[PATCH] mempool: use common mempool kmalloc allocator
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm-raid1.c
1 /*
2 * Copyright (C) 2003 Sistina Software Limited.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-list.h"
9 #include "dm-io.h"
10 #include "dm-log.h"
11 #include "kcopyd.h"
12
13 #include <linux/ctype.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/pagemap.h>
18 #include <linux/slab.h>
19 #include <linux/time.h>
20 #include <linux/vmalloc.h>
21 #include <linux/workqueue.h>
22
23 static struct workqueue_struct *_kmirrord_wq;
24 static struct work_struct _kmirrord_work;
25
26 static inline void wake(void)
27 {
28 queue_work(_kmirrord_wq, &_kmirrord_work);
29 }
30
31 /*-----------------------------------------------------------------
32 * Region hash
33 *
34 * The mirror splits itself up into discrete regions. Each
35 * region can be in one of three states: clean, dirty,
36 * nosync. There is no need to put clean regions in the hash.
37 *
38 * In addition to being present in the hash table a region _may_
39 * be present on one of three lists.
40 *
41 * clean_regions: Regions on this list have no io pending to
42 * them, they are in sync, we are no longer interested in them,
43 * they are dull. rh_update_states() will remove them from the
44 * hash table.
45 *
46 * quiesced_regions: These regions have been spun down, ready
47 * for recovery. rh_recovery_start() will remove regions from
48 * this list and hand them to kmirrord, which will schedule the
49 * recovery io with kcopyd.
50 *
51 * recovered_regions: Regions that kcopyd has successfully
52 * recovered. rh_update_states() will now schedule any delayed
53 * io, up the recovery_count, and remove the region from the
54 * hash.
55 *
56 * There are 2 locks:
57 * A rw spin lock 'hash_lock' protects just the hash table,
58 * this is never held in write mode from interrupt context,
59 * which I believe means that we only have to disable irqs when
60 * doing a write lock.
61 *
62 * An ordinary spin lock 'region_lock' that protects the three
63 * lists in the region_hash, with the 'state', 'list' and
64 * 'bhs_delayed' fields of the regions. This is used from irq
65 * context, so all other uses will have to suspend local irqs.
66 *---------------------------------------------------------------*/
67 struct mirror_set;
68 struct region_hash {
69 struct mirror_set *ms;
70 uint32_t region_size;
71 unsigned region_shift;
72
73 /* holds persistent region state */
74 struct dirty_log *log;
75
76 /* hash table */
77 rwlock_t hash_lock;
78 mempool_t *region_pool;
79 unsigned int mask;
80 unsigned int nr_buckets;
81 struct list_head *buckets;
82
83 spinlock_t region_lock;
84 struct semaphore recovery_count;
85 struct list_head clean_regions;
86 struct list_head quiesced_regions;
87 struct list_head recovered_regions;
88 };
89
90 enum {
91 RH_CLEAN,
92 RH_DIRTY,
93 RH_NOSYNC,
94 RH_RECOVERING
95 };
96
97 struct region {
98 struct region_hash *rh; /* FIXME: can we get rid of this ? */
99 region_t key;
100 int state;
101
102 struct list_head hash_list;
103 struct list_head list;
104
105 atomic_t pending;
106 struct bio_list delayed_bios;
107 };
108
109 /*
110 * Conversion fns
111 */
112 static inline region_t bio_to_region(struct region_hash *rh, struct bio *bio)
113 {
114 return bio->bi_sector >> rh->region_shift;
115 }
116
117 static inline sector_t region_to_sector(struct region_hash *rh, region_t region)
118 {
119 return region << rh->region_shift;
120 }
121
122 /* FIXME move this */
123 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw);
124
125 #define MIN_REGIONS 64
126 #define MAX_RECOVERY 1
127 static int rh_init(struct region_hash *rh, struct mirror_set *ms,
128 struct dirty_log *log, uint32_t region_size,
129 region_t nr_regions)
130 {
131 unsigned int nr_buckets, max_buckets;
132 size_t i;
133
134 /*
135 * Calculate a suitable number of buckets for our hash
136 * table.
