Merge branch 'for-3.4' of git://linux-nfs.org/~bfields/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm-table.c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21
22 #define DM_MSG_PREFIX "table"
23
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28
29 /*
30 * The table has always exactly one reference from either mapped_device->map
31 * or hash_cell->new_map. This reference is not counted in table->holders.
32 * A pair of dm_create_table/dm_destroy_table functions is used for table
33 * creation/destruction.
34 *
35 * Temporary references from the other code increase table->holders. A pair
36 * of dm_table_get/dm_table_put functions is used to manipulate it.
37 *
38 * When the table is about to be destroyed, we wait for table->holders to
39 * drop to zero.
40 */
41
42 struct dm_table {
43 struct mapped_device *md;
44 atomic_t holders;
45 unsigned type;
46
47 /* btree table */
48 unsigned int depth;
49 unsigned int counts[MAX_DEPTH]; /* in nodes */
50 sector_t *index[MAX_DEPTH];
51
52 unsigned int num_targets;
53 unsigned int num_allocated;
54 sector_t *highs;
55 struct dm_target *targets;
56
57 struct target_type *immutable_target_type;
58 unsigned integrity_supported:1;
59 unsigned singleton:1;
60
61 /*
62 * Indicates the rw permissions for the new logical
63 * device. This should be a combination of FMODE_READ
64 * and FMODE_WRITE.
65 */
66 fmode_t mode;
67
68 /* a list of devices used by this table */
69 struct list_head devices;
70
71 /* events get handed up using this callback */
72 void (*event_fn)(void *);
73 void *event_context;
74
75 struct dm_md_mempools *mempools;
76
77 struct list_head target_callbacks;
78 };
79
80 /*
81 * Similar to ceiling(log_size(n))
82 */
83 static unsigned int int_log(unsigned int n, unsigned int base)
84 {
85 int result = 0;
86
87 while (n > 1) {
88 n = dm_div_up(n, base);
89 result++;
90 }
91
92 return result;
93 }
94
95 /*
96 * Calculate the index of the child node of the n'th node k'th key.
97 */
98 static inline unsigned int get_child(unsigned int n, unsigned int k)
99 {
100 return (n * CHILDREN_PER_NODE) + k;
101 }
102
103 /*
104 * Return the n'th node of level l from table t.
105 */
106 static inline sector_t *get_node(struct dm_table *t,
107 unsigned int l, unsigned int n)
108 {
109 return t->index[l] + (n * KEYS_PER_NODE);
110 }
111
112 /*
113 * Return the highest key that you could lookup from the n'th
114 * node on level l of the btree.
115 */
116 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
117 {
118 for (; l < t->depth - 1; l++)
119 n = get_child(n, CHILDREN_PER_NODE - 1);
120
121 if (n >= t->counts[l])
122 return (sector_t) - 1;
123
124 return get_node(t, l, n)[KEYS_PER_NODE - 1];
125 }
126
127 /*
128 * Fills in a level of the btree based on the highs of the level
129 * below it.
130 */
131 static int setup_btree_index(unsigned int l, struct dm_table *t)
132 {
133 unsigned int n, k;
134 sector_t *node;
135
136 for (n = 0U; n < t->counts[l]; n++) {
137 node = get_node(t, l, n);
138
139 for (k = 0U; k < KEYS_PER_NODE; k++)
140 node[k] = high(t, l + 1, get_child(n, k));
141 }
142
143 return 0;
144 }
145
146 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
147 {
148 unsigned long size;
149 void *addr;
150
151 /*
152 * Check that we're not going to overflow.
153 */
154 if (nmemb > (ULONG_MAX / elem_size))
155 return NULL;
156
157 size = nmemb * elem_size;
158 addr = vzalloc(size);
159
160 return addr;
161 }
162 EXPORT_SYMBOL(dm_vcalloc);
163
164 /*
165 * highs, and targets are managed as dynamic arrays during a
166 * table load.
167 */
168 static int alloc_targets(struct dm_table *t, unsigned int num)
169 {
170 sector_t *n_highs;
171 struct dm_target *n_targets;
172 int n = t->num_targets;
173
174 /*
175 * Allocate both the target array and offset array at once.
176 * Append an empty entry to catch sectors beyond the end of
177 * the device.
