Merge tag '4.14-smb3-xattr-enable' of git://git.samba.org/sfrench/cifs-2.6
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / md / dm-integrity.c
1 /*
2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/module.h>
10 #include <linux/device-mapper.h>
11 #include <linux/dm-io.h>
12 #include <linux/vmalloc.h>
13 #include <linux/sort.h>
14 #include <linux/rbtree.h>
15 #include <linux/delay.h>
16 #include <linux/random.h>
17 #include <crypto/hash.h>
18 #include <crypto/skcipher.h>
19 #include <linux/async_tx.h>
20 #include "dm-bufio.h"
21
22 #define DM_MSG_PREFIX "integrity"
23
24 #define DEFAULT_INTERLEAVE_SECTORS 32768
25 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
26 #define DEFAULT_BUFFER_SECTORS 128
27 #define DEFAULT_JOURNAL_WATERMARK 50
28 #define DEFAULT_SYNC_MSEC 10000
29 #define DEFAULT_MAX_JOURNAL_SECTORS 131072
30 #define MIN_LOG2_INTERLEAVE_SECTORS 3
31 #define MAX_LOG2_INTERLEAVE_SECTORS 31
32 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
33
34 /*
35 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
36 * so it should not be enabled in the official kernel
37 */
38 //#define DEBUG_PRINT
39 //#define INTERNAL_VERIFY
40
41 /*
42 * On disk structures
43 */
44
45 #define SB_MAGIC "integrt"
46 #define SB_VERSION 1
47 #define SB_SECTORS 8
48 #define MAX_SECTORS_PER_BLOCK 8
49
50 struct superblock {
51 __u8 magic[8];
52 __u8 version;
53 __u8 log2_interleave_sectors;
54 __u16 integrity_tag_size;
55 __u32 journal_sections;
56 __u64 provided_data_sectors; /* userspace uses this value */
57 __u32 flags;
58 __u8 log2_sectors_per_block;
59 };
60
61 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
62
63 #define JOURNAL_ENTRY_ROUNDUP 8
64
65 typedef __u64 commit_id_t;
66 #define JOURNAL_MAC_PER_SECTOR 8
67
68 struct journal_entry {
69 union {
70 struct {
71 __u32 sector_lo;
72 __u32 sector_hi;
73 } s;
74 __u64 sector;
75 } u;
76 commit_id_t last_bytes[0];
77 /* __u8 tag[0]; */
78 };
79
80 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
81
82 #if BITS_PER_LONG == 64
83 #define journal_entry_set_sector(je, x) do { smp_wmb(); ACCESS_ONCE((je)->u.sector) = cpu_to_le64(x); } while (0)
84 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
85 #elif defined(CONFIG_LBDAF)
86 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); ACCESS_ONCE((je)->u.s.sector_hi) = cpu_to_le32((x) >> 32); } while (0)
87 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
88 #else
89 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); ACCESS_ONCE((je)->u.s.sector_hi) = cpu_to_le32(0); } while (0)
90 #define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo)
91 #endif
92 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
93 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
94 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
95 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
96
97 #define JOURNAL_BLOCK_SECTORS 8
98 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
99 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
100
101 struct journal_sector {
102 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
103 __u8 mac[JOURNAL_MAC_PER_SECTOR];
104 commit_id_t commit_id;
105 };
106
107 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
108
109 #define METADATA_PADDING_SECTORS 8
110
111 #define N_COMMIT_IDS 4
112
113 static unsigned char prev_commit_seq(unsigned char seq)
114 {
115 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
116 }
117
118 static unsigned char next_commit_seq(unsigned char seq)
119 {
120 return (seq + 1) % N_COMMIT_IDS;
121 }
122
123 /*
124 * In-memory structures
125 */
126
127 struct journal_node {
128 struct rb_node node;
129 sector_t sector;
130 };
131
132 struct alg_spec {
133 char *alg_string;
134 char *key_string;
135 __u8 *key;
136 unsigned key_size;
137 };
138
139 struct dm_integrity_c {
140 struct dm_dev *dev;
141 unsigned tag_size;
142 __s8 log2_tag_size;
143 sector_t start;
144 mempool_t *journal_io_mempool;
145 struct dm_io_client *io;
146 struct dm_bufio_client *bufio;
147 struct workqueue_struct *metadata_wq;
148 struct superblock *sb;
149 unsigned journal_pages;
150 struct page_list *journal;
151 struct page_list *journal_io;
152 struct page_list *journal_xor;
153
154 struct crypto_skcipher *journal_crypt;
155 struct scatterlist **journal_scatterlist;
156 struct scatterlist **journal_io_scatterlist;
157 struct skcipher_request **sk_requests;
158
159 struct crypto_shash *journal_mac;
160
161 struct journal_node *journal_tree;
162 struct rb_root journal_tree_root;
163
164 sector_t provided_data_sectors;
165
166 unsigned short journal_entry_size;
167 unsigned char journal_entries_per_sector;
168 unsigned char journal_section_entries;
169 unsigned short journal_section_sectors;
170 unsigned journal_sections;
171 unsigned journal_entries;
172 sector_t device_sectors;
173 unsigned initial_sectors;
174 unsigned metadata_run;
175 __s8 log2_metadata_run;
176 __u8 log2_buffer_sectors;
177 __u8 sectors_per_block;
178
179 unsigned char mode;
180 bool suspending;
181
182 int failed;
183
184 struct crypto_shash *internal_hash;
185
186 /* these variables are locked with endio_wait.lock */
187 struct rb_root in_progress;
188 wait_queue_head_t endio_wait;
189 struct workqueue_struct *wait_wq;
190
191 unsigned char commit_seq;
192 commit_id_t commit_ids[N_COMMIT_IDS];
193
194 unsigned committed_section;
195 unsigned n_committed_sections;
196
197 unsigned uncommitted_section;
198 unsigned n_uncommitted_sections;
199
200 unsigned free_section;
201 unsigned char free_section_entry;
202 unsigned free_sectors;
203
204 unsigned free_sectors_threshold;
205
206 struct workqueue_struct *commit_wq;
207 struct work_struct commit_work;
208
209 struct workqueue_struct *writer_wq;
210 struct work_struct writer_work;
211
212 struct bio_list flush_bio_list;
213
214 unsigned long autocommit_jiffies;
215 struct timer_list autocommit_timer;
216 unsigned autocommit_msec;
217
218 wait_queue_head_t copy_to_journal_wait;
219
220 struct completion crypto_backoff;
221
222 bool journal_uptodate;
223 bool just_formatted;
224
225 struct alg_spec internal_hash_alg;
226 struct alg_spec journal_crypt_alg;
227 struct alg_spec journal_mac_alg;
228 };
229
230 struct dm_integrity_range {
231 sector_t logical_sector;
232 unsigned n_sectors;
233 struct rb_node node;
234 };
235
236 struct dm_integrity_io {
237 struct work_struct work;
238
239 struct dm_integrity_c *ic;
240 bool write;
241 bool fua;
242
243 struct dm_integrity_range range;
244
245 sector_t metadata_block;
246 unsigned metadata_offset;
247
248 atomic_t in_flight;
249 blk_status_t bi_status;
250
251 struct completion *completion;
252
253 struct gendisk *orig_bi_disk;
254 u8 orig_bi_partno;
255 bio_end_io_t *orig_bi_end_io;
256 struct bio_integrity_payload *orig_bi_integrity;
257 struct bvec_iter orig_bi_iter;
258 };
259
260 struct journal_completion {
261 struct dm_integrity_c *ic;
262 atomic_t in_flight;
263 struct completion comp;
264 };
265
266 struct journal_io {
267 struct dm_integrity_range range;
268 struct journal_completion *comp;
269 };
270
271 static struct kmem_cache *journal_io_cache;
272
273 #define JOURNAL_IO_MEMPOOL 32
274
275 #ifdef DEBUG_PRINT
276 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
277 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
278 {
279 va_list args;
280 va_start(args, msg);
281 vprintk(msg, args);
282 va_end(args);
283 if (len)
284 pr_cont(":");
285 while (len) {
286 pr_cont(" %02x", *bytes);
287 bytes++;
288 len--;
289 }
290 pr_cont("\n");
291 }
292 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
293 #else
294 #define DEBUG_print(x, ...) do { } while (0)
295 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
296 #endif
297
298 /*
299 * DM Integrity profile, protection is performed layer above (dm-crypt)
300 */
301 static struct blk_integrity_profile dm_integrity_profile = {
302 .name = "DM-DIF-EXT-TAG",
303 .generate_fn = NULL,
304 .verify_fn = NULL,
305 };
306
307 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
308 static void integrity_bio_wait(struct work_struct *w);
309 static void dm_integrity_dtr(struct dm_target *ti);
310
311 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
312 {
313 if (!cmpxchg(&ic->failed, 0, err))
314 DMERR("Error on %s: %d", msg, err);
315 }
316
317 static int dm_integrity_failed(struct dm_integrity_c *ic)
318 {
319 return ACCESS_ONCE(ic->failed);
320 }
321
322 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
323 unsigned j, unsigned char seq)
324 {
325 /*
326 * Xor the number with section and sector, so that if a piece of
327 * journal is written at wrong place, it is detected.