137 */
138 max_buckets = nr_regions >> 6;
139 for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1)
140 ;
141 nr_buckets >>= 1;
142
143 rh->ms = ms;
144 rh->log = log;
145 rh->region_size = region_size;
146 rh->region_shift = ffs(region_size) - 1;
147 rwlock_init(&rh->hash_lock);
148 rh->mask = nr_buckets - 1;
149 rh->nr_buckets = nr_buckets;
150
151 rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets));
152 if (!rh->buckets) {
153 DMERR("unable to allocate region hash memory");
154 return -ENOMEM;
155 }
156
157 for (i = 0; i < nr_buckets; i++)
158 INIT_LIST_HEAD(rh->buckets + i);
159
160 spin_lock_init(&rh->region_lock);
161 sema_init(&rh->recovery_count, 0);
162 INIT_LIST_HEAD(&rh->clean_regions);
163 INIT_LIST_HEAD(&rh->quiesced_regions);
164 INIT_LIST_HEAD(&rh->recovered_regions);
165
166 rh->region_pool = mempool_create_kmalloc_pool(MIN_REGIONS,
167 sizeof(struct region));
168 if (!rh->region_pool) {
169 vfree(rh->buckets);
170 rh->buckets = NULL;
171 return -ENOMEM;
172 }
173
174 return 0;
175 }
176
177 static void rh_exit(struct region_hash *rh)
178 {
179 unsigned int h;
180 struct region *reg, *nreg;
181
182 BUG_ON(!list_empty(&rh->quiesced_regions));
183 for (h = 0; h < rh->nr_buckets; h++) {
184 list_for_each_entry_safe(reg, nreg, rh->buckets + h, hash_list) {
185 BUG_ON(atomic_read(&reg->pending));
186 mempool_free(reg, rh->region_pool);
187 }
188 }
189
190 if (rh->log)
191 dm_destroy_dirty_log(rh->log);
192 if (rh->region_pool)
193 mempool_destroy(rh->region_pool);
194 vfree(rh->buckets);
195 }
196
197 #define RH_HASH_MULT 2654435387U
198
199 static inline unsigned int rh_hash(struct region_hash *rh, region_t region)
200 {
201 return (unsigned int) ((region * RH_HASH_MULT) >> 12) & rh->mask;
202 }
203
204 static struct region *__rh_lookup(struct region_hash *rh, region_t region)
205 {
206 struct region *reg;
207
208 list_for_each_entry (reg, rh->buckets + rh_hash(rh, region), hash_list)
209 if (reg->key == region)
210 return reg;
211
212 return NULL;
213 }
214
215 static void __rh_insert(struct region_hash *rh, struct region *reg)
216 {
217 unsigned int h = rh_hash(rh, reg->key);
218 list_add(&reg->hash_list, rh->buckets + h);
219 }
220
221 static struct region *__rh_alloc(struct region_hash *rh, region_t region)
222 {
223 struct region *reg, *nreg;
224
225 read_unlock(&rh->hash_lock);
226 nreg = mempool_alloc(rh->region_pool, GFP_NOIO);
227 nreg->state = rh->log->type->in_sync(rh->log, region, 1) ?
228 RH_CLEAN : RH_NOSYNC;
229 nreg->rh = rh;
230 nreg->key = region;
231
232 INIT_LIST_HEAD(&nreg->list);
233
234 atomic_set(&nreg->pending, 0);
235 bio_list_init(&nreg->delayed_bios);
236 write_lock_irq(&rh->hash_lock);
237
238 reg = __rh_lookup(rh, region);
239 if (reg)
240 /* we lost the race */
241 mempool_free(nreg, rh->region_pool);
242
243 else {
244 __rh_insert(rh, nreg);
245 if (nreg->state == RH_CLEAN) {
246 spin_lock(&rh->region_lock);
247 list_add(&nreg->list, &rh->clean_regions);
248 spin_unlock(&rh->region_lock);
249 }
250 reg = nreg;
251 }
252 write_unlock_irq(&rh->hash_lock);
253 read_lock(&rh->hash_lock);
254
255 return reg;
256 }
257
258 static inline struct region *__rh_find(struct region_hash *rh, region_t region)
259 {
260 struct region *reg;
261
262 reg = __rh_lookup(rh, region);
263 if (!reg)
264 reg = __rh_alloc(rh, region);
265
266 return reg;
267 }
268
269 static int rh_state(struct region_hash *rh, region_t region, int may_block)
270 {
271 int r;
272 struct region *reg;
273
274 read_lock(&rh->hash_lock);
275 reg = __rh_lookup(rh, region);
276 read_unlock(&rh->hash_lock);
277
278 if (reg)
279 return reg->state;
280
281 /*
282 * The region wasn't in the hash, so we fall back to the
283 * dirty log.
284 */
285 r = rh->log->type->in_sync(rh->log, region, may_block);
286
287 /*
288 * Any error from the dirty log (eg. -EWOULDBLOCK) gets
289 * taken as a RH_NOSYNC
290 */
291 return r == 1 ? RH_CLEAN : RH_NOSYNC;
292 }
293
294 static inline int rh_in_sync(struct region_hash *rh,
295 region_t region, int may_block)
296 {
297 int state = rh_state(rh, region, may_block);
298 return state == RH_CLEAN || state == RH_DIRTY;
299 }
300
301 static void dispatch_bios(struct mirror_set *ms, struct bio_list *bio_list)
302 {
303 struct bio *bio;
304
305 while ((bio = bio_list_pop(bio_list))) {
306 queue_bio(ms, bio, WRITE);
307 }
308 }
309
310 static void rh_update_states(struct region_hash *rh)
311 {
312 struct region *reg, *next;
313
314 LIST_HEAD(clean);
315 LIST_HEAD(recovered);
316
317 /*
318 * Quickly grab the lists.