178 */
179 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
180 sizeof(sector_t));
181 if (!n_highs)
182 return -ENOMEM;
183
184 n_targets = (struct dm_target *) (n_highs + num);
185
186 if (n) {
187 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
188 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
189 }
190
191 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
192 vfree(t->highs);
193
194 t->num_allocated = num;
195 t->highs = n_highs;
196 t->targets = n_targets;
197
198 return 0;
199 }
200
201 int dm_table_create(struct dm_table **result, fmode_t mode,
202 unsigned num_targets, struct mapped_device *md)
203 {
204 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
205
206 if (!t)
207 return -ENOMEM;
208
209 INIT_LIST_HEAD(&t->devices);
210 INIT_LIST_HEAD(&t->target_callbacks);
211 atomic_set(&t->holders, 0);
212
213 if (!num_targets)
214 num_targets = KEYS_PER_NODE;
215
216 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
217
218 if (alloc_targets(t, num_targets)) {
219 kfree(t);
220 t = NULL;
221 return -ENOMEM;
222 }
223
224 t->mode = mode;
225 t->md = md;
226 *result = t;
227 return 0;
228 }
229
230 static void free_devices(struct list_head *devices)
231 {
232 struct list_head *tmp, *next;
233
234 list_for_each_safe(tmp, next, devices) {
235 struct dm_dev_internal *dd =
236 list_entry(tmp, struct dm_dev_internal, list);
237 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
238 dd->dm_dev.name);
239 kfree(dd);
240 }
241 }
242
243 void dm_table_destroy(struct dm_table *t)
244 {
245 unsigned int i;
246
247 if (!t)
248 return;
249
250 while (atomic_read(&t->holders))
251 msleep(1);
252 smp_mb();
253
254 /* free the indexes */
255 if (t->depth >= 2)
256 vfree(t->index[t->depth - 2]);
257
258 /* free the targets */
259 for (i = 0; i < t->num_targets; i++) {
260 struct dm_target *tgt = t->targets + i;
261
262 if (tgt->type->dtr)
263 tgt->type->dtr(tgt);
264
265 dm_put_target_type(tgt->type);
266 }
267
268 vfree(t->highs);
269
270 /* free the device list */
271 free_devices(&t->devices);
272
273 dm_free_md_mempools(t->mempools);
274
275 kfree(t);
276 }
277
278 void dm_table_get(struct dm_table *t)
279 {
280 atomic_inc(&t->holders);
281 }
282 EXPORT_SYMBOL(dm_table_get);
283
284 void dm_table_put(struct dm_table *t)
285 {
286 if (!t)
287 return;
288
289 smp_mb__before_atomic_dec();
290 atomic_dec(&t->holders);
291 }
292 EXPORT_SYMBOL(dm_table_put);
293
294 /*
295 * Checks to see if we need to extend highs or targets.
296 */
297 static inline int check_space(struct dm_table *t)
298 {
299 if (t->num_targets >= t->num_allocated)
300 return alloc_targets(t, t->num_allocated * 2);
301
302 return 0;
303 }
304
305 /*
306 * See if we've already got a device in the list.
307 */
308 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
309 {
310 struct dm_dev_internal *dd;
311
312 list_for_each_entry (dd, l, list)
313 if (dd->dm_dev.bdev->bd_dev == dev)
314 return dd;
315
316 return NULL;
317 }
318
319 /*
320 * Open a device so we can use it as a map destination.
321 */
322 static int open_dev(struct dm_dev_internal *d, dev_t dev,
323 struct mapped_device *md)
324 {
325 static char *_claim_ptr = "I belong to device-mapper";
326 struct block_device *bdev;
327
328 int r;
329
330 BUG_ON(d->dm_dev.bdev);
331
332 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
333 if (IS_ERR(bdev))
334 return PTR_ERR(bdev);
335
336 r = bd_link_disk_holder(bdev, dm_disk(md));
337 if (r) {
338 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
339 return r;
340 }
341
342 d->dm_dev.bdev = bdev;
343 return 0;
344 }
345
346 /*
347 * Close a device that we've been using.
348 */
349 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
350 {
351 if (!d->dm_dev.bdev)
352 return;
353
354 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
355 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
356 d->dm_dev.bdev = NULL;
357 }
358
359 /*
360 * If possible, this checks an area of a destination device is invalid.
361 */
362 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
363 sector_t start, sector_t len, void *data)
364 {
365 struct request_queue *q;
366 struct queue_limits *limits = data;
367 struct block_device *bdev = dev->bdev;
368 sector_t dev_size =
369 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
370 unsigned short logical_block_size_sectors =
371 limits->logical_block_size >> SECTOR_SHIFT;
372 char b[BDEVNAME_SIZE];
373
374 /*
375 * Some devices exist without request functions,
376 * such as loop devices not yet bound to backing files.
377 * Forbid the use of such devices.
378 */
379 q = bdev_get_queue(bdev);
380 if (!q || !q->make_request_fn) {
381 DMWARN("%s: %s is not yet initialised: "
382 "start=%llu, len=%llu, dev_size=%llu",
383 dm_device_name(ti->table->md), bdevname(bdev, b),
384 (unsigned long long)start,
385 (unsigned long long)len,
386 (unsigned long long)dev_size);
387 return 1;
388 }
389
390 if (!dev_size)
391 return 0;
392
393 if ((start >= dev_size) || (start + len > dev_size)) {
394 DMWARN("%s: %s too small for target: "
395 "start=%llu, len=%llu, dev_size=%llu",
396 dm_device_name(ti->table->md), bdevname(bdev, b),
397 (unsigned long long)start,
398 (unsigned long long)len,
399 (unsigned long long)dev_size);
400 return 1;
401 }
402
403 if (logical_block_size_sectors <= 1)
404 return 0;
405
406 if (start & (logical_block_size_sectors - 1)) {
407 DMWARN("%s: start=%llu not aligned to h/w "
408 "logical block size %u of %s",
409 dm_device_name(ti->table->md),
410 (unsigned long long)start,
411 limits->logical_block_size, bdevname(bdev, b));
412 return 1;
413 }
414
415 if (len & (logical_block_size_sectors - 1)) {
416 DMWARN("%s: len=%llu not aligned to h/w "
417 "logical block size %u of %s",
418 dm_device_name(ti->table->md),
419 (unsigned long long)len,
420 limits->logical_block_size, bdevname(bdev, b));
421 return 1;
422 }
423
424 return 0;
425 }
426
427 /*
428 * This upgrades the mode on an already open dm_dev, being
429 * careful to leave things as they were if we fail to reopen the
430 * device and not to touch the existing bdev field in case
431 * it is accessed concurrently inside dm_table_any_congested().
