u8 uuid[16];
95 __le64 magic;
96 __le32 version;
97 __le32 time;
98
99 __le64 trans_id;
100
101 /*
102 * Root held by userspace transactions.
103 */
104 __le64 held_root;
105
106 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
107 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
108
109 /*
110 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
111 */
112 __le64 data_mapping_root;
113
114 /*
115 * Device detail root mapping dev_id -> device_details
116 */
117 __le64 device_details_root;
118
119 __le32 data_block_size; /* In 512-byte sectors. */
120
121 __le32 metadata_block_size; /* In 512-byte sectors. */
122 __le64 metadata_nr_blocks;
123
124 __le32 compat_flags;
125 __le32 compat_ro_flags;
126 __le32 incompat_flags;
127 } __packed;
128
129 struct disk_device_details {
130 __le64 mapped_blocks;
131 __le64 transaction_id; /* When created. */
132 __le32 creation_time;
133 __le32 snapshotted_time;
134 } __packed;
135
136 struct dm_pool_metadata {
137 struct hlist_node hash;
138
139 struct block_device *bdev;
140 struct dm_block_manager *bm;
141 struct dm_space_map *metadata_sm;
142 struct dm_space_map *data_sm;
143 struct dm_transaction_manager *tm;
144 struct dm_transaction_manager *nb_tm;
145
146 /*
147 * Two-level btree.
148 * First level holds thin_dev_t.
149 * Second level holds mappings.
150 */
151 struct dm_btree_info info;
152
153 /*
154 * Non-blocking version of the above.
155 */
156 struct dm_btree_info nb_info;
157
158 /*
159 * Just the top level for deleting whole devices.
160 */
161 struct dm_btree_info tl_info;
162
163 /*
164 * Just the bottom level for creating new devices.
165 */
166 struct dm_btree_info bl_info;
167
168 /*
169 * Describes the device details btree.
170 */
171 struct dm_btree_info details_info;
172
173 struct rw_semaphore root_lock;
174 uint32_t time;
175 int need_commit;
176 dm_block_t root;
177 dm_block_t details_root;
178 struct list_head thin_devices;
179 uint64_t trans_id;
180 unsigned long flags;
181 sector_t data_block_size;
182 };
183
184 struct dm_thin_device {
185 struct list_head list;
186 struct dm_pool_metadata *pmd;
187 dm_thin_id id;
188
189 int open_count;
190 int changed;
191 uint64_t mapped_blocks;
192 uint64_t transaction_id;
193 uint32_t creation_time;
194 uint32_t snapshotted_time;
195 };
196
197 /*----------------------------------------------------------------
198 * superblock validator
199 *--------------------------------------------------------------*/
200
201 #define SUPERBLOCK_CSUM_XOR 160774
202
203 static void sb_prepare_for_write(struct dm_block_validator *v,
204 struct dm_block *b,
205 size_t block_size)
206 {
207 struct thin_disk_superblock *disk_super = dm_block_data(b);
208
209 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
210 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
211 block_size - sizeof(__le32),
212 SUPERBLOCK_CSUM_XOR));
213 }
214
215 static int sb_check(struct dm_block_validator *v,
216 struct dm_block *b,
217 size_t block_size)
218 {
219 struct thin_disk_superblock *disk_super = dm_block_data(b);
220 __le32 csum_le;
221
222 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
223 DMERR("sb_check failed: blocknr %llu: "
224 "wanted %llu", le64_to_cpu(disk_super->blocknr),
225 (unsigned long long)dm_block_location(b));
226 return -ENOTBLK;
227 }
228
229 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
230 DMERR("sb_check failed: magic %llu: "
231 "wanted %llu", le64_to_cpu(disk_super->magic),
232 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
233 return -EILSEQ;
234 }
235
236 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
237 block_size - sizeof(__le32),
238 SUPERBLOCK_CSUM_XOR));
239 if (csum_le != disk_super->csum) {
240 DMERR("sb_check failed: csum %u: wanted %u",
241 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
242 return -EILSEQ;
