Merge branch 'drm-nouveau-destage' of git://people.freedesktop.org/~airlied/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <linux/percpu.h>
22 #include <linux/atomic.h>
23 #include <linux/scatterlist.h>
24 #include <asm/page.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
29
30 #include <linux/device-mapper.h>
31
32 #define DM_MSG_PREFIX "crypt"
33
34 /*
35 * context holding the current state of a multi-part conversion
36 */
37 struct convert_context {
38 struct completion restart;
39 struct bio *bio_in;
40 struct bio *bio_out;
41 unsigned int offset_in;
42 unsigned int offset_out;
43 unsigned int idx_in;
44 unsigned int idx_out;
45 sector_t sector;
46 atomic_t pending;
47 };
48
49 /*
50 * per bio private data
51 */
52 struct dm_crypt_io {
53 struct dm_target *target;
54 struct bio *base_bio;
55 struct work_struct work;
56
57 struct convert_context ctx;
58
59 atomic_t pending;
60 int error;
61 sector_t sector;
62 struct dm_crypt_io *base_io;
63 };
64
65 struct dm_crypt_request {
66 struct convert_context *ctx;
67 struct scatterlist sg_in;
68 struct scatterlist sg_out;
69 sector_t iv_sector;
70 };
71
72 struct crypt_config;
73
74 struct crypt_iv_operations {
75 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
76 const char *opts);
77 void (*dtr)(struct crypt_config *cc);
78 int (*init)(struct crypt_config *cc);
79 int (*wipe)(struct crypt_config *cc);
80 int (*generator)(struct crypt_config *cc, u8 *iv,
81 struct dm_crypt_request *dmreq);
82 int (*post)(struct crypt_config *cc, u8 *iv,
83 struct dm_crypt_request *dmreq);
84 };
85
86 struct iv_essiv_private {
87 struct crypto_hash *hash_tfm;
88 u8 *salt;
89 };
90
91 struct iv_benbi_private {
92 int shift;
93 };
94
95 #define LMK_SEED_SIZE 64 /* hash + 0 */
96 struct iv_lmk_private {
97 struct crypto_shash *hash_tfm;
98 u8 *seed;
99 };
100
101 /*
102 * Crypt: maps a linear range of a block device
103 * and encrypts / decrypts at the same time.
104 */
105 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
106
107 /*
108 * Duplicated per-CPU state for cipher.
109 */
110 struct crypt_cpu {
111 struct ablkcipher_request *req;
112 /* ESSIV: struct crypto_cipher *essiv_tfm */
113 void *iv_private;
114 struct crypto_ablkcipher *tfms[0];
115 };
116
117 /*
118 * The fields in here must be read only after initialization,
119 * changing state should be in crypt_cpu.
120 */
121 struct crypt_config {
122 struct dm_dev *dev;
123 sector_t start;
124
125 /*
126 * pool for per bio private data, crypto requests and
127 * encryption requeusts/buffer pages
128 */
129 mempool_t *io_pool;
130 mempool_t *req_pool;
131 mempool_t *page_pool;
132 struct bio_set *bs;
133
134 struct workqueue_struct *io_queue;
135 struct workqueue_struct *crypt_queue;
136
137 char *cipher;
138 char *cipher_string;
139
140 struct crypt_iv_operations *iv_gen_ops;
141 union {
142 struct iv_essiv_private essiv;
143 struct iv_benbi_private benbi;
144 struct iv_lmk_private lmk;
145 } iv_gen_private;
146 sector_t iv_offset;
147 unsigned int iv_size;
148
149 /*
150 * Duplicated per cpu state. Access through
151 * per_cpu_ptr() only.
152 */
153 struct crypt_cpu __percpu *cpu;
154 unsigned tfms_count;
155
156 /*
157 * Layout of each crypto request:
158 *
159 * struct ablkcipher_request
160 * context
161 * padding
162 * struct dm_crypt_request
163 * padding
164 * IV
165 *
166 * The padding is added so that dm_crypt_request and the IV are
167 * correctly aligned.
168 */
169 unsigned int dmreq_start;
170
171 unsigned long flags;
172 unsigned int key_size;
173 unsigned int key_parts;
174 u8 key[0];
175 };
176
177 #define MIN_IOS 16
178 #define MIN_POOL_PAGES 32
179 #define MIN_BIO_PAGES 8
180
181 static struct kmem_cache *_crypt_io_pool;
182
183 static void clone_init(struct dm_crypt_io *, struct bio *);
184 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
185 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
186
187 static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
188 {
189 return this_cpu_ptr(cc->cpu);
190 }
191
192 /*
193 * Use this to access cipher attributes that are the same for each CPU.
194 */
195 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
196 {
197 return __this_cpu_ptr(cc->cpu)->tfms[0];
198 }
199
200 /*
201 * Different IV generation algorithms:
202 *
203 * plain: the initial vector is the 32-bit little-endian version of the sector
204 * number, padded with zeros if necessary.
205 *
206 * plain64: the initial vector is the 64-bit little-endian version of the sector
207 * number, padded with zeros if necessary.
208 *
209 * essiv: "encrypted sector|salt initial vector", the sector number is
210 * encrypted with the bulk cipher using a salt as key. The salt
211 * should be derived from the bulk cipher's key via hashing.
212 *
213 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
214 * (needed for LRW-32-AES and possible other narrow block modes)
215 *
216 * null: the initial vector is always zero. Provides compatibility with
217 * obsolete loop_fish2 devices. Do not use for new devices.
218 *
219 * lmk: Compatible implementation of the block chaining mode used
220 * by the Loop-AES block device encryption system
221 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
222 * It operates on full 512 byte sectors and uses CBC
223 * with an IV derived from the sector number, the data and
224 * optionally extra IV seed.
225 * This means that after decryption the first block
226 * of sector must be tweaked according to decrypted data.