319 */
320 write_lock_irq(&rh->hash_lock);
321 spin_lock(&rh->region_lock);
322 if (!list_empty(&rh->clean_regions)) {
323 list_splice(&rh->clean_regions, &clean);
324 INIT_LIST_HEAD(&rh->clean_regions);
325
326 list_for_each_entry (reg, &clean, list) {
327 rh->log->type->clear_region(rh->log, reg->key);
328 list_del(&reg->hash_list);
329 }
330 }
331
332 if (!list_empty(&rh->recovered_regions)) {
333 list_splice(&rh->recovered_regions, &recovered);
334 INIT_LIST_HEAD(&rh->recovered_regions);
335
336 list_for_each_entry (reg, &recovered, list)
337 list_del(&reg->hash_list);
338 }
339 spin_unlock(&rh->region_lock);
340 write_unlock_irq(&rh->hash_lock);
341
342 /*
343 * All the regions on the recovered and clean lists have
344 * now been pulled out of the system, so no need to do
345 * any more locking.
346 */
347 list_for_each_entry_safe (reg, next, &recovered, list) {
348 rh->log->type->clear_region(rh->log, reg->key);
349 rh->log->type->complete_resync_work(rh->log, reg->key, 1);
350 dispatch_bios(rh->ms, &reg->delayed_bios);
351 up(&rh->recovery_count);
352 mempool_free(reg, rh->region_pool);
353 }
354
355 if (!list_empty(&recovered))
356 rh->log->type->flush(rh->log);
357
358 list_for_each_entry_safe (reg, next, &clean, list)
359 mempool_free(reg, rh->region_pool);
360 }
361
362 static void rh_inc(struct region_hash *rh, region_t region)
363 {
364 struct region *reg;
365
366 read_lock(&rh->hash_lock);
367 reg = __rh_find(rh, region);
368
369 spin_lock_irq(&rh->region_lock);
370 atomic_inc(&reg->pending);
371
372 if (reg->state == RH_CLEAN) {
373 reg->state = RH_DIRTY;
374 list_del_init(&reg->list); /* take off the clean list */
375 spin_unlock_irq(&rh->region_lock);
376
377 rh->log->type->mark_region(rh->log, reg->key);
378 } else
379 spin_unlock_irq(&rh->region_lock);
380
381
382 read_unlock(&rh->hash_lock);
383 }
384
385 static void rh_inc_pending(struct region_hash *rh, struct bio_list *bios)
386 {
387 struct bio *bio;
388
389 for (bio = bios->head; bio; bio = bio->bi_next)
390 rh_inc(rh, bio_to_region(rh, bio));
391 }
392
393 static void rh_dec(struct region_hash *rh, region_t region)
394 {
395 unsigned long flags;
396 struct region *reg;
397 int should_wake = 0;
398
399 read_lock(&rh->hash_lock);
400 reg = __rh_lookup(rh, region);
401 read_unlock(&rh->hash_lock);
402
403 spin_lock_irqsave(&rh->region_lock, flags);
404 if (atomic_dec_and_test(&reg->pending)) {
405 if (reg->state == RH_RECOVERING) {
406 list_add_tail(&reg->list, &rh->quiesced_regions);
407 } else {
408 reg->state = RH_CLEAN;
409 list_add(&reg->list, &rh->clean_regions);
410 }
411 should_wake = 1;
412 }
413 spin_unlock_irqrestore(&rh->region_lock, flags);
414
415 if (should_wake)
416 wake();
417 }
418
419 /*
420 * Starts quiescing a region in preparation for recovery.
421 */
422 static int __rh_recovery_prepare(struct region_hash *rh)
423 {
424 int r;
425 struct region *reg;
426 region_t region;
427
428 /*
429 * Ask the dirty log what's next.
430 */
431 r = rh->log->type->get_resync_work(rh->log, &region);
432 if (r <= 0)
433 return r;
434
435 /*
436 * Get this region, and start it quiescing by setting the
437 * recovering flag.
438 */
439 read_lock(&rh->hash_lock);
440 reg = __rh_find(rh, region);
441 read_unlock(&rh->hash_lock);
442
443 spin_lock_irq(&rh->region_lock);
444 reg->state = RH_RECOVERING;
445
446 /* Already quiesced ? */
447 if (atomic_read(&reg->pending))
448 list_del_init(&reg->list);
449
450 else {
451 list_del_init(&reg->list);
452 list_add(&reg->list, &rh->quiesced_regions);
453 }
454 spin_unlock_irq(&rh->region_lock);
455
456 return 1;
457 }
458
459 static void rh_recovery_prepare(struct region_hash *rh)
460 {
461 while (!down_trylock(&rh->recovery_count))
462 if (__rh_recovery_prepare(rh) <= 0) {
463 up(&rh->recovery_count);
464 break;
465 }
466 }
467
468 /*
469 * Returns any quiesced regions.
