Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm-table.c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <asm/atomic.h>
21
22 #define DM_MSG_PREFIX "table"
23
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28
29 /*
30 * The table has always exactly one reference from either mapped_device->map
31 * or hash_cell->new_map. This reference is not counted in table->holders.
32 * A pair of dm_create_table/dm_destroy_table functions is used for table
33 * creation/destruction.
34 *
35 * Temporary references from the other code increase table->holders. A pair
36 * of dm_table_get/dm_table_put functions is used to manipulate it.
37 *
38 * When the table is about to be destroyed, we wait for table->holders to
39 * drop to zero.
40 */
41
42 struct dm_table {
43 struct mapped_device *md;
44 atomic_t holders;
45 unsigned type;
46
47 /* btree table */
48 unsigned int depth;
49 unsigned int counts[MAX_DEPTH]; /* in nodes */
50 sector_t *index[MAX_DEPTH];
51
52 unsigned int num_targets;
53 unsigned int num_allocated;
54 sector_t *highs;
55 struct dm_target *targets;
56
57 unsigned discards_supported:1;
58
59 /*
60 * Indicates the rw permissions for the new logical
61 * device. This should be a combination of FMODE_READ
62 * and FMODE_WRITE.
63 */
64 fmode_t mode;
65
66 /* a list of devices used by this table */
67 struct list_head devices;
68
69 /* events get handed up using this callback */
70 void (*event_fn)(void *);
71 void *event_context;
72
73 struct dm_md_mempools *mempools;
74
75 struct list_head target_callbacks;
76 };
77
78 /*
79 * Similar to ceiling(log_size(n))
80 */
81 static unsigned int int_log(unsigned int n, unsigned int base)
82 {
83 int result = 0;
84
85 while (n > 1) {
86 n = dm_div_up(n, base);
87 result++;
88 }
89
90 return result;
91 }
92
93 /*
94 * Calculate the index of the child node of the n'th node k'th key.
95 */
96 static inline unsigned int get_child(unsigned int n, unsigned int k)
97 {
98 return (n * CHILDREN_PER_NODE) + k;
99 }
100
101 /*
102 * Return the n'th node of level l from table t.
103 */
104 static inline sector_t *get_node(struct dm_table *t,
105 unsigned int l, unsigned int n)
106 {
107 return t->index[l] + (n * KEYS_PER_NODE);
108 }
109
110 /*
111 * Return the highest key that you could lookup from the n'th
112 * node on level l of the btree.
113 */
114 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
115 {
116 for (; l < t->depth - 1; l++)
117 n = get_child(n, CHILDREN_PER_NODE - 1);
118
119 if (n >= t->counts[l])
120 return (sector_t) - 1;
121
122 return get_node(t, l, n)[KEYS_PER_NODE - 1];
123 }
124
125 /*
126 * Fills in a level of the btree based on the highs of the level
127 * below it.
128 */
129 static int setup_btree_index(unsigned int l, struct dm_table *t)
130 {
131 unsigned int n, k;
132 sector_t *node;
133
134 for (n = 0U; n < t->counts[l]; n++) {
135 node = get_node(t, l, n);
136
137 for (k = 0U; k < KEYS_PER_NODE; k++)
138 node[k] = high(t, l + 1, get_child(n, k));
139 }
140
141 return 0;
142 }
143
144 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
145 {
146 unsigned long size;
147 void *addr;
148
149 /*
150 * Check that we're not going to overflow.
151 */
152 if (nmemb > (ULONG_MAX / elem_size))
153 return NULL;
154
155 size = nmemb * elem_size;
156 addr = vmalloc(size);
157 if (addr)
158 memset(addr, 0, size);
159
160 return addr;
161 }
162
163 /*
164 * highs, and targets are managed as dynamic arrays during a
165 * table load.
166 */
167 static int alloc_targets(struct dm_table *t, unsigned int num)
168 {
169 sector_t *n_highs;
170 struct dm_target *n_targets;
171 int n = t->num_targets;
172
173 /*
174 * Allocate both the target array and offset array at once.
175 * Append an empty entry to catch sectors beyond the end of
176 * the device.