227 * Loop-AES can use three encryption schemes:
228 * version 1: is plain aes-cbc mode
229 * version 2: uses 64 multikey scheme with lmk IV generator
230 * version 3: the same as version 2 with additional IV seed
231 * (it uses 65 keys, last key is used as IV seed)
232 *
233 * plumb: unimplemented, see:
234 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
235 */
236
237 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
238 struct dm_crypt_request *dmreq)
239 {
240 memset(iv, 0, cc->iv_size);
241 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
242
243 return 0;
244 }
245
246 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
247 struct dm_crypt_request *dmreq)
248 {
249 memset(iv, 0, cc->iv_size);
250 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
251
252 return 0;
253 }
254
255 /* Initialise ESSIV - compute salt but no local memory allocations */
256 static int crypt_iv_essiv_init(struct crypt_config *cc)
257 {
258 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
259 struct hash_desc desc;
260 struct scatterlist sg;
261 struct crypto_cipher *essiv_tfm;
262 int err, cpu;
263
264 sg_init_one(&sg, cc->key, cc->key_size);
265 desc.tfm = essiv->hash_tfm;
266 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
267
268 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
269 if (err)
270 return err;
271
272 for_each_possible_cpu(cpu) {
273 essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private,
274
275 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
276 crypto_hash_digestsize(essiv->hash_tfm));
277 if (err)
278 return err;
279 }
280
281 return 0;
282 }
283
284 /* Wipe salt and reset key derived from volume key */
285 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
286 {
287 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
288 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
289 struct crypto_cipher *essiv_tfm;
290 int cpu, r, err = 0;
291
292 memset(essiv->salt, 0, salt_size);
293
294 for_each_possible_cpu(cpu) {
295 essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private;
296 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
297 if (r)
298 err = r;
299 }
300
301 return err;
302 }
303
304 /* Set up per cpu cipher state */
305 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
306 struct dm_target *ti,
307 u8 *salt, unsigned saltsize)
308 {
309 struct crypto_cipher *essiv_tfm;
310 int err;
311
312 /* Setup the essiv_tfm with the given salt */
313 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
314 if (IS_ERR(essiv_tfm)) {
315 ti->error = "Error allocating crypto tfm for ESSIV";
316 return essiv_tfm;
317 }
318
319 if (crypto_cipher_blocksize(essiv_tfm) !=
320 crypto_ablkcipher_ivsize(any_tfm(cc))) {
321 ti->error = "Block size of ESSIV cipher does "
322 "not match IV size of block cipher";
323 crypto_free_cipher(essiv_tfm);
324 return ERR_PTR(-EINVAL);
325 }
326
327 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
328 if (err) {
329 ti->error = "Failed to set key for ESSIV cipher";
330 crypto_free_cipher(essiv_tfm);
331 return ERR_PTR(err);
332 }
333
334 return essiv_tfm;
335 }
336
337 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
338 {
339 int cpu;
340 struct crypt_cpu *cpu_cc;
341 struct crypto_cipher *essiv_tfm;
342 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
343
344 crypto_free_hash(essiv->hash_tfm);
345 essiv->hash_tfm = NULL;
346
347 kzfree(essiv->salt);
348 essiv->salt = NULL;
349
350 for_each_possible_cpu(cpu) {
351 cpu_cc = per_cpu_ptr(cc->cpu, cpu);
352 essiv_tfm = cpu_cc->iv_private;
353
354 if (essiv_tfm)
355 crypto_free_cipher(essiv_tfm);
356
357 cpu_cc->iv_private = NULL;
358 }
359 }
360
361 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
362 const char *opts)
363 {
364 struct crypto_cipher *essiv_tfm = NULL;
365 struct crypto_hash *hash_tfm = NULL;
366 u8 *salt = NULL;
367 int err, cpu;
368
369 if (!opts) {
370 ti->error = "Digest algorithm missing for ESSIV mode";
371 return -EINVAL;
372 }
373
374 /* Allocate hash algorithm */
375 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
376 if (IS_ERR(hash_tfm)) {
377 ti->error = "Error initializing ESSIV hash";
378 err = PTR_ERR(hash_tfm);
379 goto bad;
380 }
381
382 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
383 if (!salt) {
384 ti->error = "Error kmallocing salt storage in ESSIV";
385 err = -ENOMEM;
386 goto bad;
387 }
388
389 cc->iv_gen_private.essiv.salt = salt;
390 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
391
392 for_each_possible_cpu(cpu) {
393 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
394 crypto_hash_digestsize(hash_tfm));
395 if (IS_ERR(essiv_tfm)) {
396 crypt_iv_essiv_dtr(cc);
397 return PTR_ERR(essiv_tfm);
398 }
399 per_cpu_ptr(cc->cpu, cpu)->iv_private = essiv_tfm;
400 }
401
402 return 0;
403
404 bad:
405 if (hash_tfm && !IS_ERR(hash_tfm))
406 crypto_free_hash(hash_tfm);
407 kfree(salt);
408 return err;
409 }
410
411 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
412 struct dm_crypt_request *dmreq)
413 {
414 struct crypto_cipher *essiv_tfm = this_crypt_config(cc)->iv_private;
415
416 memset(iv, 0, cc->iv_size);
417 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
418 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
419
420 return 0;
421 }
422
423 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
424 const char *opts)
425 {
426 unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
427 int log = ilog2(bs);
428
429 /* we need to calculate how far we must shift the sector count
430 * to get the cipher block count, we use this shift in _gen */
431
432 if (1 << log != bs) {
433 ti->error = "cypher blocksize is not a power of 2";
434 return -EINVAL;
435 }
436
437 if (log > 9) {
438 ti->error = "cypher blocksize is > 512";
439 return -EINVAL;
440 }
441
442 cc->iv_gen_private.benbi.shift = 9 - log;
443
444 return 0;
445 }
446
447 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
448 {
449 }
450
451 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
452 struct dm_crypt_request *dmreq)
453 {
454 __be64 val;
455
456 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
457
458 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
459 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
460
461 return 0;
462 }
463
464 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
465 struct dm_crypt_request *dmreq)
466 {
467 memset(iv, 0, cc->iv_size);
468
469 return 0;
470 }
471
472 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
473 {
474 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
475
476 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
477 crypto_free_shash(lmk->hash_tfm);
478 lmk->hash_tfm = NULL;
479
480 kzfree(lmk->seed);
481 lmk->seed = NULL;
482 }
483
484 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
485 const char *opts)
486 {
487 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
488
489 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
490 if (IS_ERR(lmk->hash_tfm)) {
491 ti->error = "Error initializing LMK hash";
492 return PTR_ERR(lmk->hash_tfm);
493 }
494
495 /* No seed in LMK version 2 */
496 if (cc->key_parts == cc->tfms_count) {
497 lmk->seed = NULL;
498 return 0;
499 }
500
501 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
502 if (!lmk->seed) {
503 crypt_iv_lmk_dtr(cc);
504 ti->error = "Error kmallocing seed storage in LMK";
505 return -ENOMEM;
506 }
507
508 return 0;
509 }
510
511 static int crypt_iv_lmk_init(struct crypt_config *cc)
512 {
513 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
514 int subkey_size = cc->key_size / cc->key_parts;
515
516 /* LMK seed is on the position of LMK_KEYS + 1 key */
517 if (lmk->seed)
518 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
519 crypto_shash_digestsize(lmk->hash_tfm));
520
521 return 0;
522 }
523
524 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
525 {
526 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