470 */
471 static struct region *rh_recovery_start(struct region_hash *rh)
472 {
473 struct region *reg = NULL;
474
475 spin_lock_irq(&rh->region_lock);
476 if (!list_empty(&rh->quiesced_regions)) {
477 reg = list_entry(rh->quiesced_regions.next,
478 struct region, list);
479 list_del_init(&reg->list); /* remove from the quiesced list */
480 }
481 spin_unlock_irq(&rh->region_lock);
482
483 return reg;
484 }
485
486 /* FIXME: success ignored for now */
487 static void rh_recovery_end(struct region *reg, int success)
488 {
489 struct region_hash *rh = reg->rh;
490
491 spin_lock_irq(&rh->region_lock);
492 list_add(&reg->list, &reg->rh->recovered_regions);
493 spin_unlock_irq(&rh->region_lock);
494
495 wake();
496 }
497
498 static void rh_flush(struct region_hash *rh)
499 {
500 rh->log->type->flush(rh->log);
501 }
502
503 static void rh_delay(struct region_hash *rh, struct bio *bio)
504 {
505 struct region *reg;
506
507 read_lock(&rh->hash_lock);
508 reg = __rh_find(rh, bio_to_region(rh, bio));
509 bio_list_add(&reg->delayed_bios, bio);
510 read_unlock(&rh->hash_lock);
511 }
512
513 static void rh_stop_recovery(struct region_hash *rh)
514 {
515 int i;
516
517 /* wait for any recovering regions */
518 for (i = 0; i < MAX_RECOVERY; i++)
519 down(&rh->recovery_count);
520 }
521
522 static void rh_start_recovery(struct region_hash *rh)
523 {
524 int i;
525
526 for (i = 0; i < MAX_RECOVERY; i++)
527 up(&rh->recovery_count);
528
529 wake();
530 }
531
532 /*-----------------------------------------------------------------
533 * Mirror set structures.
534 *---------------------------------------------------------------*/
535 struct mirror {
536 atomic_t error_count;
537 struct dm_dev *dev;
538 sector_t offset;
539 };
540
541 struct mirror_set {
542 struct dm_target *ti;
543 struct list_head list;
544 struct region_hash rh;
545 struct kcopyd_client *kcopyd_client;
546
547 spinlock_t lock; /* protects the next two lists */
548 struct bio_list reads;
549 struct bio_list writes;
550
551 /* recovery */
552 region_t nr_regions;
553 int in_sync;
554
555 struct mirror *default_mirror; /* Default mirror */
556
557 unsigned int nr_mirrors;
558 struct mirror mirror[0];
559 };
560
561 /*
562 * Every mirror should look like this one.
563 */
564 #define DEFAULT_MIRROR 0
565
566 /*
567 * This is yucky. We squirrel the mirror_set struct away inside
568 * bi_next for write buffers. This is safe since the bh
569 * doesn't get submitted to the lower levels of block layer.
570 */
571 static struct mirror_set *bio_get_ms(struct bio *bio)
572 {
573 return (struct mirror_set *) bio->bi_next;
574 }
575
576 static void bio_set_ms(struct bio *bio, struct mirror_set *ms)
577 {
578 bio->bi_next = (struct bio *) ms;
579 }
580
581 /*-----------------------------------------------------------------
582 * Recovery.
583 *
584 * When a mirror is first activated we may find that some regions
585 * are in the no-sync state. We have to recover these by
586 * recopying from the default mirror to all the others.
587 *---------------------------------------------------------------*/
588 static void recovery_complete(int read_err, unsigned int write_err,
589 void *context)
590 {
591 struct region *reg = (struct region *) context;
592
593 /* FIXME: better error handling */
594 rh_recovery_end(reg, read_err || write_err);
595 }
596
597 static int recover(struct mirror_set *ms, struct region *reg)
598 {
599 int r;
600 unsigned int i;
601 struct io_region from, to[KCOPYD_MAX_REGIONS], *dest;
602 struct mirror *m;
603 unsigned long flags = 0;
604
605 /* fill in the source */
606 m = ms->default_mirror;
607 from.bdev = m->dev->bdev;
608 from.sector = m->offset + region_to_sector(reg->rh, reg->key);
609 if (reg->key == (ms->nr_regions - 1)) {
610 /*
611 * The final region may be smaller than
612 * region_size.
613 */
614 from.count = ms->ti->len & (reg->rh->region_size - 1);
615 if (!from.count)
616 from.count = reg->rh->region_size;
617 } else
618 from.count = reg->rh->region_size;
619
620 /* fill in the destinations */
621 for (i = 0, dest = to; i < ms->nr_mirrors; i++) {
622 if (&ms->mirror[i] == ms->default_mirror)
623 continue;
624
625 m = ms->mirror + i;
626 dest->bdev = m->dev->bdev;
627 dest->sector = m->offset + region_to_sector(reg->rh, reg->key);
628 dest->count = from.count;
629 dest++;
630 }
631
632 /* hand to kcopyd */
633 set_bit(KCOPYD_IGNORE_ERROR, &flags);
634 r = kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to, flags,
635 recovery_complete, reg);
636
637 return r;
638 }
639
640 static void do_recovery(struct mirror_set *ms)
641 {
642 int r;
643 struct region *reg;
644 struct dirty_log *log = ms->rh.log;
645
646 /*
647 * Start quiescing some regions.