177 */
178 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
179 sizeof(sector_t));
180 if (!n_highs)
181 return -ENOMEM;
182
183 n_targets = (struct dm_target *) (n_highs + num);
184
185 if (n) {
186 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
187 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
188 }
189
190 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
191 vfree(t->highs);
192
193 t->num_allocated = num;
194 t->highs = n_highs;
195 t->targets = n_targets;
196
197 return 0;
198 }
199
200 int dm_table_create(struct dm_table **result, fmode_t mode,
201 unsigned num_targets, struct mapped_device *md)
202 {
203 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
204
205 if (!t)
206 return -ENOMEM;
207
208 INIT_LIST_HEAD(&t->devices);
209 INIT_LIST_HEAD(&t->target_callbacks);
210 atomic_set(&t->holders, 0);
211 t->discards_supported = 1;
212
213 if (!num_targets)
214 num_targets = KEYS_PER_NODE;
215
216 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
217
218 if (alloc_targets(t, num_targets)) {
219 kfree(t);
220 t = NULL;
221 return -ENOMEM;
222 }
223
224 t->mode = mode;
225 t->md = md;
226 *result = t;
227 return 0;
228 }
229
230 static void free_devices(struct list_head *devices)
231 {
232 struct list_head *tmp, *next;
233
234 list_for_each_safe(tmp, next, devices) {
235 struct dm_dev_internal *dd =
236 list_entry(tmp, struct dm_dev_internal, list);
237 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
238 dd->dm_dev.name);
239 kfree(dd);
240 }
241 }
242
243 void dm_table_destroy(struct dm_table *t)
244 {
245 unsigned int i;
246
247 if (!t)
248 return;
249
250 while (atomic_read(&t->holders))
251 msleep(1);
252 smp_mb();
253
254 /* free the indexes */
255 if (t->depth >= 2)
256 vfree(t->index[t->depth - 2]);
257
258 /* free the targets */
259 for (i = 0; i < t->num_targets; i++) {
260 struct dm_target *tgt = t->targets + i;
261
262 if (tgt->type->dtr)
263 tgt->type->dtr(tgt);
264
265 dm_put_target_type(tgt->type);
266 }
267
268 vfree(t->highs);
269
270 /* free the device list */
271 if (t->devices.next != &t->devices)
272 free_devices(&t->devices);
273
274 dm_free_md_mempools(t->mempools);
275
276 kfree(t);
277 }
278
279 void dm_table_get(struct dm_table *t)
280 {
281 atomic_inc(&t->holders);
282 }
283
284 void dm_table_put(struct dm_table *t)
285 {
286 if (!t)
287 return;
288
289 smp_mb__before_atomic_dec();
290 atomic_dec(&t->holders);
291 }
292
293 /*
294 * Checks to see if we need to extend highs or targets.
295 */
296 static inline int check_space(struct dm_table *t)
297 {
298 if (t->num_targets >= t->num_allocated)
299 return alloc_targets(t, t->num_allocated * 2);
300
301 return 0;
302 }
303
304 /*
305 * See if we've already got a device in the list.
306 */
307 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
308 {
309 struct dm_dev_internal *dd;
310
311 list_for_each_entry (dd, l, list)
312 if (dd->dm_dev.bdev->bd_dev == dev)
313 return dd;
314
315 return NULL;
316 }
317
318 /*
319 * Open a device so we can use it as a map destination.
320 */
321 static int open_dev(struct dm_dev_internal *d, dev_t dev,
322 struct mapped_device *md)
323 {
324 static char *_claim_ptr = "I belong to device-mapper";
325 struct block_device *bdev;
326
327 int r;
328
329 BUG_ON(d->dm_dev.bdev);
330
331 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
332 if (IS_ERR(bdev))
333 return PTR_ERR(bdev);
334
335 r = bd_link_disk_holder(bdev, dm_disk(md));
336 if (r) {
337 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
338 return r;
339 }
340
341 d->dm_dev.bdev = bdev;
342 return 0;
343 }
344
345 /*
346 * Close a device that we've been using.
347 */
348 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
349 {
350 if (!d->dm_dev.bdev)
351 return;
352
353 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
354 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
355 d->dm_dev.bdev = NULL;
356 }
357
358 /*
359 * If possible, this checks an area of a destination device is invalid.