527
528 if (lmk->seed)
529 memset(lmk->seed, 0, LMK_SEED_SIZE);
530
531 return 0;
532 }
533
534 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
535 struct dm_crypt_request *dmreq,
536 u8 *data)
537 {
538 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
539 struct {
540 struct shash_desc desc;
541 char ctx[crypto_shash_descsize(lmk->hash_tfm)];
542 } sdesc;
543 struct md5_state md5state;
544 u32 buf[4];
545 int i, r;
546
547 sdesc.desc.tfm = lmk->hash_tfm;
548 sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
549
550 r = crypto_shash_init(&sdesc.desc);
551 if (r)
552 return r;
553
554 if (lmk->seed) {
555 r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
556 if (r)
557 return r;
558 }
559
560 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
561 r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
562 if (r)
563 return r;
564
565 /* Sector is cropped to 56 bits here */
566 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
567 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
568 buf[2] = cpu_to_le32(4024);
569 buf[3] = 0;
570 r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
571 if (r)
572 return r;
573
574 /* No MD5 padding here */
575 r = crypto_shash_export(&sdesc.desc, &md5state);
576 if (r)
577 return r;
578
579 for (i = 0; i < MD5_HASH_WORDS; i++)
580 __cpu_to_le32s(&md5state.hash[i]);
581 memcpy(iv, &md5state.hash, cc->iv_size);
582
583 return 0;
584 }
585
586 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
587 struct dm_crypt_request *dmreq)
588 {
589 u8 *src;
590 int r = 0;
591
592 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
593 src = kmap_atomic(sg_page(&dmreq->sg_in));
594 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
595 kunmap_atomic(src);
596 } else
597 memset(iv, 0, cc->iv_size);
598
599 return r;
600 }
601
602 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
603 struct dm_crypt_request *dmreq)
604 {
605 u8 *dst;
606 int r;
607
608 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
609 return 0;
610
611 dst = kmap_atomic(sg_page(&dmreq->sg_out));
612 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
613
614 /* Tweak the first block of plaintext sector */
615 if (!r)
616 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
617
618 kunmap_atomic(dst);
619 return r;
620 }
621
622 static struct crypt_iv_operations crypt_iv_plain_ops = {
623 .generator = crypt_iv_plain_gen
624 };
625
626 static struct crypt_iv_operations crypt_iv_plain64_ops = {
627 .generator = crypt_iv_plain64_gen
628 };
629
630 static struct crypt_iv_operations crypt_iv_essiv_ops = {
631 .ctr = crypt_iv_essiv_ctr,
632 .dtr = crypt_iv_essiv_dtr,
633 .init = crypt_iv_essiv_init,
634 .wipe = crypt_iv_essiv_wipe,
635 .generator = crypt_iv_essiv_gen
636 };
637
638 static struct crypt_iv_operations crypt_iv_benbi_ops = {
639 .ctr = crypt_iv_benbi_ctr,
640 .dtr = crypt_iv_benbi_dtr,
641 .generator = crypt_iv_benbi_gen
642 };
643
644 static struct crypt_iv_operations crypt_iv_null_ops = {
645 .generator = crypt_iv_null_gen
646 };
647
648 static struct crypt_iv_operations crypt_iv_lmk_ops = {
649 .ctr = crypt_iv_lmk_ctr,
650 .dtr = crypt_iv_lmk_dtr,
651 .init = crypt_iv_lmk_init,
652 .wipe = crypt_iv_lmk_wipe,
653 .generator = crypt_iv_lmk_gen,
654 .post = crypt_iv_lmk_post
655 };
656
657 static void crypt_convert_init(struct crypt_config *cc,
658 struct convert_context *ctx,
659 struct bio *bio_out, struct bio *bio_in,
660 sector_t sector)
661 {
662 ctx->bio_in = bio_in;
663 ctx->bio_out = bio_out;
664 ctx->offset_in = 0;
665 ctx->offset_out = 0;
666 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
667 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
668 ctx->sector = sector + cc->iv_offset;
669 init_completion(&ctx->restart);
670 }
671
672 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
673 struct ablkcipher_request *req)
674 {
675 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
676 }
677
678 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
679 struct dm_crypt_request *dmreq)
680 {
681 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
682 }
683
684 static u8 *iv_of_dmreq(struct crypt_config *cc,
685 struct dm_crypt_request *dmreq)
686 {
687 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
688 crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
689 }
690
691 static int crypt_convert_block(struct crypt_config *cc,
692 struct convert_context *ctx,
693 struct ablkcipher_request *req)
694 {
695 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
696 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
697 struct dm_crypt_request *dmreq;
698 u8 *iv;
699 int r = 0;
700
701 dmreq = dmreq_of_req(cc, req);
702 iv = iv_of_dmreq(cc, dmreq);
703
704 dmreq->iv_sector = ctx->sector;
705 dmreq->ctx = ctx;
706 sg_init_table(&dmreq->sg_in, 1);
707 sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
708 bv_in->bv_offset + ctx->offset_in);
709
710 sg_init_table(&dmreq->sg_out, 1);
711 sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
712 bv_out->bv_offset + ctx->offset_out);
713
714 ctx->offset_in += 1 << SECTOR_SHIFT;
715 if (ctx->offset_in >= bv_in->bv_len) {
716 ctx->offset_in = 0;
717 ctx->idx_in++;
718 }
719
720 ctx->offset_out += 1 << SECTOR_SHIFT;
721 if (ctx->offset_out >= bv_out->bv_len) {
722 ctx->offset_out = 0;
723 ctx->idx_out++;
724 }
725
726 if (cc->iv_gen_ops) {
727 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
728 if (r < 0)
729 return r;
730 }
731
732 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
733 1 << SECTOR_SHIFT, iv);
734
735 if (bio_data_dir(ctx->bio_in) == WRITE)
736 r = crypto_ablkcipher_encrypt(req);
737 else
738 r = crypto_ablkcipher_decrypt(req);
739
740 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
741 r = cc->iv_gen_ops->post(cc, iv, dmreq);
742
743 return r;
744 }
745
746 static void kcryptd_async_done(struct crypto_async_request *async_req,
747 int error);
748
749 static void crypt_alloc_req(struct crypt_config *cc,
750 struct convert_context *ctx)
751 {
752 struct crypt_cpu *this_cc = this_crypt_config(cc);
753 unsigned key_index = ctx->sector & (cc->tfms_count - 1);
754
755 if (!this_cc->req)
756 this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
757
758 ablkcipher_request_set_tfm(this_cc->req, this_cc->tfms[key_index]);
759 ablkcipher_request_set_callback(this_cc->req,
760 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
761 kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
762 }
763
764 /*
765 * Encrypt / decrypt data from one bio to another one (can be the same one)
766 */
767 static int crypt_convert(struct crypt_config *cc,
768 struct convert_context *ctx)
769 {
770 struct crypt_cpu *this_cc = this_crypt_config(cc);
771 int r;
772
773 atomic_set(&ctx->pending, 1);
774
775 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
776 ctx->idx_out < ctx->bio_out->bi_vcnt) {
777
778 crypt_alloc_req(cc, ctx);
779
780 atomic_inc(&ctx->pending);
781
782 r = crypt_convert_block(cc, ctx, this_cc->req);
783
784 switch (r) {
785 /* async */
786 case -EBUSY:
787 wait_for_completion(&ctx->restart);
788 INIT_COMPLETION(ctx->restart);
789 /* fall through*/
790 case -EINPROGRESS:
791 this_cc->req = NULL;
792 ctx->sector++;
793 continue;
794
795 /* sync */
796 case 0:
797 atomic_dec(&ctx->pending);
798 ctx->sector++;
799 cond_resched();
800 continue;
801
802 /* error */
803 default:
804 atomic_dec(&ctx->pending);
805 return r;
806 }
807 }
808
809 return 0;
810 }
811
812 static void dm_crypt_bio_destructor(struct bio *bio)
813 {
814 struct dm_crypt_io *io = bio->bi_private;
815 struct crypt_config *cc = io->target->private;
816
817 bio_free(bio, cc->bs);
818 }
819
820 /*
821 * Generate a new unfragmented bio with the given size
822 * This should never violate the device limitations
823 * May return a smaller bio when running out of pages, indicated by
824 * *out_of_pages set to 1.