432 */
433 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
434 struct mapped_device *md)
435 {
436 int r;
437 struct dm_dev_internal dd_new, dd_old;
438
439 dd_new = dd_old = *dd;
440
441 dd_new.dm_dev.mode |= new_mode;
442 dd_new.dm_dev.bdev = NULL;
443
444 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
445 if (r)
446 return r;
447
448 dd->dm_dev.mode |= new_mode;
449 close_dev(&dd_old, md);
450
451 return 0;
452 }
453
454 /*
455 * Add a device to the list, or just increment the usage count if
456 * it's already present.
457 */
458 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
459 struct dm_dev **result)
460 {
461 int r;
462 dev_t uninitialized_var(dev);
463 struct dm_dev_internal *dd;
464 unsigned int major, minor;
465 struct dm_table *t = ti->table;
466 char dummy;
467
468 BUG_ON(!t);
469
470 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
471 /* Extract the major/minor numbers */
472 dev = MKDEV(major, minor);
473 if (MAJOR(dev) != major || MINOR(dev) != minor)
474 return -EOVERFLOW;
475 } else {
476 /* convert the path to a device */
477 struct block_device *bdev = lookup_bdev(path);
478
479 if (IS_ERR(bdev))
480 return PTR_ERR(bdev);
481 dev = bdev->bd_dev;
482 bdput(bdev);
483 }
484
485 dd = find_device(&t->devices, dev);
486 if (!dd) {
487 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
488 if (!dd)
489 return -ENOMEM;
490
491 dd->dm_dev.mode = mode;
492 dd->dm_dev.bdev = NULL;
493
494 if ((r = open_dev(dd, dev, t->md))) {
495 kfree(dd);
496 return r;
497 }
498
499 format_dev_t(dd->dm_dev.name, dev);
500
501 atomic_set(&dd->count, 0);
502 list_add(&dd->list, &t->devices);
503
504 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
505 r = upgrade_mode(dd, mode, t->md);
506 if (r)
507 return r;
508 }
509 atomic_inc(&dd->count);
510
511 *result = &dd->dm_dev;
512 return 0;
513 }
514 EXPORT_SYMBOL(dm_get_device);
515
516 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
517 sector_t start, sector_t len, void *data)
518 {
519 struct queue_limits *limits = data;
520 struct block_device *bdev = dev->bdev;
521 struct request_queue *q = bdev_get_queue(bdev);
522 char b[BDEVNAME_SIZE];
523
524 if (unlikely(!q)) {
525 DMWARN("%s: Cannot set limits for nonexistent device %s",
526 dm_device_name(ti->table->md), bdevname(bdev, b));
527 return 0;
528 }
529
530 if (bdev_stack_limits(limits, bdev, start) < 0)
531 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
532 "physical_block_size=%u, logical_block_size=%u, "
533 "alignment_offset=%u, start=%llu",
534 dm_device_name(ti->table->md), bdevname(bdev, b),
535 q->limits.physical_block_size,
536 q->limits.logical_block_size,
537 q->limits.alignment_offset,
538 (unsigned long long) start << SECTOR_SHIFT);
539
540 /*
541 * Check if merge fn is supported.
542 * If not we'll force DM to use PAGE_SIZE or
543 * smaller I/O, just to be safe.
544 */
545 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
546 blk_limits_max_hw_sectors(limits,
547 (unsigned int) (PAGE_SIZE >> 9));
548 return 0;
549 }
550 EXPORT_SYMBOL_GPL(dm_set_device_limits);
551
552 /*
553 * Decrement a device's use count and remove it if necessary.
554 */
555 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
556 {
557 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
558 dm_dev);
559
560 if (atomic_dec_and_test(&dd->count)) {
561 close_dev(dd, ti->table->md);
562 list_del(&dd->list);
563 kfree(dd);
564 }
565 }
566 EXPORT_SYMBOL(dm_put_device);
567
568 /*
569 * Checks to see if the target joins onto the end of the table.
570 */
571 static int adjoin(struct dm_table *table, struct dm_target *ti)
572 {
573 struct dm_target *prev;
574
575 if (!table->num_targets)
576 return !ti->begin;
577
578 prev = &table->targets[table->num_targets - 1];
579 return (ti->begin == (prev->begin + prev->len));
580 }
581
582 /*
583 * Used to dynamically allocate the arg array.
584 */
585 static char **realloc_argv(unsigned *array_size, char **old_argv)
586 {
587 char **argv;
588 unsigned new_size;
589
590 new_size = *array_size ? *array_size * 2 : 64;
591 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
592 if (argv) {
593 memcpy(argv, old_argv, *array_size * sizeof(*argv));
594 *array_size = new_size;
595 }
596
597 kfree(old_argv);
598 return argv;
599 }
600
601 /*
602 * Destructively splits up the argument list to pass to ctr.