360 */
361 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
362 sector_t start, sector_t len, void *data)
363 {
364 struct queue_limits *limits = data;
365 struct block_device *bdev = dev->bdev;
366 sector_t dev_size =
367 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
368 unsigned short logical_block_size_sectors =
369 limits->logical_block_size >> SECTOR_SHIFT;
370 char b[BDEVNAME_SIZE];
371
372 if (!dev_size)
373 return 0;
374
375 if ((start >= dev_size) || (start + len > dev_size)) {
376 DMWARN("%s: %s too small for target: "
377 "start=%llu, len=%llu, dev_size=%llu",
378 dm_device_name(ti->table->md), bdevname(bdev, b),
379 (unsigned long long)start,
380 (unsigned long long)len,
381 (unsigned long long)dev_size);
382 return 1;
383 }
384
385 if (logical_block_size_sectors <= 1)
386 return 0;
387
388 if (start & (logical_block_size_sectors - 1)) {
389 DMWARN("%s: start=%llu not aligned to h/w "
390 "logical block size %u of %s",
391 dm_device_name(ti->table->md),
392 (unsigned long long)start,
393 limits->logical_block_size, bdevname(bdev, b));
394 return 1;
395 }
396
397 if (len & (logical_block_size_sectors - 1)) {
398 DMWARN("%s: len=%llu not aligned to h/w "
399 "logical block size %u of %s",
400 dm_device_name(ti->table->md),
401 (unsigned long long)len,
402 limits->logical_block_size, bdevname(bdev, b));
403 return 1;
404 }
405
406 return 0;
407 }
408
409 /*
410 * This upgrades the mode on an already open dm_dev, being
411 * careful to leave things as they were if we fail to reopen the
412 * device and not to touch the existing bdev field in case
413 * it is accessed concurrently inside dm_table_any_congested().
414 */
415 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
416 struct mapped_device *md)
417 {
418 int r;
419 struct dm_dev_internal dd_new, dd_old;
420
421 dd_new = dd_old = *dd;
422
423 dd_new.dm_dev.mode |= new_mode;
424 dd_new.dm_dev.bdev = NULL;
425
426 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
427 if (r)
428 return r;
429
430 dd->dm_dev.mode |= new_mode;
431 close_dev(&dd_old, md);
432
433 return 0;
434 }
435
436 /*
437 * Add a device to the list, or just increment the usage count if
438 * it's already present.
439 */
440 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
441 const char *path, fmode_t mode, struct dm_dev **result)
442 {
443 int r;
444 dev_t uninitialized_var(dev);
445 struct dm_dev_internal *dd;
446 unsigned int major, minor;
447
448 BUG_ON(!t);
449
450 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
451 /* Extract the major/minor numbers */
452 dev = MKDEV(major, minor);
453 if (MAJOR(dev) != major || MINOR(dev) != minor)
454 return -EOVERFLOW;
455 } else {
456 /* convert the path to a device */
457 struct block_device *bdev = lookup_bdev(path);
458
459 if (IS_ERR(bdev))
460 return PTR_ERR(bdev);
461 dev = bdev->bd_dev;
462 bdput(bdev);
463 }
464
465 dd = find_device(&t->devices, dev);
466 if (!dd) {
467 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
468 if (!dd)
469 return -ENOMEM;
470
471 dd->dm_dev.mode = mode;
472 dd->dm_dev.bdev = NULL;
473
474 if ((r = open_dev(dd, dev, t->md))) {
475 kfree(dd);
476 return r;
477 }
478
479 format_dev_t(dd->dm_dev.name, dev);
480
481 atomic_set(&dd->count, 0);
482 list_add(&dd->list, &t->devices);
483
484 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
485 r = upgrade_mode(dd, mode, t->md);
486 if (r)
487 return r;
488 }
489 atomic_inc(&dd->count);
490
491 *result = &dd->dm_dev;
492 return 0;
493 }
494
495 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
496 sector_t start, sector_t len, void *data)
497 {
498 struct queue_limits *limits = data;
499 struct block_device *bdev = dev->bdev;
500 struct request_queue *q = bdev_get_queue(bdev);
501 char b[BDEVNAME_SIZE];
502
503 if (unlikely(!q)) {
504 DMWARN("%s: Cannot set limits for nonexistent device %s",
505 dm_device_name(ti->table->md), bdevname(bdev, b));
506 return 0;
507 }
508
509 if (bdev_stack_limits(limits, bdev, start) < 0)
510 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
511 "physical_block_size=%u, logical_block_size=%u, "
512 "alignment_offset=%u, start=%llu",
513 dm_device_name(ti->table->md), bdevname(bdev, b),
514 q->limits.physical_block_size,
515 q->limits.logical_block_size,
516 q->limits.alignment_offset,
517 (unsigned long long) start << SECTOR_SHIFT);
518
519 /*
520 * Check if merge fn is supported.
521 * If not we'll force DM to use PAGE_SIZE or
522 * smaller I/O, just to be safe.
523 */
524
525 if (q->merge_bvec_fn && !ti->type->merge)
526 blk_limits_max_hw_sectors(limits,
527 (unsigned int) (PAGE_SIZE >> 9));
528 return 0;
529 }
530 EXPORT_SYMBOL_GPL(dm_set_device_limits);
531
532 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
533 struct dm_dev **result)
534 {
535 return __table_get_device(ti->table, ti, path, mode, result);
536 }
537
538
539 /*
540 * Decrement a devices use count and remove it if necessary.