825 */
826 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
827 unsigned *out_of_pages)
828 {
829 struct crypt_config *cc = io->target->private;
830 struct bio *clone;
831 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
832 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
833 unsigned i, len;
834 struct page *page;
835
836 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
837 if (!clone)
838 return NULL;
839
840 clone_init(io, clone);
841 *out_of_pages = 0;
842
843 for (i = 0; i < nr_iovecs; i++) {
844 page = mempool_alloc(cc->page_pool, gfp_mask);
845 if (!page) {
846 *out_of_pages = 1;
847 break;
848 }
849
850 /*
851 * if additional pages cannot be allocated without waiting,
852 * return a partially allocated bio, the caller will then try
853 * to allocate additional bios while submitting this partial bio
854 */
855 if (i == (MIN_BIO_PAGES - 1))
856 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
857
858 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
859
860 if (!bio_add_page(clone, page, len, 0)) {
861 mempool_free(page, cc->page_pool);
862 break;
863 }
864
865 size -= len;
866 }
867
868 if (!clone->bi_size) {
869 bio_put(clone);
870 return NULL;
871 }
872
873 return clone;
874 }
875
876 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
877 {
878 unsigned int i;
879 struct bio_vec *bv;
880
881 for (i = 0; i < clone->bi_vcnt; i++) {
882 bv = bio_iovec_idx(clone, i);
883 BUG_ON(!bv->bv_page);
884 mempool_free(bv->bv_page, cc->page_pool);
885 bv->bv_page = NULL;
886 }
887 }
888
889 static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
890 struct bio *bio, sector_t sector)
891 {
892 struct crypt_config *cc = ti->private;
893 struct dm_crypt_io *io;
894
895 io = mempool_alloc(cc->io_pool, GFP_NOIO);
896 io->target = ti;
897 io->base_bio = bio;
898 io->sector = sector;
899 io->error = 0;
900 io->base_io = NULL;
901 atomic_set(&io->pending, 0);
902
903 return io;
904 }
905
906 static void crypt_inc_pending(struct dm_crypt_io *io)
907 {
908 atomic_inc(&io->pending);
909 }
910
911 /*
912 * One of the bios was finished. Check for completion of
913 * the whole request and correctly clean up the buffer.
914 * If base_io is set, wait for the last fragment to complete.
915 */
916 static void crypt_dec_pending(struct dm_crypt_io *io)
917 {
918 struct crypt_config *cc = io->target->private;
919 struct bio *base_bio = io->base_bio;
920 struct dm_crypt_io *base_io = io->base_io;
921 int error = io->error;
922
923 if (!atomic_dec_and_test(&io->pending))
924 return;
925
926 mempool_free(io, cc->io_pool);
927
928 if (likely(!base_io))
929 bio_endio(base_bio, error);
930 else {
931 if (error && !base_io->error)
932 base_io->error = error;
933 crypt_dec_pending(base_io);
934 }
935 }
936
937 /*
938 * kcryptd/kcryptd_io:
939 *
940 * Needed because it would be very unwise to do decryption in an
941 * interrupt context.
942 *
943 * kcryptd performs the actual encryption or decryption.
944 *
945 * kcryptd_io performs the IO submission.
946 *
947 * They must be separated as otherwise the final stages could be
948 * starved by new requests which can block in the first stages due
949 * to memory allocation.
950 *
951 * The work is done per CPU global for all dm-crypt instances.
952 * They should not depend on each other and do not block.
953 */
954 static void crypt_endio(struct bio *clone, int error)
955 {
956 struct dm_crypt_io *io = clone->bi_private;
957 struct crypt_config *cc = io->target->private;
958 unsigned rw = bio_data_dir(clone);
959
960 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
961 error = -EIO;
962
963 /*
964 * free the processed pages
965 */
966 if (rw == WRITE)
967 crypt_free_buffer_pages(cc, clone);
968
969 bio_put(clone);
970
971 if (rw == READ && !error) {
972 kcryptd_queue_crypt(io);
973 return;
974 }
975
976 if (unlikely(error))
977 io->error = error;
978
979 crypt_dec_pending(io);
980 }
981
982 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
983 {
984 struct crypt_config *cc = io->target->private;
985
986 clone->bi_private = io;
987 clone->bi_end_io = crypt_endio;
988 clone->bi_bdev = cc->dev->bdev;
989 clone->bi_rw = io->base_bio->bi_rw;
990 clone->bi_destructor = dm_crypt_bio_destructor;
991 }
992
993 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
994 {
995 struct crypt_config *cc = io->target->private;
996 struct bio *base_bio = io->base_bio;
997 struct bio *clone;
998
999 /*
1000 * The block layer might modify the bvec array, so always
1001 * copy the required bvecs because we need the original
1002 * one in order to decrypt the whole bio data *afterwards*.