328 */
329 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
330 }
331
332 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
333 sector_t *area, sector_t *offset)
334 {
335 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
336
337 *area = data_sector >> log2_interleave_sectors;
338 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
339 }
340
341 #define sector_to_block(ic, n) \
342 do { \
343 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
344 (n) >>= (ic)->sb->log2_sectors_per_block; \
345 } while (0)
346
347 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
348 sector_t offset, unsigned *metadata_offset)
349 {
350 __u64 ms;
351 unsigned mo;
352
353 ms = area << ic->sb->log2_interleave_sectors;
354 if (likely(ic->log2_metadata_run >= 0))
355 ms += area << ic->log2_metadata_run;
356 else
357 ms += area * ic->metadata_run;
358 ms >>= ic->log2_buffer_sectors;
359
360 sector_to_block(ic, offset);
361
362 if (likely(ic->log2_tag_size >= 0)) {
363 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
364 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
365 } else {
366 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
367 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
368 }
369 *metadata_offset = mo;
370 return ms;
371 }
372
373 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
374 {
375 sector_t result;
376
377 result = area << ic->sb->log2_interleave_sectors;
378 if (likely(ic->log2_metadata_run >= 0))
379 result += (area + 1) << ic->log2_metadata_run;
380 else
381 result += (area + 1) * ic->metadata_run;
382
383 result += (sector_t)ic->initial_sectors + offset;
384 return result;
385 }
386
387 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
388 {
389 if (unlikely(*sec_ptr >= ic->journal_sections))
390 *sec_ptr -= ic->journal_sections;
391 }
392
393 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
394 {
395 struct dm_io_request io_req;
396 struct dm_io_region io_loc;
397
398 io_req.bi_op = op;
399 io_req.bi_op_flags = op_flags;
400 io_req.mem.type = DM_IO_KMEM;
401 io_req.mem.ptr.addr = ic->sb;
402 io_req.notify.fn = NULL;
403 io_req.client = ic->io;
404 io_loc.bdev = ic->dev->bdev;
405 io_loc.sector = ic->start;
406 io_loc.count = SB_SECTORS;
407
408 return dm_io(&io_req, 1, &io_loc, NULL);
409 }
410
411 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
412 bool e, const char *function)
413 {
414 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
415 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
416
417 if (unlikely(section >= ic->journal_sections) ||
418 unlikely(offset >= limit)) {
419 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
420 function, section, offset, ic->journal_sections, limit);
421 BUG();
422 }
423 #endif
424 }
425
426 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
427 unsigned *pl_index, unsigned *pl_offset)
428 {
429 unsigned sector;
430
431 access_journal_check(ic, section, offset, false, "page_list_location");
432
433 sector = section * ic->journal_section_sectors + offset;
434
435 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
436 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
437 }
438
439 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
440 unsigned section, unsigned offset, unsigned *n_sectors)
441 {
442 unsigned pl_index, pl_offset;
443 char *va;
444
445 page_list_location(ic, section, offset, &pl_index, &pl_offset);
446
447 if (n_sectors)
448 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
449
450 va = lowmem_page_address(pl[pl_index].page);
451
452 return (struct journal_sector *)(va + pl_offset);
453 }
454
455 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
456 {
457 return access_page_list(ic, ic->journal, section, offset, NULL);
458 }
459
460 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
461 {
462 unsigned rel_sector, offset;
463 struct journal_sector *js;
464
465 access_journal_check(ic, section, n, true, "access_journal_entry");
466
467 rel_sector = n % JOURNAL_BLOCK_SECTORS;
468 offset = n / JOURNAL_BLOCK_SECTORS;
469
470 js = access_journal(ic, section, rel_sector);
471 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
472 }
473
474 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
475 {
476 n <<= ic->sb->log2_sectors_per_block;
477
478 n += JOURNAL_BLOCK_SECTORS;
479
480 access_journal_check(ic, section, n, false, "access_journal_data");
481
482 return access_journal(ic, section, n);
483 }
484
485 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
486 {
487 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
488 int r;
489 unsigned j, size;
490
491 desc->tfm = ic->journal_mac;
492 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
493
494 r = crypto_shash_init(desc);
495 if (unlikely(r)) {
496 dm_integrity_io_error(ic, "crypto_shash_init", r);
497 goto err;
498 }
499
500 for (j = 0; j < ic->journal_section_entries; j++) {
501 struct journal_entry *je = access_journal_entry(ic, section, j);
502 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
503 if (unlikely(r)) {
504 dm_integrity_io_error(ic, "crypto_shash_update", r);
505 goto err;
506 }
507 }
508
509 size = crypto_shash_digestsize(ic->journal_mac);
510
511 if (likely(size <= JOURNAL_MAC_SIZE)) {
512 r = crypto_shash_final(desc, result);
513 if (unlikely(r)) {
514 dm_integrity_io_error(ic, "crypto_shash_final", r);
515 goto err;
516 }
517 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
518 } else {
519 __u8 digest[size];
520 r = crypto_shash_final(desc, digest);
521 if (unlikely(r)) {
522 dm_integrity_io_error(ic, "crypto_shash_final", r);
523 goto err;
524 }
525 memcpy(result, digest, JOURNAL_MAC_SIZE);
526 }
527
528 return;
529 err:
530 memset(result, 0, JOURNAL_MAC_SIZE);
531 }
532
533 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
534 {
535 __u8 result[JOURNAL_MAC_SIZE];
536 unsigned j;
537
538 if (!ic->journal_mac)
539 return;
540
541 section_mac(ic, section, result);
542
543 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
544 struct journal_sector *js = access_journal(ic, section, j);
545
546 if (likely(wr))
547 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
548 else {
549 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
550 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
551 }
552 }
553 }
554
555 static void complete_journal_op(void *context)
556 {
557 struct journal_completion *comp = context;
558 BUG_ON(!atomic_read(&comp->in_flight));
559 if (likely(atomic_dec_and_test(&comp->in_flight)))
560 complete(&comp->comp);
561 }
562
563 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
564 unsigned n_sections, struct journal_completion *comp)
565 {
566 struct async_submit_ctl submit;
567 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
568 unsigned pl_index, pl_offset, section_index;
569 struct page_list *source_pl, *target_pl;
570
571 if (likely(encrypt)) {
572 source_pl = ic->journal;
573 target_pl = ic->journal_io;
574 } else {
575 source_pl = ic->journal_io;
576 target_pl = ic->journal;
577 }
578
579 page_list_location(ic, section, 0, &pl_index, &pl_offset);
580
581 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
582
583 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
584
585 section_index = pl_index;
586
587 do {
588 size_t this_step;
589 struct page *src_pages[2];
590 struct page *dst_page;
591
592 while (unlikely(pl_index == section_index)) {
593 unsigned dummy;
594 if (likely(encrypt))
595 rw_section_mac(ic, section, true);
596 section++;
597 n_sections--;
598 if (!n_sections)
599 break;
600 page_list_location(ic, section, 0, &section_index, &dummy);
601 }
602
603 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
604 dst_page = target_pl[pl_index].page;
605 src_pages[0] = source_pl[pl_index].page;
606 src_pages[1] = ic->journal_xor[pl_index].page;
607
608 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
609
610 pl_index++;
611 pl_offset = 0;
612 n_bytes -= this_step;
613 } while (n_bytes);
614
615 BUG_ON(n_sections);
616
617 async_tx_issue_pending_all();
618 }
619
620 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
621 {
622 struct journal_completion *comp = req->data;
623 if (unlikely(err)) {
624 if (likely(err == -EINPROGRESS)) {
625 complete(&comp->ic->crypto_backoff);
626 return;
627 }
628 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
629 }
630 complete_journal_op(comp);
631 }
632
633 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
634 {
635 int r;
636 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
637 complete_journal_encrypt, comp);
638 if (likely(encrypt))
639 r = crypto_skcipher_encrypt(req);
640 else
641 r = crypto_skcipher_decrypt(req);
642 if (likely(!r))
643 return false;
644 if (likely(r == -EINPROGRESS))
645 return true;
646 if (likely(r == -EBUSY)) {
647 wait_for_completion(&comp->ic->crypto_backoff);
648 reinit_completion(&comp->ic->crypto_backoff);
649 return true;
650 }
651 dm_integrity_io_error(comp->ic, "encrypt", r);
652 return false;
653 }
654
655 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
656 unsigned n_sections, struct journal_completion *comp)
657 {
658 struct scatterlist **source_sg;
659 struct scatterlist **target_sg;
660
661 atomic_add(2, &comp->in_flight);
662
663 if (likely(encrypt)) {
664 source_sg = ic->journal_scatterlist;
665 target_sg = ic->journal_io_scatterlist;
666 } else {
667 source_sg = ic->journal_io_scatterlist;
668 target_sg = ic->journal_scatterlist;
669 }
670
671 do {
672 struct skcipher_request *req;
673 unsigned ivsize;
674 char *iv;
675
676 if (likely(encrypt))
677 rw_section_mac(ic, section, true);
678
679 req = ic->sk_requests[section];
680 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
681 iv = req->iv;
682
683 memcpy(iv, iv + ivsize, ivsize);
684
685 req->src = source_sg[section];
686 req->dst = target_sg[section];
687
688 if (unlikely(do_crypt(encrypt, req, comp)))
689 atomic_inc(&comp->in_flight);
690
691 section++;
692 n_sections--;
693 } while (n_sections);
694
695 atomic_dec(&comp->in_flight);
696 complete_journal_op(comp);
697 }
698
699 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
700 unsigned n_sections, struct journal_completion *comp)
701 {
702 if (ic->journal_xor)
703 return xor_journal(ic, encrypt, section, n_sections, comp);
704 else
705 return crypt_journal(ic, encrypt, section, n_sections, comp);
706 }
707
708 static void complete_journal_io(unsigned long error, void *context)
709 {
710 struct journal_completion *comp = context;
711 if (unlikely(error != 0))
712 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
713 complete_journal_op(comp);
714 }
715
716 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
717 unsigned n_sections, struct journal_completion *comp)
718 {
719 struct dm_io_request io_req;
720 struct dm_io_region io_loc;
721 unsigned sector, n_sectors, pl_index, pl_offset;
722 int r;
723
724 if (unlikely(dm_integrity_failed(ic))) {
725 if (comp)
726 complete_journal_io(-1UL, comp);
727 return;
728 }
729
730 sector = section * ic->journal_section_sectors;
731 n_sectors = n_sections * ic->journal_section_sectors;
732
733 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
734 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
735
736 io_req.bi_op = op;
737 io_req.bi_op_flags = op_flags;
738 io_req.mem.type = DM_IO_PAGE_LIST;
739 if (ic->journal_io)
740 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
741 else
742 io_req.mem.ptr.pl = &ic->journal[pl_index];
743 io_req.mem.offset = pl_offset;
744 if (likely(comp != NULL)) {
745 io_req.notify.fn = complete_journal_io;
746 io_req.notify.context = comp;
747 } else {
748 io_req.notify.fn = NULL;
749 }
750 io_req.client = ic->io;
751 io_loc.bdev = ic->dev->bdev;
752 io_loc.sector = ic->start + SB_SECTORS + sector;
753 io_loc.count = n_sectors;
754
755 r = dm_io(&io_req, 1, &io_loc, NULL);
756 if (unlikely(r)) {
757 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
758 if (comp) {
759 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
760 complete_journal_io(-1UL, comp);
761 }
762 }
763 }
764
765 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
766 {
767 struct journal_completion io_comp;
768 struct journal_completion crypt_comp_1;
769 struct journal_completion crypt_comp_2;
770 unsigned i;
771
772 io_comp.ic = ic;
773 io_comp.comp = COMPLETION_INITIALIZER_ONSTACK(io_comp.comp);
774
775 if (commit_start + commit_sections <= ic->journal_sections) {
776 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
777 if (ic->journal_io) {
778 crypt_comp_1.ic = ic;
779 crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp);
780 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
781 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
782 wait_for_completion_io(&crypt_comp_1.comp);
783 } else {
784 for (i = 0; i < commit_sections; i++)
785 rw_section_mac(ic, commit_start + i, true);
786 }
787 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
788 commit_sections, &io_comp);
789 } else {
790 unsigned to_end;
791 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
792 to_end = ic->journal_sections - commit_start;
793 if (ic->journal_io) {
794 crypt_comp_1.ic = ic;
795 crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp);
796 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
797 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
798 if (try_wait_for_completion(&crypt_comp_1.comp)) {
799 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
800 crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp);
801 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
802 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
803 wait_for_completion_io(&crypt_comp_1.comp);
804 } else {
805 crypt_comp_2.ic = ic;
806 crypt_comp_2.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_2.comp);
807 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
808 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
809 wait_for_completion_io(&crypt_comp_1.comp);
810 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
811 wait_for_completion_io(&crypt_comp_2.comp);
812 }
813 } else {
814 for (i = 0; i < to_end; i++)
815 rw_section_mac(ic, commit_start + i, true);
816 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
817 for (i = 0; i < commit_sections - to_end; i++)
818 rw_section_mac(ic, i, true);
819 }
820 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
821 }
822
823 wait_for_completion_io(&io_comp.comp);
824 }
825
826 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