541 */
542 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
543 {
544 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
545 dm_dev);
546
547 if (atomic_dec_and_test(&dd->count)) {
548 close_dev(dd, ti->table->md);
549 list_del(&dd->list);
550 kfree(dd);
551 }
552 }
553
554 /*
555 * Checks to see if the target joins onto the end of the table.
556 */
557 static int adjoin(struct dm_table *table, struct dm_target *ti)
558 {
559 struct dm_target *prev;
560
561 if (!table->num_targets)
562 return !ti->begin;
563
564 prev = &table->targets[table->num_targets - 1];
565 return (ti->begin == (prev->begin + prev->len));
566 }
567
568 /*
569 * Used to dynamically allocate the arg array.
570 */
571 static char **realloc_argv(unsigned *array_size, char **old_argv)
572 {
573 char **argv;
574 unsigned new_size;
575
576 new_size = *array_size ? *array_size * 2 : 64;
577 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
578 if (argv) {
579 memcpy(argv, old_argv, *array_size * sizeof(*argv));
580 *array_size = new_size;
581 }
582
583 kfree(old_argv);
584 return argv;
585 }
586
587 /*
588 * Destructively splits up the argument list to pass to ctr.
589 */
590 int dm_split_args(int *argc, char ***argvp, char *input)
591 {
592 char *start, *end = input, *out, **argv = NULL;
593 unsigned array_size = 0;
594
595 *argc = 0;
596
597 if (!input) {
598 *argvp = NULL;
599 return 0;
600 }
601
602 argv = realloc_argv(&array_size, argv);
603 if (!argv)
604 return -ENOMEM;
605
606 while (1) {
607 /* Skip whitespace */
608 start = skip_spaces(end);
609
610 if (!*start)
611 break; /* success, we hit the end */
612
613 /* 'out' is used to remove any back-quotes */
614 end = out = start;
615 while (*end) {
616 /* Everything apart from '\0' can be quoted */
617 if (*end == '\\' && *(end + 1)) {
618 *out++ = *(end + 1);
619 end += 2;
620 continue;
621 }
622
623 if (isspace(*end))
624 break; /* end of token */
625
626 *out++ = *end++;
627 }
628
629 /* have we already filled the array ? */
630 if ((*argc + 1) > array_size) {
631 argv = realloc_argv(&array_size, argv);
632 if (!argv)
633 return -ENOMEM;
634 }
635
636 /* we know this is whitespace */
637 if (*end)
638 end++;
639
640 /* terminate the string and put it in the array */
641 *out = '\0';
642 argv[*argc] = start;
643 (*argc)++;
644 }
645
646 *argvp = argv;
647 return 0;
648 }
649
650 /*
651 * Impose necessary and sufficient conditions on a devices's table such
652 * that any incoming bio which respects its logical_block_size can be
653 * processed successfully. If it falls across the boundary between
654 * two or more targets, the size of each piece it gets split into must
655 * be compatible with the logical_block_size of the target processing it.
656 */
657 static int validate_hardware_logical_block_alignment(struct dm_table *table,
658 struct queue_limits *limits)
659 {
660 /*
661 * This function uses arithmetic modulo the logical_block_size
662 * (in units of 512-byte sectors).
663 */
664 unsigned short device_logical_block_size_sects =
665 limits->logical_block_size >> SECTOR_SHIFT;
666
667 /*
668 * Offset of the start of the next table entry, mod logical_block_size.
669 */
670 unsigned short next_target_start = 0;
671
672 /*
673 * Given an aligned bio that extends beyond the end of a
674 * target, how many sectors must the next target handle?
675 */
676 unsigned short remaining = 0;
677
678 struct dm_target *uninitialized_var(ti);
679 struct queue_limits ti_limits;
680 unsigned i = 0;
681
682 /*
683 * Check each entry in the table in turn.
684 */
685 while (i < dm_table_get_num_targets(table)) {
686 ti = dm_table_get_target(table, i++);
687
688 blk_set_default_limits(&ti_limits);
689
690 /* combine all target devices' limits */
691 if (ti->type->iterate_devices)
692 ti->type->iterate_devices(ti, dm_set_device_limits,
693 &ti_limits);
694
695 /*
696 * If the remaining sectors fall entirely within this
697 * table entry are they compatible with its logical_block_size?