1003 */
1004 clone = bio_alloc_bioset(gfp, bio_segments(base_bio), cc->bs);
1005 if (!clone)
1006 return 1;
1007
1008 crypt_inc_pending(io);
1009
1010 clone_init(io, clone);
1011 clone->bi_idx = 0;
1012 clone->bi_vcnt = bio_segments(base_bio);
1013 clone->bi_size = base_bio->bi_size;
1014 clone->bi_sector = cc->start + io->sector;
1015 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
1016 sizeof(struct bio_vec) * clone->bi_vcnt);
1017
1018 generic_make_request(clone);
1019 return 0;
1020 }
1021
1022 static void kcryptd_io_write(struct dm_crypt_io *io)
1023 {
1024 struct bio *clone = io->ctx.bio_out;
1025 generic_make_request(clone);
1026 }
1027
1028 static void kcryptd_io(struct work_struct *work)
1029 {
1030 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1031
1032 if (bio_data_dir(io->base_bio) == READ) {
1033 crypt_inc_pending(io);
1034 if (kcryptd_io_read(io, GFP_NOIO))
1035 io->error = -ENOMEM;
1036 crypt_dec_pending(io);
1037 } else
1038 kcryptd_io_write(io);
1039 }
1040
1041 static void kcryptd_queue_io(struct dm_crypt_io *io)
1042 {
1043 struct crypt_config *cc = io->target->private;
1044
1045 INIT_WORK(&io->work, kcryptd_io);
1046 queue_work(cc->io_queue, &io->work);
1047 }
1048
1049 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
1050 int error, int async)
1051 {
1052 struct bio *clone = io->ctx.bio_out;
1053 struct crypt_config *cc = io->target->private;
1054
1055 if (unlikely(error < 0)) {
1056 crypt_free_buffer_pages(cc, clone);
1057 bio_put(clone);
1058 io->error = -EIO;
1059 crypt_dec_pending(io);
1060 return;
1061 }
1062
1063 /* crypt_convert should have filled the clone bio */
1064 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1065
1066 clone->bi_sector = cc->start + io->sector;
1067
1068 if (async)
1069 kcryptd_queue_io(io);
1070 else
1071 generic_make_request(clone);
1072 }
1073
1074 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1075 {
1076 struct crypt_config *cc = io->target->private;
1077 struct bio *clone;
1078 struct dm_crypt_io *new_io;
1079 int crypt_finished;
1080 unsigned out_of_pages = 0;
1081 unsigned remaining = io->base_bio->bi_size;
1082 sector_t sector = io->sector;
1083 int r;
1084
1085 /*
1086 * Prevent io from disappearing until this function completes.
1087 */
1088 crypt_inc_pending(io);
1089 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1090
1091 /*
1092 * The allocated buffers can be smaller than the whole bio,
1093 * so repeat the whole process until all the data can be handled.
1094 */
1095 while (remaining) {
1096 clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1097 if (unlikely(!clone)) {
1098 io->error = -ENOMEM;
1099 break;
1100 }
1101
1102 io->ctx.bio_out = clone;
1103 io->ctx.idx_out = 0;
1104
1105 remaining -= clone->bi_size;
1106 sector += bio_sectors(clone);
1107
1108 crypt_inc_pending(io);
1109 r = crypt_convert(cc, &io->ctx);
1110 crypt_finished = atomic_dec_and_test(&io->ctx.pending);
1111
1112 /* Encryption was already finished, submit io now */
1113 if (crypt_finished) {
1114 kcryptd_crypt_write_io_submit(io, r, 0);
1115
1116 /*
1117 * If there was an error, do not try next fragments.
1118 * For async, error is processed in async handler.
1119 */
1120 if (unlikely(r < 0))
1121 break;
1122
1123 io->sector = sector;
1124 }
1125
1126 /*
1127 * Out of memory -> run queues
1128 * But don't wait if split was due to the io size restriction
1129 */
1130 if (unlikely(out_of_pages))
1131 congestion_wait(BLK_RW_ASYNC, HZ/100);
1132
1133 /*
1134 * With async crypto it is unsafe to share the crypto context
1135 * between fragments, so switch to a new dm_crypt_io structure.
1136 */
1137 if (unlikely(!crypt_finished && remaining)) {
1138 new_io = crypt_io_alloc(io->target, io->base_bio,
1139 sector);
1140 crypt_inc_pending(new_io);
1141 crypt_convert_init(cc, &new_io->ctx, NULL,
1142 io->base_bio, sector);
1143 new_io->ctx.idx_in = io->ctx.idx_in;
1144 new_io->ctx.offset_in = io->ctx.offset_in;
1145
1146 /*
1147 * Fragments after the first use the base_io
1148 * pending count.
1149 */
1150 if (!io->base_io)
1151 new_io->base_io = io;
1152 else {
1153 new_io->base_io = io->base_io;
1154 crypt_inc_pending(io->base_io);
1155 crypt_dec_pending(io);
1156 }
1157
1158 io = new_io;
1159 }
1160 }
1161
1162 crypt_dec_pending(io);
1163 }
1164
1165 static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
1166 {
1167 if (unlikely(error < 0))
1168 io->error = -EIO;
1169
1170 crypt_dec_pending(io);
1171 }
1172
1173 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1174 {
1175 struct crypt_config *cc = io->target->private;
1176 int r = 0;
1177
1178 crypt_inc_pending(io);
1179
1180 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1181 io->sector);
1182
1183 r = crypt_convert(cc, &io->ctx);
1184
1185 if (atomic_dec_and_test(&io->ctx.pending))
1186 kcryptd_crypt_read_done(io, r);
1187
1188 crypt_dec_pending(io);
1189 }
1190
1191 static void kcryptd_async_done(struct crypto_async_request *async_req,
1192 int error)
1193 {
1194 struct dm_crypt_request *dmreq = async_req->data;
1195 struct convert_context *ctx = dmreq->ctx;
1196 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1197 struct crypt_config *cc = io->target->private;
1198
1199 if (error == -EINPROGRESS) {
1200 complete(&ctx->restart);
1201 return;
1202 }
1203
1204 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1205 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1206
1207 mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1208
1209 if (!atomic_dec_and_test(&ctx->pending))
1210 return;
1211
1212 if (bio_data_dir(io->base_bio) == READ)
1213 kcryptd_crypt_read_done(io, error);
1214 else
1215 kcryptd_crypt_write_io_submit(io, error, 1);
1216 }
1217
1218 static void kcryptd_crypt(struct work_struct *work)
1219 {
1220 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1221
1222 if (bio_data_dir(io->base_bio) == READ)
1223 kcryptd_crypt_read_convert(io);
1224 else
1225 kcryptd_crypt_write_convert(io);
1226 }
1227