243 }
244
245 return 0;
246 }
247
248 static struct dm_block_validator sb_validator = {
249 .name = "superblock",
250 .prepare_for_write = sb_prepare_for_write,
251 .check = sb_check
252 };
253
254 /*----------------------------------------------------------------
255 * Methods for the btree value types
256 *--------------------------------------------------------------*/
257
258 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
259 {
260 return (b << 24) | t;
261 }
262
263 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
264 {
265 *b = v >> 24;
266 *t = v & ((1 << 24) - 1);
267 }
268
269 static void data_block_inc(void *context, void *value_le)
270 {
271 struct dm_space_map *sm = context;
272 __le64 v_le;
273 uint64_t b;
274 uint32_t t;
275
276 memcpy(&v_le, value_le, sizeof(v_le));
277 unpack_block_time(le64_to_cpu(v_le), &b, &t);
278 dm_sm_inc_block(sm, b);
279 }
280
281 static void data_block_dec(void *context, void *value_le)
282 {
283 struct dm_space_map *sm = context;
284 __le64 v_le;
285 uint64_t b;
286 uint32_t t;
287
288 memcpy(&v_le, value_le, sizeof(v_le));
289 unpack_block_time(le64_to_cpu(v_le), &b, &t);
290 dm_sm_dec_block(sm, b);
291 }
292
293 static int data_block_equal(void *context, void *value1_le, void *value2_le)
294 {
295 __le64 v1_le, v2_le;
296 uint64_t b1, b2;
297 uint32_t t;
298
299 memcpy(&v1_le, value1_le, sizeof(v1_le));
300 memcpy(&v2_le, value2_le, sizeof(v2_le));
301 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
302 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
303
304 return b1 == b2;
305 }
306
307 static void subtree_inc(void *context, void *value)
308 {
309 struct dm_btree_info *info = context;
310 __le64 root_le;
311 uint64_t root;
312
313 memcpy(&root_le, value, sizeof(root_le));
314 root = le64_to_cpu(root_le);
315 dm_tm_inc(info->tm, root);
316 }
317
318 static void subtree_dec(void *context, void *value)
319 {
320 struct dm_btree_info *info = context;
321 __le64 root_le;
322 uint64_t root;
323
324 memcpy(&root_le, value, sizeof(root_le));
325 root = le64_to_cpu(root_le);
326 if (dm_btree_del(info, root))
327 DMERR("btree delete failed\n");
328 }
329
330 static int subtree_equal(void *context, void *value1_le, void *value2_le)
331 {
332 __le64 v1_le, v2_le;
333 memcpy(&v1_le, value1_le, sizeof(v1_le));
334 memcpy(&v2_le, value2_le, sizeof(v2_le));
335
336 return v1_le == v2_le;
337 }
338
339 /*----------------------------------------------------------------*/
340
341 static int superblock_all_zeroes(struct dm_block_manager *bm, int *result)
342 {
343 int r;
344 unsigned i;
345 struct dm_block *b;
346 __le64 *data_le, zero = cpu_to_le64(0);
347 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
348
349 /*
350 * We can't use a validator here - it may be all zeroes.
351 */
352 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
353 if (r)
354 return r;
355
356 data_le = dm_block_data(b);
357 *result = 1;
358 for (i = 0; i < block_size; i++) {
359 if (data_le[i] != zero) {
360 *result = 0;
361 break;
362 }
363 }
364
365 return dm_bm_unlock(b);
366 }
367
368 static int init_pmd(struct dm_pool_metadata *pmd,
369 struct dm_block_manager *bm,
370 dm_block_t nr_blocks, int create)
371 {
372 int r;
373 struct dm_space_map *sm, *data_sm;
374 struct dm_transaction_manager *tm;
375 struct dm_block *sblock;
376
377 if (create) {
378 r = dm_tm_create_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
379 &sb_validator, &tm, &sm, &sblock);
380 if (r < 0) {
381 DMERR("tm_create_with_sm failed");
382 return r;
383 }
384
385 data_sm = dm_sm_disk_create(tm, nr_blocks);
386 if (IS_ERR(data_sm)) {
387 DMERR("sm_disk_create failed");
388 dm_tm_unlock(tm, sblock);
389 r = PTR_ERR(data_sm);
390 goto bad;
391 }
392 } else {
393 struct thin_disk_superblock *disk_super = NULL;
394 size_t space_map_root_offset =