698 */
699 if (remaining < ti->len &&
700 remaining & ((ti_limits.logical_block_size >>
701 SECTOR_SHIFT) - 1))
702 break; /* Error */
703
704 next_target_start =
705 (unsigned short) ((next_target_start + ti->len) &
706 (device_logical_block_size_sects - 1));
707 remaining = next_target_start ?
708 device_logical_block_size_sects - next_target_start : 0;
709 }
710
711 if (remaining) {
712 DMWARN("%s: table line %u (start sect %llu len %llu) "
713 "not aligned to h/w logical block size %u",
714 dm_device_name(table->md), i,
715 (unsigned long long) ti->begin,
716 (unsigned long long) ti->len,
717 limits->logical_block_size);
718 return -EINVAL;
719 }
720
721 return 0;
722 }
723
724 int dm_table_add_target(struct dm_table *t, const char *type,
725 sector_t start, sector_t len, char *params)
726 {
727 int r = -EINVAL, argc;
728 char **argv;
729 struct dm_target *tgt;
730
731 if ((r = check_space(t)))
732 return r;
733
734 tgt = t->targets + t->num_targets;
735 memset(tgt, 0, sizeof(*tgt));
736
737 if (!len) {
738 DMERR("%s: zero-length target", dm_device_name(t->md));
739 return -EINVAL;
740 }
741
742 tgt->type = dm_get_target_type(type);
743 if (!tgt->type) {
744 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
745 type);
746 return -EINVAL;
747 }
748
749 tgt->table = t;
750 tgt->begin = start;
751 tgt->len = len;
752 tgt->error = "Unknown error";
753
754 /*
755 * Does this target adjoin the previous one ?
756 */
757 if (!adjoin(t, tgt)) {
758 tgt->error = "Gap in table";
759 r = -EINVAL;
760 goto bad;
761 }
762
763 r = dm_split_args(&argc, &argv, params);
764 if (r) {
765 tgt->error = "couldn't split parameters (insufficient memory)";
766 goto bad;
767 }
768
769 r = tgt->type->ctr(tgt, argc, argv);
770 kfree(argv);
771 if (r)
772 goto bad;
773
774 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
775
776 if (!tgt->num_discard_requests)
777 t->discards_supported = 0;
778
779 return 0;
780
781 bad:
782 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
783 dm_put_target_type(tgt->type);
784 return r;
785 }
786
787 static int dm_table_set_type(struct dm_table *t)
788 {
789 unsigned i;
790 unsigned bio_based = 0, request_based = 0;
791 struct dm_target *tgt;
792 struct dm_dev_internal *dd;
793 struct list_head *devices;
794
795 for (i = 0; i < t->num_targets; i++) {
796 tgt = t->targets + i;
797 if (dm_target_request_based(tgt))
798 request_based = 1;
799 else
800 bio_based = 1;
801
802 if (bio_based && request_based) {
803 DMWARN("Inconsistent table: different target types"
804 " can't be mixed up");
805 return -EINVAL;
806 }
807 }
808
809 if (bio_based) {
810 /* We must use this table as bio-based */
811 t->type = DM_TYPE_BIO_BASED;
812 return 0;
813 }
814
815 BUG_ON(!request_based); /* No targets in this table */
816
817 /* Non-request-stackable devices can't be used for request-based dm */
818 devices = dm_table_get_devices(t);
819 list_for_each_entry(dd, devices, list) {
820 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
821 DMWARN("table load rejected: including"
822 " non-request-stackable devices");
823 return -EINVAL;
824 }
825 }
826
827 /*
828 * Request-based dm supports only tables that have a single target now.
829 * To support multiple targets, request splitting support is needed,
830 * and that needs lots of changes in the block-layer.
831 * (e.g. request completion process for partial completion.)