1228 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1229 {
1230 struct crypt_config *cc = io->target->private;
1231
1232 INIT_WORK(&io->work, kcryptd_crypt);
1233 queue_work(cc->crypt_queue, &io->work);
1234 }
1235
1236 /*
1237 * Decode key from its hex representation
1238 */
1239 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1240 {
1241 char buffer[3];
1242 char *endp;
1243 unsigned int i;
1244
1245 buffer[2] = '\0';
1246
1247 for (i = 0; i < size; i++) {
1248 buffer[0] = *hex++;
1249 buffer[1] = *hex++;
1250
1251 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
1252
1253 if (endp != &buffer[2])
1254 return -EINVAL;
1255 }
1256
1257 if (*hex != '\0')
1258 return -EINVAL;
1259
1260 return 0;
1261 }
1262
1263 /*
1264 * Encode key into its hex representation
1265 */
1266 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
1267 {
1268 unsigned int i;
1269
1270 for (i = 0; i < size; i++) {
1271 sprintf(hex, "%02x", *key);
1272 hex += 2;
1273 key++;
1274 }
1275 }
1276
1277 static void crypt_free_tfms(struct crypt_config *cc, int cpu)
1278 {
1279 struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1280 unsigned i;
1281
1282 for (i = 0; i < cc->tfms_count; i++)
1283 if (cpu_cc->tfms[i] && !IS_ERR(cpu_cc->tfms[i])) {
1284 crypto_free_ablkcipher(cpu_cc->tfms[i]);
1285 cpu_cc->tfms[i] = NULL;
1286 }
1287 }
1288
1289 static int crypt_alloc_tfms(struct crypt_config *cc, int cpu, char *ciphermode)
1290 {
1291 struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1292 unsigned i;
1293 int err;
1294
1295 for (i = 0; i < cc->tfms_count; i++) {
1296 cpu_cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1297 if (IS_ERR(cpu_cc->tfms[i])) {
1298 err = PTR_ERR(cpu_cc->tfms[i]);
1299 crypt_free_tfms(cc, cpu);
1300 return err;
1301 }
1302 }
1303
1304 return 0;
1305 }
1306
1307 static int crypt_setkey_allcpus(struct crypt_config *cc)
1308 {
1309 unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1310 int cpu, err = 0, i, r;
1311
1312 for_each_possible_cpu(cpu) {
1313 for (i = 0; i < cc->tfms_count; i++) {
1314 r = crypto_ablkcipher_setkey(per_cpu_ptr(cc->cpu, cpu)->tfms[i],
1315 cc->key + (i * subkey_size), subkey_size);
1316 if (r)
1317 err = r;
1318 }
1319 }
1320
1321 return err;
1322 }
1323
1324 static int crypt_set_key(struct crypt_config *cc, char *key)
1325 {
1326 int r = -EINVAL;
1327 int key_string_len = strlen(key);
1328
1329 /* The key size may not be changed. */
1330 if (cc->key_size != (key_string_len >> 1))
1331 goto out;
1332
1333 /* Hyphen (which gives a key_size of zero) means there is no key. */
1334 if (!cc->key_size && strcmp(key, "-"))
1335 goto out;
1336
1337 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1338 goto out;
1339
1340 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1341
1342 r = crypt_setkey_allcpus(cc);
1343
1344 out:
1345 /* Hex key string not needed after here, so wipe it. */
1346 memset(key, '0', key_string_len);
1347
1348 return r;
1349 }
1350
1351 static int crypt_wipe_key(struct crypt_config *cc)
1352 {
1353 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1354 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1355
1356 return crypt_setkey_allcpus(cc);
1357 }
1358
1359 static void crypt_dtr(struct dm_target *ti)
1360 {
1361 struct crypt_config *cc = ti->private;
1362 struct crypt_cpu *cpu_cc;
1363 int cpu;
1364
1365 ti->private = NULL;
1366
1367 if (!cc)
1368 return;
1369
1370 if (cc->io_queue)
1371 destroy_workqueue(cc->io_queue);
1372 if (cc->crypt_queue)
1373 destroy_workqueue(cc->crypt_queue);
1374
1375 if (cc->cpu)
1376 for_each_possible_cpu(cpu) {
1377 cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1378 if (cpu_cc->req)
1379 mempool_free(cpu_cc->req, cc->req_pool);
1380 crypt_free_tfms(cc, cpu);
1381 }
1382
1383 if (cc->bs)
1384 bioset_free(cc->bs);
1385
1386 if (cc->page_pool)
1387 mempool_destroy(cc->page_pool);
1388 if (cc->req_pool)
1389 mempool_destroy(cc->req_pool);
1390 if (cc->io_pool)
1391 mempool_destroy(cc->io_pool);
1392
1393 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1394 cc->iv_gen_ops->dtr(cc);
1395
1396 if (cc->dev)
1397 dm_put_device(ti, cc->dev);
1398
1399 if (cc->cpu)
1400 free_percpu(cc->cpu);
1401
1402 kzfree(cc->cipher);
1403 kzfree(cc->cipher_string);
1404
1405 /* Must zero key material before freeing */
1406 kzfree(cc);
1407 }
1408
1409 static int crypt_ctr_cipher(struct dm_target *ti,
1410 char *cipher_in, char *key)
1411 {
1412 struct crypt_config *cc = ti->private;
1413 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1414 char *cipher_api = NULL;
1415 int cpu, ret = -EINVAL;
1416
1417 /* Convert to crypto api definition? */
1418 if (strchr(cipher_in, '(')) {
1419 ti->error = "Bad cipher specification";
1420 return -EINVAL;
1421 }
1422
1423 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1424 if (!cc->cipher_string)
1425 goto bad_mem;
1426
1427 /*
1428 * Legacy dm-crypt cipher specification
1429 * cipher[:keycount]-mode-iv:ivopts
1430 */
1431 tmp = cipher_in;
1432 keycount = strsep(&tmp, "-");
1433 cipher = strsep(&keycount, ":");
1434
1435 if (!keycount)
1436 cc->tfms_count = 1;
1437 else if (sscanf(keycount, "%u", &cc->tfms_count) != 1 ||
1438 !is_power_of_2(cc->tfms_count)) {
1439 ti->error = "Bad cipher key count specification";
1440 return -EINVAL;
1441 }
1442 cc->key_parts = cc->tfms_count;
1443
1444 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1445 if (!cc->cipher)
1446 goto bad_mem;
1447
1448 chainmode = strsep(&tmp, "-");
1449 ivopts = strsep(&tmp, "-");
1450 ivmode = strsep(&ivopts, ":");
1451
1452 if (tmp)
1453 DMWARN("Ignoring unexpected additional cipher options");
1454
1455 cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)) +
1456 cc->tfms_count * sizeof(*(cc->cpu->tfms)),
1457 __alignof__(struct crypt_cpu));
1458 if (!cc->cpu) {
1459 ti->error = "Cannot allocate per cpu state";
1460 goto bad_mem;
1461 }
1462
1463 /*
1464 * For compatibility with the original dm-crypt mapping format, if
1465 * only the cipher name is supplied, use cbc-plain.