603 */
604 int dm_split_args(int *argc, char ***argvp, char *input)
605 {
606 char *start, *end = input, *out, **argv = NULL;
607 unsigned array_size = 0;
608
609 *argc = 0;
610
611 if (!input) {
612 *argvp = NULL;
613 return 0;
614 }
615
616 argv = realloc_argv(&array_size, argv);
617 if (!argv)
618 return -ENOMEM;
619
620 while (1) {
621 /* Skip whitespace */
622 start = skip_spaces(end);
623
624 if (!*start)
625 break; /* success, we hit the end */
626
627 /* 'out' is used to remove any back-quotes */
628 end = out = start;
629 while (*end) {
630 /* Everything apart from '\0' can be quoted */
631 if (*end == '\\' && *(end + 1)) {
632 *out++ = *(end + 1);
633 end += 2;
634 continue;
635 }
636
637 if (isspace(*end))
638 break; /* end of token */
639
640 *out++ = *end++;
641 }
642
643 /* have we already filled the array ? */
644 if ((*argc + 1) > array_size) {
645 argv = realloc_argv(&array_size, argv);
646 if (!argv)
647 return -ENOMEM;
648 }
649
650 /* we know this is whitespace */
651 if (*end)
652 end++;
653
654 /* terminate the string and put it in the array */
655 *out = '\0';
656 argv[*argc] = start;
657 (*argc)++;
658 }
659
660 *argvp = argv;
661 return 0;
662 }
663
664 /*
665 * Impose necessary and sufficient conditions on a devices's table such
666 * that any incoming bio which respects its logical_block_size can be
667 * processed successfully. If it falls across the boundary between
668 * two or more targets, the size of each piece it gets split into must
669 * be compatible with the logical_block_size of the target processing it.
670 */
671 static int validate_hardware_logical_block_alignment(struct dm_table *table,
672 struct queue_limits *limits)
673 {
674 /*
675 * This function uses arithmetic modulo the logical_block_size
676 * (in units of 512-byte sectors).
677 */
678 unsigned short device_logical_block_size_sects =
679 limits->logical_block_size >> SECTOR_SHIFT;
680
681 /*
682 * Offset of the start of the next table entry, mod logical_block_size.
683 */
684 unsigned short next_target_start = 0;
685
686 /*
687 * Given an aligned bio that extends beyond the end of a
688 * target, how many sectors must the next target handle?
689 */
690 unsigned short remaining = 0;
691
692 struct dm_target *uninitialized_var(ti);
693 struct queue_limits ti_limits;
694 unsigned i = 0;
695
696 /*
697 * Check each entry in the table in turn.
698 */
699 while (i < dm_table_get_num_targets(table)) {
700 ti = dm_table_get_target(table, i++);
701
702 blk_set_stacking_limits(&ti_limits);
703
704 /* combine all target devices' limits */
705 if (ti->type->iterate_devices)
706 ti->type->iterate_devices(ti, dm_set_device_limits,
707 &ti_limits);
708
709 /*
710 * If the remaining sectors fall entirely within this
711 * table entry are they compatible with its logical_block_size?
712 */
713 if (remaining < ti->len &&
714 remaining & ((ti_limits.logical_block_size >>
715 SECTOR_SHIFT) - 1))
716 break; /* Error */
717
718 next_target_start =
719 (unsigned short) ((next_target_start + ti->len) &
720 (device_logical_block_size_sects - 1));
721 remaining = next_target_start ?
722 device_logical_block_size_sects - next_target_start : 0;
723 }
724
725 if (remaining) {
726 DMWARN("%s: table line %u (start sect %llu len %llu) "
727 "not aligned to h/w logical block size %u",
728 dm_device_name(table->md), i,
729 (unsigned long long) ti->begin,
730 (unsigned long long) ti->len,
731 limits->logical_block_size);
732 return -EINVAL;
733 }
734
735 return 0;
736 }
737
738 int dm_table_add_target(struct dm_table *t, const char *type,
739 sector_t start, sector_t len, char *params)
740 {
741 int r = -EINVAL, argc;
742 char **argv;
743 struct dm_target *tgt;
744
745 if (t->singleton) {
746 DMERR("%s: target type %s must appear alone in table",
747 dm_device_name(t->md), t->targets->type->name);
748 return -EINVAL;
749 }
750
751 if ((r = check_space(t)))
752 return r;
753
754 tgt = t->targets + t->num_targets;
755 memset(tgt, 0, sizeof(*tgt));
756
757 if (!len) {
758 DMERR("%s: zero-length target", dm_device_name(t->md));
759 return -EINVAL;
760 }
761
762 tgt->type = dm_get_target_type(type);
763 if (!tgt->type) {
764 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
765 type);
766 return -EINVAL;
767 }
768
769 if (dm_target_needs_singleton(tgt->type)) {
770 if (t->num_targets) {
771 DMERR("%s: target type %s must appear alone in table",
772 dm_device_name(t->md), type);
773 return -EINVAL;
774 }
775 t->singleton = 1;
776 }
777
778 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
779 DMERR("%s: target type %s may not be included in read-only tables",
780 dm_device_name(t->md), type);
781 return -EINVAL;
782 }
783
784 if (t->immutable_target_type) {
785 if (t->immutable_target_type != tgt->type) {
786 DMERR("%s: immutable target type %s cannot be mixed with other target types",
787 dm_device_name(t->md), t->immutable_target_type->name);
788 return -EINVAL;
789 }
790 } else if (dm_target_is_immutable(tgt->type)) {
791 if (t->num_targets) {
792 DMERR("%s: immutable target type %s cannot be mixed with other target types",
793 dm_device_name(t->md), tgt->type->name);
794 return -EINVAL;
795 }
796 t->immutable_target_type = tgt->type;
797 }
798
799 tgt->table = t;
800 tgt->begin = start;
801 tgt->len = len;
802 tgt->error = "Unknown error";
803
804 /*
805 * Does this target adjoin the previous one ?