827 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
828 {
829 struct dm_io_request io_req;
830 struct dm_io_region io_loc;
831 int r;
832 unsigned sector, pl_index, pl_offset;
833
834 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
835
836 if (unlikely(dm_integrity_failed(ic))) {
837 fn(-1UL, data);
838 return;
839 }
840
841 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
842
843 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
844 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
845
846 io_req.bi_op = REQ_OP_WRITE;
847 io_req.bi_op_flags = 0;
848 io_req.mem.type = DM_IO_PAGE_LIST;
849 io_req.mem.ptr.pl = &ic->journal[pl_index];
850 io_req.mem.offset = pl_offset;
851 io_req.notify.fn = fn;
852 io_req.notify.context = data;
853 io_req.client = ic->io;
854 io_loc.bdev = ic->dev->bdev;
855 io_loc.sector = ic->start + target;
856 io_loc.count = n_sectors;
857
858 r = dm_io(&io_req, 1, &io_loc, NULL);
859 if (unlikely(r)) {
860 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
861 fn(-1UL, data);
862 }
863 }
864
865 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
866 {
867 struct rb_node **n = &ic->in_progress.rb_node;
868 struct rb_node *parent;
869
870 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
871
872 parent = NULL;
873
874 while (*n) {
875 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
876
877 parent = *n;
878 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
879 n = &range->node.rb_left;
880 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
881 n = &range->node.rb_right;
882 } else {
883 return false;
884 }
885 }
886
887 rb_link_node(&new_range->node, parent, n);
888 rb_insert_color(&new_range->node, &ic->in_progress);
889
890 return true;
891 }
892
893 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
894 {
895 rb_erase(&range->node, &ic->in_progress);
896 wake_up_locked(&ic->endio_wait);
897 }
898
899 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
900 {
901 unsigned long flags;
902
903 spin_lock_irqsave(&ic->endio_wait.lock, flags);
904 remove_range_unlocked(ic, range);
905 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
906 }
907
908 static void init_journal_node(struct journal_node *node)
909 {
910 RB_CLEAR_NODE(&node->node);
911 node->sector = (sector_t)-1;
912 }
913
914 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
915 {
916 struct rb_node **link;
917 struct rb_node *parent;
918
919 node->sector = sector;
920 BUG_ON(!RB_EMPTY_NODE(&node->node));
921
922 link = &ic->journal_tree_root.rb_node;
923 parent = NULL;
924
925 while (*link) {
926 struct journal_node *j;
927 parent = *link;
928 j = container_of(parent, struct journal_node, node);
929 if (sector < j->sector)
930 link = &j->node.rb_left;
931 else
932 link = &j->node.rb_right;
933 }
934
935 rb_link_node(&node->node, parent, link);
936 rb_insert_color(&node->node, &ic->journal_tree_root);
937 }
938
939 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
940 {
941 BUG_ON(RB_EMPTY_NODE(&node->node));
942 rb_erase(&node->node, &ic->journal_tree_root);
943 init_journal_node(node);
944 }
945
946 #define NOT_FOUND (-1U)
947
948 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
949 {
950 struct rb_node *n = ic->journal_tree_root.rb_node;
951 unsigned found = NOT_FOUND;
952 *next_sector = (sector_t)-1;
953 while (n) {
954 struct journal_node *j = container_of(n, struct journal_node, node);
955 if (sector == j->sector) {
956 found = j - ic->journal_tree;
957 }
958 if (sector < j->sector) {
959 *next_sector = j->sector;
960 n = j->node.rb_left;
961 } else {
962 n = j->node.rb_right;
963 }
964 }
965
966 return found;
967 }
968
969 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
970 {
971 struct journal_node *node, *next_node;
972 struct rb_node *next;
973
974 if (unlikely(pos >= ic->journal_entries))
975 return false;
976 node = &ic->journal_tree[pos];
977 if (unlikely(RB_EMPTY_NODE(&node->node)))
978 return false;
979 if (unlikely(node->sector != sector))
980 return false;
981
982 next = rb_next(&node->node);
983 if (unlikely(!next))
984 return true;
985
986 next_node = container_of(next, struct journal_node, node);
987 return next_node->sector != sector;
988 }
989
990 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
991 {
992 struct rb_node *next;
993 struct journal_node *next_node;
994 unsigned next_section;
995
996 BUG_ON(RB_EMPTY_NODE(&node->node));
997
998 next = rb_next(&node->node);
999 if (unlikely(!next))
1000 return false;
1001
1002 next_node = container_of(next, struct journal_node, node);
1003
1004 if (next_node->sector != node->sector)
1005 return false;
1006
1007 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1008 if (next_section >= ic->committed_section &&
1009 next_section < ic->committed_section + ic->n_committed_sections)
1010 return true;
1011 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1012 return true;
1013
1014 return false;
1015 }
1016
1017 #define TAG_READ 0
1018 #define TAG_WRITE 1
1019 #define TAG_CMP 2
1020
1021 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1022 unsigned *metadata_offset, unsigned total_size, int op)
1023 {
1024 do {
1025 unsigned char *data, *dp;
1026 struct dm_buffer *b;
1027 unsigned to_copy;
1028 int r;
1029
1030 r = dm_integrity_failed(ic);
1031 if (unlikely(r))
1032 return r;
1033
1034 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1035 if (unlikely(IS_ERR(data)))
1036 return PTR_ERR(data);
1037
1038 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1039 dp = data + *metadata_offset;
1040 if (op == TAG_READ) {
1041 memcpy(tag, dp, to_copy);
1042 } else if (op == TAG_WRITE) {
1043 memcpy(dp, tag, to_copy);
1044 dm_bufio_mark_buffer_dirty(b);
1045 } else {
1046 /* e.g.: op == TAG_CMP */
1047 if (unlikely(memcmp(dp, tag, to_copy))) {
1048 unsigned i;
1049
1050 for (i = 0; i < to_copy; i++) {
1051 if (dp[i] != tag[i])
1052 break;
1053 total_size--;
1054 }
1055 dm_bufio_release(b);
1056 return total_size;
1057 }
1058 }
1059 dm_bufio_release(b);
1060
1061 tag += to_copy;
1062 *metadata_offset += to_copy;
1063 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1064 (*metadata_block)++;
1065 *metadata_offset = 0;
1066 }
1067 total_size -= to_copy;
1068 } while (unlikely(total_size));
1069
1070 return 0;
1071 }
1072
1073 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1074 {
1075 int r;
1076 r = dm_bufio_write_dirty_buffers(ic->bufio);
1077 if (unlikely(r))
1078 dm_integrity_io_error(ic, "writing tags", r);
1079 }
1080
1081 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1082 {
1083 DECLARE_WAITQUEUE(wait, current);
1084 __add_wait_queue(&ic->endio_wait, &wait);
1085 __set_current_state(TASK_UNINTERRUPTIBLE);
1086 spin_unlock_irq(&ic->endio_wait.lock);
1087 io_schedule();
1088 spin_lock_irq(&ic->endio_wait.lock);
1089 __remove_wait_queue(&ic->endio_wait, &wait);
1090 }
1091
1092 static void autocommit_fn(unsigned long data)
1093 {
1094 struct dm_integrity_c *ic = (struct dm_integrity_c *)data;
1095
1096 if (likely(!dm_integrity_failed(ic)))
1097 queue_work(ic->commit_wq, &ic->commit_work);
1098 }
1099
1100 static void schedule_autocommit(struct dm_integrity_c *ic)
1101 {
1102 if (!timer_pending(&ic->autocommit_timer))
1103 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1104 }
1105
1106 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1107 {
1108 struct bio *bio;
1109 unsigned long flags;
1110
1111 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1112 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1113 bio_list_add(&ic->flush_bio_list, bio);
1114 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1115
1116 queue_work(ic->commit_wq, &ic->commit_work);
1117 }
1118
1119 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1120 {
1121 int r = dm_integrity_failed(ic);
1122 if (unlikely(r) && !bio->bi_status)
1123 bio->bi_status = errno_to_blk_status(r);
1124 bio_endio(bio);
1125 }
1126
1127 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1128 {
1129 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1130
1131 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1132 submit_flush_bio(ic, dio);
1133 else
1134 do_endio(ic, bio);
1135 }
1136
1137 static void dec_in_flight(struct dm_integrity_io *dio)
1138 {
1139 if (atomic_dec_and_test(&dio->in_flight)) {
1140 struct dm_integrity_c *ic = dio->ic;
1141 struct bio *bio;
1142
1143 remove_range(ic, &dio->range);
1144
1145 if (unlikely(dio->write))
1146 schedule_autocommit(ic);
1147
1148 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1149
1150 if (unlikely(dio->bi_status) && !bio->bi_status)
1151 bio->bi_status = dio->bi_status;
1152 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1153 dio->range.logical_sector += dio->range.n_sectors;
1154 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1155 INIT_WORK(&dio->work, integrity_bio_wait);
1156 queue_work(ic->wait_wq, &dio->work);
1157 return;
1158 }
1159 do_endio_flush(ic, dio);
1160 }
1161 }
1162
1163 static void integrity_end_io(struct bio *bio)
1164 {
1165 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1166
1167 bio->bi_iter = dio->orig_bi_iter;
1168 bio->bi_disk = dio->orig_bi_disk;
1169 bio->bi_partno = dio->orig_bi_partno;
1170 if (dio->orig_bi_integrity) {
1171 bio->bi_integrity = dio->orig_bi_integrity;
1172 bio->bi_opf |= REQ_INTEGRITY;
1173 }
1174 bio->bi_end_io = dio->orig_bi_end_io;
1175
1176 if (dio->completion)
1177 complete(dio->completion);
1178
1179 dec_in_flight(dio);
1180 }
1181
1182 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1183 const char *data, char *result)
1184 {
1185 __u64 sector_le = cpu_to_le64(sector);
1186 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1187 int r;
1188 unsigned digest_size;
1189
1190 req->tfm = ic->internal_hash;
1191 req->flags = 0;
1192
1193 r = crypto_shash_init(req);
1194 if (unlikely(r < 0)) {
1195 dm_integrity_io_error(ic, "crypto_shash_init", r);
1196 goto failed;
1197 }
1198
1199 r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1200 if (unlikely(r < 0)) {
1201 dm_integrity_io_error(ic, "crypto_shash_update", r);
1202 goto failed;
1203 }
1204
1205 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1206 if (unlikely(r < 0)) {
1207 dm_integrity_io_error(ic, "crypto_shash_update", r);
1208 goto failed;
1209 }
1210
1211 r = crypto_shash_final(req, result);
1212 if (unlikely(r < 0)) {
1213 dm_integrity_io_error(ic, "crypto_shash_final", r);
1214 goto failed;
1215 }
1216
1217 digest_size = crypto_shash_digestsize(ic->internal_hash);
1218 if (unlikely(digest_size < ic->tag_size))
1219 memset(result + digest_size, 0, ic->tag_size - digest_size);
1220
1221 return;
1222
1223 failed:
1224 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1225 get_random_bytes(result, ic->tag_size);
1226 }
1227
1228 static void integrity_metadata(struct work_struct *w)
1229 {
1230 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1231 struct dm_integrity_c *ic = dio->ic;
1232
1233 int r;
1234
1235 if (ic->internal_hash) {
1236 struct bvec_iter iter;
1237 struct bio_vec bv;
1238 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1239 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1240 char *checksums;
1241 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1242 char checksums_onstack[ic->tag_size + extra_space];
1243 unsigned sectors_to_process = dio->range.n_sectors;
1244 sector_t sector = dio->range.logical_sector;
1245
1246 if (unlikely(ic->mode == 'R'))
1247 goto skip_io;
1248
1249 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1250 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1251 if (!checksums)
1252 checksums = checksums_onstack;
1253
1254 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1255 unsigned pos;
1256 char *mem, *checksums_ptr;
1257
1258 again:
1259 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1260 pos = 0;
1261 checksums_ptr = checksums;
1262 do {
1263 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1264 checksums_ptr += ic->tag_size;
1265 sectors_to_process -= ic->sectors_per_block;
1266 pos += ic->sectors_per_block << SECTOR_SHIFT;
1267 sector += ic->sectors_per_block;
1268 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1269 kunmap_atomic(mem);
1270
1271 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1272 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1273 if (unlikely(r)) {
1274 if (r > 0) {
1275 DMERR("Checksum failed at sector 0x%llx",
1276 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1277 r = -EILSEQ;
1278 }
1279 if (likely(checksums != checksums_onstack))
1280 kfree(checksums);
1281 goto error;
1282 }
1283
1284 if (!sectors_to_process)
1285 break;
1286
1287 if (unlikely(pos < bv.bv_len)) {
1288 bv.bv_offset += pos;
1289 bv.bv_len -= pos;
1290 goto again;
1291 }
1292 }
1293
1294 if (likely(checksums != checksums_onstack))
1295 kfree(checksums);
1296 } else {
1297 struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1298
1299 if (bip) {
1300 struct bio_vec biv;
1301 struct bvec_iter iter;
1302 unsigned data_to_process = dio->range.n_sectors;
1303 sector_to_block(ic, data_to_process);
1304 data_to_process *= ic->tag_size;
1305
1306 bip_for_each_vec(biv, bip, iter) {
1307 unsigned char *tag;
1308 unsigned this_len;
1309
1310 BUG_ON(PageHighMem(biv.bv_page));
1311 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1312 this_len = min(biv.bv_len, data_to_process);
1313 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1314 this_len, !dio->write ? TAG_READ : TAG_WRITE);
1315 if (unlikely(r))
1316 goto error;
1317 data_to_process -= this_len;
1318 if (!data_to_process)
1319 break;
1320 }
1321 }
1322 }
1323 skip_io:
1324 dec_in_flight(dio);
1325 return;
1326 error:
1327 dio->bi_status = errno_to_blk_status(r);
1328 dec_in_flight(dio);
1329 }
1330
1331 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1332 {
1333 struct dm_integrity_c *ic = ti->private;
1334 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1335 struct bio_integrity_payload *bip;
1336
1337 sector_t area, offset;
1338
1339 dio->ic = ic;
1340 dio->bi_status = 0;
1341
1342 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1343 submit_flush_bio(ic, dio);
1344 return DM_MAPIO_SUBMITTED;
1345 }
1346
1347 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1348 dio->write = bio_op(bio) == REQ_OP_WRITE;
1349 dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1350 if (unlikely(dio->fua)) {
1351 /*
1352 * Don't pass down the FUA flag because we have to flush
1353 * disk cache anyway.