832 */
833 if (t->num_targets > 1) {
834 DMWARN("Request-based dm doesn't support multiple targets yet");
835 return -EINVAL;
836 }
837
838 t->type = DM_TYPE_REQUEST_BASED;
839
840 return 0;
841 }
842
843 unsigned dm_table_get_type(struct dm_table *t)
844 {
845 return t->type;
846 }
847
848 bool dm_table_request_based(struct dm_table *t)
849 {
850 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
851 }
852
853 int dm_table_alloc_md_mempools(struct dm_table *t)
854 {
855 unsigned type = dm_table_get_type(t);
856
857 if (unlikely(type == DM_TYPE_NONE)) {
858 DMWARN("no table type is set, can't allocate mempools");
859 return -EINVAL;
860 }
861
862 t->mempools = dm_alloc_md_mempools(type);
863 if (!t->mempools)
864 return -ENOMEM;
865
866 return 0;
867 }
868
869 void dm_table_free_md_mempools(struct dm_table *t)
870 {
871 dm_free_md_mempools(t->mempools);
872 t->mempools = NULL;
873 }
874
875 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
876 {
877 return t->mempools;
878 }
879
880 static int setup_indexes(struct dm_table *t)
881 {
882 int i;
883 unsigned int total = 0;
884 sector_t *indexes;
885
886 /* allocate the space for *all* the indexes */
887 for (i = t->depth - 2; i >= 0; i--) {
888 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
889 total += t->counts[i];
890 }
891
892 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
893 if (!indexes)
894 return -ENOMEM;
895
896 /* set up internal nodes, bottom-up */
897 for (i = t->depth - 2; i >= 0; i--) {
898 t->index[i] = indexes;
899 indexes += (KEYS_PER_NODE * t->counts[i]);
900 setup_btree_index(i, t);
901 }
902
903 return 0;
904 }
905
906 /*
907 * Builds the btree to index the map.
908 */
909 static int dm_table_build_index(struct dm_table *t)
910 {
911 int r = 0;
912 unsigned int leaf_nodes;
913
914 /* how many indexes will the btree have ? */
915 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
916 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
917
918 /* leaf layer has already been set up */
919 t->counts[t->depth - 1] = leaf_nodes;
920 t->index[t->depth - 1] = t->highs;
921
922 if (t->depth >= 2)
923 r = setup_indexes(t);
924
925 return r;
926 }
927
928 /*
929 * Register the mapped device for blk_integrity support if
930 * the underlying devices support it.
931 */
932 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
933 {
934 struct list_head *devices = dm_table_get_devices(t);
935 struct dm_dev_internal *dd;
936
937 list_for_each_entry(dd, devices, list)
938 if (bdev_get_integrity(dd->dm_dev.bdev))
939 return blk_integrity_register(dm_disk(md), NULL);
940
941 return 0;
942 }
943
944 /*
945 * Prepares the table for use by building the indices,
946 * setting the type, and allocating mempools.
947 */
948 int dm_table_complete(struct dm_table *t)
949 {
950 int r;
951
952 r = dm_table_set_type(t);
953 if (r) {
954 DMERR("unable to set table type");
955 return r;
956 }
957
958 r = dm_table_build_index(t);
959 if (r) {
960 DMERR("unable to build btrees");
961 return r;
962 }
963
964 r = dm_table_prealloc_integrity(t, t->md);
965 if (r) {
966 DMERR("could not register integrity profile.");
967 return r;
968 }
969
970 r = dm_table_alloc_md_mempools(t);
971 if (r)
972 DMERR("unable to allocate mempools");
973
974 return r;
975 }
976
977 static DEFINE_MUTEX(_event_lock);
978 void dm_table_event_callback(struct dm_table *t,
979 void (*fn)(void *), void *context)
980 {
981 mutex_lock(&_event_lock);
982 t->event_fn = fn;
983 t->event_context = context;
984 mutex_unlock(&_event_lock);
985 }
986
987 void dm_table_event(struct dm_table *t)
988 {
989 /*
990 * You can no longer call dm_table_event() from interrupt
991 * context, use a bottom half instead.
992 */
993 BUG_ON(in_interrupt());
994
995 mutex_lock(&_event_lock);
996 if (t->event_fn)
997 t->event_fn(t->event_context);
998 mutex_unlock(&_event_lock);
999 }
1000
1001 sector_t dm_table_get_size(struct dm_table *t)
1002 {
1003 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1004 }
1005
1006 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1007 {
1008 if (index >= t->num_targets)
1009 return NULL;
1010
1011 return t->targets + index;
1012 }
1013
1014 /*
1015 * Search the btree for the correct target.
1016 *
1017 * Caller should check returned pointer with dm_target_is_valid()
1018 * to trap I/O beyond end of device.
1019 */
1020 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1021 {
1022 unsigned int l, n = 0, k = 0;
1023 sector_t *node;
1024
1025 for (l = 0; l < t->depth; l++) {
1026 n = get_child(n, k);
1027 node = get_node(t, l, n);
1028
1029 for (k = 0; k < KEYS_PER_NODE; k++)
1030 if (node[k] >= sector)
1031 break;
1032 }
1033
1034 return &t->targets[(KEYS_PER_NODE * n) + k];
1035 }
1036
1037 /*
1038 * Establish the new table's queue_limits and validate them.