395 offsetof(struct thin_disk_superblock, metadata_space_map_root);
396
397 r = dm_tm_open_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
398 &sb_validator, space_map_root_offset,
399 SPACE_MAP_ROOT_SIZE, &tm, &sm, &sblock);
400 if (r < 0) {
401 DMERR("tm_open_with_sm failed");
402 return r;
403 }
404
405 disk_super = dm_block_data(sblock);
406 data_sm = dm_sm_disk_open(tm, disk_super->data_space_map_root,
407 sizeof(disk_super->data_space_map_root));
408 if (IS_ERR(data_sm)) {
409 DMERR("sm_disk_open failed");
410 r = PTR_ERR(data_sm);
411 goto bad;
412 }
413 }
414
415
416 r = dm_tm_unlock(tm, sblock);
417 if (r < 0) {
418 DMERR("couldn't unlock superblock");
419 goto bad_data_sm;
420 }
421
422 pmd->bm = bm;
423 pmd->metadata_sm = sm;
424 pmd->data_sm = data_sm;
425 pmd->tm = tm;
426 pmd->nb_tm = dm_tm_create_non_blocking_clone(tm);
427 if (!pmd->nb_tm) {
428 DMERR("could not create clone tm");
429 r = -ENOMEM;
430 goto bad_data_sm;
431 }
432
433 pmd->info.tm = tm;
434 pmd->info.levels = 2;
435 pmd->info.value_type.context = pmd->data_sm;
436 pmd->info.value_type.size = sizeof(__le64);
437 pmd->info.value_type.inc = data_block_inc;
438 pmd->info.value_type.dec = data_block_dec;
439 pmd->info.value_type.equal = data_block_equal;
440
441 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
442 pmd->nb_info.tm = pmd->nb_tm;
443
444 pmd->tl_info.tm = tm;
445 pmd->tl_info.levels = 1;
446 pmd->tl_info.value_type.context = &pmd->info;
447 pmd->tl_info.value_type.size = sizeof(__le64);
448 pmd->tl_info.value_type.inc = subtree_inc;
449 pmd->tl_info.value_type.dec = subtree_dec;
450 pmd->tl_info.value_type.equal = subtree_equal;
451
452 pmd->bl_info.tm = tm;
453 pmd->bl_info.levels = 1;
454 pmd->bl_info.value_type.context = pmd->data_sm;
455 pmd->bl_info.value_type.size = sizeof(__le64);
456 pmd->bl_info.value_type.inc = data_block_inc;
457 pmd->bl_info.value_type.dec = data_block_dec;
458 pmd->bl_info.value_type.equal = data_block_equal;
459
460 pmd->details_info.tm = tm;
461 pmd->details_info.levels = 1;
462 pmd->details_info.value_type.context = NULL;
463 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
464 pmd->details_info.value_type.inc = NULL;
465 pmd->details_info.value_type.dec = NULL;
466 pmd->details_info.value_type.equal = NULL;
467
468 pmd->root = 0;
469
470 init_rwsem(&pmd->root_lock);
471 pmd->time = 0;
472 pmd->need_commit = 0;
473 pmd->details_root = 0;
474 pmd->trans_id = 0;
475 pmd->flags = 0;
476 INIT_LIST_HEAD(&pmd->thin_devices);
477
478 return 0;
479
480 bad_data_sm:
481 dm_sm_destroy(data_sm);
482 bad:
483 dm_tm_destroy(tm);
484 dm_sm_destroy(sm);
485
486 return r;
487 }
488
489 static int __begin_transaction(struct dm_pool_metadata *pmd)
490 {
491 int r;
492 u32 features;
493 struct thin_disk_superblock *disk_super;
494 struct dm_block *sblock;
495
496 /*
497 * __maybe_commit_transaction() resets these
498 */
499 WARN_ON(pmd->need_commit);
500
501 /*
502 * We re-read the superblock every time. Shouldn't need to do this
503 * really.
504 */
505 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
506 &sb_validator, &sblock);
507 if (r)
508 return r;
509
510 disk_super = dm_block_data(sblock);
511 pmd->time = le32_to_cpu(disk_super->time);
512 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
513 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
514 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
515 pmd->flags = le32_to_cpu(disk_super->flags);
516 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
517
518 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
519 if (features) {
520 DMERR("could not access metadata due to "
521 "unsupported optional features (%lx).",
522 (unsigned long)features);
523 r = -EINVAL;
524 goto out;
525 }
526
527 /*
528 * Check for read-only metadata to skip the following RDWR checks.