1354 */
1355 bio->bi_opf &= ~REQ_FUA;
1356 }
1357 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1358 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1359 (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1360 (unsigned long long)ic->provided_data_sectors);
1361 return DM_MAPIO_KILL;
1362 }
1363 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1364 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1365 ic->sectors_per_block,
1366 (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1367 return DM_MAPIO_KILL;
1368 }
1369
1370 if (ic->sectors_per_block > 1) {
1371 struct bvec_iter iter;
1372 struct bio_vec bv;
1373 bio_for_each_segment(bv, bio, iter) {
1374 if (unlikely((bv.bv_offset | bv.bv_len) & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1375 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1376 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1377 return DM_MAPIO_KILL;
1378 }
1379 }
1380 }
1381
1382 bip = bio_integrity(bio);
1383 if (!ic->internal_hash) {
1384 if (bip) {
1385 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1386 if (ic->log2_tag_size >= 0)
1387 wanted_tag_size <<= ic->log2_tag_size;
1388 else
1389 wanted_tag_size *= ic->tag_size;
1390 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1391 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1392 return DM_MAPIO_KILL;
1393 }
1394 }
1395 } else {
1396 if (unlikely(bip != NULL)) {
1397 DMERR("Unexpected integrity data when using internal hash");
1398 return DM_MAPIO_KILL;
1399 }
1400 }
1401
1402 if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1403 return DM_MAPIO_KILL;
1404
1405 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1406 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1407 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1408
1409 dm_integrity_map_continue(dio, true);
1410 return DM_MAPIO_SUBMITTED;
1411 }
1412
1413 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1414 unsigned journal_section, unsigned journal_entry)
1415 {
1416 struct dm_integrity_c *ic = dio->ic;
1417 sector_t logical_sector;
1418 unsigned n_sectors;
1419
1420 logical_sector = dio->range.logical_sector;
1421 n_sectors = dio->range.n_sectors;
1422 do {
1423 struct bio_vec bv = bio_iovec(bio);
1424 char *mem;
1425
1426 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1427 bv.bv_len = n_sectors << SECTOR_SHIFT;
1428 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1429 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1430 retry_kmap:
1431 mem = kmap_atomic(bv.bv_page);
1432 if (likely(dio->write))
1433 flush_dcache_page(bv.bv_page);
1434
1435 do {
1436 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1437
1438 if (unlikely(!dio->write)) {
1439 struct journal_sector *js;
1440 char *mem_ptr;
1441 unsigned s;
1442
1443 if (unlikely(journal_entry_is_inprogress(je))) {
1444 flush_dcache_page(bv.bv_page);
1445 kunmap_atomic(mem);
1446
1447 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1448 goto retry_kmap;
1449 }
1450 smp_rmb();
1451 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1452 js = access_journal_data(ic, journal_section, journal_entry);
1453 mem_ptr = mem + bv.bv_offset;
1454 s = 0;
1455 do {
1456 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1457 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1458 js++;
1459 mem_ptr += 1 << SECTOR_SHIFT;
1460 } while (++s < ic->sectors_per_block);
1461 #ifdef INTERNAL_VERIFY
1462 if (ic->internal_hash) {
1463 char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1464
1465 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1466 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1467 DMERR("Checksum failed when reading from journal, at sector 0x%llx",
1468 (unsigned long long)logical_sector);
1469 }
1470 }
1471 #endif
1472 }
1473
1474 if (!ic->internal_hash) {
1475 struct bio_integrity_payload *bip = bio_integrity(bio);
1476 unsigned tag_todo = ic->tag_size;
1477 char *tag_ptr = journal_entry_tag(ic, je);
1478
1479 if (bip) do {
1480 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1481 unsigned tag_now = min(biv.bv_len, tag_todo);
1482 char *tag_addr;
1483 BUG_ON(PageHighMem(biv.bv_page));
1484 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1485 if (likely(dio->write))
1486 memcpy(tag_ptr, tag_addr, tag_now);
1487 else
1488 memcpy(tag_addr, tag_ptr, tag_now);
1489 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1490 tag_ptr += tag_now;
1491 tag_todo -= tag_now;
1492 } while (unlikely(tag_todo)); else {
1493 if (likely(dio->write))
1494 memset(tag_ptr, 0, tag_todo);
1495 }
1496 }
1497
1498 if (likely(dio->write)) {
1499 struct journal_sector *js;
1500 unsigned s;
1501
1502 js = access_journal_data(ic, journal_section, journal_entry);
1503 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1504
1505 s = 0;
1506 do {
1507 je->last_bytes[s] = js[s].commit_id;
1508 } while (++s < ic->sectors_per_block);
1509
1510 if (ic->internal_hash) {
1511 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1512 if (unlikely(digest_size > ic->tag_size)) {
1513 char checksums_onstack[digest_size];
1514 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1515 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1516 } else
1517 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1518 }
1519
1520 journal_entry_set_sector(je, logical_sector);
1521 }
1522 logical_sector += ic->sectors_per_block;
1523
1524 journal_entry++;
1525 if (unlikely(journal_entry == ic->journal_section_entries)) {
1526 journal_entry = 0;
1527 journal_section++;
1528 wraparound_section(ic, &journal_section);
1529 }
1530
1531 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1532 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1533
1534 if (unlikely(!dio->write))
1535 flush_dcache_page(bv.bv_page);
1536 kunmap_atomic(mem);
1537 } while (n_sectors);
1538
1539 if (likely(dio->write)) {
1540 smp_mb();
1541 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1542 wake_up(&ic->copy_to_journal_wait);
1543 if (ACCESS_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1544 queue_work(ic->commit_wq, &ic->commit_work);
1545 } else {
1546 schedule_autocommit(ic);
1547 }
1548 } else {
1549 remove_range(ic, &dio->range);
1550 }
1551
1552 if (unlikely(bio->bi_iter.bi_size)) {
1553 sector_t area, offset;
1554
1555 dio->range.logical_sector = logical_sector;
1556 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1557 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1558 return true;
1559 }
1560
1561 return false;
1562 }
1563
1564 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1565 {
1566 struct dm_integrity_c *ic = dio->ic;
1567 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1568 unsigned journal_section, journal_entry;
1569 unsigned journal_read_pos;
1570 struct completion read_comp;
1571 bool need_sync_io = ic->internal_hash && !dio->write;
1572
1573 if (need_sync_io && from_map) {
1574 INIT_WORK(&dio->work, integrity_bio_wait);
1575 queue_work(ic->metadata_wq, &dio->work);
1576 return;
1577 }
1578
1579 lock_retry:
1580 spin_lock_irq(&ic->endio_wait.lock);
1581 retry:
1582 if (unlikely(dm_integrity_failed(ic))) {
1583 spin_unlock_irq(&ic->endio_wait.lock);
1584 do_endio(ic, bio);
1585 return;
1586 }
1587 dio->range.n_sectors = bio_sectors(bio);
1588 journal_read_pos = NOT_FOUND;
1589 if (likely(ic->mode == 'J')) {
1590 if (dio->write) {
1591 unsigned next_entry, i, pos;
1592 unsigned ws, we, range_sectors;
1593
1594 dio->range.n_sectors = min(dio->range.n_sectors,
1595 ic->free_sectors << ic->sb->log2_sectors_per_block);
1596 if (unlikely(!dio->range.n_sectors))
1597 goto sleep;
1598 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1599 ic->free_sectors -= range_sectors;
1600 journal_section = ic->free_section;
1601 journal_entry = ic->free_section_entry;
1602
1603 next_entry = ic->free_section_entry + range_sectors;
1604 ic->free_section_entry = next_entry % ic->journal_section_entries;
1605 ic->free_section += next_entry / ic->journal_section_entries;
1606 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1607 wraparound_section(ic, &ic->free_section);
1608
1609 pos = journal_section * ic->journal_section_entries + journal_entry;
1610 ws = journal_section;
1611 we = journal_entry;
1612 i = 0;
1613 do {
1614 struct journal_entry *je;
1615
1616 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1617 pos++;
1618 if (unlikely(pos >= ic->journal_entries))
1619 pos = 0;
1620
1621 je = access_journal_entry(ic, ws, we);
1622 BUG_ON(!journal_entry_is_unused(je));
1623 journal_entry_set_inprogress(je);
1624 we++;
1625 if (unlikely(we == ic->journal_section_entries)) {
1626 we = 0;
1627 ws++;
1628 wraparound_section(ic, &ws);
1629 }
1630 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1631
1632 spin_unlock_irq(&ic->endio_wait.lock);
1633 goto journal_read_write;
1634 } else {
1635 sector_t next_sector;
1636 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1637 if (likely(journal_read_pos == NOT_FOUND)) {
1638 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1639 dio->range.n_sectors = next_sector - dio->range.logical_sector;
1640 } else {
1641 unsigned i;
1642 unsigned jp = journal_read_pos + 1;
1643 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1644 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1645 break;
1646 }
1647 dio->range.n_sectors = i;
1648 }
1649 }
1650 }
1651 if (unlikely(!add_new_range(ic, &dio->range))) {
1652 /*
1653 * We must not sleep in the request routine because it could
1654 * stall bios on current->bio_list.
1655 * So, we offload the bio to a workqueue if we have to sleep.