806 */
807 if (!adjoin(t, tgt)) {
808 tgt->error = "Gap in table";
809 r = -EINVAL;
810 goto bad;
811 }
812
813 r = dm_split_args(&argc, &argv, params);
814 if (r) {
815 tgt->error = "couldn't split parameters (insufficient memory)";
816 goto bad;
817 }
818
819 r = tgt->type->ctr(tgt, argc, argv);
820 kfree(argv);
821 if (r)
822 goto bad;
823
824 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
825
826 if (!tgt->num_discard_requests && tgt->discards_supported)
827 DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
828 dm_device_name(t->md), type);
829
830 return 0;
831
832 bad:
833 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
834 dm_put_target_type(tgt->type);
835 return r;
836 }
837
838 /*
839 * Target argument parsing helpers.
840 */
841 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
842 unsigned *value, char **error, unsigned grouped)
843 {
844 const char *arg_str = dm_shift_arg(arg_set);
845 char dummy;
846
847 if (!arg_str ||
848 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
849 (*value < arg->min) ||
850 (*value > arg->max) ||
851 (grouped && arg_set->argc < *value)) {
852 *error = arg->error;
853 return -EINVAL;
854 }
855
856 return 0;
857 }
858
859 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
860 unsigned *value, char **error)
861 {
862 return validate_next_arg(arg, arg_set, value, error, 0);
863 }
864 EXPORT_SYMBOL(dm_read_arg);
865
866 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
867 unsigned *value, char **error)
868 {
869 return validate_next_arg(arg, arg_set, value, error, 1);
870 }
871 EXPORT_SYMBOL(dm_read_arg_group);
872
873 const char *dm_shift_arg(struct dm_arg_set *as)
874 {
875 char *r;
876
877 if (as->argc) {
878 as->argc--;
879 r = *as->argv;
880 as->argv++;
881 return r;
882 }
883
884 return NULL;
885 }
886 EXPORT_SYMBOL(dm_shift_arg);
887
888 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
889 {
890 BUG_ON(as->argc < num_args);
891 as->argc -= num_args;
892 as->argv += num_args;
893 }
894 EXPORT_SYMBOL(dm_consume_args);
895
896 static int dm_table_set_type(struct dm_table *t)
897 {
898 unsigned i;
899 unsigned bio_based = 0, request_based = 0;
900 struct dm_target *tgt;
901 struct dm_dev_internal *dd;
902 struct list_head *devices;
903
904 for (i = 0; i < t->num_targets; i++) {
905 tgt = t->targets + i;
906 if (dm_target_request_based(tgt))
907 request_based = 1;
908 else
909 bio_based = 1;
910
911 if (bio_based && request_based) {
912 DMWARN("Inconsistent table: different target types"
913 " can't be mixed up");
914 return -EINVAL;
915 }
916 }
917
918 if (bio_based) {
919 /* We must use this table as bio-based */
920 t->type = DM_TYPE_BIO_BASED;
921 return 0;
922 }
923
924 BUG_ON(!request_based); /* No targets in this table */
925
926 /* Non-request-stackable devices can't be used for request-based dm */
927 devices = dm_table_get_devices(t);
928 list_for_each_entry(dd, devices, list) {
929 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
930 DMWARN("table load rejected: including"
931 " non-request-stackable devices");
932 return -EINVAL;
933 }
934 }
935
936 /*
937 * Request-based dm supports only tables that have a single target now.
938 * To support multiple targets, request splitting support is needed,
939 * and that needs lots of changes in the block-layer.
940 * (e.g. request completion process for partial completion.)
941 */
942 if (t->num_targets > 1) {
943 DMWARN("Request-based dm doesn't support multiple targets yet");
944 return -EINVAL;
945 }
946
947 t->type = DM_TYPE_REQUEST_BASED;
948
949 return 0;
950 }
951
952 unsigned dm_table_get_type(struct dm_table *t)
953 {
954 return t->type;
955 }
956
957 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
958 {
959 return t->immutable_target_type;
960 }
961
962 bool dm_table_request_based(struct dm_table *t)
963 {
964 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
965 }
966
967 int dm_table_alloc_md_mempools(struct dm_table *t)
968 {
969 unsigned type = dm_table_get_type(t);
970
971 if (unlikely(type == DM_TYPE_NONE)) {
972 DMWARN("no table type is set, can't allocate mempools");
973 return -EINVAL;
974 }
975
976 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
977 if (!t->mempools)
978 return -ENOMEM;
979
980 return 0;
981 }
982
983 void dm_table_free_md_mempools(struct dm_table *t)
984 {
985 dm_free_md_mempools(t->mempools);
986 t->mempools = NULL;
987 }
988
989 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
990 {
991 return t->mempools;
992 }
993
994 static int setup_indexes(struct dm_table *t)
995 {
996 int i;
997 unsigned int total = 0;
998 sector_t *indexes;
999
1000 /* allocate the space for *all* the indexes */
1001 for (i = t->depth - 2; i >= 0; i--) {
1002 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1003 total += t->counts[i];
1004 }
1005
1006 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1007 if (!indexes)
1008 return -ENOMEM;
1009
1010 /* set up internal nodes, bottom-up */
1011 for (i = t->depth - 2; i >= 0; i--) {
1012 t->index[i] = indexes;
1013 indexes += (KEYS_PER_NODE * t->counts[i]);
1014 setup_btree_index(i, t);
1015 }
1016
1017 return 0;
1018 }
1019
1020 /*
1021 * Builds the btree to index the map.