529 */
530 if (get_disk_ro(pmd->bdev->bd_disk))
531 goto out;
532
533 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
534 if (features) {
535 DMERR("could not access metadata RDWR due to "
536 "unsupported optional features (%lx).",
537 (unsigned long)features);
538 r = -EINVAL;
539 }
540
541 out:
542 dm_bm_unlock(sblock);
543 return r;
544 }
545
546 static int __write_changed_details(struct dm_pool_metadata *pmd)
547 {
548 int r;
549 struct dm_thin_device *td, *tmp;
550 struct disk_device_details details;
551 uint64_t key;
552
553 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
554 if (!td->changed)
555 continue;
556
557 key = td->id;
558
559 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
560 details.transaction_id = cpu_to_le64(td->transaction_id);
561 details.creation_time = cpu_to_le32(td->creation_time);
562 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
563 __dm_bless_for_disk(&details);
564
565 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
566 &key, &details, &pmd->details_root);
567 if (r)
568 return r;
569
570 if (td->open_count)
571 td->changed = 0;
572 else {
573 list_del(&td->list);
574 kfree(td);
575 }
576
577 pmd->need_commit = 1;
578 }
579
580 return 0;
581 }
582
583 static int __commit_transaction(struct dm_pool_metadata *pmd)
584 {
585 /*
586 * FIXME: Associated pool should be made read-only on failure.
587 */
588 int r;
589 size_t metadata_len, data_len;
590 struct thin_disk_superblock *disk_super;
591 struct dm_block *sblock;
592
593 /*
594 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
595 */
596 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
597
598 r = __write_changed_details(pmd);
599 if (r < 0)
600 goto out;
601
602 if (!pmd->need_commit)
603 goto out;
604
605 r = dm_sm_commit(pmd->data_sm);
606 if (r < 0)
607 goto out;
608
609 r = dm_tm_pre_commit(pmd->tm);
610 if (r < 0)
611 goto out;
612
613 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
614 if (r < 0)
615 goto out;
616
617 r = dm_sm_root_size(pmd->metadata_sm, &data_len);
618 if (r < 0)
619 goto out;
620
621 r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
622 &sb_validator, &sblock);
623 if (r)
624 goto out;
625
626 disk_super = dm_block_data(sblock);
627 disk_super->time = cpu_to_le32(pmd->time);
628 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
629 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
630 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
631 disk_super->flags = cpu_to_le32(pmd->flags);
632
633 r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
634 metadata_len);
635 if (r < 0)
636 goto out_locked;
637
638 r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
639 data_len);
640 if (r < 0)
641 goto out_locked;
642
643 r = dm_tm_commit(pmd->tm, sblock);
644 if (!r)
645 pmd->need_commit = 0;
646
647 out:
648 return r;
649
650 out_locked:
651 dm_bm_unlock(sblock);
652 return r;
653 }
654
655 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
656 sector_t data_block_size)
657 {
658 int r;
659 struct thin_disk_superblock *disk_super;
660 struct dm_pool_metadata *pmd;
661 sector_t bdev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
662 struct dm_block_manager *bm;
663 int create;
664 struct dm_block *sblock;
665
666 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
667 if (!pmd) {
668 DMERR("could not allocate metadata struct");
669 return ERR_PTR(-ENOMEM);
670 }
671
672 /*
673 * Max hex locks:
674 * 3 for btree insert +
675 * 2 for btree lookup used within space map
676 */
677 bm = dm_block_manager_create(bdev, THIN_METADATA_BLOCK_SIZE,
678 THIN_METADATA_CACHE_SIZE, 5);
679 if (!bm) {
680 DMERR("could not create block manager");
681 kfree(pmd);
682 return ERR_PTR(-ENOMEM);
683 }
684
685 r = superblock_all_zeroes(bm, &create);
686 if (r) {
687 dm_block_manager_destroy(bm);
688 kfree(pmd);
689 return ERR_PTR(r);
690 }
691
692
693 r = init_pmd(pmd, bm, 0, create);
694 if (r) {
695 dm_block_manager_destroy(bm);
696 kfree(pmd);
697 return ERR_PTR(r);
698 }
699 pmd->bdev = bdev;
700
701 if (!create) {
702 r = __begin_transaction(pmd);
703 if (r < 0)
704 goto bad;
705 return pmd;
706 }
707
708 /*
709 * Create.