648 */
649 rh_recovery_prepare(&ms->rh);
650
651 /*
652 * Copy any already quiesced regions.
653 */
654 while ((reg = rh_recovery_start(&ms->rh))) {
655 r = recover(ms, reg);
656 if (r)
657 rh_recovery_end(reg, 0);
658 }
659
660 /*
661 * Update the in sync flag.
662 */
663 if (!ms->in_sync &&
664 (log->type->get_sync_count(log) == ms->nr_regions)) {
665 /* the sync is complete */
666 dm_table_event(ms->ti->table);
667 ms->in_sync = 1;
668 }
669 }
670
671 /*-----------------------------------------------------------------
672 * Reads
673 *---------------------------------------------------------------*/
674 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector)
675 {
676 /* FIXME: add read balancing */
677 return ms->default_mirror;
678 }
679
680 /*
681 * remap a buffer to a particular mirror.
682 */
683 static void map_bio(struct mirror_set *ms, struct mirror *m, struct bio *bio)
684 {
685 bio->bi_bdev = m->dev->bdev;
686 bio->bi_sector = m->offset + (bio->bi_sector - ms->ti->begin);
687 }
688
689 static void do_reads(struct mirror_set *ms, struct bio_list *reads)
690 {
691 region_t region;
692 struct bio *bio;
693 struct mirror *m;
694
695 while ((bio = bio_list_pop(reads))) {
696 region = bio_to_region(&ms->rh, bio);
697
698 /*
699 * We can only read balance if the region is in sync.
700 */
701 if (rh_in_sync(&ms->rh, region, 0))
702 m = choose_mirror(ms, bio->bi_sector);
703 else
704 m = ms->default_mirror;
705
706 map_bio(ms, m, bio);
707 generic_make_request(bio);
708 }
709 }
710
711 /*-----------------------------------------------------------------
712 * Writes.
713 *
714 * We do different things with the write io depending on the
715 * state of the region that it's in:
716 *
717 * SYNC: increment pending, use kcopyd to write to *all* mirrors
718 * RECOVERING: delay the io until recovery completes
719 * NOSYNC: increment pending, just write to the default mirror
720 *---------------------------------------------------------------*/
721 static void write_callback(unsigned long error, void *context)
722 {
723 unsigned int i;
724 int uptodate = 1;
725 struct bio *bio = (struct bio *) context;
726 struct mirror_set *ms;
727
728 ms = bio_get_ms(bio);
729 bio_set_ms(bio, NULL);
730
731 /*
732 * NOTE: We don't decrement the pending count here,
733 * instead it is done by the targets endio function.
734 * This way we handle both writes to SYNC and NOSYNC
735 * regions with the same code.
736 */
737
738 if (error) {
739 /*
740 * only error the io if all mirrors failed.
741 * FIXME: bogus
742 */
743 uptodate = 0;
744 for (i = 0; i < ms->nr_mirrors; i++)
745 if (!test_bit(i, &error)) {
746 uptodate = 1;
747 break;
748 }
749 }
750 bio_endio(bio, bio->bi_size, 0);
751 }
752
753 static void do_write(struct mirror_set *ms, struct bio *bio)
754 {
755 unsigned int i;
756 struct io_region io[KCOPYD_MAX_REGIONS+1];
757 struct mirror *m;
758
759 for (i = 0; i < ms->nr_mirrors; i++) {
760 m = ms->mirror + i;
761
762 io[i].bdev = m->dev->bdev;
763 io[i].sector = m->offset + (bio->bi_sector - ms->ti->begin);
764 io[i].count = bio->bi_size >> 9;
765 }
766
767 bio_set_ms(bio, ms);
768 dm_io_async_bvec(ms->nr_mirrors, io, WRITE,
769 bio->bi_io_vec + bio->bi_idx,
770 write_callback, bio);
771 }
772
773 static void do_writes(struct mirror_set *ms, struct bio_list *writes)
774 {
775 int state;
776 struct bio *bio;
777 struct bio_list sync, nosync, recover, *this_list = NULL;
778
779 if (!writes->head)
780 return;
781
782 /*
783 * Classify each write.
784 */
785 bio_list_init(&sync);
786 bio_list_init(&nosync);
787 bio_list_init(&recover);
788
789 while ((bio = bio_list_pop(writes))) {
790 state = rh_state(&ms->rh, bio_to_region(&ms->rh, bio), 1);
791 switch (state) {
792 case RH_CLEAN:
793 case RH_DIRTY:
794 this_list = &sync;
795 break;
796
797 case RH_NOSYNC:
798 this_list = &nosync;
799 break;
800
801 case RH_RECOVERING:
802 this_list = &recover;
803 break;
804 }
805
806 bio_list_add(this_list, bio);
807 }
808
809 /*
810 * Increment the pending counts for any regions that will
811 * be written to (writes to recover regions are going to
812 * be delayed).