1656 */
1657 sleep:
1658 if (from_map) {
1659 spin_unlock_irq(&ic->endio_wait.lock);
1660 INIT_WORK(&dio->work, integrity_bio_wait);
1661 queue_work(ic->wait_wq, &dio->work);
1662 return;
1663 } else {
1664 sleep_on_endio_wait(ic);
1665 goto retry;
1666 }
1667 }
1668 spin_unlock_irq(&ic->endio_wait.lock);
1669
1670 if (unlikely(journal_read_pos != NOT_FOUND)) {
1671 journal_section = journal_read_pos / ic->journal_section_entries;
1672 journal_entry = journal_read_pos % ic->journal_section_entries;
1673 goto journal_read_write;
1674 }
1675
1676 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1677
1678 if (need_sync_io) {
1679 read_comp = COMPLETION_INITIALIZER_ONSTACK(read_comp);
1680 dio->completion = &read_comp;
1681 } else
1682 dio->completion = NULL;
1683
1684 dio->orig_bi_iter = bio->bi_iter;
1685
1686 dio->orig_bi_disk = bio->bi_disk;
1687 dio->orig_bi_partno = bio->bi_partno;
1688 bio_set_dev(bio, ic->dev->bdev);
1689
1690 dio->orig_bi_integrity = bio_integrity(bio);
1691 bio->bi_integrity = NULL;
1692 bio->bi_opf &= ~REQ_INTEGRITY;
1693
1694 dio->orig_bi_end_io = bio->bi_end_io;
1695 bio->bi_end_io = integrity_end_io;
1696
1697 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1698 bio->bi_iter.bi_sector += ic->start;
1699 generic_make_request(bio);
1700
1701 if (need_sync_io) {
1702 wait_for_completion_io(&read_comp);
1703 integrity_metadata(&dio->work);
1704 } else {
1705 INIT_WORK(&dio->work, integrity_metadata);
1706 queue_work(ic->metadata_wq, &dio->work);
1707 }
1708
1709 return;
1710
1711 journal_read_write:
1712 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1713 goto lock_retry;
1714
1715 do_endio_flush(ic, dio);
1716 }
1717
1718
1719 static void integrity_bio_wait(struct work_struct *w)
1720 {
1721 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1722
1723 dm_integrity_map_continue(dio, false);
1724 }
1725
1726 static void pad_uncommitted(struct dm_integrity_c *ic)
1727 {
1728 if (ic->free_section_entry) {
1729 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1730 ic->free_section_entry = 0;
1731 ic->free_section++;
1732 wraparound_section(ic, &ic->free_section);
1733 ic->n_uncommitted_sections++;
1734 }
1735 WARN_ON(ic->journal_sections * ic->journal_section_entries !=
1736 (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
1737 }
1738
1739 static void integrity_commit(struct work_struct *w)
1740 {
1741 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1742 unsigned commit_start, commit_sections;
1743 unsigned i, j, n;
1744 struct bio *flushes;
1745
1746 del_timer(&ic->autocommit_timer);
1747
1748 spin_lock_irq(&ic->endio_wait.lock);
1749 flushes = bio_list_get(&ic->flush_bio_list);
1750 if (unlikely(ic->mode != 'J')) {
1751 spin_unlock_irq(&ic->endio_wait.lock);
1752 dm_integrity_flush_buffers(ic);
1753 goto release_flush_bios;
1754 }
1755
1756 pad_uncommitted(ic);
1757 commit_start = ic->uncommitted_section;
1758 commit_sections = ic->n_uncommitted_sections;
1759 spin_unlock_irq(&ic->endio_wait.lock);
1760
1761 if (!commit_sections)
1762 goto release_flush_bios;
1763
1764 i = commit_start;
1765 for (n = 0; n < commit_sections; n++) {
1766 for (j = 0; j < ic->journal_section_entries; j++) {
1767 struct journal_entry *je;
1768 je = access_journal_entry(ic, i, j);
1769 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1770 }
1771 for (j = 0; j < ic->journal_section_sectors; j++) {
1772 struct journal_sector *js;
1773 js = access_journal(ic, i, j);
1774 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1775 }
1776 i++;
1777 if (unlikely(i >= ic->journal_sections))
1778 ic->commit_seq = next_commit_seq(ic->commit_seq);
1779 wraparound_section(ic, &i);
1780 }
1781 smp_rmb();
1782
1783 write_journal(ic, commit_start, commit_sections);
1784
1785 spin_lock_irq(&ic->endio_wait.lock);
1786 ic->uncommitted_section += commit_sections;
1787 wraparound_section(ic, &ic->uncommitted_section);
1788 ic->n_uncommitted_sections -= commit_sections;
1789 ic->n_committed_sections += commit_sections;
1790 spin_unlock_irq(&ic->endio_wait.lock);
1791
1792 if (ACCESS_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1793 queue_work(ic->writer_wq, &ic->writer_work);
1794
1795 release_flush_bios:
1796 while (flushes) {
1797 struct bio *next = flushes->bi_next;
1798 flushes->bi_next = NULL;
1799 do_endio(ic, flushes);
1800 flushes = next;
1801 }
1802 }
1803
1804 static void complete_copy_from_journal(unsigned long error, void *context)
1805 {
1806 struct journal_io *io = context;
1807 struct journal_completion *comp = io->comp;
1808 struct dm_integrity_c *ic = comp->ic;
1809 remove_range(ic, &io->range);
1810 mempool_free(io, ic->journal_io_mempool);
1811 if (unlikely(error != 0))
1812 dm_integrity_io_error(ic, "copying from journal", -EIO);
1813 complete_journal_op(comp);
1814 }
1815
1816 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1817 struct journal_entry *je)
1818 {
1819 unsigned s = 0;
1820 do {
1821 js->commit_id = je->last_bytes[s];
1822 js++;
1823 } while (++s < ic->sectors_per_block);
1824 }
1825
1826 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1827 unsigned write_sections, bool from_replay)
1828 {
1829 unsigned i, j, n;
1830 struct journal_completion comp;
1831 struct blk_plug plug;
1832
1833 blk_start_plug(&plug);
1834
1835 comp.ic = ic;
1836 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1837 comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp);
1838
1839 i = write_start;
1840 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1841 #ifndef INTERNAL_VERIFY
1842 if (unlikely(from_replay))
1843 #endif
1844 rw_section_mac(ic, i, false);
1845 for (j = 0; j < ic->journal_section_entries; j++) {
1846 struct journal_entry *je = access_journal_entry(ic, i, j);
1847 sector_t sec, area, offset;
1848 unsigned k, l, next_loop;
1849 sector_t metadata_block;
1850 unsigned metadata_offset;
1851 struct journal_io *io;
1852
1853 if (journal_entry_is_unused(je))
1854 continue;
1855 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1856 sec = journal_entry_get_sector(je);
1857 if (unlikely(from_replay)) {
1858 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1859 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1860 sec &= ~(sector_t)(ic->sectors_per_block - 1);
1861 }
1862 }
1863 get_area_and_offset(ic, sec, &area, &offset);
1864 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1865 for (k = j + 1; k < ic->journal_section_entries; k++) {
1866 struct journal_entry *je2 = access_journal_entry(ic, i, k);
1867 sector_t sec2, area2, offset2;
1868 if (journal_entry_is_unused(je2))
1869 break;
1870 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1871 sec2 = journal_entry_get_sector(je2);
1872 get_area_and_offset(ic, sec2, &area2, &offset2);
1873 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1874 break;
1875 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1876 }
1877 next_loop = k - 1;
1878
1879 io = mempool_alloc(ic->journal_io_mempool, GFP_NOIO);
1880 io->comp = &comp;
1881 io->range.logical_sector = sec;
1882 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1883
1884 spin_lock_irq(&ic->endio_wait.lock);
1885 while (unlikely(!add_new_range(ic, &io->range)))
1886 sleep_on_endio_wait(ic);
1887
1888 if (likely(!from_replay)) {
1889 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1890
1891 /* don't write if there is newer committed sector */
1892 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
1893 struct journal_entry *je2 = access_journal_entry(ic, i, j);
1894
1895 journal_entry_set_unused(je2);
1896 remove_journal_node(ic, &section_node[j]);
1897 j++;
1898 sec += ic->sectors_per_block;
1899 offset += ic->sectors_per_block;
1900 }
1901 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
1902 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
1903
1904 journal_entry_set_unused(je2);
1905 remove_journal_node(ic, &section_node[k - 1]);
1906 k--;
1907 }
1908 if (j == k) {
1909 remove_range_unlocked(ic, &io->range);
1910 spin_unlock_irq(&ic->endio_wait.lock);
1911 mempool_free(io, ic->journal_io_mempool);
1912 goto skip_io;
1913 }
1914 for (l = j; l < k; l++) {
1915 remove_journal_node(ic, &section_node[l]);
1916 }
1917 }
1918 spin_unlock_irq(&ic->endio_wait.lock);
1919
1920 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
1921 for (l = j; l < k; l++) {
1922 int r;
1923 struct journal_entry *je2 = access_journal_entry(ic, i, l);
1924
1925 if (
1926 #ifndef INTERNAL_VERIFY
1927 unlikely(from_replay) &&
1928 #endif
1929 ic->internal_hash) {
1930 char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1931
1932 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
1933 (char *)access_journal_data(ic, i, l), test_tag);
1934 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
1935 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
1936 }
1937
1938 journal_entry_set_unused(je2);
1939 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
1940 ic->tag_size, TAG_WRITE);
1941 if (unlikely(r)) {
1942 dm_integrity_io_error(ic, "reading tags", r);
1943 }
1944 }
1945
1946 atomic_inc(&comp.in_flight);
1947 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
1948 (k - j) << ic->sb->log2_sectors_per_block,
1949 get_data_sector(ic, area, offset),
1950 complete_copy_from_journal, io);
1951 skip_io:
1952 j = next_loop;
1953 }
1954 }
1955
1956 dm_bufio_write_dirty_buffers_async(ic->bufio);
1957
1958 blk_finish_plug(&plug);
1959
1960 complete_journal_op(&comp);
1961 wait_for_completion_io(&comp.comp);
1962
1963 dm_integrity_flush_buffers(ic);
1964 }
1965
1966 static void integrity_writer(struct work_struct *w)
1967 {
1968 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
1969 unsigned write_start, write_sections;
1970
1971 unsigned prev_free_sectors;
1972
1973 /* the following test is not needed, but it tests the replay code */
1974 if (ACCESS_ONCE(ic->suspending))
1975 return;
1976
1977 spin_lock_irq(&ic->endio_wait.lock);
1978 write_start = ic->committed_section;
1979 write_sections = ic->n_committed_sections;
1980 spin_unlock_irq(&ic->endio_wait.lock);
1981
1982 if (!write_sections)
1983 return;
1984
1985 do_journal_write(ic, write_start, write_sections, false);
1986
1987 spin_lock_irq(&ic->endio_wait.lock);
1988
1989 ic->committed_section += write_sections;
1990 wraparound_section(ic, &ic->committed_section);
1991 ic->n_committed_sections -= write_sections;
1992
1993 prev_free_sectors = ic->free_sectors;
1994 ic->free_sectors += write_sections * ic->journal_section_entries;
1995 if (unlikely(!prev_free_sectors))
1996 wake_up_locked(&ic->endio_wait);
1997
1998 spin_unlock_irq(&ic->endio_wait.lock);
1999 }
2000
2001 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2002 unsigned n_sections, unsigned char commit_seq)
2003 {
2004 unsigned i, j, n;
2005
2006 if (!n_sections)
2007 return;
2008
2009 for (n = 0; n < n_sections; n++) {
2010 i = start_section + n;
2011 wraparound_section(ic, &i);
2012 for (j = 0; j < ic->journal_section_sectors; j++) {
2013 struct journal_sector *js = access_journal(ic, i, j);
2014 memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2015 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2016 }
2017 for (j = 0; j < ic->journal_section_entries; j++) {
2018 struct journal_entry *je = access_journal_entry(ic, i, j);
2019 journal_entry_set_unused(je);
2020 }
2021 }
2022
2023 write_journal(ic, start_section, n_sections);
2024 }
2025
2026 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2027 {
2028 unsigned char k;
2029 for (k = 0; k < N_COMMIT_IDS; k++) {
2030 if (dm_integrity_commit_id(ic, i, j, k) == id)
2031 return k;
2032 }
2033 dm_integrity_io_error(ic, "journal commit id", -EIO);
2034 return -EIO;
2035 }
2036
2037 static void replay_journal(struct dm_integrity_c *ic)
2038 {
2039 unsigned i, j;
2040 bool used_commit_ids[N_COMMIT_IDS];
2041 unsigned max_commit_id_sections[N_COMMIT_IDS];
2042 unsigned write_start, write_sections;
2043 unsigned continue_section;
2044 bool journal_empty;
2045 unsigned char unused, last_used, want_commit_seq;
2046
2047 if (ic->mode == 'R')
2048 return;
2049
2050 if (ic->journal_uptodate)
2051 return;
2052
2053 last_used = 0;
2054 write_start = 0;
2055
2056 if (!ic->just_formatted) {
2057 DEBUG_print("reading journal\n");
2058 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2059 if (ic->journal_io)
2060 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2061 if (ic->journal_io) {
2062 struct journal_completion crypt_comp;
2063 crypt_comp.ic = ic;
2064 crypt_comp.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp.comp);
2065 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2066 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2067 wait_for_completion(&crypt_comp.comp);
2068 }
2069 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2070 }
2071
2072 if (dm_integrity_failed(ic))
2073 goto clear_journal;
2074
2075 journal_empty = true;
2076 memset(used_commit_ids, 0, sizeof used_commit_ids);
2077 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2078 for (i = 0; i < ic->journal_sections; i++) {
2079 for (j = 0; j < ic->journal_section_sectors; j++) {
2080 int k;
2081 struct journal_sector *js = access_journal(ic, i, j);
2082 k = find_commit_seq(ic, i, j, js->commit_id);
2083 if (k < 0)
2084 goto clear_journal;
2085 used_commit_ids[k] = true;
2086 max_commit_id_sections[k] = i;
2087 }
2088 if (journal_empty) {
2089 for (j = 0; j < ic->journal_section_entries; j++) {
2090 struct journal_entry *je = access_journal_entry(ic, i, j);
2091 if (!journal_entry_is_unused(je)) {
2092 journal_empty = false;
2093 break;
2094 }
2095 }
2096 }
2097 }
2098
2099 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2100 unused = N_COMMIT_IDS - 1;
2101 while (unused && !used_commit_ids[unused - 1])
2102 unused--;
2103 } else {
2104 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2105 if (!used_commit_ids[unused])
2106 break;
2107 if (unused == N_COMMIT_IDS) {
2108 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2109 goto clear_journal;
2110 }
2111 }
2112 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2113 unused, used_commit_ids[0], used_commit_ids[1],
2114 used_commit_ids[2], used_commit_ids[3]);
2115
2116 last_used = prev_commit_seq(unused);
2117 want_commit_seq = prev_commit_seq(last_used);
2118
2119 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2120 journal_empty = true;
2121
2122 write_start = max_commit_id_sections[last_used] + 1;
2123 if (unlikely(write_start >= ic->journal_sections))
2124 want_commit_seq = next_commit_seq(want_commit_seq);
2125 wraparound_section(ic, &write_start);
2126
2127 i = write_start;
2128 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2129 for (j = 0; j < ic->journal_section_sectors; j++) {
2130 struct journal_sector *js = access_journal(ic, i, j);
2131
2132 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2133 /*
2134 * This could be caused by crash during writing.