710 */
711 r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
712 &sb_validator, &sblock);
713 if (r)
714 goto bad;
715
716 disk_super = dm_block_data(sblock);
717 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
718 disk_super->version = cpu_to_le32(THIN_VERSION);
719 disk_super->time = 0;
720 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
721 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
722 disk_super->data_block_size = cpu_to_le32(data_block_size);
723
724 r = dm_bm_unlock(sblock);
725 if (r < 0)
726 goto bad;
727
728 r = dm_btree_empty(&pmd->info, &pmd->root);
729 if (r < 0)
730 goto bad;
731
732 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
733 if (r < 0) {
734 DMERR("couldn't create devices root");
735 goto bad;
736 }
737
738 pmd->flags = 0;
739 pmd->need_commit = 1;
740 r = dm_pool_commit_metadata(pmd);
741 if (r < 0) {
742 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
743 __func__, r);
744 goto bad;
745 }
746
747 return pmd;
748
749 bad:
750 if (dm_pool_metadata_close(pmd) < 0)
751 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
752 return ERR_PTR(r);
753 }
754
755 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
756 {
757 int r;
758 unsigned open_devices = 0;
759 struct dm_thin_device *td, *tmp;
760
761 down_read(&pmd->root_lock);
762 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
763 if (td->open_count)
764 open_devices++;
765 else {
766 list_del(&td->list);
767 kfree(td);
768 }
769 }
770 up_read(&pmd->root_lock);
771
772 if (open_devices) {
773 DMERR("attempt to close pmd when %u device(s) are still open",
774 open_devices);
775 return -EBUSY;
776 }
777
778 r = __commit_transaction(pmd);
779 if (r < 0)
780 DMWARN("%s: __commit_transaction() failed, error = %d",
781 __func__, r);
782
783 dm_tm_destroy(pmd->tm);
784 dm_tm_destroy(pmd->nb_tm);
785 dm_block_manager_destroy(pmd->bm);
786 dm_sm_destroy(pmd->metadata_sm);
787 dm_sm_destroy(pmd->data_sm);
788 kfree(pmd);
789
790 return 0;
791 }
792
793 /*
794 * __open_device: Returns @td corresponding to device with id @dev,
795 * creating it if @create is set and incrementing @td->open_count.
796 * On failure, @td is undefined.
797 */
798 static int __open_device(struct dm_pool_metadata *pmd,
799 dm_thin_id dev, int create,
800 struct dm_thin_device **td)
801 {
802 int r, changed = 0;
803 struct dm_thin_device *td2;
804 uint64_t key = dev;
805 struct disk_device_details details_le;
806
807 /*
808 * If the device is already open, return it.
809 */
810 list_for_each_entry(td2, &pmd->thin_devices, list)
811 if (td2->id == dev) {
812 /*
813 * May not create an already-open device.
814 */
815 if (create)
816 return -EEXIST;
817
818 td2->open_count++;
819 *td = td2;
820 return 0;
821 }
822
823 /*
824 * Check the device exists.
825 */
826 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
827 &key, &details_le);
828 if (r) {
829 if (r != -ENODATA || !create)
830 return r;
831
832 /*
833 * Create new device.
834 */
835 changed = 1;
836 details_le.mapped_blocks = 0;
837 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
838 details_le.creation_time = cpu_to_le32(pmd->time);
839 details_le.snapshotted_time = cpu_to_le32(pmd->time);
840 }
841
842 *td = kmalloc(sizeof(**td), GFP_NOIO);
843 if (!*td)
844 return -ENOMEM;
845
846 (*td)->pmd = pmd;
847 (*td)->id = dev;
848 (*td)->open_count = 1;
849 (*td)->changed = changed;
850 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
851 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
852 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
853 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
854
855 list_add(&(*td)->list, &pmd->thin_devices);
856
857 return 0;
858 }
859
860 static void __close_device(struct dm_thin_device *td)
861 {
862 --td->open_count;
863 }
864
865 static int __create_thin(struct dm_pool_metadata *pmd,
866 dm_thin_id dev)
867 {
868 int r;
869 dm_block_t dev_root;
870 uint64_t key = dev;
871 struct disk_device_details details_le;
872 struct dm_thin_device *td;
873 __le64 value;
874
875 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
876 &key, &details_le);
877 if (!r)
878 return -EEXIST;
879
880 /*
881 * Create an empty btree for the mappings.