813 */
814 rh_inc_pending(&ms->rh, &sync);
815 rh_inc_pending(&ms->rh, &nosync);
816 rh_flush(&ms->rh);
817
818 /*
819 * Dispatch io.
820 */
821 while ((bio = bio_list_pop(&sync)))
822 do_write(ms, bio);
823
824 while ((bio = bio_list_pop(&recover)))
825 rh_delay(&ms->rh, bio);
826
827 while ((bio = bio_list_pop(&nosync))) {
828 map_bio(ms, ms->default_mirror, bio);
829 generic_make_request(bio);
830 }
831 }
832
833 /*-----------------------------------------------------------------
834 * kmirrord
835 *---------------------------------------------------------------*/
836 static LIST_HEAD(_mirror_sets);
837 static DECLARE_RWSEM(_mirror_sets_lock);
838
839 static void do_mirror(struct mirror_set *ms)
840 {
841 struct bio_list reads, writes;
842
843 spin_lock(&ms->lock);
844 reads = ms->reads;
845 writes = ms->writes;
846 bio_list_init(&ms->reads);
847 bio_list_init(&ms->writes);
848 spin_unlock(&ms->lock);
849
850 rh_update_states(&ms->rh);
851 do_recovery(ms);
852 do_reads(ms, &reads);
853 do_writes(ms, &writes);
854 }
855
856 static void do_work(void *ignored)
857 {
858 struct mirror_set *ms;
859
860 down_read(&_mirror_sets_lock);
861 list_for_each_entry (ms, &_mirror_sets, list)
862 do_mirror(ms);
863 up_read(&_mirror_sets_lock);
864 }
865
866 /*-----------------------------------------------------------------
867 * Target functions
868 *---------------------------------------------------------------*/
869 static struct mirror_set *alloc_context(unsigned int nr_mirrors,
870 uint32_t region_size,
871 struct dm_target *ti,
872 struct dirty_log *dl)
873 {
874 size_t len;
875 struct mirror_set *ms = NULL;
876
877 if (array_too_big(sizeof(*ms), sizeof(ms->mirror[0]), nr_mirrors))
878 return NULL;
879
880 len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors);
881
882 ms = kmalloc(len, GFP_KERNEL);
883 if (!ms) {
884 ti->error = "dm-mirror: Cannot allocate mirror context";
885 return NULL;
886 }
887
888 memset(ms, 0, len);
889 spin_lock_init(&ms->lock);
890
891 ms->ti = ti;
892 ms->nr_mirrors = nr_mirrors;
893 ms->nr_regions = dm_sector_div_up(ti->len, region_size);
894 ms->in_sync = 0;
895 ms->default_mirror = &ms->mirror[DEFAULT_MIRROR];
896
897 if (rh_init(&ms->rh, ms, dl, region_size, ms->nr_regions)) {
898 ti->error = "dm-mirror: Error creating dirty region hash";
899 kfree(ms);
900 return NULL;
901 }
902
903 return ms;
904 }
905
906 static void free_context(struct mirror_set *ms, struct dm_target *ti,
907 unsigned int m)
908 {
909 while (m--)
910 dm_put_device(ti, ms->mirror[m].dev);
911
912 rh_exit(&ms->rh);
913 kfree(ms);
914 }
915
916 static inline int _check_region_size(struct dm_target *ti, uint32_t size)
917 {
918 return !(size % (PAGE_SIZE >> 9) || (size & (size - 1)) ||
919 size > ti->len);
920 }
921
922 static int get_mirror(struct mirror_set *ms, struct dm_target *ti,
923 unsigned int mirror, char **argv)
924 {
925 sector_t offset;
926
927 if (sscanf(argv[1], SECTOR_FORMAT, &offset) != 1) {
928 ti->error = "dm-mirror: Invalid offset";
929 return -EINVAL;
930 }
931
932 if (dm_get_device(ti, argv[0], offset, ti->len,
933 dm_table_get_mode(ti->table),
934 &ms->mirror[mirror].dev)) {
935 ti->error = "dm-mirror: Device lookup failure";
936 return -ENXIO;
937 }
938
939 ms->mirror[mirror].offset = offset;
940
941 return 0;
942 }
943
944 static int add_mirror_set(struct mirror_set *ms)
945 {
946 down_write(&_mirror_sets_lock);
947 list_add_tail(&ms->list, &_mirror_sets);
948 up_write(&_mirror_sets_lock);
949 wake();
950
951 return 0;
952 }
953
954 static void del_mirror_set(struct mirror_set *ms)
955 {
956 down_write(&_mirror_sets_lock);
957 list_del(&ms->list);
958 up_write(&_mirror_sets_lock);
959 }
960
961 /*
962 * Create dirty log: log_type #log_params <log_params>
963 */
964 static struct dirty_log *create_dirty_log(struct dm_target *ti,
965 unsigned int argc, char **argv,