2135 * We won't replay the inconsistent part of the
2136 * journal.
2137 */
2138 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2139 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2140 goto brk;
2141 }
2142 }
2143 i++;
2144 if (unlikely(i >= ic->journal_sections))
2145 want_commit_seq = next_commit_seq(want_commit_seq);
2146 wraparound_section(ic, &i);
2147 }
2148 brk:
2149
2150 if (!journal_empty) {
2151 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2152 write_sections, write_start, want_commit_seq);
2153 do_journal_write(ic, write_start, write_sections, true);
2154 }
2155
2156 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2157 continue_section = write_start;
2158 ic->commit_seq = want_commit_seq;
2159 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2160 } else {
2161 unsigned s;
2162 unsigned char erase_seq;
2163 clear_journal:
2164 DEBUG_print("clearing journal\n");
2165
2166 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2167 s = write_start;
2168 init_journal(ic, s, 1, erase_seq);
2169 s++;
2170 wraparound_section(ic, &s);
2171 if (ic->journal_sections >= 2) {
2172 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2173 s += ic->journal_sections - 2;
2174 wraparound_section(ic, &s);
2175 init_journal(ic, s, 1, erase_seq);
2176 }
2177
2178 continue_section = 0;
2179 ic->commit_seq = next_commit_seq(erase_seq);
2180 }
2181
2182 ic->committed_section = continue_section;
2183 ic->n_committed_sections = 0;
2184
2185 ic->uncommitted_section = continue_section;
2186 ic->n_uncommitted_sections = 0;
2187
2188 ic->free_section = continue_section;
2189 ic->free_section_entry = 0;
2190 ic->free_sectors = ic->journal_entries;
2191
2192 ic->journal_tree_root = RB_ROOT;
2193 for (i = 0; i < ic->journal_entries; i++)
2194 init_journal_node(&ic->journal_tree[i]);
2195 }
2196
2197 static void dm_integrity_postsuspend(struct dm_target *ti)
2198 {
2199 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2200
2201 del_timer_sync(&ic->autocommit_timer);
2202
2203 ic->suspending = true;
2204
2205 queue_work(ic->commit_wq, &ic->commit_work);
2206 drain_workqueue(ic->commit_wq);
2207
2208 if (ic->mode == 'J') {
2209 drain_workqueue(ic->writer_wq);
2210 dm_integrity_flush_buffers(ic);
2211 }
2212
2213 ic->suspending = false;
2214
2215 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2216
2217 ic->journal_uptodate = true;
2218 }
2219
2220 static void dm_integrity_resume(struct dm_target *ti)
2221 {
2222 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2223
2224 replay_journal(ic);
2225 }
2226
2227 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2228 unsigned status_flags, char *result, unsigned maxlen)
2229 {
2230 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2231 unsigned arg_count;
2232 size_t sz = 0;
2233
2234 switch (type) {
2235 case STATUSTYPE_INFO:
2236 result[0] = '\0';
2237 break;
2238
2239 case STATUSTYPE_TABLE: {
2240 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2241 watermark_percentage += ic->journal_entries / 2;
2242 do_div(watermark_percentage, ic->journal_entries);
2243 arg_count = 5;
2244 arg_count += ic->sectors_per_block != 1;
2245 arg_count += !!ic->internal_hash_alg.alg_string;
2246 arg_count += !!ic->journal_crypt_alg.alg_string;
2247 arg_count += !!ic->journal_mac_alg.alg_string;
2248 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2249 ic->tag_size, ic->mode, arg_count);
2250 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2251 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2252 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2253 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2254 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2255 if (ic->sectors_per_block != 1)
2256 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2257
2258 #define EMIT_ALG(a, n) \
2259 do { \
2260 if (ic->a.alg_string) { \
2261 DMEMIT(" %s:%s", n, ic->a.alg_string); \
2262 if (ic->a.key_string) \
2263 DMEMIT(":%s", ic->a.key_string);\
2264 } \
2265 } while (0)
2266 EMIT_ALG(internal_hash_alg, "internal_hash");
2267 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2268 EMIT_ALG(journal_mac_alg, "journal_mac");
2269 break;
2270 }
2271 }
2272 }
2273
2274 static int dm_integrity_iterate_devices(struct dm_target *ti,
2275 iterate_devices_callout_fn fn, void *data)
2276 {
2277 struct dm_integrity_c *ic = ti->private;
2278
2279 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2280 }
2281
2282 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2283 {
2284 struct dm_integrity_c *ic = ti->private;
2285
2286 if (ic->sectors_per_block > 1) {
2287 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2288 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2289 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2290 }
2291 }
2292
2293 static void calculate_journal_section_size(struct dm_integrity_c *ic)
2294 {
2295 unsigned sector_space = JOURNAL_SECTOR_DATA;
2296
2297 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2298 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2299 JOURNAL_ENTRY_ROUNDUP);
2300
2301 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2302 sector_space -= JOURNAL_MAC_PER_SECTOR;
2303 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2304 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2305 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2306 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2307 }
2308
2309 static int calculate_device_limits(struct dm_integrity_c *ic)
2310 {
2311 __u64 initial_sectors;
2312 sector_t last_sector, last_area, last_offset;
2313
2314 calculate_journal_section_size(ic);
2315 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2316 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->device_sectors || initial_sectors > UINT_MAX)
2317 return -EINVAL;
2318 ic->initial_sectors = initial_sectors;
2319
2320 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2321 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2322 if (!(ic->metadata_run & (ic->metadata_run - 1)))
2323 ic->log2_metadata_run = __ffs(ic->metadata_run);
2324 else
2325 ic->log2_metadata_run = -1;
2326
2327 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
2328 last_sector = get_data_sector(ic, last_area, last_offset);
2329
2330 if (ic->start + last_sector < last_sector || ic->start + last_sector >= ic->device_sectors)
2331 return -EINVAL;
2332
2333 return 0;
2334 }
2335
2336 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
2337 {
2338 unsigned journal_sections;
2339 int test_bit;
2340
2341 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
2342 memcpy(ic->sb->magic, SB_MAGIC, 8);
2343 ic->sb->version = SB_VERSION;
2344 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
2345 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
2346 if (ic->journal_mac_alg.alg_string)
2347 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
2348
2349 calculate_journal_section_size(ic);
2350 journal_sections = journal_sectors / ic->journal_section_sectors;
2351 if (!journal_sections)
2352 journal_sections = 1;
2353 ic->sb->journal_sections = cpu_to_le32(journal_sections);
2354
2355 if (!interleave_sectors)
2356 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2357 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
2358 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2359 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2360
2361 ic->provided_data_sectors = 0;
2362 for (test_bit = fls64(ic->device_sectors) - 1; test_bit >= 3; test_bit--) {
2363 __u64 prev_data_sectors = ic->provided_data_sectors;
2364
2365 ic->provided_data_sectors |= (sector_t)1 << test_bit;
2366 if (calculate_device_limits(ic))
2367 ic->provided_data_sectors = prev_data_sectors;
2368 }
2369
2370 if (!ic->provided_data_sectors)
2371 return -EINVAL;
2372
2373 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2374
2375 return 0;
2376 }
2377
2378 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
2379 {
2380 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
2381 struct blk_integrity bi;
2382
2383 memset(&bi, 0, sizeof(bi));
2384 bi.profile = &dm_integrity_profile;
2385 bi.tuple_size = ic->tag_size;
2386 bi.tag_size = bi.tuple_size;
2387 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
2388
2389 blk_integrity_register(disk, &bi);
2390 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
2391 }
2392
2393 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
2394 {
2395 unsigned i;
2396
2397 if (!pl)
2398 return;
2399 for (i = 0; i < ic->journal_pages; i++)
2400 if (pl[i].page)
2401 __free_page(pl[i].page);
2402 kvfree(pl);
2403 }
2404
2405 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
2406 {
2407 size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
2408 struct page_list *pl;
2409 unsigned i;
2410
2411 pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
2412 if (!pl)
2413 return NULL;
2414
2415 for (i = 0; i < ic->journal_pages; i++) {
2416 pl[i].page = alloc_page(GFP_KERNEL);
2417 if (!pl[i].page) {
2418 dm_integrity_free_page_list(ic, pl);
2419 return NULL;
2420 }
2421 if (i)
2422 pl[i - 1].next = &pl[i];
2423 }
2424
2425 return pl;
2426 }
2427
2428 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
2429 {
2430 unsigned i;
2431 for (i = 0; i < ic->journal_sections; i++)
2432 kvfree(sl[i]);
2433 kfree(sl);
2434 }
2435
2436 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
2437 {
2438 struct scatterlist **sl;
2439 unsigned i;
2440
2441 sl = kvmalloc(ic->journal_sections * sizeof(struct scatterlist *), GFP_KERNEL | __GFP_ZERO);
2442 if (!sl)
2443 return NULL;
2444
2445 for (i = 0; i < ic->journal_sections; i++) {
2446 struct scatterlist *s;
2447 unsigned start_index, start_offset;
2448 unsigned end_index, end_offset;
2449 unsigned n_pages;
2450 unsigned idx;
2451
2452 page_list_location(ic, i, 0, &start_index, &start_offset);
2453 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
2454
2455 n_pages = (end_index - start_index + 1);
2456
2457 s = kvmalloc(n_pages * sizeof(struct scatterlist), GFP_KERNEL);
2458 if (!s) {
2459 dm_integrity_free_journal_scatterlist(ic, sl);
2460 return NULL;
2461 }
2462
2463 sg_init_table(s, n_pages);
2464 for (idx = start_index; idx <= end_index; idx++) {
2465 char *va = lowmem_page_address(pl[idx].page);
2466 unsigned start = 0, end = PAGE_SIZE;
2467 if (idx == start_index)
2468 start = start_offset;
2469 if (idx == end_index)
2470 end = end_offset + (1 << SECTOR_SHIFT);
2471 sg_set_buf(&s[idx - start_index], va + start, end - start);
2472 }
2473
2474 sl[i] = s;
2475 }
2476
2477 return sl;
2478 }
2479
2480 static void free_alg(struct alg_spec *a)
2481 {
2482 kzfree(a->alg_string);
2483 kzfree(a->key);
2484 memset(a, 0, sizeof *a);
2485 }
2486
2487 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
2488 {
2489 char *k;
2490
2491 free_alg(a);
2492
2493 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
2494 if (!a->alg_string)
2495 goto nomem;
2496
2497 k = strchr(a->alg_string, ':');
2498 if (k) {
2499 *k = 0;
2500 a->key_string = k + 1;
2501 if (strlen(a->key_string) & 1)
2502 goto inval;
2503
2504 a->key_size = strlen(a->key_string) / 2;
2505 a->key = kmalloc(a->key_size, GFP_KERNEL);
2506 if (!a->key)
2507 goto nomem;
2508 if (hex2bin(a->key, a->key_string, a->key_size))
2509 goto inval;
2510 }
2511
2512 return 0;
2513 inval:
2514 *error = error_inval;
2515 return -EINVAL;
2516 nomem:
2517 *error = "Out of memory for an argument";
2518 return -ENOMEM;
2519 }
2520
2521 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
2522 char *error_alg, char *error_key)
2523 {
2524 int r;
2525
2526 if (a->alg_string) {
2527 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC);
2528 if (IS_ERR(*hash)) {
2529 *error = error_alg;
2530 r = PTR_ERR(*hash);
2531 *hash = NULL;
2532 return r;
2533 }
2534
2535 if (a->key) {
2536 r = crypto_shash_setkey(*hash, a->key, a->key_size);
2537 if (r) {
2538 *error = error_key;
2539 return r;
2540 }
2541 }
2542 }
2543
2544 return 0;
2545 }
2546
2547 static int create_journal(struct dm_integrity_c *ic, char **error)
2548 {
2549 int r = 0;
2550 unsigned i;
2551 __u64 journal_pages, journal_desc_size, journal_tree_size;
2552 unsigned char *crypt_data = NULL;
2553
2554 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
2555 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
2556 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