882 */
883 r = dm_btree_empty(&pmd->bl_info, &dev_root);
884 if (r)
885 return r;
886
887 /*
888 * Insert it into the main mapping tree.
889 */
890 value = cpu_to_le64(dev_root);
891 __dm_bless_for_disk(&value);
892 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
893 if (r) {
894 dm_btree_del(&pmd->bl_info, dev_root);
895 return r;
896 }
897
898 r = __open_device(pmd, dev, 1, &td);
899 if (r) {
900 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
901 dm_btree_del(&pmd->bl_info, dev_root);
902 return r;
903 }
904 __close_device(td);
905
906 return r;
907 }
908
909 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
910 {
911 int r;
912
913 down_write(&pmd->root_lock);
914 r = __create_thin(pmd, dev);
915 up_write(&pmd->root_lock);
916
917 return r;
918 }
919
920 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
921 struct dm_thin_device *snap,
922 dm_thin_id origin, uint32_t time)
923 {
924 int r;
925 struct dm_thin_device *td;
926
927 r = __open_device(pmd, origin, 0, &td);
928 if (r)
929 return r;
930
931 td->changed = 1;
932 td->snapshotted_time = time;
933
934 snap->mapped_blocks = td->mapped_blocks;
935 snap->snapshotted_time = time;
936 __close_device(td);
937
938 return 0;
939 }
940
941 static int __create_snap(struct dm_pool_metadata *pmd,
942 dm_thin_id dev, dm_thin_id origin)
943 {
944 int r;
945 dm_block_t origin_root;
946 uint64_t key = origin, dev_key = dev;
947 struct dm_thin_device *td;
948 struct disk_device_details details_le;
949 __le64 value;
950
951 /* check this device is unused */
952 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
953 &dev_key, &details_le);
954 if (!r)
955 return -EEXIST;
956
957 /* find the mapping tree for the origin */
958 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
959 if (r)
960 return r;
961 origin_root = le64_to_cpu(value);
962
963 /* clone the origin, an inc will do */
964 dm_tm_inc(pmd->tm, origin_root);
965
966 /* insert into the main mapping tree */
967 value = cpu_to_le64(origin_root);
968 __dm_bless_for_disk(&value);
969 key = dev;
970 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
971 if (r) {
972 dm_tm_dec(pmd->tm, origin_root);
973 return r;
974 }
975
976 pmd->time++;
977
978 r = __open_device(pmd, dev, 1, &td);
979 if (r)
980 goto bad;
981
982 r = __set_snapshot_details(pmd, td, origin, pmd->time);
983 __close_device(td);
984
985 if (r)
986 goto bad;
987
988 return 0;
989
990 bad:
991 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
992 dm_btree_remove(&pmd->details_info, pmd->details_root,
993 &key, &pmd->details_root);
994 return r;
995 }
996
997 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
998 dm_thin_id dev,
999 dm_thin_id origin)
1000 {
1001 int r;
1002
1003 down_write(&pmd->root_lock);
1004 r = __create_snap(pmd, dev, origin);
1005 up_write(&pmd->root_lock);
1006
1007 return r;
1008 }
1009
1010 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1011 {
1012 int r;
1013 uint64_t key = dev;
1014 struct dm_thin_device *td;
1015
1016 /* TODO: failure should mark the transaction invalid */
1017 r = __open_device(pmd, dev, 0, &td);
1018 if (r)
1019 return r;
1020
1021 if (td->open_count > 1) {
1022 __close_device(td);
1023 return -EBUSY;
1024 }
1025
1026 list_del(&td->list);
1027 kfree(td);
1028 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1029 &key, &pmd->details_root);
1030 if (r)
1031 return r;
1032
1033 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1034 if (r)
1035 return r;
1036
1037 pmd->need_commit = 1;
1038
1039 return 0;
1040 }
1041
1042 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1043 dm_thin_id dev)
1044 {
1045 int r;
1046
1047 down_write(&pmd->root_lock);
1048 r = __delete_device(pmd, dev);
1049 up_write(&pmd->root_lock);
1050
1051 return r;
1052 }
1053
1054 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1055 uint64_t current_id,
1056 uint64_t new_id)
1057 {
1058 down_write(&pmd->root_lock);