1039 */
1040 int dm_calculate_queue_limits(struct dm_table *table,
1041 struct queue_limits *limits)
1042 {
1043 struct dm_target *uninitialized_var(ti);
1044 struct queue_limits ti_limits;
1045 unsigned i = 0;
1046
1047 blk_set_default_limits(limits);
1048
1049 while (i < dm_table_get_num_targets(table)) {
1050 blk_set_default_limits(&ti_limits);
1051
1052 ti = dm_table_get_target(table, i++);
1053
1054 if (!ti->type->iterate_devices)
1055 goto combine_limits;
1056
1057 /*
1058 * Combine queue limits of all the devices this target uses.
1059 */
1060 ti->type->iterate_devices(ti, dm_set_device_limits,
1061 &ti_limits);
1062
1063 /* Set I/O hints portion of queue limits */
1064 if (ti->type->io_hints)
1065 ti->type->io_hints(ti, &ti_limits);
1066
1067 /*
1068 * Check each device area is consistent with the target's
1069 * overall queue limits.
1070 */
1071 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1072 &ti_limits))
1073 return -EINVAL;
1074
1075 combine_limits:
1076 /*
1077 * Merge this target's queue limits into the overall limits
1078 * for the table.
1079 */
1080 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1081 DMWARN("%s: adding target device "
1082 "(start sect %llu len %llu) "
1083 "caused an alignment inconsistency",
1084 dm_device_name(table->md),
1085 (unsigned long long) ti->begin,
1086 (unsigned long long) ti->len);
1087 }
1088
1089 return validate_hardware_logical_block_alignment(table, limits);
1090 }
1091
1092 /*
1093 * Set the integrity profile for this device if all devices used have
1094 * matching profiles.
1095 */
1096 static void dm_table_set_integrity(struct dm_table *t)
1097 {
1098 struct list_head *devices = dm_table_get_devices(t);
1099 struct dm_dev_internal *prev = NULL, *dd = NULL;
1100
1101 if (!blk_get_integrity(dm_disk(t->md)))
1102 return;
1103
1104 list_for_each_entry(dd, devices, list) {
1105 if (prev &&
1106 blk_integrity_compare(prev->dm_dev.bdev->bd_disk,
1107 dd->dm_dev.bdev->bd_disk) < 0) {
1108 DMWARN("%s: integrity not set: %s and %s mismatch",
1109 dm_device_name(t->md),
1110 prev->dm_dev.bdev->bd_disk->disk_name,
1111 dd->dm_dev.bdev->bd_disk->disk_name);
1112 goto no_integrity;
1113 }
1114 prev = dd;
1115 }
1116
1117 if (!prev || !bdev_get_integrity(prev->dm_dev.bdev))
1118 goto no_integrity;
1119
1120 blk_integrity_register(dm_disk(t->md),
1121 bdev_get_integrity(prev->dm_dev.bdev));
1122
1123 return;
1124
1125 no_integrity:
1126 blk_integrity_register(dm_disk(t->md), NULL);
1127
1128 return;
1129 }
1130
1131 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1132 struct queue_limits *limits)
1133 {
1134 /*
1135 * Copy table's limits to the DM device's request_queue
1136 */
1137 q->limits = *limits;
1138
1139 if (!dm_table_supports_discards(t))
1140 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1141 else
1142 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1143
1144 dm_table_set_integrity(t);
1145
1146 /*
1147 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1148 * visible to other CPUs because, once the flag is set, incoming bios
1149 * are processed by request-based dm, which refers to the queue
1150 * settings.
1151 * Until the flag set, bios are passed to bio-based dm and queued to
1152 * md->deferred where queue settings are not needed yet.
1153 * Those bios are passed to request-based dm at the resume time.