1022 */
1023 static int dm_table_build_index(struct dm_table *t)
1024 {
1025 int r = 0;
1026 unsigned int leaf_nodes;
1027
1028 /* how many indexes will the btree have ? */
1029 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1030 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1031
1032 /* leaf layer has already been set up */
1033 t->counts[t->depth - 1] = leaf_nodes;
1034 t->index[t->depth - 1] = t->highs;
1035
1036 if (t->depth >= 2)
1037 r = setup_indexes(t);
1038
1039 return r;
1040 }
1041
1042 /*
1043 * Get a disk whose integrity profile reflects the table's profile.
1044 * If %match_all is true, all devices' profiles must match.
1045 * If %match_all is false, all devices must at least have an
1046 * allocated integrity profile; but uninitialized is ok.
1047 * Returns NULL if integrity support was inconsistent or unavailable.
1048 */
1049 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1050 bool match_all)
1051 {
1052 struct list_head *devices = dm_table_get_devices(t);
1053 struct dm_dev_internal *dd = NULL;
1054 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1055
1056 list_for_each_entry(dd, devices, list) {
1057 template_disk = dd->dm_dev.bdev->bd_disk;
1058 if (!blk_get_integrity(template_disk))
1059 goto no_integrity;
1060 if (!match_all && !blk_integrity_is_initialized(template_disk))
1061 continue; /* skip uninitialized profiles */
1062 else if (prev_disk &&
1063 blk_integrity_compare(prev_disk, template_disk) < 0)
1064 goto no_integrity;
1065 prev_disk = template_disk;
1066 }
1067
1068 return template_disk;
1069
1070 no_integrity:
1071 if (prev_disk)
1072 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1073 dm_device_name(t->md),
1074 prev_disk->disk_name,
1075 template_disk->disk_name);
1076 return NULL;
1077 }
1078
1079 /*
1080 * Register the mapped device for blk_integrity support if
1081 * the underlying devices have an integrity profile. But all devices
1082 * may not have matching profiles (checking all devices isn't reliable
1083 * during table load because this table may use other DM device(s) which
1084 * must be resumed before they will have an initialized integity profile).
1085 * Stacked DM devices force a 2 stage integrity profile validation:
1086 * 1 - during load, validate all initialized integrity profiles match
1087 * 2 - during resume, validate all integrity profiles match
1088 */
1089 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1090 {
1091 struct gendisk *template_disk = NULL;
1092
1093 template_disk = dm_table_get_integrity_disk(t, false);
1094 if (!template_disk)
1095 return 0;
1096
1097 if (!blk_integrity_is_initialized(dm_disk(md))) {
1098 t->integrity_supported = 1;
1099 return blk_integrity_register(dm_disk(md), NULL);
1100 }
1101
1102 /*
1103 * If DM device already has an initalized integrity
1104 * profile the new profile should not conflict.
1105 */
1106 if (blk_integrity_is_initialized(template_disk) &&
1107 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1108 DMWARN("%s: conflict with existing integrity profile: "
1109 "%s profile mismatch",
1110 dm_device_name(t->md),
1111 template_disk->disk_name);
1112 return 1;
1113 }
1114
1115 /* Preserve existing initialized integrity profile */
1116 t->integrity_supported = 1;
1117 return 0;
1118 }
1119
1120 /*
1121 * Prepares the table for use by building the indices,
1122 * setting the type, and allocating mempools.
1123 */
1124 int dm_table_complete(struct dm_table *t)
1125 {
1126 int r;
1127
1128 r = dm_table_set_type(t);
1129 if (r) {
1130 DMERR("unable to set table type");
1131 return r;
1132 }
1133
1134 r = dm_table_build_index(t);
1135 if (r) {
1136 DMERR("unable to build btrees");
1137 return r;
1138 }
1139
1140 r = dm_table_prealloc_integrity(t, t->md);
1141 if (r) {
1142 DMERR("could not register integrity profile.");
1143 return r;
1144 }
1145
1146 r = dm_table_alloc_md_mempools(t);
1147 if (r)
1148 DMERR("unable to allocate mempools");
1149
1150 return r;
1151 }
1152
1153 static DEFINE_MUTEX(_event_lock);
1154 void dm_table_event_callback(struct dm_table *t,
1155 void (*fn)(void *), void *context)
1156 {
1157 mutex_lock(&_event_lock);
1158 t->event_fn = fn;
1159 t->event_context = context;
1160 mutex_unlock(&_event_lock);
1161 }
1162
1163 void dm_table_event(struct dm_table *t)
1164 {
1165 /*
1166 * You can no longer call dm_table_event() from interrupt
1167 * context, use a bottom half instead.
1168 */
1169 BUG_ON(in_interrupt());
1170
1171 mutex_lock(&_event_lock);
1172 if (t->event_fn)
1173 t->event_fn(t->event_context);
1174 mutex_unlock(&_event_lock);
1175 }
1176 EXPORT_SYMBOL(dm_table_event);
1177
1178 sector_t dm_table_get_size(struct dm_table *t)
1179 {
1180 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1181 }
1182 EXPORT_SYMBOL(dm_table_get_size);
1183
1184 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1185 {
1186 if (index >= t->num_targets)
1187 return NULL;
1188
1189 return t->targets + index;
1190 }
1191
1192 /*
1193 * Search the btree for the correct target.
1194 *
1195 * Caller should check returned pointer with dm_target_is_valid()
1196 * to trap I/O beyond end of device.