966 unsigned int *args_used)
967 {
968 unsigned int param_count;
969 struct dirty_log *dl;
970
971 if (argc < 2) {
972 ti->error = "dm-mirror: Insufficient mirror log arguments";
973 return NULL;
974 }
975
976 if (sscanf(argv[1], "%u", &param_count) != 1) {
977 ti->error = "dm-mirror: Invalid mirror log argument count";
978 return NULL;
979 }
980
981 *args_used = 2 + param_count;
982
983 if (argc < *args_used) {
984 ti->error = "dm-mirror: Insufficient mirror log arguments";
985 return NULL;
986 }
987
988 dl = dm_create_dirty_log(argv[0], ti, param_count, argv + 2);
989 if (!dl) {
990 ti->error = "dm-mirror: Error creating mirror dirty log";
991 return NULL;
992 }
993
994 if (!_check_region_size(ti, dl->type->get_region_size(dl))) {
995 ti->error = "dm-mirror: Invalid region size";
996 dm_destroy_dirty_log(dl);
997 return NULL;
998 }
999
1000 return dl;
1001 }
1002
1003 /*
1004 * Construct a mirror mapping:
1005 *
1006 * log_type #log_params <log_params>
1007 * #mirrors [mirror_path offset]{2,}
1008 *
1009 * log_type is "core" or "disk"
1010 * #log_params is between 1 and 3
1011 */
1012 #define DM_IO_PAGES 64
1013 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1014 {
1015 int r;
1016 unsigned int nr_mirrors, m, args_used;
1017 struct mirror_set *ms;
1018 struct dirty_log *dl;
1019
1020 dl = create_dirty_log(ti, argc, argv, &args_used);
1021 if (!dl)
1022 return -EINVAL;
1023
1024 argv += args_used;
1025 argc -= args_used;
1026
1027 if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 ||
1028 nr_mirrors < 2 || nr_mirrors > KCOPYD_MAX_REGIONS + 1) {
1029 ti->error = "dm-mirror: Invalid number of mirrors";
1030 dm_destroy_dirty_log(dl);
1031 return -EINVAL;
1032 }
1033
1034 argv++, argc--;
1035
1036 if (argc != nr_mirrors * 2) {
1037 ti->error = "dm-mirror: Wrong number of mirror arguments";
1038 dm_destroy_dirty_log(dl);
1039 return -EINVAL;
1040 }
1041
1042 ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl);
1043 if (!ms) {
1044 dm_destroy_dirty_log(dl);
1045 return -ENOMEM;
1046 }
1047
1048 /* Get the mirror parameter sets */
1049 for (m = 0; m < nr_mirrors; m++) {
1050 r = get_mirror(ms, ti, m, argv);
1051 if (r) {
1052 free_context(ms, ti, m);
1053 return r;
1054 }
1055 argv += 2;
1056 argc -= 2;
1057 }
1058
1059 ti->private = ms;
1060 ti->split_io = ms->rh.region_size;
1061
1062 r = kcopyd_client_create(DM_IO_PAGES, &ms->kcopyd_client);
1063 if (r) {
1064 free_context(ms, ti, ms->nr_mirrors);
1065 return r;
1066 }
1067
1068 add_mirror_set(ms);
1069 return 0;
1070 }
1071
1072 static void mirror_dtr(struct dm_target *ti)
1073 {
1074 struct mirror_set *ms = (struct mirror_set *) ti->private;
1075
1076 del_mirror_set(ms);
1077 kcopyd_client_destroy(ms->kcopyd_client);
1078 free_context(ms, ti, ms->nr_mirrors);
1079 }
1080
1081 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw)
1082 {
1083 int should_wake = 0;
1084 struct bio_list *bl;
1085
1086 bl = (rw == WRITE) ? &ms->writes : &ms->reads;
1087 spin_lock(&ms->lock);
1088 should_wake = !(bl->head);
1089 bio_list_add(bl, bio);
1090 spin_unlock(&ms->lock);
1091
1092 if (should_wake)
1093 wake();
1094 }
1095
1096 /*
1097 * Mirror mapping function
1098 */
1099 static int mirror_map(struct dm_target *ti, struct bio *bio,
1100 union map_info *map_context)
1101 {
1102 int r, rw = bio_rw(bio);
1103 struct mirror *m;
1104 struct mirror_set *ms = ti->private;
1105
1106 map_context->ll = bio->bi_sector >> ms->rh.region_shift;
1107
1108 if (rw == WRITE) {
1109 queue_bio(ms, bio, rw);
1110 return 0;
1111 }
1112
1113 r = ms->rh.log->type->in_sync(ms->rh.log,
1114 bio_to_region(&ms->rh, bio), 0);
1115 if (r < 0 && r != -EWOULDBLOCK)
1116 return r;
1117
1118 if (r == -EWOULDBLOCK) /* FIXME: ugly */
1119 r = 0;
1120
1121 /*
1122 * We don't want to fast track a recovery just for a read
1123 * ahead. So we just let it silently fail.
1124 * FIXME: get rid of this.