1059 if (pmd->trans_id != current_id) {
1060 up_write(&pmd->root_lock);
1061 DMERR("mismatched transaction id");
1062 return -EINVAL;
1063 }
1064
1065 pmd->trans_id = new_id;
1066 pmd->need_commit = 1;
1067 up_write(&pmd->root_lock);
1068
1069 return 0;
1070 }
1071
1072 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1073 uint64_t *result)
1074 {
1075 down_read(&pmd->root_lock);
1076 *result = pmd->trans_id;
1077 up_read(&pmd->root_lock);
1078
1079 return 0;
1080 }
1081
1082 static int __get_held_metadata_root(struct dm_pool_metadata *pmd,
1083 dm_block_t *result)
1084 {
1085 int r;
1086 struct thin_disk_superblock *disk_super;
1087 struct dm_block *sblock;
1088
1089 r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1090 &sb_validator, &sblock);
1091 if (r)
1092 return r;
1093
1094 disk_super = dm_block_data(sblock);
1095 *result = le64_to_cpu(disk_super->held_root);
1096
1097 return dm_bm_unlock(sblock);
1098 }
1099
1100 int dm_pool_get_held_metadata_root(struct dm_pool_metadata *pmd,
1101 dm_block_t *result)
1102 {
1103 int r;
1104
1105 down_read(&pmd->root_lock);
1106 r = __get_held_metadata_root(pmd, result);
1107 up_read(&pmd->root_lock);
1108
1109 return r;
1110 }
1111
1112 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1113 struct dm_thin_device **td)
1114 {
1115 int r;
1116
1117 down_write(&pmd->root_lock);
1118 r = __open_device(pmd, dev, 0, td);
1119 up_write(&pmd->root_lock);
1120
1121 return r;
1122 }
1123
1124 int dm_pool_close_thin_device(struct dm_thin_device *td)
1125 {
1126 down_write(&td->pmd->root_lock);
1127 __close_device(td);
1128 up_write(&td->pmd->root_lock);
1129
1130 return 0;
1131 }
1132
1133 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1134 {
1135 return td->id;
1136 }
1137
1138 static int __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1139 {
1140 return td->snapshotted_time > time;
1141 }
1142
1143 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1144 int can_block, struct dm_thin_lookup_result *result)
1145 {
1146 int r;
1147 uint64_t block_time = 0;
1148 __le64 value;
1149 struct dm_pool_metadata *pmd = td->pmd;
1150 dm_block_t keys[2] = { td->id, block };
1151
1152 if (can_block) {
1153 down_read(&pmd->root_lock);
1154 r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
1155 if (!r)
1156 block_time = le64_to_cpu(value);
1157 up_read(&pmd->root_lock);
1158
1159 } else if (down_read_trylock(&pmd->root_lock)) {
1160 r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
1161 if (!r)
1162 block_time = le64_to_cpu(value);
1163 up_read(&pmd->root_lock);
1164
1165 } else
1166 return -EWOULDBLOCK;
1167
1168 if (!r) {
1169 dm_block_t exception_block;
1170 uint32_t exception_time;
1171 unpack_block_time(block_time, &exception_block,
1172 &exception_time);
1173 result->block = exception_block;
1174 result->shared = __snapshotted_since(td, exception_time);
1175 }
1176
1177 return r;
1178 }
1179
1180 static int __insert(struct dm_thin_device *td, dm_block_t block,
1181 dm_block_t data_block)
1182 {
1183 int r, inserted;
1184 __le64 value;
1185 struct dm_pool_metadata *pmd = td->pmd;
1186 dm_block_t keys[2] = { td->id, block };
1187
1188 pmd->need_commit = 1;
1189 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1190 __dm_bless_for_disk(&value);
1191
1192 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1193 &pmd->root, &inserted);
1194 if (r)
1195 return r;
1196
1197 if (inserted) {
1198 td->mapped_blocks++;
1199 td->changed = 1;
1200 }
1201
1202 return 0;
1203 }
1204
1205 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1206 dm_block_t data_block)
1207 {
1208 int r;
1209
1210 down_write(&td->pmd->root_lock);
1211 r = __insert(td, block, data_block);
1212 up_write(&td->pmd->root_lock);
1213
1214 return r;
1215 }
1216
1217 static int __remove(struct dm_thin_device *td, dm_block_t block)
1218 {
1219 int r;
1220 struct dm_pool_metadata *pmd = td->pmd;