2557 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
2558
2559 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
2560 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
2561 journal_desc_size = journal_pages * sizeof(struct page_list);
2562 if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) {
2563 *error = "Journal doesn't fit into memory";
2564 r = -ENOMEM;
2565 goto bad;
2566 }
2567 ic->journal_pages = journal_pages;
2568
2569 ic->journal = dm_integrity_alloc_page_list(ic);
2570 if (!ic->journal) {
2571 *error = "Could not allocate memory for journal";
2572 r = -ENOMEM;
2573 goto bad;
2574 }
2575 if (ic->journal_crypt_alg.alg_string) {
2576 unsigned ivsize, blocksize;
2577 struct journal_completion comp;
2578
2579 comp.ic = ic;
2580 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
2581 if (IS_ERR(ic->journal_crypt)) {
2582 *error = "Invalid journal cipher";
2583 r = PTR_ERR(ic->journal_crypt);
2584 ic->journal_crypt = NULL;
2585 goto bad;
2586 }
2587 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
2588 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
2589
2590 if (ic->journal_crypt_alg.key) {
2591 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
2592 ic->journal_crypt_alg.key_size);
2593 if (r) {
2594 *error = "Error setting encryption key";
2595 goto bad;
2596 }
2597 }
2598 DEBUG_print("cipher %s, block size %u iv size %u\n",
2599 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
2600
2601 ic->journal_io = dm_integrity_alloc_page_list(ic);
2602 if (!ic->journal_io) {
2603 *error = "Could not allocate memory for journal io";
2604 r = -ENOMEM;
2605 goto bad;
2606 }
2607
2608 if (blocksize == 1) {
2609 struct scatterlist *sg;
2610 SKCIPHER_REQUEST_ON_STACK(req, ic->journal_crypt);
2611 unsigned char iv[ivsize];
2612 skcipher_request_set_tfm(req, ic->journal_crypt);
2613
2614 ic->journal_xor = dm_integrity_alloc_page_list(ic);
2615 if (!ic->journal_xor) {
2616 *error = "Could not allocate memory for journal xor";
2617 r = -ENOMEM;
2618 goto bad;
2619 }
2620
2621 sg = kvmalloc((ic->journal_pages + 1) * sizeof(struct scatterlist), GFP_KERNEL);
2622 if (!sg) {
2623 *error = "Unable to allocate sg list";
2624 r = -ENOMEM;
2625 goto bad;
2626 }
2627 sg_init_table(sg, ic->journal_pages + 1);
2628 for (i = 0; i < ic->journal_pages; i++) {
2629 char *va = lowmem_page_address(ic->journal_xor[i].page);
2630 clear_page(va);
2631 sg_set_buf(&sg[i], va, PAGE_SIZE);
2632 }
2633 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
2634 memset(iv, 0x00, ivsize);
2635
2636 skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, iv);
2637 comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp);
2638 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2639 if (do_crypt(true, req, &comp))
2640 wait_for_completion(&comp.comp);
2641 kvfree(sg);
2642 r = dm_integrity_failed(ic);
2643 if (r) {
2644 *error = "Unable to encrypt journal";
2645 goto bad;
2646 }
2647 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
2648
2649 crypto_free_skcipher(ic->journal_crypt);
2650 ic->journal_crypt = NULL;
2651 } else {
2652 SKCIPHER_REQUEST_ON_STACK(req, ic->journal_crypt);
2653 unsigned char iv[ivsize];
2654 unsigned crypt_len = roundup(ivsize, blocksize);
2655
2656 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
2657 if (!crypt_data) {
2658 *error = "Unable to allocate crypt data";
2659 r = -ENOMEM;
2660 goto bad;
2661 }
2662
2663 skcipher_request_set_tfm(req, ic->journal_crypt);
2664
2665 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
2666 if (!ic->journal_scatterlist) {
2667 *error = "Unable to allocate sg list";
2668 r = -ENOMEM;
2669 goto bad;
2670 }
2671 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
2672 if (!ic->journal_io_scatterlist) {
2673 *error = "Unable to allocate sg list";
2674 r = -ENOMEM;
2675 goto bad;
2676 }
2677 ic->sk_requests = kvmalloc(ic->journal_sections * sizeof(struct skcipher_request *), GFP_KERNEL | __GFP_ZERO);
2678 if (!ic->sk_requests) {
2679 *error = "Unable to allocate sk requests";
2680 r = -ENOMEM;
2681 goto bad;
2682 }
2683 for (i = 0; i < ic->journal_sections; i++) {
2684 struct scatterlist sg;
2685 struct skcipher_request *section_req;
2686 __u32 section_le = cpu_to_le32(i);
2687
2688 memset(iv, 0x00, ivsize);
2689 memset(crypt_data, 0x00, crypt_len);
2690 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
2691
2692 sg_init_one(&sg, crypt_data, crypt_len);
2693 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, iv);
2694 comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp);
2695 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2696 if (do_crypt(true, req, &comp))
2697 wait_for_completion(&comp.comp);
2698
2699 r = dm_integrity_failed(ic);
2700 if (r) {
2701 *error = "Unable to generate iv";
2702 goto bad;
2703 }
2704
2705 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2706 if (!section_req) {
2707 *error = "Unable to allocate crypt request";
2708 r = -ENOMEM;
2709 goto bad;
2710 }
2711 section_req->iv = kmalloc(ivsize * 2, GFP_KERNEL);
2712 if (!section_req->iv) {
2713 skcipher_request_free(section_req);
2714 *error = "Unable to allocate iv";
2715 r = -ENOMEM;
2716 goto bad;
2717 }
2718 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
2719 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
2720 ic->sk_requests[i] = section_req;
2721 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
2722 }
2723 }
2724 }
2725
2726 for (i = 0; i < N_COMMIT_IDS; i++) {
2727 unsigned j;
2728 retest_commit_id:
2729 for (j = 0; j < i; j++) {
2730 if (ic->commit_ids[j] == ic->commit_ids[i]) {
2731 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
2732 goto retest_commit_id;
2733 }
2734 }
2735 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
2736 }
2737
2738 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
2739 if (journal_tree_size > ULONG_MAX) {
2740 *error = "Journal doesn't fit into memory";
2741 r = -ENOMEM;
2742 goto bad;
2743 }
2744 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
2745 if (!ic->journal_tree) {
2746 *error = "Could not allocate memory for journal tree";
2747 r = -ENOMEM;
2748 }
2749 bad:
2750 kfree(crypt_data);
2751 return r;
2752 }
2753
2754 /*
2755 * Construct a integrity mapping
2756 *
2757 * Arguments:
2758 * device
2759 * offset from the start of the device
2760 * tag size
2761 * D - direct writes, J - journal writes, R - recovery mode
2762 * number of optional arguments
2763 * optional arguments:
2764 * journal_sectors
2765 * interleave_sectors
2766 * buffer_sectors
2767 * journal_watermark
2768 * commit_time
2769 * internal_hash
2770 * journal_crypt
2771 * journal_mac
2772 * block_size
2773 */
2774 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
2775 {
2776 struct dm_integrity_c *ic;
2777 char dummy;
2778 int r;
2779 unsigned extra_args;
2780 struct dm_arg_set as;
2781 static struct dm_arg _args[] = {
2782 {0, 9, "Invalid number of feature args"},
2783 };
2784 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
2785 bool should_write_sb;
2786 __u64 threshold;
2787 unsigned long long start;
2788
2789 #define DIRECT_ARGUMENTS 4
2790
2791 if (argc <= DIRECT_ARGUMENTS) {
2792 ti->error = "Invalid argument count";
2793 return -EINVAL;
2794 }
2795
2796 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
2797 if (!ic) {
2798 ti->error = "Cannot allocate integrity context";
2799 return -ENOMEM;
2800 }
2801 ti->private = ic;
2802 ti->per_io_data_size = sizeof(struct dm_integrity_io);
2803
2804 ic->in_progress = RB_ROOT;
2805 init_waitqueue_head(&ic->endio_wait);
2806 bio_list_init(&ic->flush_bio_list);
2807 init_waitqueue_head(&ic->copy_to_journal_wait);
2808 init_completion(&ic->crypto_backoff);
2809
2810 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
2811 if (r) {
2812 ti->error = "Device lookup failed";
2813 goto bad;
2814 }
2815
2816 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
2817 ti->error = "Invalid starting offset";
2818 r = -EINVAL;
2819 goto bad;
2820 }
2821 ic->start = start;
2822
2823 if (strcmp(argv[2], "-")) {
2824 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
2825 ti->error = "Invalid tag size";
2826 r = -EINVAL;
2827 goto bad;
2828 }
2829 }
2830
2831 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
2832 ic->mode = argv[3][0];
2833 else {
2834 ti->error = "Invalid mode (expecting J, D, R)";
2835 r = -EINVAL;
2836 goto bad;
2837 }
2838
2839 ic->device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
2840 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
2841 ic->device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
2842 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2843 buffer_sectors = DEFAULT_BUFFER_SECTORS;
2844 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
2845 sync_msec = DEFAULT_SYNC_MSEC;
2846 ic->sectors_per_block = 1;
2847
2848 as.argc = argc - DIRECT_ARGUMENTS;
2849 as.argv = argv + DIRECT_ARGUMENTS;
2850 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
2851 if (r)
2852 goto bad;
2853
2854 while (extra_args--) {
2855 const char *opt_string;
2856 unsigned val;
2857 opt_string = dm_shift_arg(&as);
2858 if (!opt_string) {
2859 r = -EINVAL;
2860 ti->error = "Not enough feature arguments";
2861 goto bad;
2862 }
2863 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
2864 journal_sectors = val;
2865 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
2866 interleave_sectors = val;
2867 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
2868 buffer_sectors = val;
2869 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
2870 journal_watermark = val;
2871 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
2872 sync_msec = val;
2873 else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
2874 if (val < 1 << SECTOR_SHIFT ||
2875 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
2876 (val & (val -1))) {
2877 r = -EINVAL;
2878 ti->error = "Invalid block_size argument";
2879 goto bad;
2880 }
2881 ic->sectors_per_block = val >> SECTOR_SHIFT;
2882 } else if (!memcmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
2883 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
2884 "Invalid internal_hash argument");
2885 if (r)
2886 goto bad;
2887 } else if (!memcmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
2888 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
2889 "Invalid journal_crypt argument");
2890 if (r)
2891 goto bad;
2892 } else if (!memcmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
2893 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
2894 "Invalid journal_mac argument");
2895 if (r)
2896 goto bad;
2897 } else {
2898 r = -EINVAL;
2899 ti->error = "Invalid argument";
2900 goto bad;
2901 }
2902 }
2903
2904 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
2905 "Invalid internal hash", "Error setting internal hash key");
2906 if (r)
2907 goto bad;
2908
2909 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
2910 "Invalid journal mac", "Error setting journal mac key");
2911 if (r)
2912 goto bad;
2913
2914 if (!ic->tag_size) {
2915 if (!ic->internal_hash) {
2916 ti->error = "Unknown tag size";
2917 r = -EINVAL;
2918 goto bad;
2919 }
2920 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
2921 }
2922 if (ic->tag_size > MAX_TAG_SIZE) {
2923 ti->error = "Too big tag size";
2924 r = -EINVAL;
2925 goto bad;
2926 }
2927 if (!(ic->tag_size & (ic->tag_size - 1)))
2928 ic->log2_tag_size = __ffs(ic->tag_size);
2929 else
2930 ic->log2_tag_size = -1;
2931
2932 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
2933 ic->autocommit_msec = sync_msec;
2934 setup_timer(&ic->autocommit_timer, autocommit_fn, (unsigned long)ic);
2935
2936 ic->io = dm_io_client_create();
2937 if (IS_ERR(ic->io)) {
2938 r = PTR_ERR(ic->io);
2939 ic->io = NULL;
2940 ti->error = "Cannot allocate dm io";
2941 goto bad;
2942 }
2943
2944 ic->journal_io_mempool = mempool_create_slab_pool(JOURNAL_IO_MEMPOOL, journal_io_cache);
2945 if (!ic->journal_io_mempool) {
2946 r = -ENOMEM;
2947 ti->error = "Cannot allocate mempool";
2948 goto bad;
2949 }
2950
2951 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
2952 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
2953 if (!ic->metadata_wq) {
2954 ti->error = "Cannot allocate workqueue";
2955 r = -ENOMEM;
2956 goto bad;
2957 }
2958
2959 /*
2960 * If this workqueue were percpu, it would cause bio reordering
2961 * and reduced performance.