1125 */
1126 if (!r && rw == READA)
1127 return -EIO;
1128
1129 if (!r) {
1130 /* Pass this io over to the daemon */
1131 queue_bio(ms, bio, rw);
1132 return 0;
1133 }
1134
1135 m = choose_mirror(ms, bio->bi_sector);
1136 if (!m)
1137 return -EIO;
1138
1139 map_bio(ms, m, bio);
1140 return 1;
1141 }
1142
1143 static int mirror_end_io(struct dm_target *ti, struct bio *bio,
1144 int error, union map_info *map_context)
1145 {
1146 int rw = bio_rw(bio);
1147 struct mirror_set *ms = (struct mirror_set *) ti->private;
1148 region_t region = map_context->ll;
1149
1150 /*
1151 * We need to dec pending if this was a write.
1152 */
1153 if (rw == WRITE)
1154 rh_dec(&ms->rh, region);
1155
1156 return 0;
1157 }
1158
1159 static void mirror_postsuspend(struct dm_target *ti)
1160 {
1161 struct mirror_set *ms = (struct mirror_set *) ti->private;
1162 struct dirty_log *log = ms->rh.log;
1163
1164 rh_stop_recovery(&ms->rh);
1165 if (log->type->suspend && log->type->suspend(log))
1166 /* FIXME: need better error handling */
1167 DMWARN("log suspend failed");
1168 }
1169
1170 static void mirror_resume(struct dm_target *ti)
1171 {
1172 struct mirror_set *ms = (struct mirror_set *) ti->private;
1173 struct dirty_log *log = ms->rh.log;
1174 if (log->type->resume && log->type->resume(log))
1175 /* FIXME: need better error handling */
1176 DMWARN("log resume failed");
1177 rh_start_recovery(&ms->rh);
1178 }
1179
1180 static int mirror_status(struct dm_target *ti, status_type_t type,
1181 char *result, unsigned int maxlen)
1182 {
1183 unsigned int m, sz;
1184 struct mirror_set *ms = (struct mirror_set *) ti->private;
1185
1186 sz = ms->rh.log->type->status(ms->rh.log, type, result, maxlen);
1187
1188 switch (type) {
1189 case STATUSTYPE_INFO:
1190 DMEMIT("%d ", ms->nr_mirrors);
1191 for (m = 0; m < ms->nr_mirrors; m++)
1192 DMEMIT("%s ", ms->mirror[m].dev->name);
1193
1194 DMEMIT(SECTOR_FORMAT "/" SECTOR_FORMAT,
1195 ms->rh.log->type->get_sync_count(ms->rh.log),
1196 ms->nr_regions);
1197 break;
1198
1199 case STATUSTYPE_TABLE:
1200 DMEMIT("%d ", ms->nr_mirrors);
1201 for (m = 0; m < ms->nr_mirrors; m++)
1202 DMEMIT("%s " SECTOR_FORMAT " ",
1203 ms->mirror[m].dev->name, ms->mirror[m].offset);
1204 }
1205
1206 return 0;
1207 }
1208
1209 static struct target_type mirror_target = {
1210 .name = "mirror",
1211 .version = {1, 0, 1},
1212 .module = THIS_MODULE,
1213 .ctr = mirror_ctr,
1214 .dtr = mirror_dtr,
1215 .map = mirror_map,
1216 .end_io = mirror_end_io,
1217 .postsuspend = mirror_postsuspend,
1218 .resume = mirror_resume,
1219 .status = mirror_status,
1220 };
1221
1222 static int __init dm_mirror_init(void)
1223 {
1224 int r;
1225
1226 r = dm_dirty_log_init();
1227 if (r)
1228 return r;
1229
1230 _kmirrord_wq = create_singlethread_workqueue("kmirrord");
1231 if (!_kmirrord_wq) {
1232 DMERR("couldn't start kmirrord");
1233 dm_dirty_log_exit();
1234 return r;
1235 }
1236 INIT_WORK(&_kmirrord_work, do_work, NULL);
1237
1238 r = dm_register_target(&mirror_target);
1239 if (r < 0) {
1240 DMERR("%s: Failed to register mirror target",
1241 mirror_target.name);
1242 dm_dirty_log_exit();
1243 destroy_workqueue(_kmirrord_wq);
1244 }
1245
1246 return r;
1247 }
1248
1249 static void __exit dm_mirror_exit(void)
1250 {
1251 int r;
1252
1253 r = dm_unregister_target(&mirror_target);
1254 if (r < 0)
1255 DMERR("%s: unregister failed %d", mirror_target.name, r);
1256
1257 destroy_workqueue(_kmirrord_wq);
1258 dm_dirty_log_exit();
1259 }
1260
1261 /* Module hooks */
1262 module_init(dm_mirror_init);
1263 module_exit(dm_mirror_exit);
1264
1265 MODULE_DESCRIPTION(DM_NAME " mirror target");
1266 MODULE_AUTHOR("Joe Thornber");
1267 MODULE_LICENSE("GPL");