1154 */
1155 smp_mb();
1156 if (dm_table_request_based(t))
1157 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1158 }
1159
1160 unsigned int dm_table_get_num_targets(struct dm_table *t)
1161 {
1162 return t->num_targets;
1163 }
1164
1165 struct list_head *dm_table_get_devices(struct dm_table *t)
1166 {
1167 return &t->devices;
1168 }
1169
1170 fmode_t dm_table_get_mode(struct dm_table *t)
1171 {
1172 return t->mode;
1173 }
1174
1175 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1176 {
1177 int i = t->num_targets;
1178 struct dm_target *ti = t->targets;
1179
1180 while (i--) {
1181 if (postsuspend) {
1182 if (ti->type->postsuspend)
1183 ti->type->postsuspend(ti);
1184 } else if (ti->type->presuspend)
1185 ti->type->presuspend(ti);
1186
1187 ti++;
1188 }
1189 }
1190
1191 void dm_table_presuspend_targets(struct dm_table *t)
1192 {
1193 if (!t)
1194 return;
1195
1196 suspend_targets(t, 0);
1197 }
1198
1199 void dm_table_postsuspend_targets(struct dm_table *t)
1200 {
1201 if (!t)
1202 return;
1203
1204 suspend_targets(t, 1);
1205 }
1206
1207 int dm_table_resume_targets(struct dm_table *t)
1208 {
1209 int i, r = 0;
1210
1211 for (i = 0; i < t->num_targets; i++) {
1212 struct dm_target *ti = t->targets + i;
1213
1214 if (!ti->type->preresume)
1215 continue;
1216
1217 r = ti->type->preresume(ti);
1218 if (r)
1219 return r;
1220 }
1221
1222 for (i = 0; i < t->num_targets; i++) {
1223 struct dm_target *ti = t->targets + i;
1224
1225 if (ti->type->resume)
1226 ti->type->resume(ti);
1227 }
1228
1229 return 0;
1230 }
1231
1232 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1233 {
1234 list_add(&cb->list, &t->target_callbacks);
1235 }
1236 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1237
1238 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1239 {
1240 struct dm_dev_internal *dd;
1241 struct list_head *devices = dm_table_get_devices(t);
1242 struct dm_target_callbacks *cb;
1243 int r = 0;
1244
1245 list_for_each_entry(dd, devices, list) {
1246 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1247 char b[BDEVNAME_SIZE];
1248
1249 if (likely(q))
1250 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1251 else
1252 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1253 dm_device_name(t->md),
1254 bdevname(dd->dm_dev.bdev, b));
1255 }
1256
1257 list_for_each_entry(cb, &t->target_callbacks, list)
1258 if (cb->congested_fn)
1259 r |= cb->congested_fn(cb, bdi_bits);
1260
1261 return r;
1262 }
1263
1264 int dm_table_any_busy_target(struct dm_table *t)
1265 {
1266 unsigned i;
1267 struct dm_target *ti;
1268
1269 for (i = 0; i < t->num_targets; i++) {
1270 ti = t->targets + i;
1271 if (ti->type->busy && ti->type->busy(ti))
1272 return 1;
1273 }
1274
1275 return 0;
1276 }
1277
1278 void dm_table_unplug_all(struct dm_table *t)
1279 {
1280 struct dm_dev_internal *dd;
1281 struct list_head *devices = dm_table_get_devices(t);
1282 struct dm_target_callbacks *cb;
1283
1284 list_for_each_entry(dd, devices, list) {
1285 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1286 char b[BDEVNAME_SIZE];
1287
1288 if (likely(q))
1289 blk_unplug(q);
1290 else
1291 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s",
1292 dm_device_name(t->md),
1293 bdevname(dd->dm_dev.bdev, b));
1294 }
1295
1296 list_for_each_entry(cb, &t->target_callbacks, list)
1297 if (cb->unplug_fn)
1298 cb->unplug_fn(cb);
1299 }
1300
1301 struct mapped_device *dm_table_get_md(struct dm_table *t)
1302 {
1303 return t->md;
1304 }
1305
1306 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1307 sector_t start, sector_t len, void *data)
1308 {
1309 struct request_queue *q = bdev_get_queue(dev->bdev);
1310
1311 return q && blk_queue_discard(q);
1312 }
1313
1314 bool dm_table_supports_discards(struct dm_table *t)
1315 {
1316 struct dm_target *ti;
1317 unsigned i = 0;
1318
1319 if (!t->discards_supported)
1320 return 0;
1321
1322 /*
1323 * Ensure that at least one underlying device supports discards.
1324 * t->devices includes internal dm devices such as mirror logs
1325 * so we need to use iterate_devices here, which targets
1326 * supporting discard must provide.
1327 */
1328 while (i < dm_table_get_num_targets(t)) {
1329 ti = dm_table_get_target(t, i++);
1330
1331 if (ti->type->iterate_devices &&
1332 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1333 return 1;
1334 }
1335
1336 return 0;
1337 }
1338
1339 EXPORT_SYMBOL(dm_vcalloc);
1340 EXPORT_SYMBOL(dm_get_device);
1341 EXPORT_SYMBOL(dm_put_device);
1342 EXPORT_SYMBOL(dm_table_event);
1343 EXPORT_SYMBOL(dm_table_get_size);
1344 EXPORT_SYMBOL(dm_table_get_mode);
1345 EXPORT_SYMBOL(dm_table_get_md);
1346 EXPORT_SYMBOL(dm_table_put);
1347 EXPORT_SYMBOL(dm_table_get);
1348 EXPORT_SYMBOL(dm_table_unplug_all);