2962 */
2963 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
2964 if (!ic->wait_wq) {
2965 ti->error = "Cannot allocate workqueue";
2966 r = -ENOMEM;
2967 goto bad;
2968 }
2969
2970 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
2971 if (!ic->commit_wq) {
2972 ti->error = "Cannot allocate workqueue";
2973 r = -ENOMEM;
2974 goto bad;
2975 }
2976 INIT_WORK(&ic->commit_work, integrity_commit);
2977
2978 if (ic->mode == 'J') {
2979 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
2980 if (!ic->writer_wq) {
2981 ti->error = "Cannot allocate workqueue";
2982 r = -ENOMEM;
2983 goto bad;
2984 }
2985 INIT_WORK(&ic->writer_work, integrity_writer);
2986 }
2987
2988 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
2989 if (!ic->sb) {
2990 r = -ENOMEM;
2991 ti->error = "Cannot allocate superblock area";
2992 goto bad;
2993 }
2994
2995 r = sync_rw_sb(ic, REQ_OP_READ, 0);
2996 if (r) {
2997 ti->error = "Error reading superblock";
2998 goto bad;
2999 }
3000 should_write_sb = false;
3001 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3002 if (ic->mode != 'R') {
3003 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3004 r = -EINVAL;
3005 ti->error = "The device is not initialized";
3006 goto bad;
3007 }
3008 }
3009
3010 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3011 if (r) {
3012 ti->error = "Could not initialize superblock";
3013 goto bad;
3014 }
3015 if (ic->mode != 'R')
3016 should_write_sb = true;
3017 }
3018
3019 if (ic->sb->version != SB_VERSION) {
3020 r = -EINVAL;
3021 ti->error = "Unknown version";
3022 goto bad;
3023 }
3024 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3025 r = -EINVAL;
3026 ti->error = "Tag size doesn't match the information in superblock";
3027 goto bad;
3028 }
3029 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3030 r = -EINVAL;
3031 ti->error = "Block size doesn't match the information in superblock";
3032 goto bad;
3033 }
3034 if (!le32_to_cpu(ic->sb->journal_sections)) {
3035 r = -EINVAL;
3036 ti->error = "Corrupted superblock, journal_sections is 0";
3037 goto bad;
3038 }
3039 /* make sure that ti->max_io_len doesn't overflow */
3040 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3041 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3042 r = -EINVAL;
3043 ti->error = "Invalid interleave_sectors in the superblock";
3044 goto bad;
3045 }
3046 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3047 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3048 /* test for overflow */
3049 r = -EINVAL;
3050 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3051 goto bad;
3052 }
3053 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3054 r = -EINVAL;
3055 ti->error = "Journal mac mismatch";
3056 goto bad;
3057 }
3058 r = calculate_device_limits(ic);
3059 if (r) {
3060 ti->error = "The device is too small";
3061 goto bad;
3062 }
3063 if (ti->len > ic->provided_data_sectors) {
3064 r = -EINVAL;
3065 ti->error = "Not enough provided sectors for requested mapping size";
3066 goto bad;
3067 }
3068
3069 if (!buffer_sectors)
3070 buffer_sectors = 1;
3071 ic->log2_buffer_sectors = min3((int)__fls(buffer_sectors), (int)__ffs(ic->metadata_run), 31 - SECTOR_SHIFT);
3072
3073 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3074 threshold += 50;
3075 do_div(threshold, 100);
3076 ic->free_sectors_threshold = threshold;
3077
3078 DEBUG_print("initialized:\n");
3079 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3080 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
3081 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3082 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
3083 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
3084 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3085 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
3086 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3087 DEBUG_print(" device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors);
3088 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
3089 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
3090 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
3091 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3092 (unsigned long long)ic->provided_data_sectors);
3093 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3094
3095 ic->bufio = dm_bufio_client_create(ic->dev->bdev, 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors),
3096 1, 0, NULL, NULL);
3097 if (IS_ERR(ic->bufio)) {
3098 r = PTR_ERR(ic->bufio);
3099 ti->error = "Cannot initialize dm-bufio";
3100 ic->bufio = NULL;
3101 goto bad;
3102 }
3103 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
3104
3105 if (ic->mode != 'R') {
3106 r = create_journal(ic, &ti->error);
3107 if (r)
3108 goto bad;
3109 }
3110
3111 if (should_write_sb) {
3112 int r;
3113
3114 init_journal(ic, 0, ic->journal_sections, 0);
3115 r = dm_integrity_failed(ic);
3116 if (unlikely(r)) {
3117 ti->error = "Error initializing journal";
3118 goto bad;
3119 }
3120 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3121 if (r) {
3122 ti->error = "Error initializing superblock";
3123 goto bad;
3124 }
3125 ic->just_formatted = true;
3126 }
3127
3128 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
3129 if (r)
3130 goto bad;
3131
3132 if (!ic->internal_hash)
3133 dm_integrity_set(ti, ic);
3134
3135 ti->num_flush_bios = 1;
3136 ti->flush_supported = true;
3137
3138 return 0;
3139 bad:
3140 dm_integrity_dtr(ti);
3141 return r;
3142 }
3143
3144 static void dm_integrity_dtr(struct dm_target *ti)
3145 {
3146 struct dm_integrity_c *ic = ti->private;
3147
3148 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3149
3150 if (ic->metadata_wq)
3151 destroy_workqueue(ic->metadata_wq);
3152 if (ic->wait_wq)
3153 destroy_workqueue(ic->wait_wq);
3154 if (ic->commit_wq)
3155 destroy_workqueue(ic->commit_wq);
3156 if (ic->writer_wq)
3157 destroy_workqueue(ic->writer_wq);
3158 if (ic->bufio)
3159 dm_bufio_client_destroy(ic->bufio);
3160 mempool_destroy(ic->journal_io_mempool);
3161 if (ic->io)
3162 dm_io_client_destroy(ic->io);
3163 if (ic->dev)
3164 dm_put_device(ti, ic->dev);
3165 dm_integrity_free_page_list(ic, ic->journal);
3166 dm_integrity_free_page_list(ic, ic->journal_io);
3167 dm_integrity_free_page_list(ic, ic->journal_xor);
3168 if (ic->journal_scatterlist)
3169 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
3170 if (ic->journal_io_scatterlist)
3171 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
3172 if (ic->sk_requests) {
3173 unsigned i;
3174
3175 for (i = 0; i < ic->journal_sections; i++) {
3176 struct skcipher_request *req = ic->sk_requests[i];
3177 if (req) {
3178 kzfree(req->iv);
3179 skcipher_request_free(req);
3180 }
3181 }
3182 kvfree(ic->sk_requests);
3183 }
3184 kvfree(ic->journal_tree);
3185 if (ic->sb)
3186 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
3187
3188 if (ic->internal_hash)
3189 crypto_free_shash(ic->internal_hash);
3190 free_alg(&ic->internal_hash_alg);
3191
3192 if (ic->journal_crypt)
3193 crypto_free_skcipher(ic->journal_crypt);
3194 free_alg(&ic->journal_crypt_alg);
3195
3196 if (ic->journal_mac)
3197 crypto_free_shash(ic->journal_mac);
3198 free_alg(&ic->journal_mac_alg);
3199
3200 kfree(ic);
3201 }
3202
3203 static struct target_type integrity_target = {
3204 .name = "integrity",
3205 .version = {1, 0, 0},
3206 .module = THIS_MODULE,
3207 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
3208 .ctr = dm_integrity_ctr,
3209 .dtr = dm_integrity_dtr,
3210 .map = dm_integrity_map,
3211 .postsuspend = dm_integrity_postsuspend,
3212 .resume = dm_integrity_resume,
3213 .status = dm_integrity_status,
3214 .iterate_devices = dm_integrity_iterate_devices,
3215 .io_hints = dm_integrity_io_hints,
3216 };
3217
3218 int __init dm_integrity_init(void)
3219 {
3220 int r;
3221
3222 journal_io_cache = kmem_cache_create("integrity_journal_io",
3223 sizeof(struct journal_io), 0, 0, NULL);
3224 if (!journal_io_cache) {
3225 DMERR("can't allocate journal io cache");
3226 return -ENOMEM;
3227 }
3228
3229 r = dm_register_target(&integrity_target);
3230
3231 if (r < 0)
3232 DMERR("register failed %d", r);
3233
3234 return r;
3235 }
3236
3237 void dm_integrity_exit(void)
3238 {
3239 dm_unregister_target(&integrity_target);
3240 kmem_cache_destroy(journal_io_cache);
3241 }
3242
3243 module_init(dm_integrity_init);
3244 module_exit(dm_integrity_exit);
3245
3246 MODULE_AUTHOR("Milan Broz");
3247 MODULE_AUTHOR("Mikulas Patocka");
3248 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
3249 MODULE_LICENSE("GPL");