1221 dm_block_t keys[2] = { td->id, block };
1222
1223 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1224 if (r)
1225 return r;
1226
1227 td->mapped_blocks--;
1228 td->changed = 1;
1229 pmd->need_commit = 1;
1230
1231 return 0;
1232 }
1233
1234 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1235 {
1236 int r;
1237
1238 down_write(&td->pmd->root_lock);
1239 r = __remove(td, block);
1240 up_write(&td->pmd->root_lock);
1241
1242 return r;
1243 }
1244
1245 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1246 {
1247 int r;
1248
1249 down_write(&pmd->root_lock);
1250
1251 r = dm_sm_new_block(pmd->data_sm, result);
1252 pmd->need_commit = 1;
1253
1254 up_write(&pmd->root_lock);
1255
1256 return r;
1257 }
1258
1259 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1260 {
1261 int r;
1262
1263 down_write(&pmd->root_lock);
1264
1265 r = __commit_transaction(pmd);
1266 if (r <= 0)
1267 goto out;
1268
1269 /*
1270 * Open the next transaction.
1271 */
1272 r = __begin_transaction(pmd);
1273 out:
1274 up_write(&pmd->root_lock);
1275 return r;
1276 }
1277
1278 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1279 {
1280 int r;
1281
1282 down_read(&pmd->root_lock);
1283 r = dm_sm_get_nr_free(pmd->data_sm, result);
1284 up_read(&pmd->root_lock);
1285
1286 return r;
1287 }
1288
1289 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1290 dm_block_t *result)
1291 {
1292 int r;
1293
1294 down_read(&pmd->root_lock);
1295 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1296 up_read(&pmd->root_lock);
1297
1298 return r;
1299 }
1300
1301 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1302 dm_block_t *result)
1303 {
1304 int r;
1305
1306 down_read(&pmd->root_lock);
1307 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1308 up_read(&pmd->root_lock);
1309
1310 return r;
1311 }
1312
1313 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1314 {
1315 down_read(&pmd->root_lock);
1316 *result = pmd->data_block_size;
1317 up_read(&pmd->root_lock);
1318
1319 return 0;
1320 }
1321
1322 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1323 {
1324 int r;
1325
1326 down_read(&pmd->root_lock);
1327 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1328 up_read(&pmd->root_lock);
1329
1330 return r;
1331 }
1332
1333 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1334 {
1335 struct dm_pool_metadata *pmd = td->pmd;
1336
1337 down_read(&pmd->root_lock);
1338 *result = td->mapped_blocks;
1339 up_read(&pmd->root_lock);
1340
1341 return 0;
1342 }
1343
1344 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1345 {
1346 int r;
1347 __le64 value_le;
1348 dm_block_t thin_root;
1349 struct dm_pool_metadata *pmd = td->pmd;
1350
1351 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1352 if (r)
1353 return r;
1354
1355 thin_root = le64_to_cpu(value_le);
1356
1357 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1358 }
1359
1360 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1361 dm_block_t *result)
1362 {
1363 int r;
1364 struct dm_pool_metadata *pmd = td->pmd;
1365
1366 down_read(&pmd->root_lock);
1367 r = __highest_block(td, result);
1368 up_read(&pmd->root_lock);
1369
1370 return r;
1371 }
1372
1373 static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1374 {
1375 int r;
1376 dm_block_t old_count;
1377
1378 r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
1379 if (r)
1380 return r;
1381
1382 if (new_count == old_count)
1383 return 0;
1384
1385 if (new_count < old_count) {
1386 DMERR("cannot reduce size of data device");
1387 return -EINVAL;
1388 }
1389
1390 r = dm_sm_extend(pmd->data_sm, new_count - old_count);
1391 if (!r)
1392 pmd->need_commit = 1;
1393
1394 return r;
1395 }
1396
1397 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1398 {
1399 int r;
1400
1401 down_write(&pmd->root_lock);
1402 r = __resize_data_dev(pmd, new_count);
1403 up_write(&pmd->root_lock);
1404
1405 return r;
1406 }