1466 */
1467 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1468 chainmode = "cbc";
1469 ivmode = "plain";
1470 }
1471
1472 if (strcmp(chainmode, "ecb") && !ivmode) {
1473 ti->error = "IV mechanism required";
1474 return -EINVAL;
1475 }
1476
1477 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1478 if (!cipher_api)
1479 goto bad_mem;
1480
1481 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1482 "%s(%s)", chainmode, cipher);
1483 if (ret < 0) {
1484 kfree(cipher_api);
1485 goto bad_mem;
1486 }
1487
1488 /* Allocate cipher */
1489 for_each_possible_cpu(cpu) {
1490 ret = crypt_alloc_tfms(cc, cpu, cipher_api);
1491 if (ret < 0) {
1492 ti->error = "Error allocating crypto tfm";
1493 goto bad;
1494 }
1495 }
1496
1497 /* Initialize and set key */
1498 ret = crypt_set_key(cc, key);
1499 if (ret < 0) {
1500 ti->error = "Error decoding and setting key";
1501 goto bad;
1502 }
1503
1504 /* Initialize IV */
1505 cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1506 if (cc->iv_size)
1507 /* at least a 64 bit sector number should fit in our buffer */
1508 cc->iv_size = max(cc->iv_size,
1509 (unsigned int)(sizeof(u64) / sizeof(u8)));
1510 else if (ivmode) {
1511 DMWARN("Selected cipher does not support IVs");
1512 ivmode = NULL;
1513 }
1514
1515 /* Choose ivmode, see comments at iv code. */
1516 if (ivmode == NULL)
1517 cc->iv_gen_ops = NULL;
1518 else if (strcmp(ivmode, "plain") == 0)
1519 cc->iv_gen_ops = &crypt_iv_plain_ops;
1520 else if (strcmp(ivmode, "plain64") == 0)
1521 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1522 else if (strcmp(ivmode, "essiv") == 0)
1523 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1524 else if (strcmp(ivmode, "benbi") == 0)
1525 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1526 else if (strcmp(ivmode, "null") == 0)
1527 cc->iv_gen_ops = &crypt_iv_null_ops;
1528 else if (strcmp(ivmode, "lmk") == 0) {
1529 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1530 /* Version 2 and 3 is recognised according
1531 * to length of provided multi-key string.
1532 * If present (version 3), last key is used as IV seed.
1533 */
1534 if (cc->key_size % cc->key_parts)
1535 cc->key_parts++;
1536 } else {
1537 ret = -EINVAL;
1538 ti->error = "Invalid IV mode";
1539 goto bad;
1540 }
1541
1542 /* Allocate IV */
1543 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1544 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1545 if (ret < 0) {
1546 ti->error = "Error creating IV";
1547 goto bad;
1548 }
1549 }
1550
1551 /* Initialize IV (set keys for ESSIV etc) */
1552 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1553 ret = cc->iv_gen_ops->init(cc);
1554 if (ret < 0) {
1555 ti->error = "Error initialising IV";
1556 goto bad;
1557 }
1558 }
1559
1560 ret = 0;
1561 bad:
1562 kfree(cipher_api);
1563 return ret;
1564
1565 bad_mem:
1566 ti->error = "Cannot allocate cipher strings";
1567 return -ENOMEM;
1568 }
1569
1570 /*
1571 * Construct an encryption mapping:
1572 * <cipher> <key> <iv_offset> <dev_path> <start>
1573 */
1574 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1575 {
1576 struct crypt_config *cc;
1577 unsigned int key_size, opt_params;
1578 unsigned long long tmpll;
1579 int ret;
1580 struct dm_arg_set as;
1581 const char *opt_string;
1582
1583 static struct dm_arg _args[] = {
1584 {0, 1, "Invalid number of feature args"},
1585 };
1586
1587 if (argc < 5) {
1588 ti->error = "Not enough arguments";
1589 return -EINVAL;
1590 }
1591
1592 key_size = strlen(argv[1]) >> 1;
1593
1594 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1595 if (!cc) {
1596 ti->error = "Cannot allocate encryption context";
1597 return -ENOMEM;
1598 }
1599 cc->key_size = key_size;
1600
1601 ti->private = cc;
1602 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1603 if (ret < 0)
1604 goto bad;
1605
1606 ret = -ENOMEM;
1607 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1608 if (!cc->io_pool) {
1609 ti->error = "Cannot allocate crypt io mempool";
1610 goto bad;
1611 }
1612
1613 cc->dmreq_start = sizeof(struct ablkcipher_request);
1614 cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1615 cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1616 cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1617 ~(crypto_tfm_ctx_alignment() - 1);
1618
1619 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1620 sizeof(struct dm_crypt_request) + cc->iv_size);
1621 if (!cc->req_pool) {
1622 ti->error = "Cannot allocate crypt request mempool";
1623 goto bad;
1624 }
1625
1626 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1627 if (!cc->page_pool) {
1628 ti->error = "Cannot allocate page mempool";
1629 goto bad;
1630 }
1631
1632 cc->bs = bioset_create(MIN_IOS, 0);
1633 if (!cc->bs) {
1634 ti->error = "Cannot allocate crypt bioset";
1635 goto bad;
1636 }
1637
1638 ret = -EINVAL;
1639 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1640 ti->error = "Invalid iv_offset sector";
1641 goto bad;
1642 }
1643 cc->iv_offset = tmpll;
1644
1645 if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1646 ti->error = "Device lookup failed";
1647 goto bad;
1648 }
1649
1650 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1651 ti->error = "Invalid device sector";
1652 goto bad;
1653 }
1654 cc->start = tmpll;
1655
1656 argv += 5;
1657 argc -= 5;
1658
1659 /* Optional parameters */
1660 if (argc) {
1661 as.argc = argc;
1662 as.argv = argv;
1663
1664 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1665 if (ret)
1666 goto bad;
1667
1668 opt_string = dm_shift_arg(&as);
1669
1670 if (opt_params == 1 && opt_string &&
1671 !strcasecmp(opt_string, "allow_discards"))
1672 ti->num_discard_requests = 1;
1673 else if (opt_params) {
1674 ret = -EINVAL;
1675 ti->error = "Invalid feature arguments";
1676 goto bad;
1677 }
1678 }
1679
1680 ret = -ENOMEM;
1681 cc->io_queue = alloc_workqueue("kcryptd_io",