1197 */
1198 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1199 {
1200 unsigned int l, n = 0, k = 0;
1201 sector_t *node;
1202
1203 for (l = 0; l < t->depth; l++) {
1204 n = get_child(n, k);
1205 node = get_node(t, l, n);
1206
1207 for (k = 0; k < KEYS_PER_NODE; k++)
1208 if (node[k] >= sector)
1209 break;
1210 }
1211
1212 return &t->targets[(KEYS_PER_NODE * n) + k];
1213 }
1214
1215 /*
1216 * Establish the new table's queue_limits and validate them.
1217 */
1218 int dm_calculate_queue_limits(struct dm_table *table,
1219 struct queue_limits *limits)
1220 {
1221 struct dm_target *uninitialized_var(ti);
1222 struct queue_limits ti_limits;
1223 unsigned i = 0;
1224
1225 blk_set_stacking_limits(limits);
1226
1227 while (i < dm_table_get_num_targets(table)) {
1228 blk_set_stacking_limits(&ti_limits);
1229
1230 ti = dm_table_get_target(table, i++);
1231
1232 if (!ti->type->iterate_devices)
1233 goto combine_limits;
1234
1235 /*
1236 * Combine queue limits of all the devices this target uses.
1237 */
1238 ti->type->iterate_devices(ti, dm_set_device_limits,
1239 &ti_limits);
1240
1241 /* Set I/O hints portion of queue limits */
1242 if (ti->type->io_hints)
1243 ti->type->io_hints(ti, &ti_limits);
1244
1245 /*
1246 * Check each device area is consistent with the target's
1247 * overall queue limits.
1248 */
1249 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1250 &ti_limits))
1251 return -EINVAL;
1252
1253 combine_limits:
1254 /*
1255 * Merge this target's queue limits into the overall limits
1256 * for the table.
1257 */
1258 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1259 DMWARN("%s: adding target device "
1260 "(start sect %llu len %llu) "
1261 "caused an alignment inconsistency",
1262 dm_device_name(table->md),
1263 (unsigned long long) ti->begin,
1264 (unsigned long long) ti->len);
1265 }
1266
1267 return validate_hardware_logical_block_alignment(table, limits);
1268 }
1269
1270 /*
1271 * Set the integrity profile for this device if all devices used have
1272 * matching profiles. We're quite deep in the resume path but still
1273 * don't know if all devices (particularly DM devices this device
1274 * may be stacked on) have matching profiles. Even if the profiles
1275 * don't match we have no way to fail (to resume) at this point.
1276 */
1277 static void dm_table_set_integrity(struct dm_table *t)
1278 {
1279 struct gendisk *template_disk = NULL;
1280
1281 if (!blk_get_integrity(dm_disk(t->md)))
1282 return;
1283
1284 template_disk = dm_table_get_integrity_disk(t, true);
1285 if (template_disk)
1286 blk_integrity_register(dm_disk(t->md),
1287 blk_get_integrity(template_disk));
1288 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1289 DMWARN("%s: device no longer has a valid integrity profile",
1290 dm_device_name(t->md));
1291 else
1292 DMWARN("%s: unable to establish an integrity profile",
1293 dm_device_name(t->md));
1294 }
1295
1296 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1297 sector_t start, sector_t len, void *data)
1298 {
1299 unsigned flush = (*(unsigned *)data);
1300 struct request_queue *q = bdev_get_queue(dev->bdev);
1301
1302 return q && (q->flush_flags & flush);
1303 }
1304
1305 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1306 {
1307 struct dm_target *ti;
1308 unsigned i = 0;
1309
1310 /*
1311 * Require at least one underlying device to support flushes.
1312 * t->devices includes internal dm devices such as mirror logs
1313 * so we need to use iterate_devices here, which targets
1314 * supporting flushes must provide.
1315 */
1316 while (i < dm_table_get_num_targets(t)) {
1317 ti = dm_table_get_target(t, i++);
1318
1319 if (!ti->num_flush_requests)
1320 continue;
1321
1322 if (ti->type->iterate_devices &&
1323 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1324 return 1;
1325 }
1326
1327 return 0;
1328 }
1329
1330 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1331 {
1332 struct dm_target *ti;
1333 unsigned i = 0;
1334
1335 /* Ensure that all targets supports discard_zeroes_data. */
1336 while (i < dm_table_get_num_targets(t)) {
1337 ti = dm_table_get_target(t, i++);
1338
1339 if (ti->discard_zeroes_data_unsupported)
1340 return 0;
1341 }
1342
1343 return 1;
1344 }
1345
1346 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1347 sector_t start, sector_t len, void *data)
1348 {
1349 struct request_queue *q = bdev_get_queue(dev->bdev);
1350
1351 return q && blk_queue_nonrot(q);
1352 }
1353
1354 static bool dm_table_is_nonrot(struct dm_table *t)
1355 {
1356 struct dm_target *ti;
1357 unsigned i = 0;
1358
1359 /* Ensure that all underlying device are non-rotational. */
1360 while (i < dm_table_get_num_targets(t)) {
1361 ti = dm_table_get_target(t, i++);
1362
1363 if (!ti->type->iterate_devices ||
1364 !ti->type->iterate_devices(ti, device_is_nonrot, NULL))
1365 return 0;
1366 }
1367
1368 return 1;
1369 }
1370
1371 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1372 struct queue_limits *limits)
1373 {
1374 unsigned flush = 0;
1375
1376 /*
1377 * Copy table's limits to the DM device's request_queue
1378 */
1379 q->limits = *limits;
1380
1381 if (!dm_table_supports_discards(t))
1382 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1383 else
1384 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1385
1386 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1387 flush |= REQ_FLUSH;
1388 if (dm_table_supports_flush(t, REQ_FUA))
1389 flush |= REQ_FUA;
1390 }
1391 blk_queue_flush(q, flush);
1392
1393 if (!dm_table_discard_zeroes_data(t))
1394 q->limits.discard_zeroes_data = 0;
1395
1396 if (dm_table_is_nonrot(t))
1397 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1398 else
1399 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1400
1401 dm_table_set_integrity(t);
1402
1403 /*
1404 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1405 * visible to other CPUs because, once the flag is set, incoming bios
1406 * are processed by request-based dm, which refers to the queue
1407 * settings.