1682 WQ_NON_REENTRANT|
1683 WQ_MEM_RECLAIM,
1684 1);
1685 if (!cc->io_queue) {
1686 ti->error = "Couldn't create kcryptd io queue";
1687 goto bad;
1688 }
1689
1690 cc->crypt_queue = alloc_workqueue("kcryptd",
1691 WQ_NON_REENTRANT|
1692 WQ_CPU_INTENSIVE|
1693 WQ_MEM_RECLAIM,
1694 1);
1695 if (!cc->crypt_queue) {
1696 ti->error = "Couldn't create kcryptd queue";
1697 goto bad;
1698 }
1699
1700 ti->num_flush_requests = 1;
1701 ti->discard_zeroes_data_unsupported = 1;
1702
1703 return 0;
1704
1705 bad:
1706 crypt_dtr(ti);
1707 return ret;
1708 }
1709
1710 static int crypt_map(struct dm_target *ti, struct bio *bio,
1711 union map_info *map_context)
1712 {
1713 struct dm_crypt_io *io;
1714 struct crypt_config *cc;
1715
1716 /*
1717 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1718 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1719 * - for REQ_DISCARD caller must use flush if IO ordering matters
1720 */
1721 if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1722 cc = ti->private;
1723 bio->bi_bdev = cc->dev->bdev;
1724 if (bio_sectors(bio))
1725 bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
1726 return DM_MAPIO_REMAPPED;
1727 }
1728
1729 io = crypt_io_alloc(ti, bio, dm_target_offset(ti, bio->bi_sector));
1730
1731 if (bio_data_dir(io->base_bio) == READ) {
1732 if (kcryptd_io_read(io, GFP_NOWAIT))
1733 kcryptd_queue_io(io);
1734 } else
1735 kcryptd_queue_crypt(io);
1736
1737 return DM_MAPIO_SUBMITTED;
1738 }
1739
1740 static int crypt_status(struct dm_target *ti, status_type_t type,
1741 char *result, unsigned int maxlen)
1742 {
1743 struct crypt_config *cc = ti->private;
1744 unsigned int sz = 0;
1745
1746 switch (type) {
1747 case STATUSTYPE_INFO:
1748 result[0] = '\0';
1749 break;
1750
1751 case STATUSTYPE_TABLE:
1752 DMEMIT("%s ", cc->cipher_string);
1753
1754 if (cc->key_size > 0) {
1755 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1756 return -ENOMEM;
1757
1758 crypt_encode_key(result + sz, cc->key, cc->key_size);
1759 sz += cc->key_size << 1;
1760 } else {
1761 if (sz >= maxlen)
1762 return -ENOMEM;
1763 result[sz++] = '-';
1764 }
1765
1766 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1767 cc->dev->name, (unsigned long long)cc->start);
1768
1769 if (ti->num_discard_requests)
1770 DMEMIT(" 1 allow_discards");
1771
1772 break;
1773 }
1774 return 0;
1775 }
1776
1777 static void crypt_postsuspend(struct dm_target *ti)
1778 {
1779 struct crypt_config *cc = ti->private;
1780
1781 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1782 }
1783
1784 static int crypt_preresume(struct dm_target *ti)
1785 {
1786 struct crypt_config *cc = ti->private;
1787
1788 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1789 DMERR("aborting resume - crypt key is not set.");
1790 return -EAGAIN;
1791 }
1792
1793 return 0;
1794 }
1795
1796 static void crypt_resume(struct dm_target *ti)
1797 {
1798 struct crypt_config *cc = ti->private;
1799
1800 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1801 }
1802
1803 /* Message interface
1804 * key set <key>
1805 * key wipe
1806 */
1807 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1808 {
1809 struct crypt_config *cc = ti->private;
1810 int ret = -EINVAL;
1811
1812 if (argc < 2)
1813 goto error;
1814
1815 if (!strcasecmp(argv[0], "key")) {
1816 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1817 DMWARN("not suspended during key manipulation.");
1818 return -EINVAL;
1819 }
1820 if (argc == 3 && !strcasecmp(argv[1], "set")) {
1821 ret = crypt_set_key(cc, argv[2]);
1822 if (ret)
1823 return ret;
1824 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1825 ret = cc->iv_gen_ops->init(cc);
1826 return ret;
1827 }
1828 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1829 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1830 ret = cc->iv_gen_ops->wipe(cc);
1831 if (ret)
1832 return ret;
1833 }
1834 return crypt_wipe_key(cc);
1835 }
1836 }
1837
1838 error:
1839 DMWARN("unrecognised message received.");
1840 return -EINVAL;
1841 }
1842
1843 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1844 struct bio_vec *biovec, int max_size)
1845 {
1846 struct crypt_config *cc = ti->private;
1847 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1848
1849 if (!q->merge_bvec_fn)
1850 return max_size;
1851
1852 bvm->bi_bdev = cc->dev->bdev;
1853 bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1854
1855 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1856 }
1857
1858 static int crypt_iterate_devices(struct dm_target *ti,
1859 iterate_devices_callout_fn fn, void *data)
1860 {
1861 struct crypt_config *cc = ti->private;
1862
1863 return fn(ti, cc->dev, cc->start, ti->len, data);
1864 }
1865
1866 static struct target_type crypt_target = {
1867 .name = "crypt",
1868 .version = {1, 11, 0},
1869 .module = THIS_MODULE,
1870 .ctr = crypt_ctr,
1871 .dtr = crypt_dtr,
1872 .map = crypt_map,
1873 .status = crypt_status,
1874 .postsuspend = crypt_postsuspend,
1875 .preresume = crypt_preresume,
1876 .resume = crypt_resume,
1877 .message = crypt_message,
1878 .merge = crypt_merge,
1879 .iterate_devices = crypt_iterate_devices,
1880 };
1881
1882 static int __init dm_crypt_init(void)
1883 {
1884 int r;
1885
1886 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1887 if (!_crypt_io_pool)
1888 return -ENOMEM;
1889
1890 r = dm_register_target(&crypt_target);
1891 if (r < 0) {
1892 DMERR("register failed %d", r);
1893 kmem_cache_destroy(_crypt_io_pool);
1894 }
1895
1896 return r;
1897 }
1898
1899 static void __exit dm_crypt_exit(void)
1900 {
1901 dm_unregister_target(&crypt_target);
1902 kmem_cache_destroy(_crypt_io_pool);
1903 }
1904
1905 module_init(dm_crypt_init);
1906 module_exit(dm_crypt_exit);
1907
1908 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1909 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1910 MODULE_LICENSE("GPL");