1408 * Until the flag set, bios are passed to bio-based dm and queued to
1409 * md->deferred where queue settings are not needed yet.
1410 * Those bios are passed to request-based dm at the resume time.
1411 */
1412 smp_mb();
1413 if (dm_table_request_based(t))
1414 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1415 }
1416
1417 unsigned int dm_table_get_num_targets(struct dm_table *t)
1418 {
1419 return t->num_targets;
1420 }
1421
1422 struct list_head *dm_table_get_devices(struct dm_table *t)
1423 {
1424 return &t->devices;
1425 }
1426
1427 fmode_t dm_table_get_mode(struct dm_table *t)
1428 {
1429 return t->mode;
1430 }
1431 EXPORT_SYMBOL(dm_table_get_mode);
1432
1433 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1434 {
1435 int i = t->num_targets;
1436 struct dm_target *ti = t->targets;
1437
1438 while (i--) {
1439 if (postsuspend) {
1440 if (ti->type->postsuspend)
1441 ti->type->postsuspend(ti);
1442 } else if (ti->type->presuspend)
1443 ti->type->presuspend(ti);
1444
1445 ti++;
1446 }
1447 }
1448
1449 void dm_table_presuspend_targets(struct dm_table *t)
1450 {
1451 if (!t)
1452 return;
1453
1454 suspend_targets(t, 0);
1455 }
1456
1457 void dm_table_postsuspend_targets(struct dm_table *t)
1458 {
1459 if (!t)
1460 return;
1461
1462 suspend_targets(t, 1);
1463 }
1464
1465 int dm_table_resume_targets(struct dm_table *t)
1466 {
1467 int i, r = 0;
1468
1469 for (i = 0; i < t->num_targets; i++) {
1470 struct dm_target *ti = t->targets + i;
1471
1472 if (!ti->type->preresume)
1473 continue;
1474
1475 r = ti->type->preresume(ti);
1476 if (r)
1477 return r;
1478 }
1479
1480 for (i = 0; i < t->num_targets; i++) {
1481 struct dm_target *ti = t->targets + i;
1482
1483 if (ti->type->resume)
1484 ti->type->resume(ti);
1485 }
1486
1487 return 0;
1488 }
1489
1490 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1491 {
1492 list_add(&cb->list, &t->target_callbacks);
1493 }
1494 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1495
1496 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1497 {
1498 struct dm_dev_internal *dd;
1499 struct list_head *devices = dm_table_get_devices(t);
1500 struct dm_target_callbacks *cb;
1501 int r = 0;
1502
1503 list_for_each_entry(dd, devices, list) {
1504 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1505 char b[BDEVNAME_SIZE];
1506
1507 if (likely(q))
1508 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1509 else
1510 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1511 dm_device_name(t->md),
1512 bdevname(dd->dm_dev.bdev, b));
1513 }
1514
1515 list_for_each_entry(cb, &t->target_callbacks, list)
1516 if (cb->congested_fn)
1517 r |= cb->congested_fn(cb, bdi_bits);
1518
1519 return r;
1520 }
1521
1522 int dm_table_any_busy_target(struct dm_table *t)
1523 {
1524 unsigned i;
1525 struct dm_target *ti;
1526
1527 for (i = 0; i < t->num_targets; i++) {
1528 ti = t->targets + i;
1529 if (ti->type->busy && ti->type->busy(ti))
1530 return 1;
1531 }
1532
1533 return 0;
1534 }
1535
1536 struct mapped_device *dm_table_get_md(struct dm_table *t)
1537 {
1538 return t->md;
1539 }
1540 EXPORT_SYMBOL(dm_table_get_md);
1541
1542 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1543 sector_t start, sector_t len, void *data)
1544 {
1545 struct request_queue *q = bdev_get_queue(dev->bdev);
1546
1547 return q && blk_queue_discard(q);
1548 }
1549
1550 bool dm_table_supports_discards(struct dm_table *t)
1551 {
1552 struct dm_target *ti;
1553 unsigned i = 0;
1554
1555 /*
1556 * Unless any target used by the table set discards_supported,
1557 * require at least one underlying device to support discards.
1558 * t->devices includes internal dm devices such as mirror logs
1559 * so we need to use iterate_devices here, which targets
1560 * supporting discard selectively must provide.
1561 */
1562 while (i < dm_table_get_num_targets(t)) {
1563 ti = dm_table_get_target(t, i++);
1564
1565 if (!ti->num_discard_requests)
1566 continue;
1567
1568 if (ti->discards_supported)
1569 return 1;
1570
1571 if (ti->type->iterate_devices &&
1572 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1573 return 1;
1574 }
1575
1576 return 0;
1577 }